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Abstract

Per essere competitive nel mercato, le industrie di semiconduttori devono poter
raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi
legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo
della qualità che preveda la misurazione completa del prodotto non è attuabile;
i test sono effettuati su un ristretto campione dei dati originali. Il traguardo del
presente lavoro di Tesi è lo studio e l’implementazione, attraverso metodologie
di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual
Metrology) d’ausilio al controllo di processo nella produzione di semiconduttori.
Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure
virtuali) può rappresentare un primo passo verso la costruzione di sistemi di
controllo di processo e controllo della qualità sempre più raffinati ed efficienti. Da
un punto di vista operativo, l’obiettivo è fornire la più accurata stima possibile
delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili
(includendo misurazioni da fasi di litografia e deposizione e dati di processo - ove
disponibili). Le tecniche statistiche allo stato dell’arte analizzate in questo lavoro
comprendono:

• multilayer feed-forward networks;

Confronto e validazione degli algoritmi presi in esame sono stati possibili gra-
zie ai dataset forniti da un’industria di semiconduttori nell’ambito della conti-
nuazione del progetto ENIAC EU-IMPROVE (WP2). In conclusione, questo
lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di
controllo di processo e controllo della qualità evoluto e flessibile, che abbia il fine
ultimo di migliorare la qualità della produzione.

vii



viii



Contents

Abstract vii

List of figures xiii

List of tables xv

Introduction 1

1 The Semiconductor Manufacturing Process 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Wafers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Front-end processing . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Gate oxide and implants . . . . . . . . . . . . . . . . . . . 11
1.5 Back-end processing . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Metal layers . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Other steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 Wafer test and device test . . . . . . . . . . . . . . . . . . 13
1.6.2 Die preparation and packaging . . . . . . . . . . . . . . . . 13

1.7 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.1 Statistical Process Control - SPC . . . . . . . . . . . . . . 15
1.7.2 Advanced Process Control - APC . . . . . . . . . . . . . . 15
1.7.3 APC versus SPC . . . . . . . . . . . . . . . . . . . . . . . 15
1.7.4 Run-to-Run control . . . . . . . . . . . . . . . . . . . . . . 16

2 Virtual Metrology: a Survey 19
2.1 The Holy Grail of Metrology . . . . . . . . . . . . . . . . . . . . . 19
2.2 An introduction to the Virtual Metrology . . . . . . . . . . . . . . 20

2.2.1 VM in semiconductor manufacturing . . . . . . . . . . . . 21
2.2.2 VM module methodology for individual process . . . . . . 23

2.3 Variables Selection Techniques . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . 25
2.3.2 Correlation Methodology . . . . . . . . . . . . . . . . . . . 28
2.3.3 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . 28

ix



3 Artificial Neural Networks 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The biological model . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Activation functions . . . . . . . . . . . . . . . . . . . . . 35
3.4 A framework for distributed representation . . . . . . . . . . . . . 36

3.4.1 Processing units . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Neural network topologies . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Feed-forward neural networks . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Single layer networks . . . . . . . . . . . . . . . . . . . . . 38
3.6.2 Multilayer feed-forward networks . . . . . . . . . . . . . . 39

3.7 Learning and training of artificial neural networks . . . . . . . . . 40
3.7.1 Choosing a cost function . . . . . . . . . . . . . . . . . . . 40
3.7.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . 41
3.7.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . 42
3.7.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . 42

3.8 The back-propagation algorithm . . . . . . . . . . . . . . . . . . . 42
3.8.1 Learning algorithms . . . . . . . . . . . . . . . . . . . . . 42
3.8.2 The Delta rule . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.4 Back-propagation as gradient descent . . . . . . . . . . . . 45
3.8.5 Properties of the algorithm . . . . . . . . . . . . . . . . . . 46
3.8.6 Derivation with the chain rule . . . . . . . . . . . . . . . . 46
3.8.7 Derivation with Lagrange multipliers . . . . . . . . . . . . 47
3.8.8 Some issues in training neural networks . . . . . . . . . . . 48

4 Pre-Processing Results 51
4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Statistical modeling and analysis . . . . . . . . . . . . . . . . . . 54

4.2.1 Data modeling . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Process variables reduction . . . . . . . . . . . . . . . . . . 58
4.2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 Data correlation analysis . . . . . . . . . . . . . . . . . . . 63
4.2.5 Principal components analysis . . . . . . . . . . . . . . . . 65
4.2.6 Stepwise selection analysis . . . . . . . . . . . . . . . . . . 68
4.2.7 Comparison among selection techniques . . . . . . . . . . . 71

5 Experimental Modeling Results 73
5.1 NN for VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Levenberg-Marquardt Algorithm . . . . . . . . . . . . . . 75
5.1.2 Choosing number of hidden units and layers, and starting

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.3 Global model versus basis expansion approach . . . . . . . 85

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



6 Summary, Conclusions and Future Work 89
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

xi



xii



List of Figures

1.1 Czochralski growth process . . . . . . . . . . . . . . . . . . . . . . 6

1.2 CVD steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Schematic diagram of the optics of a projection exposure lithogra-
phy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Semiconductor machining process: inputs, outputs, variables and
disturbances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 R2R control in semiconductor manufacturing. . . . . . . . . . . . 16

1.6 R2R (L2L) process control. . . . . . . . . . . . . . . . . . . . . . 17

2.1 L2L control without VM module. . . . . . . . . . . . . . . . . . . 20

2.2 R2R control using VM for a semiconductor manufacturing process. 21

2.3 Type-1 and type-2 data for VM. . . . . . . . . . . . . . . . . . . . 22

3.1 The Biological Neuron . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The Mathematical Neuron . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Plot of the sigmoid function σ(v) = 1/(1 + e−v) (red curve), com-
monly used in the hidden layer of a neural network. Included
are σ(kv) for k = 1/2 (blue curve) and k = 10 (purple curve).
The scale parameter k controls the activation rate, and we can see
that large k amounts to a hard activation at v = 0. Note that
σ(s(v − v0)) shifts the activation threshold from 0 to v0. . . . . . 36

3.4 An example of a multilayer feed-forward networks. . . . . . . . . . 39

4.1 Examples of CVD data in four different wafers. . . . . . . . . . . 54

4.2 Example of time series of different sub-chambers (A1 and A2) of
Lot # 1983. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Example of time series of different sub-chambers (B1 and B2) of
Lot # 2161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Example of time series of different sub-chambers (C1 and C2) of
Lot # 2297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Main clustering: clustering ALFA. . . . . . . . . . . . . . . . . . . 60

4.6 Main clustering: BETA and GAMMA. . . . . . . . . . . . . . . . 61

4.7 Main clustering: DELTA and ETA. . . . . . . . . . . . . . . . . . 62

4.8 Matrix RX of correlation coefficients. . . . . . . . . . . . . . . . . 63

4.9 Matrix RXY of correlation coefficients. . . . . . . . . . . . . . . . 64

xiii



4.10 Variance explained as a function of Principal Components for input
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Principal Components Scores for input data. . . . . . . . . . . . . 67
4.12 Correlation structure for variables chosen with stepwise method:

1st way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.13 Correlation structure for variables chosen with stepwise method:

2nd way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Structure of the considered NN. . . . . . . . . . . . . . . . . . . . 77
5.2 Trend of Validation Error changing the number nl of neurons of

the first hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Prediction results of CVD thickness in sub-chamber C1: PLS based

Principal Component Analysis and PLS based Stepwise Selection,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Prediction results of CVD thickness in sub-chamber C1: NN based
Principal Component Analysis and NN based Stepwise Selection,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Residuals of prediction results of Figures 5.3 and 5.4, respectively. 84
5.6 Cumulative MSE of different couples method-selection technique

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Comparison of Cumulative MSE between global and basis expan-

sion approaches: PLS models and NN models, respectively. . . . . 88

6.1 VM control system. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 VM module for multi-step process. . . . . . . . . . . . . . . . . . 91

xiv



List of Tables

4.1 List of initial variables. . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 List of recommended variables. . . . . . . . . . . . . . . . . . . . 58
4.3 List of 21 selected regressors via stepwise selection method. . . . . 68
4.4 List of 32 selected regressors via stepwise selection method after

PCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Partial least squares regression performance with different variable
selection techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Number of components taken for type of model and according to
variable selection technique with LoC = 95%. . . . . . . . . . . . 79

5.3 MSE of different techniques for sub-chamber A1. . . . . . . . . . . 80
5.4 MSE of different techniques for sub-chamber A2. . . . . . . . . . . 80
5.5 MSE of different techniques for sub-chamber B1. . . . . . . . . . . 80
5.6 MSE of different techniques for sub-chamber B2. . . . . . . . . . . 80
5.7 MSE of different techniques for sub-chamber C1. . . . . . . . . . . 80
5.8 MSE of different techniques for sub-chamber C2. . . . . . . . . . . 80
5.9 Input and output data for global and basis expansion models. . . 85
5.10 MSE of different techniques for entire CVD producer. . . . . . . . 86
5.11 MSE of different techniques for basis expansion model of CVD

producer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.12 MAPE of different techniques for entire CVD producer. . . . . . . 87
5.13 MAPE of different techniques for basis expansion model of CVD

producer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xv



xvi



Introduction

The semiconductor industry is one of the most technology-evolving and capital-
intensive market sectors.

The speed and effectiveness with which new products are developed have an
important influence on market competitiveness. So, the control of manufacturing
operations is well recognized to a source of competitive advantage. In order to
implement an effective control strategy, product samples (wafers) have to be mea-
sured. Unfortunately, this procedure (Metrology) bears high costs and produces
delay in control feedback and process optimization.

The semiconductor manufacturing industry has a large-volume multistage
manufacturing system. To insure the high stability and the production yield
on-line a reliable wafer monitoring is required. The Advanced Process Control
(APC) is currently deployed in factory-wide control of Front End Of the Line
(FEOL) processing in semiconductor manufacturing. The APC tools are the main
ways to ensure a continuous process improvement (see [9]). However, most APC
tools strongly depend on the physical measurement provided by metrology tools.
Critical wafers parameters are measured, such as, for example, the thickness or
the roughness of the thin films. The physical metrology of critical parameters
of wafers quality is performed after each processing step only on monitor wafers
that are periodically selected by sampling in production equipment for each lot
processing (usually one to four wafers per lot). This approach involves that the
production wafer quality between two measures is unknown. When the equip-
ment is out of order and the abnormality is not detected in time, many defective
wafers may have been produced before the next measure. This will result in a
large amount of wafer scraps and will greatly impact the cost. To overcome this
problem, an efficient way is to predict the process quality of every wafer using
process parameter data of production equipment without physically conducting
quality measures.

In order to resolve these drawbacks of metrology, the concept of Virtual
Metrology (acronym VM) has gathered in recent years: Chen et al.[1] (2005)
defined it as “a novel technique to predict wafer performance from tool state
variables”; Yung-Cheng and Cheng[3] (2005), Besnard and Toprac[6] (2006) pro-
vided more detailed definitions: “a method to conjecture operation performance
of a process tool based on data sensed from the process tool and without physical
metrology operation”, “the estimation of metrology values based on process data

1



such as fault detection and classification (FDC), context, and previous metro-
logy”, respectively.

What the aforementioned definitions have in common is that the purpose of
VM is to predict “every” wafer’s metrology measurements based on data availa-
ble and it consists in the definition and the application of some predictive and
corrective models for metrology outputs (physical measurements) in function of
the previous metrology outputs and of the equipment parameters of current and
previous steps of fabrication.

Of course it is necessary to develop a new generation of sensors to improve the
characterization of physical and chemical reactions occurring on the wafer surface
during process steps. Their data will constitute the basis for the Statistical and
Physical models that will be developed. A typical Fault Detection and Classifi-
cation (FDC) system collects on-line data from process by sensors equipment for
every process run. They are called process variables or FDC data. Some reliable
available FDC data are essential in VM model. A first approach is to use VM
for an individual process using the pre-process metrology data and the FDC data
from the chosen tools that are generally collected in real time for fault detection
purposes. Into a factory implementation, VM modules for individual processes
can be coordinated with one another for a better prediction quality. Since up-
stream wafer processing affects results of the current process, the VM module for
a particular process step can produce a more accurate prediction of the output by
using related preprocess metrology data (predicted via VM as well as current) of
the upstream processes. The objective is to develop a robust prediction that can
provide estimation of metrology and which is able to handle process drifts and
step function changes induced by preventive maintenance disturbances. There
are several methods of prediction including:

Nonlinear methods - Neural Networks (NN):

• Back Propagation Neural Networks (BPNN);

• Radial Basis Function Neural Networks (RBFN).

This thesis will discuss and compare various techniques to estimate metrology
values.

Virtual Metrology is the first step and one of the most important steps to
build a control system aimed to reduce costs and delay without affecting product
quality.

The main aim of this work is to present a methodology for VM module for
individual process applications in semiconductor industries.

2



The thesis is structured as follows:

• Chapter 1: the chapter introduces the semiconductor manufacturing pro-
cess and his fundamental steps, among them we cite the Statistical Process
Control (SPC) and the Advanced Process Control (APC) techniques, the
Run-to-Run (R2R) control module together the two specific control laws
(EWMA and dEWMA).

• Chapter 2: the role of VM in semiconductor industry is presented, ex-
plaining how it may improve control strategies.

• Chapter 3: in this chapter we introduce a detailed report on neural net-
works and their state of art, underlining the aspects we will use afterwards.

• Chapter 4: we present our VM system design including data description,
preprocessing, dimensionality reduction techniques.

• Chapter 5: experimental results are analyzed, underlining the performance
measures used, and some relevant issues are discussed.

• Chapter 6: we conclude with a summary and we address a discussion of
future work.

Data for testing the VMmethods were provided by a worldwide semiconductor
factory (partner of ENIAC EU-IMPROVE project (WP2)1).

1This thesis has been carried out as part of the research activity funded by the ENIAC
EU Project “Improve”; IMPROVE (Implementing Manufacturing science solutions to increase
equiPment pROductiVity and fab pErformance) is a 3-years collaborative European project,
funded by the ENIAC initiative. The main objective is to improve the European semiconduc-
tor fabs efficiency by providing methods and tools. The main focus of research is on virtual
metrology (VM), predictive maintenance (PM) and adaptive control planning (ACP).
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Chapter 1

The Semiconductor
Manufacturing Process

1.1 Introduction

This chapter will describe the steps to build Integrated Circuit (IC) chips with
ULSI (Ultra Large Scale Integration - over 10 millions semiconductors devices
per wafer) technology, the tests that they have to pass to be commercialized, and
the Run-to-Run technique, widely used to improve the stability of the process.
Semiconductor device fabrication is the process used to create the integrated
circuits (also called silicon chips) that are present in everyday electrical and
electronic devices. It is a multiple steps sequence of photographic and chemical
processing steps during which electronic circuits are gradually created on a wafer
made of pure semiconducting material. Silicon is the commonly used semicon-
ductor material today, along with various compound semiconductors.
The entire manufacturing process from start to packaged chips ready for shipment
takes six to eight weeks and is performed in highly specialized facilities referred
to as fabs.

1.2 Wafers

A wafer is a thin slice of semiconductor material, such as a silicon crystal, used in
the fabrication of integrated circuits and other micro-devices. The wafer serves as
the substrate for microelectronic devices built in and over the wafer and undergoes
many micro-fabrication process steps that we will describe afterwards.

Wafers are formed of highly pure (99.9999% purity), nearly defect-free sin-
gle crystalline material. The process for forming crystalline wafers is known as
Czochralski growth (see Figure 1.1, picture taken from [27]); here, a cylindrical
ingot of high purity crystalline silicon is formed by pulling a seed crystal from a
melt. The ingot is then sliced with a wafer saw and polished to to obtain a very
regular and flat surface. The size of wafers for photovoltaics is 100 − 200 mm
square and the thickness is 200− 300 µm; in the future, 160 µm will be the stan-

5



1. THE SEMICONDUCTOR MANUFACTURING PROCESS

dard. Electronics use wafer sizes from 100 − 300 mm diameter. The resulting
thin wafers can then be doped to achieve the desired electronic properties.

Figure 1.1: Czochralski growth process

Once the wafers are prepared, many process steps are necessary to produce
the desired semiconductor integrated circuit. In general, the steps can be grouped
into two main areas:

• Front-end processing;

• Back-end Processing.

6



1.3 PROCESSING

1.3 Processing

In semiconductor device fabrication, the various processing steps fall into four
general categories:

• deposition;

• removal;

• patterning;

• modification of electrical properties.

Deposition is any process that grows, coats, or otherwise transfers a material
onto the wafer. Available technologies consist of physical vapor deposition (PVD),
chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular
beam epitaxy (MBE) and more recently, atomic layer deposition (ALD) among
others.
Removal processes are any that remove material from the wafer either in bulk or
selectively and consist primarily of etch processes, either wet etching or dry etch-
ing. Chemical-mechanical planarization (CMP) is also a removal process used
between levels.
Patterning covers the series of processes that shape or alter the existing shape of
the deposited materials and is generally referred to as lithography. For example,
in conventional lithography, the wafer is coated with a chemical called a photore-
sist. The photoresist is exposed by a stepper, a machine that focuses, aligns, and
moves the mask, exposing select portions of the wafer to short wavelength light.
The unexposed regions are washed away by a developer solution. After etching
or other processing, the remaining photoresist is removed by plasma ashing.
Modification of electrical properties has historically consisted of doping transistor
sources and drains originally by diffusion furnaces and later by ion implantation.
These doping processes are followed by furnace anneal or in advanced devices,
by rapid thermal anneal (RTA) which serve to activate the implanted dopants.
Modification of electrical properties now also extends to reduction of dielectric
constant in low-k insulating materials via exposure to ultraviolet light in UV pro-
cessing (UVP).
Note that the only just aforementioned steps will be repeated several times dur-
ing the entire process, to produce multiple interconnected layers on the wafer.
Many modern chips have eight or more levels produced in over 300 sequenced
processing steps.

In next three subsections, the attention will be focused on three steps of the
front end process, playing a major role in this dissertation:

• deposition and CVD, in particular;

• lithography and its sub-steps;

• etching and dry-etching, in particular.

7



1. THE SEMICONDUCTOR MANUFACTURING PROCESS

Chemical Vapor Deposition - CVD

Chemical Vapor Deposition is the process leading to the formation of a nonvolatile
solid film on a substrate by the reaction of vapor-phase chemicals (reactants)
containing the required constituents. It is a material synthesis process whereby
the constituents of the vapor phases react chemically near (or on) a substrate
surface to form a solid product. Several steps must occur in every CVD reaction:

1. Transport of reacting gaseous species to the substrate surface

2. Absorption, or chemisorption, of the species on the substrate surface

3. Heterogeneous surface reaction catalyzed by the substrate surface

4. Desorption of gaseous reaction products

5. Transport of reaction products away from the substrate surface

Figure 1.2: CVD steps

The sequences of reaction steps in a CVD process is illustrated in Figure
1.2 (picture taken from [28]). Heterogeneous reaction occur selectively only on
the heated surface and produce good-quality films. On the other hand, homo-
geneous reactions are undesirable, because they form gas-phase clusters of the
depositing material, resulting in low-density films with defects, and a decrease
in deposition rates. The most common deposition methods are Atmospheric-
Pressure CVD (APCVD), Low-Pressure CVD (LPCVD), and Plasma-Enhanced
CVD (PECVD).

There are several variables to be controlled: temperature, pressure, flow rate,
position and reactant ratio are all important factors for high-quality films.

8



1.3 PROCESSING

Lithography

The lithographic process is composed by three main steps:

1. photosensitive polymer (resist) and Bottom Anti-Reflective Coating (BARC)
deposition;

2. masking;

3. Exposure to a laser illumination to obtain the desired lithographic pattern

The BARC layer helps the adhesion to the substrate providing a better di-
mensional control. The commercial name of the resin is Novolac. The system is
considered a positive resist system if the laser-exposed regions increase their sol-
ubility and, during the development step, the exposed regions are washed away.
Otherwise, the system is a negative resist system. Optical lithography performs
the formation of images with ultraviolet radiation in a photoresist using projection
printing: this methodology offers high resolution because of its image formation
system.

Virtually all advanced microelectronics devices are fabricated using projection
lithography, shown schematically in Figure 1.3 (picture taken form [29]). In this
technique, a light image of the desired pattern, transmitted through a mask, is
reduced in size and precisely focused onto a resist-coated wafer using a system
of lenses. Due to diffraction and slight imperfections in the optical components,
a nominally square wave pattern of light intensity is presented as a sinusoidal
pattern of light at the wafer plane. The minimum resolution Wmin achievable
with projection lithography, according to Rayleigh’s criterion, is governed by the
equation:

Wmin = k1
λ

NA
(1.1)

where λ is the wavelength of exposing radiation, k1 is a process- and material-
dependent parameter less than unity, and NA = nsinθmax is the numerical aper-
ture (n is the refractive index), equal to the refractive index of the surrounding
medium ( 1 for air) times the sine of the angle q subtended by the objective lens
of the system. Either the wavelength must be decreased or the NA of the system
increased to improve tool resolution. In the most advanced production exposure
systems, the exposure wavelength is 193 nm and the NA is approaching 1, the
fundamental limit for imaging in air. However, if a fluid with a higher refractive
index is interposed between resist film and the objective lens, this limit is eased,
paving the way to improved resolution. There is today an intensive industry effort
to adapt 193 nm projection exposure tools to such immersion imaging, with the
goals of improved process control and ultimately improved resolution compared
to dry imaging systems.
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Figure 1.3: Schematic diagram of the optics of a projection exposure lithography
system

Dry-etching

Plasma etching is a process in which a solid film is removed by a chemical reac-
tion with ground state or excited state neutral species. Plasma etching is often
enhanced or induced by energetic ions generated in a gaseous discharge. Here is
a schematic view of microscopic processes occuring in plasma etching:

1. an RF field accelerates the electrons, that collide with gas atoms and
molecules; the glow (light emission) is produced by the de-excitation of
some electronically excited atoms and molecules.

2. Some Other atoms and molecules collide with high-energy electrons, and
they are ionized to form radicals, atoms, and ions. The active species are
transported to the wafer surface where they can be absorbed or desorbed:

• the first ones react with the wafer surface to form etch products;

• the second ones are desorbed from the wafer surface without reaction.

3. If etch products are volatile, they desorb to a gas phase. An inert gas is
used to generate reactive species, like F or CL radicals. These radicals react
with the wafer surface to form volatile products. The chemical compound,
must be volatile so that it can be pumped out of the reactor.

Plasma etching comprises chemical, ion-sputter, and ion-enhanced plasma
etching. All these methods are based on the generation of plasma by an RF
discharge in a gas at low pressure. But two basic methods can be distinguished:
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Physical etching: the surface is bombarded, at high speed, by positive ions.
Physical etching can yield anisotropic profiles, but it has a low etch selec-
tivity and a high bombardment-induced damage.

Chemical etching: the neutral reactive species generated by the plasma inter-
act with the material surface to form volatile products. Chemical etching
shows a high etch rate and a good selectivity, produces low ion bombardment-
induced damage, and yields isotropic profiles

Combinations of these two methods give anisotropic etch profiles, good selectivity,
and low bombardment-damage.

1.4 Front-end processing

Front-end processing refers to the formation of the transistors directly on the
silicon. The raw wafer is engineered by the growth of an ultra-pure, virtually
defect-free silicon layer through epitaxy. In the most advanced logic devices,
prior to the silicon epitaxy step, tricks are performed to improve the performance
of the transistors to be built. One method involves introducing a straining step
wherein a silicon variant such as silicon-germanium (SiGe) is deposited. Once
the epitaxial silicon is deposited, the crystal lattice becomes stretched somewhat,
resulting in improved electronic mobility. Another method, called ”silicon on
insulator” technology involves the insertion of an insulating layer between the
raw silicon wafer and the thin layer of subsequent silicon epitaxy. This method
results in the creation of transistors with reduced parasitic effects.

1.4.1 Gate oxide and implants

Front-end surface engineering is followed by: growth of the gate dielectric, tra-
ditionally silicon dioxide (SiO2), patterning of the gate, patterning of the source
and drain regions, and subsequent implantation or diffusion of dopants to obtain
the desired complementary electrical properties. In memory devices, storage cells,
conventionally capacitors, are also fabricated at this time, either into the silicon
surface or stacked above the transistor.

1.5 Back-end processing

1.5.1 Metal layers

Once the various semiconductor devices have been created they must be inter-
connected to form the desired electrical circuits. This back end of line (BEOL,
the latter portion of the wafer fabrication, not to be confused with ”back end”
of chip fabrication which refers to the package and test stages) involves creating
metal interconnecting wires that are isolated by insulating dielectrics. The insu-
lating material was traditionally a form of SiO2 or a silicate glass, but recently
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new low dielectric constant materials are being used. These dielectrics presently
take the form of SiOC and have dielectric constants around 2.7 (compared to 3.9
for SiO2), although materials with constants as low as 2.2 are being offered to
chipmakers.

1.5.2 Interconnect

Historically, the metal wires consisted of aluminium. In this approach to wiring
often called subtractive aluminium, blanket films of aluminium are deposited first,
patterned, and then etched, leaving isolated wires. Dielectric material is then de-
posited over the exposed wires. The various metal layers are interconnected by
etching holes, called “vias”, in the insulating material and depositing tungsten
in them with a CVD technique. This approach is still used in the fabrication
of many memory chips such as dynamic random access memory (DRAM) as the
number of interconnect levels is small, currently no more than four.
More recently, as the number of interconnect levels for logic has substantially
increased due to the large number of transistors that are now interconnected in
a modern microprocessor, the timing delay in the wiring has become significant
prompting a change in wiring material from aluminium to copper and from the
silicon dioxides to newer low-K material. This performance enhancement also
comes at a reduced cost via damascene processing that eliminates processing
steps. In damascene processing, in contrast to subtractive aluminium technol-
ogy, the dielectric material is deposited first as a blanket film, and is patterned
and etched leaving holes or trenches. In single damascene processing, copper is
then deposited in the holes or trenches surrounded by a thin barrier film result-
ing in filled vias or wire lines respectively. In dual damascene technology, both
the trench and via are fabricated before the deposition of copper resulting in
formation of both the via and line simultaneously, further reducing the number
of processing steps. The thin barrier film, called copper barrier seed (CBS ), is
necessary to prevent copper diffusion into the dielectric. The ideal barrier film is
as thin as possible. As the presence of excessive barrier film competes with the
available copper wire cross section, formation of the thinnest continuous barrier
represents one of the greatest ongoing challenges in copper processing today.

As the number of interconnect levels increases, planarization of the previ-
ous layers is required to ensure a flat surface prior to subsequent lithography.
Without it, the levels would become increasingly crooked and extend outside the
depth of focus of available lithography, interfering with the ability to pattern.
CMP (Chemical Mechanical Planarization) is the primary processing method to
achieve such planarization although dry etch back is still sometimes employed if
the number of interconnect levels is no more than three.
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1.6 Other steps

1.6.1 Wafer test and device test

The highly serialized nature of wafer processing has increased the demand for
metrology in between the various processing steps. Wafer test metrology equip-
ment is used to verify that the wafers have not been damaged by previous pro-
cessing steps up until testing. If the number of dies, that are the integrated
circuits that will eventually become chips, etched on a wafer exceeds a failure
threshold (i.e. too many failed dies on one wafer), the wafer is scrapped rather
than investing in further processing.

Once the front-end process has been completed, the semiconductor devices are
subjected to a variety of electrical tests to determine if they function properly.
The proportion of devices on the wafer found to perform properly is referred to
as the yield.
The fab tests the chips on the wafer with an electronic tester that presses tiny
probes against the chip. The machine marks each bad chip with a drop of dye.
The fab charges for test time; the prices are on the order of cents per second.
Chips are often designed with testability features such as built-in self-test to speed
testing, and reduce test costs.

Good designs try to test and statistically manage corners: extremes of silicon
behavior caused by operating temperature combined with the extremes of fab
processing steps. Most designs cope with more than 64 corners.

1.6.2 Die preparation and packaging

Plastic or ceramic packaging involves mounting the die, connecting the die pads
to the pins on the package, and sealing the die. Tiny wires are used to connect
pads to the pins. In the old days, wires were attached by hand, but now purpose-
built machines perform the task. Traditionally, the wires to the chips were gold,
leading to a lead frame of copper, that had been plated with solder, a mixture of
tin and lead. Lead is poisonous, so lead-free lead frames are now mandated by
ROHS (acronym of Restriction of Hazardous Substances Directive).
Chip-Scale Package (CSP) is another packaging technology. A plastic dual in-
line package, like most packages, is many times larger than the actual die hidden
inside, whereas CSP chips are nearly the size of the die. CSP can be constructed
for each die before the wafer is diced.
The packaged chips are retested to ensure that they were not damaged during
packaging and that the die-to-pin interconnect operation was performed correctly.
A laser etches the chip’s name and numbers on the package.
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1.7 Quality control

A quality control system aims to reach the desired product quality. In the semi-
conductor manufacturing process, there are multiple factors that introduce vari-
ability in the product (process variations, process drifts, external disturbance,
etc.). Process variables are continuous time signals (for example pressure or tem-
perature inside a processing chamber) and are measured by sensors.

A quality control system must be able to detect the need to adjust tool con-
ditions, process conditions, and process inputs. Tool and process conditions are
usually set at the start of manufacturing process and can be fixed after the end
of the process; on the contrary, process inputs can be fixed during the process as
well. Therefore, quality control applied to process inputs, can be of two types:

ex-situ control: process inputs are adjusted after process completion, if the
quality variable is out of specified range. The adjustment process hinges on
statistical analysis of metrology data and operator experience. This type
of control is suitable if the process does not require, or cannot support,
realtime changes.

In-situ control: process inputs are adjusted in run-time. This control requires
run-time monitoring of the process, to be able to modify the process inputs
properly.

Figure 1.4: Semiconductor machining process: inputs, outputs, variables and
disturbances.
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Some of the inputs, outputs, process variables, and disturbances of the semi-
conductor manufacturing process are listed in Figure 1.4 (picture taken from
[14]).

In the next subsection two class of quality control techniques will be presented:
Statistical Process Control (SPC) and Advanced Process Control (APC).

1.7.1 Statistical Process Control - SPC

SPC is a control technique in which control charts are used to monitor the process
output in order to detect a possible out-of-control conditions. The basic steps to
build a control chart are:

• the gathering of information and data about the process;

• estimate the mean µ and the standard deviation σ;

• set the Upper Control Limit (UCL) and the Lower Control Limit (LCL);
to make an example, the Shewhart’s chart for individual data sets:

UCL = µ + 3σ, and LCL = µ − 3σ (where µ is the mean and σ is the
standard deviation).

The adjustment of an out-of-control process follows a procedure, called OCAP
(Out of Control Action Plan), that must be defined in conjunction with the design
of the Control Chart.

1.7.2 Advanced Process Control - APC

The final goal of APC techniques is to keep under control multivariable process
variations by means of feedback and feed-forward control methods. A general
APC system has three components:

• a model based on historical process data and process knowledge;

• real-time process information;

• control and optimization algorithms.

APC methods use metrology data of product variables to feedback the control
algorithm. The feedback feed-forward loop uses a process model to adjust the
inputs in order to maintain the desired quality level (target) of the output (i.e.
Critical Dimension (CD), thickness, and so on).

1.7.3 APC versus SPC

Traditional semiconductor manufacturing obtains accurate results depending on
pre-set process recipes, whose execution is monitored and validated using Statis-
tical Process Control (SPC). Monitoring wafer fabrication with SPC charts is still
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widely used; however, it cannot address the needs of the most advanced processes,
which are far more susceptible to variability. Instead, a collection of methods re-
ferred to as Advanced Process Control (APC) have been introduced to improve
the performance, yield, throughput, and flexibility of the manufacturing process.
These methods include run-to-run, wafer-to-wafer, and within-wafer control. In
contrast to traditional single variable-based SPC methods, APC systems have
embraced multivariate statistical techniques such as Principal Components Anal-
ysis(PCA), in combination with feed-forward and feedback mechanisms. These
advances have helped improve process yield through quick Fault Detection and
Classification (FDC), as well as through dynamic recipe optimization.

1.7.4 Run-to-Run control

As we have just aforementioned, in semiconductor manufacturing processes, a
most important module of APC is Run-to-Run control (R2R)[10]

Definition 1.1 R2R control is a form of discrete process and machine control
in which, with respect to a particular machine process, the product recipe (ma-
chine settings) is modified ex-situ, i.e., between machine runs1, so as to minimize
process drift, shift, and variability.

In order to modify the recipe to address the process drift, shift and other
variability, the current tool and wafer states need to be estimated.

Figure 1.5: R2R control in semiconductor manufacturing.

1In semiconductor manufacturing, a run refers to a single process performed on one or more
wafers (usually a lot).
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In R2R control, post-processing of data from the previous run is used to cal-
culate new set-points of the realtime controller for the next run. A R2R controller
(view Figure 1.5, picture taken by [14]), usually has three main components:

• a process model, to describe the input-output relationship;

• an estimator, to estimate the process state and the difference between ob-
served results and the target;

• a control law.

The R2R control is in fact lot-to-lot (L2L) control since the recipe settings
are kept the same for all the wafers in a lot. In Figure 1.6 (picture taken form
[14]) an instance of R2R control is shown.

Figure 1.6: R2R (L2L) process control.

Different control laws lead to different types of R2R controllers: the Ex-
ponentially Weighted Moving Average (EWMA) and the double Exponentially
Weighted Moving Average (dEWMA) are the most widely used in semiconduc-
tor manufacturing process. The next two subsections briefly present the EWMA
and dEWMA methods.

EWMA

In the Exponentially Weighted Moving Average method, the process is modeled
as

y(k) = αu(k) + b(k) + ϵ(k) (1.2)

where:

• y(k) is the output at the end of run k;

• α is the process gain;

• u(k) is the input (machine/recipe setting) at the start of run k;
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• b(k) is the offset term;

• ϵ(k) is white noise with zero mean and variance σ2.

The initial estimates of process gain α̂(0), offset term b̂(0) and control value u(0)
are obtained via DOE (Design Of Experiments) techniques. The estimate of the
offset term is then updated at each process run using an EWMA filter, while the
process gain estimate remains unchanged:

b̂(k) = ω[y(k)− α̂u(k)] + [1− ω]b̂(k − 1) (1.3)

where ω ∈ (0, 1) is a discounting factor used to dampen the influence of old data
in favor of the new data b̂(k). Finally, the control law for the next process run is
simply plant inversion or deadbeat controller:

u(k + 1) =
Tgt− b̂(k)

α̂
(1.4)

where Tgt ∈ R is the desired target value for the process output.

dEWMA

The simple EWMA control method as described above is adequate for controlling
processes with small disturbances and slow changes in output variation. However,
the process output result in steady state error from the Tgt if there is a consistent
process drift. For the control of such processes, a predictor-corrector or double
EWMA (dEWMA) control scheme is employed. In the dEWMA control method,
the process is modeled as:

y(k) = αu(k) + b(k) + δkϵ(k) (1.5)

where δk is an average process drift for the kth run.
The updating formula of the offset and drift terms uses two EWMA filters

(with two discounting factors ω1 and ω2):

b̂(k) = ω[y(k)− α̂u(k)] + [1− ω1]b̂(k − 1) (1.6)

δ̂(k) = ω[y(k)− α̂u(k)− b̂(k − 1)] + [1− ω2]δ̂(k − 1) (1.7)

The control law for the (k + 1)th process run is:

u(k + 1) =
Tgt− b̂(k)− δ̂(k)

α̂
(1.8)

where Tgt is the usual output target.
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Chapter 2

Virtual Metrology: a Survey

2.1 The Holy Grail of Metrology

The semiconductor industry is risk sensitive and reluctant to adopt novel metrol-
ogy technologies unless they provably address concerns of process stability, tool
contamination and ownership costs. To realize widespread adoption in high-
volume semiconductor manufacturing facilities, novel metrology technologies must
offer the following attributes:

Spatial and temporal wafer state: information Current in-line and in-situ metrol-
ogy provide the necessary process state information to obtain wafer-to-wafer
and lot-to-lot uniformity. However, as feature sizes shrink even further,
within wafer uniformity becomes critical. As a result, spatially resolved
wafer state information has now become necessary.

Cost effective reliable integration: the integration of metrology tools with
process tools often requires significant software and hardware modifications.
This can be time-consuming, expensive, and can compromise equipment
reliability. It can also affect process stability and can make production tools
more vulnerable to false alarms due to metrology errors. Consequently,
the large initial capital investment and the increased operating costs of
metrology integration must be justified by the anticipated financial gains
resulting from improved process capabilities and increased yields.

Ease of deployment: in many processes periodic wafer state measurements suf-
fice to ensure process uniformity and repeatability. In these situations,
the costs associated with permanent integration of the necessary metrology
cannot be justified. However, taking the tool off-line for inspection and
calibration can also be prohibitively expensive. Hence, there is a need for
simple and rapid metrology techniques which can be periodically deployed
without making any modifications to the process tool.

No influence on process: the semiconductor industry expends considerable re-
sources on maintaining an ultra-clean production environment to prevent
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catastrophic yield loss due to contamination. Any serious metrology choice
should not contaminate the process being sensed. In addition, the metrol-
ogy tool itself should not affect the process or distort the variables being
sensed.

2.2 An introduction to the Virtual Metrology

Virtual metrology can be defined as the prediction of metrology variables (ei-
ther measurable or non-measurable) using information about the state of the
process and/or product[7]. VM can be realized by utilizing the pre-process prod-
uct metrology data and more importantly the process data from the underlying
machine that is generally collected in real time for FD analysis. A typical fault
detection and classification (FDC) system collects equipment data (referred to
as process variables in this dissertation) for every process run. This enormous
amount of data (involving hundreds of variables) can be used for VM purposes.
The VM data obtained for every process can then be used in a feedback control
scheme to provide R2R control for every product.

In semiconductor manufacturing, equipment monitoring is a primary need in
order to ensure stable production. In current practice, a wafer (or few wafers)
from the processed lot are measured. Wafer metrology data are taken so rep-
resentative of the whole lot, and are used to adjust process inputs for the next
run (L2L control). In Figure 2.1 (picture taken from [15]) an example of L2L is
depicted.

Figure 2.1: L2L control without VM module.

Although metrology data alone can be used for online feedback control, a
significant time delay can exist in the feedback loop due to sampled metrology,
physical location of the (off-line) metrology station, time taken by metrology,
and the product going through a number of processing stations. Thus, a conside-
rable number of faulty products could be produced before a corrective action is
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taken. In order to reduce the time delay, metrology frequency may be reduced
by selectively inspecting at a subset of the production stations. This reduction in
metrology frequency is done to reduce the cost of metrology in terms of up front
cost of metrology stations and lost throughput associated with the time required
for metrology.

Hence the need for Virtual Metrology (VM) techniques able to estimate the
missing metrology data.

Figure 2.2: R2R control using VM for a semiconductor manufacturing process.

The formulation of VM and R2R control at the wafer level for the process
shown in Figure 2.1 is pictured schematically in Figure 2.2 (illustration taken
from [16]).

The next subsection aims to describe the state of the art in Virtual Metrology.

2.2.1 VM in semiconductor manufacturing

Virtual Metrology (VM) is a class of methods aiming to estimate metrology val-
ues, given process data and previous metrology information.

Ensuring stable wafer fabrication in semiconductor manufacturing requires
periodic tool performance monitoring. Tool performance can be monitored:

• by analyzing real-time process variable signals acquired during the process;

• by measuring the wafers after the process run ends.

A typical fault detection and classification system monitors tool performance
by analyzing several process variables in real-time during processing. Measure-
ment of wafers at the metrology station provides a complimentary capability by
monitoring product quality that may be related to tool or process drifts and
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variations. Metrology data is also used in the R2R control of the wafer quality
variables[10]. In most semiconductor manufacturing processes, metrology is per-
formed on a subset of wafers in a lot and, therefore the R2R control is limited to
L2L . In practice it is usually not feasible to measure every wafer coming out of a
process, which necessitates the need for a VM framework to provide the required
metrology data to enable W2W control [10, 11].

Figure 2.3: Type-1 and type-2 data for VM.

There are two types of data that can be used to enable VM: process variables
and actual metrology data from upstream processes referred to as type-1 and
type-2 data in Figure 2.3 (picture taken from [16]), respectively[14]. In addition,
actual metrology data after processing of the lot can also be used in the VM mod-
ule. The process variables (type-1 data), collected for FDC purposes for every
process run, are direct indicators of the state of the process, i.e., they contain
information about the resulting quality variables behavior like chamber pressure,
chamber temperature, wafer temperature, optical emission spectroscopic data,
gas flows/concentrations and so on. On the other hand, wafer quality character-
istics obtained after a process also depend on the upstream processing of that
wafer , for instance wafer critical dimension (CD) after etching process strongly
depends upon CD after lithography development (type-2 data from previous op-
eration). Generally speaking, type-2 data are measures taken after the end of
the process. Thus for a VM module to accurately predict wafer quality it needs
both type-1 and type-2 data and, as it has been said, a well-built VM module can
improve the throughput and reduce the need for actual metrology operations.

On the other hand, the VM module can also be designed to predict the CDs
of every wafer in the lot. This kind of approach, that requires accurate data col-
lection and wafer tracking, is called Wafer-to-Wafer control (W2W Metrology[3,
6, 13]).
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2.2.2 VM module methodology for individual process

In this section we propose a methodology for VM Module for individual process.
This methodology is composed of three successive stages:

Stage 1: Data Pre-processing - The aim of this stage is to assure the quality
of the data which will be the inputs of the VM models in the Stage 2. The
data pre-process includes three steps:

- Step 1: Data Sources - To define pilot unit processes, individual pro-
cess, technology, family of products. After the definition of the family
of products, to select the recipes and its important steps that will be
used into VM module development. The input data of VM models
are collected from two sources (see section 2.2.1): sensor data of pro-
duction equipment (FDC data) and measurements data of metrology
equipment. To assure the quality and effectiveness of VM models it is
necessary to do preliminary quality studies of process and metrology
equipments. It can be the variance analysis, like as gauge capability of
process and metrology equipments. In this step the choice of technol-
ogy, family of products, recipes and equipments with high capability
and stability is mandatory.

- Step 2: Data Acquisition - To define two raw data sets acquisitions
both including the FDC data from production equipment (X) and
measurements data from metrology equipment (Y). The two raw data
sets can be collected from two different periods of production, between
2 and 6 months, for example. Another alternative is to collect a first
raw data set from historical data base of production and a second raw
data set from Design of Experiments (DOE).

- Step 3: Data Consolidation - To define the pretreatment of the two
raw data sets collected during Step 2. This includes performing the
data cleaning and the statistical data analysis. Data cleaning includes
to identify and to remove the outliers, the missing values and the data
from out of control production. Statistical data analysis include the
data normalization, the data correlation studies and the data reduc-
tion. The data reduction, as stepwise regression, methods can be used
to remove the redundant data and select only the critical variables.
Moreover, the multivariate analysis, as principal components analysis,
can be used to reduce the quantity of columns of the input matrices, X
and Y. After the pretreatment of two raw data sets, we will have two
off line input data sets for the Phase 2. The first one will be able to
be separated in Training Data Set and Running Data Set to construct
the VM prediction models. The second one will be able to be used as
a Validation Data Set for comparison and validation of models.

Stage 2: VM Module Development - The aims of this stage are to build
different prediction models, to compare them and to validate the best model
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to perform the VM Module. This stage includes three steps:

- Step 4: VM Modeling To choose the nonlinear prediction methods.
To build each prediction models in two levels: the Training Level with
the Training Data Set and the Running Level with the Running Data
Set.

- Step 5: Models Comparisons - To define the performance indices from
the robustness and prediction accuracy criteria. To use the Validation
Data set for validation and assessment of the models from Step 4. The
goal of this step is to select the best model relative to the performance
indices.

- Step 6: VM Module To perform the VMModule with the adjustments
of the best model chosen in the Step 5.

Stage 3: VM Module Implementation - The objective of this stage is to
define the steps to integrate the VM module from Step 6 of Stage 2 into an
industrial environment. This phase includes three steps:

- Step 7: VM Module Tests - The aim of this step is to perform off line
tests with off line data from production in order to identify problems
of the model stability, the model capability and to evaluate results of
model when the process drifts. The goal is to define a prototype for
off line VM Module implementation.

- Step 8: VM Module in Production - To define architectural guide-
lines for integration of real time VM Module in an industrial environ-
ment. Provide guidelines for the full integration of the VM Module
into the Manufacturing System.

- Step 9: VM Module Consolidation - To define the Maintenance Poli-
cies for the update of real time VM Module.
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2.3 Variables Selection Techniques

During semiconductor manufacturing process, a large amount of information is
recorded from etching machines and various other diagnostic. This situation leads
to a surplus of available data for each wafer processed. Deciding which variables
are most useful to explain variations in process output (in our case the output
was the CVD thickness) is a challenging task. Modeling from first principals
is a complicated option and leads to computer models that take hours or days
to compute seconds of process simulation. Relating process tool parameters to
process parameters on a nanometre scale is a daunting task, and we often turn to
statistical methods to model variations in the examined process. This work uses
three different statistically-based methods for variable selection.

2.3.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate technique that analyzes
a data set in which observations are described by several inter-correlated quan-
titative dependent variables. Its goal is to extract the important information
from the set, to represent it as a set of new orthogonal variables called principal
components (PCs), and to display the pattern of similarity of the observations
and of the variables as points in maps. Mathematically, PCA depends upon
the eigen-decomposition of positive semi-definite matrices and upon the singular
value decomposition (SVD) of rectangular matrices.

The data set to be analyzed by PCA comprises n observations (rows) described
by m variables (columns) and it is represented by the matrix X ∈ ℜn·m, whose
generic element is xi,j (i = 1, 2, . . . , n and j = 1, 2, . . . ,m).

The matrix X has rank l where l ≤ [n,m].
In general, the data set will be pre-processed before the analysis. Almost al-

ways, the columns of X will be centered so that the mean of each column is equal
to 0. If in addition, each element of X is divided by

√
m , the analysis is referred

to as a covariance PCA because, in this case, the matrix XTX is a covariance
matrix. In addition to centering, when the variables are measured with different
units, it is customary to standardize each variable to unit norm: this is obtained
by dividing each variable by its norm. In this case, the analysis is referred to as a
correlation PCA because, then, the matrix XTX is a correlation matrix. Scaling
to unit variance gives all variables equal importance for the analysis.

The matrix X has the following singular value decomposition (SVD):

X = P∆QT (2.1)

where P is the n x l matrix of left singular vectors, Q is the m x l matrix
of right singular vectors, and ∆ is the diagonal matrix of singular values. Note
that ∆2 is equal to Λ which is the diagonal matrix of the (non-zero) eigenvalues
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of XTX and XXT.

The inertia of a column is defined as the sum of the squared elements of this
column and is computed as:

γ2
j =

n∑
i=1

x2
i,j (2.2)

The sum of all the γ2
j is denoted Γ and it is called the inertia of the data set

or the total inertia. Note that the total inertia is also equal to the sum of the
squared singular values of the data set.

The center of gravity of the rows (also called centroid or barycenter), denoted
g, is the vector of the means of each column of X. When X is centered, its center
of gravity is equal to the row vector 0T∈ ℜ1xm.

The Euclidean distance of the i-th observation to g is equal to

d2i,g =
m∑
j=1

(xi,j − gj)
2 (2.3)

When the data are centered, Equation (2.3) reduces to

d2i,g =
m∑
j=1

x2
i,j (2.4)

Note that the sum of all d2i,g is equal to Γ which is the inertia of the data set.

Goals of PCA

The goals of PCA are to:

• extract the most important information from the data set;

• compress the size of the data set by keeping only this important information;

• simplify the description of the data set;

• analyze the structure of the observations and the variables.

In order to achieve these goals, PCA computes new variables called principal
components which are obtained as linear combinations of the original variables.
The first principal component is required to have the largest possible variance
(i.e., inertia and therefore this component will “explain” or “extract” the largest
part of the inertia of the data table). The second component is computed under
the constraint of being orthogonal to the first component and to have the largest
possible inertia. The other components are computed likewise. The values of
these new variables for the observations are called factor scores, these factors
scores can be interpreted geometrically as the projections of the observations
onto the principal components.

26
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Finding the components In PCA, the components are obtained from the
singular value decomposition of the data setX. Specifically, withX = P ·∆·QT

(cf. Equation (2.1)), the n x l matrix of factor scores, denoted T is obtained as:

T = P∆ (2.5)

The matrixQ gives the coefficients of the linear combinations used to compute
the factors scores. This matrix can also be interpreted as a projection matrix
because multiplyingX byQ gives the values of the projections of the observations
on the principal components. This can be shown by combining Equations (2.1)
and (2.5) as:

T = P∆ = P∆QQT = XQ (2.6)

The components can also be represented geometrically by the rotation of the
original axes. In this context, the matrix Q is interpreted as a matrix of direction
cosines (because Q is orthonormal). The matrix Q is also called a loading matrix.
In this context, the matrix X can be interpreted as the product of the factors
score matrix by the loading matrix as:

X = t1q
T
1 + t2q

T
2 + . . .+ tlq

T
l (2.7)

= TQT (2.8)

with TTT = ∆2 and QTQ = I. This decomposition is often called the
bilinear decomposition of X.

Conclusions

PCA, as just seen above, is a method used to transform a set of correlated vari-
ables into new uncorrelated variables, known as principal components. The first
PC is the linear combination of the m original variables that explains the great-
est amount of variability (t1 = Xq1). In the m-dimensional variable space, the
loading vector q1 defines the direction of the greatest variance. Overall, loadings
represent how the original variables are combined to make the PCs, scores rep-
resent original data projected onto the new uncorrelated variables. For a matrix
X of rank l , l PCs cab be calculated; however, the first k (k < l) of these may
be sufficient to explain the bulk on the variance in the data.

PCA can be used as a variable selection technique by examining the loading
vectors for the first few principal components. The variables that contribute the
most variance to these components will have the highest loading values. These
variables can then be selected as inputs to process output models.

27



2. VIRTUAL METROLOGY: A SURVEY

2.3.2 Correlation Methodology

Another method, arguably simpler than principal component analysis, to select
important variables is to analyze the linear correlations between each process
chamber variable and the process output recorded that, we remember, in this
work it was the CVD thickness.

The correlation between two variables is defined as:

ρx,y =
cov(x, y)

σxσy

=
E((x− µx)(y − µy))

σxσy

(2.9)

where x and y are two variables, with mean µx and µy and standard deviation
σx and σy, respectively. E is the expected value operator and cov denotes cova-
riance. The correlation coefficient ρx,y can not exceed 1 in absolute value and it is
a measure of the degree of linear relationship between two random variables. The
closer the correlation is to −1 or +1 the more closely the two variables are related.
If ρx,y is close to 0, it means there is no relationship between the variables. If ρx,y
is positive, it means that as one variable gets larger the other gets larger. If ρx,y
is negative it means that as one gets larger, the other gets smaller (often called
an “inverse” correlation).

As correlations measures only the degree of the linear relationship between
two variables, it is useful to pass the input variables through non-linear trans-
forms before correlation tests, as a test for some non-linear relationships. For this
variable selection technique, each input is raised to a number of powers before cor-
relation testing (e.g. x1,, x2, . . . , xn). This increases dramatically the correlation
between input and output vectors for some variables.

After all of the variables have been correlated with the output, they are ranked
in order of correlation coefficients, and then the most correlated variables are used
as inputs to neural-network based models.

2.3.3 Stepwise Regression

Stepwise regression is probably the most widely used variable selection technique.
The procedure iteratively constructs a sequence of regression models by adding or
removing variables at each step. The criterion for adding or removing a variable
at any step is usually expressed in terms of a partial F-test. Let fin be the value
of the F-random variable for adding a variable to the model, and let fout be the
value of the F-random variable for removing a variable from the model. We must
have fin ≥ fout and usually fin = fout. Stepwise regression begins by forming a one-
variable model using the regressor variable that has the highest correlation with
the response variable Y . This will also be the regressor producing the largest F-
statistic. We denote with p0 the number of variables present in the previous model
and with pj the number of variables present in the current model; for example,
suppose that at this step, x1 is selected. At the second step, the remaining m− 1
candidate variables are examined, and the partial F-statistic cab be expressed as:
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Fj =
(RSS0−RSSj)/(pj − p0)

RSSj/(N − pj − 1)
j = 1, 2, . . . ,m− 1 (2.10)

where RSSj is the residual sum-of-squares for the least squares fit of the
bigger model with pj + 1 parameters, and RSS0 the same for the nested smaller
model with p0+1 parameters, having p1− p0 parameters constrained to be zero.
The F-statistic measures the change in residual sum-of-squares per additional
parameter in the bigger model, and it is normalized by an estimate of variance
σ2. The variable for which the partial F-statistic is a maximum is added to the
equation, provided that fj > fin. Suppose that this procedure indicates that
xj = x2 should be added to the model. Now the stepwise regression algorithm
determines whether the variable x1 added at the first step should be removed.
This is done by calculating the F-statistic

F1 =
(RSS1−RSS2)/(p2 − p1)

RSS2/(N − p2 − 1)
(2.11)

where RSS1 is the residual sum-of-squares for the least squares fit of the
model with x1 and p1 + 1 parameters, and RSS2 the same for the model with
x1 − x2 and p2 + 1 parameters.

If the calculated value f1 < fout, the variable x1 is removed; otherwise it is
retained, and we would attempt to add a regressor to the model containing both
x1 and x2.

In general, at each step the set of remaining candidate regressors is examined,
and the regressor with the largest partial F-statistic is entered, provided that the
observed value of f exceeds fin. Then the partial F-statistic for each regressor in
the model is calculated, and the regressor with the smallest observed value of F is
deleted if the observed f < fout. The procedure continues until no other regressors
can be added to or removed from the model.

Forward Selection

The forward selection procedure is a variation of stepwise regression and is based
on the principle that regressors should be added to the model one at a time until
there are no remaining candidate regressors that produce a significant increase in
the regression sum of squares. That is, variables are added one at a time as long
as their partial F-value exceeds fin. More accurately, if a variable is not currently
in the model, the null hypothesis that the term would have a zero coefficient is
tested. If there is sufficient evidence to reject the null hypothesis, the term is
added to the model.

Forward selection is a simplification of stepwise regression that omits the
partial F-test for deleting variables from the model that have been added at
previous steps. This is a potential weakness of forward selection; that is, the
procedure does not explore the effect that adding a regressor at the current step
has on regressor variables added at earlier steps.
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Backward Selection

The backward elimination algorithm begins with all m candidate regressors in
the model. Then the regressor with the smallest partial F-statistic is deleted if
this F-statistic is insignificant, that is, if f < fout. Next, the model with m − 1
regressors is fit, and the next regressor for potential elimination is found. The
algorithm terminates when no further regressor can be deleted.

Some Comments on Final Model Selection

We have illustrated several different approaches to the selection of variables. The
final model obtained from any model-building procedure should be subjected
to the usual adequacy checks, such as residual analysis, lack-of-fit testing, and
examination of the effects of influential points. We may also consider augmenting
the original set of candidate variables with cross-products, polynomial terms (e.g.
to multiply by x1,, x2, . . . , xn), or other transformations of the original variables
that might improve the model.

The fin and fout value limits that are used to judge whether variables are kept
or added to the model are set in correspondence with the quality of the model
that we establish.
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Chapter 3

Artificial Neural Networks

3.1 Introduction

An artificial neural network (ANN ), usually called neural network (NN ), is a
mathematical model or computational model that tries to simulate the struc-
ture and/or functional aspects of biological neural networks. It consists of an
interconnected group of artificial neurons and processes information using a con-
nectionist approach to computation. In most cases an ANN is an adaptive system
that changes its structure based on external or internal information that flows
through the network during the learning phase. Neural networks are nonlinear
statistical data modeling tools. They can be used to model complex relationships
between inputs and outputs or to find patterns in data.

Although computing these days is truly advanced, there are certain tasks that
a program made for a common microprocessor is unable to perform; even so a
software implementation of a neural network can be made with their advantages
and disadvantages.
Advantages:

• a neural network can perform tasks that a linear program can not;

• when an element of the neural network fails, it can continue without any
problem by their parallel nature;

• a neural network learns and does not need to be reprogrammed;

• it can be implemented in any application;

• it can be implemented without any problem.

Disadvantages:

• the neural network needs training to operate;

• The architecture of a neural network is different from the architecture of
microprocessors therefore needs to be emulated;
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• requires high processing time for large neural networks.

Another aspect of the artificial neural networks is that there are different archi-
tectures, which consequently requires different types of algorithms, but despite
to be an apparently complex system, a neural network is relatively simple.

Artificial neural networks are among the newest signal-processing technologies
in the engineer’s toolbox. The field is highly interdisciplinary, but our approach
will restrict the view to the engineering perspective. In engineering, neural net-
works serve two important functions: as pattern classifiers and as nonlinear adap-
tive filters. We will provide a brief overview of the theory, learning rules, and
applications of the most important neural network models. Definitions and style
of computation an artificial Neural Network is an adaptive, most often nonli-
near system that learns to perform a function (an input/output map) from data.
Adaptive means that the system parameters are changed during operation, nor-
mally called the training phase. After the training phase the ANN parameters
are fixed and the system is deployed to solve the problem at hand (the testing
phase). The Artificial Neural Network is built with a systematic step-by-step
procedure to optimize a performance criterion or to follow some implicit internal
constraint, which is commonly referred to as the learning rule. The input/output
training data are fundamental in neural network technology, because they convey
the necessary information to discover the optimal operating point. The nonli-
near nature of the neural network processing elements provides the system with
lots of flexibility to achieve practically any desired input/output map, i.e., some
Artificial Neural Networks are universal mappers. There is a style in neural com-
putation that is worth describing.

An input is presented to the neural network and a corresponding desired or
target response set at the output (when this is the case the training is called
supervised). An error is composed from the difference between the desired re-
sponse and the system output. This error information is fed back to the system
and adjusts the system parameters in a systematic fashion (the learning rule).
The process is repeated until the performance is acceptable. It is clear from this
description that the performance hinges heavily on the data. If one does not
have data that cover a significant portion of the operating conditions or if they
are noisy, then neural network technology is probably not the right solution. On
the other hand, if there is plenty of data and the problem is poorly understood to
derive an approximate model, then neural network technology is a good choice.
This operating procedure should be contrasted with the traditional engineering
design, made of exhaustive subsystem specifications and intercommunication pro-
tocols. In artificial neural networks, the designer chooses the network topology,
the performance function, the learning rule, and the criterion to stop the training
phase, but the system automatically adjusts the parameters. So, it is difficult to
bring a priori information into the design, and when the system does not work
properly it is also hard to incrementally refine the solution. But ANN-based so-
lutions are extremely efficient in terms of development time and resources, and
in many difficult problems artificial neural networks provide performance that is
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difficult to match with other technologies. At present, artificial neural networks
are emerging as the technology of choice for many applications, such as pattern
recognition, prediction, system identification, and control.

3.2 The biological model

Artificial neural networks emerged after the introduction of simplified neurons
by McCulloch and Pitts in 1943. These neurons were presented as models of
biological neurons and as conceptual components for circuits that could perform
computational tasks. The basic model of the neuron is founded upon the func-
tionality of a biological neuron. “Neurons are the basic signaling units of the
nervous system” and “each neuron is a discrete cell whose several processes arise
from its cell body”.

Figure 3.1: The Biological Neuron

The neuron has four main regions to its structure (see Figure 3.1, illustration
taken from [30]). The cell body, called also soma, has two offshoots from it, the
dendrites, and the axon, which end in presynaptic terminals. The cell body is
the heart of the cell, containing the nucleus and maintaining protein synthesis.
A neuron may have many dendrites, which branch out in a treelike structure,
and receive signals from other neurons. A neuron usually only has one axon
which grows out from a part of the cell body called the axon hillock. The axon
conducts electric signals generated at the axon hillock down its length. These
electric signals are called action potentials. The other end of the axon may split
into several branches, which end in a presynaptic terminal. Action potentials are
the electric signals that neurons use to convey information to the brain. All these
signals are identical. Therefore, the brain determines what type of information
is being received based on the path that the signal took. The brain analyzes
the patterns of signals being sent and from that information it can interpret the
type of information being received. Myelin is the fatty tissue that surrounds
and insulates the axon. Often short axons don’t need this insulation. There
are uninsulated parts of the axon. These areas are called Nodes of Ranvier. At
these nodes, the signal traveling down the axon is regenerated. This ensures that
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the signal traveling down the axon travels fast and remains constant (i.e. very
short propagation delay and no weakening of the signal). The synapse is the area
of contact between two neurons. The neurons do not actually physically touch.
They are separated by the synaptic cleft, and electric signals are sent through
chemical interaction. The neuron sending the signal is called the presynaptic cell
and the neuron receiving the signal is called the postsynaptic cell. The signals
are generated by the membrane potential, which is based on the differences in
concentration of sodium and potassium ions inside and outside the cell membrane.
Neurons can be classified by their number of processes (or appendages), or by
their function. If they are classified by the number of processes, they fall into three
categories. Unipolar neurons have a single process (dendrites and axon are located
on the same stem), and are most common in invertebrates. In bipolar neurons,
the dendrite and axon are the neuron’s two separate processes. Bipolar neurons
have a subclass called pseudo-bipolar neurons, which are used to send sensory
information to the spinal cord. Finally, multipolar neurons are most common
in mammals. Examples of these neurons are spinal motor neurons, pyramidal
cells and Purkinje cells (in the cerebellum). If classified by function, neurons
again fall into three separate categories. The first group is sensory, or afferent,
neurons, which provide information for perception and motor coordination. The
second group provides information (or instructions) to muscles and glands and is
therefore called motor neurons. The last group, interneuronal, contains all other
neurons and has two subclasses. One group called relay or projection interneurons
have long axons and connect different parts of the brain. The other group called
local interneurons are only used in local circuits.

3.3 The mathematical model

The fundamental building block in an Artificial Neural Network is the mathe-
matical model of a neuron as shown in Figure 3.2 (image taken from [31]). The
three basic components of the artificial neuron are:

1. the synapses or connecting links that provide weights, wj, to the input
values, xj for j = 1, . . . ,m.

2. An adder that sums the weighted input values to compute the input to the
activation function v = w0 +

∑m
j=1 wj xj, where w0 is called the bias (not

to be confused with statistical bias in prediction or estimation) and is a
numerical value associated with the neuron. It is convenient to think of the
bias as the weight for an input x0 whose value is always equal to one, so
that v =

∑m
j=0 wj xj.

3. An activation function g, also called a squashing function, that maps v to
g(v) the output value of the neuron. This function is a monotone function
and an acceptable range of output is usually between 0 and 1, or −1 and 1.
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Figure 3.2: The Mathematical Neuron

3.3.1 Activation functions

As mentioned previously, the activation function acts as a squashing function,
such that the output of a neuron in a neural network is between certain values
(usually 0 and 1, or −1 and 1). In general, there are three types of activation
functions, denoted by σ(·) . First, there is a threshold function which takes on a
value of 0 if the summed input is less than a certain threshold value (v), and the
value 1 if the summed input is greater than or equal to the threshold value.

σ(v) =

{
0 if v < 0 ;
1 if v ≥ 0

Secondly, there is a piecewise linear function. This function again can take
on the values of 0 or 1, but can also take on values between that depending on
the amplification factor in a certain region of linear operation.

σ(v) =


0 if v ≤ −1

2
;

v if − 1
2
< v < 1

2
;

1 if v ≥ 1
2

Thirdly, there is the sigmoid function:

σ(v) =
1

1 + e−v

This function is depicted in Figure 3.3 (picture taken from [32]), it can range
between 0 and 1, but it is also sometimes useful to use the −1 to 1 range. An
example of the sigmoid function is the hyperbolic tangent function:

σ(v) = tanh(v).
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Figure 3.3: Plot of the sigmoid function σ(v) = 1/(1+e−v) (red curve), commonly
used in the hidden layer of a neural network. Included are σ(kv) for k = 1/2 (blue
curve) and k = 10 (purple curve). The scale parameter k controls the activation
rate, and we can see that large k amounts to a hard activation at v = 0. Note
that σ(s(v − v0)) shifts the activation threshold from 0 to v0.

3.4 A framework for distributed representation

The artificial neural networks which we describe are all variations on the parallel
distributed processing idea. The architecture of each neural network is based on
very similar building blocks which perform the processing.

An ANN consists of a pool of simple processing units which communicate by
sending signals to each other over a large number of weighted connections. A set
of major aspects of a parallel distributed model can be distinguished:

• a set of processing units (“neurons”, “cells”);

• a state of activation yk for every unit, which equivalent to the output of the
unit;

• connections between the units, generally each connection is defined by a
weight wjk which determines the effect which the signal of unit j has on
unit k;

• a propagation rule, which determines the effective input sk of a unit from
its external inputs;

• an activation function σ(·)k, which determines the new level of activation
based on the effective input sk(t) and the current activation yk(t) (i.e., the
update);

• an external input (bias, offset) w0 for each unit;
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• a method for information gathering (the learning rule);

• an environment within which the system must operate, providing input
signals and, if necessary, error signals.

3.4.1 Processing units

Each unit performs a relatively simple job: receive input from neighbours or exter-
nal sources and use this to compute an output signal which is propagated to other
units. Apart from this processing, a second task is the adjustment of the weights.
The system is inherently parallel in the sense that many units can carry out their
computations at the same time. Within neural systems it is useful to distinguish
three types of units: input units (indicated by an index i) which receive data from
outside the neural network, output units (indicated by an index o) which send
data out of the neural network, and hidden units (indicated by an index h) whose
input and output signals remain within the neural network. During operation,
units can be updated either synchronously or asynchronously. With synchronous
updating, all units update their activation simultaneously; with asynchronous
updating, each unit has a (usually fixed) probability of updating its activation
at a time t, and usually only one unit will be able to do this at a time. In some
cases the latter model has some advantages.

3.5 Neural network topologies

Now we discussed the properties of the basic processing unit in an artificial neural
network. This section focuses on the pattern of connections between the units and
the propagation of data. As for this pattern of connections, the main distinction
we can make is between:

• feed-forward neural networks, where the data from input to output
units is strictly feed-forward. The data processing can extend over multiple
(layers of) units, but there are not feedback connections, that is, connections
extending from outputs of units to inputs of units in the same layer or
previous layers.

• Recurrent neural networks1 that contain feedback connections. Con-
trary to feed-forward networks, the dynamical properties of the network are
important. In some cases, the activation values of the units undergo a re-
laxation process such that the neural network will evolve to a stable state in
which these activations do not change anymore. In other applications, the
change of the activation values of the output neurons are significant, such
that the dynamical behaviour constitutes the output of the neural network
(for more details see [22]).

1For the aim of this work, that is a regression problem, the use of this type of neural networks
was not considered.
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Classical examples of feed-forward neural networks are the Perceptron and
Adaline. Examples of recurrent networks have been presented by Anderson
(1977), Kohonen (1977) and Hopfield (1982).

3.6 Feed-forward neural networks

3.6.1 Single layer networks

Let us begin by examining neural networks with just one layer of neurons (output
layer only, no hidden layers). The simplest network consists of just one neuron
with the function σ(·)k chosen to be the identity function, σ(v) = v ∀v. In this
case notice that the output of the network is v =

∑m
j=0 wj xj, a linear function

of the input vector x with components xj . If we are modeling the dependent
variable y using multiple linear regression, we can interpret the neural network
as a structure that predicts a value ŷ for a given input vector x with the weights
being the coefficients. If we choose these weights to minimize the mean square
error using observations in a training set, these weights would simply be the least
squares estimates of the coefficients. The weights in neural nets are also often
designed to minimize mean square error in a training data set. There is, however,
a different orientation in the case of neural nets: the weights are learned. The
network is presented with cases from the training data one at a time and the
weights are revised after each case in an attempt to minimize the mean square
error. This process of incremental adjustment of weights is based on the error
made on training cases and is known as training the neural net. The almost
universally used dynamic updating algorithm for the neural net version of linear
regression is known as the Widrow-Hoff rule or the least-mean-square (LMS)
algorithm.

It is simply stated: let x(i) denote the input vector x for the ith case used to
train the network, and the weights before this case is presented to the net by the
vector w(i). The updating rule is w(i+1) = w(i)+η[y(i)−ŷ(i)]x(i) with w(0) = 0
and where η is the learning rate. It can be shown that if the network is trained in
this manner by repeatedly presenting test data observations one-at-a-time then
for suitably small (absolute) values of η the network will learn (converge to) the
optimal values of w. Note that the training data may have to be presented several
times for w(i) to be close to the optimal w. The advantage of dynamic updating
is that the network tracks moderate time trends in the underlying linear model
quite effectively.

A single-layer network has severe restrictions: the class of tasks that can be
accomplished is very limited. Moreover a two layer feed-forward network can
overcome many restrictions, but do not present a solution to the problem of how
to adjust the weights from input to hidden units.
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3.6.2 Multilayer feed-forward networks

While there are numerous different ANN architectures that have been studied by
researchers, the most successful applications in data mining of neural networks
have been multilayer feed-forward networks. These are networks that have a
layered structure in which there is an input layer consisting of nodes that simply
accept the input values and successive layers of nodes that are neurons as depicted
in Figure 3.2. The outputs of neurons in a layer are inputs to neurons in the
next layer. The last layer is called the output layer. Layers between the input
and output layers are known as hidden layers. Figure 3.4 is a diagram for this
architecture.

Figure 3.4: An example of a multilayer feed-forward networks.

Specifically, each layer consists of units which receive their input from units
from a layer directly below and send their output to units in a layer directly above
the unit. There are no connections within a layer. The mI inputs are fed into
the first layer of mH,1 hidden units. The input units are merely fan-out units; no
processing takes place in these units. The activation of a hidden unit is a function
σk(·) of the weighted inputs plus a bias, as given in in equation 3.1
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yk+1(t) = σk(sk(t)) = σk(
∑
j

wjk(t)yj(t) + θk(t)) (3.1)

The output of the hidden units is distributed over the next layer of mH,2

hidden units, until the last layer of hidden units mH,L, of which the outputs are
fed into a layer of mO output units .

3.7 Learning and training of artificial neural net-

works

A neural network has to be configured such that the application of a set of inputs
produces (either directly or via a relaxation process) the desired set of outputs.
Various methods to set the strengths of the connections exist. One way is to
set the weights explicitly, using a priori knowledge. Another way is to train the
neural network by feeding it teaching patterns and letting it change its weights
according to some learning rule.

The possibility of learning is the thing that has attracted the most interest
in neural networks. Given a specific task to solve, and a class of functions F ,
learning means using a set of observations to find f ∗ in F which solves the task
in some optimal sense.

This entails defining a cost function C : F → R such that, for the optimal
solution f ∗, C(f ∗) ≤ C(f) ∀f ∈ F (i.e., no solution has a cost less than the cost
of the optimal solution).

The cost function C is an important concept in learning, as it is a measure
of how far away a particular solution is from an optimal solution to the problem
to be solved. Learning algorithms search through the solution space to find a
function that has the smallest possible cost.

For applications where the solution is dependent on some data, the cost must
necessarily be a function of the observations, otherwise we would not be modeling
anything related to the data. It is frequently defined as a statistic to which only
approximations can be made.

3.7.1 Choosing a cost function

While it is possible to define some arbitrary, ad hoc cost function, frequently
a particular cost will be used, either because it has desirable properties (such
as convexity) or because it arises naturally from a particular formulation of the
problem (e.g., in a probabilistic formulation the posterior probability of the model
can be used as an inverse cost). Ultimately, the cost function will depend on
the task we wish to perform. The three main categories of learning tasks are
overviewed below.
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We can classify the learning situations in three distinct sorts. These are:

• supervised learning (also called associative learning) in which the network
is trained by providing it with input and matching output patterns. These
input-output pairs can be provided by an external teacher or by the system
which contains the neural network (self-supervised).

• Unsupervised learning, or self-organization, in which an (output) unit is
trained to respond to clusters of pattern within the input. In this paradigm
the system is supposed to discover statistically salient features of the input
population. Unlike the supervised learning paradigm, there is no a priori set
of categories into which the patterns are to be classified; rather the system
must develop its own representation of the input stimuli.

• Reinforcement learning: this type of learning may be considered as an inter-
mediate form of the above two types of learning. Here the learning machine
does some action on the environment and gets a feedback response from
the environment. The learning system grades its action good (rewarding)
or bad (punishable) based on the environmental response and accordingly
adjusts its parameters. Generally, parameter adjustment is continued until
an equilibrium state occurs, following which there will be no more changes
in its parameters. The self-organizing neural learning may be categorized
under this type of learning.

3.7.2 Supervised learning

In supervised learning, we are given a set of example pairs (x, y), x ∈ X, y ∈ Y
and the aim is to find a function f : X → Y in the allowed class of functions that
matches the examples. In other words, we wish to infer the mapping implied by
the data; the cost function is related to the mismatch between our mapping and
the data and it implicitly contains prior knowledge about the problem domain.

A commonly used cost is the mean-squared error which tries to minimize
the average squared error between the network’s output, f(x), and the target
value y over all the example pairs. When one tries to minimize this cost using
gradient descent for the class of neural networks called Multi-Layer Perceptrons,
one obtains the common and well-known back-propagation algorithm for training
neural networks.

Tasks that fall within the paradigm of supervised learning are pattern recog-
nition (also known as classification) and regression (also known as function ap-
proximation). The supervised learning paradigm is also applicable to sequential
data (e.g., for speech and gesture recognition). This can be thought of as learning
with a teacher, in the form of a function that provides continuous feedback on
the quality of solutions obtained thus far.
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3.7.3 Unsupervised learning

In unsupervised learning we are given some data x and the cost function to be
minimized, that can be any function of the data x and the network’s output, f(·).

The cost function is dependent on the task (what we are trying to model) and
our a priori assumptions (the implicit properties of our model, its parameters and
the observed variables). Furthermore, we remember that the cost function can
be rather complicated.

Tasks that fall within the paradigm of unsupervised learning are in general
estimation problems; the applications include clustering, the estimation of stati-
stical distributions, compression and filtering.

3.7.4 Reinforcement learning

In reinforcement learning, data x are usually not given, but generated by an
agent’s interactions with the environment. At each point in time t, the agent
performs an action yt and the environment generates an observation xt and an
instantaneous cost ct, according to some (usually unknown) dynamics. The aim
is to discover a policy for selecting actions that minimizes some measure of a
long-term cost; i.e., the expected cumulative cost. The environment’s dynamics
and the long-term cost for each policy are usually unknown, but can be estimated.

More formally, the environment is modeled as a Markov decision process with
states s1, ..., sn ∈ S and actions a1, ..., am ∈ A with the following probability
distributions: the instantaneous cost distribution P (ct|st), the observation di-
stribution P (xt|st) and the transition P (st +1|st, at), while a policy is defined as
conditional distribution over actions given the observations. Taken together, the
two define a Markov chain. The aim is to discover the policy that minimizes the
cost; i.e., the MC for which the cost is minimal.

ANNs are frequently used in reinforcement learning as part of the overall
algorithm.

Tasks that fall within the paradigm of reinforcement learning are control pro-
blems, games and other sequential decision making tasks.

3.8 The back-propagation algorithm

3.8.1 Learning algorithms

Training a neural network model essentially means selecting one model from the
set of allowed models (or, in a Bayesian framework, determining a distribution
over the set of allowed models) that minimizes the cost criterion. There are nu-
merous algorithms available for training neural network models; most of them can
be viewed as a straightforward application of optimization theory and statistical
estimation.

Most of the algorithms used in training artificial neural networks employ some
form of gradient descent. This is done by simply taking the derivative of the
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cost function with respect to the network parameters and then changing those
parameters in a gradient-related direction.

Evolutionary methods, simulated annealing, and expectation-maximization
and non-parametric methods are among other commonly used methods for train-
ing neural networks (for more details see also [25]).

Temporal perceptual learning relies on finding temporal relationships in sen-
sory signal streams. In an environment, statistically salient temporal correlations
can be found by monitoring the arrival times of sensory signals. This is done by
the perceptual network.

3.8.2 The Delta rule

Both learning paradigms supervised learning and unsupervised learning result
in an adjustment of the weights of the connections between units, according to
some modification rule. Virtually all learning rules for models of this type can be
considered as a variant of the Hebbian learning rule suggested by Hebb (see also
[19]). The basic idea is that if two nodes j and k are active simultaneously, their
interconnection must be strengthened. If j receives input from k, the simplest
version of Hebbian learning prescribes to modify the weight wjk with:

∆wjk = ηyiyk

where η is a positive constant of proportionality representing the learning
rate. Another common rule does not use the actual activation of unit k but the
difference between the actual and desired activation for adjusting the weights:

∆wjk = ηyi(dk − yk)

in which dk is the desired activation provided by a teacher. This is often called
the Widrow-Hoff rule or the delta rule.

3.8.3 The algorithm

Although the back-propagation algorithm can be used very generally to train neu-
ral networks, it is most famous for applications to layered feed-forward networks,
or multilayer perceptrons. We know that simple perceptrons are very limited in
their representational capabilities (for example, they can not represent the XOR
function).

We will consider multilayer perceptrons with L layers of synaptic connections
and L + 1 layers of neurons. This is sometimes called an L-layer network, and
sometimes an L + 1-layer network. We will generally follow the convention that
a network with a single layer can approximate any function, if the hidden layer
is large enough.
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Let’s diagram the network as:

x0
W1,b1−→ x1

W2,b2−→ . . .
WL,bL−→ xL

where xl ∈ ℜnl for all l = 0, . . . , L and Wl is an matrix ℜnl · nl−1 for all
l = 0, . . . , L. There are L+1 layers of neurons, and L layers of synaptic weights.
We would like to change the weights W and biases b so that the actual output xL

becomes closer to the desired output d. The back-propagation algorithm consists
of the following steps (for more references see [24]):

1. Forward pass - Computation of outputs of all the neurons in the
network: the input vector x0 is transformed into the output vector xL, by
evaluating the equation:

xl
i = σ(sil) = σ(

nl−1∑
j=1

W l
ijx

l−1
j + bli) for l = 1, . . . , L . (3.2)

The algorithm starts with the first hidden layer using as input values the
independent variables from the training data set. The neuron outputs are
computed for all neurons in the first hidden layer by performing the relevant
sum and activation function evaluations. These outputs are the inputs for
neurons in the second hidden layer. Again the relevant sum and activation
function calculations are performed to compute the outputs of second layer
neurons. This continues layer by layer until we reach the output layer and
compute the outputs for this layer. These output values constitute the
neural net’s guess at the value of the dependent variable. The values of Wij

are initialized to small (generally random) numbers in the range 0.00±0.05.
These weights are adjusted to new values in the backward pass as described
below.

2. Error computation: the difference between the desired output d and the
actual output xL is computed:

δLi =
∂σ(sLi )

∂s
(di − xL

i ) . (3.3)

3. Backward pass - Propagation of error and adjustment of weights:
the error signal at the output units is propagated backwards through the
entire network, by evaluating:

δl−1
j =

∂σ(sl−1
j )

∂s

nl∑
i=1

δliW
l
ij for l = L, . . . , 1 . (3.4)

4. Learning updates: the synaptic weights and biases are updated using the
results of the forward and backward passes:

∆W l
ij = ηδlix

l−1
j (3.5)

∆bli = ηδli (3.6)
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3.8 THE BACK-PROPAGATION ALGORITHM

where η is the learning rate and these are evaluated for l = 1 to L (the order
of evaluation does not matter). This phase begins with the computation of
error at each neuron in the output layer. These errors are used to adjust
the weights of the connections between the last-but-one layer of the network
and the output layer. The adjustment is similar to the simple Widrow-Hoff
rule that we saw earlier. The new value of the weight Wij of the connection
from node i to node j is given by:

W l,new
ij = W l,old

ij +∆W l
ij (3.7)

always for l = 1 to L. Here η is an important tuning parameter that is
chosen by trial and error by repeated runs on the training data. Typical
values for η are in the range 0.1 to 0.9. Low values give slow but steady
learning, high values give erratic learning and may lead to an unstable
network. The process is repeated for the connections between nodes in
the last hidden layer and the last-but-one hidden layer. The backward
propagation of weight adjustments along these lines continues until we reach
the input layer. At this time we have a new set of weights on which we can
make a new forward pass when presented with a training data observation.

Now we will show that this is gradient descent on a cost function.

3.8.4 Back-propagation as gradient descent

Let’s define the cost function:

E(W,b) =
1

2

nL∑
i=1

(di − xL
i )

2 (3.8)

where xL is a function of W and b arises through the equations of the for-
ward pass. This cost function measures the squared error between the desired
and actual output vectors. We are going to prove that back-propagation is gra-
dient descent on this cost function. In other words, the back-propagation weight
updates are equivalent to:

∆W l
ij = −η ∂E

∂W l
ij

(3.9)

∆bli = −η∂E
∂bli

(3.10)
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3.8.5 Properties of the algorithm

The back-propagation algorithm has a number of interesting features:

1. the forward and backward passes use the same weights, but in the opposite
direction

xl−1
j

W l
ij−→ xl

i (3.11)

δl−1
j

W l
ij←− δli (3.12)

2. The update for a synapse depends on variables at the neurons to which it
is attached. In other words, the learning rules are local, once the forward
and backward passes are complete.

3. As we will see later, the back-propagation algorithm is gradient descent on
the squared error cost function between the desired and actual outputs. In
general, it takes O(N) operations to compute the value of the cost function,
where N be the number of synaptic weights. Naively, it should take O(N2)
operations to compute the N components of the gradient. In fact, the back-
propagation algorithm finds the gradient in O(N) steps, which is much
shorter.

3.8.6 Derivation with the chain rule

We need to compute the gradient of E with respect to W and b. The technical
difficulty is that the dependence on W and b is implicit, buried inside xL. The
standard way of dealing with this difficulty is to apply the chain rule to the equa-
tions of the forward pass, which describe the dependence of the output layer xL

on the input x0.

What is the meaning of the quantity δli?

It is the sensitivity of the cost function to changes in the bias of neuron i in
layer l.

δli = −
dE

dbli
(3.13)

In gradient learning for a single-layer perceptron, the weight update is the
product of presynaptic activity, and an error term that is proportional to the
difference between the desired and actual outputs. In gradient learning for a
multilayer perceptron, no desired output for the hidden neurons is available. But
the back-propagated error serves as a proxy. What replaces the error term is the
sensitivity of the cost function to input to the postsynaptic neuron.
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3.8.7 Derivation with Lagrange multipliers

Another method is to use Lagrange multipliers. This method is closely related to
dynamic programming and optical control. We will need to define the function
ϕ(y) = σ′(σ−1(y)). This is the slope of σ, considered as a function of the neural
output. Equivalently, we can write ϕ(σ(x)) = σ′(x) or ϕ(y) = 1/σ−1′(y).

The equations of the forward pass can be written as

σ−1(xl
i) =

nl−1∑
j=1

W l
ijx

l−1
j + bli (3.14)

Now we define a Hamiltonian

H(x, δ,W,b) =
1

2

nL∑
i=1

(di − xL
i )

2 +
L∑
l=1

nl−1∑
i=1

δli

[
σ−1(xl

i)−
nl−1∑
j=1

W l
ijx

l−1
j − bli

]
(3.15)

Suppose that the Hamiltonian is stationary with respect to x and y, meaning
that the derivatives with respect to x and y vanish. Then

∂H

∂δli
= σ−1(xl

i)−
nl−1∑
j=1

W l
ijx

l−1
j − bli (3.16)

vanishes. This implies that the equations of the forward pass are satisfied, and
furthermore that H = E.

E(W,b) = statx,yH(x, δ,W,b) (3.17)

Therefore, minimizing H with respect to W and b at a stationary point with
respect to x and y is equivalent to minimizing E with respect to W and b
subject to the constraint that the xl

i i satisfy the equations of the forward pass.
The other requirement for a stationary point is that the partial derivatives

∂H

∂xL
i

= −(di − xL
i ) +

δLi
ϕ(xL

i )
(3.18)

∂H

∂xl−1
j

=
δl−1
j

ϕ(xl−1
j )
−

nl∑
i=1

δliW
l
ij (3.19)

must also vanish. Setting these to zero yields the error computation and the
backward pass. Therefore, the backward pass is a way of solving the equation
∂H/∂x = 0. We can quantify the change in E by looking at the change in H

dE =
∂H

∂x
dx+

∂H

∂y
dy +

∂H

∂W
dW +

∂H

∂b
db (3.20)

In this expression we assume that the changes dx and dy are slaved to dW and
db, since both x and y are both implicitly functions of W and b. By our cunning,
we have defined H so that the first two terms vanish, and we are left with

dE =
∂H

∂W
dW +

∂H

∂b
db (3.21)
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Therefore we can compute the gradients of E as

∂E

∂W l
ij

=
∂H

∂W l
ij

= −δlixl−1
j (3.22)

∂E

∂bli
=

∂H

∂bli
= −δli (3.23)

Only the explicit dependence of H on W and b matters in the gradient compu-
tation. The implicit dependence does not matter because we are at a stationary
point.

3.8.8 Some issues in training neural networks

There is quite an art in training neural networks. The model is generally over-
parametrized, and the optimization problem is non-convex and unstable unless
certain guidelines are followed. In this section we summarize some of the impor-
tant issues.

Starting Values

We note that if the weights are near zero, then the operative part of the sig-
moid (Figure 3.3) is roughly linear, and hence the neural network collapses into
an approximately linear model. Usually starting values for weights are chosen
to be random values near zero. Hence the model starts out nearly linear, and
becomes nonlinear as the weights increase. Individual units localize to directions
and introduce nonlinearities where needed. Use of exact zero weights leads to
zero derivatives and perfect symmetry, and the algorithm never moves. Starting
instead with large weights often leads to poor solutions.

Number of Hidden Units and Layers

While for the input and output layer the choice regarding the amount of neu-
rons is strictly related to the number of inputs and outputs of the model, there is
not a systematic way for deciding the numbermH,l (l = 1, . . . , L) of hidden nodes.

Generally speaking it is better to have too many hidden units than too few.
With too few hidden units, the model might not have enough flexibility to capture
the nonlinearities in the data; with too many hidden units, the extra weights can
be shrunk toward zero if appropriate regularization is used.

Typically the choice of number of hidden neurons is:

mO ≤ mH,l ≤ mI

where mO is the number of the output layer and mI the one of the input,
with the number increasing with the number of inputs and number of training
cases. It is most common to put down a reasonably large number of units and
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train them with regularization. We can use cross-validation to estimate the op-
timal number, but this seems unnecessary if cross-validation is used to estimate
the regularization parameter. Choice of the number of hidden layers is guided
by background knowledge and experimentation. Each layer extracts features of
the input for regression or classification. Use of multiple hidden layers allows
construction of hierarchical features at different levels of resolution.

Multiple Local Optima and Epochs

The back-propagation algorithm is a version of the steepest descent optimization
method applied to the problem of finding the weights that minimize the error
function of the network output. Due to the complexity of the function and the
large numbers of weights that are being trained as the network learns, there
is no assurance that the back-propagation algorithm (and indeed any practical
algorithm) will find the optimum weights that minimize error, the procedure
can get stuck at a local minimum. It has been found useful to randomize the
order of presentation of the cases in a training set between different scans. It
is possible to speed up the algorithm by batching, that is updating the weights
for several exemplars in a pass. However, at least the extreme case of using the
entire training data set on each update has been found to get stuck frequently
at poor local minima. A single scan of all cases in the training data is called an
epoch. Most applications of feed-forward networks and back-propagation require
several epochs before errors are reasonably small. A number of modifications
have been proposed to reduce the epochs needed to train a neural net. One
commonly employed idea is to incorporate a momentum term that injects some
inertia in the weight adjustment on the backward pass. This is done by adding a
term to the expression for weight adjustment for a connection that is a fraction
of the previous weight adjustment for that connection. This fraction is called
the momentum control parameter. High values of the momentum parameter will
force successive weight adjustments to be in similar directions. Another idea is
to vary the adjustment parameter η so that it decreases as the number of epochs
increases. Intuitively this is useful because it avoids over-fitting that is more
likely to occur at later epochs than earlier ones.

Overfitting and the choice of training epochs

A weakness of the neural network is that it can be easily overfitted, causing
the error rate on validation data to be much larger than the error rate on the
training data. It is therefore important not to overtrain the data. A good method
for choosing the number of training epochs is to use the validation data set
periodically to compute the error rate for it while the network is being trained.
The validation error decreases in the early epochs of back-propagation but after
a while it begins to increase. The point of minimum validation error is a good
indicator of the best number of epochs for training and the weights at that stage
are likely to provide the best error rate in new data.
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Chapter 4

Pre-Processing Results

The semiconductor manufacturing process data-sets analyzed for the experimen-
tal part of this dissertation were provided by a worldwide semiconductor factory.
This chapter will describe:

• format and contents of data from several process steps;

• data extraction and organization tools;

The data we have used for this work is concerned Chemical Vapor Deposition
and the purpose we have prearranged is to find a predicted model of the CVD
deposited layer.

4.1 Data description

The data files provided by a semiconductor fabrication plant were related to CVD
and were collected over a period of seven months. The analysis is carried out on
production data for a well-controlled, CVD thickness process and all the data is
obtained from the same CVD machine, consisting in three chambers and where
every chamber has two distinct sub-chambers. Every processed lot is composed
by fifty wafers divided in two subsets: in each of these wafers are numbered from
1 to 25. CVD thickness measurements were usually taken from wafers 3 and 4
approximately twice in every lot, leading to measurements of approximately 8%
of wafers.

The data available present about twenty different recipes: due to proprietary
reasons, we are not going to indicate here the exact name of them.

The available data are organized as:

• APC data: a .mat file collects the measurements of APC. The format is:

- Created : start time of the current processed wafer;

- Equipment : deposition equipment name;

- Equipment ID : ID of equipment;
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- Batch ID : number of the batch1;

- Run ID : number of the processed wafer;

- LotLog ID : ID of current lot;

- WafLog ID : ID of current wafer;

- Technology : set of different products;

- Operation : operation performed;

- Lot : name of processed lot;

- Slot : number of processed slot (between 1 and 25);

- Carrier : it distinguishes in which subset of the same lot the processed
wafer is.

Usually, 2 wafers per lot.

• R2R data: a .mat file collects measurements of APC. The format is:

- Material ID : name of processed lot;

- Material Level : number of processed wafer;

- ProcessGroup ID : recipe’s name used to process current wafer. Recipes
can be considered as machine’s settings;

- Product : kind of measurement;

- Route ID

- BasicType ID

- EPA D : kind of measurement;

- ProcessTool ID : deposition equipment name;

- ParentMaterial ID : lot name;

- DepoTime used : deposition time.

Usually, 2 wafers per lot.

• rawtab data: in a .mat file, for almost every wafer, internal process state
variables are collected as time series uniformly samples on thirty points and
stored using a raw text format. Generally, these signals describe internal
signals (for example gas flows, pressures, temperatures, voltages,...) on a
wafer-by-wafer bases.

The complete list of process variables is displayed in Table 4.1.

• y data: a .mat file collects measurements of CVD thickness in nine equidi-
stant different points of the processed wafer.

1A batch is a subset of wafers processed by the same sub-chamber of the machine.
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ID Variable Name

1 BY divert Flow
2 He Hi Flow
3 NF3 Flow
4 O2 Flow
5 O3 Flow
6 O3 gen concentration
7 PRESS FORELINE
8 TEB Flow
9 TEOS Flow
10 TEPO Flow
11 chord lengh error left
12 chord lengh error right
13 heater AO row value
14 hi manometer
15 leading edge error left
16 leading edge error right
17 lo manometer
18 pressure reading
19 susceptor temp
20 throttle valve step

Table 4.1: List of initial variables.
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The main data issues are:

• partial information: not every wafer is measured, in fact metrology in
performed on a very small percentage of wafers;

• sampling changes: there is no guarantee that the same wafer is measured
during different process steps;

• no wafer tracking: it is impossible to know which wafer (in a lot) is
measured (except for process data).

When the data was stored and properly organized, the pre-processing analysis
and the following neural network analysis could began.

4.2 Statistical modeling and analysis

The Figures in this section show some notable examples of data variability be-
tween lots2:

CVD data (Figure 4.1) : 4 deposition measurements on 4 different wafers.

Figure 4.1: Examples of CVD data in four different wafers.

2Data plotted are normalized as value−µ
σ where µ is the mean and σ is the standard devaition

of the data, respectively.
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The first modeling steps were:

• data modeling in order to describe a whole lot and its inner relationships;

• process variables reduction to discard the useless ones;

• data clustering to find out possible similar behaviours among different
recipes and therefore to consider more than one recipe as the only one
for future modeling;

• explorative correlation analysis to find out important parameters and di-
scard useless variables;

• explorative principal component analysis analysis, used as variable extra-
ction method, to reduce dimensionality;

• explorative stepwise linear regression analysis, used as variable selection
method, to choose meaningful variables.

In Figures 4.2, 4.3 and 4.4 examples of time series of different sub-chambers
involving in the study are depicted.

Figure 4.2: Example of time series of different sub-chambers (A1 and A2) of Lot
# 1983.
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Figure 4.3: Example of time series of different sub-chambers (B1 and B2) of Lot
# 2161.

4.2.1 Data modeling

According to data structure, the modeling procedure was performed as follows:

CVD data modeling : 2 (rarely 4) wafers per lot were tested. Because of the
lack of wafer tracking, the mean of the provided measures was chosen to
represent the entire lot:

CVDlot =

∑TOTCV D samples

i=1 DepositionV aluei
TOTALCV D samples

(4.1)

Process data modeling: Process data time series were measured for (almost)
every wafer in every lot. Unfortunately, the lack of precise referrals from
the upstream process renders nearly useless this large amount of data; being
stationary signals, the time series were reduced to statistical parameters:
mean (or median, in case of frequent outliers) and variance.

More precisely, the model for process data time series is:

1. calculate mean and standard deviation of the mth process time series for
every jth wafer processed where m is the number of the process variables:

meanj = [meanj
1 · · · meanj

m] (4.2)

stdj = [stdj1 · · · stdjm] (4.3)
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Figure 4.4: Example of time series of different sub-chambers (C1 and C2) of Lot
# 2297.

2. calculate median to reduce outliers influence (if necessary):

M j = Median(meanj) (4.4)

STDj = Median(stdj) (4.5)

3. iterate the procedure ∀j = 1, 2, . . . , N where N denotes the number of
processed wafers:

M = [M1 · · · MN ] (4.6)

STD = [STD1 · · · STDN ] (4.7)
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4.2.2 Process variables reduction

CVD equipment is equipped with a considerable number of sensors. However, not
all sensor data are required to produce the VM data. Also, only certain critical
stage’s sensor data are necessary in the whole wafer process. In this research, the
sensor selection is based on the the following rules:

Rule 1: exclude the turned-off sensors in the process;

Rule 2: eliminate sensors with constant values in the temporal chart, which
shows sensor data versus time, because they do not affect the actual metro-
logy value;

Rule 3: among the sensors measuring the same physical property, only one is
selected;

Rule 4: delete the sensors that are the linear combination of selected sensors;

Rule 5: exclude the sensors that only relate to the processing step number be-
cause they are irrelevant to the process.

According to the above rules, among 20 CVD equipment sensors, only 15
comparatively important ones are selected for the analysis, as shown in Table
4.2.

ID Variable Name

1 BY divert Flow
2 He Hi Flow
3 NF3 Flow
4 O2 Flow
5 O3 Flow
6 O3 gen concentration
7 PRESS FORELINE
8 TEB Flow
9 TEOS Flow
10 TEPO Flow
11 heater AO row value
12 hi manometer
13 pressure reading
14 susceptor temp
15 throttle valve step

Table 4.2: List of recommended variables.
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4.2.3 Clustering

First, we have divided the entire body of data in accordance with the process
group used to process the current wafer.

According to the above-mentioned subdivision, for every process group a com-
prehensive matrix XProcessGroup ∈ ℜn·m is built as follows:

(4.8)

XProcessGroup =


x1,1 x1,2 · · · x1,m
... · · · · · · ...
... · · · · · · ...

xn,1 · · · · · · xn,m

 (4.9)

where n is the number of wafers processed by the same process group, m is the
number of the process variables and xi,j (i = 1, . . . , n; j = 1, . . . ,m) represents
the time series of the process variables.

A parallel thing is made for the output:

YProcessGroup =


y1,1 y1,2 · · · y1,t
... · · · · · · ...
... · · · · · · ...

yn,1 · · · · · · yn,t

 (4.10)

where YProcessGroup ∈ ℜn·t, n is the number of wafers processed by the same
process group, t is the number of the outputs and yi,j (i = 1, . . . , n; j = 1, . . . , t)
represents the measures of CVD thickness corresponding to the same process
group.

Once we have made this partition, through principal component analysis of
either all XProcessGroup or YProcessGroup, we obtain five main clustering that are
depicted in Figures 4.5, 4.6 and 4.7.

From now on, the results we reported referred with the largest clustering,
named clustering GAMMA showed in Figure 4.6 . By the way, we named
XGAMMA and YGAMMA the input data matrix XProcessGroup and the output data
matrix YProcessGroup corresponding to the mentioned clustering, respectively.

It is important to outline that this procedure is a qualitative analysis and
therefore a more mathematical and correct statistical method would be the mea-
surement of the distance among the various distributions, seeing that we have
dealt with them, and a possible solution would be the use of Kullback-Leibler
distance (for more details see [34, 35]).
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Figure 4.5: Main clustering: clustering ALFA.
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Figure 4.6: Main clustering: BETA and GAMMA.
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Figure 4.7: Main clustering: DELTA and ETA.
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4.2.4 Data correlation analysis

The purpose of this kind of analysis if to find out exploitable latent relation-
ships between variables. Using XProcessGroup and YProcessGroup defined above, the
correlation matrix RX for XProcessGroup is then computed:

RX =

 rx1,1 · · · rx1,m
...

. . .
...

rxm,1 · · · rxm,m

 (4.11)

where rxi,j is the correlation coefficient between the ith and the jth variables.

While for YProcessGroup the correlation matrix RXY is:

RXY =

 rxy1,1 · · · rxy1,t
...

. . .
...

rxym,1 · · · rxym,t

 (4.12)

where rxyi,j is the correlation coefficient between the ith variable and the jth output.

A graphic representation of RX and RXY is shown in Figures 4.8 and 4.9
where:

Figure 4.8: Matrix RX of correlation coefficients.
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• white dots describe both positive and negative correlation where the level
of confidence (LoC) is equal at 95%;

• dark red dots describe no correlation.

Figure 4.9: Matrix RXY of correlation coefficients.

It can be noticed that:

RX : • in RX some variables are highly correlated (rxi,j ≈ ±1); in particular,
there are inner relationships between first process variable and ninth
one;

• some of the variables are almost constant (σ2 ≈ 0).

RXY : there are low inner relationships between metrology variables and process
variables.
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4.2.5 Principal components analysis

In this section we explain the results we have got after principal component
analysis.

As we can see in Figure 4.10(a), a PCA of the data demonstrates that the
individual variables have very little correlation between them. This is seen as the
overall variance for the data-set can not be explained using a small number of
principal components. In fact, starting with the whole set of m = 450 variables,
if we want to have a level of confidence (LoC) of 95%, we have to take the first
p = 35 PCs; while if we choose that the level is equal at 99%, the number of PCs
rises to p = 102 (see Figure 4.10(b)).

In Figure 4.11 the scores obtained by PCA are depicted:

• in 4.11(a) the plot 3D of the first three PCs is shown. We can observe
the layout of the scores according to the sub-chamber in which the relative
wafer is processed:

there are three distinct clouds corresponding to the three chambers A, B,
C and we can state that the behaviour of the sub-chambers of the same
chamber is very similar.

• Figure 4.11(b) is a version of 4.11(a) one in which we have set the view along
the y-axis, with the x-axis extending horizontally and the z-axis extending
vertically. Here, we can notice something on the stability of the various
chambers:

the behaviour of chamber B appears stabler than the others ones where the
trends is more irregular.
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Figure 4.10: Variance explained as a function of Principal Components for input
data.
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Figure 4.11: Principal Components Scores for input data.
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4.2.6 Stepwise selection analysis

Now, we will take a look at the results we have obtained performing stepwise
selection analysis.

First, for the purpose of this work fin = 0.05 and fout = 0.10 are used for
addition and removal of regression variables respectively; therefore the level of
confidence for both the techniques is settled at 95%.

Starting with m = 450 process variables, first we have chosen as principal
output the central3 measurement of CVD thickness, named YGAMMA(:, j) where
j is the corresponding column index; then, we have performed this analysis in
two different ways:

• in the first manner, the input variables have coincided with the matrix
XGAMMA and we have picked out p = 21 regression variables. In Table
4.3 the correspondence among these resulting 21 comparatively important
regressors and the number of recommended process variables listed in Table
4.2 is explained.

• In the second one, we have implemented stepwise regression introducing in
input the scores we have got after principal component analysis. Here, the
number of regressors selected by the algorithm is been p = 32 and in Table
4.4 a chart of analogous meaning as above is depicted.

ID Variable Name # Selected Regressor

1 BY divert Flow 3
2 He Hi Flow 1
3 NF3 Flow
4 O2 Flow
5 O3 Flow
6 O3 gen concentration
7 PRESS FORELINE
8 TEB Flow 7
9 TEOS Flow 2
10 TEPO Flow
11 heater AO row value 5
12 hi manometer
13 pressure reading
14 susceptor temp 1
15 throttle valve step 2

Table 4.3: List of 21 selected regressors via stepwise selection method.

3We could choose either one of the nine possible outputs or the mean of these ones.
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ID Variable Name # Selected Regressor

1 BY divert Flow 5
2 He Hi Flow 1
3 NF3 Flow 1
4 O2 Flow
5 O3 Flow 2
6 O3 gen concentration 1
7 PRESS FORELINE 1
8 TEB Flow 2
9 TEOS Flow 3
10 TEPO Flow 3
11 heater AO row value 1
12 hi manometer 1
13 pressure reading 5
14 susceptor temp 4
15 throttle valve step 2

Table 4.4: List of 32 selected regressors via stepwise selection method after PCA.

Figures 4.12 and 4.13 show the correlation structure between the variables
chosen and the entire YGAMMA in the two manners.

We have already seen in Subsection 4.2.4 that there was a little correlation
between XGAMMA and YGAMMA; now, about these pictures, in both cases there
has been a smaller correlation coefficient among the process variables and the
YGAMMA in correspondence of the selected output to implement stepwise regres-
sion.
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Figure 4.12: Correlation structure for variables chosen with stepwise method:
1st way.
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Figure 4.13: Correlation structure for variables chosen with stepwise method:
2nd way.

70



4.2 STATISTICAL MODELING AND ANALYSIS

4.2.7 Comparison among selection techniques

In this section, we give a roundup of considerations about merits and faults of
the selection techniques we have utilized.

First, the main disadvantages of the correlation and PCA based variable se-
lection methods is that there is a high probability of the algorithms choosing
predictor variables that are correlated with one another. These extra variables
are added to the prediction model, but they do not add much extra information
or value to the prediction accuracy.

This phenomenon arises in the correlation selection algorithm form signals
such as two different flows.

In the case of PCA, all of the variables from the same principal component are
likely to be similar as they are used to describe the same component of the data-
set variance. Hence, selecting some variables from the same principal component
may actually add very little new information to the model.

Another complication to this selection technique is that the PCs are calcu-
lated without any reference to the output. The variable selected by principal
component model may best explain the largest variance in the input data, but
may be poor predictors of the system output.

The stepwise regression method of variable selection has the advantage that
the selected predictor variables are unlikely to be highly correlated. Each variable
is added to the model only if it contributes to the accuracy of the prediction.
Adding a variable that is highly correlated to an existing variable in the model will
not contribute significantly and so there is a low probability of many correlated
variable existing in the final model structure. As variable are assessed during the
algorithm and removed if they no longer contribute, stepwise regression should
lead to the most parsimonious model.
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Chapter 5

Experimental Modeling Results

As shown before, several techniques are available for building a VM environment.
This chapter will describe in more detail some solutions capable of providing an
accurate estimation of CVD thickness.

We recall that the following results refer to clustering GAMMA and that we
chose it because it is the largest one.

In particulary, the chapter will present and discuss:

• mathematical and statistical methods applied to real data;

• some modifications in order to improve performances;

• advantages and weaknesses of different techniques.

In order to evaluate how well a VM model fits the relation between input data
and metrology target values, the following accuracy indicators have been used:

Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.1)

Mean Absolute Percentage Error (MAPE):

MAPE =

∑n
i=1

|(yi−ŷi)|
yi

n
· 100 (5.2)

where n is the number of processed wafers, yi and ŷi are the actual target and
predicted value of ith test wafer, respectively.

Before reporting and debating results we have obtained, we have seen in Se-
ction 4.2 that data correlation analysis has not brought satisfactory process va-
riables reduction, therefore for this reason we have not related about it in the
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pre-processing phase.

To try out the goodness of the behaviour of neural networks as compared with
another identification methods, first, we have modeled the process in question
with linear regressions, in particular we have used Partial Least Squares regression
(for more references see [15]) and the results concerning the central CVD target
are summarized in Table 5.1 where a global model related to the CVD producer
and a individual model for each sub-chamber of this machine were made.

Partial Least Squares Regression

Method TYPE MSE

Full set Producer 0.0543
PCA 0.0674
SS 0.0663

Full set sub-chamber A1 0.0200
PCA 0.1234
SS 0.1266

Full set sub-chamber A2 0.0184
PCA 0.1205
SS 0.1213

Full set sub-chamber B1 0.0088
PCA 0.0553
SS 0.0517

Full set sub-chamber B2 0.0022
PCA 0.0108
SS 0.0113

Full set sub-chamber C1 0.0011
PCA 0.0050
SS 0.0062

Full set sub-chamber C2 0.0020
PCA 0.0090
SS 0.0115

Table 5.1: Partial least squares regression performance with different variable
selection techniques.

Our simulations, in addition to PCA and SS, made also use of the entire data-
set; we see that the performance with full set is better than the others ones but this
involves a bigger computational time cost. This is the typical engineering trade-off
between computational time and estimation performances: if the computational
time is not a critical issue it is preferable to exploit the entire data-set, on the
other hand if the on-line implementation requires fast computation we can save
time modeling on a smaller regressors data-set.
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5.1 NN for VM

In Section 3.8 we presented the back-propagation algorithm of Neural Network
technique we used to estimate regression coefficients for CVD thickness. In suc-
cession we explain how we have projected the Virtual Metrology Module trough
neural networks structure.

First of all, we followed these guiding lines:

• for each sub-chamber, building two models in correspondence with reduction
method that we have performed: the first one utilizing Principal Compo-
nent Analysis; whereas the second one using Stepwise Selection.

• constructing a global model that it does not make a distinction among the
various sub-chambers.

• expanding the basis with a approach which also considers the variability of
sub-chamber within the whole available data-set.

According to the selected model, we divided the the starting data-setXGAMMA

into two sets using random indices: the first one, with a percentage of 70% of
XGAMMA is the training set while the second one (30% of XGAMMA) is the vali-
dation set.

For training NN we have made use of Levenberg-Marquardt algorithm that
we explain below.

5.1.1 Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was de-
signed to approach second-order training speed without having to compute the
Hessian matrix. When the performance function has the form of a sum of squares
(as is typical in training feed-forward networks), then the Hessian matrix can be
approximated as

H = JTJ

and the gradient can be computed as

g = JTe

where J is the Jacobian matrix that contains first derivatives of the network er-
rors with respect to the weights and biases, and e is a vector of network errors.
The Jacobian matrix can be computed through a standard back-propagation te-
chnique that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian
matrix in the following Newton-like update:

xk+1 = xk − [JTJ+ µI]−1JTe (5.3)
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When the scalar µ is zero, this is just Newton’s method, using the approximate
Hessian matrix. When µ is large, this becomes gradient descent with a small step
size. Newton’s method is faster and more accurate near an error minimum, so
the aim is to shift toward Newton’s method as quickly as possible. Thus, µ is
decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function.
In this way, the performance function is always reduced at each iteration of the
algorithm.

The main drawback of the Levenberg-Marquardt algorithm is that it requires
the storage of some matrices that can be quite large for certain problems.

The memory space, computing the Jacobian matrix, can be a critical issue;
even if there are some techniques of memory reduction, the Levenberg-Marquardt
algorithm will always compute the approximate Hessian matrix, which has dimen-
sions n x n: if the network is very large, then we might run out of memory. The
reader can refer to [33] for more detailed explanations.

Fore more references, the application of Levenberg-Marquardt to neural net-
work training is described in [36, 37].

5.1.2 Choosing number of hidden units and layers, and
starting values

We have learnt that with neural networks there is not a only and exact rule for
choosing:

• number of hidden layers;

• number of hidden neurons (size of hidden layers);

• starting values.

About the number of hidden layers, it has been proved that a NN composed
of a input layer, one or two hidden layers and one output layer, can approximate
arbitrarily well any linear or non linear function (for more references see [32]).
Consequently, for this work we have decided for a structure with two hidden
layers (l = 2) where the last one is made of one only unit (n2 = 1).

In relation with the others two drawbacks, for each model we wished to im-
plement, we made several trials, varying the number n1 of hidden neurons of the
first hidden layer among 1 and 30 e changing the starting values among a thou-
sand of different initial conditions. This action is an attempt bunch for having
the right intuition but it does not mean that it is the best possible choice. The
architecture of the neural network that we considered is shown in Figure 5.1 .

To get homogeneous conditions for having an homogeneous comparison in
according to the selection method we have used, we have taken the best starting
value related to the central thickness measurement.

For instance, in Figure 5.2 is shown the trend of Validation Error of the entire
XGAMMA where we can observe that the best number of hidden neurons is nl = 6.
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Figure 5.1: Structure of the considered NN.
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Before depicting and commenting upon the results we have got, in Table
5.2 the number of predictor variables taken according to the type of model and
variable selection technique is shown where the level of confidence is settled on
95%. It is important to note that the counter relating to the principal component
analysis is unique while that one of the stepwise selection is dependent to the
output we want to select1.

Technique Model Type

Global Basis Expansion A1 A2 B1 B2 C1 C2

PCA 35 35 31 28 31 32 78 83
SS - 1st 2 9 5 7 11 21 12 13
SS - 2nd 19 22 6 4 18 13 18 7
SS - 3rd 34 15 4 2 17 23 25 5
SS - 4th 23 24 1 7 7 12 15 12
SS - 5th 21 17 4 6 13 10 20 8
SS - 6th 19 10 6 3 14 39 18 14
SS - 7th 3 18 5 12 8 19 18 14
SS - 8th 23 15 6 7 11 13 13 6
SS - 9th 16 18 3 7 12 15 26 13

Table 5.2: Number of components taken for type of model and according to
variable selection technique with LoC = 95%.

Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 collect MSE indices for each sub-chamber.

We can make the following remarks about:

1. method applicated:

• on the whole, neural networks provide better performance than partial
least squares regression;

• only for chamber C, especially for the sub-chamber C2, MSE of linear
systems is on the order of that one of the feed-forward networks and
sometimes it is better. A possible explanation is because chamber C
is stabler and then also a linear model is able to fit in a good manner.

2. Variable selection technique performed:

• In general stepwise selection combined with either NN or PLS provide
better results than principal component analysis, this confirm that
we mentioned in 4.2.7 where we said that predictor variables through
stepwise regression technique were calculated with references to the
output.

1We remember that PCA technique is performed without any reference to the output while
in Stepwise Selection a predictor variable is added or removed in accordance to the output.

79



5. EXPERIMENTAL MODELING RESULTS

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00111 0.00098 0.00079 0.00077 0.00054 0.00083 0.00122 0.00061 0.00087
NN based SS 0.00439 0.00114 0.00120 0.00087 0.00088 0.00190 0.00115 0.00059 0.00096
PLS based PCA 0.01680 0.01380 0.01330 0.01260 0.01290 0.01510 0.01320 0.01260 0.01290
PLS based SS 0.01700 0.01400 0.01370 0.01340 0.01330 0.01520 0.01340 0.01280 0.01330

Table 5.3: MSE of different techniques for sub-chamber A1.

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00184 0.00087 0.00141 0.00122 0.00125 0.00145 0.00136 0.00097 0.00112
NN based SS 0.00199 0.00093 0.00120 0.00117 0.00119 0.00170 0.00155 0.00091 0.00105
PLS based PCA 0.01360 0.01320 0.01350 0.01350 0.01460 0.01330 0.01270 0.01290 0.01310
PLS based SS 0.01370 0.01350 0.01380 0.01320 0.01460 0.01390 0.01250 0.01290 0.01280

Table 5.4: MSE of different techniques for sub-chamber A2.

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00177 0.00134 0.00110 0.00064 0.00062 0.00073 0.00076 0.00110 0.00118
NN based SS 0.00120 0.00105 0.00102 0.00060 0.00064 0.00063 0.00062 0.00100 0.00105
PLS based PCA 0.00890 0.00290 0.00370 0.00760 0.00820 0.00220 0.00800 0.00770 0.00610
PLS based SS 0.00820 0.00250 0.00270 0.00720 0.00750 0.00190 0.00790 0.00750 0.00580

Table 5.5: MSE of different techniques for sub-chamber B1.

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00110 0.00063 0.00149 0.00134 0.00133 0.00142 0.00112 0.00044 0.00054
NN based SS 0.00091 0.00076 0.00143 0.00129 0.00119 0.00097 0.00118 0.00039 0.00045
PLS based PCA 0.00310 0.00081 0.00160 0.00130 0.00190 0.00130 0.00140 0.00064 0.00085
PLS based SS 0.00084 0.00075 0.00130 0.00130 0.00180 0.00094 0.00120 0.00060 0.00078

Table 5.6: MSE of different techniques for sub-chamber B2.

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00102 0.00064 0.00102 0.00058 0.00044 0.00045 0.00072 0.00062 0.00077
NN based SS 0.00071 0.00056 0.00080 0.00050 0.00035 0.00057 0.00067 0.00059 0.00056
PLS based PCA 0.00067 0.00055 0.00065 0.00050 0.00050 0.00041 0.00056 0.00049 0.00057
PLS based SS 0.00077 0.00057 0.00068 0.00055 0.00053 0.00042 0.00065 0.00058 0.00056

Table 5.7: MSE of different techniques for sub-chamber C1.

Technique CVD thickness 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00130 0.00077 0.00175 0.00129 0.00125 0.00173 0.00176 0.00073 0.00109
NN based SS 0.00100 0.00067 0.00106 0.00095 0.00120 0.00153 0.00169 0.00071 0.00094
PLS based PCA 0.00095 0.00062 0.00130 0.00081 0.00140 0.00120 0.00130 0.00052 0.00064
PLS based SS 0.00110 0.00074 0.00160 0.00097 0.00170 0.00130 0.00150 0.00065 0.00076

Table 5.8: MSE of different techniques for sub-chamber C2.

80



5.1 NN FOR VM

Figures 5.3 and 5.4 show the actual target values and the predicted values
for the 5th output of sub-chamber C1 for the different combinations of method-
selection technique.

We note that the prediction of the neural network based PCA is worse than
the others ones, it can not forecast in a good manner the output maintaining
approximately on the mean of it.

In Figures 5.5 and 5.6 the corresponding residuals and the cumulative MSE of
the different couples method-variable selection technique are shown, respectively.
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Figure 5.3: Prediction results of CVD thickness in sub-chamber C1: PLS based
Principal Component Analysis and PLS based Stepwise Selection, respectively.
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Figure 5.4: Prediction results of CVD thickness in sub-chamber C1: NN based
Principal Component Analysis and NN based Stepwise Selection, respectively.
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Figure 5.5: Residuals of prediction results of Figures 5.3 and 5.4, respectively.
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Figure 5.6: Cumulative MSE of different couples method-selection technique used.

5.1.3 Global model versus basis expansion approach

We have built a global model of the CVD producer that does not take in regard of
the sub-chambers it has composed by. From the beginning we already knew that
this model would work worse than the others. This is due to the fact that the
sub-chambers, just observing the first three PCs (return to Section 4.2 for more
details), have some completely different behaviours among them. But our aim is
to compare it with a basis expansion model where we have added the variability
of sub-chamber within the starting whole available data-set XGAMMA.

Model Input Data Output Data

Global XGAMMA YGAMMA

Basis Expansion X̃Γ YGAMMA

Table 5.9: Input and output data for global and basis expansion models.

The input and output data for both models are shown in Table 5.9 where X̃Γ

is built as follows:

X̃Γ =
[
XGAMMA XA1

Γ XA2
Γ XB1

Γ XB2
Γ XC1

Γ XC2
Γ

]
(5.4)

where Xsub−chamber
Γ ∈ ℜn·1 (sub-chamber = A1, A2, B1, B2, C1, C2) is a

vector which has the element
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ith =

{
1 if the current wafer is processed inside the corresponding sub-chamber
0 otherwise

In Tables 5.10 and 5.11 the results (referred to performance MSE) we obtained
are shown where we followed the same procedure we saw for a single sub-chamber.
We can see, as aforementioned, that the global model really works worse than
the corresponding basis expansion one, indiscriminately at the model and selec-
tion technique we used, therefore, the information of each sub-chamber we put
inside the whole data-set XGAMMA brings more improvement in the global model.

However, even now, in all two cases, it is proved that neural networks al-
low better results than linear techniques and the gap between the performance
of these nonlinear systems and those ones of partial least squares regression is
markedly larger than that one of individual sub-chamber model. This can mean
that, although the relative and poor meaning of a global model, NN are trained
sufficiently well and know to generalize in a good manner a bigger set of hetero-
geneous data.

Techinque CVD thickness - 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00224 0.00134 0.00183 0.00229 0.00167 0.00206 0.00211 0.00200 0.00213
NN based SS 0.00166 0.00110 0.00170 0.00115 0.00161 0.00157 0.00184 0.00164 0.00170
PLS based PCA 0.00810 0.00620 0.00710 0.00760 0.00800 0.00690 0.00790 0.00780 0.00770
PLS based SS 0.00820 0.00610 0.00670 0.00740 0.00780 0.00670 0.00810 0.00750 0.00740

Table 5.10: MSE of different techniques for entire CVD producer.

Techinque CVD thickness - 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 0.00161 0.00110 0.00158 0.00181 0.00170 0.00186 0.00224 0.00188 0.00175
NN based SS 0.00155 0.00106 0.00145 0.00112 0.00128 0.00128 0.00142 0.00105 0.00105
PLS based PCA 0.00810 0.00620 0.00700 0.00760 0.00800 0.00690 0.00790 0.00780 0.00770
PLS based SS 0.00790 0.00600 0.00660 0.00690 0.00750 0.00650 0.00710 0.00680 0.00650

Table 5.11: MSE of different techniques for basis expansion model of CVD pro-
ducer.

In Tables 5.12 and 5.13 the MAPE indexes, relating only to neural networks,
are reported and we can note that the level of performance of both the models
using PCA is rather similar, while about that ones that makes use of SS, the
basis expansion model yields better outcomes than the global pattern, with the
exception of the first and second targets.

In Figure 5.7 the comparisons of the trend of cumulative MSE split for models
we used are illustrated.
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Techinque CVD thickness - 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 3.13 2.63 3.34 3.87 3.21 3.46 3.67 3.33 3.88
NN based SS 2.93 2.35 3.47 2.75 3.22 3.18 3.50 3.25 3.17

Table 5.12: MAPE of different techniques for entire CVD producer.

Techinque CVD thickness - 9 points

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

NN based PCA 3.16 2.50 3.61 3.81 3.36 3.45 3.77 3.94 3.71
NN based SS 3.00 2.55 3.06 2.73 2.76 2.68 2.92 2.52 2.41

Table 5.13: MAPE of different techniques for basis expansion model of CVD
producer.

We can make these considerations:

• on the whole, indepentently of global and basis expansion models and va-
riable selection techniques, neural networks produces better results than
linear regression and this confirms what we expected during this work;

• in correspondence of samples number 558, 650 and 1616 there are some
evident increases that are probably due to outliers;

• within PLS, basis expansion model based on stepwise selection has the best
performance while the others ones have similar trends;

• about NN, also now the basis expansion model based on SS implements
the smaller cumulative MSE, in this case followed by global one based SS.
Instead, the last two patterns based on PCA have similar behaviours but
with worse performances.

5.2 Conclusions

In this chapter we reported a case study of virtual metrology module in a semi-
conductor fab concerning to the thickness prediction in a CVD process.

The point of the matter is that the engineer has to choose the best trade-off
between a more flexible system, capable of predicting the entire data-set ex-
ploiting the basis expansion approach, and a system more performing on a single
sub-chamber but which estimations cannot be extend to the other sub-chambers.
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Figure 5.7: Comparison of Cumulative MSE between global and basis expansion
approaches: PLS models and NN models, respectively.
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Chapter 6

Summary, Conclusions and
Future Work

6.1 Summary

In this thesis, some Virtual Metrology techniques for semiconductor manufactu-
ring process control were presented and tested. It is worth noting that standard
estimation techniques may experience difficulties in dealing with very large data-
set, like semiconductor manufacturing process data. In order to estimate metro-
logy data of a CVD producer, various alternative methods that select a subset of
key-variables were considered:

• Partial Least Squares (PLS) based Stepwise Selection: predictor variables
are selected by a stepwise procedure and then are transformed in PLS-
components that are sorted by statistical importance.

• PLS based Principal Component Analysis: predictor variables are selected
by a PCA method and then are transformed in PLS-components that are
sorted by statistical importance.

• Neural Networks (NN) based Stepwise Selection: variables are selected by
a stepwise procedure and next we used back-propagation algorithm as mo-
deling method.

• NN based PCA: variables are selected by a PCA technique and subsequently
we used back-propagation algorithm to model CVD thickness.

Experimental tests showed that neural networks (being a non linear system
that models a non linear process) allow better results than linear techniques. Fur-
thermore, concerning only to NN, the use of stepwise selection method to select
main predictor variables supplies better performance than principal component
analysis.
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6.2 Conclusions

The manufacturing industry continues to strive for cost effective and higher qua-
lity products. The research work in this dissertation is aimed at improving pro-
duct quality by providing process control at every run (i.e. for every product) and
by providing product quality data to the process controller without employing
extra sensors. Towards that end a VM based process control solution is proposed
and developed for manufacturing processes. The approach provides a mechanism
to update the quality prediction model using R2R diagnostic data and periodic
metrology data.

In conclusion, the results of the present thesis suggest the flexibility of a run-
to-run control system encompassing a VM module (see Figure 6.1).

Figure 6.1: VM control system.

6.3 Future Work

The field of VM and its subsequent use for feedback control in the manufacturing
industry is still evolving. This dissertation provides an introduction to the VM
topic and emphasizes its importance for product quality improvement so that
the manufacturing industry can meet today’s stringent market demands. Neces-
sary concepts and methods have been studied in this research to realize VM for
individual processes, which opens the door for new research topics in this field.
There are also a few issues that must be addressed before VM can be successfully
implemented for individual processes and subsequently made part of production
planning on the factory level:
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6.3 FUTURE WORK

new metrology strategies based on VM data: improving the strategies, both
concerning the phase of pre-processing and modelling’s one, here presented
and testing new techniques for the same reason;

multi-recipe and multi-step processes: Many processes in semiconductor ma-
nufacturing consist of multiple process steps conducted in a sequence before
a physical measurement is made on the quality attributes (or metrology
variables). For example, the contact etch process has two similar steps: an
oxide etch and a subsequent nitride etch. Both processes are performed in
similar processing tools one after the other, but wafer CD is measured only
after the second process. This situation is schematically shown in Figure
6.2.

In such cases it becomes difficult to correlate two sets of process variables
with one set of metrology variables. A multi-process multi-recipe approach
is therefore needed for the formulation of VM problem. In the example case
of contact etch, the second process, nitride etch, determines the final CD. It
seems logical to use process data from this process only in building the VM
module. However, in general, data from all process steps should be used in
the VM module and each step components should be weighted according
to the corresponding level of their influence on the final quality variables.

In addition, the R2R controller must be capable of generating two sets of
control values for both steps of the process.

Note that this is a future research topic.

Figure 6.2: VM module for multi-step process.
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