
A Giovanni e Piero

Contents

I Introduction 4

1 Underwater Acoustic Networks 4

2 The ISO/OSI stack 6

3 The network simulator 12
3.1 ns2 . 12

3.1.1 Fundamental mechanisms of ns2: Shadowing, binding and
command . 12

3.2 NS-Miracle . 13
3.2.1 The NS-Miracle node . 14

3.3 DESERT Underwater . 14

II Development 15

4 Structure of the ns2/NS-Miracle packet 15
4.1 The acoustic modem payload . 15

4.1.1 FSK, Minipacket . 16
4.1.2 PSK, Binary Data . 18

5 Emulation, Testbed 18
5.0.3 Emulation . 19
5.0.4 Testbed . 20

6 Design of the interface between NS-Miracle and general modem
hardware 20
6.1 UWMPhy modem . 22
6.2 UWMcodec . 26
6.3 UWMdriver . 26
6.4 UWMinterpeter . 27
6.5 UWMconnector . 27

7 Interface’s specialization: the FSK Micromodem case 28
7.1 mFSK WHOI MM . 28
7.2 mcodecFSK WHOI MM . 28
7.3 mdriverFSK WHOI MM . 28
7.4 minterpreterNMEA . 28
7.5 mserial . 32

8 Interface specialization: the PSK Micromodem case 32
8.1 mcodecPSK WHOI MM . 33
8.2 mdriverPSK WHOI MM . 35
8.3 minterpreterNMEA . 35
8.4 mserial . 35

9 Goby Software 37

III Tests and conclusions 37

10 Network protocols and metrics 38

11 Hardware and Software 39

12 Location 40

13 Network topologies and experiments description 42

14 Results 44
14.1 Packet loss, delay, throughput, retransmissions 45

14.1.1 Test 1 . 45
14.1.2 Test 2 . 46
14.1.3 Test 3 . 46
14.1.4 Test 4 . 47
14.1.5 Test 5 . 47
14.1.6 Test 6 . 50

15 Final considerations 50

Abstract

The goal of this thesis is to create a C++ module to interface the
ns2/NS-Miracle network simulator [35] with the Micromodem developed
by the Woods Hole Oceanographic Institution (WHOI Micromodem).
This module is part of the DESERT Underwater (short for DEvelope,
Simulate, Emulate and Realize Testbed for Underwater network proto-
cols) framework, a suite of modules developed to support the design and
testing of underwater network protocols. From the network simulator’s
point of view, the implemented module acts like a common physical layer,
but, rather than to be connected to a simulated channel, it opens a se-
rial connection between the machine running ns2 and the Micromodem.
Then, the modem transmits acoustically the packet over the real under-
water channel.

In collaboration with theWoods Hole Oceanographic Institution (WHOI),
a leader in the field of underwater technology, we created a network test-
bench composed of seven easy deployable nodes. These nodes are intended
to be used for a wide range of applications thanks to their multi purpose
configuration: the embedded system is composed by a Gumstix board [14]
running Emdebian (Debian distribution for embedded systems [11]) and
it is possible to access each single node of the network through a WiFi
SSH connection in order to schedule tests, launch programs and collect
results.

The thesis is organized as follow: Part 1 introduces the work by means
of a brief overview on underwater networks, the ns2 network simulator and
its extension NS-Miracle. Part 2 details the code developed to interface
NS-Miracle with the WHOI Micromodems; finally, Part 3 describes the
field experiments we run to test the feasibility of our solution. The results
of these tests show that the implemented interface allows us to command
real hardware by reusing the same code written for simulation purposes.

Part I

Introduction

1 Underwater Acoustic Networks

Underwater sensor networks are mainly used to enable applications for oceano-
graphic data collection, pollution monitoring, offshore exploration, disaster pre-
vention, assisted navigation and surveillance applications. Some examples are:

• Ocean sampling networks. Networks of sensors and AUVs, such as the
Odyssey-class AUVs [3], can perform synoptic, cooperative adaptive sam-
pling of the 3D coastal ocean environment [26].

• Robotics and ocean models. Experiments such as the Monterey Bay field
experiment [33] demonstrated the advantages of bringing together sophis-
ticated new robotic vehicles with advanced ocean models to improve the
ability to observe and predict the characteristics of the oceanic environ-
ment.

• Environmental monitoring. Underwater (UW) sensor networks can per-
form pollution monitoring (chemical, biological and nuclear). For example,

4

it may be possible to detail the chemical slurry of antibiotics, estrogen-
type hormones and insecticides to monitor streams, rivers, lakes and ocean
bays (water quality in situ analysis) [13]. Other types of monitoring include
tracking of fishes or micro-organisms.

• Environment predictions. Improved weather forecasts detection of climate
changes, enhancement of the awareness on the effect of human activities
on marine ecosystems.

• Undersea explorations. Underwater sensor networks can help detecting
underwater oilfields or reservoirs, determine routes for laying undersea
cables, and assist in exploration for valuable minerals. [15]

• Disaster prevention. Sensor networks that measure seismic activity from
remote locations can provide tsunami warnings to coastal areas [25], or
study the effects of submarine earthquakes (seaquakes).

• Assisted navigation. Sensors can be used to identify hazards on the seabed,
locate dangerous rocks or shoals in shallow waters, mooring positions,
submerged wrecks, and to perform bathymetry profiling.

• Distributed surveillance. AUVs and fixed underwater sensors can collab-
oratively monitor areas for surveillance, reconnaissance, targeting and in-
trusion detection systems. For example, in [10], a 3D underwater sensor
network is designed for a tactical surveillance system that is able to detect
and classify submarines, small delivery vehicles (SDVs) and divers based
on the sensed data from mechanical, radiation, magnetic and acoustic mi-
crosensors. With respect to traditional radar/sonar systems, underwater
sensor networks can reach a higher accuracy, and enable detection and
classification of low signature targets by also combining measures from
different types of sensors.

• Mine reconnaissance. The simultaneous operation of multiple AUVs with
acoustic and optical sensors can be used to perform rapid environmental
assessment and mine-countermeasure applications.

As mentioned, multiple unmanned or autonomous underwater vehicles (UUVs,
AUVs), equipped with underwater sensors, can also be employed for the explo-
ration of natural undersea resources and gathering of scientific data in collab-
orative monitoring missions. The recent underwater sensor nodes and vehicles
could be equipped with self-configuration capabilities, i.e., they may be able to
coordinate their operation by exchanging configuration, location and movement
information to fulfil a given task, e.g., the relaying of monitored data to one or
multiple onshore stations.

To obtain the desired level of collaboration and self adaptation, sensors and
AUVs must be able to reliably communicate through the wireless underwater
channel, therefore, the acoustic communications are the key-enabling technology
for this kind of applications. On one hand, radio waves propagate at long
distances through conductive sea water only at extra low frequencies (30 - 300
Hz), which require large antennas and high transmission power and they are
affected mostly by multipath and Doppler effects rather than SNR. On the
other, optical waves do not suffer from high attenuation but are affected by

5

scattering. Moreover, transmission of optical signals requires short range (≤
100m) in very clear water [23]. Thus, links in underwater networks are based
on acoustic wireless communications [34].

Generally speaking, there is a need to deploy underwater networks that will
enable real-time monitoring of selected ocean areas, remote configuration and
interaction with onshore human operators. This can be obtained by connecting
underwater instruments by means of wireless links based on acoustic commu-
nication. Many researchers are currently engaged in developing networking
solutions for terrestrial wireless ad-hoc and sensor networks. Although there
exist many recently developed network protocols for wireless sensor networks,
the unique characteristics of the underwater acoustic communication channel re-
quire very efficient and reliable new data communication protocols. [18] Major
challenges in the design of underwater acoustic networks are:

• The available bandwidth is severely limited due to absorption losses;

• The underwater channel is time-varying, especially due to multi-path and
fading;

• Propagation delay in underwater is five orders of magnitude higher than
in radio frequency (RF) terrestrial channels, and extremely variable from
link to link;

• The variability in time and space often leads to high bit error rates and
temporary losses of connectivity (shadow zones);

• Battery power is limited, but solar energy can be exploited (for buoys and
surface nodes);

• Underwater sensors are prone to failures because of fouling and corrosion.

2 The ISO/OSI stack

The Open Systems Interconnection model (OSI model) shown in Table 1, is a
product of the Open Systems Interconnection effort at the International Or-
ganization for Standardization [38]. It is a prescription of characterizing and
standardizing the functions of a communications system in terms of abstraction
layers. Similar communication functions are grouped into logical layers and a
layer serves the one above it and is served by the layer below it. The OSI
standards documents are available from the ITU-T as the X.200-series of rec-
ommendations, and according to them there are seven layers, numbered from 1
to 7 starting from the bottom.

In the following, we investigate deeper the main functionalities of these lay-
ers. According to the interests of this thesis, more details are provided for the
layers exploited in the underwater scenario we considered and for those hard-
wares that we adopted.

• Physical layer : this layer is responsible for transmitting bits through the
channel, it could group these bits into words and it codes them into a
physical signal. Due to the challenging characteristics of the underwa-
ter channel, the WHOI Micromodem development was initially based on

6

Table 1: ISO/OSI stack

OSI Model

Data Unit Layer Function

Host Layer
Data

7. Application User level, generation and
usage of data.

6. Presentation Data representation, en-
cryption and decryption,
convert machine depen-
dent data to machine in-
dependent data.

5. Session Interhost communica-
tion, managing sessions
between applications.

Segments 4. Transport End-to-end connections,
reliability and flow con-
trol.

Media layers
Packet/Datagram 3. Network Static or dynamic path

determination, logical ad-
dressing.

Frame 2. Data link Medium Access Control
(MAC), physical address-
ing.

Bit 1. Physical Physical binary transmis-
sion of data.

7

non-coherent frequency shift keying (FSK) modulation (see Section 7) ,
that relies on energy detection to reveal the presence of a packet in the
channel. The multi-path effects are suppressed by inserting time guards
between successive pulses to ensure that the reverberation, caused by the
rough ocean surface and bottom, vanishes before each subsequent pulse is
received. Although non-coherent modulation schemes are characterized by
a high power efficiency, their low bandwidth efficiency makes them unsuit-
able for high data rate networks. Hence, coherent modulation techniques
such as phase shift keying (PSK), made available by WHOI Micromodem
(see Section 4.1.2) and quadrature amplitude modulation (QAM) [31] have
been developed for high-throughput systems.

Other techniques that could be used, which are not of primary interest to
this thesis, are:

– channel equalization techniques to leverage the effect of the inter-
symbol interference (ISI), instead of trying to avoid or suppress it;

– differential phase shift keying (DPSK) [9] serves as an intermediate
solution between incoherent and fully coherent systems in terms of
bandwidth efficiency. DPSK encodes information relative to the pre-
vious symbol rather than to an arbitrary fixed reference in the signal
phase and may be referred to as a partially coherent modulation.
While this strategy substantially alleviates carrier phase-tracking re-
quirements, the penalty is an increased error probability over PSK
at an equivalent data rate;

– orthogonal frequency division multiplexing (OFDM) [27] spread spec-
trum technique, which is particularly efficient when noise is spread
over a large portion of the available bandwidth.

Many of the techniques discussed above require underwater channel es-
timation, which can be achieved by means of probe signals or training
sequences to be sent before the actual packet transmission.

• Data link layer. The data link layer is the protocol layer that transfer data
between adjacent nodes. Moreover, it might provide solutions to detect
and possibly correct errors at the physical layer. Channel access control
in UW networks faces additional challenges regard to the communications
over the air, due to the intrinsic characteristic of the acoustic underwater
channel, which is impaired by several factors such as high and variable
delays that typically vary from link to link. At the core of the data link
layer there is the Medium Access Control (MAC) mechanism, which aims
at improving network performance, such as throughput, latency and en-
ergy efficiency. In the following we list some common MAC protocols:

– ALOHA is a random access scheme [2] that allows to send the pack-
ets without preceding channel reservation and does not implement
channel sensing or retransmission’s techniques. Later enhancements
include both an acknowledgement system and carrier sense mecha-
nism, but this MAC is not suitable for environments affected by high
delays;

8

– Carrier sense multiple access (CSMA) [6] is a reasonable choice and
prevents collision with the ongoing transmission at the transmitter
side. To avoid collisions at the receiver side, it is necessary to in-
troduce a guard time between transmissions dimensioned according
to the maximum propagation delay in the network - this lowers the
throughput. Due to propagation delay, it is not recommended to
use RTS/CTS mechanisms [16]. Therefore is susceptible to hidden-
terminal problem in multi-hop networks. CDMA is quite robust to
frequency selective fading caused by underwater multi-paths, since
it distinguishes simultaneous signals transmitted by multiple devices
by means of pseudo-noise codes that are used for spreading the user
signal over the entire available band. This allows exploiting the time
diversity in the UW acoustic channel by leveraging Rake filters at the
receiver. These filters are designed to match the pulse spreading, the
pulse shape and the channel impulse response, so as to compensate
for the effect of multi-path;

– Distance-Aware Collision Avoidance Protocol (DACAP) [4], uses a
very short warning packet in the RTS-CTS (short for Request To
Send/Clear To Send) mechanism. It has been developed for high de-
lay networks, and provide an optional acknowledge system. It comes
with some problems: 1) it must be configured a priori, 2)it does not
adapt easily to network topology changes, 3) trade-off between longer
handshakes/idle times and collision probability;

– Tone-Lohi (T-Lohi) [1], uses tones during contention rounds to re-
serve the channel. T-Lohi listens to the channel during a contention
round to count the number of contenders in the same round. Thanks
to the high propagation delays present in underwater networks, count-
ing the number of contenders in the same round is easy because other
requests from other nodes mostly arrive separately. The backoff time
is adapted to the number of contenders. Generally, T-Lohi is not
suitable for long range multi-hop transmissions because of the de-
pendency between the contention round duration and the maximum
propagation delay.

• Network layer. Broadly speaking, the network layer is in charge of de-
termining the path between source and destination (e.g. from the sensor
that samples a physical phenomenon to the surface station). While many
impairments of the underwater acoustic channel are adequately addressed
at the physical and data link layers, some other characteristics, such as
the extremely long propagation delays, are better addressed at the net-
work layer. In the last few years there has been an intensive study in
routing protocols for ad hoc wireless networks [21] and sensor networks
[19]; nowadays the results of these studies might be applied or adapted for
underwater scenarios. The existing routing protocols are usually divided
into three categories, namely proactive and reactive routing protocols:

– Proactive protocols (e.g., Destination-Sequenced Distance Vector (DSDV)
[30], Optimized Link State Routing Protocol (OLSR) [7]). These
protocols attempt to minimize the message latency induced by route

9

discovery. To this aim, they maintain up-to-date routing informa-
tion at all times from each node to every other node in the network.
This is obtained by periodically broadcasting control packets that
contain routing table information (e.g., distance vectors). The main
drawbacks of this protocols is a large signaling overhead to establish
routes, and it can be very high especially in mobile networks where
route tables need to be updated more often;

– Reactive protocols (e.g., Ad-hoc On-Demand Distance Vector (AODV)
[29], Dynamic Source Routing (DSR) [8]). According to this ap-
proach, a node initiates a route discovery process only when a route
to a destination is required (e.g., when it has a packet to transmit or
it is selected as relay). Once a route has been established, it is main-
tained by a route maintenance procedure until it is no longer desired
or considered obsolete (e.g. after a timeout expiration). These pro-
tocols are more suitable for dynamic environments but they are also
characterized by high latencies due to the path discovery procedure,
which may lead to even higher delays underwater because of the slow
propagation of acoustic signals. Furthermore, links are likely to be
asymmetrical, due to bottom characteristics and variability of the
sound speed profile;

– Geographical routing protocols. These protocols establish the rout-
ing path by analyzing nodes position. These techniques are really
promising, but it is hard to obtain and maintain updated localiza-
tion informations underwater.

A general observation is that protocols that rely on symmetrical links,
such as most of the reactive protocols, are unsuited for many underwater
environments. Moreover, the topology of UW networks is unlikely to vary
dynamically on a short time scale. We briefly conclude this point with
some open research issues related to efficient routing:

– For delay-tolerant applications, there is a need to develop mecha-
nisms to handle loss of connectivity without provoking immediate
retransmissions. Strict integration with transport and data link layer
mechanisms may be advantageous to this end;

– It is necessary to devise routing algorithms that are robust with re-
spect to the intermittent connectivity of acoustic channels. The qual-
ity of acoustic links is highly unpredictable, since it mainly depends
on fading and multi-path, which are phenomena hard to model;

– Algorithms and protocols need to detect and deal with disconnections
due to failures, unforeseen mobility of nodes or battery depletion.
These solutions should be local so as to avoid communication with
the surface station and global reconfiguration of the network, and
should minimize the signalling overhead;

– Mechanisms are needed to integrate AUVs in underwater networks
and to enable communication between sensors and AUVs. In par-
ticular, all the information available to sophisticated AUV devices
(trajectory, localization) could be exploited to minimize the signal-
ing needed for reconfigurations.

10

• Transport layer. In the contest of Under Water Acoustic Sensor Networks
(UWASN), transport layer protocols are needed especially to achieve re-
liable collective transport of event features, more in general, however, to
perform flow and congestion control. Congestion control is needed to pre-
vent the network from being congested by excessive data with respect to
the network capacity, while flow control is generally performed to avoid
that network devices with limited memory might be overwhelmed by data
transmissions. As a matter of fact, the primary objective is to save scarce
sensor resources (e.g. energy) and increase the network efficiency. A reli-
able transport protocol should guarantee that the applications be able to
correctly identify event features estimated by the sensor network.

However, most existing Transmission Control Protocol (TCP) implemen-
tations are unsuited for the wireless communication in general, as for the
underwater environment in particular, since the flow control functionality
is based on the assumption that the losses over the channel are caused by
congestion in the network which turns out in a window-based mechanism
that relies on an accurate estimate of the Round Trip Time (RTT).

• Application layer. Many application areas for underwater sensor networks
can be outlined, stemming from the overview presented in Section 1. A
deeper understanding of these application areas and of the communication
problems in underwater sensor networks is crucial to determine useful
design principles on how to extend or reshape existing application layer
protocols for terrestrial sensor networks. For this kind of studies we refer
the reader, e.g., to [17].

Usually, to investigate and design new network protocols, researchers test
their performances using network simulators and rely on the accuracy of the
channel model in use. With this work we go beyond the simulation: not only it
is possible to bypass the simulation of the channel (slow and not precise in harsh
environments), but we allow to create and test real network prototypes. Imple-
menting research solutions on actual devices, in fact, is of key importance to
realize a communication and networking architecture that allows heterogeneous
nodes to communicate reliably in the underwater environment.

The main research efforts are related to the layers above the physical one,
however, since every new protocol requires a testing process and the results are
strictly dependent from the channel’s properties, it would be appropriate to
use something as close as possible to a real acoustic channel. The models in
use are reliable in deep water scenario without complex obstacles, but there is
no accepted shallow water model or even a tool to simulate, for example, an
harbour.

With our work we let developers use a testbed that, through the modems,
lets the developer deal with the real channel.

11

3 The network simulator

3.1 ns2

[24] The network simulator ns2 is a discrete event simulator targeted at network-
ing research. It provides substantial support for simulation of TCP, routing, and
multicast protocols over wired and wireless (local and satellite) networks.

Historically, ns began as a variant of the REAL network simulator in 1989
and has evolved substantially over the past few years. In 1995 ns development
was supported by the Defense Advance Research Projects Agency (DARPA)
through the Virtual InterNetwork Testbed (VINT) project at Lawrence Berke-
ley National Laboratory (LBNL), Xerox PARC, University Of California (UCB),
and University of Southern California Information Science Institute (USC/ISI).
The second version, ns2, is supported through DARPA with Simulation Aug-
mented by Measurement and Analysis for Networks (SAMAN) and through Na-
tional Science Foundation (NSF) with Cooperative Online Serials (CONSER),
both in collaboration with other researchers including ATT Center for Inter-
net Research (ACIRI). Ns has always included substantial contributions from
other researchers, including wireless code from the UCB Daedelus and Central
Michigan University (CMU) Monarch projects and Sun Microsystems.

While the developers have considerable confidence in ns2, it is not a pol-
ished and finished product, but the result of an on-going effort of research and
development. In particular, bugs in the software are still being discovered and
corrected.

We choose to use NS-Miracle, a set of libraries for ns2, that exploits the pos-
sibility of loading the libraries dynamically: especially in an embedded system,
with the fact that lot of modules were already developed, this was the optimal
starting point for our work. NS-Miracle introduces the possibility of multiple
modules at the same layer, as well as cross-layer messages. Last but not least,
there is a lot of code already developed for UW networks.

3.1.1 Fundamental mechanisms of ns2: Shadowing, binding and com-
mand

The ns2 simulator uses two different programming languages, OTcl and C++.
On one hand, OTcl is compiled at run time and allows the developer to quickly
setup network parameters and configurations. On the other hand, C++ gives
the developer the power to handle efficiently algorithms, packet’s headers, data
structures and large data sets. It is used to program the node’s modules that are
compiled and ready to be used by the simulator. When we want to load a C++
object as an OTcl object, we must link these two classes together, technically
speaking we must create in the OTcl domain a shadow C++ object.

ns2 manages also the variable binding, such that both the OTcl member
variable and the C++ member variable access the same data. This mechanism
allows to set any C++ variables by changing the value of its corresponding OTcl
variable.

Finally, from the OTcl domain it is possible to call some methods of a C++
object. As well as for object names and variables, in fact some OTcl commands
could be linked to the corresponding C++ function.

12

3.2 NS-Miracle

For our project we use Miracle, an extension of the ns2 simulator developed by
the Department of Information Engineering at the University of Padova [22].
The acronym stands for Multi InteRfAce Cross Layer Extension and describes
the two main capabilities introduced by the modularity of this extension. In
fact, using Miracle we can manage nodes in a cross layer fashion and additionally
provide multi technology support (within the same node as illustrated by Figure
1) [35].

Module

Module

Module

Module

S
a

p
S

a
p

S
a

p

Node

Core

PlugIn

PlugIn

CISAP

CISAP

CISAP

CISAP
Module

CISAP

CISAP

CISAP

Module CISAPModule

CISAP

S
a

p
S

a
p

S
a

p

S
a

p

Figure 1: Miracle node

A motivation for creating NS-Miracle is to fill the gap between ns2 and
the simulation of multi technology environments and provide the possibility of
performing cross layer messaging, using a set of additional dynamic libraries.
The architecture is highly modular as it allows the interconnection of multiple
down and upstream modules at every layer of the protocol stack. In addition, a
dedicated communications facility provides the protocol stack of each node with
cross-layer interaction capabilities. In Miracle every modification can constitute
a stand alone library and can be loaded when necessary with the load command.
In this case modifications can be rapidly done, loading the appropriate library.
Furthermore a modification of a library requires only to recompile the code
associated to that library and it usually requires only a few seconds.

In detail, Miracle resolves some issues that are not addressed to a great extent
by the current network simulator ns2 [22]. The channel and PHY layer modeling
have big importance in the result’s accuracy, hence Miracle offers a more realistic
representation of signal propagation and reception process, giving at the same
time a framework to handle a complete system, in particular the cross layer
design. As mentioned above, as more and more devices nowadays are equipped
with multiple interfaces using different communication technologies, network
simulators should provide support for proper modeling of these scenarios, by
means of a flexible and modular protocol stack architecture together with proper
support for the development of the control modules which are needed to manage
such a complex architecture. The heterogeneity also concern the network devices
and simulating this kind of scenarios today is very challenging, in particular due
to the fact that the routing layer of state-of-the-art simulators is mainly designed

13

for homogeneous networks. As a consequence, there is a need for supporting
this type of heterogeneous network composition at all the layers of the protocol
stack.

3.2.1 The NS-Miracle node

The NS-Miracle node is based on generic entities connected by each other (see
figure 1). The protocol stack is implemented through entities called Modules.
The novel idea consists in allowing presence of more than one Module per layer.
Every Module is connected to another entity called Node Core. It goes off
the layer ordering scheme and has the task of coordinating message exchange
between modules. It also stores the node actual position in the simulation field in
order to allow position-dependent calculations such those related to propagation
and interference models.

There are also another kind of entities connected to the Node Core, called
PlugIns. As Node Core, they don’t depend on layer classification. Due to their
independence from the OSI stack, the PlugIn may be exploited for node coordi-
nation functionalities (e.g., cognitive engines and multi interfaces manager) and
cross layer intelligence.

Communication among different layers is provided by Service Access Points
(SAP), accordingly to OSI structure. As in ns2, connections between Modules,
NodeCore and PlugIns are made by Connectors, but the latter are completely
reprojected to trace packets passing through them according to rules established
by the user.

3.3 DESERT Underwater

We have already discussed about how hard is to project and test an underwater
network, especially when it involves multiple devices and the scenario differs
from the simplest ones. When pursuing the latter goal, the research community
demands a simulating framework to test and tune their networks before the
on field applications. A flexible, reliable tool for performance evaluation is of
fundamental importance to test and improve the design of network protocols:
DESERT Underwater aims to solve this lack, allowing scientists to DEvelope,
Simulate, Emulate and Realize Testbed for Underwater network protocols. It is
a complete set of public C/C++ libraries that extends the NS-Miracle simula-
tion software and provides several protocol stacks for underwater networks, as
well as the support routines required for the development of new protocols.

Moreover, DESERT Underwater will make it possible to evolve from pure
simulation towards the realization of actual prototypes by framing the hardware
of real acoustic modems into NS-Miracle itself. According to what done in recent
papers such as [5], the idea is to wrap all the commands required to communicate
with the modem hardware within an NS-Miracle module. In this perspective,
the developer can rely on two supported experimental settings: i) a (small-scale)
emulation setting, where multiple acoustic modems are connected with a single
device (e.g., PC, laptop); ii) a testbed setting, where each acoustic modem is
connected with its corresponding unique device. Moreover, the use of embedded
platforms such as the Gumstix [14], or the PandaBoard [28], that can replace
actual PCs, would allow us to build more portable, autonomous and realistic
testbeds that go in the direction of realizing actual prototypes.

14

Part II

Development
The core of this work is to create an interface to allow the network simulator
NS-Miracle to command the WHOI Micromodems for sending packets over the
acoustic channel. The overall goal is to bridge the gap between the studies based
on the simulation environments and those exploiting the real UW networks.
The above need arises from the observation that even if the UW channel is
well modeled in certain situation(e.g. deep open sea), there is no software or
algorithm able to reproduce UW channel behaviour in complex scenarios both
reliably and in a reasonable time (think about the reflections, shadowing and
multipath in a harbour). With our interface we want to provide the community
with a tool to realize testbeds and perform their network protocols using the
real acoustic channel.

This task implies several challenges: for instance, according to the modem
in use, the informations to be sent may need to be shrunk in order to reduce
the payload size and to overcome some problems like the limited bandwidth and
low transmission rates.

Section 4 introduces the ns2/NS-Miracle packet and the acoustic packets in
use; Section 5 describes the two different scenarios we considered, emulation
and testbed; from Section 6 to 9 we describe the details of our work.

4 Structure of the ns2/NS-Miracle packet

In ns2, the packet is a structure containing all the possible fields that can be
used within a simulation, and this is passed from one layer to another and it
arrives to destination with a probability dictated by the simulated channel. So,
there is no actual data that moves inside the simulation: all delays, probabilities
of error and packet’s manipulations are handled by ns2 and its modules.

For instance, there is an application layer’s header that includes the sequence
number of the packet, another one belonging to the IP layer that stores the
source and destination IP address, header of the MAC module that memorizes
the correct MAC addresses and so on. Even if a simulation does not use some
modules that require a given header, the memory allocated for a single packet
includes them all. Therefore, the memory allocated during the simulation for a
given packet is usually bigger than the simulated packet size: only a portion of
it carries critical data for the correct functioning of a given test.

This leads to the conclusion that is desirable not to send the whole memory
allocated for a given packet because of the corresponding huge overhead: we
need to shrink it and keep only the informations necessary for the correct func-
tioning of the protocol to test. Alternatively we can exploit other techniques as
explained in Section 7.2.

4.1 The acoustic modem payload

The WHOI Micromodem exchange messages using the NMEA 0183 standard,
a combined electrical and data specification for communication between marine

15

electronic devices such as echo sounder, sonars, anemometer, gyrocompass, au-
topilot, GPS receivers and many other types of instruments. It has been defined
by, and is controlled by, the U.S.-based National Marine Electronics Associa-
tion [36]. NMEA messages are ASCII strings that are sent through a serial port
and they obey to a strict defined format, they could include fields like source,
destination, modulation type, channel statistics and error messages.

As with many communications systems, all data transmitted by the Micro-
modem is broken up into frames. Depending upon the data rate, there may
be more than one frame of data within a packet. The current version of the
Micromodem software supports multiple transmit and receive rates, the higher
rates contain multiple frames and the integrity of each frame is protected with
a cyclic redundancy check (CRC). The FSK modem can send both Minipackets
that carry 13 bits of data or binary data packet with a 32 bytes payload. The
PSK modem can send both Minipackets as well as binary data with variable
rate. Our developed solution to interface NS-Miracle with real hardware is com-
patible both with the FSK version of the modem as well as the PSK version
(U.S. only).

4.1.1 FSK, Minipacket

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital
information is transmitted through discrete frequency changes of a carrier wave.
[12] The simplest FSK is binary FSK (BFSK). BFSK uses a pair of discrete
frequencies to transmit binary information. With this scheme, the “1” is called
the mark frequency and the “0” is called the space frequency. The time domain
of an FSK modulated carrier is illustrated in figure 2.

Currently, the WHOI trades the FSK Micromodem only outside United
States, therefore we concentrate some efforts to realize a version of our mod-
ule that is compatible with the limitations of this hardware and maximizes the
available resources. The FSK modem allow to send up to 32 bytes of data, but
the transmission rate is really low, 80 bps, hence our choice has been to exploit
only the communication via Minipacket despite the constraints implied by the
13 bits payload. The advantage of this choice is the 1:1 correspondence between
the ns2’s packet and the acoustic one (this is not possible with bynary data
because it needs a Cycle Init as the first packet in a transmission). In this case
the 13 bits of data payload are encoded in the NMEA sentence as two 8 bit hex
values (4 characters). The format of a Minipacket message is as follows:

$CCMUC,SRC,DST,BHHH∗CS

SRC Source (4 bits)
DST Dest (4 bits)
BHHH ASCII coded hex data (2 hex values). Value in the range

of 0 to 1FFF are legal (13 bits)
CS Hex coded checksum (8 bit XOR of sentence). Optional.

The minipacket is relatively short, less than 1 second: precisely, the modem
transmits at 160 symbols per second, that is 80 bps because of the 1/2 code
rate. The overall size is 32 bits (29 bits listed above + 3 mode bits that iden-
tify the type of minipacket) that are coded on 80 symbols. Furthermore, the
packet is preceded by a 10 ms probe, a 200 ms time guard (between the probe

16

Figure 2: FSK modulation

and the acoustic packet) and 21 sync symbols. Therefore, the sending time is:
10ms+ 200ms+ (21/160)ms+ (80/160)ms ≃ 710ms.

The sequence of messages exchanges between two modems that send and
receive a Minipacket is reported in Table 2 (remember that CCxxx indicates
a communication messages from host to modem whilst CAxxx messages from
modem to host). For clarity we indicate only the NMEA command name, not
all the corresponding fields.

Table 2: Minipacket NMEA messages exchange

SOURCE DESTINATION Description

CCMUC request from host to modem to send a minipacket
CAMUC modem to host, command correctly received
CATXP begin of transmission

CADQF receiver detect incoming packet
CATXF end of transmission
CAXST statistics of the sent packet

CAMUA receiver gets the minipacket
CACST statistics of the received packet

17

4.1.2 PSK, Binary Data

Phase-shift keying (PSK) is a digital modulation scheme that conveys data by
changing, or modulating, the phase of a reference signal (the carrier wave).

Any digital modulation scheme uses a finite number of distinct signals to
represent digital data. PSK uses a finite number of phases, each assigned to a
unique pattern of binary digits. Usually, each phase encodes an equal number of
bits. Each pattern of bits forms the symbol that is represented by the particular
phase. The demodulator, which is designed specifically for the symbol-set used
by the modulator, determines the phase of the received signal and maps it back
to the symbol it represents, thus recovering the original data. This requires the
receiver to be able to compare the phase of the received signal to a reference
signal (such a system is called coherent and referred to as CPSK).

The PSK version of WHOI’s Micromodem allows to send the binary data
packets at variable rates, the messages are generated by the host and the payload
(which size is defined by the transmission rate as shown in Table 4) contain hex
encoded binary data. The format of a binary data message is as follows:

$CCTXD,SRC,DEST,ACK,HH. . .H∗CS

SRC Source (4bits)
DST Dest (4bits)
ACK Packet Acknowledgement
HH. . .H Hex coded data bytes, 2 characters each, e.g. 00-FF.
CS Hex coded checksum (8 bit XOR of sentence). Optional.

According to the WHOI Micromodem specifications, a binary data message
must be preceded by a Cycle Init (CCCYC message):

$CCCYC,CMD,SRC,DST,PacketType,ACK,NumFrames∗CS

that alerts the receiver and the other nodes of the network about the in-
coming transmissions and specifies the total number of frames that form the
packet.

The messages involved in a binary data packet transmission are shown in
Table 3. For a complete description, we show the transmission of a packet
splitted in two frames.

Unlike the User Minipacket, using the Binary Data packet we need a Cycle
Init message and possibly to split a single ns2 packet into multiple frames,
loosing the 1:1 correspondence with the ns2’s packet. The physical delivery of
a packet is seen as an atomic event by the simulator, while there are at least
two packets sent over the real underwater acoustic channel (Cycle Init plus one
or more frame). Oppositely, the system gains higher transmission rates and the
payload can be 20 to 1260 times larger. In all the tests reported in Part 3, we
use the DATA packet because of the overall amount of informations that nodes
need to exchange and cannot be fitted in the Minipacket payload.

5 Emulation, Testbed

The module interface we have developed can be used in two different settings,
emulation and testbed.

18

Table 3: Binary data packet NMEA messages exchange

SOURCE DESTINATION Description

CCCYC host to modem, Cycle Init
CACYC modem to host, Cycle Init command correctly re-

ceived
CARXP detected incoming transmission
CACYC Cycle Init packet received

CADRQ modem to host data request (first frame)
CCTXD transmission of first frame
CATXP modem to host, start transmission of first frame

CARXD reception of the first frame
CADRQ modem to host data request (second frame)
CCTXD transmission of second frame
CATXP modem to host, start transmission of second frame

CARXD reception of the second frame
CACST statistic of the received packet (both frames received)

CATXF end of packet transmission
CAXST statistics of the transmission

Table 4: Packet types and corresponding payloads

Packet Type Max num. of frames Bytes/Frame Bytes/Packet

0 1 32 32
1 3 64 192
2 3 64 192
3 2 256 512
4 2 256 512
5 8 256 2048
6 6 32 192

5.0.3 Emulation

It is used when a single host controls all the modems, hence there is only one
instance of ns2 running. This is a very simple and convenient case in terms of
simplicity and reliability because there is only one simulator running, it means
that the nodes involved in the test share the same memory. Remind that in
NS-Miracle a packet is a pointer to a struct, therefore, the only information
that needs to be sent is that pointer. The receiver’s physical layer is able to
send that pointer to upper layers without any segmentation fault because the
receiver node has access to the simulator’s allocated memory.

Similarly, in the emulation setting, we exchange among nodes a pointer
to some memory location of the machine running the simulator; this pointer
points to the data struct containing the ns2 packet to transmit. A pointer size
is machine dependent and, generally, bigger then the Minipacket payload (13
bits). To overcome this problem and realize the emulation setting also for the
FSK modem we use disk files to store the pointers of the packets to be sent over
the UW channel, then we send acoustically the line number of the file where to
find the desired pointer. We have therefore 213 = 8192 different line/payloads.

19

The receiver gets through the modem the line where to retrieve the right pointer.
There are some drawbacks whit this approach: the emulation setting is suitable
for small testing area because the modems must be physically connected to the
same host.

5.0.4 Testbed

The testbed setting involves one pc/host for every modem. In this case there
are multiple simulator’s instances that run at the same time without sharing
any memory, hence the challenge is to send a NS-Miracle packet over the UW
channel. To this end, the sender must convert the NS-Miracle packet into the
payload of an acoustic message that contains all the necessary informations in
order to allow the receiver to recreate the original simulator’s packet.

When we use the Minipacket, we need to compress the necessary informa-
tions in 13 bits and this leads to limitations in the doable testbeds (e.g. max
number of nodes).

When using the PSK version, instead, we adopt a different technique that
is the serialization of the memory area containing the headers of the packet
which provide for the correct functioning of the simulator (see Section 8.1 for
further details). Our approach is to create a payload that mirrors the memory
area where the essential packet informations are stored. The payload size with
the packet rate 4 (see Table 4) is big enough for our purpose, and the adoptes
solution has the advantage of handling informations coming from the upper
layers by treating them as “black boxes” (e.g., without knowing their actual
implementation or the packet fields they need). A future improvement could use
compression techniques to reduce the its size (even if the transmission duration
is affected more by time guards that belongs to the MAC module implemented
in the WHOI Micromodem firmware rather than the actual packet’s sending
time) to save some space for the application layer (e.g., to transmit sensors’
data).

6 Design of the interface between NS-Miracle
and general modem hardware

The NS-Miracle module we developed to interface the network simulator with
the acoustic modem is intended to be as general as possible, modular and easy
adaptable to future development (e.g. extension to support different modem
hardware).

The general structure of this module, called UWMPhy modem, is shown
in Figure 3, where every block is a class that groups some logical duties, as
described hereunder. UWMPhy modem is developed to work in this way:

• UWMPhy modem receives NS-Miracle packet from the above layer, it
opens and closes the serial port at the beginning and at the end of the
experiment;

• it interacts both with UWMcodec and UWMdriver: UWMcodec takes care
of mapping the received NS-Miracle packet into a legal NMEA payload
(that will be included in the acoustic packet) or demapping the received
acoustic payload into a legal NS-Miracle packet, while UWMdriver handles

20

Figure 3: Sketch of the NS-Miracle modem hardware interface’s design

CheckTmr_ UWMPhy_modem UWMcodec

UWMdriver

UWMinterpreter UWMconnector

Assigned in the constructor

Initialized to NULL

LEGEND

the sequentiality of the messages exchanged with the modem (it works like
a state machine);

• UWMinterpreter is called by UWMdriver to create the strings to be sent
via serial port to the modem. These strings are hardware dependent and
in our case they follow the NMEA standard. On the receiver side, the
interpreter extracts the payload from the acoustic packet and it passes it
to UWMcodec through the UWMdriver;

• UWMconnector interact with UWMdriver as it is the class that manage
the serial connection, namely, the transmission and reception of NMEA
string to/from the modem.

Notice that in Figure 3 some blocks have a pointer assigned by the con-
structor to other classes, meanwhile some other pointers are NULL initialized.
Since the necessary dependencies can only be determined upon the knowledge of
the hardware, we fix some links between the classes that must be implemented,
leaving the necessary degrees of freedom to the developer. Any derived classes
of UWMPhy modem must specify the right linkage for the hardware in use.

UWMPhy modem inherits fromMPhy, the base class of NS-Miracle for phys-
ical layers that is meant to define the functionalities shared among channel
models and wireless technology implementations. In particular, our physical
module defines the self explanatory methods startTx(), endTx(), startRx()
and endRx(), that are called upon the reception of specific control messages
received from the modem. In NS-Miracle the physical layer has a strict in-
teraction with the MAC layer (which modules inherit from the MMAC base
class): the communication between these two layers exploits the cross-layer
functionality introduced in Section 3.2. In fact, MPhy’s derived classes can
trigger the transmission/reception start/end events on the MAC layer (logi-
cally, this happen inside the functions listed above), using the MMAC’s meth-
ods PhyToMacEndTx(), PhyToMacStartRx() and PhyToMacEndRx() (that corre-
sponds to the sendUp function). Consequently, we designed UWMPhy modem

21

obey to the natively mechanisms of NS-Miracle that regulate the interaction
between PHY and MAC layer. In detail, we programmed an internal state ma-
chine that handles the cross-layer messaging and the standard operations of any
modem. Figure 4 reports the state machine used by UWMdriver, the block of
the interface commanding the modem hardware.

We give a brief description of the states to better understand how our mod-
ule interacts with the MAC layer. The methods start(), modemTx() and
resetStatus() are called by UWMPhy modem, while the other transitions
are handled by UWMdriver. From the IDLE state, we change to the CFG state
to configure, e.g., the modem ID; then there could be two events: transmission
(TX) or reception (RX) of a packet. After a transmission the modem could
go back to IDLE state or, if the transmission request happened right before an
incoming packet detection:

1. the transmission is paused (TX PAUSED) and the reception physically
ends,

2. the paused packet is sent (TX RX),

3. the reception logically ends (IDLE RX).

Note that in a single unique device, the intermission of a transmission caused
by a concurring reception cannot generally happen because the device is al-
ready busy (transmitting). In our case, instead, we have two separated entities
(the network simulator and the acoustic modem) that work together by means
of an interface actions as a patch with the MAC layer: in fact, when a MAC
sends down a packet to the physical layer, it goes in the transmission’s state
and any notification but PhyToMacEndTx() causes an erroneous logic transi-
tion. Since UWMPhy module is placed between the hardware (whose firmware
could implement a basic MAC protocol that allows to receive a packet after
the notification that a packet needs to be sent and a NS-Miracle MAC mod-
ule (assuming that such event cannot occur), it must act as a patch to avoid
logical errors of both sides. Therefore, in case of a reception during transmis-
sion procedure, UWMPhy modem buffers the incoming packet until the end of the
transmission, hence, 1) it notifies the MAC module about the correct transmis-
sion with PhyToMacEndTx(), 2) the MAC module goes back to its IDLE state,
3)UWMPhy modem calls PhyToMacStartRx() and sendUp. In this way, we logically
split the transmission and reception procedures.

Let us now explain deeper the functionality of the blocks that compose
UWMPhy modem.

6.1 UWMPhy modem

UWMPhy modem is the class used to implement the interface between NS-
Miracle and real acoustic modems. Since UWMPhy modem (as the other blocks)
is meant to be a base class, it only defines virtual functions and it contains all
the binded variables and commands accessible by OTcl scripts. Binded variables
are:

ID : node ID [range in {0, 1, . . . , 255}, the use of 0 is deprecated] (mandatory,
default value = 0)

22

IDLE

CFG

TX RX

TX_PAUSED IDLE_RXTX_RX

start()

modemTx()

resetStatus()

resetStatus()

Figure 4: UWMdriver’s state machine

23

period : time interval [in sec] between two successive checks on the modem
status (i.e., to control if packet reception is occurred) [range in (0,∞)]
(optional, default value = 0.001)

setting : flag to switch between the TESTBED (flag equals to 1) and the
EMULATION (flag equals to 0) setting [range in {0,1}] (optional, default
value = 0)

stack : flag to notify about the use of different protocol stacks [currently,
range in {0,. . . ,2}] (optional, default value = 0)

debug : flag to disable or enable debug messages [range in {0,1}] (optional,
default value = 0)

show : flag to disable or enable messages for presentation purposes (e.g., user-
friendly messages that notify when a packet is going to be sent or received)
[range in {0,1}] (optional, default value = 0)

For a better comprehension of these variables see Section 6.2, 6.3 and 6.5.
We defined also two commands: start and stop. The commands explain

themselves, start activates the modem, that is, to open the serial port and to
set certain modem’s parameters like node ID, while stop closes and restores the
serial port. Even if we cannot power on/off the modem form the TCL script,
these two commands could be meant as if they worked for this purpose.

UWMPhy modem includes a ns2 timer to schedule tasks: e.g., the serial port is
checked periodically in case of an incoming packet.

Furthermore, this class coordinates the interactions between UWMdriver and
the block in charge of transform the ns2 packets into legal acoustic payloads
(UWMcodec). This base class does not include critical code like the shadowing:
in fact this code belongs to the derived classes, as every inherited class must be
designed for a specific hardware and creates its own object with corresponding
unique name.

UWMPhy modem declares also some virtual functions (listed in Table 5) that
act like guide lines for the developing of any specific interface. As mentioned
earlier, the functions endTx and startRx are crucial because they notify the
upper MAC layer by calling the corresponding cross-layer messages about ending
transmissions and starting receptions.

Table 5: Functions of UWMPhy modem

public
virtual void recv (Packet*) This function handles packet reception

from the upper layer of the network
simulator

24

virtual int command (int argc,
const char*const* argv)

command() function. This is used to
map c++ methods to TCL commands:

• *argv[3] is the TCL command
name

• *argv[4, 5, ...] are the parameters
for that command.

protected
void setConnections (Check-
Timer*, UWMdriver*, UWM-
codec*)

this function must be used by any de-
rived class to specify the uninitialized
links of the various object included in
UWMPhy modem (see figure 3)

virtual void start () This function starts the connection
with the modem. It performs all the
needed operations to open an host-
modem connection (e.g., set up of the
connection port’s parameter, start of
the “check-modem” process)

virtual void stop () This method should be used before
stopping the simulator as it closes and,
if needed, resets all the opened files and
ports.

virtual int check modem () This method is at the core of the
“check-modem” process. It is called
periodically to verify if something has
been received or is going to be received
from the channel. This function returns
a flag on the status of the modem.

virtual void startTx (Packet* p) Function to start packet transmission

virtual void endTx (Packet* p) Function to call after the end of the
packet transmission to notify the MAC
layer about the end of a given transmis-
sion

virtual void startRx (Packet*
p)

Start reception of a packet. It also
sends to the above layers (MAC) the
notification of such event

virtual void endRx (Packet* p) End packet reception and send it to the
MAC layer.

25

Table 6: Main functions of UWMcodec

public
void setConnections (UWM-
driver*)

this function must be used by any
derived class to link the pointer to
UWMdriver of UWcodec to the corre-
sponding derived objects contained in
the object pointed by the pointer to
UWMphy modem

virtual void map HtoM
(Packet* p)

function to code legal NS-Miracle pack-
ets into legal modem packets.

virtual void demap MtoH () function to decode received acoustic
packets into NS-Miracle packets.

6.2 UWMcodec

UWMcodec is in charge of coding the NS-Miracle packet into a legal modem
payload and it does the reverse operation. This base class contains a pointer
to the main class UWMPhy modem to access the ns2 packet to send, it is also
connected with an UWMdriver object that is in charge of notify the occurrence
of a new incoming packet.

The actual procedure of mapping and de-mapping NS-Miracle packets is left
to the developer, as it is hardware dependent. The approach we adopted for our
field test is explained in Section 5. The main methods of UWMcodec are listed
in Table 6.

6.3 UWMdriver

This class is needed by UWMPhy modem to handle the different transmissions cases
and corresponding protocol messages to be generated according to the tcl-user
choices and modem firmware, respectively. This class define the state machine
of Figure 4 and every derived class must respect these transitions.

The main methods of UWMdriver are listed in Table 7.

Table 7: Main functions of UWMdriver

public
virtual void modemTx () Function to notify to the driver that

there is a packet to be sent via modem.
When this function is called, the status
must be set to TX

26

virtual int updateStatus () Function to update modem status.
This function has to update the mo-
dem status according to the mes-
sages received from the modem/channel
(e.g., after the check on the output of
UWMconnector). It may return after
an arbitrary period if nothing has hap-
pened, but it must return immediately
after a status change

protected
void setConnections
(UWMinterpreter*, UWM-
connector*)

Link connector. This function must
be used by a derived class D to link
the pointer to UWMinterpreter and the
pointer to UWMconnector of UWMdriver
to the corresponding derived objects
contained in D

virtual void modemTxMan-
ager ()

Function to manage modem to host
and host to modem communications.
This function has to handle the differ-
ent transmissions cases and correspond-
ing protocol messages to be generated
according to the tcl-user choices and
modem firmware, respectively

6.4 UWMinterpeter

UWMinterpreter is the link between the UWMdriver and the acoustic modem
since it creates/parses strings for/from the modem.

This class does not declare any virtual function, in fact the communication
between host and modems is strictly dependent on the modem in use. It is
free to be filled with the device-dependent algorithms to parse/create messages
from/to the modem.

6.5 UWMconnector

The class needed by UWMPhy modem to handle the physical connection be-
tween NS-Miracle and a real acoustic modem device. Its main methods are
listed in Table 8.

Table 8: Main functions of UWMconnector

public
virtual int openConnection () Method to open the connection with

the modem. It uses the pathToDevice

variable that is set from OTcl scripts.

int writeToModem
(std::string)

Method for writing to the modem. It
return the number of transmitted bytes.

27

std::string readFromModem
()

Method to check the reading buffer.

7 Interface’s specialization: the FSK Micromo-
dem case

This module works with the FSK version of Micromodem, the classes described
below inherit from the classes introduced in the previous section. The logic
division of tasks leads us to revisit the module composition shown in Figure 3
as in Figure 5 (with a detail in Figure 6) and we explain below how the blocks
are specialized and connected.

7.1 mFSK WHOI MM

mFSK WHOI MM inherits from UWMPhy modem and it is the main class to implement
the interface between NS-Miracle and the FSK WHOI Micromodem as it con-
tains the shadowing code to load the module in the OTcl domanin. This class
also defines all the missing linkage in Figure 3 in accordance with the specific
modules that must be used (see below). To include the module in your OTcl
scripts write:

set phy [new Module/UW/MPhy_modem/FSK_WHOI_MM serialPath]

where serialPath is the path to the serial port in use (e.g. /dev/ttyUSB0).

7.2 mcodecFSK WHOI MM

mcodecFSK WHOI MM inherits form UWMcodec and receives from mFSK WHOI MM the
ns2 packet to be sent and it codes it into a legal NMEA payload. Depending
on the setting in use (emulation or testbed), this class returns a different string
has to be used as payload for the NMEA message to send to the modem.

7.3 mdriverFSK WHOI MM

This class extends UWMdriver (see section 6.3) and defines methods and state
machines necessary for the right control of the messages exchanged with the
modem. The driver respects the state machines shown in Figure 4 and it uses
two other state machines to follow the particular sending/receiving protocol
related to the modem in use /e.g., NMEA standard). In figure 7 and 8 those
two state machines are shown: the links’ labels report to the NMEA messages
that trigger that particular transition and the states’ labels are explained in
table 9

7.4 minterpreterNMEA

The interpreter inherits from UWMinterpreter and contains methods (called by
mdriverFSK WHOI MM) in charge of composing and parsing the NMEA sentences
exchanged between host and modem, according to the NMEA 0183 standard

28

CheckTmr_ mFSK_WHOI_MM

mdriverFSK_WHOI_MM

minterpreterNMEA mserial

mcodecFSK_WHOI_MM

Figure 5: mFSK WHOI MM

MFSK_WHOI_MM

UWMPhy_modem

UWMdriver

pmModem

CheckTimer

pmModem

UWMcodec

pmModem

pmDriver

UWMconnector

pmDriver

UWMinterpreter

pmDriver pmDriver

MdriverFSK_WHOI_MM

pmConnector

Mserial

pmInterpreter

MinterpreterNMEAcheckTmr

pcheckTmr

pmCodec

McodecFSK_WHOI_MM

mDriver

mInterpreter mConnector

mCodec

Figure 6: mFSK WHOI MM class hierarchy and pointers

29

MP MPS MPRIDLE

UWMPhy_modem::modemTx()

CCMUC CAMUC MPST MPETCATXP CATXF

CAXST

Figure 7: Transmission state machine implemented in mdriverFSK

RXS RXMPIDLE CADQF CAMUA

CACST

Figure 8: Reception state machine implemented in mdriverFSK

(see section 4.1). We remind a simple rule to understand the direction of the
messages:

$CC* host to modem
$CA* modem to host

For example, the messages listed below occur in the transmission/reception
of a packet and they need to be created/parsed:

• To configure WHOI Micromodem’s parameters :
$CCCFG,NNN,vv∗CS

NNN Name of parameter to set
vv Value of parameter
CS Hex coded checksum (8 bit XOR of sentence). Optional.

• Cycle Init message, it is sent before the binary data packet:
$CCCYC,CMD,ADR1,ADR2,Packet Type,ACK,Npkt∗CS

30

Table 9: State machine labels

Transmission
MP Send minipacket
MPS Minipacket sent to modem
MPR Minipacket received by the modem
MPST Start minipacket transmission
MPET End minipacket transmission
Reception
RXS Incoming packet notified
RXMP Reception of a minipacket

CMD Name of parameter to set
ADR1 Source
ADR2 Destination
Packet Type Packet type:

– 0 80bps (FH-FSK)

– 1 250 bps 1/31 spreading

– 2 500 bps 1/15 spreading

– 3 1200 bps 1/7 spreading

– 4 1300 bps 1/6 rate block code

– 5 5300 bps 9/14 rate block code

ACK Deprecated. Use either 0 or 1.
Npkt Number of frames to send in packet
CS Hex coded checksum (8 bit XOR of sentence). Optional.

• Send a binary data packet:
$CCTXD,SRC,DEST,ACK,HH. . .H∗CS

SRC Source (4bits)
DST Dest (4bits)
ACK Packet Acknowledgement
HH. . .H Hex coded data bytes, 2 characters each, e.g. 00-FF.
CS Hex coded checksum (8 bit XOR of sentence). Optional.

• Send a Minipacket :
$CCMUC,SRC,DST,BHHH∗CS

SRC Source (4bits)
DST Dest (4bits)
BHHH ASCII coded hex data (2 hex values). Value in the range

of 0 to 1FFF are legal
CS Hex coded checksum (8 bit XOR of sentence). Optional.

• Modem reports Cycle Init reception:
$CACYC,CMD,ADR1,ADR2,Packet Type,ACK,Npkt∗CS
(see CCCYC)

31

• Minipacket acoustically received:
$CAMUA,SRC,DST,HHHH∗CS
(see CCMUC)

• Modem reports received data in binary format:
$CARXD,SRC,DST,ACK,F#,HH. . .H∗CS

SRC Source
DST Destination
ACK ACK bit set by transmitter (0 or 1)
F# Frame number
BHHH Hex coded data bytes (2 hex value each), e.g. 00-FF to

represent nummbers from 0 to 255.
CS Hex coded checksum (8 bit XOR of sentence).

7.5 mserial

This class inherits from UWMconnector, and it allows the host to communicate
with a corresponding connected modem via serial connection. According to the
WHOI Micromodem’s specifications, the parameters of the serial connection
are:

Bits per second 19200bps
Data bits 8
Parity none
Stop bits 1
Flow control none

Actually, the bit rate could be increased up to 115200bps, but this would
require to change the corresponding modem’s setting.

mserial starts a connection by opening the serial port file and by properly
setting the termios parameters. At the same time, a parallel reading thread is
started using pthreads: this thread is in charge to read new strings from modem
to host, it uses continuously the read method and it saves the incoming strings
into a dedicated file (which acts as a buffer). That buffer is checked periodically
(ns2 handles the whole scheduling) by the UWMPhy modem base class.

To write to the modem is even simpler, as mserial uses the write termios
method. The string to send trough the serial port is the output of the interpreter
(NMEA legal sentence) to which are added the terminators ′\r′,′ \n′ and ′\0′

Once the connection is closed, mserial handles the closure of the RS-232
communication resetting termios parameters.

8 Interface specialization: the PSK Micromo-
dem case

mPSK WHOI MM inherits from UWMPhy modem and it is meant to be used with the
PSK version of WHOI Micromodem. The PSK module is slightly different from
the FSK one, therefore we created a different NS-Miracle object, that is loadable
in Otcl scripts with the following command:

32

MPSK_WHOI_MM

UWMPhy_modem

UWMdriver

pmModem

CheckTimer

pmModem

UWMcodec

pmModem

pmDriver

UWMconnector

pmDriver

UWMinterpreter

pmDriverpmDriver

MdriverPSK_WHOI_MM

pmConnector

Mserial

pmInterpreter

MinterpreterNMEAcheckTmr

pcheckTmr

pmCodec

McodecPSK_WHOI_MM

mCodec

mDriver

mInterpreter mConnector

Figure 9: mPSK WHOI MM class hierarchy and pointers

set phy [new Module/UW/MPhy_modem/PSK_WHOI_MM serialPath]

where serialPath has the same role as in the FSK module.

8.1 mcodecPSK WHOI MM

This class inherits from UWMcodec and it works differently than mcodecFSK WHOI MM.
First, we choose to use only the binary data packet to exploit the larger pay-
load, second, the payload is composed serializing all the headers of the modules
needed by the tested protocol. The routine implemented for such serialization
is as follow:

char ∗ x;
std :: stringstream str;
hdr h = header;
x = (char∗)h;
for i = 0 → sizeof(h)− 1 do

for k = 7 → 0 do
if ∗(x+ i)&(1 ≪ k) then

str ≪ 1
else

str ≪ 0
end if

end for
end for

The algorithm works in this way:

33

00101101

11001001

10011011

11100101

Header pointer

00101101 11001001 10011011 11100101String:

0010 1101 1100 1001 1001 1011 1110 0101

3 D C 9 9 B E 5

Hex conversion

Figure 10: Header serialization procedure

• h is a pointer to a header (hdr), e.g., the header we want to include in the
payload;

• the pointer h is casted to a char pointer;

• the bitwise operation inside the inner for cycle is responsible for the
serialization process: it reads; the char pointed by x + i from the most
significant bit to the last significant one and it appends these bits to the
stringstream str.

The result of this operation is a binary string containing a copy of the mem-
ory area where a given header is saved, then the string is hex encoded in order
to create a legal payload for the $CCTXD NMEA string (see Figure 10). The
serialization is performed for every header that must be sent to the receiver for
the overall success of the transmission.

On the receiver side, the operation is quite the opposite. After the conversion
from hex to binary data, the node allocates a new packet with uninitialized
headers, then the following algorithm is called:

34

char∗ x;
hdr h = header;
x = (∗char)h;
for i = 0 → sizeof(h)− 1 do

j = 0
for k = 0 → 7 do

h = received string[8 ∗ i+ k] == 1?1 : 0
j+ = h ≪ (7− k)

end for
∗(x+ i) = j

end for

The algorithm’s target is to fill a header with the informations received in
the packet’s payload. It works in as follow:

• it reads from the received string groups of eight characters, where each
one of them is interpreted as a bit;

• the first bit of the group is the most significant one and accordign to this
order we recover the corresponding char;

• these reconstructed chars are written in the memory starting from the
first memory address of the header, till the end of it;

• this operation will overwrite the header’s memory area with the acousti-
cally received bits.

8.2 mdriverPSK WHOI MM

mdriverPSK WHOI MM class inherits from UWMdriver and it respects the state
machine shown in Figure 4. Moreover, to manage the transmission/reception
of WHOI Micromodem binary data packet, we implemented two other state ma-
chines shown in Figure 11 and 12. The main difference with mdriverFSK WHOI MM

is that these two state machines have a loop: in fact, the informations sent with
a binary data packet could be split into frames and those loops regard the send-
ing/receiving of multiple frames. The cycle BIN → BINS → BINR → BIN . . .
(whose labels are explained in Table 10) persists until mPSK WHOI MM runs out
of frames to send, meanwhile the cycle RXBIN → RXBIN . . . stops when it
gets a number of frames equal to the one declared by the antecedent Cicle Init
(supposing that no errors occur).

8.3 minterpreterNMEA

This class is the same for the FSK and PSK WHOI Micromodem, since both
hardwares use the same kind of messages (see Section 7.4).

8.4 mserial

This class is the same for the FSK and PSK WHOI Micromodem, since both
hardwares are connected to host via serial connection (see Section 7.5).

35

CINIT CINITS CINITR BIN

BINSBINSRBINSTBINET

IDLE

modemTx()

CCCYC CACYC CADRQ

CCTXD

CATXDCATXPCATXF

CADRQ

CAXST

Figure 11: State machine implemented for the transmission of binary data

RXS RXCINIT RXBINIDLE CARXD CACYC CARXD

CACST

CARXD

Figure 12: State machine implemented for the reception of binary data

Transmission
CINIT Send cycle init
CINITS Cycle init request sent to modem
CINITR Cycle init request received by the mo-

dem
BIN Free to send binary data
BINS Binary data sent to modem
BINSR Binary data received by the modem
BINST Start binary data transmission
BINET End binary data transmission
Reception
RXS acoustic signal reception detected
RXCINIT reception of cycle init message
RXBIN reception of binary data message

Table 10: State machine labels

36

9 Goby Software

The Goby Underwater Autonomy Project is a software developed by Toby
Schneider from MIT [32] and it aims at creating a unified framework for multi-
ple scientific autonomous marine vehicle collaboration, seamlessly incorporating
acoustic, ethernet, wifi, and serial communications. Presently the main thrust
of the project is developing a set of robust acoustic networking libraries, in-
cluding the Dynamic Compact Control Language (DCCL) and relies on simple
extensions to Google Protocol Buffers. The advantage of using this framework
to interface the modem with the simulator is that the code to communicate with
the modem is already available and simplifies considerably our module. A first
temptation of interfacing NS-Miracle with the WHOI’s hardware using Goby
has been done without inheriting from UWMPhy modem (since this latter was not
already fully defined), therefore a first beta version of our interface including
Goby exists, it is called GobyModule and is composed of a single class (it is still
a beta version). It was used mainly with the develop box (a small box devel-
oped by WHOI for testing purpose containing two modems [37]) to get familiar
with the interaction between the network simulator and the PSK WHOI Mi-
cromodem. Future work on this module include the code reformatting of this
beta version to follow the logic structure of UWMPhy modem and testing it in
a testbed setting

The user should prefer Goby if the overall system already uses it (that means
it is already installed) or if future improvements require the physical module to
interact with other devices that use Goby’s framework.

To load the module, write in the OTcl script:

set phy [new Module/UW/GobyModule serialPath]

where serialPath is the path of the serial port in use (e.g. /dev/ttyUSB0).

In transmission, the module receives a packet from above (e.g. MAC layer),
formats it into an NMEA string, sends the string through the serial port. In
reception, this module keeps checking the serial for an incoming packet, once
received it parses the payload and allocate a new packet filled with the received
informations and it sends it up to the MAC module.

Goby manages the composition of the NMEA message and uses its own
state machine to interact with the modem, that is going through the sequence
of messages listed in Table 2 and 3, both in transmission and reception.

The rest of the code regards the mapping and demapping of the packet as
well as the splitting in multiple frames, that is the same as we described for the
previous modules.

Part III

Tests and conclusions

In order to test the implemented interface and its good functioning, in collab-
oration with WHOI, we have conducted a series of field tests detailed in this
Part.

37

Table 11: Stacks protocols used during the sea-tests

Stack 1 Stack 2

CBR CBR
UDP UDP

StaticRouting
IP IP

MLL MLL
CSMA-ALOHA CSMA-ALOHA

mPSK WHOI MM mPSK WHOI MM

10 Network protocols and metrics

Let us define 2 network stacks (see Table 11), each useful to check different
aspects of the correctness of our work.

Stack 1 is composed of an application layer (CBR) that generates packets
with a constant bit rate, an UDP transport layer, an IP interface, a media
link layer protocol (MLL), a CSMA MAC layer and the interface module we
developed for the PSK Micromodem. Stack 2 adds the static routing module,
useful for multi-hop network topologies. The first stack has been chosen to:

• check the hardware and the operating system in use;

• to test the interface between NS2 and Micromodem (PSK) in a point-to-
point communication;

• to verify the correctness (and right tuning) of MAC protocols in point-to-
point communications;

• to evaluate the benefits of carrier sensing when both the senders want to
transmit.

Stack 2, instead, has been adopted to test the behaviour of multi-hop under-
water networks. In this case the routing is static such as we can force certain
routes inside the network (see Section 13).

In both cases the considered metrics at the application level are:

• Packet Loss [%] :

Σpacketlost
Σpacketrecv +Σpacketlost

• Delivery Delay [s] : end-to-end delay, it is the difference between the arrival
time and the sending time (it considers the HW/SW delays too)

Arrivaltime− Sendingtime

• Throughput [bps] (normalized by hop count): Correctly received bits, nor-
malized to real packets transmission time (seconds).

Σbytesok
Σdelayi

• Mean number of retransmissions for every packet sent (since CSMA-ALOHA
has been running with an automatic retransmission request mechanism).

38

Gumstix

Modem

Trasducer

MicroModem Coprocessor

NS2

UWMPHY_Modem

Power amplifier /

Preamplifier

Figure 13: Software and Hardware scheme of the physical node

11 Hardware and Software

We have built 7 nodes which are very small and easy to deploy by hand, for
example by suspending them from a dock or other existing infrastructure. Each
node includes a WHOI Micromodem [20] with its floating-point coprocessor
board to allow PSK packet reception, as well as an optional multi-channel receive
array to improve PSK receive performance. The transducer center frequency is
nominally 25kHz with 5kHz bandwidth. Burst data rates range from 80bps
to 5400bps. The power amplifier is a low-power (150dBre : 1µPa@1m) linear
power amplifier (maximum link ranges on the order of 500 − 1000m) to allow
multi-hop networks to be deployed in a relatively small physical area and to
increase deployment duration with the limited batteries in a small pressure
housing. The pressure housings are rated to 100m. The deployment duration
is on the order of 100-200 hours, depending on the network’s offered load and
node settings.

In each testbed node, the Micromodem is controlled by a Gumstix

39

Figure 14: Picture of the 7 nodes

(http://gumstix.com) embedded computer running Emdebian (embedded ver-
sion of the operating system Debian). The Gumstix has been chosen due to the
low power consumption (1.4-2.5 Watts), the well known programming of the
expansion board (widely used at WHOI) and the network capabilities (ether-
net and 802.11). On the other hand, Emdebian offers the ease of deb packages
installation, but it lacks of online support and we experienced some network
problems. We set up a wifi connection with the nodes when out of water, such
that the embedded systems are accessible through a SSH connection. The hard-
ware runs flawlessly NS-Miracle simulator, and, we execute the tests listed below
with the usage of cron (a time-based job scheduler in Unix-like computers . At
the end of the tests, once the nodes are recovered, the collected tracefiles (the
output of NS-Miracle) could be copied to a PC both using wifi or removing the
SD cards from the Gumstix.

12 Location

The testbed has been deployed mainly around the dock behind WHOI’s Smith
Laboratory (41◦31’27.5”N, 70◦40’15.5”W), for security reasons. In Figure 16
the positions of the nodes are marked.

Even if the area is small, the shallow water, the concrete dock and piles and
occasional obstacle like docked ships, make the communication challenging.

As mentioned above, the nodes are equipped with a WiFi antenna, that
makes the access to the Gumstix immediate with the constrain that the hard-
ware must be out of water. The nodes’ plastic housing is almost irrelevant in
terms of attenuation, so that the range is high enough to allow the user to SSH
them without moving around the dock.

40

Figure 15: Position of the nodes in the testbed deployed at WHOI

Figure 16: Picture of the dock where we deployed the nodes

41

13 Network topologies and experiments descrip-
tion

NOTE: see legend in Figure 17.

Figure 17: Network topologies legend

Test 1 The topology in Figure 18 uses stack 1. It is useful to discover any software
bugs and it is really fast to implement and run it.

UWCBR

3

UWCBR

2

Figure 18: Test 1: single hop

Test 2 Figure 19 represents a classic scenario where the MAC layer is stressed:
nodes 3 and 5 start sending packets at the same time in order to congest

42

the channel, while the CSMA-ALOHA is exploit to reduce the packet
losses. Stack 1 is used also in this test.

UWCBR

UWIP

3

UWCBR

UWIP

UWCBR

4

UWCBR

UWIP

5

Figure 19: Test 2: simple MAC test

Test 3 To stress even more the MAC module, we test it in a network deployed as
in Figure 20, where multiple nodes are connected in a single hop fashion
and transmit simultaneously. Stack 1 is used.

UWCBR

UWIP

UWCBR

UWIP UWIP

UWCBR

UWIP

UWCBR UWCBR

UWIP

UW

CBR

UW

CBR

UW

CBR

UW

CBR

UW

CBR

UW

CBR

2 3 4 5 6 71

UWCBR

UWIP

UWCBR

UWIP

UW

CBR

UW

CBR

UW

CBR

Figure 20: Test 3: MAC stress test

Test 4 The linear topology shown in figure 22 is meant to send packet back and
forth between the ends of the network (node 1 and 7 exploit multi-hop
transmissions): this kind of test reflects one of the most common scenarios
in UW networks, where the nodes are placed along a line (e.g. a pipe) to
reach further point of interest, out of the transducer range. This test uses
stack 2 and is preceded by a check on every link (depicted in Figure 21).

Test 5 We also split the network in two clusters of nodes (stack 2), both sending
at the same destination (figure 23). Likely the previous test, this is a very
common network as the sink can be one only and there may be multiple
areas monitor, each one with its own devices.

Test 6 With two clusters and two sinks, we also tested a scenario with an over-
lapping area that involves some collisions and packet losses. Nodes use
stack 2. See figure 24.

43

UWCBR

UWIP

UWCBR UWCBR

UWIP

UWCBR UWCBR

UWIP

UWCBR UWCBR

UWIP

UWCBR UWCBR

UWIP

UWCBR UWCBR

UWIP

UWCBR

UWIP

1 2 3 4 5 6 7

Figure 21: Test 4a: sanity chech

UWCBR

UWIP

UWCBR

UWIP

1 7

UWCBR

UWIP

2

UWCBR

UWIP

3

UWCBR

UWIP

4

UWCBR

UWIP

5

UWCBR

UWIP

6

Figure 22: Test 4b: linear topology

UWCBR

UWIP

UWCBR

UWIP

1 7

UWCBR

UWIP

2

UWCBR

UWIP

3

UWIP

4

UWCBR

UWIP

5

UWCBR

UWIP

6

Figure 23: Test 5: two clusters, one sink

UWCBR

UWIP

UWCBR

UWIP

1

7

UWCBR

UWIP

2

UWCBR

UWIP

3

UWIP

4

UWCBR

UWIP

5

UWCBR

UWIP

6

UWCBR

Figure 24: Test 6: two clusters, two sinks. With overlapping area.

14 Results

Before proceeding further, we list some considerations about the tests we
performed:

44

Table 12: Module/UW/MMac/CSMA parameters

listen time 3
ACK timeout 10
max tx tries 5
wait costant 7

Table 13: Test 1 results

PER (%) 0
Mean delay (s) 14,1
Mean throughput (bps) 327.35
Mean number of rtx 2

– we needed several tries before getting satisfying results. MAC mod-
ule’s parameters largely affect the results and system performances,
as it is the only one that introduces delays comparable with the
transmission time;

– the main problem we faced is the channel access, because of the
channel proprieties introduced in Section 1. Even if the network is
not extended over a big area, the transmission time has a big overhead
(time wise speaking), and this makes necessary to introduce long time
guards to avoid collisions;

– the binary data packet type is suitable for large payloads, theoret-
ically it has a high baud rate, but the transmission needs a long
waiting time to listen to the channel and MAC module expects an
acknowledgement (ACK) (that is sent without any channel sensing);

– one packet transmission time (send plus ACK) with the CSMA pa-
rameter in 12 is about 12 seconds with packet rate 4 (1300bps) and
8 seconds with packet rate 5 (5300bps);

– we decided to keep the acknowledgement on because of the potential
errors and interferences, so the packets that run across the network
duplicate.

In the next section we present the numerical results obtained in our sea-
tests.

14.1 Packet loss, delay, throughput, retransmissions

14.1.1 Test 1

For the first test we reduce the CSMA waiting time to 4 seconds (the
same value is used in test 2), because there are just few packets to be
sent. Table 13 summarize values recorded for the considered metrics.

We noticed that, since the receiver is deeper than the transmitter, the
transmission works better “downhill” (from shallow to deep water) than
“uphill”, and for this reason the network looses more ACKs than packets.

45

Table 14: Test 2 results

Sender (nodeID) 3 5
PER (%) 0 0.16
Mean delay (s) 41.8 39
Mean throughput (bps) 223 374
Mean number of rtx 1.43 2.66

14.1.2 Test 2

This test tries to repeat the hidden terminal scenario. The CSMA we
use does not implement the RTS/CTS protocol, so we rely to the backoff
times in case of packet loss. The results are reported in Table 14.

As with the first test, we notice that the acknowledgements suffer more
than the packets.

14.1.3 Test 3

This critical test shows that it is possible to arrange a quite successful
transmission paying in terms of low throughput and high delays.

We report the results in Table 15, 16, 17 and 18.

FROM/TO 1 2 3 4 5 6 7
1 0.05 0.25
2 0.07 0.15
3 0.08 0 0.27
4 0.27 0.3 1
5 0.66 0.16
6 1 0 0
7 0.26

Table 15: Test 3: Packet error rate (%)

FROM/TO 1 2 3 4 5 6 7
1 14.17 40.86
2 8.84 27.12
3 22.27 12.45 27.87
4 85.62 47.14 ∞
5 15.67 36.10
6 ∞ 22.78 19.06
7 23.76

Table 16: Test 3: Mean delivery delay (s)

46

FROM/TO 1 2 3 4 5 6 7
1 494 358
2 302 257
3 242 415 270
4 139 108 0
5 116 237
6 0 326 363
7 229

Table 17: Test 3: Mean throughput (bps)

FROM/TO 1 2 3 4 5 6 7
1 2.66 2.4
2 2.57 2.5
3 2.41 2.45 2.73
4 2.82 2.7 3
5 2 2.58
6 3 2.11 1.66
7 2.17

Table 18: Test 3: Mean number of transmissions

14.1.4 Test 4

We found that the main issue with linear topology is to have all the links
working, in fact nodes were not able to transfer a packet successfully
between node 1 and 7. The scenario, even if the distances are really
small, is challenging, and the link between two nodes is not always good
as expected. The SNR is high enough to make us believe that the problem
relies mainly on shallow water and shadows areas.

14.1.5 Test 5

The numerical results are shown in Table 26, 27 and 28. This test reported
the same problems as Test 4, in particular the link 5 → 4 was broken.

FROM/TO 1 2 3 4 5 6 7
1 0
2 0 0.4
3 0 0.16
4 0.08 1
5 1 0.36
6 0 0
7 0

Table 19: Test 4a: Packet error rate (%)

47

FROM/TO 1 2 3 4 5 6 7
1 9
2 17.42 13.66
3 8.15 11.66
4 9.91 ∞
5 ∞ 16.78
6 6.64 6.5
7 12.76

Table 20: Test 4a: Mean delivery delay (s)

FROM/TO 1 2 3 4 5 6 7
1 574
2 259 202
3 429 323
4 388 0
5 0 228
6 436 446
7 370

Table 21: Test 4a: Mean throughput (bps)

FROM/TO 1 2 3 4 5 6 7
1 1.21
2 1.28 1.93
3 1.47 1.61
4 1.33 2
5 2 1.42
6 2 1.1
7 1.35

Table 22: Test 4a: Mean number of transmissions

FROM/TO 1 2 3 4 5 6 7
1 0.02 0.73 0.73 0.87 1 1
2
3
4
5
6
7 1 1 1 1 0 0

Table 23: Test 4b: Packet error rate (%)

48

FROM/TO 1 2 3 4 5 6 7
1 25 109 117 128 ∞ ∞
2
3
4
5
6
7 ∞ ∞ ∞ ∞ 15 8

Table 24: Test 4b: Mean delivery delay (s)

FROM/TO 1 2 3 4 5 6 7
1 113 34 34 34 0 0
2
3
4
5
6
7 0 0 0 0 360 360

Table 25: Test 4b: Mean throughput (bps)

FROM/TO 1 2 3 4 5 6 7
1 0.38 0.67 0.87
2
3
4
5
6
7 1 0.67 0.42

Table 26: Test 5: Packet error rate (%)

FROM/TO 1 2 3 4 5 6 7
1 17 72 165
2
3
4
5
6
7 ∞ 60.7 24.1

Table 27: Test 5: Mean delivery delay (s)

49

FROM/TO 1 2 3 4 5 6 7
1 351 186 186
2
3
4
5
6
7 0 227 271

Table 28: Test 5: Mean throughput (bps)

14.1.6 Test 6

This test highlights, as expected, that the packet loss is really high in
correspondence of the area where the two clusters overlay (see Tables 29
to 31.

FROM/TO 1 2 3 4 5 6 7
1 0.6 0.94 0.95
2
3
4
5
6
7 0.99 0.99 0.97 0.14

Table 29: Test 6: Packet error rate (%)

FROM/TO 1 2 3 4 5 6 7
1 39 151 175
2
3
4
5
6
7 168 79 72 24

Table 30: Test 6: Mean delivery delay (s)

15 Final considerations

The interface we developed showed a high usability and ease of implemen-
tation of new modules, as well as correct operation through field experi-
ments.

The nodes in use has proven to have some software problems related to
EmDebian:

50

FROM/TO 1 2 3 4 5 6 7
1 80 80 80
2
3
4
5
6
7 154 261 261 261

Table 31: Test 6: Mean throughput (bps)

– because of the lack of drivers (e.g. ethernet and real time clock), some
random crashes totally compromised several testing sessions. In fact,
there is no real time clock (RTC) on the board, therefore they get
the time from the network on every boot through wifi connection.
Of course, when deployed there is no wifi and in case of crash the
nodes set the date randomly. Even backing up RTC with a battery,
the kernel does not load the driver correctly, and the only clock in
use is the linux’s one;

– the linux’s clock has a huge drift. Initially the longest tests were
affected by this problem (collecting the data from multiple nodes, we
notices some timestamps of received packets to precede the sending
time of the same packet), so we had to run tests for a shorter period
of time and re-sync the clock before new ones;

The testbed setup is relatively quick and, thanks to the wireless connec-
tion, it is possible to program the nodes without opening the housing (this
speeds up a lot the preparation of the hardware). Furthermore, the energy
consumption of the Gumstixs is really acceptable, giving the possibility to
run tests for 72 hours (with a sending rate of 4 packets per minute). As
expected, the main problem relies on the position and depth of the nodes,
because it is easy to erroneously deploy a node in a shadow area.

The future work on our module regards the improvement of the payload
creation (shrinking its size) and an improved coding on 13 bits for Mini-
packet’s payload. Moreover, the hardware requires a better clock manage-
ment and a better understanding of the causes of the random crashes we
experienced.

The performed sea-tests allow us to to assess the feasibility of the imple-
mented interface for network prototyping. These tests allow us to suc-
cessfully perform single-hop as well as multi-hop transmissions using the
same code implemented in NS-Miracle for simulation purposes. We believe
that this work along with its future development, represent a fundamental
step for the study of effective underwater network protocols, moving from
simulations to the real world.

51

References

[1] J. Heidemann A. A. Syed W. Ye. T-Lohi: A new class of mac proto-
cols for underwater acoustic sensor networks. Technical report ISI-
TR-638. 2007.

[2] ALOHA MAC. Last time accessed: March 2012. url: http://en.w
ikipedia.org/wiki/ALOHAnet#The_ALOHA_protocol.

[3] AUV Laboratory at MIT Sea Grant, Available from. Last time ac-
cessed: March 2012. url: http://auvlab.mit.edu/.

[4] M. Stojanovic B. Peleato. “Distance aware collision avoidance pro-
tocol for ad-hoc underwater acoustic sensor networks”. In: IEEE
Communication Letters 11.12 (2007), pp. 1025–1027.

[5] J. Shusta C. Petrioli R. Petroccia and L. Freitag. “From underwater
simulation to at-sea testing using the ns-2 network simulator”. In:
OES/IEEE OCEAN 2011 (2011).

[6] Carrier sense multiple access MAC. Last time accessed: March 2012.
url: http://en.wikipedia.org/wiki/Carrier_sense_multipl
e_access.

[7] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC Editor, 2003.

[8] J. Broch D.B. Johnson D.A. Maltz. DSR: The dynamic source rout-
ing protocol for multi-hop wireless ad hoc networks. Addison-Wesley,
2001.

[9] DPSK modulation. Last time accessed: March 2012. url: http :
//en.wikipedia.org/wiki/Phase-shift_keying.

[10] Y. Dogan V. Coskun E. Cayirci H. Tezcan. Wireless sensor net-
works for underwater surveillance systems, Ad Hoc Networks. Else-
vier, 2006.

[11] Emdebian website. url: http://www.emdebian.org/.

[12] B. Davis G. Kennedy. Electronic Communication Systems. 4th ed.
McGraw-Hill International, 1992.

[13] J.H. Gibson G. Xie. “A network layer protocol for UANs to ad-
dress propagation delay induced performance limitations”. In: IEEE
OCEANS’01. Vol. 4. Honolulu, HI, 2001, pp. 2087–2094.

[14] Gumstix. Last time accessed: December 2011. url: http://www.gu
mstix.com/.

[15] John Heidemann et al. “Research Challenges and Applications for
Underwater Sensor Networking”. In: Proceedings of the IEEE Wire-
less Communications and Networking Conference. Las Vegas, Nevada,
USA, 2006.

[16] IEEE 802.11 RTS/CTS. Last time accessed: March 2012. url: htt
p://en.wikipedia.org/wiki/IEEE_802.11_RTS/CTS.

[17] Y. Sankarasubramaniam E. Cayirci I.F. Akyildiz W. Su. “Wireless
sensor networks: A survey”. In: Computer Networks 4.38 (2002),
pp. 393–422.

52

[18] M. Zorzi J. Heidemann M. Stojanovic. Underwater Sensor Networks:
Applications, Advances, and Challenges. Last time accessed: March
2012.

[19] M. Younis K. Akkaya. “A survey on routing protocols for wireless
sensor networks”. In: Ad Hoc Networks 3.3 (2005), pp. 325–349.

[20] J. Partan E. Gallimore S. Singh P. Koski L. Freitag K. Ball. Un-
derwater Acoustic Network Testbed. Wuwnet 2011 demo extended
abstract. 2011.

[21] E. Dutkiewicz M. Abolhasan T. Wysocki. “A review of routing pro-
tocols for mobile ad hoc networks”. In: Ad Hoc Networks 1.2 (2004),
pp. 1–22.

[22] F. Guerra M. Rossi M. Zorzi N. Baldo M. Miozzo. “Miracle: the
multi-interface cross-layer extension of ns2”. In: EURASIP J. Wirel.
Commun. Netw. 26 (2010), pp. 1–2.

[23] J. Ware C. Pontbriand M. Tivey N. Farr A. Bowen. “An integrated,
underwater optical/acoustic communications system”. In: OCEANS
2010 IEEE (2010), pp. 1–6.

[24] Network Simulator 2 website. Last time accessed: March 2012. url:
http://www.isi.edu/nsnam/ns/.

[25] S.M. Holt N.N. Soreide C.E. Woody. “Overview of ocean based
buoys and drifters: Present applications and future needs”. In: 16th
International Conference on Interactive Information and Processing
Systems (IIPS) for Meteorology, Oceanography, and Hydrology.

[26] Ocean Engineering at Florida Atlantic University. Last time ac-
cessed: March 2012. url: http://www.oe.fau.edu/research/
ams.html.

[27] OFDM modulation. Last time accessed: March 2012. url: http:
//en.wikipedia.org/wiki/Orthogonal_frequency-division_m

ultiplexing.

[28] Pandaboard. Last time accessed: December 2011. url: http://ww
w.pandaboard.org/.

[29] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Dis-
tance Vector (AODV) Routing. United States: RFC Editor, 2003.

[30] Charles E. Perkins and Pravin Bhagwat. “Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile computers”.
In: SIGCOMM Comput. Commun. Rev. 24.4 (1994), pp. 234–244.

[31] QAM modulation. Last time accessed: March 2012. url: http://e
n.wikipedia.org/wiki/Quadrature_amplitude_modulation.

[32] Toby Schneider. Gobysoft web page. Last time accessed: March 2012.
url: http://gobysoft.org/.

[33] Second field test for the AOSN program, Monterey Bay August 2003,
Available from. Last time accessed: March 2012. url: http://www.
mbari.org/aosn/MontereyBay2003/MontereyBay2003Default.ht

m.

53

[34] M. Stojanovic. Acoustic (underwater) communications: Encyclope-
dia of Telecommunications. Wiley, 2003.

[35] The Network Simulator - NS-Miracle. Last time accessed: March
2012. url: http://dgt.dei.unipd.it/download.

[36] The NMEA FAQ. Last time accessed: March 2012. url: http://w
ww.kh-gps.de/nmea.faq.

[37] WHOI. Micromodem develop box. Last time accessed: March 2012.
url: acomms.whoi.edu/umodem/documentation.html.

[38] Wikipedia web page. Last time accessed: March 2012. url: http:
//en.wikipedia.org/wiki/OSI_model.

54

THANKS

Thank you Jim Partan for being a fundamental guide during the whole
thesis, in particular for being patient, mindful, amazingly kind and for all
the support you gave me. Thanks also to Lee, Eric, Sandipa, Andrew,
Peter and Keenan, great workers, respectable and respectful people.

Thank you Riccardo Masiero, helpful project colleague, firm correlator
and pleasant friend.

Thanks to Michele Zorzi and Paolo Casari for making a big dream come
true and for the trust given to me. Living in the US made me a little more
mature and made me understand some fundamental aspects of life.

Thank you Mattia for the time we spent together in Padua, for being
always a close friend and forbearing house mate. It is exciting to share
part of my life with a trusted friend.

Thanks to Fabio, Riccardo, Paolo, Marco, Nicola, Eleonora and Chiara,
amazing class mates and new friends. Thank you for the time we spent
together, the lunches and dinners and the laughter.

Thank you family, Romana, uncles, for being always close and for sup-
porting my job and dreams. Thank you for having raised me as I am and
to urge to follow my wishes.

Thanks to Topper, for the never ending chats about life and feelings, for
the regattas and the time we spent anchored with the Strega. Downwind
to you, always.

Last but not least, thank you infinitely Laura, enviable girlfriend, for being
always part of my life even from the other side of the world, for believing
in me and for your s smiles during these past months and the ones yet to
come.

55

