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Chapter 1

Introduction

The muon anomalous magnetic moment, aµ or muon “g-2”, is one of the most precisely measured
quantities in particle physics and allows to test Quantum Field Theory (QFT) in its depth, with
unprecedented accuracy. With its electromagnetic, weak and strong interaction contributions, the
theoretical prediction of the anomalous magnetic moment of the muon is a very difficult quantity
to compute. The comparison between the theoretical and experimental results of the muon“g-2” sets
severe limits on the deviations from standard theory of elementary particles, the Standard Model
(SM), and, at the same time, opens a window to New Physics (NP). Indeed the present discrepancy
between measurement and SM prediction of aµ is one of the most intriguing hints of NP beyond the
SM.

On the experimental side, before April 2021, the experimental value was the one obtained at the
E821 experiment at the Brookhaven National Laboratory (BNL). The discrepancy between the BNL
measurement and the theoretical SM result was 3.7 σ [1]. In April, the new experimental result of
the Muon “g-2” experiment at Fermilab (FNAL) confirmed the BNL result, bringing the combined
BNL+FNAL difference between the experimental and SM results to [2, 3]

aµ(Exp) − aµ(SM) = (251 ± 59) × 10−11, (1.1)

with a significance of 4.2 σ, if the leading hadronic contribution is computed via the dispersion method.
The discrepancy is reduced if the recent BMW collaboration lattice QCD result [4] is employed. In
addition, a completely new low-energy approach to measuring the muon “g-2” is being developed by
the E34 collaboration at J-PARC [5]. Moreover, in the future, the Muon “g-2” experiment at Fermilab
is expected to improve its precision by a factor four. On the theory side, new approaches are being
developed in order to reduce the uncertainty of the SM prediction, which is dominated by the hadronic
correction.

The long-standing discrepancy between the experimental measurement and the SM prediction of the
muon anomalous magnetic moment, aµ, has kept the hadronic corrections under close scrutiny for
several years. In fact, the hadronic uncertainty dominates that of the SM value and is comparable
with the experimental one. The leading order hadronic contribution to the muon “g-2”, aHLO

µ , is
usually computed via a dispersion integral using hadronic production cross sections in electron-positron
annihilation at low energies. An alternative theoretical result comes from lattice QCD computations
which, however, shows a tension with the dispersive one. The difference deserves further investigation.
It is clear that, in order to solve all the discrepancies associated to the muon “g-2”, new approaches,
both theoretical and experimental, are necessary.

A few years ago a new approach has been proposed to determine the leading hadronic contribution to
the muon “g-2”, aHLO

µ , measuring the effective electromagnetic coupling ∆α(q2), for space-like squared
four momentum transfers q2 = t < 0, via scattering data [6]. The elastic scattering of high-energy
muons on atomic electrons has been identified as an ideal process for this measurement, leading to the
proposal of the MUonE experiment at CERN to extract ∆α(q2) from the muon-electron scattering
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2 CHAPTER 1. INTRODUCTION

differential cross section [7]. In order to obtain a result competitive with the dispersive one, the shape of
the muon-electron scattering differential cross section must be measured with a systematic uncertainty
of O(10−5), or better, close to the kinematic endpoint. An analogous precision is therefore required in
the theoretical prediction of the shape of the differential cross section.

The MUonE experiment aims at measuring the running of the coupling constant α in the space-like
region with a muon beam of Eµ= 150 GeV on a fixed electron target. Assuming a 150 GeV muon beam
with an average intensity of ∼ 1.3 × 107 muons/s, presently available at CERN’s North Area, incident
on a target consisting of forty Beryllium layers, each 1.5 cm thick, and two/three years of data taking
with the running time of 2 × 107 s/yr, one can reach an integrated luminosity of about 1.5 × 107nb−1.
Taking into account the process cross section and the above value of the integrated luminosity, it was
estimated that one can reach a statistical sensitivity of roughly 0.3% on the value of aHLO

µ [7].

On the theory side, in order to obtain a theoretical result which can be compared with the one
measured at MUonE, leading order (LO), next-to-leading order (NLO) and next-next-to-leading order
(NNLO) QED corrections to the differential cross section have to be considered, together with the
hadronic ones at NNLO. Until recently, the SM prediction of the µe → µe process had received little
attention. Only the NLO QED corrections to the differential cross section were computed (long time
ago) in [8–14] and revisited in [15]. An important step forward was taken more recently by the authors
of [16], who calculated the full set of NLO QED corrections without any approximation and developed
a fully differential Monte Carlo code. They also computed the full set of NLO electroweak corrections.

The complete QED corrections at NNLO, crucial to interpret the high-precision data of future exper-
iments like MUonE, are not yet known. A first step towards the calculation of the full NNLO QED
corrections to µe scattering was taken in [17–19], where the master integrals for the two-loop planar
and non-planar four-point Feynman diagrams were computed. These integrals were calculated setting
the electron mass to zero, while retaining full dependence on the muon one. The extraction of the
leading electron mass effects from the massless µe scattering amplitudes has been addressed in [20]
(see also [21–23]). First applications of Monte Carlo simulations for µe scattering at NNLO have been
tested using a subset of two-loop graphs, not yet including the four-point diagrams, with complete
dependence on the lepton masses [24,25]. The analytic evaluation of the renormalized two-loop ampli-
tudes for µe → µe scattering in QED, with massless electrons and massive muons, has been presented
very recently in [26]. The two-loop hadronic corrections to µe scattering were computed in [27, 28].
Possible contaminations from New Physics effects were studied in [29, 30]. For a comprehensive re-
view of the current theoretical knowledge of the muon-electron scattering cross section for MUonE
kinematical conditions we refer the reader to [31].

A new method to compute the QED NNLO correction, based on the expansion by regions approach,
would be desirable. The strategy of regions [32] is a technique which allows one to carry out asymptotic
expansions of loop integrals in dimensional regularization around various limits [33]. The expansion is
obtained by splitting the integration in different regions and by appropriately expanding the integrand
in each case. The expanded integrals obtained by means of the strategy of regions technique are in one-
to-one correspondence to the Feynman diagrams of effective field theories regularized in dimensional
regularization. We will apply this powerful tool to the NLO QED corrections to the muon-electron
scattering cross section, in particular to the vacuum polarization and vertex corrections. The small
parameter for which we will expand by applying the strategy of regions is the electron mass m, in
particular the ratio λR = m2

−t . Then we will compare the result obtained by the use of this procedure
with the Taylor expansion of the exact result of the vacuum polarization and vertex corrections of the
µe scattering.

In this thesis project we will start by reviewing the QED, electroweak and hadronic contributions to the
anomalous magnetic moment of the muon, paying particular attention to the numerical calculation
of the leading hadronic contribution (Cap. 2). Then we will analyze the muon-electron scattering
differential cross section at LO and NLO. Ultraviolet singularities will be regularized via conventional
dimensional regularization and UV-finite results are obtained in the on-shell renormalization scheme.
Moreover we will introduce the soft-Bremsstrahlung corrections in order to take care of the infrared
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divergences (Cap. 3). In Cap. 4 we will apply the expansion by regions method to the amplitude for
the muon-electron scattering at NLO in QED and we will compare this result with the one obtained
by Taylor expanding the exact result for the muon-electron scattering differential cross section.
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Chapter 2

The muon anomalous magnetic moment

The Standard Model (SM) provides a truly basic framework for the properties of elementary particles
and allows to make theoretical predictions which may be compared with the experiments. The electron
and muon anomalous magnetic moments have a prominent role in basic tests of Quantum Field Theory
(QFT) with unprecedented accuracy.

2.1 A brief historical overview
Besides charge, spin, mass and lifetime, leptons have other very interesting properties like the magnetic
and the electric dipole moments. Classically the dipole moments can arise from either electrical charges
or currents. An orbiting particle with electric charge e and mass m exhibits a magnetic dipole moment

µL = e

2mcL, (2.1)

where L = mr × v is the orbital angular momentum. Both electric and magnetic moments contribute
to the electromagnetic Hamiltonian of the particle:

H = −µm · B − de · E, (2.2)

where B and E are the magnetic and electric field strengths and µm and de the magnetic and electric
dipole moment operators.
The anomalous magnetic moment is an observable which can be relatively easily studied experimentally
from the motion of the lepton in an external magnetic field. In 1925 Goudsmit and Uhlenbeck [34]
postulated that the intrinsic angular momentum of the electron was equal to 1

2~ and that, associated
to this spin angular momentum, there is a magnetic dipole moment µ0 = e~

2mc , the Bohr magneton.
Usually the magnetic moments are measured in terms of µ0 and of the spin operator, S = ~σ

2 , which
replaces the angular momentum operator L:

µm = gQµ0
σ

2 , (2.3)

where σi(i=1,2,3) are the Pauli spin matrices, Q is the electric charge in units of e and g is the
gyromagnetic ratio (g-factor). In the same year, Back and Landé [35], after numerous experimen-
tal investigations on the Zeeman effect, concluded that the magnetic moment of the electron (µm)e
was consistent with the Goudsmit and Uhlenbeck postulate. In 1927, Pauli formulated the quantum
mechanical treatment of the electron spin where g remains a free parameter [36]. In 1928, Dirac pre-
sented his relativistic theory and predicted, unexpectedly, g =2 for a free electron [37], twice the value
g =1 associated with the orbital angular momentum. In 1947, Nafe, Nelson and Rabi [38] reported an
anomalous value by about 0.26% in the hyperfine splitting of hydrogen and deuterium, suggesting a
possible anomaly of the magnetic moment of the electron. This bring to the definition of the lepton
anomalous magnetic moment

al ≡ gl − 2
2 where l = e, µ, τ. (2.4)

5



6 CHAPTER 2. THE MUON ANOMALOUS MAGNETIC MOMENT

In 1948 Kusch and Foley [39], by studying the hyperfine structure of atomic spectra in a constant
magnetic field, presented the first precision determination of the anomalous magnetic moment of the
electron ae=0.00119(5). In the same year, the theoretical result was settled by Schwinger who, by
working on the renormalization of QED, predicted the 1-loop QED contribution to the anomalous
magnetic moment [40]

a
QED(1)
l = α

2π = 0.00116... (2.5)

This contribution is due to quantum fluctuation via virtual electron photon interactions and is universal
for all leptons in QED. These theoretical and experimental results provided one of the first tests of
the virtual quantum corrections, called radiative corrections, predicted by a relativistic QFT.

2.2 The muon anomalous magnetic moment
The theoretical computation of the anomalous magnetic moment of the muon, aµ = gµ−2

2 , has been
interesting physicists for over 60 years.
On one hand, the anomalous magnetic moment of the electron, ae, has been computed precisely and
its agreement with the experimental result provided one of the early confirmation of QED. Moreover
ae is almost insensitive to strong and weak interactions, provides a stringent test of QED and, until
recently, used to led to the most precise determination of the fine-structure constant α. In the future,
this observable will play an important role to test physics Beyond the Standard Model (BSM) [41]. On
the other hand, the long-standing discrepancy between the theoretical computation and experimental
measurement of the anomalous magnetic moment of the muon indicates aµ as a better candidate to
study BSM physics. In fact, before April 2021, the experimental value was the one obtained at the
E821 experiment at the Brookhaven National Laboratory (BNL) and the discrepancy between the
BNL measurement and the theoretical SM result was 3.7 σ. In April, the new experimental result of
the Muon g-2 experiment at FermiLab (FNAL) confirmed the BNL result, increasing the combined
BNL+FNAL discrepancy with the the SM result to 4.2 σ, if the leading hadronic contribution is
computed via the traditional dispersive method with e+e− → hadrons data (see later). On the other
side, the recent BMW collaboration lattice QCD result weakens this discrepancy [4].

The anomalous magnetic moment of the muon, aµ, allows to investigate all the SM sectors (electro-
magnetic, weak and strong interactions), providing a great candidate to unveil New Physics (NP)
effects. If Λ indicates the scale of NP, the contribution to the anomalous magnetic moment of a lepton
l, al, is generally proportional to m2

l
Λ2 . This leads to a

(
mµ

me

)2
∼ 4 × 104 relative enhancement of the

sensitivity of the muon versus the electron magnetic moment. Thus the anomalous magnetic moment
of the τ would be the best candidate to investigate NP, but the short lifetime of this lepton makes
such measurement very difficult at the moment.

In this chapter a review of the theoretical prediction of aµ in the SM is presented and all the three
contributions (QED, electroweak and hadronic) into which aSM

µ is usually split, are analysed. For
detailed reviews see [3, 42–44].

2.2.1 QED radiative corrections

The largest contribution to the anomalous magnetic moment is of pure QED origin. The QED con-
tribution to the muon g-2 arises only from the interaction of leptons (e, µ, τ) with photons. As a
dimensionless quantity, it can be cast in the following general form [45,46]

aQED
µ = A1 +A2

(
mµ

me

)
+A2

(
mµ

mτ

)
+A3

(
mµ

me
,
mµ

mτ

)
, (2.6)

where me, mµ and mτ are the masses of the electron, muon and tau, respectively. The term A1, arising
from diagrams containing only photons and muons, is mass independent and is therefore universal for
all three charged leptons. The contribution A2 is a function of the indicated mass ratios and only shows
up if an additional lepton loop of a lepton different from the muon is involved. This requires at least
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µ−µ−
p p′

k

q

Figure 2.1: QED vertex correction diagram

two more loops: an additional electron loop A2 (mµ/me) or an additional τ -loop A2 (mµ/mτ ). The
first produces large logarithms ∝ ln (m2

µ/m
2
e) and accordingly large effects, while the second, because

of the decoupling of heavy particles in QED like theories, produces only small effects ∝ (m2
µ/m

2
τ ). The

renormalizability of QED guarantees that the functions Ai can be expanded as a power series in α/π
and computed order by order

Ai = A
(2)
i

(
α

π

)
+A

(4)
i

(
α

π

)2
+A

(6)
i

(
α

π

)3
+A

(8)
i

(
α

π

)4
+ ... (2.7)

One-loop contribution

Only one diagram (fig. 2.1) is involved in the evaluation of the lowest-order contribution and it provides
the famous result obtained by Schwinger A(2)

1 = 1/2.

The Lorentz structure of the vertex correction is given by the three-point function −ieΓµ = 〈ψ̄Aµψ〉,
where ψ (ψ̄ = ψ+γ0) is the (barred) spinorial representation of the particle, A is the vectorial rep-
resentation of the photon and e is the electric charge. As a first step we assign a 4-momentum p
to the incoming particle, a 4-momentum p′ to the outgoing particle and we define the transferred
4-momentum q ≡ p′ − p (fig.2.1). This brings to the spinorial representation u(p) for the incoming
particle and ū(p′) for the outgoing one. In general Γµ is some expression that involves p, p′, γµ and
constants like m and e. We can narrow down the form of Γµ by appealing to Lorentz invariance. Since
Γµ transforms as a vector, it must be a combination of the vectors listed above:

− ieū(p′)Γµu(p) = −ieū(p′)
(
γµ ·A+

(
p′µ + pµ) ·B +

(
p′µ − pµ) · C

)
u(p), (2.8)

where A, B and C are functions of the transferred squared momentum q2. By applying the Ward
identity, qµΓµ = 0, the only term that does not automatically vanish is the one proportional to C, so
C must be zero. The last step is to apply the Gordon identity to obtain

− ieū(p′)Γµ(p′, p)u(p) = −ieū(p′)
(
γµF1(q2) + iσµνqν

2m F2(q2)
)
u(p), (2.9)

where σµν = i
2 [γµ, γν ] is the spin 1/2 angular momentum tensor, while F1 and F2 are unknown

functions of q2 called form factors. In the static limit (q2 → 0) we have

F1(0) = 1 and F2(0) = al. (2.10)

The first condition is the charge renormalization condition, while the second relation is the finite
prediction of the anomalous magnetic moment of the lepton l.

In order to prove the relation F2(0) = al, let us analyze the scattering of a particle, like the muon,
with a static vector potential Acl

µ (x) = (0,Acl(x)). Then the amplitude for scattering from this field is

iM = +ie
[
ū(p′)

(
γiF1(q2) + iσiνqν

2m F2(q2)
)
u(p)

]
Ãi

cl(q). (2.11)
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The expression in brackets vanishes at q=0, so we must extract from it a contribution linear in qi. To
do this, insert the non relativistic expansion of the spinor u(p):

u(p) =
( √

p · σξ√
p · σ̄ξ

)
≈

√
m

(
(1 − p · σ/2m)ξ
(1 + p · σ/2m)ξ

)
, (2.12)

and use the identity σiσj = δij + iεijkσk to obtain

ū(p′)γiu(p) = 2mξ′†
( −i

2mεijkqjσk
)
ξ,

ū(p′)
(
i

2mσiνqν

)
u(p) = 2mξ′†

( −i
2mεijkqjσk

)
ξ.

(2.13)

Thus the complete term linear in qj in the muon-photon vertex function is

ū(p′)
(
γµF1(q2) + iσµνqν

2m F2(q2)
)
u(p) ≈

q→0
2mξ′†

( −i
2mεijkqjσk [F1(0) + F2(0)]

)
ξ. (2.14)

Inserting this expression in the eq. 2.11, we find

iM = −i(2m) · eξ′†
(−1

2mσk [F1(0) + F2(0)]
)
ξB̃k(q), (2.15)

where B̃k(q) = −iεijkqiÃj
cl(q) is the Fourier transform of the magnetic field produced by Acl(x). We

can interpret M as the Born approximation to the scattering of the muon from a potential well. The
potential is that of a magnetic moment interaction

V (x) = −〈µ〉 · B(x), (2.16)

where
〈µ〉 = g

(
e

2m

)
S = e

m
= 2 + 2F2(0)ξ′†σ

2 ξ. (2.17)

The magnetic moment of the muon can be rewritten in the standard form

µ = gµ

(
e

2m

)
S, (2.18)

where S is the muon spin and

gµ = 2 [F1(0) + F2(0)] = 2 + 2F2(0) ⇒ aµ = F2(0) = gµ − 2
2 . (2.19)

Now we can evaluate explicitly the one-loop contribution to the muon vertex function. We assign the
particle momenta as shown in fig. 2.1 and by applying the Feynman rules listed in App.A, we obtain

ū(p′)Γµ(p, p′)u(p) = −ie2
∫

d4k

(2π)4 ū(p′)
γν(/q + /k +M)γµ(/k +M)γν

[(k − p)2 + iε][(q + k)2 −M2 + iε][(k2 −M2) + iε]u(p),

(2.20)
where the +iε terms in the denominator are necessary for proper evaluation of the loop-momentum
integral.
This integral can be computed using the Feynman parameters technique: squeeze the three denomi-
nator factors of eq. 2.20 into a single quadratic polynomial in k, raised to the third power; shift k by a
constant to complete the square in this polynomial and evaluate the remaining spherically symmetric
integral. The price to pay is the introduction of auxiliary parameters to be integrated over. After some
lengthy calculation we obtain

ū(p′)Γµ(p, p′)u(p) = − ie2
∫

d4l

(2π)4

∫ 1

0
dxdydzδ(x+ y + z − 1) 2

D3

× ū(p′)
[
γµ ·

(
−1

2 l
2 + (1 − x)(1 − y)q2 + (1 − 4z + z2)M2

)

+ i

2Mσiνqν(2M2z(1 − z))
]
u(p),

(2.21)
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where D = l2 − ∆ + iε and ∆ = −xyq2 + (1 − z)2M2.
The decomposition into form factors is now manifest and in particular, after performing the integration
in d4l we obtain

F2(q2) = α

2π

∫ 1

0
dxdydzδ(x+ y + z − 1)

[
2m2z(1 − z)

m2(1 − z)2 − xyq2

]
+ O(α2). (2.22)

Now, to obtain the muon anomalous magnetic moment, we have to set q2 = 0 and we get

aµ = F2(0) = α

2π

∫ 1

0
dxdydzδ(x+ y + z − 1)

[
2m2z(1 − z)
m2(1 − z)2

]

= α

π

∫ 1

0
dz

∫ 1−z

0
dy

z

1 − z
= α

2π .
(2.23)

Higher-order contributions

The QED contribution to the muon g-2 is computed very precisely up to five-loops. Here we will list
briefly the results.
At forth order in QED there are seven diagrams that contribute to A(4)

1 , one to A(4)
2 (mµ/me) and one

to A(4)
2 (mµ/mτ ). The universal contribution comes from the six diagrams where two virtual photons

are attached to the external muon legs and the diagram containing the photon vacuum polarization
due to the muon loop. The result has been known for almost 50 years [47,48]:

A
(4)
1 = −0.328 478 965 579... (2.24)

The mass dependent parts come from the two diagrams containing the photon vacuum polarization
due to the electron and tau loops. The evaluation of A(4)

2 (mµ/me) and A(4)
2 (mµ/mτ ) yields [3]

A
(4)
2 (mµ/me) = 1.094 258 3093(76),

A
(4)
2 (mµ/mτ ) = 0.000 078 076(11),

(2.25)

where the standard uncertainties are only caused by the uncertainties of the lepton mass ratios. As
there are no two-loop diagrams containing both virtual electrons and taus, A(4)

3 (mµ/me,mµ/mτ )=0.

More then one hundred diagrams are involved in the evaluation of the sixth-order QED contribution.
The coefficient A(6)

1 arises from 72 diagrams and its calculation in closed analytic form is mainly due
to Remiddi and his collaborators [49,50]

A6
1 = 1.181 241 4565... (2.26)

The calculation of the exact expression for the coefficient A(6)
2 (m/M), where in our case m = mµ and

M = me or mτ , was completed in 1993 by Laporta e Remiddi [51,52]. This coefficient can be split into
two parts: the first one A(6)

2 (m/M, vp) receives contribution from 36 diagrams containing electron or
τ vacuum polarization loops [51], whereas the second one A(6)

2 (m/M, lbl) is due to 12 light-by-light
scattering diagrams with electron or tau loops [52]. The final results are [3]

A
(6)
2 (mµ/me) = 22.868 379 98(20),

A
(6)
2 (mµ/mτ ) = 0.000 360 671(94).

(2.27)

The analytic calculation of the three-loop diagrams provides the numerical value [3]

A
(6)
3 (mµ/me,mµ/mτ ) = 0.000 527 738(75). (2.28)

More than one thousand diagrams enter the evaluation of the four-loop QED contribution to aµ. This
eight order QED contribution, being about six times larger than the present experimental uncertainty
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of aµ, is crucial for the comparison between the SM prediction of aµ and its experimental determina-
tion. There are 891 four-loop diagrams contributing to the mass independent coefficient A(8)

1 and the
numerical result is [53]

A
(8)
1 = −1.912 245 764. (2.29)

The latest values of the coefficient A(8)
2 (mµ/me), arising from 469 diagrams, and the one considering

the contribution of the τ lepton are [3]

A
(8)
2 (mµ/me) = 132.6852(60),

A
(8)
2 (mµ/mτ ) = 0.042 4941(53).

(2.30)

The three mass coefficient is due to 102 diagrams containing both electron and tau loop insertions [3]

A
(8)
3 (mµ/me,mµ/mτ ) = 0.062 722(10). (2.31)

The last QED contribution is due to five-loop diagrams. This evaluation is mainly based on the
experience accumulated computing the sixth- and eight- order terms. The numerical results for the
sum of all diagrams with one or more fermion loops are [3]

A
(10)
2 (mµ/me) = 742.32(86),

A
(10)
2 (mµ/mτ ) = −0.0656(45),

A
(10)
3 (mµ/me,mµ/mτ ) = 2.011(10).

(2.32)

Considering all the QED contributions listed above and the currently best value of the fine structure
constant, coming from the electron anomalous magnetic moment ae [54]

α−1(ae) = 137.035 999 1496(13)(14)(330), (2.33)

the value for the QED contribution to the muon g-2 is [3]

aQED
µ = 116 584 718.842(7)(17)(6)(100)(28)[106] × 10−11, (2.34)

where the uncertainties are due to the τ -lepton mass mτ , the eighth-order QED, the tenth-order
QED, the estimate twelfth-order QED, the fine-structure constant α and the sum in quadrature of all
of these.

2.2.2 Electroweak contribution

The electroweak contribution to the anomalous magnetic moment of the muon is suppressed by a
factor (mµ/MW )2, where MW is the mass of the W boson, with respect to the QED contributions.

One-loop contribution

The one-loop electroweak contribution to the muon g-2 is due to diagrams shown in fig. 2.2 and its
analytic form is

aEW
µ (1 − loop) =

5Gµm
2
µ

24
√

2π2

[
1 + 1

5(1 − 4sin2θW )2 + O

(
m2

µ

M2
Z,W,H

)]
, (2.35)

where Gµ = 1.16637(1) × 10−5GeV−2 is the Fermi coupling constant,MZ ,MW andMH are the masses
of the Z, W and Higgs boson respectively, while θW is the Weinberg angle. The numerical result is [3]

aEW
µ (1 − loop) = 194.79(1) × 10−11 (2.36)
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µ−µ−

Z0

γ

µ−µ−

νµ

WW

γ

µ−µ−

νµ

Wφ

γ

Figure 2.2: Diagrams involved in the computation of the weak contribution at one-loop to the muon g-2

Higher-order contributions

The two-loop electroweak contribution to aµ [55, 56] leads to a significant reduction of the one-loop
prediction. This contribution appeared to be of fundamental importance [57] and, the correction
turned out to be enhanced by a factor ln(MZ,W /mf ), where mf is a fermion mass scale much smaller
then MW . In QED, loops with three photons attached to a loop do not contribute due to the Furry’s
theorem and the γγγ-amplitude vanishes. In presence of weak interactions, because of parity violation,
contributions from the two orientations of the closed fermion loops do not cancel such that the γγZ,
γZZ and γWW amplitudes do not vanish. The two-loop contributions to aEW

µ is usually split into a
fermionic and a bosonic part: the first one includes all the two-loop EW corrections containing closed
fermion loops, whereas all other contributions are grouped into the second one.

Summing up all the results, the electroweak contribution to the muon g-2 is [3]

aEW
µ = 153.6(1.0) × 10−11. (2.37)

2.2.3 Hadronic contribution

In this section we will analyze the contribution to the muon g-2 arising from QED diagrams involving
hadrons. The main effect comes from the O(α2) hadronic vacuum polarization (HVP) insertion in the
internal photon line of the leading one-loop muon vertex diagram (fig. 2.3). At order O(α3), there are

µ−µ−

Figure 2.3: HLO contribution to the muon anomalous magnetic moment

several diagrams that contribute to the computation of the anomalous magnetic moment of the muon
but with a smaller result. However, these contributions are important if one takes into account the
present accuracy of aµ measurements.

Leading-order hadronic contribution

The hadronic leading order (HLO) contribution to the anomalous magnetic moment of the muon,
aHLO

µ , is due to the vacuum polarization correction to the internal photon propagator of the one-loop
diagram (fig. 2.3).



12 CHAPTER 2. THE MUON ANOMALOUS MAGNETIC MOMENT

The computation of this contribution involves low-energy QCD for which the perturbative approach
can not be applied. A different approach to perform this evaluation was found by Bouchiat and
Michel [58]: using analyticity and unitarity, aHLO

µ can be computed from hadronic e+e− annihilation
data via the dispersion integral [58,59].

Let us now investigate more in detail the analyticity concept: an analytic function f(z), which has a
brunch cut along the real positive axis in the z-plane, starting at z = z0 and going to infinity, and real
below z0, can be written in terms of a Cauchy integral representation

f(z) = 1
2πi

∮
γ

f(z′)
z′ − z

dz′, (2.38)

where γ is the contour shown in fig. 2.4. Now let us suppose that f1(z) is an analytic function defined

Im z

Re z

γR

γε

Figure 2.4: Integration path

for complex z in the upper-half z-plane (Im(z) > 0); then the Schwarz reflection principle affirms
that it exists a unique analytic continuation of f1(z) in the lower-half z-plane, given by the function
f2(z) = f∗

1 (z∗), where * indicates the complex conjugation. Now, if we consider the integration path
z > z0, we have

f(z) = 1
2πi

∫ ∞

z0

f+(z′) − f−(z′)
z′ − z

dz′, (2.39)

where f+(z′) = f(z′ + i0) and f−(z′) = f(z′ − i0). From the Schwarz reflection principle we have
f(z′ − iε) = f∗(z′ − iε) and so lim

ε→0+
f(z′ + iε) − f(z′ − iε) = 2iIm [f(z′ + i0)].

Considering now the complete integration path (fig. 2.4)

f(z) = 1
2πi

∫ ∞

z0

2iIm [f(z′)]
z′ − z

dz′ + 1
2πi

∫
γε,γR

f(z′)
z′ − z

dz′. (2.40)

If f(z) falls off sufficiently rapidly in the limit ε → 0 and R → ∞, then the contribution from γε and
γR vanish, and we obtain the dispersion relation (DR)

f(z) = 1
π

∫ ∞

z0

Im [f(z′)]
z′ − z

dz′. (2.41)

If the contribution of γR does not vanish, we may subtract the function f(a) from f(z), were a is a
regular point of f(z), and let the integral vanish faster at infinity via a factor ∝ 1/z′:

f(z) − f(a) = z − a

2πi

∫ ∞

z0

2iIm [f(z′)]
(z′ − a)(z′ − z)dz

′ + z − a

2πi

∫
γε,γR

f(z′)
(z′ − a)(z′ − z)dz

′. (2.42)

Now, if the contribution of γR vanishes, we obtain the subtracted dispersion relation (SDR):

f(z) − f(a) = z − a

π

∫ ∞

z0

Im [f(z′)]
(z′ − a)(z′ − z)dz

′. (2.43)
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As said before, the hadronic leading order contribution comes from the insertion of the HVP to the
internal photon line in the one-loop muon vertex. This correction can be computed by using the
dispersion relation for an analytic function just defined. In fact the analyticity of the HVP correction,
Πh(q2), where q2 is the momentum of the internal photon line, is granted by causality. However we
know that Πh(q2) presents a ultraviolet (UV) divergence, so we have to apply the SDR with a=0 and
we obtain

Πh(q2) − Πh(0) = q2

π

∫ ∞

4m2
π

ImΠh(s)
s(s− q2)ds, (2.44)

where s is the well known Mandelstam variable. From now on we will use the notation Π̄h(q2) ≡
Πh(q2) − Πh(0) for brevity.

Unitarity also implies the validity of the optical theorem thanks to which it is possible to relate ImΠh(s)
with the experimentally measured cross section. In fact this theorem states that the imaginary part
of a forward elastic scattering (a + b → a + b) amplitude arises from a sum of contributions from
all possible intermediate state particles (a+ b → anything). Up to now, the LO HVP contribution is
computed using the cross section for low-energy hadronic e+e− annihilation, and this gives the relation

ImΠh(s) = s

4πασ(e+e− → hadrons) = α

3R(s), (2.45)

where R(s) = σ(e+e−→hadrons)
4πα(s)2/3s

, which is obtained by experimental measurement and can not be com-
puted in perturbation theory. The factor at denominator, namely 4πα(s)2/3s, is the e+e− → µ+µ−

three level cross section, computed in the relativistic limit s >> 4m2
µ, used as normalization factor.

Then the SDR for the LO HVP correction reads

Π̄h(q2) = αq2

3π

∫ ∞

4m2
π

R(s)
s(s− q2)ds. (2.46)

With this approach it is possible to compute the LO hadronic correction to the anomalous magnetic
moment of the muon without facing the low-energy QCD problems.

The LO hadronic contribution to aµ is due to the insertion of an hadronic “bubble” in the internal
photon propagator of the muon vertex correction (fig. 2.3). So we have to investigate more in de-
tails how the photon propagator change with this correction. In the Feynman gauge, ξ=1, the free
propagator takes the simple form

iDµν(q2) = −igµν

q2 + iε
. (2.47)

By U(1)em gauge invariance, the photon propagator is necessarily massless and must stay massless
after including radiative corrections. The transverse part of the full photon propagator becomes

iDµν(q) = −igµν

q2(1 + Π̄(q2))
+ gauge terms. (2.48)

where Π̄(q2) is the renormalized vacuum polarization function satisfying the condition Π(0) = 0. This
is a very important result for the study of the LO HVP correction. In fact the equation for the photon
propagator (eq. 2.48) can be rewritten as

iDµν(q) = −igµν

q2(1 + Π̄(q2))
= −igµν

q2

[
1 − Π̄(q2) +

(
Π̄(q2)

)2
+ ...

]
. (2.49)

So the insertion of the hadronic bubble in the internal photon line leads to the straightforward sub-
stitution in the photon propagator:

−igµν

q2 → −igµν
[
Πh(0) − Πh(q2)

]
q2 , (2.50)

where we have already performed the subtraction of Πh(0) from Πh(q2) in order to take care of the
UV divergence and we recall the definition Π̄h(q2) = Πh(q2) − Πh(0).
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We notice that the q2 dependence on the integral in eq. 2.46 shows up only in the last term. Thus,
the free photon propagator in the one-loop vertex diagram is replaced by

−igµν

q2 → −igµν

q2 − s
, (2.51)

which represents the exchange of a photon with “squared mass” s.

Now we have to consider the vertex correction diagram with the insertion of the hadronic vacuum
polarization in the internal photon line and, by recalling the expression for the form factor F2(0) given
in eq. 2.22, we obtain

F2(q2) = α

2π

∫
ds

s

1
π
ImΠ̄h(s)

∫ 1

0
dxdydzδ(x+ y + z − 1)

[
2m2z(1 − z)

m2(1 − z)2 − xyq2 + zs

]
+ O(α2). (2.52)

By computing the integral in dxdydz, we obtain the positive kernel function

K(s) = α

π

∫ 1

0
dx

x2(1 − x)
x2 + (1 − x)(s/m2

µ) , (2.53)

and the muon anomalous magnetic moment is given by

aHLO
µ = F2(0) = α

π2

∫
ds

s
ImΠ̄h(s)K(s) = α2

3π2

∫
ds

s
R(s)K(s). (2.54)

With this dispersive approach it is possible to overcome the issues involving non-perturbative QCD
computations appearing in the LO hadronic contribution to aµ. The ratioR(s), or equivalently ImΠ(s),
are obtained from low-energy e+e− annihilation data, which involves a positive squared momentum
transfer and so this is called time-like approach.

The latest result for the HLO contribution is [3]:

aHLO
µ = 6931(40) · 10−11, (2.55)

where the error is mainly due to experimental measurement of hadronic e+e− annihilation. This time-
like approach solves the long-distance QCD problems but it suffers from the experimental uncertainties
associated to the hadronic e+e− annihilation data.

An alternative evaluation of aHLO
µ con be obtained by lattice QCD calculations [3]. The latest result

by the BMW collaboration is [4]

aHLO
µ = 7075(23)(50) [5.5] · 10−11. (2.56)

Few years ago, a new approach has been proposed to determine the leading hadronic contribution to
the muon g-2, measuring the effective electromagnetic coupling in the space-like region via scattering
data [6]. This leads to the proposal of a new experiment, MUonE at CERN, to measure the differential
cross section of muon-electron elastic scattering as a function of the space-like squared momentum
transfer q2 = t < 0. This new experiment will use the 150 GeV anti-muon beam already available
at CERN and a low-Z target. The differential cross section of that process provides direct sensitivity
to the LO hadronic contribution to aµ. If we now consider the t-channel process described by the
muon-electron elastic scattering, and we define the space-like squared four momentum as

t(x) =
x2m2

µ

x− 1 < 0, (2.57)

eq. 2.54 reads

aHLO
µ = F2(0) = α

π2

∫ 1

0
dx(1 − x)

∫
ds

s
ImΠ̄h(s) −t(x)

s− t(x) . (2.58)
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By recalling the dispersion relation for the hadronic vacuum polarization Π̄h(q2) (eq. 2.46) and by
imposing q2 = t(x) < 0 we obtain [60]

aHLO
µ = α

π

∫ 1

0
dx(x− 1)Π̄h[t(x)]. (2.59)

This expression of aµ can be written by considering the effective fine-structure constant at squared
momentum q2. By recalling the form of the dress photon propagator in eq. 2.48 and by including a
factor e2, we obtain

iDµν
γ (q) = −igµνe2

q2(1 + Π̄(q2))
+ gauge terms. (2.60)

This defines the so called charge renormalization condition for which we obtain a running electric
charge given by

e2 → e2(q2) = e2(0)
1 + [Π(q2) − Π(0)] . (2.61)

The full effect of replacing the tree-level photon propagator with the exact photon propagator is
therefore to replace

α → α(q2) = α(0)
1 + [Π(q2) − Π(0)] = α(0)

1 − ∆α(q2) , (2.62)

where ∆α(q2) = −ReΠ̄(q2). At this stage it is easy to replace Π̄(q2) → Π̄h[t(x)] which is the quantity
needed to compute the HLO contribution to aµ. Moreover, for q2 = t(x) < 0, ImΠ̄h[t(x)] = 0 and eq.
2.59 reads

aHLO
µ = α

π

∫ 1

0
dx(x− 1)∆αh[t(x)] (2.63)

The hadronic contribution ∆αh[t(x)] can be obtained by subtracting from ∆α[t(x)] the leptonic con-
tribution ∆αlep[t(x)], which may be computed order by order in perturbation theory.

Higher-order hadronic contributions

The O(α3) contribution to the muon g-2 can be divided into two parts:

aHHO
µ = aHHO

µ (vp) + aHHO
µ (lbl). (2.64)

The first term comes from diagrams containing hadronic vacuum polarization insertions into the
internal photon line; the second term is the light-by-light contribution. The results considering the
hadronic vacuum polarization insertions, aHHO

µ (vp), were computed both at NLO and NNLO, whereas
the light-by-light contribution is computed at LO and NLO [3]:

aNLO
µ (vp) = −9.83(7) × 10−10,

aNNLO
µ (vp) = 1.24(1) × 10−10,

aLO
µ (lbl) = 92(19) × 10−11,

aNLO
µ (lbl) = 2(1) × 10−11.

(2.65)

2.2.4 SM prediction versus experimental measurement results

On the theory side, the latest result for the muon g-2 obtained considering all the contributions listed
above is [3]

aSM
µ = 116 591 810(43) × 10−11. (2.66)

This result is obtained by computing the leading hadronic contribution via the traditional dispersive
method. An alternative result is obtained by lattice QCD computation thanks to the recent BMW
collaboration [4] and reads

alattice
µ = 116 591 954(55) × 10−11. (2.67)
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On the experimental side, the measurement of the anomalous magnetic moment of negative muons
was the one obtained by the E821 experiment at the Brookhaven National Laboratory (BNL) [1]:

aexp
µ− = 116 592 140(80)(30) × 10−11, (2.68)

where the first error is statistical while the second is systematic. This result is in good agreement with
the average of the measurements of the muon g-2 of positive muons [1], aexp

µ+ = 116 592 030(80)×10−11,
as predicted by the CPT theorem. By combining these results, the new average is

aexp
µ = 116 592 080(60) × 10−11 (0.5 ppm). (2.69)

The comparison between the experimental measurement (eq. 2.69) and the SM prediction shows a
discrepancy of 3.7 σ.

On April 2021, the FermiLab Muon g-2 experiment revealed a new experimental result for the anoma-
lous magnetic moment of positive muons [2]:

aµ(FNAL) = 116 592 040(54) × 10−11 (0.46 ppm). (2.70)

This result differs from the SM value by 3.3 σ and agrees with the BNL E821 result. The combined
experimental average (BNL+FNAL) is

aexp
µ = 116 592 061(41) × 10−11 (0.35 ppm). (2.71)

The difference, aexp
µ − aSM

µ = (251 ± 59) × 10−11, has a significance of 4.2 σ.

The long-standing discrepancy between the experimental measurement and the SM prediction makes
clear that new approaches, both theoretical and experimental, are necessary. This leads to the pro-
posal of the MUonE experiment at CERN with the aim of measuring the effective electromagnetic
coupling ∆α(q2) by measuring the muon-electron scattering differential cross section with a systematic
uncertainty of O(10−5).



Chapter 3

The muon-electron scattering

The elastic scattering of muons and electrons is one of the most basic process in particle physics. The
study of the collision of muons from cosmic rays with atomic electron led to the discovery of the muon.
However few experimental results are available for this process. In the 1960s, the first result of the
muon-electron elastic scattering cross section came from the experiments at CERN and Brookhaven
where accelerator-produced muons were used [61–63]. In the 1990s, the scattering of muons off polarized
electrons was used by the SMC collaboration at CERN as a polarimeter for high-energy muon beams.

3.1 Kinematics

The muon-electron elastic scattering is a standard 2→2 process where the masses involved are M for
the muon and m for the electron. In our computation we will not make any massless approximation.
In order to study this process we label the momentum of the incoming electron with p1 and the
momentum of the incoming muon as p2; for the outgoing particles we assign the momentum p3 to the
electron and p4 to the muon. Following this notation the Mandelstam variables read

s = (p1 + p2)2 = (p3 + p4)2,

t = (p1 − p3)2 = (p2 − p4)2,

u = (p1 − p4)2 = (p2 − p3)2,

s+ t+ u = 2m2 + 2M2.

(3.1)

We are interested in the differential cross section for the µe elastic scattering whose general expression
is

dσ = |M̄ |2

4I12
(2π)2δ4(p1 + p2 − p3 − p4) d3p3

(2π)32E′
e

d3p4
(2π)32E′

µ

, (3.2)

where I12 =
√

(p1 · p2)2 −m2M2, E′
e =

√
m2 + |p3|2 is the electron recoil energy and E′

µ =
√
M2 + |p4|2

is the energy of the outgoing muon. By integrating in d3p4 and by shifting to spherical polar coordi-
nates, d3p3 = |p3|2dp3dΩ, we obtain

dσ

dΩ = |M̄ |2

4I12

∫
dp3

(4π)2
|p3|2

E′
eE

′
µ

δ(|p3| − |p̂3|)
∣∣∣∣∣∂(E′

e + E′
µ)

∂|p3|

∣∣∣∣∣
−1

. (3.3)

In the center of mass frame (CoM), from the conservation of energy and momentum, we have the
relations √

s = Ee + Eµ = E′
e + E′

µ,

p1 = −p2,

p3 = −p4,

(3.4)

17
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and these lead to the expressions

∂(E′
e + E′

µ)
∂|p3|

= |p3|
E′

µ + E′
e

E′
µE

′
e

I12 = |p3|
√
s

(3.5)

By integrating in dp3, we obtain the expression for the differential cross section

dσ

dΩ = |M̄ |2

64π2s
. (3.6)

By considering the Mandelstam variable t defined in eq. 3.1, we obtain, in the CoM frame

t = (p1 − p3)2 = 2m2 − 2p1 · p3 = −2|p3|2(1 − cosθ)
⇒ dt = 2|p3|2dcosθ,

(3.7)

where θ is the angle between the incoming muon and the emitted electron.
From the conservation of energy and momentum (eq. 3.4) it is possible to prove the relation

|p3|2 = 1
4sΛ(s,M2,m2), (3.8)

where Λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källen function. So the differential cross
section can be rewritten as

dσ

dt
= |M̄ |2

16πΛ(s,M2,m2) . (3.9)

In the laboratory frame, for a fixed target experiment where the electron is initially at rest, the
momenta are

p1 =
(
m
0

)
p2 =

(
Eµ

p2

)
p3 =

(
E′

e

p3

)
p3 =

(
E′

µ

p4

)
. (3.10)

In this frame of reference, the Mandelstam variables can be rewritten as

s = 2mEµ +M2 +m2,

t = −2m(E′
e −m),

− Λ(s,M2,m2)/s < t < 0.
(3.11)

3.2 LO contribution
In the SM, at LO, there are four diagrams that contribute to the muon-electron scattering cross section
and they differ from each other because of the different propagators involved. As shown in fig. 3.1, the
propagator can be a photon, a Z-boson, a Higgs boson or a neutral Goldstone boson.

µ−µ−

e−e−

γ

µ−µ−

e−e−

Z

µ−µ−

e−e−

H

µ−µ−

e−e−

φ0

Figure 3.1: LO diagrams for the muon-electron scattering cross section, considering all the possible propagators
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The LO amplitude will be the sum of all these contributions and, by labelling Mγ , MZ , MH and Mφ0

the amplitudes involving photon, Z-boson, Higgs boson and neutral Goldstone boson propagators
respectively, we obtain

XLO = 1
4
∑

spins

|Mγ + MZ + MH + Mφ0 |2

= Xγ + XZ + XH + Xφ0 + 2 ×
∑

i,j={γ,Z,H,φ0}
i 6=j

Re(MiM
∗
j ), (3.12)

where the Xi are the squared matrix elements while the last term is the interference between them. The
factor 1

4 comes from the average over the spins of the initial particles. We are interested in a very precise
computation of the muon-electron scattering cross section (O(α4)) and, as the contributions from Z,
H and φ0 are of O(10−5), they must be included. Here we will discuss only the QED contribution
coming from the interaction of leptons (electron and muon) with the photon.
At LO in QED there is only one diagram with a t-channel exchange of a photon. It is precisely this

µ−µ−

e−e−

p2 p4

p1 p3

k

Figure 3.2: LO diagram for the muon-electron scattering cross section, involving the photon propagator

feature that makes this process ideal to extract the HVP. In fact, the dominant contribution to the
HVP comes from the insertion of the hadronic vacuum polarization Πh into the photon propagator.

By considering the diagram in fig. 3.2, the unpolarized Feynman amplitude can be easily computed
by applying the rules listed in App. A:

Xγ = 1
4
∑

spins

e4

q4 ū(p3)γµu(p1)ū(p4)γµu(p2)ū(p1)γνu(p3)ū(p2)γµ(p4)

= 1
4
e4

t2
Tr
[
(/p3 +m)γµ(/p1 +m)γν

]
Tr
[
(/p4 +M)γµ(/p2 +M)γν

]
,

(3.13)

where we use the energy-momentum conservation to set q2 = (p1 − p3)2 = t. By computing the traces
and by evaluating in the lab frame the scalar products originating from the traces, we obtain the result

Xγ = 4e4

t2

[
(s−m2 −M2)2 + st+ t2

2

]
. (3.14)

The LO cross section for the muon-electron scattering then, from eq. 3.9, reads

dσ0
dt

= 4πα

[
(s−m2 −M2)2 + st+ t2

2

]
t2Λ(s,M2,m2) . (3.15)

3.3 NLO contribution
At NLO in QED there are three diagrams that contribute to the muon-electron scattering cross section,
the so called virtual corrections: the vacuum polarization correction, the vertex correction and the box
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diagram. Since we are interested in the O(α3) correction to the differential cross section, we have to
compute the interference term between this virtual corrections and the LO matrix element Mγ :

XNLO = 1
4
∑

spins

2Re
[
M ∗

γ MNLO
]
. (3.16)

All these contributions will be computed in terms of the Passarino-Veltman functions and in the
on-shell renormalization scheme.

3.3.1 QED renormalization

The renormalized perturbation theory, formulated in terms of physically measurable parameters, is
based on the following steps:

• absorb the field-strength renormalizations into the Lagrangian by rescaling the fields;

• split each term of the Lagrangian into two pieces, absorbing the infinite and unobservable shifts
into counterterms;

• specify the renormalization conditions, which define the physical masses and coupling constants
and keep the field-strength renormalizations equal to 1;

• compute amplitudes with the new Feynman rules, adjusting the counterterms as necessary to
mantain the renormalization conditions.

We will apply this procedure to QED. Let us consider the QED Lagrangian for the electron

L0 = −1
4FµνF

µν + ψ̄(i/∂ −m0)ψ − e0ψ̄γ
µψAµ, (3.17)

where m0 is the bare mass while e0 is the bare electric charge. The electron and photon propagators
coming from this Lagrangian are

= iZ2

/p−m
+ ..., = −iZ3gµν

q2 + ... (3.18)

To get rid of the terms Z2 and Z3, we have to substitute in the Lagrangian the renormalized fields
ψ = Z

1/2
2 ψr and Aµ = Z

1/2
3 Aµ

r . Moreover we introduce the physical electric charge e, measured at
large distances (q=0), by defining

e0Z2Z
1/2
3 = eZ1. (3.19)

Then the Lagrangian can be split into two pieces: one which is the so called renormalized QED
Lagrangian and the other one depending on counterterms

L = − 1
4(Fµν

r )2 + ψ̄r(i/∂ −m)ψr − eψ̄rγ
µψrArµ

− 1
4δ3(Fµν

r )2 + ψ̄r(iδ2/∂ − δm)ψr − eδ1ψ̄rγ
µψrArµ

(3.20)
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where δ3 = Z3 − 1, δ2 = Z2 − 1, δm = Z2m0 −m and δ1 = Z1 − 1 = (e0/e)Z2Z
1/2
3 − 1.

This renormalized Lagrangian implies new Feynman rules:

q

µ ν = −igµν

q2 + iε
,

p
= i

/p−m+ iε
,

γ = −ieγµ + ...,

µ ν = −i(gµνq2 − qµqν)δ3,

= i(/pδ2 − δm),

µ = −ieγµδ1.

(3.21)

Each of the four counterterm coefficients must be fixed by a renormalization condition:

Σ(/p = m) = 0,
d

d/p
Σ(/p)

∣∣∣
/p=m

= 0,

Π(q2 = 0) = 0,
−ieΓµ(p′ − p = 0) = −ieγµ,

(3.22)

where Σ(/p) identify the electron self-energy correction. The first condition in eq. 3.22 fixes the electron
mass at m, while the next two fix the residues of the electron and photon propagators at 1. The last
condition sets the electron charge to be e.

The four conditions in eq. 3.22 allow us to determine the four conterterms in terms of the values of
loop diagrams which, at one-loop, are the electron self-energy, the vacuum polarization and the vertex
diagrams. The relation necessary to compute the counterterms are

mδ2 − δm = Σ(m),

δ2 = d

d/p
Σ(m),

δ3 = Π(0),
δ1 = −F1(0),

(3.23)

where F1(q2) is the form factor defined in the computation of the vertex correction (eq. 2.9). We will
use dimensional regularization to control ultraviolet divergences while we will introduce a real photon
with mass λ to control infrared divergences.

For the analysis of the muon-electron scattering cross section at one-loop, only the vacuum polarization
and vertex corrections are UV divergent, so we are interested in the computation of the δ3 and δ1
counterterms. By evaluating explicitly these contributions we get

δ3(m) = Π(0) = − α

3π

(
2
ε

− γ + ln(4π) + ln
(
µ2

m2

))
, (3.24)
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p2 p4

p1 p3

kk − q

Figure 3.3: Vacuum polarization diagram for the muon-electron scattering cross section

where m could be the mass of the electron, the muon or the tau lepton and ε = 4−d
2 .

For the vertex contribution, instead, the counterterm reads

δ1(m) = − α

4π

(
2
ε

− γ + ln(4π) + ln
(
µ2

m2

)
+ 2ln

(
λ2

m2

)
+ 4

)
. (3.25)

By adding these counterterms to the virtual amplitude we will obtain a UV finite result.

3.3.2 Vacuum polarization contribution

The first virtual correction consists in a tree level diagram with a vacuum polarization insertion into
the photon propagator (fig. 3.3). By associating the momenta like in fig. 3.3, the vacuum polarization
correction Π(q2) can be computed by applying the Feynman rules listed in App. A in d dimension and
by neglecting the external legs

Π(q2) = −(eµε)2
∫

ddk

(2π)d

Tr
[
γµ(/k +m)γν(/q + /k +m)

]
(k2 −m2) [(k + q)2 −m2] , (3.26)

where q = p1 − p3 from the momentum conservation, d = 4 − 2ε, k is the loop momentum and m
is the electron mass. We neglect the +iε prescription for brevity. The muon-electron scattering cross
section at one loop feels the contribution of the vacuum polarization correction with a muon or a tau
lepton and the amplitude can be computed by considering eq. 3.26 and by substituting m → M and
m → mτ respectively.

This calculation can be carried out both by hand or by the FeynCalc package of Mathematica [64–66].
In both cases the result can be expressed in terms of the Passarino-Veltman functions. For the VP
contribution the final expression depends on the B0(...) function which can be divided into a divergent
term and a finite term:

B0(...) = 1
ε

− γE + ln(4π) + ln(µ2) + fB0(...), (3.27)

where γE ' 0.577216 while fB0(...) denotes the finite part of the Passarino-Veltman function B0(...).
The definitions of all the Passarino-Veltman functions are listed in App. B.

It is clear, from the explicit expression of the B0(...) functions, that the vacuum polarization con-
tributions shows a UV divergence and in order to eliminate it we have to add to the amplitude the
counterterms δ3(mi) (eq. 3.24) where mi = {m,M,mτ }. Only after considering these counterterms, it
is possible to take the d → 4 limit safely.

The UV finite result for the interference term between the VP correction and the LO matrix element
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Mγ , coming from eq. 3.16, can be represented diagrammatically as

MV P = 1
4 × 2Re





µ−µ−

e− e−



∗

×
∑

l=e,µ,τ



µ− µ−

e−e−

+

µ−µ−

e− e−





(3.28)

where the sum is meant over an electron, muon or tau vacuum polarization while the diagram with the
cross insertion in the photon propagator represents the counterterm necessary to obtain a UV finite
result.

The explicit expression for the total VP amplitude reads:

XV P = Re

[
− 64πα3

3t3
(
2(m2 +M2 − s)2 + 2st+ t2

)∑
mi

(
b1(mi)fB0(t,m2

i ,m
2
i )

− b2(mi)fB0(0,m2
i ,m

2
i ) + 2tln(mi) − t

)]
,

(3.29)

where mi = {m,M,mτ } while the coefficients b1(mi) and b2(mi) will be listed in Sec. 3.5.

3.3.3 Vertex contribution

The vertex correction comes from the insertion of a photon propagator between the incoming and
outgoing muon or electron (fig. 3.4). In order to compute this diagram we associate the momenta like

µ−µ−

e− e−

p2 p4
k

k + p4k + p2

γ

p1 p3

Figure 3.4: Vertex contribution to the muon-electron scattering cross section

in fig. 3.4 and, by making use of the Feynman rules quoted in App. A, we obtain the following integral
in d dimension:

ū(p4)Γµu(p2) = −ie2
∫

ddk

(2π)d

ū(p4)γρ
[
(/k + /p2 +M)

]
γµ
[
(/k + /p4 +M)

]
γρu(p2)

(k2 − λ2)[(k + p2)2 −M2][(k + p4)2 −M2] , (3.30)

where λ is a fictitious mass of the photon introduced to regularize the infrared divergences. Also in
this case the +iε prescription has been neglected for brevity. The same vertex correction but for the
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electron can be computed starting from eq. 3.30 and by applying the substitutions M → m, p2 → p1
and p4 → p3.

As for the VP contribution, the computation can be done both by hand or by using the Feyncalc
package [64–66]. The result will be expressed in terms of the Passarino-Veltman functions, where in
addition to the B0(...) function, for the vertex correction, the final expression will depend on the C0(...)
functions.

This vertex contribution shows both a UV divergence and a IR divergence. The counterterm δ1(mi)
wheremi = {m,M} (eq. 3.25) is necessary in order to obtain a UV finite result while the IR divergence
can be eliminated by considering the soft-Bremsstrahlung contribution (see Sec.3.4). Once we have
obtained a UV finite result, we can take the d → 4 limit, in analogy with the VP contribution, while
the λ → 0 limit can be applied only after the introduction of the soft-Bremsstrahlung cross section.

The interference term between the vertex correction and the LO matrix element Mγ (eq. 3.16) is given
by

MV = 1
4 × 2Re





µ−µ−

e− e−



∗

×
∑

l=e,µ


+




(3.31)

where the sum is meant over an electron and muon vertex while the diagram with the cross insertion
is the counterterm necessary to obtain a UV finite result.

The explicit expression of the total vertex amplitude is

XV = Re

[16πα3

t2
(
c1C0(M2,M2, t,M2, λ2,M2) + c2C0(m2,m2, t,m2, λ2,m2)

+ b3fB0(0,M2,M2) + b4fB0(t,M2,M2) + b5fB0(0,m2,m2) + b6fB0(t,m2,m2)

+ a1ln(λ) + a2ln(M) + a3ln(m) + a4
)] (3.32)

where the coefficients ci (i = 1, 2), bj (j = 3, 4, 5, 6) and ak (k = 1, 2, 3, 4) will be listed in Sec. 3.5.

3.3.4 Box contribution

The last virtual contribution is the one which involve the box diagram (fig. 3.5). The first diagram in
fig. 3.5 is the direct (||) box diagram while the second one is called crossed (×) diagram.
The crossed diagram can be obtained from the direct one if we invert the muon line, add an overall
minus sign before the crossed diagram and make the substitution u = 2m2 + 2M2 − s − t → s. So a
very important check for the computation of this diagram is the comparison between the direct and
the crossed diagram through the relation

µ− µ−

e− e−

= −

µ− µ−

e− e−

(u ↔ s) (3.33)

Then the box contribution can be computed by considering the momenta defined in fig.3.5, by applying
the Feynman rules listed in App. A and by keeping all the external legs in order to simplify the
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k
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Figure 3.5: Box contribution to the muon-electron scattering cross section

expression thanks to the Dirac equation:

M
||
B = e4

∫
ddk

(2π)d

ū(p3)γρ
[

− (/k − /p1) +m
]
γσu(p1)ū(p4)γρ

[
(/k + /p2) +M

]
γσu(p2)

(k2 − λ2)
[
(k − p1)2 −m2][(k + p2)2 −M2][(k + p2 − p4)2 − λ2] , (3.34)

where the +iε prescription is neglected for brevity. The crossed diagram contribution M ×
B can be

computed from M
||
B by applying the substitution p2 → −p4 and p4 → −p2 in all the amplitude

expression (eq. 3.34) except the spinors.
The box diagram is UV finite, as it is possible to notice from a dimensional analysis, but it is IR
divergent so the soft-Bremsstrahlung contribution must be considered. Only after cancelling the IR
divergence it is possible to take the λ → 0 limit.

In this case the computation was performed only by using the Feyncalc package and, in order to use
the Dirac equation and contract the Lorentz indices, we first contract the amplitude in eq. 3.34 with
the LO one (eq. 3.13) and then we solve the loop integral in terms of the Passarino-Veltman functions.
This procedure was possible thanks to the UV finiteness of the box diagram.

In analogy with the VP and vertex corrections, the interference term can be expressed diagrammati-
cally as

MB = 1
4 × 2Re


∑
||,×



µ−µ−

e− e−

∗

×

µ− µ−

e− e−




(3.35)

where the sum is meant on the direct (||) and crossed (×) box diagrams.
Eventually the box contribution reads

XB = Re

[
16πα3

t

(
d1D0(m2,m2,M2,M2, t, s, λ2,m2, λ2,M2)

+ d2D0(m2,m2,M2,M2, t, u, λ2,m2, λ2,M2) + c3C0(m2,m2, t, λ2,m2, λ2)
+ c4C0(M2,M2, t, λ2,M2, λ2) + c5C0(m2,M2, s,m2, λ2,M2)
+ c6C0(m2,M2, u,m2, λ2,M2) + b7fB0(0,m2,m2) + b8fB0(0,M2,M2)

+ b9fB0(s,m2,M2) + b10fB0(t, 0, 0) + b11fB0(u,m2,M2) + a5

)]
.

(3.36)

where the coefficients dl (l = 1, 2), ci (i = 3, 4, 5, 6), bj (j = 7, 8, 9, 10, 11) and a5 will be listed in Sec.
3.5.
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Figure 3.6: Bremsstrahlung contribution for the muon-electron scattering cross section

3.4 Soft-Bremsstrahlung contribution
In the previous section we saw that the vertex and the box corrections to the virtual amplitude for the
muon-electron scattering show a IR divergence when λ → 0, that can be cured by the introduction of
the soft-Bremsstrahlung contribution.

The Bremsstrahlung correction is given by diagrams like the ones in fig. 3.6 where a photon is radiated
from an initial or final muon or electron. So we will end up with four diagrams, one for every external
legs which radiate a photon. With the term soft we indicate the fact that we are considering photons
with an energy less than some specified value ω0. This threshold energy ω0 may coincide with the
sensitivity threshold of the experimental set up. Here the computation of this contribution will be
performed by hand following the approach applied by G. t’ Hooft and M. Veltman [67].

As a first step we identify with k = (k0,k), where |k| < k0, the 4-momentum of the radiated soft
photon and with λ its fictitious mass. Then the amplitude is given by

Xsoft = −Xγ × e2
∫

k0<ω0

d3k

(2π)32ω0

∣∣∣∣E (p1, p2, p3, p4, k)
∣∣∣∣2, (3.37)

where we have factorized the LO amplitude and

E (p1, p2, p3, p4, k) = − p1
p1 · k

− p2
p2 · k

+ p3
p3 · k

+ p4
p4 · k

. (3.38)

We now show the basic steps to obtain the result in eq. 3.37. We consider the case in which a soft
photon is radiated from an incoming muon (the first diagram in fig. 3.6); by applying the Feynman
rules in App. A, the amplitude reads

M2 = (−ie)3

t
ū(p3)γµu(p1)ū(p4)γµ

/p2 − /k +M

[(p2 − k)2 −M2]γ
νε∗ν(k)u(p2). (3.39)

Since we are considering the soft Bremsstrahlung component, every /k and λ2 term at numerator is
negligible with respect to /p2 and M . Then, by considering the relation (p2 − k)2 −M2 = −2p2 · k, M2
will be given by

M2 =
[
ie2

t
ū(p3)γµu(p1)ū(p4)γµu(p2)

]
e

(
− p2 · ε∗(k)

p2 · k

)
= Mγe

(
− p2 · ε∗(k)

p2 · k

)
. (3.40)

Then in order to obtain the squared matrix element we take the absolute value of M2 and we have to
remember that

• the sum over the photon polarization, in the case λ → 0, yields:
∑

pol ε
∗
µ(k)εν(k) = −gµν ;

• the recoil of the fermion by the emitted photon is neglected;

• the integral over k shows up as a phase space integral (eq. 3.37).
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We obtain similar contributions from the other diagrams in fig. 3.6, which can be derived from M2 by
the substitutions (p2 → p1), (p2 → −p3, k → −k) and (p2 → −p4, k → −k).
Once we consider all the contributions, the scalar integrals to compute have the form

I(pi, pj) =
∫

k0<ω0

d3k

(2π)32k0

1
(k · pi)(k · pj) (3.41)

where pi, pj = {p1, p2, p3, p4}.

In the laboratory frame we obtain the following result for the soft-Bremsstrahlung amplitude:

Xsoft = Xγ × 4πα
2(2π)3

[
−m2

(
I(p1, p1) + I(p3, p3)

)
+ 2

(
m2 − t

2

)
I(p1, p3)

−M2
(
I(p2, p2) + I(p4, p4)

)
+ 2

(
M2 − t

2

)
I(p2, p4)

+ (m2 +M2 − s)
(
I(p1, p2) + I(p3, p4)

)

+ (m2 +M2 − u)
(
I(p1, p4) + I(p2, p3)

)]
(3.42)

The scalar integrals are computed following the procedure in [67] and the steps of the computations
of them are sketched in App. B. The integral with pi = pj is easier to compute with respect to
the case pi 6= pj . Moreover it is possible to prove that I(p1, p1) = I(p3, p3), I(p2, p2) = I(p4, p4),
I(p1, p2) = I(p3, p4) and I(p1, p4) = I(p2, p3).

Only some of the C0 functions and both the D0 are IR divergent and, thanks to [68,69], it is possible
to write these functions as a sum of a IR divergent part and a IR finite term. Then it is clear which
integrals of the soft-Bremsstrahlung cross section (eq. 3.42) cancel the IR divergence of the vertex
correction and box diagrams. Here we will show the cancellation of the IR divergences of the one-loop
virtual diagrams thanks to an explicit combination of the scalar integrals from the soft-Bremsstrahlung
contribution.

• Electron vertex correction

Re

[
16πα3

t2

(
c2C0(m2,m2, t,m2, λ2,m2) + a1ln(λ)

)]

+ Xγ × α

4π2

[
− 2m2I(p1, p1) + 2

(
m2 − t

2

)
I(p1, p3)

] (3.43)

• Muon vertex correction

Re

[
16πα3

t2

(
c2C0(M2,M2, t,M2, λ2,M2) + a1ln(λ)

)]

+ Xγ × α

4π2

[
− 2M2I(p2, p2) + 2

(
M2 − t

2

)
I(p2, p4)

] (3.44)

• Direct box correction

Re

[
16πα3

t2

(
d1D0(m2,m2,M2,M2, t, s, λ2,m2, λ2,M2) + c5C0(m2,M2, s,m2, λ2,M2)

)]

+ Xγ × α

4π2 2(m2 +M2 − s)I(p1, p2)
(3.45)
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• Crossed box correction

Re

[
16πα3

t2

(
d2D0(m2,m2,M2,M2, t, u, λ2,m2, λ2,M2) + c6C0(m2,M2, u,m2, λ2,M2)

)]

+ Xγ × α

4π2 2(m2 +M2 − u)I(p1, p4)
(3.46)

Once we have cancelled all the IR divergences in the vertex and box diagrams we can safely take
the λ → 0 limit. Moreover we remark that the three-point functions C0(m2,m2, t, λ2,m2, λ2) and
C0(M2,M2, t, λ2,M2, λ2) in the box amplitude are already IR finite. So, from now on, their arguments
λ will be set to zero.

3.5 Total virtual amplitude

The complete virtual amplitude is given by the sum of the vacuum polarization, vertex and box
amplitudes obtained in the previous sections. In the on-shell renormalization scheme we obtain a
result which is UV finite and it reads

Xvirtual = Re

[
16πα3

t

(
v1D0(m2,m2,M2,M2, t, s, λ2,m2, λ2,M2)

+ v2D0(m2,m2,M2,M2, t, u, λ2,m2, λ2,M2) + v3C0(m2,m2, t,m2, λ2,m2)
+ v4C0(M2,M2, t,M2, λ2,M2) + v5C0(m2,m2, t, 0,m2, 0)
+ v6C0(M2,M2, t, 0,M2, 0) + v7C0(m2,M2, s,m2, λ2,M2)
+ v8C0(m2,M2, u,m2, λ2,M2) + v9fB0(0,m2,m2) + v10fB0(0,M2,M2)
+ v11fB0(t,m2,m2) + v12fB0(t,M2,M2) + v13fB0(s,m2,M2)
+ v14fB0(t, 0, 0) + v15fB0(u,m2,M2) + v16fB0(t,m2

τ ,m
2
τ )

+ v17fB0(0,m2
τ ,m

2
τ ) + v18ln(m) + v19ln(M) + v20ln(mτ ) + v21ln(λ) + v22

)]

(3.47)

For brevity, we left the ln(λ) term in the final expression but we have shown in the previous section
that it can be cancelled by the introduction of the soft-Bremsstrahlung contribution, so that we obtain
a IR finite result. The explicit expressions of the coefficients are:

• v1 = d1 = −
((
m2 +M2 − s

) (
4
(
m2 +M2 − s

)2 + 2st+ t2
))

• v2 = d2 = −
((
m2 +M2 − s− t

) (
4
(
m2 +M2 − s

)2 − 4t
(
m2 +M2)+ 6st+ 3t2

))
• v3 = c1

t = 2
t

(
2M2 − t

) (
2
(
m2 +M2 − s

)2 + 2st+ t2
)

• v4 = c2
t = 2

t

(
2m2 − t

) (
2
(
m2 +M2 − s

)2 + 2st+ t2
)

• v5 = c3 = 2
(

−8m2t+8m4+t2
)(

2
(

m2+M2−s
)

−t
)

4m2−t

• v6 = c4 = 2
(

−8M2t+8M4+t2
)(

2
(

m2+M2−s
)

−t
)

4M2−t

• v7 = c5 = −2(2s+ t)
(
m2 +M2 − s

)
• v8 = c6 = −2

(
4m2 + 4M2 − 2s− t

) (
m2 +M2 − s− t

)
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• v9 = 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b2(m) + b5

t + b7 where

b5 =
−8t

(
m2 (M2 − 5s

)
+m4 +

(
M2 − s

)2)+ 24m2 (m2 +M2 − s
)2 + 8t2

(
2m2 − s

)
− 4t3

4m2 − t

b7 = 2m
(

2mt
(
m2 −M2 − s

)
−2m2 (M2 + s) +m4 + (M2 − s)2 + 8m

(
m2 −M2 + s

)
t− 4m2

+ (m+M)
(
(m−M)2 − s

)
(m−M)2 − s− t

+ (m−M)
(
(m+M)2 − s

)
(m+M)2 − s− t

+ 2m
)

• v10 = 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b2(M) + b3

t + b8 where

b3 = 1
4M2 − t

[
− 8t

(
m2

(
M2 − 2s

)
+m4 − 5M2s+M4 + s2

)
+ 24M2

(
m2 +M2 − s

)2
+ 8t2

(
2M2 − s

)
− 4t3

]

b8 = 2M
(

2Mt
(
−m2 +M2 − s

)
−2m2 (M2 + s) +m4 + (M2 − s)2 + 8M

(
−m2 +M2 + s

)
t− 4M2

+ (m+M)
(
(m−M)2 − s

)
(m−M)2 − s− t

+ (m−M)
(
s− (m+M)2)

(m+M)2 − s− t
+ 2M

)

• v11 = − 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b1(m) + b6

t where

b6 = 4m2t
(
M2 − 7s

)
− 16m2 (m2 +M2 − s

)2 + 6t2
(
s− 2m2)+ 6m4t+ 6t

(
M2 − s

)2 + 3t3

4m2 − t

• v12 = − 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b1(M) + b4

t where

b4 = 1
4M2 − t

[
2t
(
2m2

(
M2 − 3s

)
+ 3m4 − 14M2s+ 3M4 + 3s2

)
− 16M2

(
m2 +M2 − s

)2
+ 6t2

(
s− 2M2

)
+ 3t3

]

• v13 = b9 = −
2
(

−m2
(

2M2(s+t)+M4−3s2
)

+m4
(

−M2−3s+t
)

+m6+t
(

M4−s2
)

+
(

M2−s
)3
)

−2m2(M2+s)+m4+(M2−s)2

• v14 = b10 = 2(4mM−t)(4mM+t)
(

2
(

m2+M2−s
)

−t
)

(4m2−t)(t−4M2)

• v15 = b11 = 2
((m−M)2−s−t)((m+M)2−s−t)

[
m2(2M2(s− 4t) +M4 − (3s− t)(s+ t))

+m4(M2 + 3s) −m6 + t2(M2 + s) + 2st(s−M2) − (M2 − s)3
]

• v16 = − 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b1(mτ )

• v17 = 4
3t2
(
2(m2 +M2 − s)2 + 2st+ t2

)
b2(mτ )

• v18 = − 8
3t + a3

t where a3 = 6
(
2
(
m2 +M2 − s

)2 + 2st+ t2
)

• v19 = − 8
3t + a2

t where a2 = 6
(
2
(
m2 +M2 − s

)2 + 2st+ t2
)

• v20 = − 2
3t
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• v21 = a1
t where a1 = −16

(
m2 +M2 − s

)2 − 16st− 8t2

• v22 = 4
3t + a4

t + a6 where

a4 = 1
(4m2 − t) (t− 4M2)

[
4t
(

− 2t
(

− 4s
(
m2 +M2)+ 6m2M2 +m4 +M4 + s2

)

+ 2t2
(

2
(
m2 +M2)− s

)
+ 4

(
m2 +M2)((m−M)2 − s

)(
(m+M)2 − s

)
− t3

)]

a5 = 4
(

8m2 (m2 −M2 + s
)

t− 4m2 +
2t
((
m2 −M2)2 − s

(
m2 +M2))

−2m2 (M2 + s) +m4 + (M2 − s)2

+ 8M2 (−m2 +M2 + s
)

t− 4M2 + 2
(
m2 +M2

)
+ (m+M)2 ((m−M)2 − s

)
(m−M)2 − s− t

+ (m−M)2 ((m+M)2 − s
)

(m+M)2 − s− t

)

where b1(mi) = 2m2
i + t and b2(mi) = 2m2

i .

From the previous section, we obtain the O(α3) correction to the differential cross section

dσNLO
dt

= dσ0
dt

+ Xvirtual + Xsoft

16πΛ(s,M2,m2) (3.48)

which is an expression of the massesm2 andM2, the Mandelstam variables s and t and of the threshold
energy for the experimental set up ω0, once we have introduced the soft-Bremsstrahlung contribution.
In App. B the explicit expression of the Passarino-Veltman functions and the integrals from the soft-
Bremsstrahlung contribution are listed.
This result is obtained by considering the scattering of µ− over e−. The same computation can be
performed for the antiparticles µ+. This leads to an overall minus sign for the box amplitude, I(p1, p2)
and I(p1, p4), while the vertex and the vacuum polarization contributions remain unchanged.



Chapter 4

Expansion by regions method

As we saw in the previous chapter, the QED corrections at one-loop to the µe elastic scattering
amplitude, and consequently the QED differential cross section, are well known. On the contrary the
NNLO QED corrections are not known yet so a new method to compute them, based on the expansion
by regions approach, would be desirable.

In this chapter we will explain the basic concept under the expansion by regions method and we will
apply it to the NLO QED corrections, in particular to the vacuum polarization and vertex corrections.
Then we will compare the result obtained by the use of this procedure with the Taylor expansion of
the exact result of this two corrections, obtained by standard methods.

4.1 The strategy of regions

The strategy of regions [32] is a technique which allows one to carry out asymptotic expansions of loop
integrals in dimensional regularization around various limits [33]. When loop integrals involve many
different scales from masses and kinematical parameters, it can be hard to evaluate them exactly.
The integrand may be simplified before integration by exploiting hierarchies of the parameters and
expanding in powers of small ratios. When this expansion are done naively, neglecting their break-
down in certain parts of the integration domain, new singularities may be generated and important
contributions to the full result can be missed. The expansion by regions approach allows to treat this
singularities properly.

The general strategy to obtain the expansion of a given Feynman integral in a given kinematic limit
is [33]: identify the regions of the integrand which lead to singularities in the given limit; expand the
integrand in each region and integrate each expansion over the full phase space; add the result of
the integrations over the different regions to obtain the expansion of the original full integral. This
method will be successful only if all the expanded integrals are properly regularized in dimensional
regularization. Moreover each region has to be considered only once to avoid double counting and the
regions defined in the calculations at one loop are often the same which are relevant at higher order.

The expansion by regions method is a very powerful tool because, if one is simply interested in the
expansion of some perturbative result in a small parameter, one can therefore work directly with this
method, without constructing an effective Lagrangian.

4.2 Muon-electron scattering amplitude expansion

By considering the muon-electron elastic scattering amplitude, the small parameter for which it is
applied the expansion by regions method is the electron mass m. In particular we will perform the
expansion in terms of the parameter λR = m2

−t .

We will apply this method to the vacuum polarization and the vertex corrections. The result will be

31
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q

k

k + q
q

Figure 4.1: B0(t,m2,m2) diagrammatic representation.

UV finite and gauge invariant. In fact, the UV divergences are cured by the introduction of coun-
terterms, so the final expressions in eq. 3.29 and eq. 3.32, to which we will apply the strategy of
regions, are UV finite (but not IR finite). We will also obtain a gauge invariant result because, in
analogy with the considerations done in [70] for the process e+e− → τ+τ−, the vacuum polarization
is gauge-independent by itself; the gauge dependence of the direct box cancels exactly against that
of the crossed box; the gauge-dependence of the vertex correction can therefore cancel only against
the fermion self-energy graphs renormalizing the external (on-shell) fermions. The application of the
expansion by regions method to the box contribution is more complicated with respect to the VP and
vertex corrections, due to the four-point function D0, and it will be discussed in the future. Here the
expansion by regions method will be applied to the computation of the gauge-invariant subset given
by the electron-line contributions. This approach, in which we neglect the box contribution to the µe
scattering amplitude, is justified from an experimental point of view because it is possible to perform
the measurement in a kinematic region where the box happens to be numerically sub-leading [16].

During this analysis, the IR divergences will be evaluated in dimensional regularization and they will be
left explicit because, as we saw in sec. 3.4, they are cancelled by the soft-Bremsstrahlung contribution
whose Taylor expansion in m2 can be trivially performed.

By looking at the final expression of the VP and vertex corrections (eq. 3.29 and eq. 3.32), the
expansion by regions approach can be applied to two Passarino-Veltman functions: B0(t,m2,m2) and
C0(m2,m2, t,m2, 0,m2) where we set the limit λ → 0 for the fictitious photon mass in the C0 function
in order to treat the IR divergences in dimensional regularization.
In the next sections we will sketch the procedure to expand these functions with the strategy of regions.

4.2.1 B0(t, m2, m2)

The expansion of the B0 function is a simple but clear example of how this method works. This
function represent the tadpole diagram in fig. 4.1 and it is given by

B0(t,m2,m2) = µ2ε

iπ2

∫
ddk

1
(k2 −m2)[(k + q)2 −m2] , (4.1)

where q2 = (p1 − p3)2 = t, k is the loop momentum and d = 4 − 2ε.
Then the scales involved are q2 = t and m2 so we can identify three different regions [71] and expand
in terms of the parameter λR = m2

−t .

1. |k2| ∼ |q2| >> m2 then the denominators in eq. 4.1 become

(k2 −m2) ∼ k2
(

1 − m2

k2 + ...

)
,

[(k + q)2 −m2] ∼ (k + q)2
(

1 − m2

(k + q)2 + ...

)
.

(4.2)

So we obtain the integral

I1,B0 = µ2ε

iπ2

∫
ddk

1
k2(k + q)2

(
1 + m2

k2 + ...

)(
1 + m2

(k + q)2 + ...

)
. (4.3)
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By considering only the first term of the expansion, by using the Feynman parameters and by
performing the integration in ddk (App. A.3), we obtain

I1,B0 = µ2ε

πε

Γ(ε)
(−t)ε

∫ 1

0
dx[(1 − x) − (1 − x)2]−ε

= µ2ε

πε

Γ(ε)
(−t)ε

Γ(1 − ε)2

Γ(2 − 2ε) .
(4.4)

2. |k2| ∼ m2 so the propagator denominators become

(k2−m2),

[(k + q)2 −m2] ∼ q2
(

1 + k2 + 2k · q −m2

q2 + ...

)
.

(4.5)

and the integral in eq. 4.1 reads

I2,B0 = µ2ε

iπ2

∫
ddk

1
(k2 −m2)q2

(
1 − k2 + 2k · q −m2

q2 + ...

)
. (4.6)

By applying the steps done in the previous region, the O(1) contribution is

I2,B0 = −µ2ε

πε

Γ(ε− 1)
t

(−λt)−ε. (4.7)

3. |(k + q)2| ∼ m2:

(k2 −m2) ∼ −q2
(

1 + 2k · q
q2

)
,

[(k + q)2 −m2].
(4.8)

So

I3,B0 = µ2ε

iπ2

∫
ddk

1
[(k + q)2 −m2](−q2)

(
1 − 2k · q

q2 + ...

)
, (4.9)

The result at O(1) is equal to the one obtained in the region where |k2| ∼ m2 except for an
overall minus sign.

Now we sum all the contributions coming from the regions defined above and we expand for ε → 0 to
obtain

B0(t,m2,m2) = ∆ − ln(−t) + 2, (4.10)

where ∆ = 1
ε − γ − ln(π) + ln(µ2). This result is completely consistent with the result obtained

by expanding the explicit expression of the B0(t,m2,m2) function evaluated by standard methods,
including its UV divergent term.

By considering higher order terms in the computation of the integrals in the different regions, it is
possible to check the consistency of the result at O(λR) obtained with the strategy of regions:

B0(t,m2,m2) = ∆ − ln(−t) + 2 + 2λR [ln(λR) − 1] . (4.11)

The ∆ expression identifies the UV divergent part of the B0(t,m2,m2) function. This expression of
the two-point function obtained by applying the expansion by regions method up to O(λR) is equal
to the Taylor expansion of the exact result of B0(t,m2,m2).
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e−e−
p1 p3

k

Figure 4.2: C0(m2,m2, t,m2, 0,m2) diagrammatic expression

4.2.2 C0(m2, m2, t, m2, 0, m2)
The expansion of the Passarino-Veltman function C0 is more complicated. We will introduce a different
notation which is usually used in SCET theory [72]. The function C0(m2,m2, t,m2, 0,m2) is represented
by the diagram in fig. 4.2 and it reads

C0(m2,m2, t,m2, 0,m2) = µ2ε

iπ2

∫
ddk

1
k2[(k + p1)2 −m2][(k + p3)2 −m2] , (4.12)

where d = 4 − 2ε. We also define Q2 ≡ −(p1 − p3)2 = −t. The goal is to calculate this integral in the
limit p2

1 ∼ p2
3 << Q2 that is, in the case in which the external legs carrying momenta p1 and p3 have

small invariant masses.

We choose two light-like reference vectors in the direction of the momenta p1 and p3, in the frame in
which ~Q = 0:

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). (4.13)

Then it is easy to prove the relations

n2 = n̄2 = 0 and n · n̄ = 2. (4.14)

Any vector can be then decomposed in a component proportional to n, one proportional to n̄ and a
remainder perpendicular to both

pµ = (n · p) n̄
µ

2 + (n̄ · p)n
µ

2 + pµ
⊥ ≡ pµ

+ + pµ
− + pµ

⊥. (4.15)

The vector expressed in this light-cone components is useful to organize the expansion, since each
component scales differently. Then the square of the momentum p and the scalar product of two
different vectors p and q read

p2 = (n · p)(n̄ · p) + p2
⊥,

p · q = p+ · q− + p− · q+ + p⊥ · q⊥.
(4.16)

From now on we will express four vectors with the following notation

pµ = (n · p, n̄ · p, p⊥) = (p+, p−, p⊥). (4.17)

From the relations in eq. 4.14, it is easy to show that p2
+ = 0 and p2

− = 0. However one has to pay
attention on this notation because the scalar quantities p+ ≡ n · p and p− ≡ n̄ · p should not be mixed
up with the related vector quantities pµ

± introduced above.

Similarly to the B0(t,m2,m2) computation, the expansion parameter, which vanishes in the limit we
are interested in, is λR = p2

1
Q2 = p2

3
Q2 = m2

−t .
We choose the reference vectors in the directions of large momentum flow pµ

1 ≈ Qnµ

2 and pµ
3 ≈ Q n̄µ

2
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and we also choose nµ (n̄µ) such that the perpendicular components of pµ
1 (pµ

3 ) are zero. So the four
vectors pµ

1 and pµ
3 will be

pµ
1 ∼ (1, λR, 0)Q and pµ

3 ∼ (λR, 1, 0)Q. (4.18)

When computing the loop diagrams with the expansion by regions method, it is possible to show that
only scalings kµ ∼ (λa

R, λ
b
R, λ

c
R)Q, with a + b = 2c and k the loop momentum, are important. For

c > 0, these describe particles which go on shell as λR → 0. Once we introduced this notation and
the consideration necessary to describe our process, there are four regions that give non-vanishing
contributions:

• Hard region: the components of the integration momentum scale as kµ = (1, 1, 1)Q. Then the
denominators in eq. 4.12 become

k2 ∼ O(1),
(k + p1)2 −m2 = k2

O(1)
+ 2k− · p1,+

O(1)
+ 2k+ · p1,−

O(λR)

= k2 + 2k− · p1,+

(
1 + 2k+ · p1,−

k2 + 2k− · p1,+

)
,

(k + p3)2 −m2 = k2
O(1)

+ 2k− · p3,+
O(λR)

+ 2k+ · p3,−
O(1)

= k2 + 2k+ · p3,−

(
1 + 2k− · p3,+

k2 + 2k+ · p3,−

)
,

(4.19)

and the integral in eq. 4.12 reads

Ih = µ2ε

iπ2

∫
ddk

1
k2(k2 + 2k− · p1,+)(k2 + 2k+ · p3,−)

(
1 − 2k+ · p1,−

k2 + 2k− · p1,+

)(
1 − 2k− · p3,+

k2 + 2k+ · p3,−

)
.

(4.20)

• Collinear region: the loop momentum k scales as kµ ∼ (1, λR,
√
λR)Q, and therefore we obtain

k2 ∼ O(λR),
(k + p1)2 −m2 = k2

O(λR)
+ 2k+ · p1,−

O(λR)
+ 2k− · p1,+

O(λR)
= k2 + 2k · p1,

(k + p3)2 −m2 = k2
O(λR)

+ 2k+ · p3,−
O(1)

+ 2k− · p3,+
O(λ2

R)

= 2k+ · p3,−

(
1 + k2

2k+ · p3,−
+ O(λ2

R)
)
.

(4.21)

So the integral reads

Ic = µ2ε

iπ2

∫
ddk

1
k2(k2 + 2k · p1)(2k+ · p3,−)

(
1 − k2

2k+ · p3,−
+ O(λ2

R)
)
. (4.22)

• Anticollinear region: the momentum k scales as kµ ∼ (λR, 1,
√
λR)Q. The calculation of this

integral is identical to the one performed in the collinear region if one makes the substitutions
p1 → p3 and p3,− → p1,+ in eq. 4.22.

• Soft region: k scales as kµ ∼ (λR, λR, λR)Q. The expansion of the propagator denominators takes
the form

k2 ∼ O(λ2
R),

(k + p1)2 −m2 = k2
O(λ2

R)
+ 2k+ · p1,−

O(λ2
R)

+ 2k− · p1,+
O(λR)

= 2k− · p1,+ + O(λ2
R),

(k + p3)2 −m2 = k2
O(λ2

R)
+ 2k+ · p3,−

O(λR)
+ 2k− · p3,+

O(λ2
R)

= 2k+ · p3,− + O(λ2
R).

(4.23)
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Then the integral reads

Is = µ2ε

iπ2

∫
ddk

1
k2(2k− · p1,+)(2k+ · p3,−) . (4.24)

It is possible to prove that this integral is vanishing both by applying the Feynman parameter
or by involving integration by parts identities.

All of the other possible scalings of the integration momentum, of the form kµ ∼ (λa
R, λ

b
R, λ

c
R)Q and

with a, b, c not matching one of the four cases listed above, give rise to scaleless integrals after the
expansion, and therefore they do not contribute to the final result.

The O(1) contribution can be computed by introducing the usual Feynman parametrization, by using
the relations p2

1,− = p2
3,+ = 0 and 2p1,− · p3,+ = Q2 = −t and then by integrating, following the

formulae in App. A.3. We will sketch here the results of the integrals in the different regions:

• Hard region:

Ih,0 = µ2ε

iπ2

∫
ddk

1
k2(k2 + 2k− · p1,+)(k2 + 2k+ · p3,−)

= µ2ε

πε

√
π4ε

(−t)ε+1
Γ(1 + ε)Γ(−ε)
εΓ(1

2 − ε)
.

(4.25)

• Collinear region:

Ic,0 = µ2ε

iπ2

∫
ddk

1
k2(k2 + 2k · p1)(2k+ · p3,−)

= µ2ε

πε
Γ(1 + ε)(−λRt)−ε

2tε2 .

(4.26)

• Anticollinear region:
Iac,0 = Ic,0. (4.27)

• Soft region:
Is = 0. (4.28)

The final O(1) expansion of the C0 function is obtained by summing all the contributions coming from
the different regions and expanding the expression in ε → 0:

C0(O(1)) = 1
t

[
(∆ − ln(−t))ln(λR) − 1

2ln2(λR) − π2

6

]
, (4.29)

where the 1
ε prescription, which is included in the ∆ variable, identifies the IR divergences in dimen-

sional regularization since the C0 function is UV finite.
This result is perfectly consistent with the O(1) expansion in λR of the exact expression of the C0
function.

Another method to compute the integrals in the different regions is based on integration-by-parts
(IBP) reduction for multiloop integrals which exploits the IBP identities between integrals [73,74]. In
order to apply the IBP reduction, the Mathematica LiteRed package is used [75, 76]: at first stage it
tries to find symbolic reduction rules using heuristics; then it applies the rules to the specific reduction.
In our specific case we will use this Mathematica package to perform the computation at O(λR) of the
C0 function, since the integrals in this case can not be easily computed with the method applied at
O(1). In fact, thanks to the IBP reduction method, the three-point functions in the hard and collinear
regions can be written in terms of one- or two-point functions, the so called master integrals.

As a first step to compute the O(λR) contribution, we have to include the terms of the same order in
the kinematics and this brings to the re-definition of the scalar product between the external momenta:

2p1,+ · p3,− = 2m2 − t = −t (1 + λR) , (4.30)
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where λR = m2

−t as usual. By computing the O(1) with LiteRed, we get the results (in terms of the
master integrals):

• Hard region
IλR

h,0 = 1 − 2ε
εt(1 + 2λR)j(0, 1, 1), (4.31)

where

j(0, 1, 1) = µ2ε

iπ2

∫
ddk

1
(k2 + 2k− · p1,+)(k2 + 2k+ · p3,−)

=
(
µ2

π

)ε

(2m2 − t)−ε Γ2(1 − ε)Γ(ε)
Γ(2 − 2ε) .

(4.32)

• Collinear region

IλR
c,0 = −(−1 + ε)

2εt2
1

λR(1 + 2λR)j(0, 1, 0), (4.33)

where

j(0, 1, 0) = µ2ε

iπ2

∫
ddk

1
(k2 + 2k · p1)

= −
(
µ2

π

)ε

(m2)−ε+1Γ(ε− 1).
(4.34)

By expanding the results first for ε → 0 and then for λR → 0, each integral in the different regions
can be expressed as a sum of an O(1) term and an O(λR) “kinematical” correction coming from
the re-definition of the scalar product shown above. By summing the contributions of the hard and
(anti)collinear regions, the final expression is given by an O(1) contribution, which is exactly the result
in eq. 4.29, plus an O(λR) correction given by

CλR
0 (O(1)) = −2

t
λR

[
∆ − ln(−t) + [∆ − ln(−t)]ln(λR) − 1

2ln2(λR) − 2π2

3

]
. (4.35)

Apart from this, there is an O(λR) contribution coming from the λR-order integrand in the expansion
of C0(m2,m2, t,m2, 0,m2) in the different regions (eq. 4.19 and eq. 4.21):

• Hard region

Ih,λr = µ2ε

iπ2

∫
ddk

[
−2k+ · p1,−

k2(k2 + 2k− · p1,+)2(k2 + 2k+ · p3,−) + −2k− · p3,+
k2(k2 + 2k− · p1,+)(k2 + 2k+ · p3,−)2

]

= 2(−1 + 2ε)
t

λR

(1 + 2λR)2 j(0, 1, 1),

(4.36)
where the master integral j(0, 1, 1) is given in eq. 4.32.

• Collinear region

Ic,λR
= µ2ε

iπ2

∫
ddk

−k2

k2(k2 + 2k · p1)(2k+ · p3,−)2

= − 1
t2(1 + 2λR)2 j(0, 1, 0),

(4.37)

where the master integral j(0, 1, 0) is given in eq. 4.34.

Now by expanding the results first for ε → 0 and then for λR → 0, by summing the contributions
coming from the different regions, we get

CλR
0 (O(λR)) = 2

t
λR [1 − ln(λR)] . (4.38)
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The final result of the C0(m2,m2, t,m2, 0,m2) is given by the sum of all the O(1) and O(λR) contri-
butions:

C0(m2,m2, t,m2, 0,m2) = C0(O(1)) + CλR
0 (O(1)) + CλR

0 (O(λR))

= 1
t

[
[∆ − ln(−t)]ln(λR) − 1

2ln2(λR) − π2

6

+ 2λr

(
− ∆ + ln(−t) + 1 − [1 + ∆ − ln(−t)]ln(λR) − 1

2ln2(λR) + 2π2

3

)]
.

(4.39)
This expression of the three-point function obtained by applying the expansion by regions method,
up to O(λR), is equal to the Taylor expansion of the exact result of C0(m2,m2, t,m2, 0,m2).

4.2.3 VP and vertex corrections expansion

As we said before, we will apply the expansion by regions method only to the vacuum polarization
and vertex corrections. By recalling the expression of this two contributions in terms of the Passarino-
Veltman functions (eq. 3.29 and eq. 3.32) we notice that the strategy of regions can be applied only
to the corrections which involve the electron, namely the ones which contains the B0(t,m2,m2) and
C0(m2,m2, t,m2, 0,m2) functions. Therefore we will expand the electron vacuum polarization correc-
tion and the electron vertex correction only.
The procedure that we will follow is: substitute in the amplitude the expression of the Passarino-
Veltman functions obtained by the expansion by regions method; expand the result for λR → 0.

• Electron vacuum polarization.

The expression of the amplitude for this contribution, in terms of the Passarino-Veltman func-
tions, is

X e−
V P = Re

[
− 64πα3

3t3
(
2(m2 +M2 − s)2 + 2st+ t2

)(
b1(m)fB0(t,m2,m2)

− b2(m)fB0(0,m2,m2) + 2tln(m) − t
)]
,

(4.40)

where the coefficients b1(m) and b2(m) are defined in Sec. 3.5. The UV divergence has already
been cancelled by the counterterm δ3(m). Then we substitute the UV finite expression of B0
obtained in eq. 4.11, namely we neglect the ∆ term, and we expand for λR → 0. The result at
O(λR) reads:

X e−
V P = Re

[
−64πα3

3t3 (e1 + e2ln(λR) + 2λR (e3ln(λR) + e4))
]
, (4.41)

where
e1 = 5

[
−2(M2 − s)2 − 2st− t2

]
,

e2 = 3
[
−2(M2 − s)2 − 2st− t2

]
,

e3 = 6t(M2 − s),
e4 = 2t(5M2 + 4s) + 18(M2 − s)2 + 9t2.

(4.42)

• Electron vertex.

The amplitude expression of the electron vertex correction, coming from eq. 3.32, reads

XV = Re

[16πα3

t2
(
c2C0(m2,m2, t,m2, λ2,m2) + b5fB0(0,m2,m2)

+ b6fB0(t,m2,m2) + a1ln(λ) + a3ln(m) + a4
)]
,

(4.43)
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where the coefficients in front of the Passarino-Veltman functions are listed in Sec. 3.5. Since the
expansion by regions method works in dimensional regularization, we have to replace the term
proportional to the logarithm of the fictitious photon mass λ with the 1

ε prescription. The two
ways to express the IR divergences are bound by the relation [68]

ln(λ) → 1
2

[1 − γε− εln(π)
ε

+ ln(µ2)
]

(4.44)

Once we have obtained an expression where the IR divergence is expressed in dimensional reg-
ularization we can substitute the expanded result of the Passarino-Veltman functions (4.10 and
4.39) in eq. 4.43. For the two-point function B0 we neglect the UV divergent part, as we did for
the VP amplitude, while in the three-point function we keep the IR divergent part, namely the ∆
variable, since it can be cancelled by the introduction of the soft-Bremsstrahlung contribution,
whose expansion is trivial. The last step is the expansion for λR → 0.
Therefore the O(λR) electron vertex amplitude reads

XV = Re

{
16πα3

t2

[
f1 + f2ln(λR) + f3ln2(λR) + λR

(
f4 + f5ln(λR) + f6ln2(λR)

)]}
(4.45)

where
f1 = −c2

t

π2

6 − b5ln(−t) + b6 (∆ − ln(−t) + 2) + a1
2 ∆ + a3ln(−t) + a4,

f2 = c2
2 (∆ − ln(−t)) − b5 + a3,

f3 = −c2
2t ,

f4 = 2c2
t

(
−∆ + ln(−t) + 1 + 2π2

3

)
− 2b6,

f5 = −2c2
t

(1 + ∆ − ln(−t)) + 2b6,

f6 = −c2
t
,

(4.46)

where the coefficients c2, b5, b6, a1, a3 and a4 are listed in Sec.3.5.

The results obtained by applying the expansion by regions method to the electron VP and vertex
correction to the µe scattering amplitude is equal to the result obtained by Taylor expanding the
explicit expression of this contribution.
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Chapter 5

Conclusions

The muon anomalous magnetic moment is a very well studied observable and its possible connection
with New Physics kept it under close scrutiny in these last few years. In this thesis project we reviewed
the state of the art of the SM theoretical prediction of the muon “g-2”. We payed particular attention
on the hadronic contribution because it is this contribution that dominates the uncertainty associated
to the SM prediction.

The second step was the analysis of the LO and NLO muon-electron elastic scattering differential
cross section. In particular we reproduced the explicit expression of the virtual corrections of the µe
scattering cross section. These NLO contributions come from the vacuum polarization, the vertex
correction and the box diagram. Moreover we were successful in reproducing the UV- and IR- finite
result found in literature. We worked in dimensional regularization in order to regularize the ultraviolet
divergences and we obtained the UV finite result in the on-shell renormalization scheme. We also find
consistency with the soft-Bremsstrahlung contribution found in literature and we were able to obtain
an IR finite result. All the results found for these virtual corrections were expressed in terms of the
Passarino-Veltman functions and of kinematical variables. The computations were performed both by
hands (vacuum polarization and vertex corrections) or by using the FeynCalc package of Mathematica.

The computation of the NLO differential cross section of the muon-electron elastic scattering was
performed in the framework of the recent experimental proposal, MUonE, which aims at analyzing the
scattering of high-energy muons on atomic electrons in order to measure the effective electromagnetic
coupling ∆α(q2) for space-like four momentum transfers q2 = t < 0.

In order to obtain a theoretical sensitivity which can be compared with the one that MUonE will reach,
NLO QED corrections to the differential cross section are not enough; full NNLO QED corrections
are necessary and up to now they are not yet known. Work is in progress to obtain this result using
massless electrons and massive muons. In this thesis project we study a very powerful tool, based on
the expansion by regions approach, to compute the electron mass effects in the NLO QED corrections.

The expansion by regions approach is a method of asymptotic expansion. The loop integrand can be
simplified before integration by exploiting hierarchies of the parameters involved and expanding in
powers of small parameter ratios. This method allows to treat all the singularities, that are found in
the loop integral, properly. We applied the strategy of regions to the virtual corrections, in particular
to the vacuum polarization and the vertex contributions. Since the parameter for which we performed
the expansion by regions was the electron mass, we worked on the electron vacuum polarization and
the electron vertex corrections specifically. The result that we obtained was UV-finite and gauge
independent. The expression that we obtained by applying the expansion by regions method was
successfully compared with the one coming from the Taylor expansion of the exact result for the
muon-electron scattering differential cross section, obtained by standard methods. In particular we
found that the two results were in agreement up to O(λR), where λR = m2

−t , for both the electron
vacuum polarization and the electron vertex corrections.
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With this thesis project we showed that the results obtained by applying the expansion by regions
method to the muon-electron scattering cross section at NLO in QED are equal to those obtained by
Taylor expanding the exact expression of the observable of interest. This successful application of the
expansion by region approach to the µe scattering will be important for future studies of the NNLO
corrections, where the exact result is not yet known.



Appendix A

Reference formulae

A.1 Feynman rules
Starting from the QED Lagrangian

L = −1
4(Fµν)2 + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ, (A.1)

the Feynman rules read

Dirac propagator :
p

=
i(/p+m)

p2 −m2 + iε
, (A.2)

Photon propagator :

p

µ ν = −igµν

p2 + iε
, (A.3)

QED vertex : γ = −ieγµ, (A.4)

External fermions :
p

= us(p) (initial),
p

= ūs(p) (final),
(A.5)

External antifermions :

p

= v̄s(p) (initial),
p

= vs(p) (final),

(A.6)

External photons :

p

= εµ(p) (initial),
p

= ε∗µ(p) (final),

(A.7)

A.2 Trace technology
Traces of γ matrices can be evaluated as follows:

Tr(1) = 4,
T r(any odd # of γ′s = 0,

T r(γµγν) = 4gµν ,

T r(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ),

(A.8)
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Contractions of γ matrices with each other simplify to:

γµγµ = 4,
γµγνγµ = −2γν ,

γµγνγργµ = 4gνρ,

γµγνγργσγµ = −2γσγργν .

(A.9)

These identities apply in four dimension only.

A.3 Useful integrals
In this thesis project we often use the so called Feynman parameter and we perform the integration
in d dimension of the loop momentum k. So in this section we list the useful formula applied.

• Feynman parameters

1
A1A2...A3

=
∫ 1

0
dx1...dxnδ(

∑
xi − 1) (n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n . (A.10)

By repeated differentiation of eq. A.10, it is possible to obtain a more general formula

1
Am1

1 Am2
2 ...Amn

n
=
∫ 1

0
dx1...dxnδ(

∑
xi − 1)

∏
xmi−1

i

[
∑
xiAi]

∑
mi

Γ(m1 + ...+mn)
Γ(m1)...Γ(mn) . (A.11)

The parametrization is slightly different if we consider propagators which are linear in k:

1
AaBb

= Γ(a+ b)
Γ(a)Γ(b)

∫ ∞

0

βb−1

(A+ βB)a+b
, (A.12)

where B is the linear propagator.

• Integrals in d dimension

∫
ddk

1
(k2 + 2k ·Q−M2)α

= (−1)α iπ
d
2

(M2 +Q2)α− d
2

Γ(α− d
2)

Γ(α) . (A.13)



Appendix B

Scalar integrals

In this section we will list all the integrals which were necessary in this thesis project and we will
sketch the procedure to solve them.

B.1 Passarino-Veltman integrals
The first kind of integrals we want to discuss are the Passarino-Veltman functions. We follow the
notation in [68] and we work in the Bjorken-Drell metric so that k2 = k2

0 − k2
1 − k2

2 − k2
3, where k is

the loop momentum.
The generic expression for a one-loop integral is

µ2ε

iπ2

∫
ddk

kµ1 . . . kµn

D0D1 . . . Dn−1
, (B.1)

with d = 4−2ε and Di = (k+qi)2 −m2
i + iε, while qi are the internal momenta, related to the external

ones pi:

qn ≡
n∑

i=1
pi and q0 = 0. (B.2)

The numerator of eq. B.1 can always be expressed in terms of the kinematic variables of the system
considered and so the remaining integral can be written accordingly to the Passarino-Veltman notation:

A0(m2) = µ2ε

iπ2

∫
ddk

1
k2 −m2 + iε

,

B0(p2
1;m2

1,m
2
2) = µ2ε

iπ2

∫
ddk

1
(k2 −m2

1 + iε)[(k + q1)2 −m2
2 + iε]

,

C0(p2
1, p

2
2, p

2
3;m2

1,m
2
2,m

2
3) = µ2ε

iπ2 ×∫
ddk

1
(k2 −m2

1 + iε)[(k + q1)2 −m2
2 + iε][(k + q2)2 −m2

3 + iε]
,

D0(p2
1, p

2
2, p

2
3, p

2
4; s12, s23;m2

1,m
2
2,m

2
3,m

2
4) = µ2ε

iπ2 ×∫
ddk

1
(k2 −m2

1 + iε)[(k + q1)2 −m2
2 + iε][(k + q2)2 −m2

3 + iε][(k + q3)2 −m2
4 + iε]

,

(B.3)

where sij = (pi + pj)2, µ is a scale introduced to preserve the natural dimensions of the integrals and
the masses in the propagator are considered reals.
It is possible to prove that there are only four independent integrals in which the generic one-loop
integral can be decomposed. For example the one-point function A0(m2) can be written as

A0(m2) = m2[1 +B0(0;m2,m2)]. (B.4)
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So we are left with only the two-, three- and four-point functions.
The two-point function is easy to compute because, by using the Feynman parameters, it is possible
to reduce the product of the two propagators to one single polynomial in the loop momentum. We
recall the fact that the two-point function is UV divergent and IR finite.

Since the three-point function is more complicated we will sketch here the basic steps to perform this
computation, following the procedure described in [67]. By introducing Feynman parameters we get

C0 = iπ2
∫ 1

0
dx

∫ x

0
dy[ax2 + by2 + cxy + dx+ ey + f ]−1, (B.5)

where the variables a, b, c, d, e and f are functions of the argument to which the C0 function depends.
After performing a suitable shift of y, in order to get rid of the x variable, the C0 takes the form

C0 = iπ2
∫ 1

0

1
P (y) ln Q(y)

Q(y0) , (B.6)

where P (y) and Q(y) are linear and quadratic polynomials in y respectively, and y0 is a root of P (y).
Once we have obtained the structure of this C0 function it is convenient to write it in terms of
dilogarithms

Li2(z) ≡ −
∫ z

0

ln(1 − t)
t

. (B.7)

We also recall that the three-point function is UV divergent and, in our specific case were an internal
line is a photon (vertex correction), it is also IR divergent.

A similar approach can be applied to the four-point function, but in this case the computation is much
more complicated, as shown in [67]. The result is expressed in terms of logarithms and dilogarithms
as in the three-point function case.
Moreover we recall that the four-point function is UV finite while, in our case where the D0 describe
the box correction, it is IR divergence since there are two internal photon propagators.

B.2 Soft-Bremsstrahlung integrals
As we saw in Sec. 3.4, the soft-Bremsstrahlung contribution is of fundamental importance to cure the
IR divergences of the muon-electron scattering virtual amplitude.
By computing this contribution, one encounters an integral that is essentially a phase space integral
for photons with an energy less than some specified value ω0. Here we will present the computation
of this integral, by following the one performed in [67]. The integral to compute is

I(pi, pj) =
∫

|k|<ω0

d3k

k0

1
(pi · k)(pj · k) , (B.8)

where k0 =
√

k2 + λ2, with λ the fictitious mass of the photon, |k| < ω0 and pi, pj the four-momenta
of the particles that emit the photon.
The case were pi = pj is easy so we give here the result directly:

I(p, p) =
∫

|k|<ω0

d3k

k0

1
(p · k)2

= 2π
m2

[
ln
(2ω0
λ

)2
+ E

2|p|
ln
(
E − |p|
E + |p|

)]
,

(B.9)

where E =
√

|p|2 +m2. For the case with pi 6= pj , the trick is to introduce a parameter ρ such that

I(pi, pj) = ρ

∫
|k|<ω0

d3k

k0

1
(p · k)(q · k) , (B.10)
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where p = ρpi and q = pj and ρ is such that (p − q)2 = 0. There will be two solutions and we will
choose the one that gives the same sign to p0 − q0 as that of q0.
Now we introduce the Feynman parameter x to combine the two factors in the denominator and to
do the integral over k.
Then by performing the following change of variables

u = q + x(p− q),
l = p0 − q0 = ±|p − q|,

v = p2 − q2

2l ,

(B.11)

and by doing the integration in dx we obtain

I(pi, pj) = − 2πρ
vl

[
1
2lnp

2

q2 ln
(2ω0
λ

)2

+
{1

4ln2u0 − |u|
u0 + |u|

+ Li2
(
v + u0 + |u|

v

)
+ Li2

(
v + u0 − |u|

v

)}u=p

u=q

]
,

(B.12)

where ρ =
(pi·pj)+

√
(pi·pj)2−p2

i p2
j

p2
i

.
In the center of mass frame we have

p1,0 = p3,0 =

√
m2 + Λ(s,m2,M2)

4s , |p1| = |p3| =

√
Λ(s,m2,M2)

4s ,

p2,0 = p4,0 =

√
M2 + Λ(s,m2,M2)

4s , |p2| = |p4| =

√
Λ(s,m2,M2)

4s ,

(B.13)

Then, for the different integrals obtained, we will have

• I(p1, p3):

ρ13 = (2m2 − t) +
√
t2 − 4m2t

2m2 ,

v13 = m2 ρ13 − 1
2l , l13 = (ρ13 − 1)p1,0.

(B.14)

• I(p2, p4):

ρ24 = (2M2 − t) +
√
t2 − 4M2t

2M2 ,

v24 = M2 ρ24 − 1
2l , l24 = (ρ24 − 1)p1,0.

(B.15)

• I(p1, p4) = I(p2, p3):

ρ14 = (m2 +M2 − u) +
√

(m2 +M2 − u)2 − 4m2M2

4m2 ,

v14 = ρ14m
2 −M2

2l , l14 = ρ14p1,0 − p4,0.

(B.16)

• I(p1, p2) = I(p3, p4):

ρ12 = (s−m2 −M2) +
√

Λ(s,m2,M2)
2m2 ,

v12 = ρ12m
2 −M2

2l , l12 = ρ12p1,0 − p2,0.

(B.17)
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