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Abstract

Generating synthetic power grids as a form of data augmentation is one of themost prominent
approaches in recent years to overcome the substantial lack of publicly available datasets, due
to the confidential nature of the information about the real power systems. In this thesis we
propose a new approach to generate synthetic power networks using the Exponential Random
Graphs (ERG) models. To do this we study both the topological characteristics of the power
networks using graph theory and the properties of the ERG family.

For our first proposed model, we introduce a new Hamiltonian specification with a closed
formexpression for the partition function. The secondmodel thatwepropose is amore refined
version of the previous one. Since we have a more complicated specification, the closed form
of the partition function is lost and thus a new method to estimate the parameters is needed.
For this reason, we develop anMCMCbased algorithm to estimate the parameters of an ERG
with any specification and with a constraint on the space of the graphs, which we then use to
generate connected ERGs. We prove some theoretical results on the convergence of this last
algorithm.

These results appear to be both useful in the specific field of power system modeling and
also for the Exponential RandomGraph theory.
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1
Introduction

Power grids are one of the fundamental infrastructures for the proper functioning of every
activity in our society. To make them always work reliably and correctly it is essential to have a
thorough understanding of every aspect of these networks. In a data-based world a similar task
would usually be performed by extracting all data related to these structures with appropriate
techniques. However, when addressing this specific problem, there is a substantial lack of high
quality real data, due to the fact that information about real networks is often limited by their
owner and cannot be freely accessible by the research community.

To overcome this, one of the main approach used and studied during the last decade is the
generation of synthetic power grids whose features mimic the ones of the real networks using
specific mathematical models. It seems natural to see electricity networks as complex graphs
whose structure exhibits distinctive properties. Given that, one could theoretically rely on the
existing literature about generative graphmodels to perform this task, but due to some specific
aspects of the grids, using already existing and well-studied models has been until now unsuc-
cessful, leading to the use of specially constructed procedures that, albeit useful, often lack suf-
ficient rigorous analysis, limiting the possibilities of using graph-theoretical and probabilistic
tools to further enhance our understanding of these special networks.

For this reasons we propose here a new approach, that uses for the first time, to the best
of our knowledge, Exponential RandomGraph models (ERGM) to generate synthetic power
grids. Exponential Random Graphs are one of the most popular family of graph models, es-
pecially in the field of social network analysis. These models are widely studied for their good
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statistical and probabilistic properties and because they can be extremely flexible with a proper
specification.
In this work we provide examples of ERGmodel specifications that can fit some properties

of the real grids. The main results of this thesis are shown in chapter 5 and include a new
general ERG specification with a close form of the partition function, an ERG specification
that mimic the main topological properties of a real grid and a general procedure to estimate
the parameters of a wide class of ERG models using a Markov chain Monte-Carlo inspired
algorithm, together with the rigorous proof of its convergence. It is worth mentioning that
these results can find applications to a wider class of problems other than only synthetic power
grids generation and in fact can be regarded as purely relative to Exponential Random Graph
theory.

All the computational experiments done in this thesis were performed on an HPOmen 15-
dc1xxx laptop with a Intel(R) Core(TM) i7 CPU, and a RAM of 16 GB.

The thesis is organized as follows:

• In Chapter 2 we do a review of the current literature about power system modeling,
highlighting the proposed approaches that include the analysis of the topology of the
grids and discussing their strengths and weaknesses, reporting the results they obtained
compared to real grids.

• In chapter 3we describe in depth the history of the Exponential RandomGraphModels
and their properties, with a focus on simulation and sampling from these models by
usingMarkov chainMonte-Carlomethods. We also briefly cite some of themost recent
literature about the study of ERGmodels through graphons theory.

• In chapter 4 we explain the parsing, preprocessing and selection procedures of the avail-
able grids in order to use them as a reference to specify and validate our models.

• Chapter 5 represents the core of this thesis, since we describe our approach as well as our
main results togetherwith their rigorous proofs andmotivations. We show also howour
results compare to the real grids. This chapter is organized following the chronological
evolution of our models, starting from the very first model specification, for which we
also prove one of the main theorem in our work, then going through the refined speci-
fications that in the end have lead to our final model, for which we provide an in-depth
analysis.

• In Chapter 6 we state the conclusions of our work and we define what are the main
improvements that we could do in the future tomake our approach evenmore accurate,
and also the steps that should be included to make our grids realistic from an electrical
perspective.
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2
Power SystemsModel

In this chapter we will give an overview of the principal properties of the power networks and
also we will review the current literature on the modeling of these networks, with an emphasis
on the articles and papers whose approach focuses more on the topological properties of the
grids. In the first Section 2.1 we will describe briefly the transmission power network model,
focusing on the properties more useful during the synthetic grid generation. In Section 2.2
we do a comprehensive review of the main proposed models and procedures for generating
synthetic systems, reporting the results obtained with such models by their authors. Lastly, in
Section 2.3 we summarize the reasoning behind the use of ERGmodels to tackle this problem
andwhatwill be the advantage of using such an approach compared to the ones already present
in the literature.

2.1 Power GridModel

Power grids are interconnected networks that deliver electricity from producers to consumers,
composed of nodes called buses connected through links called power lines. We can distinguish
two major types of power networks, namely the distribution network and the transmission
network. The distribution networks have shorter power lines (often referred to as distribu-
tion power lines) and serve the function of electricity transportation for short distances and
low-voltage levels. The transmission network is used to transport electricity for long distances
working at high voltage levels, having longer power lines (also referred to as transmission power
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lines). for this thesis we will focus only on the high-voltage transmission networks. To better
understand themodeling of power grids, we first introduce here some basic notations of graph
theory. An undirected, unweighted graph is a pair of objectsG = (V,E) where V is a set of
vertices (also called nodes) andE is a set of vertices’ pairs, whose elements are also called edges or
links. For each graphwe can define an associated adjacencymatrixA = A(G) ∈ {0, 1}|V |×|V |,
that is a symmetric matrix for which it holds:

Ai,j =

1 if(i, j) ∈ E

0 otherwise.
(2.1)

Moreover we also define the Laplacian matrix L of a graph, defined as

Li,j :=


deg(vi) if i = j

−1 if i ̸= j and vi is adjacent to vj
0 otherwise.

(2.2)

The Laplacian matrix is useful to analyze many properties of the Graph as we will see in the
following. A power network can be described as a graph where the nodes represent buses and
the edges represent transmission lines. We can distinguish three types of buses:

• Generators (P ⊂ V ) represent the components where the electricity is produced. Ex-
amples of generators are fossil-fuel power stations, nuclear power plants and Solar panels.

• Loads (L ⊂ V ) represent the components where the electricity is consumed. Loads can
represent, for example, industries, residential neighbourhoods or private houses.

• Interconnections (I ⊂ V ) represent point of passage for the electric current, allowing
for more complex transmission circuits.

In the following we will assume that V = P ∪ L ∪ I and that each node belongs exactly to
one type. In the Fig. 2.1 we show a toy example of a power grid in graph notation. The yellow
node represents a generator, the green nodes represent interconnection nodes and the red ones
are the loads.

From an electrical point of view, any transmission grid works in a specific way under some
basic constraints [4]. Albeit this is not the main topic of this thesis, we summarize briefly here
these constraints to give a better understanding overall:
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Figure 2.1: Toy example of a power grid with 5 nodes

• let g = [g1, g2, . . . , g|V |] be the vector of the power generated at each node in the grid,
and let d = [d1, d2, . . . , d|V |] be the vector of power demand at each node. Then, at
any time the total generation must be equal to the total demand, i.e.,

|V |∑
i

gi =

|V |∑
i

di. (2.3)

• The amount of energy that can be generated by each node is limited, that is gmin
i < gi <

gmax
i for each i.

• The energy generated flows along the transmission lines in the form of alternating cur-
rent to meet the demand of each node. Each lines has a specific capacity, a maximum
amount of power that is allowed to flow on it, in order to avoid overheating. High-
voltage lines have an emergency shutdown systemwhenever the current flowing exceeds
a certain threshold (often set to be smaller than the maximum capacity of the line).

Using the graph theory framework, the bus types can be seen as a nodal attribute and capac-
ities as an edge attribute or edge-weights if we use a weighted graph. Other attributes that can
be considered are the length for the transmission lines, and the geographical position for the
buses.

From a topological point of view, it has been observed that power system have some peculiar
properties that we will briefly describe now:
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• Connectivity: all the power systems are connected graphswhichmeans that there exists
a path between any two nodes. This is due to the fact that the power flow is expected
to be able to reach any point in the grid from any starting point. If we admit parallel
edges (i.e., multiple edges that connect the same pair of nodes) it has been argued that
most of the grids should be 2-connected graphs, which means that the removal of any
single edges does not make the graph disconnected. This last property however is often
disregarded to preserve simplicity of the model, and also because not all the grids are
effectively 2-connected.

• Sparsity: all the power systems are sparse graphs, whichmeans that the number of edges
is of the same order ofmagnitude as the number of nodes, formally |E| ≈ O(|V |). This
fact is quite natural given the high costs to build andmaintain transmission lines, as well
as the intuitive design principle prescribing transmission lines’ not to intersect with each
other.

• Average Node degree: the average node degree ⟨k⟩, i.e., the average number of nodes
each node is connected with, i.e., the average of the degrees of each node ki. It is defines
as

⟨k⟩ := 1

|V |

|V |∑
i

ki =
1

|V |

|V |∑
i

|V |∑
j

Ai,j. (2.4)

It has been showed to be quite stable regardless of the network size, and it oscillates be-
tween values of 2 and 5 [5].

• Average shortest path length: the average path length is the average length of the short-
est path between any two nodes in the graph. Let d(vi, vj) be the shortest path in hops
between any two nodes i and j, then we define the average shortest path length (APL)
as (2.5)

APL =
2
∑

i,j d(vi, vj)

|V | · (|V | − 1)
(2.5)

For power grids, it grows proportionally to ln(N=number of nodes)
ln(⟨k⟩) . This is consistent with

the results of Albert and Barabasi [6].

• Average Clustering Coefficient: the local clustering coefficient of a node is defined as
the ratio of the number of triangles (which in turn are defined as any group of three
nodes with an edge between each pair, graphically forming a triangle) to which the node
belongs, and the number of possible triangles that could exist between the node and its
neighbours, in formulas (2.6):

Ci =
1

ki(ki − 1)

∑
j,l

AijAjlAli. (2.6)
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The average clustering coefficient is defined as the average among all the nodes of the
local clustering coefficients and can also be computed directly from the adjacencymatrix
using the following (2.7):

C =

∑
i,j,k AijAjkAki∑
i ki(ki − 1)

(2.7)

It has been observed that the average clustering coefficient of power networks is much
higher than the one of other type of sparse graphs, effectivelymeaning that grids present
many more triangles [7]. This could be also be due to the fact that we want that the
removal of a single line should not disconnect any node from the others, and triangles
are the simplest subgraph structure that allows for this property.

• Algebraic Connectivity: the algebraic connectivity, λ2, is the second smallest eigen-
value of the Laplacian matrix, also called the Fiedler eigenvalue, reflects the connectivity
of the graph. In particular its value is greater than 0 if and only if the graph is connected,
and its magnitude gives an idea of how well the graph is connected. For power grids it
has been found that it exhibits scaling property with respect to the network size [8].

2.2 Synthetic Power Grid generation

The generation of synthetic grids is a way to augment the availability of public data for both
the research community and industry. This approach rose in popularity in the last decade, and
is thus a relatively new topic. The interpretation of a power grid as a network with attributes is
both straightforward and powerful, thus most of the approaches in the literature work within
this framework. The first models for synthetic grids were made with a focus on the electrical
properties, neglecting the topological structure; for example in [9] the authors use a tree-like
topology with a small number of nodes to study cascading failure blackouts, and in [10] the
authors aim to study contingency and disturbance propagation using ring-like topologies. The
crucial observation is that the purpose of these synthetic power grids was not to have realistic
data per se, but to highlight some electrical properties using oversimplified models.

The first attempt that we are aware of that combines both the rigorous study of sparse com-
plex networks, done for example in [6], with the peculiar characteristics of a power system
can be found in the work ofWang and Scaglione in 2008 [5]: they propose amodel to generate
synthetic power grids of scalable size and random topologieswith nodal locations chosen at ran-
dom according to some probability distribution. In their work they still consider some classical
graph model, such as the “Smallworld” model introduced by Watts and Strogatz [11], which
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was considered by its authors as a good approximation even for electrical systems, but they high-
light how these models cannot capture some of the topological properties of the power grids,
especially the coexistence of connectivity and a small average node degree. Thus they express
the need of specific models for the considered problems.
Within this rationale the same authors made another considerable improvement, introduc-

ing a newmodel that they callRT-nested-Smallworld [12]. Thismodel uses nested Smallworld
models to replicate the characteristics of a real grid, and is build in three different steps:

1. first it forms connected subnetworks with size limited by the connectivity requirement;

2. then the subnetworks are connected through lattice connections;

3. finally, the line impedances are generated from some specific probability distribution
(depending on the network size) and assigned to the links in the topology network.

Aside from the description of themodel it is worthmentioning that the authors, for the first
time, examined the empirical distribution of nodal degree of the real networks, analyzing both
the probabilitymass function and the probability-generating function of the nodal degrees per
bus type, and from this they have concluded that real grids have a nodal degree distribution that
corresponds to the sum of a truncated geometric distribution and an irregular discrete random
variable. Moreover this analysis also proved that the nodal degree distribution differs between
different bus types, an observation that will be crucial both in the future works in the literature
and also for our proposed models in Chapter 5.
TheRT-nested-Smallworldmodel however does not provide a way to produce a correct bus-

type assignment by itself. Therefore, Wang et al. [13] propose a new measure, called ”Bus-type
Entropy”, that incorporates both bus-type ratios and link type ratios and can be used to iden-
tify the presence of correlation among the bus type assignments of a realistic grid. Using this
new measure the authors improved the RT-nested-Smallworld by proposing an optimization
algorithm tomake the bus-type assignment in the synthetic grids byminimizing the distance in
terms of a quantity (that they calld-scaling and they consider a topological property inherent of
the grids) based on the Bus-Type Entropy between [14], solving one of the biggest weaknesses
of their previous model.

Another work of Wang et al. [8] investigates the scaling properties of some topological and
electrical properties of power grids and proposes a new specification for the Bus-Type Entropy
measure that they prove to have better numerical stability. This last work provided new ways
to improve and validate the synthetic grid generation using the RT-nested-Smallworld, and
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together with the in-depth analysis of the statistical properties of the grids done by the same
authors in [7] led to the development of a MATLAB-GUI toolkit called ”AutoSynGrid” [2]
for the automatic generation of synthetic power grids. This toolkit is able to generate synthetic
networks with just the network size as an input, however number of branches, loading level
(ratio of total active load to the total generation capacity of power grid), reference system (real
grid used as a reference for properties such as generator and loads setting), Bus-Type Entropy,
and generation cost modelling approach (needed to perform energy economic studies on the
synthetic cases).

The networks generatedwith this procedure are validated bymeasuring how close the gener-
ated synthetic grids are to the real grid of reference with respect to some considered topological
and electrical properties. Table 2.1 below describes the results obtained by the authors with
respect to the number of nodes (N ), number of edges (E), average degree ⟨K⟩, average path
length (APL) and algebraic connectivity (λ2). For the last three the authors report a interval
within which each value is considered acceptable according to the respective values for the real
grids.

Networks N E ⟨k⟩ APL λ2

AutoSynGrid-500 500 890 3.5 6.22 0.011
Valid Interval [2-5] [2.5-10.5] [0.004-0.040]

AutoSynGrid-1000 1000 1830 3.6 12.7 0.008
Valid Interval [2-5] [8.5-17.5] [0.002-0.020]

AutoSynGrid-3000 3000 5580 3.6 16.7 0.003
Valid Interval [2-5] [12-20] [0.0005-0.005]

Table 2.1: Results obtained with the AutoSynGrid Toolkit by its authors in [2]

The average degree seems to be almost fixed regardless of the network size, albeit within the
accepted range. The tolerance for the average path length and algebraic connectivity seems
loose, but still realistic. With these intervals all the generated grids can be regarded as realistic,
however we must address that the data about the average clustering coefficient of these grids
are not reported.
A different approach can be found in the recent works of Soltan et al. [15, 16]: being pro-

videdwithdetailed geographical data of real power grids, they have developedmethods to gener-
ate synthetic spatially embedded synthetic networks, i.e., they focus on the spatial distribution
of buses and lines. In addition to more common statistics (like average degree, degree distribu-
tion and also the Intersection occurrence first introduced in [17]) they propose a novel statistic,
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the line length distribution similarity, measured as the Kullback-Leibler Divergence between
the real life line length distribution and the synthetic ones. The generation algorithm they
propose, which they have called “Geographical Network Learner andGenerator” (GNLG) and
later renamedNIMBLE, includes three different sub-procedures that we briefly describe here:

1. Spatially Distributed Nodes Generator (SDNG): given the set of nodes of the real graph
G, a GaussianMixture Model is used to cluster these nodes based on their geographical
proximity, finding the best number of clusters according to the Bayesian Information
Criterion. Then having obtained both the categorical probability and the mean and
covariance of a Gaussian distribution for each cluster, it uses these parameters to sample
node locations for the synthetic grid.

2. Tunable Weight Spanning Tree (TWST): the nodes position generated in the last step
are now connected using a tree-like structure that is said to imitate the evolution of a
real grid. At each iteration i, it samples a node j from the set of nodes that weren’t al-
ready sampled according to a probability that depends on the node sampling probability
obtained during the SDNG step and on a specific tuning parameter κ, then it defines a
permutation of the sampled node index ν(i)← j and it removes j form the set of con-
sidered nodes in the future iterations. After this procedure, the algorithm connects each
node to its nearest neighbour according to the new permutation index ν.

3. Reinforcement procedure the aimof this last step is tomake so that the generated network
looks similar to the considered real one, according to some topological properties, in
particular the clustering coefficient and the average path length. In order to do so the
algorithm uses a rationale akin to the preferential attachmentmodel defined in [18] that
takes into account also the geographical properties of thenetwork. The lowdegreenodes
in high-density areas (the areas with most nodes) are randomly linked to a nearby high
degree node. The probabilities used to choose the nodes are determines according to
some input parameters α, β, γ, η.

To test the performance of the GNLG algorithm, the authors compare the results they ob-
tained with the real grids they used as a reference, that are the grid corresponding to a portion
of the Western Interconnection (WI), one of the two major interconnections of the US, and
two grids that represent two regional entities that operate under the Eastern Interconnection
(EI), which is the other major interconnection, the SERC Reliability Corporation (SERC),
which is as large as the WI, and the Florida Reliability Coordinating Council (FRCC), which
is smaller. We report here a portion of the comparison table that they showed in [15].
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Networks APL C

GWI 17.33 0.049
G

′
WI 17.4 0.045

GSERC 19.71 0.049
G

′
SERC 20.26 0.048

GFRCC 11.68 0.075
G

′
FRCC 11.81 0.045

Table 2.2: Results of the GNLG algorithm w.r.t. clustering coefficient (C) and average path length (APL).

All the synthetic counterparts considered statistics mimic closely the ones of reference, thus
this procedure can be said to be a very solid option to create networks that copy the topology
structure of the input grids.
Birchfield et al. [19, 17, 3] propose anothermodelizationwhich focuses on the geographical

properties of large grids, in a similar fashion to the work of Soltan et al. [15, 16]. They use also
an algorithm consisting of multiple steps, which we will now outline:

1. the procedure starts by using information about the considered area geography, popula-
tion andother possible electrical constraints to determine the locations of all the possible
nodes.

2. A clustering technique is then used to assign nominal voltage to each node, then nodes
within each cluster are connected using low-impedance lines.

3. The geographic nature of the procedure allows for considerations on the lines’ length:
they use the fact that researches have shown that all the lines in real power grids must
be part of the set of the geographic Delaunay’s triangulation of the nodes and its second
and third neighbours to determine the set of candidate lines.

4. The line planning algorithm starts by using an arbitrary selection of lines among the set
defined above. Then, following a procedure similar to simulated annealing, a two step
sub-procedure consisting of random removal of a line and ”smart” addition of a line
(according to the desired properties) is iterated for each clustered sub-network until the
obtained network is realistic from both a geographical and electrical point of view us-
ing the N − 1 contingency analysis (i.e., testing if the failure of a line or node would
not propagate, ensuring that each component would still work if anyone fails, mean-
ing thatN − 1 components are still available). The addition of the lines is done taking
into consideration the line length (shorter lines are encouraged) and to match the distri-
bution of Delaunay’s neighbours, that is the proportion between first, second and third
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neighbours along theDelaunay’s graph. Sensitivity (which quantifies the impact of each
candidate transmission line on the contingency robustness of the transmission system,
within the DC power flow modeling) is incorporated in the line evaluation process by
adding a penalty to each candidate line negatively proportional to their sensitivity values,
thus encouraging the addition of lines that mitigate critical contingency overloads.

The grids generated by this algorithm are compared by the authors with large similar real
nets *. This comparison is summarized by table 5.1:

Networks N ⟨k⟩ APL C

EI 36187 2.61 29.2 0.044
Synthetic 70K 34999 2.74 36.7 0.048

WECC 9398 2.58 18.9 0.058
Synthetic 20K 11765 2.99 22 0.071

ERCOT 3827 2.61 14.2 0.032
Synthetic 5K 2941 3.12 13.7 0.089

Table 2.3: Results obtained with the procedure described in [3]

The procedure shows great adaptability and scalability, being able to generate a large syn-
thetic grid with more than 30000 nodes that retains realistic topological properties.
Anotherway to tackle theproblemof synthetic grid generation, fromacomplexnetwork the-

ory perspective, can be found in [1]. The authors consider the current state-of-the-art models
(including the cited aboveRT-nested-Smallworld introduced in [12] and the work fromBirch-
field et al. [19]) not able to represent closely the topological properties of the Power networks.
In particular they investigated the degree distribution d(x) of the grids and found that they can
be heterogeneous, with some grids having a power-law distribution (i.e., d(x) ∼ βx−α) and
others being better represented by an exponential distribution (i.e., d(x) ∼ γe−λx). From this
consideration they assess the need of a parametrical model that can generate synthetic power
grids and can be adjusted with respect to different topological properties and network sizes.
Thus the authors propose a model which follows the evolutionary nature of the power net-
works while also taking into consideration multiple topological characteristics as a way to vali-
date the proposed evolutions of the grids. We report here the flowchart of their procedure:

*In particular the authors consider most of the large north American grids, including the Eastern Intercon-
nection (EI), the Western Interconnection (WECC) and the Texas Interconnection (ERCOT)
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Figure 2.2: Flowchart of the model proposed in [1]

1. As done by Birchfield [19] and Soltan [15] the procedure starts by identifying the nodes’
locations considering electrical and geographical properties, then the Loads are clustered
according to their geographical locations.

2. The generators are linkedwith the Loads by a simple transmission network using an eco-
nomic criterion: a trading process between customers (loads) and suppliers (generators)
is simulated, in which each cluster of customers will try to find the best supplier that is
able to satisfy its energy demand on the lowest operational cost.

3. In the next step the minimum number of lines is added to the graph in order to make
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the graph connected (since different clusters might be disconnected as a result of the last
step). The lines added are again the ones that ensure connectivity at the lowest opera-
tional cost.

4. After a basic topology is created, the procedure begins the reinforcement phase: the con-
nections between clusters are improved following DC power-flow considerations (in
particular if the removal of one current line would disconnect the graph, another line
is added to prevent this).

5. The model checks if the topology guarantees that demand can be met even after the
failure of a line or a generator using a N − 1 contingency analysis (i.e., testing if the
failure of a line or node would not propagate, ensuring that each component would still
work if anyone fails, meaning that N-1 components are still available).

6. After each addition of a line the procedure checks both if the topology gives rise to a
realistic power-flow and also if the current average degree of the graph is the desired one.
If both conditions are met, the procedure stops and the generated network is regarded
as a synthetic power grid.

We report in table 2.4 the results obtained by the authors, comparing the topological prop-
erties of the real grids with the properties of the real ones used as reference, which in this case
are the high-voltage Spanish-Portuguese (SP) one and high-voltage French (Fr) one.

Networks N E ⟨k⟩ APL C

SP real net 304 434 2.855 8.886 0.111
SP synth net 304 434 2.855 9.184 0.105
Fr real net 217 283 2.608 8.279 0.144
Fr synth net 217 283 2.608 8.687 0.147

Table 2.4: Results obtained with the procedure described in [1]

All the generated grids mimic closely the topological characteristics of the real ones, with
only the average path length showing a systematic deviation, that is negligible considering its
magnitude. It is worthmentioning that the size of the considered grids is small, thus is difficult
to determine how well the procedure scales with the network size.
Recently a completely different approach than the ones seen before was used by the Pacific

NorthwestNational Laboratory to develop the SDET (SustainableDataEvolutionTechnology)
tool to create open-access synthetic grids datasets [20]. Themethodology used to build the syn-
thetic networks is summarized in [21], and consists in reassembling anonymized fragments of
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real grids to build a new base topology that is then optimized to mimic the considered proper-
ties of a real grid. Furthermore, this methodology is justified by the authors by doing a topo-
logical analysis of the real power grids from a network of networks perspective [22, 23], that is
stated to highlight new structural characteristics of power systems. In particular the authors in
[22] analyze sub-networks with the same voltage levels as single graphs and then the intercon-
nection of these sub-graphs as a new graph itself, investigating in both cases typical topologi-
cal properties considered in the power system analysis (see Section 2.1 above) such as average
shortest path length and clustering coefficient. The procedure needs to have a collection of real
fragments that are collected and anonymized from real grids; the fragments are obtained by us-
ing several techniques to cluster the nodes real world networks into small node subsets, then
the existing topology for each of these node subsets is corrected by replacing any link to other
clusters’ nodes with a link to a node within the considered cluster. This method allows to gen-
erate hundreds of fragments even from amedium size grid (∼ 3000 nodes). In order to be able
to rank and select the fragments obtained, the authors define two quantities in the following
way: Let E be a set of types ⌉∞, ⌉∈, . . . of electrical properties such as generators,loads,lines,
etc. and letF be the set of fragments. For each e ∈ E let ge be the desired number of elements
of a specific type, defined by the user of the procedure. For each f ∈ F , e ∈ E , let now xf,e
be the number of elements of type e present in fragment f . Then for a specific collection of
fragments {cf}f∈F we define ∣∣∣ge −∑

f∈F

cfxf,e

∣∣∣ < ϵge, (2.8)

as the global error with respect to e ∈ E , with ϵ > 0 being a control parameter. In a similar
way we define the L2 error (up to a scaling) of a single fragment f as

∑
e∈E

(
xf,e
nf
− ge
n

)2

, (2.9)

with nf being the number of buses in fragment f and n the desired number of buses of the
final grid defined by the user. After collecting enough fragments the procedure to generate
synthetic grids follows the steps that we summarize here (we omit here for sake of brevity and
since is beyond the scope of this thesis some of the electrical details of this method. For more
information, refer to this link):

1. To begin with some general desired properties are given as an input by the user. A single
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fragment is then chosen as an initial kernel. This choice ismadeby selecting the fragment
that minimizes (2.9)

2. The subsequent fragments are selected from the available set in an iterative fashion with
the goal of creating a collection able to satisfy (2.8) for each e ∈ E andwith theminimum
ϵ. Starting from the second fragment, the next fragment is chosen randomly among the
ones that share similar boundary buses (the buses located at the limits of the net) with
the fragment chosen at the iteration before and are able to satisfy the condition given by
(2.8) with the current choice of ϵ. If no fragment satisfies this latter condition, then it is
relaxed by increasing the value of ϵ.

3. After forming a collection that satisfies the imposed conditions, a geographic structure
is imposed to the fragments in order to satisfy two major properties of the net: N − 1
robustness and planarity of the graph. Given this constraints, the fragments are then
connected with each other iteratively by forming additional edges referred to as ”con-
nectors”. After each connector is added to the topology, the impedance of the tie-lines
is reduced and then Optimal Power flow analysis and a N − 1 robustness analysis are
performed to check the reliability of the system.

4. If theN−1 robustness is satisfied and theOPF is solved, themethod checks the connec-
tivity of the network. If the network is connected the procedure stops and the synthetic
grid given as an output, otherwise the step before is repeated.

As stated in the procedure, this method highly relies on the available fragments in the library
and on the properties given as an input. We report in Table 2.5 the results obtained when
analyzing the grids generated by this method.

Networks N E ⟨k⟩ APL C

SDET 588 588 686 2.302 13.49 0.01
SDET 2312 2312 3013 2.448 15.008 0.017
SDET 2853 2853 3921 2.548 16.53 0.046
SDET 4661 4661 5997 2.467 15.67 0.018

Table 2.5: Results obtained with the SDET procedure

The synthetic networks seem reliable with respect to the considered topological properties
and the idea of a method to reassemble pieces of existing topologies seems promising, even if it
is limited by the available real grids used to form the fragments’ library. As we will state in the
conclusions, we will propose to apply a similar rationale also for our approach when dealing
with bigger grids.
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2.3 Remarks on the current models

As we have seen in Section 2.2, most of the generative models proposed in the literature are
build using a multiple step procedure, with the rationale that a step-like structure can repro-
duce better the real evolution of a grid. Furthermore, topological and electrical properties are
often considered in separate steps when generating a synthetic grid.

The models that we are going to propose in Chapter 5 use a completely different approach.
In fact, we focused on the generation of realistic topologies with the least amount of input
data, neglecting for instance geographical properties or line lengths. We believe that, given a
realistic simple unweighted network, the other layers of a realistic grid, such as the power-flow
and geographical attributes, can be added later in subsequent procedures that are beyond the
scope of this thesis.

Moreover the models that we propose in this thesis belong to the Exponential Random
Graph (ERG) family (which will be introduced in Chapter 3) and this allows for a better sta-
tistical and probabilistic analysis of the generated grids, highly benefiting not only our current
work but also any further development of these models.
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3
Exponential RandomGraphs

This chapter aims to give more details about the history, motivations and properties of Expo-
nential Random Graphs (ERG). The exposition roughly follows the comprehensive overview
written by Agata Fronczak [24].

In the first section 3.1 we will review the historical background of these models, in the sec-
ond section 3.2 we will define and motivate the model and highlight the main properties and
finally in the last section 3.3 we will discuss the simulation and estimation of Exponential Ran-
dom Graph models using Markov chain Monte Carlo methods and also some of the possible
problems arising when using these techniques.

3.1 Historical Background

The first general random graph ensemble was defined in [25] with the aim of exploring biolog-
ical networks by Solmonoff and Rapoport in 1951, who considered the set of all simple undi-
rected graphs with a fixed number of nodesN , and for each node-pair an edge was connecting
the two with probability p. This model was later extensively studied and popularized by Erdos
and Renyi [26], thus being known from then onward as the Bernoulli model or Erdos-Rényi
model (ER-model). Albeit not yet formalized in that way, the ER-model is the first example
of an Exponential Random Graph model (specifically, as we will understand better in the fol-
lowing, corresponds to an ERGwhoseHamiltonian considers only the number of Edges as an
observable).
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The first exponential family probability distribution for random graphswas proposed in the
early 1980s by Holland and Leinhardt [27], and then a more general definition similar to the
one used nowadays was given by Frank and Strauss [28].

3.2 Model Definition and properties

We want to build the ensemble model G = {G} that we assume to be the underlying model
fromwhichwewould sample some graphs (in practice oftenwe start froma real-world network
and we want to build the ensemble of this specific graph realization). We assume that some
measurable properties of the graphs should be shared on average across all the ensemble. We call
those properties the graph observables. Typical examples of observables used in ERGmodels are
functions of sub-graphs counts: if we move in a space of graphs with N nodes we can define
as a sub-graph any graph structure that includes m < N nodes (in practice often we have
m << N ). Common sub-graphs considered in the literature are single edges, 2-paths and
triangles Fig. 3.1.

Figure 3.1: Sub‐graphs: from left to right, single edge, 2‐paths and triangle

It seems then reasonable to assume that the observables x1(G), x2(G), . . . , of a graphG de-
termine the probability of observing that graph as the network realization. In the ERGmodel
we assume that theprobability of observing a certain graphGwithobservablesx1(G), x2(G), . . . , xr(G)
is given by

P (G) =
eH(G)

Z
, (3.1)

whereH(G) is called theHamiltonian of the model and takes the following form

H(G) := β1x1(G) + β2x2(G) + · · ·+ βrxr(G), (3.2)

with β1, β2, . . . , βr being parameters of the model andZ takes the name of partition function,
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which can be calculated from normalization condition∑
G∈G

P (G) =
1

Z

∑
G∈G

eH(G) = 1, (3.3)

thus implying
Z =

∑
G∈G

eH(G). (3.4)

Now notice that for each observables the follow equation holds

x∗i = ⟨xi⟩ =
∑
G∈G

xi(G)P (G) ∀i (3.5)

thus, the parameters β1, β2, . . . , βr should be calculated, either analytically or numerically,
from equation (3.5) after fixing the values of x∗i , for each i.

3.2.1 Main properties

We will now discuss a more general statement for (3.5). Consider any quantity y = y(G)

depending only on the graph G. We can calculate an estimate of this quantity as an average
over the whole ensemble by using

ŷ = ⟨y⟩ =
∑
G∈G

y(G)P (G) =
1

Z

∑
G∈G

y(G)eH(G). (3.6)

This means that we can infer general properties of the, supposed, underlying model that gen-
erated the observed network using other properties (that maybe we are assuming to be true
and shared across all the graphs) as the observables. For example we can get an estimate of the
average path length of the ERG ensemble build by using the degree sequence as the observable.

We can retrieve equation (3.5) from (3.6) by considering the observables as the quantities
we want to estimate. As stated before, by doing this we can obtain a close form to calculate
analytically or numerically the parameters βi. In fact following equation (3.1) we obtain

⟨xi⟩ =
1

Z

∑
G∈G

xi(G)e
∑r

j=1 βjxi(G). (3.7)
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We have now that

⟨xi⟩ =
1

Z

∑
G∈G

xi(G)e
∑r

j=1 βjxi(G) =
1

Z

∂

∂βi

∑
G∈G

e
∑r

j=1 βjxi(G) =
1

Z

∂Z

∂βi
=
∂F

∂βi
, (3.8)

where F := lnZ is called the free-energy of the model. Moreover, since it also holds the fol-
lowing

⟨xi2⟩ =
1

Z

∑
G∈G

xi(G)
2e

∑r
j=1 βjxi(G) =

1

Z

∂2Z

∂βi
2 , (3.9)

we can also retrieve a close form for the variance of each observable:

⟨xi2⟩ − (⟨xi⟩)2 =
1

Z

∂2Z

∂βi
2 −

( 1

Z

∂Z

∂βi

)2
=

∂

∂βi

( 1

Z

∂Z

∂βi

)
=
∂2F

∂βi
2 =

∂⟨xi⟩
∂βi

. (3.10)

In statistical physics this last expression takes the name of fluctuation-response relation.

3.2.2 ERG distribution frommaximum entropy

We will now briefly show the rationale behind the form of the ERG model given by equation
(3.1) froman InformationTheory perspective. Consider the general problemof having a graph
Gwith somemeasurable properties (the observables)x∗1, x∗2, . . . , x∗r . LetG be the set of all pos-
sible network realizations (the ensemble). Wewant to define a probabilitymeasureP (·) overG
so that the expectation of each of the observable computed over all the possible network realiza-
tions should be equal to the observed value xi(G). The probability measure should be the best
choice we canmake, i.e., the one that uses theminimum assumptions while also satisfying each
constraint that we can possibly have in our framework. According to the maximum entropy
principle of information theory [29], the best choice ofP (·) is given by the one that maximizes
the Shannon/Gibbs entropy,

S = −
∑
G∈G

P (G) lnP (G), (3.11)

subjected to the constraint that
∑

G∈G P (G) = 1 and the ones arising from (3.5). This is due
to the fact that (3.11) measures precisely the opposite of the information used, that means that
the bigger is the value of S the least amount of assumptions are used.
Since we are now in the situation of having a constrained maximization problem, we can

use the Lagrange multipliers to find a solution. We introduce the multiplier λ, for the first
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constraint arising from the fact that P () should be a probability measure, and the multipliers
β1, β2, . . . , βr, for the constraints arising from (3.5), then themaximumvalue forS is achieved
when P () satisfies:

∂

∂P (G)

[
S−λ

(
1−
∑
G∈G

P (G)
)
−

r∑
i=1

βi

(
x∗i −

∑
G∈G

xi(G)P (G)
)]

= 0 ∀G ∈ G. (3.12)

This gives

− lnP (G)− 1 + λ+
r∑
i=1

βixi(G) = 0, (3.13)

which implies the form given by equation (3.1) for P (G),

P (G) = exp
[
λ− 1 +

r∑
i=1

βixi(G)
]
=
eH(G)

Z
, (3.14)

withH(G) =
∑r

i=1 βixi(G) being what we have defined as the Hamiltonian and Z = e1−λ

being the normalizing partition function.

3.3 Monte-Carlo methods for ERG

We have seen that if we have a closed-form expression for the partition functionZ we can then
compute the parameters of the model using (3.8), and also sampling each graph directly us-
ing (3.1) since it depends only on the graph observables and on the partition function Z . In
practice, however, there are very few model specifications that lead to a tractable form for the
partition function, and thus the parameters estimation cannot be done analytically. On the
other hand, sampling from the model does not require the knowledge of the partition func-
tion, since it can be done via Monte-Carlo simulations, as we will describe in the following.

3.3.1 Metropolis-Hastings for Exponential RandomGraph

First we recall briefly how the Metropolis-Hastings (MH) algorithm works, since we will rely
on it. MH is one of the most popular Markov-ChainMonte Carlo (MCMC) methods.

LetX be a state space and assume we want to generate samples from a known probability
distribution P(x) for each x ∈ X . We want to build a Markov processMt that moves inX
with a unique stationary distribution π(x) = P(x). A Markov process is uniquely defined
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by its transition probabilities P (x→ x′), i.e., the probability of going from state x to state x′.
In the following we will consider, unless stated otherwise, only ergodicMarkov processes, that
means aperiodic and positive recurrent processes.

For these processes, a sufficient but not necessary condition to guarantee the existence of the
stationary distribution is the so called detailed balance equation:

π(x′)P (x→ x′) = π(x′)P (x′ → x), (3.15)

whichmeans that the probability of going from state x to state x′ multiplied by the probability
of being in state x is equal to the probability of going from state x′ to state xmultiplied by the
probability of being in state x′.

As mentioned earlier, the Metropolis-Hastings algorithm aims to build a process whose
unique stationary distribution is π(x) = P(x), and to do so the algorithm starts from the
Detailed balance equation (3.15)

P(x′)P (x→ x′) = P(x′)P (x′ → x), (3.16)

which can be rewritten as
P (x→ x′)

P (x′ → x)
=
P(x′)
P(x′)

. (3.17)

Now the Metropolis-Hasting algorithm separates the transition probability into a proposal
T (x → x′) and an acceptance probability A(x → x′): the proposal distribution T (x →
x′) is the conditional probability of going from state x to state x′, the acceptance distribution
A(x→ x′) is the probability of accepting state x′ as the new state that the chain is visiting.

The transition probability can thus be rewritten as

P (x→ x′) = T (x→ x′)A(x→ x′), (3.18)

and now by plugging (3.18) into (3.17) we obtain

A(x′ → x)

A(x→ x′)
=
P(x′)T (x→ x′)

P(x′)T (x′ → x)
. (3.19)

Thenext step is tofindanacceptanceprobabilityA() that satisfies equation (3.19). TheMetropo-
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lis choice to solve this problem is given by

A(x′ → x) = min

{
1,
P(x′)T (x→ x′)

P(x)T (x′ → x)

}
. (3.20)

For the Metropolis acceptance ratio eitherA(x → x′) = 1 orA(x′ → x) = 1, and then the
condition (3.19) is satisfied.
TheMetropolis-Hastings algorithmcanbe easily adapted for theExponentialRandomGraphs

models, in particular the form of the acceptance ratio makes so that it is possible to run the
algorithm without knowledge of the partition function Z . In fact the Metropolis-Hastings
algorithm for an ERG can be written in the following way:

Algorithm 1Metropolis-Hastings Algorithm for Exponential RandomGraphs

Start fromG0 = (V 0, E0) ∈ G
for k = 1, . . . , K do

Generate a random edge (i, j)
if (i, j) ∈ E then

Remove the edge: Ek = Ek−1 \ (i, j)
acceptGk with probabilityA = min

{
1, P (Gk)/P (Gk−1)

}
else

Add edge: Ek = Ek−1 ∪ (i, j)

acceptGk with probabilityA = min
{
1, P (Gk)/P (Gk−1)

}
end if

end for

Notice that since A = min
{
1, P (Gk)/P (Gk−1)

}
, we can rewrite this acceptance proba-

bility as

A = min
{
1,

eH(Gk)

eH(Gk−1)
· Z
Z

}
, (3.21)

and thus we can simplify by removing completely the contribution ofZ , obtaining

A = min
{
1, eH(Gk)−H(Gk−1)

}
, (3.22)

which means that the acceptance probability is equal to one ifH(Gk) − H(Gk−1) > 0 and
equal to H(Gk) − H(Gk−1) otherwise. By using Algorithm 1 with parameters β that sat-
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isfy equations (3.8), after convergence is reached we are guarantee to sample from an ensemble
whose considered observables, i.e., the ones that we include in the Hamiltonian, have on aver-
age the same values as the ones of the observed graph.

If we do not have a closed-form expression of the partition function to calculate the “true”
values of the parameters, we need to approximate them. We must take into account that, espe-
cially when we include in the Hamiltonian terms that go beyond the dyadic relationships of
the nodes (e.g. when we include triangle or k−stars), this can lead to odd behaviours of the
simulated Exponential RandomGraph models, ending with degenerate graphs i.e., nearly full
or nearly empty graphs.

3.3.2 Phase transitions in ERGMs

Phase transitions are another phenomenon that characterize Exponential Random Graphs
models and have also a very specific interpretation from a physical point of view [24]: with
some model specifications, it has been observed that very similar parameters’ configurations
could lead to completely different topologies, dividing the space of possible outcomes of the
given model specification into two ”phases”, with each phase consisting of a sub-enesemble
of graphs that share a macro-property, for example is fairly common to observe a phase of
very sparse graphs and a phase of nearly complete graphs both arising from the same specified
modelwith similar parameters. This behaviourhave another very concerning implication, since
a model specification exhibiting a phase transition could make some outcomes impossible to
reach, effectively meaning that in some situations the desired ensemble could not be build us-
ing some ERG specifications. In the physical systems phase transitions give rise to interesting
phenomena such as ferromagnetism or superconductivity.

A possible theoretical explanation of phase transition in Exponential RandomGraphswhen
dealing with dense graphs can be retrieved from the work of Chatterjee and Diaconis [30].
Since, as wewill see in chapter 5, wewill workwithmodel specifications forwhichwe do not

have a closed-form expression to compute the parameters, and in fact we will useMonte-Carlo
methods to estimate the values of these parameters, we need to be aware of both the possibility
of degeneracy and analyzing phase transitions if arising.
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4
Analysis of available grids

Before going through the modeling phase we analyze here the grids’ datasets that we used as
a reference to develop our models. The grids were collected and described in [31] and are
available in a MATPOWER testcase format [32] in this Github repository power grid opti-
mal power flow library. The analyses contained in this chapter have been performed using the
programming language Python 3 [33].

4.1 Grid data

The parsing of these files was done using this library created by Leon Lan. For each grid we
obtain a Pandas dataframe [34] objects for the buses’ data, the branch data and the generator
data. From these dataframes we then build up a simple, undirected, unweighted graph ob-
ject with the bus type as a node attribute, and the associated adjacency matrix. The bus type
were inferred as follows: the generators are retrieved directly from the generator list available
in the MATPOWER file, the nodes regarded as interconnections are the ones with 0 power
generation and 0 power demand, and the other nodes are labeled as loads. As stated before,
we choose to neglect some of the electrical aspects of the grids, such as line capacities and gen-
eration/demand allocation, during the development of our models since our main objective
is to generate realistic synthetic topologies, however our procedure is able to retrieve also all
the electrical characteristics from the MATPOWER file, thus enabling future works on these
aspects.
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Name N |E| ⟨kgen⟩ ⟨kload⟩ ⟨kint⟩

118_ieee.m 118 186 3.56 2.50 3.25
1354_pegase.m 1354 1991 2.58 1.08 2.53
162_ieee_dtc.m 162 284 1.67 3.86 2.71
179_goc.m 179 263 1.00 2.45 3.65
1888_rte.m 1888 2531 0.82 2.76 1.76
1951_rte.m 1951 2596 0.92 2.78 4.12
2000_goc.m 2000 3639 1.15 3.08 2.78
200_activ.m 200 245 1.00 2.91 3.25
2312_goc.m 2312 3013 2.01 2.51 2.71
2383wp_k.m 2383 2896 3.01 2.33 0.00
240_pserc.m 240 448 1.00 3.44 0.00
2736sp_k.m 2736 3504 3.44 2.45 3.00
2737sop_k.m 2737 3506 3.56 2.45 3.50
2742_goc.m 2742 4673 3.67 2.91 2.07
2746wop_k.m 2746 3514 3.20 2.45 2.80
2746wp_k.m 2746 3514 3.16 2.45 0.00
2848_rte.m 2848 3776 8.14 1.18 0.04
2853_sdet.m 2853 3921 1.90 2.85 2.87
2868_rte.m 2868 3808 9.22 0.81 0.00
2869_pegase.m 2869 4582 2.70 2.62 2.79
300_ieee.m 300 411 1.96 3.06 2.15
3012wp_k.m 3012 3572 2.96 2.29 1.22
3022_goc.m 3022 4135 1.68 2.76 2.85
30_as.m 30 41 2.00 2.77 4.50
30_ieee.m 30 41 2.00 2.77 4.50
3120sp_k.m 3120 3693 2.92 2.30 1.22
3375wp_k.m 3374 4161 3.54 1.81 8.00
3970_goc.m 3970 6641 3.34 2.86 2.54
39_epri.m 39 46 1.10 2.79 0.00
4020_goc.m 4020 6988 3.74 3.02 2.49
4601_goc.m 4601 7199 3.33 2.72 3.24
4619_goc.m 4619 8150 3.78 3.19 2.50
4661_sdet.m 4661 5997 2.45 2.43 2.78
4837_goc.m 4837 7765 3.22 2.72 2.54
4917_goc.m 4917 6726 1.85 2.71 2.85
500_goc.m 500 733 1.38 3.22 2.10
57_ieee.m 57 80 3.86 2.62 2.00
588_sdet.m 588 686 2.54 2.18 2.87
73_ieee_rts.m 73 120 2.88 3.11 2.00
793_goc.m 793 913 2.61 2.15 2.48
89_pegase.m 89 210 3.17 7.15 3.14

Table 4.1: Available grids after parsing
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Name N |E| ⟨kgen⟩ ⟨kload⟩ ⟨kint⟩

10000_goc.m 10000 13193 1.33 2.69 3.57
10480_goc.m 10480 18559 3.74 3.05 3.02
13659_pegase.m 13659 20467 1.02 1.53 3.64
19402_goc.m 19402 34704 3.75 2.99 3.46
24464_goc.m 24464 37816 3.33 2.90 2.80
30000_goc.m 30000 35393 1.54 2.36 3.75
6468_rte.m 6468 9000 1.83 2.60 3.27
6470_rte.m 6470 9005 1.81 2.59 4.82
6495_rte.m 6495 9019 1.78 2.56 5.95
6515_rte.m 6515 9037 1.77 2.57 5.90
8387_pegase.m 8387 14561 3.26 3.01 3.74
9241_pegase.m 9241 16049 3.21 1.92 3.12
9591_goc.m 9591 15915 3.74 2.92 2.43

Table 4.2: Available grids after parsing

At the end of this procedure we obtained 54 different grids of various sizes, ranging from
small (14 buses) to large (30000 buses). We report here in Table 4.1 and Table 4.2 the list of all
these grids with name, number of buses (N ), number of lines (|E|), and average node degree
per bus type (kgen⟩, ⟨kload⟩, ⟨kint⟩).
Because of the sensitive nature of the data about real power systems, even the publicly avail-

able grids are often only partial representations of real grids: in order to avoid any disclosure of
important information, they might been build by sampling a bigger grid in order to obtain a
smaller pseudo-realistic one or they might even be partially synthetic themselves. This means
that is crucial to understand the origin of the grids we ended up with after the procedure de-
scribed above before going on, so that we can assess the quality of the data we are working
with and understanding if it fits the scope of our research. Thus we briefly describe now the
obtained grids and their original source:

• the IEEE testcases [35] represent portions of the American Electric Power System (in
the Midwestern US) extracted in the period 1960-1965. These networks are small (14
buses) to medium (300 buses) size.

• theRTE and PEGASE testcases [36] represent accurately the size and complexity of por-
tions of the European grids (in particular the high-voltage and super high-voltage French
grids are used for the RTE grids whereas mid-European grid are used for the PEGASE).
Albeit accurate from an electrical perspective, these cases are fictitious, often obtained
through sampling of the real grids, thus we must be careful when using them as a refer-
ence for the topological properties.
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• the Polish test cases represent the high-voltage transmission lines duringwinter peak con-
ditions (“wp”) in 2007-2008, winter off-peak conditions (“wop”) in 2007-2008, sum-
mer peak conditions (“sp”) and summer off-peak conditions (“sop”) in 2004. They are
all reduced grids, representing only partially the real network. The topologies might not
be entirely reliable sincemultiple nodeswere aggregated and synthetic nodeswere added.

• The “goc” (Grid Optimization Competition) and “sdet” (Sustainable Data Evolution
Technology) are completely synthetic, and most of them are generated through the pro-
cedure described in [3] (most of the “goc” grids) or using the SDETprocedure described
in [21] (all the “sdet” grids, some of the “goc” grids). When using this networks wemust
be aware of their synthetic nature, thuswe should avoid using them to validate ourmeth-
ods.

4.2 Descriptive analysis

Because of the ERG structure, we have decided to analyze some specific topological aspects that
can be relevant for our models, namely triangles and k−triangles and the differences among
nodes belonging to different bus types. For the other properties like average shortest path
length, algebraic connectivity or average global degree we have found results consistent with
the literature, thus we omit here the detailed results and we refer to the articles that describe in
depth these characteristics [12, 7, 19].

4.2.1 Triangles and K-triangles

One of the main topological properties of the power grids is that the global clustering coef-
ficient have been observed to be high when compared to random graphs of similar size [11].
Since the global clustering coefficient is computed as in (2.7), an higher value of this property
means that the graph presents a number of triangles that is higher than the other sparse graphs.
In Fig. 4.1 we can see the relation between the number of edges (|E|) and the number of trian-
gles (|T1|) for the 54 networks in Table 4.1.
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Figure 4.1: Relation between number of edges and number of triangles in Table 4.1

It is worth highlighting two distinct behaviours: the majority of the grids have a number
of triangles that is much smaller than the number of edges, however some grids have a much
higher number of triangles compared to the others ( |E|

2
< |T1|). We further investigate this

phenomenon by looking at another quantity that have been used also in the ERG literature
[37]: the k−triangles. A k−triangle is defined as k different triangles that share the same edge.
Examples of this structure are given in Fig. 4.2

Figure 4.2: A 2−triangle, a 3−triangle and a 4−triangle

From a topological point of view analyzing the k−triangles capture the nestedness of the
triangles in the graph, giving insights on the global structure. In particular, we look into the
relation between the number of edges and the number of 2−triangles (|T2|). This choice was
made because of it is the most simple of the k−triangular structures and furthermore because
the number of 2−triangles determines the number of k−triangles with k > 2. It is also impor-
tant to notice that is possible to have |T2| > |T1| if there are multiple k−triangles with high k,
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since any k−triangle is composed of
(
k
2

)
2−triangles (e.g. consider the 4−triangle in Fig. 4.2, in

that structure we have |T2| =
(
4
2

)
= 6). The scatterplot in Fig. 4.3 shows the relation between

number of edges and 2−triangles in the grids.

Figure 4.3: Relation between number of edges and number of 2−triangles

The last scatterplot furthermore confirms the existence of two regimes in the topology of
the grids. Motivated by this fact, we introduce a distinction between the networks: we say that
a graph is supertriangular if |T2| > |T1| and normotriangular otherwise. We have found 12
supertriangular networks among the 54, and of these 6 are from PEGASE test cases, that are
nested within each other (effectively meaning that they corresponds to portions of the same
aggregated grid/ they have synthetic buses and lines added with the same procedure). The rea-
son behind the existence of these two behaviour should be further investigated. It is probable,
albeit not provable without more data, that the presence of multiple k−triangles in a grid is
due to the necessity to satisfy theN − 1 robustness conditions, that translates to the require-
ment of 2−connectivity from a topological point of view. In fact a k−triangular structure
allows for better redundancy (in fact there will still exist a path between any two node of these
structures if any single edge is removed). However since this could also be symptomatic of a
myopic procedure to synthesize grids or to modify portions of existing grids in order to avoid
restrictions, we choose to work exclusively with the networks that we have said to be normotri-
angular, that represent also the majority of the available grids. We now regenerate Fig. 4.1 and
Fig. 4.3 focusing only on normotriangular networks.
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Figure 4.4: Relation between number of edges and number of triangles for the normotriangular networks

Figure 4.5: Relation between number of edges and number of 2−triangles for the normotriangular networks

As we can see in Fig. 4.4, without the supertriangular graphs there is a clear relation be-
tween number of edges and number of triangles, and this is also true up to an extent for the
2−triangles, see Fig. 4.5. It is also worth mentioning that for almost every grid we have |T2| <
100, meaning that regardless of the network size we have a number of 2−triangles that is small
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and almost constant (it is also important to notice that this implies also that we should expect
the number of k−triangles with k > 2 to be even smaller, negligible for most of the grids).

4.2.2 Bus type percentages

It has already been observed in [12] that the average degree is different for each bus-type, thus
whenmodeling the grids’ topologies we should take into account this aspect over just consider-
ing the global average degree. To better understand the differences between generators, loads,
and interconnections,we compute thepercentages of eachbus type to all thenodeswith respect
to the network size among the grids selected. By doing so we want to highlight the importance
of a correct bus type assignment during the modeling, and also it can be useful to further im-
prove our understanding of the networks at our disposal, as done before with the triangular
counts.

Figure 4.6: Fraction of generators in the graph to number of edges

In Fig. 4.6 we can see that the bigger the network, the smaller the percentage of generators.
This could be due either to the fact that the smaller grids are just portions of the bigger ones and
thus to obtain a relevant test case the generators tend to be includedmore than the other nodes,
or because in many bigger grids multiple generators can be aggregated into one node. On the
converse, as we can see in Fig. 4.7 the number of loads tends to increase with the network size.
This could be due to the same reasons as for the behaviour of the percentage of generators,
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but with a reversed effect: in fact for the smaller grids loads can be neglected or aggregated,
whereas bigger grids havemultiple loads since they should representmore complex geographical
features.

Figure 4.7: Percentage of loads in the graph to number of edges

The percentage of interconnections, as we can see in Fig. 4.8 is almost constant regardless of
the size, with two exceptions represented by the 1354 PEGASE and the 30000 PEGASE, where
the percentage of interconnections is close to 90%. The reason behind this fact is unclear. It is
possible that this is due to poor labeling of the nodes or because of a particular form of aggre-
gation of generators and loads.
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Figure 4.8: Percentage of interconnections in the graph to number of edges

4.3 Final considerations

The results of our analysis showed a seemingly coherent behaviour of the available grids with
respect to the considered properties, when we restrict ourselves to those networks for which it
holds |T2| < |T1|. Moreover, we highlight the oddity of the grids belonging to the PEGASE
type, which we recall to be a collection of nested and fictitious grids. For this reason we choose,
when possible, to avoid using them as a reference for our models.
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5
ERGMs for power systems

This chapter will include the main results of our work, both from a power system modeling
and from ERG theory point of view.

• In Section 5.1 we describe the first model specification that we propose, including the
proof of one theorem relative to an ERG class which our specification belongs to and
the results that we obtained.

• In Section 5.2 we show our second and final model that arise from solving the main
issues of the specification proposed before. This section is organized as follows: first we
specify the form of the Hamiltonian, explaining the reasons behind the new considered
observables. Thenwemove into the problemof estimating the parameters of thismodel.
For this reason, we first present the methods already present in the literature, then we
highlight their limits within our problem. We then prove the main theoretical result of
this model, which is a MCMC inspired method to estimate the parameters of an ERG
ensemble of connected graphs. Finally, we show the results of this last model with the
parameters estimated with our method.

• In Section 5.3 we compare the results obtained with our approach to the real grids of
reference, and we comment the advantages and the limits of our models both from a
theoretical and from a computational point of view.
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5.1 Model I: Edge-TypesModel

One of the crucial aspects of a power network is the so-called bus-type assignment. As men-
tioned in Chapter 2, when modeling each bus as a node of a network it must be taken into
account that there are three type of bus, usually referred to as Generator (P ), Load (L) and
Interconnection (I), each with a different role in the system and thus each exhibiting different
nodal properties.

In the literature many proposals were formulated to solve the bus-type assignment problem,
for example in [14] the authors introduce an algorithm to assign the proper bus-type at each
node after generating the whole topology based on a measure called ”Bus-Type Entropy” first
introduced in [13].

Within our framework, however, it seems better to incorporate the information on the bus-
types directly into the model. Given a a simple, undirected, unweighted graph G = (V,E)

representing a power grid, we can consider a partition ofE based on the bus-type of the nodes
connected by each edge. With the 3 different possible bus-types described above, this partition
leads to 6 different type of edges that we name EPP , EPL, EPI , ELL, ELI , EII , where Eab
indicates that the edge connects a node of type a to one of type b.
We propose now an ERGmodel with the following Hamiltonian specification:

H = βPP |EPP |+ βPL|EPL|+ βPI |EPI |+ βLL|ELL|+ βLI |ELI |+ βII |EII |. (5.1)

This specification not only solves the bus type assignment by including as observables the num-
ber of edges for each type, but has also thehuge advantage of leading to a closed-formexpression
for the partition function, as we will prove in the following section.

5.1.1 Theoretical results forModel I

Recall now that if we consider a ERGmodel with just the number of edges as an observable it
is possible to compute the exact partition function and the resulting model will be equivalent
to an Erdös-Renyi model [24]. The following theorem that we prove generalizes this idea to a
wider class of models, that includes also our specification.

Theorem 1. Consider a simple, undirected, unweighted graphG = (V,E), and letA =
(
Aij
)

be the symmetric adjacency matrix associated toG.LetE1, E2, E3, . . . , EK be a partition ofE
and letA1, A2, A3, . . . , AK be a block decomposition ofA such thatAm =

(
Aij
)
∀(i, j) ∈ Em.
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Then for an Exponential Random GraphModel with HamiltonianH , defined by

H =
K∑
i

βi|Ei| (5.2)

whereβi are real parameters and |Ei| indicates the number of nonzero entries inAi, the partition
functionZ associated toH takes the following form:

Z =
K∏
i

(1 + eβi)M(Ei), (5.3)

whereM(Ei) indicates the value thatEi would take ifG were a complete graph.

Proof. Using the Hamiltonian (5.2), the partition function of this model is

Z =
∑
G∈G

e
∑K

i βi|Ei(G)|. (5.4)

The key observation here is that when summing over all the possible graphs, each blockAi can
be considered as an independent matrix and |Ei(G)| represents the number of edges in the
portion of graph associated withAi. We can thus rewrite (5.4) as

Z =
∑
G∈G

K∏
i

∏
Aij∈Ai

eβiAij , (5.5)

but now sinceAij can take only values in {0, 1} and in each blockAi we haveM(Ei) possible
entries, we obtain

Z =
K∏
i

∏
Aij∈Ai

(1 + eβi) =
K∏
i

(1 + eβi)M(Ei). (5.6)

With this formulation of the partition function we can then easily compute the free-energy

F = logZ = log
K∏
i

(1 + eβi)M(Ei) =
K∑
i

M(Ei) log (1 + eβi), (5.7)
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and recalling (3.8) we have for each i it also holds

⟨|Ei|⟩ =
∂F

∂βi
= Âi

eβi

1 + eβi
. (5.8)

And as said in Chapter 3, this formulation can be used to desired find the values of the param-
eters by imposing ⟨|Ei|⟩ = |Ei|.

It is easy to see now that in our case the following Hamiltonian specification satisfies the
assumptions of Theorem 1

H = βPP |EPP |+ βPL|EPL|+ βPI |EPI |+ βLL|ELL|+ βLI |ELI |+ βII |EII |. (5.9)

This specification assures that the bus type assignment will be on average the same as the one
of the true network when the parameters β are obtained with the method described above.

5.1.2 Computational results forModel I

As stated in Section 3.3 in order to simulate from anERGwith a given parameter configuration
we can use the Metropolis-Hastings algorithm.

Here as an example we report the results of the simulations frommodel (5.9) with the “300
ieee” as an input network. As stated in Chapter 4, the “300 ieee” is a test case that represents a
portion of theAmerican Electric Power System (in theMidwesternUS) extracted in the period
1960-1965. It has 300 nodes, 411 edges, 69 generators, 204 loads and 27 interconnections. For
the edge type counts, using the notation introduced for (5.9), this grids exhibits the following
values: EPP = 8, EPL = 110, EPI = 9, ELL = 240, ELI = 35, EII = 7.

We use Metropolis-Hastings algorithm with the set of parameters retrieved from applying
Theorem 1 and ended up with≈ 160000 synthetic graphs collected after reaching the steady
state distribution, i.e., when the average values of the considered observables of the samples is
close to those used to estimate the parameters. Of these samples we make a further strict selec-
tion to obtain “weakly-correlated samples”, according to the rule that two matrices associated
to different sampled graphs should have an Hamming distance of at least 2N . After this selec-
tion we obtained 2458 weakly-correlated samples corresponding to networks with a bus-type
assignment similar to the one of the 300 ieee. The whole procedure took 40 minutes.
In the following we report the histograms referring to the distribution of some statistics

calculated on the 2458 samples obtained with the model.
In Figs. 5.1 to 5.3 we see the distributions of the degrees of the three bus-types, the red line
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Figure 5.1: Generator average degree

Figure 5.2: Load average degree

representing the true value calculated on the real grid, and the green one representing the av-
erage of the same value calculated on the generated graphs. We can see that on average the
samples have the samemean degrees as the real network. This is a promising result considering
the simplicity of the model.

However, the histogram in Fig. 5.4 highlights one of themain problems that arise from such
a simple model specification.

In Fig. 5.4 we see that the number of triangles (average value of the generated grids high-
lighted in green), which in turn determines the global clustering coefficient, is much lower in
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Figure 5.3: Interconnection average degree

Figure 5.4: Number of triangles

the synthetic graphs than in the real one (the value highlighted in red).

Another fundamental aspect that we should observe is that this model does not guarantee
by any means the connectivity of the generated graphs. In fact in Fig. 5.5 we show how the
number of connected components of a graph generated by this method varies between 10 to
46 for the “300 ieee”. Further results obtained with other real grids suggest that this method
generates on average graphs with≈ N

10
connected components.
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Figure 5.5: Number of connected components

We have also observed that almost all the generated graphs have one giant component that
includes at least 80% of the nodes in the graph. Albeit for a rigorous statement we should
investigate each graph separately, we can say thatwe expect that because the average degree value
of the real grids (that is most of the time> 2.3) and the Hamiltonian specification that we are
using. It is important tomention thatwe could technically consider only the giant components
of these graphs and consider that as the synthetic grid, however this will obviously introduce
a strong bias in our results (especially in the average bus-type degree, that was the main reason
behind our proposedmodel) andmoreoverwill not solve by anymean the discrepancy between
the real value clustering coefficient and the generated ones. Because of this and the incapability
of the model to capture the real triangle count of the grids seen in Fig. 5.4, it appears clear that
we need newmodel’s specifications to solve these issues.

5.2 Model II: Edges-TypeswithTrianglesand2-Triangles

As seen in the previous section, theERGmodelwith just the different type of edges counts (5.9)
does not capture the higher clustering coefficient value that is a characterizing property of the
power networks. In the ERG literature to model networks with such properties the number
of triangles, or functions of this number, have been included in the Hamiltonian.

This seems natural recalling that the global clustering coefficient is calculated as the ratio of
the total number of triangles to the total number of 2-paths in the graph. In fact, one of the
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earliest ERG model for clustered graphs is the so called Strauss’s model of transitive networks
[38], which includes as observables in the Hamiltonian the number of edges and the number
of triangles. However, this model is known to be prone to degeneracy and ultimately this spec-
ification of the Hamiltonian has been proved to lead to degenerate behaviours by Chatterjee
andDiaconis [30]. Snijders et al. [39] have introduced a new class ofmodels that exhibit the de-
sired transitivity and are not prone to degeneracy: the main idea is to substitute the number of
triangles with other statistics that are functions of the k−triangles, which we have introduced
already in Chapter 4.
Let T1, T2, T3, . . . define the number of 1−, 2−, 3−, . . . triangles in a graph. Then, the

proposed statistic takes the name of ”Alternating k-triangles” and has the following form:

u
(t)
λ = 3T1 −

T2
λ

+
T3
λ2
− T4
λ3

+ · · ·+ (−1)n−3Tn−2

λn−3
(5.10)

The intuitive idea is that by introducing a statistic based on the k−triangles counts with alter-
nating signs and decreasing weight one can model correctly the transitivity without leading to
nearly fully connected (nor nearly empty) graphs, since the alternating terms will compensate
each other.

5.2.1 Hamiltonian definition

In Section 4.2.1 we showed that most of the “normotriangular” power networks exhibit a
k−triangles count that is approximately 0 for k > 2. For this reason and for computational
simplicity, we decided to consider a model that, besides the six edge-types counts, includes as
separate terms also the number of triangles T1 and that of 2-triangles T2. The resulting Hamil-
tonian specification is:

H = βPP |EPP |+βPL|EPL|+βPI |EPI |+βLL|ELL|+βLI |ELI |+βII |EII |+β1tT1+β2tT2.
(5.11)

Wewill further impose thatβ1t andβ2t have alternating signs to obtain the same compensating
effect that was achieved by using alternating k−triangles. For sake of brevity, we will refer to
this model as ET-model.

Notice that albeit the exact reason why this specification gives rise to transitivity without
degeneracy is not yet understood, heuristics and simulations (as we will see in Section 5.3) sug-
gest that this model can achieve the desired clustering properties. It is also worth mentioning
that, to the best of our knowledge, in the context of sparse graph there is no ERG specification
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that is rigorously proven to model transitivity correctly. Specifically, in [30] the authors prove
using graphons theory this result for a model with number of edges, 2-paths and triangles as
sufficient statistics with alternating signs however this result holds only for dense graphs.

5.2.2 Parameter Estimation forModel II: first proposal

Moving away from the model with only the edge-counts, we lose the tractable form of the
partition function described in Theorem 1, thus we need new tools for the estimation of the
parameters β. An approximation of the solution for the model with just Edges and Triangles
count can be obtained using mean-field techniques [40], however this approximation has not
rigorous foundations and moreover it requires that the considered graphs are dense as an as-
sumption.

In the recent years the prominent approach for parameter estimation for ERGMs is the so
calledMarkov Chain Monte-Carlo Maximum Likelihood (MCMC-MLE in the following)
introduced byGeyer [41] in 1991. Wewill now give the rigorous statement of the convergence
theorem of the MCMC-MLE in the general case [42]:

Theorem 2 ([42]). Let K = {kβ : β ∈ B} be a family of non-negative functions depending
on a unknown parameter β which belongs to the space of parametersB, integrable with respect to
a measure µ such that none is integrating to 0. Let the integrals be denoted by c(β) =

∫
kβdµ.

LetF = {fβ : β ∈ B} be the normalized family associated toK, with fβ defined by

fβ =
kβ
c(β)

. (5.12)

For any such family, samplesX1, X2, . . . fromPβ can be generated throughMetropolis-Hastings
algorithm without knowledge of the normalizer c(β). Then, under continuity of the maps β →
kβ , theMonte Carlo Maximum Likelihood ln,β corresponding to an observation x defined by

ln,β = log
{kβ(x)
kψ(x)

}
− log

{
En,ψ

(kβ(X)

kψ(X)

)}
, (5.13)

where ψ is an arbitrary fixed parameter point and En,ψ indicates the ”empricial” expectation,
that is

En,ψ(g(X)) =
1

n

n∑
i=1

g(Xi) (5.14)
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converges to the log-likelihood ratios l(β) in the limit n→∞

l(β) = log
{kβ(x)
kψ(x)

}
− log

{ c(β)
c(ψ)

}
. (5.15)

The details of the proof are quite technical and beyond the scope of this project, however we
highlight some important details: first of all by using this method we don’t need to compute
nor estimate the normalizer c(β) that within the ERG framework corresponds to the partition
function Z(β). Moreover this method guarantees theoretical convergence starting from any
starting point, provided that the number of samples is sufficiently high. From a practical point
of view however, an ill starting point ψ (i.e., a point whose distance from the solution is too
big) canmake the algorithm not converge, thus the approach suggested byGeyer and used also,
for example, in the R-package ERGM [43] is to reiterate the procedure many times using the
results of the previous step as starting parameters.

Albeit coming with good theoretical properties, this approach can be computationally un-
feasible in our context when the number of nodes becomes too big, because for each time the
procedure is iterated the chain is required to take the samples after reaching the mixing time,
textiti.e., the number of steps after which a chain is said to be close to the steady state distribu-
tion, and this could be not feasible for larger n (for the ERGMs on dense graphs it has been
proved that the mixing time is of the orderO(n2 log n) [44], however currently there are no
similar results for ERGM on sparse graphs).

A recent paper by Borisenko et al. [45] introduced a new simple and promising way to do
parameters estimation for exponential family distributions, so including also the ERGMs: this
methodhas connectionswith thePersistentConstrastiveDivergence [46] commonlyused to
train the Restricted BoltzmannMachines and it is still based on aMarkov ChainMonte Carlo
algorithmwith constantly updatingparameters, resembling the technique knownas simulated
annealing. This new proposed algorithm takes the name Equilibrium Expectation, and now
we will give both the pseudocode and outline some of its theoretical details.
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Algorithm 2 Equilibrium Expectation
Input: G0 = (V0, E0), original graph corresponding to the real grid;N_step
Step_count = 0

for k = 1, . . . , K do
Sample a random edge (i, j)
if (i, j) ∈ E then

Remove the edge: Ek = Ek−1/(i, j)

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
if Move is accepted then

Step_count + = 1

end if
else

Add edge: Ek = Ek−1 ∪ (i, j)

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
if Move is accepted then

Step_count + = 1

end if
end if
if Step_count ==N_step then

Step_count = 0

Update parameters according to theUpdate Rule
end if

end for

HereN_step is a user defined input variable that determines the number of steps after which
the parameter should be updated. This update is done according to the chosenUpdate Rule.
The rule proposed by the authors in the paper is the following: let β0, β1, . . . , βp the model’s
parameters and x1(G), x2(G), . . . , xp(G) be the associated observables’ values for graph G,
then each parameter βi will be updated simultaneously in the following way:

βt+1
i = βti + α ·max(|βti |, c) · sign[xi(G0)− xi(Gt)] (5.16)

Where G0 is the graph corresponding to the real grid, βt+1
i is the i−parameter at the t + 1

update, xi(Gt) is the i−observable value obtained from xi(G
t−1) after N_step moves of the
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Metropolis-Hastings algorithm; α is the learning rate that must be given as an input and c is a
control parameter that assures that the algorithm doesn’t get stuck even when the value of the
parameter is close to zero.

TheMLE can be computed as the average of the resulting sequence:

β̂MLE
i = lim

t→∞

1

t− tB

t∑
j=tB+1

βji , (5.17)

where tB is a burn-in time.
The results on the convergence of the method are summed up in the following theorem:

Theorem 3. For a sufficiently small learning rate α, if algorithm 2 converges, it converges to the
MLE solution.

Proof. Within the ERG family as we have seen in chapter 3 a key property is that β̂ is theMLE
if the following set of equations hold:

xi(G0) = Eβ̂(xi(G)) ∀i ∈ {1, 2, . . . , r} (5.18)

With Eβ̂(xi(G)) being the average of the i−th observable over the graphs sampled from the
chain with stationary distribution π(G|β̂).

We cannot compute exactly Eβ̂(xi(G)), however Snijders [37] proposed to use t−ratios as
a test to prove convergence using sample mean and standard deviation:

ti =
Êβ̂(xi(G))− xi(G0)

σβ̂(xi(G))
(5.19)

If |ti| < 0.1 for each i in∈ {1, 2, . . . , r}, then it can be said that there is excellent convergence.
Algorithm 2 is said to converge when all the parameters oscillate around a mean value, that

we call β̄. If equation (5.19) is satisfied and the algorithm converges and has as the stationary
distributionπ(G|β̄), thenwe say that the algorithm converges to theMLE. Thuswemust now
prove thatwith the same acceptance rule as theMetropolis-Hastings algorithm, themethodhas
π(G|β̄) as a stationary distribution.

The authors showed with computational experiments that when the algorithm is applied
then the following are satisfied:

σ(βi) ∝ α ∀i ∈ {1, 2, . . . , r} (5.20)
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Notice now that we are sampling from a exponential family distributionwith uncertain param-
eters. Within this framework, Ceperley andDewing [47] proved the result that we now rewrite
for our specific case.

Proposition 1. Assume that after each step, an estimate of the difference between the two param-
eters configuration corresponding to the chain states s and s′ is available, which we shall denote
as δ = δ(s → s′). Let now a = a(s → s′) be a modified acceptance probability of going from
state s to state s′, that we assume to depend only on δ, and letP (δ0; s→ s′) be the probability of
δ = δ0. Then the average acceptance probabilityA(s→ s′) will be given by:

A(s→ s′) =

∫ ∞

−∞
dP (δ; s→ s′)a(δ) (5.21)

And consequently the detailed balance equation of the chain, given the desired stationary distri-
bution, becomes:

π(s|β̄)T (s→ s′)A(s→ s′) = π(s′|β̄)T (s′ → s)A(s′ → s) (5.22)

WhereT (s→ s′) is the transition probability from state s to state s′ andπ is the true (unknown)
stationary distribution.

We now define
∆ =

π(s′|β̄)T (s′ → s)

π(s|β̄)T (s→ s′)
(5.23)

So that we can rewrite (5.22) as follows

A(s→ s′) = ∆ · A(s′ → s) (5.24)

Notice that in our framework the process to estimate δ can be assumed to be symmetric in s
and s′, that means P (δ0; s → s′) = P (−δ0; s′ → s); using this and equality (5.21) we can
rewrite (5.24) in the following way:∫ ∞

−∞
dP (δ; s→ s′)[a(δ)−∆a(−δ)] = 0 (5.25)

Both P (δ0; s → s′) and ∆ are unknown, however we can assume that the differences δ are
distributed according to a Normal distribution, a thing that is surely true if we have t → ∞
because of the Central Limit Theorem. With this assumption and by assuming ⟨δ⟩ = ∆ the
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authors showed that a solution for equation (5.25) is given by the following a

a(δ; σ) = min
{
1, exp (−δ − σ2/2)

}
(5.26)

That with our standard notation can be rewritten as

a(G,G′; σ) = min
{
1,
P (G′)

P (G)
exp (−σ2/2)

}
(5.27)

But now from equation (5.20), if we chose a sufficiently small stepsizeα, σ2 → 0 and the term
exp (−σ2/2) can be neglected, obtaining the same acceptance rule as for the classicMetropolis-
Hastings algorithm. Thus if the algorithm converges, it converges to the MLE.

5.2.3 Theoretical results forModel II

Generating even just one connected graph using the ERG models that we have presented so
far is quite challenging even for smaller network sizes, and becomes progressively harder as the
number of nodes increases. A possible way to overcome this problemwas proposed by Grey et
al. [48]: in their paper they propose a modification of the Metropolis-Hastings algorithm for
random graphs in which a constraint is imposed on the space of the states that can be reached
by the chain based on the desired property that the Graphs should exhibit (for example, the
connectivity). We will now report here how this algorithm works in practice:
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Algorithm 3 Connected graph generation [48]
Start fromG0 = (V 0, E0), connected graph
for k = 1 . . . K do

Generate a random edge (i, j)
if (i, j) ∈ E then

Remove the edge: Ek = Ek−1 \ (i, j)
if Gk is connected then

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
else

RejectGk

end if
else

Add edge: Ek = Ek−1 ∪ (i, j)

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
end if

end for

The algorithm starts in a connected state and for each addition-move it behaves like the
Metropolis-Hastings algorithm, whereas for removing moves it first checks if the move discon-
nects the graph and if so the move is rejected. The acceptance probability in both case is the
same as for the M-H. This is due to the following remark:

Remark 1. Within the framework of 3 we want to sample from the space of connected graphs.
The acceptance probability thus is given by

a = min
{
1,

P (Gk |Gk is connected)
P (Gk−1 |Gk−1 is connected)

}
. (5.28)

The ratio given here is intractable since we cannot compute P (G | G is connected), however
since all the evaluatedmoves in the algorithmmust preserve connectivity, i.e.,P (G,G is connected) =
P (G), ∀G and since P (G is connected) is constant over the ensemble, we can rewrite:

a = min
{
1,

P (Gk, Gk is connected)
P (Gk−1, Gk−1 is connected)

∗ P (G
k−1 is connected)

P (G′ is connected)

}
= min

{
1, P (Gk)/P (Gk−1)

} (5.29)
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Obtaining the same acceptance rule as for theMetropolis Hastings

Wewill now prove the following theorem:

Theorem 4. Algorithm 3 produces a chain that converges to the stationary distribution π =

P (G |G is connected)

Proof. The chain produced by the Metropolis-Hastings algorithm converges to the stationary
distribution if it is an aperiodic and irreducible chain. We have seen in 1 that the algorithm 3
has the same acceptance rule as the M-H and is in fact a Metropolis-Hastings on the space of
connected graphs. We have now to show that the chain that it generates it’s also irreducible and
aperiodic. The chain is irreducible since with the given acceptance rule there are no absorbing
states andmoreover from each connected graph configuration it is possible to reach each other
connected configuration. Let F be the fully connected graph (i.e., the graph with all the possi-
ble edges). Since the algorithm can add any edge with positive probability, and can delete any
edge with positive probability as long as it remains in the space of connected graphs we have
that for anyG connected graph:

P (G→ F ) > 0 (5.30)

P (F → G) > 0 (5.31)

Therefore the irreducibility is proven.
To prove that the chain is aperiodic, given that is irreducible, it suffices that P (Gt+1 =

Gt) > 0 for someG. By construction if the move proposed disconnects the graph the move
is rejected and thus Gt+1 = Gt, proving aperiodicity. Since the chain is irreducible and
aperiodic it converges to the stationary distribution that by construction of the algorithm is
π = P (G |G is connected).

From a computational point of view, this algorithm needs to check for the connectivity of
the graph each time the proposed move consists in the removal of an edge, something that we
can do by using a simple breadth first search (BFS), an algorithm that normally has complexity
O(n+ |E|) but since in our framework we are dealing with sparse graph for which |E| ≈ N

the overall complexity of the BFS algorithm is O(n), making this approach feasible even for
bigger grids.

Within the ERG framework, since we are imposing a constraint on the chain we need also
to take into account this during the parameter estimation phase: in fact using the Algorithm 3
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we have that the equilibrium distribution π = P (G | G is connected), whereas the vector
of parameters β generally estimated for the ERG ensemble takes into account also the discon-
nected graph (as we have already seen the naïve Metropolis-Hastings algorithm with correct
parameters produces, after the mixing time has been reached, graphs whose observables have
on average the same values as the real ones [24], however this averaging is achieved considering
both connected and disconnected graph).

In the following,wewill see how the algorithm in3 canbeused in conjunctionwith theEqui-
libriumExpectationmethod described in Algorithm 2 to obtain a correct parameter estimation
with a constrained state space.

Consider now the Equilibrium Expectation method described in Algorithm 2 where, in-
stead of the standard Metropolis-Hastings algorithm, we use Algorithm 3. By doing this we
are effectively putting the constraint also during the parameter estimation phase, a thing that
seems intuitively reasonable considering that for an ERG with exact parameters (i.e., parame-
ters that satisfy Eq. (3.8)) it is guaranteed that after themixing timehas been reached the average
value of the observables of the samples drawn from the chain would be the real one, however
this averaging takes into account also the disconnected graphs, resulting in a biased result if we
remove them (to get an intuition of why this is true, consider that graphs with more edges are
more likely connected than those with fewer).

We write now the resulting algorithm that we propose in its more general form, i.e., not
specifically to ensure connectivity but to ensure that the graph stays in anyGraph-spaceS ,S ⊆
G, G0 ∈ S , for which it holds that the function f(G) = ”adding an edge toG” goes from S ,
where defined, toS (ifwe callDf the domainoff we sayf : D∩S → S) and that the function
g(G)”removing an edge from G” has the image whose intersection with S is non-empty (we
say g : Dg ∩ S → I with I ∩ S ̸= ∅):
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Algorithm 4 Equilibrium Expectation for a constrained chain
Start fromG0, original graph corresponding to the real grid
Step_count = 0

for k = 1 . . . K do
Generate a random pair i, j from 1, . . . , N

if (i, j) ∈ E then
Remove the edge: Ek = Ek−1 \ (i, j)
if Gk ∈ S then

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
else

RejectGk

end if
if Move is accepted then

Step_count + = 1

end if
else

Add edge: Ek = Ek−1 ∪ (i, j)

AcceptGk with probability a = min
{
1, P (Gk)/P (Gk−1)

}
if Move is accepted then

Step_count + = 1

end if
end if
if Step_count ==N_step then

Step_count = 0

Update parameters according to theUpdate Rule
end if

end for

For this last algorithmweprove the following theorem that is also one of themain theoretical
results of our work:

Theorem 5. If Algorithm 4 converges, it converges to a chain whose stationary distribution is
π(G |G ∈ S)

Proof. First we make a remark: the chain produced by Algorithm 4 moves only in S . This is
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true because the chain starts in the real graph G0, and we have as assumptions that G0 ∈ S
and that adding an edge will keep the chain inside S , the same is true for the removal after the
checking step that will ensure that we are still in the set.

We can then follow the steps of the proof of Theorem 3, where instead of π(s | β̄) we have
π(s | s ∈ S, β̄), and we end up with equation (5.26) that we rewrite here:

a(δ; σ) = min
{
1, exp (−δ − σ2/2)

}
(5.32)

Now exp (−δ) is given by P (Gk | Gk∈S)
P (Gk−1 | Gk−1∈S) and we can use the result in equation (5.29) to

obtain
a(G,G′; σ) = min

{
1,
P (G′)

P (G)
exp (−σ2/2)

}
(5.33)

That is the same result as for the algorithm 2 and so if the condition in (5.19) holds, then the
algorithm converges to theMLE.

5.2.4 Computational results forModel II

We present now as an example the results of the graphs sampled by the model with Hamilto-
nian specification as in (5.11) with parameters estimated using algorithm 4, imposing thus also
connectivity. We used as the real input network again the test case “300 ieee”, the samewe used
as an input network for the simplest model in Section 5.1.2.
The procedure we implemented followed the steps, which we summarize here:

1. First we extract all the topological and electrical information we need (whole network
topology, edge-type counts, triangles count, 2−triangles count).

2. We then compute all the parameters for the edges-only model using Eq. (3.8). We will
use this as a starting point β1. For the triangles and 2-triangles’ parameters we will use
an educated guess based on another method (MCMCMLE, interpolation of previous
results, MPLE,…) as a starting point β2.

3. With the starting pointβ = (β1, β2)we initialize algorithm 4, until after convergence is
reached for all parameters. We memorize both the trajectories of each parameter as well
as the final estimated parameters β̂ computed as in equation (5.17).

4. We use β̂ as the parameters for algorithm 3 in order to generate the connected graph
trajectory. We make the algorithm run past the burn-in time tB and memorize all the
graphs generated after tB .
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5. As we did in Section 5.1.2 we deal with the autocorrelation of the generated chain by
thinning it with the rationale based on the hamming distance of the adjacency matrices
associated with the graphs explained in Section 5.1.

For the considered network this whole procedure took 2 hours to generate 2252 weakly-
correlated graphs. We report here a descriptive analysis of the method, starting with the trajec-
tories of each of the eight considered parameters.

Figure 5.6: Generator‐Generator, Generator‐Load edge parameter

Figure 5.7: Generator‐Interconnection, Load‐Load edge parameter

In ?????? we see the behaviour of each parameters during the estimation via algorithm 4.
For the edge-counts parameters we can see that after an initial phase of stable increasing or
decreasing, the value starts to oscillate around the, supposedly, solution of (3.8). For both the
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Figure 5.8: Load‐Interconnection, Interconnection‐Interconnection edge parameters

Figure 5.9: Triangles and 2‐Triangles parameters

parameters referring to Triangles and 2-Triangles 5.9, for which we used an educated guess that
thus could theoretically be far away from the real solution, we see a more steep behaviour, and
in particular the 2-Triangles parameter is the last to converge. This could be explained by the
inherent correlation between these two parameters, a thing that we should take into account,
especially when dealing with bigger grids.

Now, like we did in Section 5.1.2 we report the plots referring to the most important prop-
erties of the grids for the scope of our research, computed on the 2252 graphs obtained with
the procedure. We recall that in this case all the graphs are not only weakly-correlatedwith each
other, but also connected.

As we can see in the figures Figs. 5.10 to 5.12 the average degrees per bus type are closely
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Figure 5.10: Generator average degree, the red line represents the real value whereas the green one represents the average
among the synthetic samples

Figure 5.11: Load average degree, the red line represents the real value whereas the green one represents the average among
the synthetic samples

captured on average by the generated graphs. In Figs. 5.13 and 5.14 we see how the graphs
generated by the model are close to the real grid with respect both the triangles count and the
2−triangles count, meaning that our specification is able to model correctly the typical tran-
sitivity of the power networks without degeneracy. Moreover this further confirms that the
parameters estimated within Algorithm 4 are indeed correct for thisHamiltonian specification
with the constraint of connectivity. In Fig. 5.14 the distribution of the 2−triangles is skewed
compared to the ones of other observables, however as already stated the average value com-
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Figure 5.12: Interconnection average degree, the red line represents the real value whereas the green one represents the
average among the synthetic samples

Figure 5.13: Number of triangles

puted on the generated graphs (highlighted in green) and the real value (highlighted in red) are
almost equal, again proving that our estimation method converges to the correct set of param-
eters also for ones relative to the triangles.
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Figure 5.14: Number of 2−triangles

Figure 5.15: Comparison between real degree distribution and degree distribution among synthetic grids

In Fig. 5.15 we have a comparison between the distribution of the degrees in the real graph,
and the degree distribution among all the generated graphs. The two distributions are really
similar with each other, and this represent another proof of the goodness of fit of our model.

We chose also to compare our synthetic networks to the real one with respect to two of the
main properties of the real grids, that we have not included in our Hamiltonian specification
nor in our estimation algorithm: the average path length and the algebraic connectivity.
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Figure 5.16: Average path length, the red line represents the real value whereas the green one represents the average among
the synthetic samples

Figure 5.17: Algebraic connectivity, the red line represents the real value whereas the green one represents the average
among the synthetic samples

The histogram in Fig. 5.16 shows that the mean value of the average shortest path length
for the generated graphs (in green) is smaller than the real value (in red), even if the order of
magnitude is the same. Similarly, as we can see in Fig. 5.17, the algebraic connectivity of the
synthetic graphs has an average value (in green) that is higher than the one of the grid of refer-
ence (in red), which is located on the tail of the distribution. Even if these properties are not
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accurately captured by our model, we should highlight that the average values obtained on the
generated samples can be regarded as realistic for both the APL and the algebraic connectivity
by the standards used for example in [2] to assess the realism of a synthetic grid.

5.3 Comparisonwith the real grids

We propose here a comparison done with respect to the principal properties of the network
with the real ones.

Networks N ⟨kP ⟩ ⟨kL⟩ ⟨kI⟩ APL λ2 |T | |T2|

118 ieee 118 3.56 2.5 3.25 6.3 0.027 23 11
Average synth 118 118 3.61 2.52 3.33 4.67 0.1 24 13

300 ieee 300 1.95 3 2.15 9.93 0.0093 34 14
Average synth 300 300 1.93 3.06 2.16 6.44 0.049 33.7 16
1354 PEGASE 1354 2.58 1.08 2.53 11.15 0.005 87 14

Average synth 1354 1354 2.53 1.16 2.51 9.56 0.022 84 19

Table 5.1: Comparison of our model’s results and real grids

The observations done in Section 5.2.4 apply also to the other considered grids. Our gener-
ated graphs are close to the real ones from both the node and edge count, the average degrees
per bus type and the triangles and 2−triangles count. It is less reliable, albeit still within a real-
istic range, for the average shortest path length and the algebraic connectivity. We remark also
here that all our graphs come with a correct bus type assignment because of the Hamiltonian
specification that we used (5.11). With our current implementation, er were not able to use
our method to generate bigger grids (more than 2500 nodes) because of the excessive mixing
time of the generated chain. We are not currently able to determine the mixing time of our
method since, as stated also before, there are currently no studies on the mixing time of sparse
ERGs. Moreover, the constraint that we are imposing on the chain will likely lead to an even
worse mixing of the chain. In the future works, we should find a solution to deal with bigger
grids (as the one that we will propose in the conclusion), and also give rigorous results on the
mixing of the chains generated by our algorithm.
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6
Conclusion

In this thesiswehave analyzed the topological properties of thepower grids seen froma complex
network perspective, in order to propose a newmodel of the ERG family to generate synthetic
grids able to mimic closely the principal characteristics of a real power system.

We have provided an in-depth review of the current literature about modeling of power sys-
tem as graphs, highlighting the fundamental aspects of each approach. The lack of models
well founded from a rigorous mathematical and statistical point of view convinced us to pro-
pose new specification within the Exponential RandomGraphs family, the main properties of
which we have explained in detail. The ERG framework allows to use Markov-Chain Monte-
Carlo models for the generation of the grids

Within this family ofmodelswehaveproposed anew simple specification in5.9, that belongs
a generalized class of ERGmodels, for whichwe have also proved the existence of a closed from
expression for the partition function. This model generates synthetic networks with a realistic
bus type assignment, however is not able to generate graphs coherent to the real grids with
respect to some of the essential properties of the real power system, namely connectivity and
transitivity.

For this reason we improved our model specification and found new estimation methods:
for the transitivity we added in the Hamiltonian as observables the triangle count and the
2−triangle count. By doing this, wewere not able anymore to have a closed form expression for
the partition function of the model, thus a method to estimate the parameters was needed. We
explored the methods available in the literature, especially the ones that used Markov-Chain
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Monte Carlo algorithms, and we ended up founding a promising approach in recent the work
of Borisenko et al. [45]. We combined the parameters estimation algorithm they proposed
with the work done byGrey et al. [48] onMCMCmethods for a constrained chain in order to
be able to generate samples from a chain constrained into the space of connected graphs. The
main theoretical result of this thesis 5 is indeed the proof that the algorithm resulting from the
combination of the works done in [45] and [48] results in a method to estimate correctly the
parameters of an Exponential Random Graph with any Hamiltonian specification and with a
major constraint imposed on the graphs that form the ensemble (in our case, the constraint of
connectivity).

This result not only allowed us to obtain samples that closely mimic the properties included
in the Hamiltonian as observables, but it opens also a lot of possibilities in other fields of re-
search which use complex networks as the main modeling tool, for example in the Social Net-
work analysis. In fact this model can be used for a wide class of ERG models, bypassing the
limitations imposed by the ERG family by constraining the chain into the space of the desired
graphs, allowing for a great flexibility (as we said before, imposing connectivity is just one of
the possible usage of our method).

The synthetic grids that we generated were realistic also with respect to topological charac-
teristics that were not included in the Hamiltonian, even if in a less accurate way.

To obtain a more complete result from a mathematical point of view, we should investigate
the mixing time of the chain in our model. The literature on mixing time of dense ERGMs
is quite rich [44, 30, 49], on the converse there are no specific studies on the mixing time of
sparse ERGMs, like the one thatwe are considering in this thesis. This is due to the fact that the
works done on the dense graphs largely rely on the theory of graph limits or graphons. There
are currently very few research about asymptotic behaviour of sparse graphs, however it is a
research field that is growing in the latter years, and in fact very recent articles like the one
of Cook and Dembo [50] seem promising to lay the foundations of a rigorous mixing time
analysis for the sparse Exponential RandomGraph models.

Since ourmethod is able to estimatemultiple uncorrelated samples, but, with the current im-
plementation, does not scale well for bigger grids (N > 3000) we propose as a possible future
improvement the development of a procedure that combines our algorithm 4 with a rationale
similar to the one behind the SDET method to generate synthetic grids [21]: we can use our
model to generate multiple realistic synthetic grids of small-medium size and then reassemble
them into bigger topologies by adapting the method proposed in [21]. In order to do so in a
proper way, we should also generate the electrical and geographical properties for our synthetic
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grids. This is particularly tricky since real geographical data about power systems is restricted
and to the best of our knowledge there are not publicly available collections of grids’ testcases
with geographical information.

Even if the data was available, it is our believe that new algorithms should be needed to ob-
tain realistic grids from a topological, electrical and geographical standpoint starting from the
correct topologies that we provide with our method. This is probably the most important im-
provement that we should consider for our work.
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