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1 Abstract

In string theory one consider one-dimensional objects instead of point-like particles. In
1981 Polyakov extended the path integral formulation from the known Feynman formu-
lation to a sum over the surfaces traced out by the string [1]. This thesis begins with a
brief overview of Feynman path integral as introduction. We then will start formulating
the closed bosonic string, so the world surface traced out by the it (the “path”) will be a
Riemann surface [2]. Being developed for more than a century with no connection with
strings, the Riemann surface theory covers a huge number of problems and results, but
only compact Riemann surfaces are of physical interest, thus definition and fundamental
facts about this objects will be given. Particular focus is dedicated to the uniformization
theorem and the description of the moduli (parameters defining inequivalent surfaces)
space, this last one is in fact the space of integration of the partition function that will
be performed. The Polyakov action indeed is invariant under transformations bringing a
surface to an equivalent (conformal) one, this huge gauge symmetry which would cause the
integral to diverge is (factored out) eliminated by Faddeev-Popov method and by setting
the dimension of the space time its critical dimension d = 26 and letting only integration
over moduli, which parameterize variations of the metric leading to inequivalent surfaces.
In this dimension it was showed by Beilinson, Manin [3] and Belavin, Knizhnik [4] that
the Polyakov measure is related to the Mumford form [5] which can be expressed in term
of theta functions and related quantities. These objects, also born as utilities for pure
mathematics (their origin is attributed to Euler), highlight properties of the measure to
be discussed at the end of the thesis. Finally more recent results will be reported.

In teoria delle stringhe si considerano oggetti unidimensionali invece di particelle pun-
tiformi. Nel 1981 Polyakov estese la formulazione dell’integrale sui cammini, dalla nota
formulazione di Feynman, a una somma sulle superfici tracciate dalla stringa [1]. Questa
tesi inizia con una breve panoramica dell’integrale sui cammini di Feynman come intro-
duzione. Successivamente, inizieremo a formulare la teoria della stringa bosonica chiusa,
quindi la superficie tracciata da essa (il “cammino”) sarà una superficie di Riemann [2]. Es-
sendo stata sviluppata per più di un secolo senza alcuna connessione con le stringhe, la teo-
ria delle superfici di Riemann contiene un enorme numero di problemi e risultati, ma solo
le superfici di Riemann compatte sono di interesse fisico, quindi verranno date definizioni
e fatti fondamentali su questi oggetti. Particolare attenzione è dedicata al teorema di
uniformizzazione e alla descrizione dello spazio dei moduli (parametri che definiscono su-
perfici non equivalenti), l’integrazione della funzione di partizione verrà infatti eseguita
su quest’ultimo spazio. L’azione di Polyakov è infatti invariante sotto trasformazioni che
trasformano una superficie in un’altra equivalente (conforme), questa grande simmetria
di gauge che causerebbe la divergenza dell’integrale è eliminata mediante il metodo di
Faddeev-Popov e impostando la dimensione dello spazio-tempo alla sua dimensione crit-
ica d = 26, lasciando solo l’integrazione sui moduli, che parametrizzano le variazioni della
metrica che portano a superfici non equivalenti. In questa dimensione è stato dimostrato
da Beilinson, Manin [3] e Belavin, Knizhnik [4] che la misura di Polyakov si può scrivere in
funzione della forma di Mumford [5], che può essere espressa in termini di funzioni theta e
quantità correlate. Questi oggetti, nati anche come strumento per la matematica pura (la
loro origine è attribuita a Eulero), evidenziano proprietà della misura che saranno discusse
alla fine della tesi. Infine, verranno riportati risultati più recenti.
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2 Path integral

The path integral method arise from giving quantum theory a Lagrangian formulation. As
stated by Dirac [6] there is no a direct way to take over the classical Lagrangian equations
because the partial derivatives of the Lagrangian with respect to spatial coordinates and
velocities have no meaning in quantum mechanics, however using the ideas of the classical
Lagrangian theory (considering all the paths connecting two points) it will be shown that:

〈
q′, t

∣∣ q, 0〉 = lim
n→∞

( nm

2πiℏt

)n/2 ∫
dq1 . . . dqn−1 exp

 it

nℏ

n−1∑
j=0

(
mn2

2

(
qj+1 − qj

t

)2

− V (qj)

)
(1)

Where q0 ≡ q and qn ≡ q′. It is known as the Feynman-Kac formula. The exponent is the
definition of the Riemann integral

∫ t
0 L(q, q̇, t)dt where L(q, q̇, t) is the classical Lagrangian,

thus: ⟨q′, t | q, 0⟩ = k
∫
all curves q(t) e

i
S(q(t))

ℏ , where k is the constant that guarantees nor-
malization. In the classical limit the mass is big enough with respect to ℏ that a small
changes in the trajectory produce fast oscillations in the exponent so only classical paths
contribute to the integral and ⟨q′, t | q, 0⟩ = 1 if q′ lies on a classical paths passing trough
q and ⟨q′, t | q, 0⟩ = 0 if it does not.
In order to prove the Feynman-Kac formula it is recalled that writing H ≡ H0+V , where
all the operators are self-adjoint, the Trotter formula [7] guarantees that:

e−i(H0+V )t = lim
n→∞

(
e−iH0

t
n e−iV t

n

)n
Thus 〈

q′, t
∣∣ q, 0〉 = 〈q′ ∣∣ e−iHt

∣∣ q〉
= lim

n→∞

〈
q′
∣∣∣ (e−iH0

t
n e−iV t

n

)n ∣∣∣ q〉
= lim

n→∞

〈
q′
∣∣∣ e−iH0

t
n e−iV t

n Ie−iH0
t
n e−iV t

n . . . e−iH0
t
n e−iV t

n

∣∣∣ q〉
= lim

n→∞

∫
dq1 . . . dqn−1

n−1∏
j=0

〈
qj+1

∣∣∣ e−iH0
t
n

∣∣∣ qj〉 e−iV (qj)
t
n

where in the last equality the n−1 identities inserted as been written as the completeness
relation I =

∫
dqj |qj⟩ ⟨qj | , j = 1, . . . , n − 1 and, as before, q0 ≡ q and qn ≡ q′. Now it

remains to evaluate
〈
qj+1

∣∣∣ e−iH0
t
n

∣∣∣ qj〉.〈
qj+1

∣∣∣ e−iH0
t
n

∣∣∣ qj〉 =

∫
dp ⟨qj+1 | p⟩ ⟨p | qj⟩ e−i p2

2mℏ
t
n

=

∫
dp

1

2πℏ
ei

p
ℏ (qj+1−qj)e−i p2

2mℏ
t
n

= ei
mn(qj+1−qj)

2

2ℏt

∫
dp

1

2πℏ
e
− i

2m
t
n

(
p−

(qj+1−qj)mn

t

)2

=
( mn

2πiℏt

)1/2
ei

mn(qj+1−qj)
2

2ℏt

Finally the substitution in the precedent expression leads to the Feynman-Kac formula.
In quantum field theory the quantity of physical interest are the vacuum expectation values
of time-ordered products of operators (called Green functions)

G(x1, . . . , xn) ≡ ⟨0 |Tϕ(x1) . . . ϕ(xn) | 0⟩ (2)
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An expression for this quantity can be obtained by the quantum mechanics analog for one
degree of freedom Q(t) and then by taking the limit of an infinite number of degrees of
freedom [8], the procedure will be sketched here. A Wick rotation is performed in the time
variable, t → −iτ , so that

Q̂(τ) = eHτ Q̂(0)e−Hτ (3)

The correlator is defined as〈
q′, τ ′

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣ q, τ〉 , τ ′ > τ1 > · · · > τn > τ (4)

The insertions of I =
∑

l |El⟩ ⟨El|, where |El⟩ is a complete set of energy eigenstates, to
the left and right of each operator leads to〈

q′, τ ′
∣∣∣ Q̂(τ1) . . . Q̂(τn)

∣∣∣ q, τ〉 =
∑
l,l′

e−E′
lτ

′
eElτψl′(q

′)ψ∗
l (q)

〈
El′

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣El

〉
where

⟨q, τ |El⟩ =
〈
q
∣∣ e−Hτ

∣∣El

〉
≡ ψl(q)e

−Elτ

Now taking the limit τ ′ → ∞, τ → −∞ implies that only the terms of minimum energy
contribute to the sum, thus〈

q′, τ ′
∣∣∣ Q̂(τ1) . . . Q̂(τn)

∣∣∣ q, τ〉 → eE0(τ−τ ′)ψ0(q
′)ψ∗

0(q)
〈
El′

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣El

〉
(5)

and the Green function is obtained by taking the same limit:〈
q′, τ ′

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣ q, τ〉

⟨q′, τ ′ | q, τ⟩
→
〈
E0

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣E0

〉
(6)

From the Feynman-Kac formula it follows that, for τ ′ → ∞, τ → −∞,〈
E0

∣∣∣ Q̂(τ1) . . . Q̂(τn)
∣∣∣E0

〉
=

∫
DQQ(τ1) . . . Q(τn)e

−S[Q]∫
DQe−S[Q]

(7)

Generalization to an infinite number of degree of freedom, and applying the inverse Wick
rotation, leads to the following expression for the Green function in quantum field theory

⟨0 |ϕ(x1) . . . ϕ(xn) | 0⟩ =
∫
Dϕϕ(x1) . . . ϕ(xn)e

iS[ϕ]∫
DϕeiS[ϕ]

(8)

In string theory particles are defined as one-dimensional objects, thus integration must
be performed over surfaces. The path integral formulation due to Polyakov [1] will be
considered and the next sections deals with the mathematical background necessary for
this formulation.
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3 Riemann surfaces

3.1 Definition and topology

Figure 1: Riemann surface of genus 31

Definition 3.1 (Riemann surface). A Riemann surface is a one-complex-dimensional
connected complex analytic manifold M with a set of charts {Uα, zα}α∈A, that is, the
{Uα}α∈A are an open cover of M and each zα : Uα → C is a homeomorphism onto an
open subset of the complex plane C such that each transition function

fαβ = zα ◦ z−1
β : zβ(Uα ∩ Uβ) ⊂ C → zα(Uα ∩ Uβ)C

is holomorphic if Uα ∩ Uβ ̸= ∅.

ag

bg

a−1
g

b−1
g a1

b1

a−1
1

b−1
1

Figure 2: Riemann surface of genus
g

The Euler characteristic χ(M) can be easily com-
puted by triangulation: recalling χ(S2) = 2 and
χ(T 2) = 0 and ’pasting’ a sphere with g torus is ob-
tained χ(M) = 2 − 2g (for each couple of triangles
pasted the vertices eliminated cancel out with the
sides in the computation of the Euler characteristic,
thus the contribution comes from the two faces are
eliminated). It is useful to express the Euler char-
acteristic also for a surface with n punctures:

χ(M) = 2− 2g − n (9)

An important theorem relating the curvature of
manifold with its Euler characteristic is recalled:

Theorem 3.1 (Gauss-Bonnet theorem).∫
Rdv = 2πχ(M) (10)

This implies that there is a topological constraint to the sign curvature, in particular
in order to have negative curvature, from eq. (9) the surface must have at least three

1Figure taken from https://www.researchgate.net/publication/329100697_Efficient_
integration_on_Riemann_surfaces_applications.
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punctures or one handle and one puncture.
It is useful to see the surface as a 4g sided polygon as in figure 2, where a1, . . . , ag, b1, . . . , bg
are generators for the fundamental group π1(M) (i.e. 2g closed loops which are not
homotopic). The generators of π1(M) satisfy the relation

g∏
i=1

aibia
−1
i b−1

i = I (11)

A quadratic form can be introduced on elements of the first homology group H1(M,Z)
as:

(·, ·) : H1(M,Z)×H1(M,Z) → Z

that counts the number of intersection of any 1-cycles with orientation. Given a first
homology group basis {χ1, . . . , χ2g}, its intersection matrix N is defined as Nij = (χi, χj)

and if it is equal to
(

0 Ig
−Ig 0

)
the basis is called canonical.

3.2 Differential forms and integration

Given the definition of Riemann surface, it is evident that a complex structure can be built
on it in analogy with differential geometry, with some simplification due to holomorphicity
of transition functions, and convenience of using complex notation. In the following dz =
dx+ idy, dz̄ = dx− idy.
It is convenient to define two new operators ∂, ∂̄

∂f ≡ ∂f

∂z
dz,

∂

∂z
≡ 1

2

(
∂

∂x
− i

∂

∂y

)
; ∂̄f ≡ ∂f

∂z̄
dz̄,

∂

∂z̄
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
(12)

Note that this operators commute and for the exterior differential operator d = ∂
∂xdx +

∂
∂ydy it is true that d = ∂ + ∂̄. A 1−form ω = f(x, y)dx + g(x, y)dy, with f, g contin-
uous (ω = udz + vdz̄, u = f−ig

2 , v = f+ig
2 in complex notation) is called holomorphic

if ω = df with f holomorphic, thus holomorphicity for a 1−form implies v = 0 and
u a holomorphic function2. If dω = 0, ω is called closed ; from the previous argument
holomorphic 1−forms are closed. The space of holomorphic 1−forms on the Riemann
surface M is written as H0(KM). Also it can be checked that the hodge star opera-
tor (∗ :

∧k →
∧2−k; (∗ω)ik+1...in = 1

k!

√
gϵi1i2ω

i1...ik , k = 0, 1, 2) acts on 1− forms, in
euclidean metric, in the following way:

∗(fdx+ gdy) = −gdx+ fdy ∗ (udz + vdz̄) = −iudz + ivdz̄ (13)

in particular for holomorphic differentials it is true that ∗ω = −iω.
Given D ⊂ M compact a scalar product between 1−forms is defined as:

(ω1, ω2) ≡
∫∫

D
ω1 ∧ ∗ω̄2 (14)

2ω = df = (∂+ ∂̄)f = ∂f
∂z

dz ≡ udz and u is holomorphic because it is the derivative of an holomorphic
function.

6



3.3 Complex tensor calculus

Given a patch on the Riemann surface the metric can always be written as ds2 = 2gzz̄dzdz̄ ≡
ρdzdz̄. Meromorphic (p, q)−differentials are defined in the same way tensors are defined
in differential geometry:

Definition 3.2 (Meromorphic differential). A meromorphic (p, q)−differential is the as-
signment of a meromorphic function to each local coordinates z on M so that

f(z) dzpdz̄q (15)

is invariantly defined.
The space of meromorphic (p, q)−differentials is indicated T p,q and the couple (p, q) is
called weight of the differential.

It follows that given two elements Uα, Uβ of the open cover of M, on Uα∩Uβ f transforms
as fβ =

(
dzα
dzβ

)p (
dz̄α
dz̄β

)q
fα.

The inner product between elements T1, T2 of T p,0 is defined as

⟨T1 |T2⟩ =
∫
d2z

√
g (gzz̄)pT ∗

1 T2 (16)

Requiring that such inner product is a scalar (invariant under coordinate change) shows
that the weights can be raised and lowered with the metric in the usual way, with the
simplification that the only non-zero components of the metric are gzz̄ and its inverse.
The covariant derivative acting on (n, 0)−differentials ∇n

z : T n,0 → T n+1,0 is:

∇n
z (T (dz)

n) ≡ (gzz̄)
n∂z((g

zz̄)nT )(dz)n+1 = (∂z − n∂ logρ)T (dz)n+1 (17)

of course the definition is well-posed because the metric raises all the z−indices of the
tensor, thus the quantity transforms as a (n+ 1, 0)−differential.
Under the product (16) the adjoint operator of ∇n−1

z is ∇z
n : T n,0 → T n−1,0

∇z
n(T (dz)

n) ≡ gzz̄∂z̄T (dz)
n−1 (18)

as can be checked by integration by parts.
The laplacian ∆1−n : T 1−n,0 → T 1−n,0 is defined as

∆1−n = ∇−n
z ∇z

1−n (19)

The scalar curvature is defined by

[∇z,∇z]T (dz)
n ≡ n

2
RT (dz)n (20)

where [∇z,∇z] = ∇z∇z −∇z∇z, using eq. (17) and (18) the first term can be rewritten:

[∇z,∇z]T (dz)
n = ∇z(∂z − n∂z logρ)T (dz)

n+1 −∇z

(
2

ρ
∂z̄T (dz)

n−1

)
=

2

ρ
∂z̄(∂z − n∂z logρ)T (dz)

n+1 − (∂z − (n− 1)∂z logρ)

(
2

ρ
∂z̄T (dz)

n−1

)
= −n2

ρ
∂z∂z̄ logρ

From the definition of scalar curvature (20)

R = 2K = −4

ρ
∂z∂z̄ logρ (21)

where also the Gaussian curvature K = R
2 has been introduced.
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3.4 Period matrix

Firstly the following facts are recalled:

Lemma 3.1. If θ and θ̃ are two closed differentials on M compact and of genus g, then∫∫
M
θ ∧ θ̃ =

g∑
j=1

(∫
aj

θ

∫
bj

θ̃ −
∫
bj

θ

∫
aj

θ̃

)
(22)

Lemma 3.2. On a compact Riemann surface of genus g, the vector space of holomorphic
differentials has complex dimension g.

Given a canonical homology basis {a1, . . . , ag, b1, . . . , bg}, a dual basis of holomorphic
differentials (which has dimension g) {ξ1, . . . , ξg} can be chosen (i.e.

∫
ak
ξj = δjk), this

determines a unique holomorphic differential ξ, so also the b−cycles
∫
bk
ξj ; in fact given

θ ∈ H0(KM) with zero a−periods (
∫
aj
θ = 0, j = 1, . . . , g), using ∗θ = −iθ from the

section (3.2)

∥θ∥2 =
∫∫

M
θ ∧ ∗θ̄ = i

∫∫
M
θ ∧ θ̄ = i

g∑
j=1

(∫
aj

θ

∫
bj

θ̄ −
∫
bj

θ

∫
aj

θ̄

)
= 0 (23)

thus θ = 0 and the map that assigns to each ξ ∈ H0(KM) its a−cycles is a isomorphism
between H1(KM) and Cg (the two spaces has the same dimension and the map has a
trivial kernel).

Definition 3.3 (Period matrix). Given a canonical homology basis {a1, . . . , ag, b1, . . . , bg}
and a basis {ξ1, . . . , ξg} of holomorphic differentials on M, the g×g matrix τ with entries
τjk =

∫
bk
ξj is called the period matrix of the Riemann surface M.

Two important properties of the period matrix can be easily found:

Proposition 3.1. Let τ be a period matrix, then:

i) τ is symmetric.

ii) Im τ > 0.

Proof. i) Given arbitrary holomorphic differentials θ and ω, it follows that θ ∧ ω =

0, furthermore they are closed thus
∫∫

M ξj ∧ ξk =
∑g

l=1

(∫
al
ξj
∫
bl
ξk −

∫
bl
ξj
∫
al
ξk

)
.

The left-hand side of the equation is zero, the right one (recalling
∫
ak
ξj = δjk) is∫

bj
ξk −

∫
bk
ξj and

∫
bj
ξk =

∫
bk
ξj (τkj = τjk is obtained.

ii) 0 < (ξj , ξk) =
∫∫

M ξj ∧ ∗ξk = i
∫∫

M ξj ∧ ξk = i
∑g

l=1

(∫
al
ξj
∫
bl
ξk −

∫
bl
ξj
∫
al
ξk

)
=

i
(∫

bj
ξk −

∫
bk
ξj

)
= 2 Im τjk ∀j, k.

Torelli’s theorem also shows that inequivalent Riemann surfaces have different period
matrices, so one is tempted to represent each surface of genus g with a element of the
space of all g × g symmetric matrices with positive imaginary part Z: Hg = {Z|Zij =
Zji, ImZ > 0} which has dimension 1

2g(g + 1) and is called Siegel’s upper half plane;
however it is easy to show that, given a surface, a change of the homology basis can
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produce a different period matrix:

suppose that the transformation can be written as
(
a′

b′

)
=

(
D C
B A

)(
a
b

)
where the matrix(

D C
B A

)
is an element of the symplectic group Sp(2g, Z), which conserves the intersection

matrix
(

0 Ig
−Ig 0

)
, these transformations will be called modular transformations.

Thus a′j = Dilal + Cilbl, and evaluating the new a−cycles gives∫
a′i

ξj = Dil

∫
al

ξj + Cil

∫
bl

ξj = Dilδlj + Cilτlj = Dij + (Cτ)ij

then requiring
∫
a′i
ξ′j = δij it is obtained

ξ′ =
(
(D + Cτ)−1

)t
ξ (24)

Now the matrix of periods can be evaluated:∫
b′i

ξ′j = (D + Cτ)−1
kj

(
Bil

∫
al

ξk +Ail

∫
bl

ξk

)
=
(
(B +Aτ)(D + Cτ)−1

)ij
thus

τ ′ = (B +Aτ)(D + Cτ)−1 (25)

In fact it will be shown that the moduli space Mg that parametrizes inequivalent surfaces
has dimension 1 for g = 1 and 3g−3 for g ≥ 2, while there are no moduli for g = 0; so the
dimensions of the Siegel upper half plane and of Mg coincides up to g = 3, this is known
as Schottky problem.

3.5 Divisors and Riemann-Roch theorem

Definition 3.4 (Divisor). A divisor on M is a formal symbol

D =
∑
P∈M

α(P )P

where α(P ) ∈ Z and α(P ) ̸= 0 for only finitely many P ∈ M.
The sum of two divisors D1 =

∑
P∈M α1(P )P and D2 =

∑
P∈M α2(P )P is defined as:

D1 +D2 =
∑
P∈M

(α1(P ) + α2(P ))P

The divisors together with this operation form a group written as Div(M).

degD ≡
∑
P∈M

α(P )

is called degree of the divisor D.

It is noted that the map deg establishes a homomorphism between Div(M) and Z. Each
meromorphic function f (differential ω) which is not identically zero determines a divisor
(f) ((ω)) given by

(f) =
∑
P∈M

ordP f P, (ω) =
∑
P∈M

ordPω P

9



An equivalence relation ∼ is introduced on Div(M) such that D1 ∼ D2 if exists a mero-
morphic function f such that D1−D2 = (f); equivalent divisors are said to belong to the
same divisor class, the divisor class of meromorphic differentials is called canonical class
and is written as Z.
For D ∈ Div(M) two vector spaces are introduced (K is the space of meromorphic func-
tions):

L(D) = {f ∈ K(M) : (f) ≥ D}

Ω(D) = {ωmeromorphic differential : (ω) ≥ D}

Their dimensions are indicated respectively as r(D) and i(D).

Lemma 3.3.
i(D) = r(D − Z)

Proof. Given a meromorphic differential ω the map

Ω(D) ∋ ψ → ψ

ω
∈ L(D − (ω))

is a isomorphism between the two spaces, which thus have the same dimension.

Theorem 3.2 (Riemann-Roch [9]). Let M be a compact Riemann surface and D ∈
div(M). Then

r(−D) = degD − g + 1 + i(D) (26)

Corollary 3.2.1.
degZ = 2g − 2

Proof. From the Riemann-Roch theorem and the lemma (3.3)

r(−Z)− i(Z) = degZ − g + 1

I(0)− r(0) = degZ − g + 1

and the result follow from the fact that the dimension of the space of holomorphic differ-
entials (i.e. i(0)) is g, and the one of holomorphic functions (i.e. r(0)) is 1 because, for
Liouville theorem, only constants functions live in this space.

From the fact that the line bundle of λ−differentials is the λth tensor power of K it follows
that deg (λZ) = 2λ(g − 1).
As end to this section the Riemann-Roch theorem is used to compute the dimension of
the space of holomorphic λ−differentials.

Proposition 3.2 ([9]). Let λ ∈ Z. The dimension of the space of holomorphic λ−differentials
on M is given by the following table:

Genus Weight Dimension
g = 0 λ ≤ 0 1− 2λ

λ > 0 0
g = 1 ∀λ 1
g ≥ 2 λ < 0 0

λ = 0 1
λ = 1 g
λ > 1 (2λ− 1)(g − 1)

10



Proof. The Riemann-Roch theorem can be written as:

r(−D) = degD − g + 1 + r(D − Z) (27)

furthermore, as it was done to prove the lemma 3.3, given a differential ω such that
(ω) = Z, it is built the isomorphism between L(−λZ) and Hλ(M), the vector space of
holomorphic λ−differentials.

L(−λZ) ∋ f → fωλ ∈ Hλ(M) (28)

Thus r(−λZ) is the quantity to be evaluated.

• g = 0:

1. λ > 0: deg (−λZ) = −2λ(−1) > 0 ⇒ r(−λZ) = 0.

2. λ < 0: from eq. (27) r(−λZ)− r((λ− 1)Z) = r(−λZ) = 1− 2λ.

• g = 1:

1. A holomorphic differential cannot have zeros because degZ = 2(g − 1) = 0,
thus Hq(M) ∋ ξ → ωξ ∈ Hq+1(M) is a isomorphism and, from r(0) = 1,
induction proves that r(−λZ) = 1∀λ.

• g ≥ 2:

1. deg (−λZ) = −2λ(g − 1) > 0 ⇒ r(−λZ) = 0.

2. λ = 0: r(0) = 1 as already stated.

3. λ = 1: r(Z) = i(0) = g as already stated.

4. λ > 1: from eq. (27) r(−λZ)− r((λ − 1)Z) = r(−λZ) = λ(2g − 2) − g + 1 =
(2λ− 1)(g − 1).

3.6 Jacobi map

Let {a1, . . . , ag, b1, . . . , bg} be a canonical homology basis, {ξ1, . . . , ξg} its dual basis for
holomorphic differentials and τ their period matrix as above. In addition denote L(M)
the lattice, over Z, generated by the columns of the g × 2g matrix (I, τ) (i.e. the set of
points given by Im+ τn, with m,n ∈ Zg).

Definition 3.5 (Jacobian variety).

J(M) ≡ Cg/L(M)

is called the Jacobian variety of M.

Definition 3.6 (Jacobian map). Chosen a point P0 ∈ M, the map

ϕ : M → J(M)

such that

ϕ(P ) =

(∫ P

P0

ξ1, . . . ,

∫ P

P0

ξg

)
is called Jacobian map.

11



Such a map is well defined, in fact if the map is calculated along two different curves c1
and c2 connecting the same two points their difference is the integral of the holomorphic
differentials ξ1, . . . , ξg along the closed curve c1c−1

2 , thus an element of L(M). It is noted
that the map such defined depend on P0.
The Jacobian map is naturally extended to a map ϕ : Div(M) → J(M) given by (where
D =

∑
P∈M α(P )P

ϕ(D) =
∑
P∈M

α(P )ϕ(P ) (29)

Thus the maps from the divisors of zero degree are independent from the point P0 by
linearity of the integral.
An important theorem is stated

Theorem 3.3 (Abel theorem [9]). Let D ∈ Div(M). A necessary and sufficient condition
for D to be the divisor of a meromorphic function is that

ϕ(D) = 0 modL(M) and degD = 0

3.7 Uniformization theory

The scope of this section is to give a first description of the moduli space of Riemann
surfaces with the help of uniformization theorem, in particular its dimension will be ob-
tained. The approach of Alvarez, Nelson [2] is followed, in order to do this basics facts
about uniformization theory are recalled, more complete reference are Matone [10] and
Farkas, Kra [9].
Given a Riemann surface M it is always possible to construct a new Riemann surface M̃,
which is known as universal covering of M, with the following properties:

• There is a surjective local homeomorphism π : M̃ → M.

• M̃ is simply connected.

• Every closed curve on M is mapped by π−1 into an open curve on M̃.

Furthermore, letting Ũ be a generic covering of U , it can be proved that:

• π1(Ũ) ∼= N , where N is a subgroup of π1(U).

• If N is normal3 there is a discontinuous group G ∼= π1(U)/N of fixed point free
automorphisms of Ũ such that Ũ/G ∼= U .

Going back to universal covering of Riemann surfaces one thus obtain (being the funda-
mental group of the simply connected covering the identity, which is obviously a normal
subgroup of π1(M)):

M ∼= M̃/Γ (30)

where Γ are fixed point free analytic (holomorphic) discontinuous automorphisms of M̃.
The reason for studying Riemann surfaces through their universal covering lies on the
following powerful theorem:

Theorem 3.4 (Uniformization theorem). Every simply connected Riemann surface is
conformally equivalent to:

3A subgroup N of G is said to be normal in G if gng−1 ∈ N ∀g ∈ G and ∀n ∈ N
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i) The Riemann sphere Ĉ = C+ {∞}.

ii) The complex plane C.

iii) The upper half plane H.

The group of analytic (this exclude the complex conjugation) automorphisms of the Rie-
mann sphere is the Moebius group acting as

z → az + b

cz + d
, ad− bc ̸= 0 (31)

It has 1 or 2 fixed points (the solutions to cz2 + (d− a)z − b = 0 or ∞ and z = az+b
d ) or

every points in Ĉ if the transformation is the identity. The fact that there are not fixed
point free automorphisms on the Riemann sphere proves that there is only one Riemann
surface of genus zero.
For the plane C only the translations act without fixed points, thus compositions of generic
automorphisms with non-zero translations must be considered.
The group of translations is spanned by two independent vectors: ω1, ω2 ∈ C, ω1 ̸=
λω2, λ ∈ R, furthermore both ω1 and ω2 are chosen to be different from zero because we
are interested in compact surfaces.

ω1

ω2 T 2

∥ω1∥ = 1

∥ω2∥ = |τ |

Im z

Re z

Figure 3: Generators of the automorphisms

By means of composition with analytic au-
tomorphisms only (a rotation and a rescal-
ing) ω1 is set equal to 1, ω2 equal to τ,
τ ∈ C, Im τ > 0. The lattice generated by
1, τ Z+τZ determines a family of tori on C
(figure (3)), and each family is determined
by the complex parameter τ ∈ C, Im τ > 0,
i.e. the space of this families is the upper
half plane H. However the map

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z) (32)

is a diffeomorphism between families of
tori, which then are conformally equiva-
lent. SL(2,Z) is spanned by the identity, the translation z → z + 1 and the counter-
inversion z → −1

z (which sends points outside from the ball of radius 1 into it and
vice-versa), it follows that the space that of all the inequivalent tori (the moduli space
M1) is the shaded area with identified boundaries in figure 4 and has complex dimension
equal to 1.

Figure 4: Moduli space of genus 14
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The compactified moduli space of genus 1 M1 is obtained by adding the point τ = ∞
which corresponds to the family of pinched tori.
In the case g > 1 the covering space is H, furthermore it is useful to recall that that
Gauss-Bonnet theorem 10 implies that the curvature is negative, thus setting R = −1 in
eq. (21) the Poincaré metric is obtained, ds2 = dzdz̄

Im(z)2
. In this settings automorphisms

are isometries of H, thus elements of PSL(2,R) = SL(2,R)/{I,−I}, whose action is given
by

z → az + b

cz + d
,

(
a b
c d

)
≡ γ ∈ PSL(2,Z) (33)

Thus the fixed points are solution to the equation

cz2 + (d− a)z − b = 0; z± =
a− d±

√
(a+ d)2 − 4

2c
(34)

where it has been used that ad − bc = 1. This leads to the following classification of the
transformations γ and their fixed points:

• |Tr γ < 2|: z+ is the complex conjugate of z− and lies on H, this fixed points are
called elliptic.

• |Tr γ = 2|: z+ = z− ∈ R. γ is similar to a translation along the real axis so the order
of its stabilizer is infinite and topologically they correspond to punctures.

• |Tr γ > 2|: z+ and z− are distinct and lie on the real axis, thus they are not in H.
Topologically they represent handles.

The requirement that γ is fixed point free rules out the transformations with |Tr γ < 2|,
while γ ∼= π1(M) implies that each family of inequivalent Riemann surfaces of genus g is
represented by a set of 2g transformations {γ1, . . . , γ2g} determined up to a global isometry
of H and subject to the condition (11):

g∏
i=1

γ2i−1γ2iγ
−1
2i−1γ

−1
2i = I (35)

Each transformation depends on 3 real parameters (a, b, c, d with the constraint of det γ =
1) and the conditions eliminate 6 of them, thus for g > 1 the complex dimension of the
moduli space is

dimMg =
1

2
(6g − 6) = 3g − 3 (36)

4Figure taken from https://lib-extopc.kek.jp/preprints/PDF/1987/8701/8701339.pdf.
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4 Theta functions

Definition 4.1 (Theta function). Given a period matrix τ , a theta function with half-

integer characteristic
[
a
b

]
is defined as:

θ

[
a
b

]
(z|τ) =

∑
m∈Zg

exp

{
2πi

(
1

2
(m+ a) · τ(m+ a) + (m+ a) · (z + b)

)}
(37)

where a, b ∈ 1
2Z

g, z ∈ Cg.

In the following it will be written θ
[
0
0

]
(z|τ) ≡ θ(z|τ).

It can be shown by a simple calculation from the definition that theta functions are
multivalued under shifts of the lattice Lτ = Zg + τZg:

θ

[
a
b

]
(z + n+ τm|τ) = exp{2πi(a · n− b ·m− 1

2
m · τm−m · z)}θ

[
a
b

]
(z|τ) (38)

Note that the set of zeros is periodic on the lattice. In an analogous way the following
two properties are obtained:

θ

[
a
b

]
(−z|τ) = exp {2πi (2a · b)} θ

[
a
b

]
(z|τ)

θ

[
a+ k
b+ h

]
(z|τ) = exp {2πi (a · k)} θ

[
a
b

]
(z|τ)

where h, k ∈ Zg. Thus there are 22g theta functions with half integer characteristic which
correspond to spin structures on the surface M. Spin structures are called even or odd
depending on the parity of the corresponding theta function. There are 2g−1(2g +1) even
structures and 2g−1(2g − 1) odd ones, as can be shown by induction.

The behaviour of the theta function under shifts of the lattice Lτ = Zg + τZg (38) sug-
gest the association between theta functions and Riemann surfaces with the substitution
z → ϕ, τ → τ .
Let f ≡ [ab ] ◦ ϕ, from the definition of theta function it is clear that f has no poles, thus

# of zeros of f =
1

2πi

∫
δM

df

f
(39)

Using the representation of a Riemann surface of figure 2 and choosing the generators of
π1(M) such that no zeros lie on them

1

2πi

∫
δM

df

f
=

1

2πi

g∑
k=1

∫
ak+bk+a−1

k +b−1
k

df

f

=
1

2πi

g∑
k=1

(∫
ak

(
df

f
− df−

f−

)
+

∫
bk

(
df

f
− df−

f−

)) (40)

where f− is the value of the function on the curves ak, bk k = 1, . . . g. From the multival-
uedness (38) follows that (b−cycles are passed through after an a−cycle, and a−1−cycles
after a b−cycle)

f(P ) = e2πiαkf−(P ) if P ∈ bk ⇒ df

f
− df−

f−
= 0 if P ∈ bk
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f−(P ) = e2πi(−βk−ϕk(P )−τkk/2)f(P ) if P ∈ ak ⇒ df

f
− df−

f−
= 2πid(ϕk(P )) if P ∈ ak

thus

# of zeros of f =
1

2πi

g∑
k=1

∫
ak

2πid(ϕk(P )) =

g∑
k=1

∫
ak

ωk = g (41)

Actually the position of the zeros of the theta function can also be described thanks to
the following theorem

Theorem 4.1 (Riemann vanishing theorem [9]). The function

θ

[
a
b

]
(ϕ(z) + ξ|τ) , z, Pk ∈ M (42)

either vanishes identically or else it has h zeros z = P1, . . . , Pg which satisfy

ϕ

(
g∑

i=1

Pi

)
= −ξ − Ib− τa+∆ (43)

Where ∆ is called vector of Riemann constants and is given by

∆j =
1

2
− 1

2
τjj +

∑
i ̸=j

∫
ai

(
ωi(z)

∫ z

z0

ωj

)
. (44)

In order to construct single-valued differentials it will be useful to know the expression of
a differential vanishing at just one point in terms of theta functions, such differential is
called prime form. To obtain it the Verlinde E., Verlinde H. construction [11] is followed:
consider the theta function with odd characteristic

f([a, b], z, w) ≡ θ

[
a
b

]
(ϕ(z)− ϕ(w)|τ) = θ

[
a
b

](∫ z

w
ω|τ
)

(45)

Being an odd function it has a zero for z = w, while the other g − 1 zeros (with respect
to both z and w) due to Riemann vanishing are called ri, i = 1, . . . , g − 1. It follows that
close to each of the ri the behaviour of f is f ∼ const(z − w)(z − ri)(w − ri), thus the
1−form

g([a, b], z) ≡ −∂wf([a, b], z, w)|w=z =

g∑
k=1

ωk(z)∂uk
θ [ab ] (u|τ)|uk=0

behaves as g ∼ const(z − ri)
2, and doesn’t have other zeros because has degree equal to

2g − 2. The prime form is thus defined as

E(z, w) =
f([a, b], z, w)√
g(z)

√
g(w)

(46)

and as required it has a zero only for z = w, furthermore it is a differential of weight
(−1/2, 0) for both z and w.
Also the g/2-differential with empty divisor σ(z) will be used

σ(z) = exp

{
−

g∑
k=1

∫
ak

ωk(w)logE(z, w)

}
. (47)

16



Their multivaluednesses are obtained by theta function’s one:

E(z + n · a+m · b, w) = eπim·τm−2πim·(ϕ(z)−ϕ(w))E(z, w)

σ(z + n · a+m · b) = eπi(h−1)m·τm−2πim·(∆−(h−1)ϕ(z))σ(z)
(48)

Their values also depends on the choice of the homology basis and their behaviours under
modular transformations are

Ê(z, w) = exp

{
πi

∫ w

z
ω · (Cτ +D)−1C

∫ w

z

}
E(z, w) (49)

σ̂(z) = exp

{
iπ

g − 1
∆ · (Cτ +D)−1C∆

}
σ(z) (50)
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5 Gaussian integrals

5.1 Commuting variables

From the well-known formula, using Lebesgue measure,∫
dx e−

1
2
x2

=
√
π (51)

it is seen that a normalization of the measure can be chosen in an indirect way by setting
(for later convenience) ∫

Dxe−
1
2
x2 ≡ 1 (52)

Given an operator A acting on a finite-dimensional space, it is useful to compute the
integral

∫
Dxe−

1
2
x·Ax. It is immediately seen that only the symmetric part of A contributes

to the integral, thus, after diagonalizing A, one get from the previous integral∫
Dxe−

1
2
x·Ax = (det(SymA))−1/2 (53)

5.2 Grassmann variables

Definition 5.1 (Grassmann algebra). The set of elements {θ1, . . . , θn} is said to be a set
of generators of a Grassmann algebra if they anticommute, i.e.

θi, θj ≡ θiθj + θiθj = 0 (54)

An element of the Grassmann algebra is defined to be a (necessary finite) power series of
the generators:

f(θ) = f0 +
∑
i

fiθi +
∑
i ̸=j

fijθiθj + · · ·+ f1...nθ1 . . . θn (55)

Integration over a Grassmann variable is determined by the following rules [12]:

i)
∫
dθi = 0.

ii)
∫
dθiθi = 1.

Using this rules one can evaluate a Gaussian integral of the form

I =

∫ n∏
l=1

dθ̄ldθl e
−

∑
ij θ̄iAijθj (56)

First of all it is noted that for Grassmann variables, because of θ2i = 0 the exponential is
just its expansion to first order

e−
∑

ij θ̄iAijθj =
∏
i

e−
∑

j θ̄iAijθj =
∏
i

(1−
∑
j

θ̄iAijθj) (57)
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then the first integration rule states that only the terms with all the variables give a
non-zero contribution, thus

I =

∫ n∏
l=1

dθ̄ldθl
∏
i

(−
∑
j

θ̄iAijθj)

=

∫ n∏
l=1

dθ̄ldθl
∑
j1...jn

θj1 θ̄1 . . . θjn θ̄nA1j1 . . . Anjn

=

∫ n∏
l=1

dθ̄ldθl θ1θ̄1 . . . θnθ̄n
∑
j1...jn

ϵj1...jnA1j1 . . . Anjn

= detA

(58)

The evaluation of the same integral, but with commuting variables, gives (as can be seen
performing an orthonormal transformation to diagonalize the matrix A)

Ic =

∫ n∏
l=1

dz̄ldzl e
−

∑
ij z̄iAijzj = (detA)−1 (59)

From comparison between I and Ic it will be used the fact that by replacing commuting
variables with anticommuting ones in integrals in the form of (59) leads to the evaluation
of the inverse of the value at the LHS.

6 Polyakov string

In the following the bosonic Polyakov action is considered.

Definition 6.1 (Bosonic Polyakov action).

SP =
T

8π

∫
d2ξ

√
ggmn∂mx

µ∂nx
νGµν(x) (60)

where T is called string tension and will be set equal to 1, xµ, µ = 1, . . . , d and Gµν(x) are
respectively coordinates and metric of the space-time, ξm, m = 1, 2 and gmn(x) coordinates
and metric of the Riemann surface traced out by the string.

The following transformations are symmetries of the Polyakov action:

i) The group Diff(M) of diffeomorphisms on M.

ii) The group Weyl(M) of local rescalings of the metric tensor given by g′ = e2σg.

iii) The Poincaré group is a symmetry for the space time.

The physical quantities of interest are the partition functions, one could be tempted
to write (Wick rotation has been performed):

Z =

∞∑
h=0

∫
DgmnDx

µe−S(x,g) (61)

however there is a huge overcounting due to the fact that surfaces parameterised by xµ, gmn

related by Weyl transformations and reparametrization describe the same physical state,
the Polyakov action being invariant under these transformations suggest that this problem
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can be solved by factoring out the volume of these symmetry groups, thus the partition
function is formally written

Z =
∞∑
h=0

∫
DgmnDx

µ

VDiffVWeyl
e−S(x,g) (62)

6.1 Integration over spce-time coordinates

The integration over xµ reduces to a Gaussian integral: first by integration by parts the
Polyakov action is rewritten as

Sp =
1

8π
⟨x |∆gx⟩ (63)

where
∆g = − 1

√
g
∂m

√
ggmn∂n (64)

Thanks to Sturm-Liouville theorem the x variable can always be split into the constant
zero mode x0, and the other modes orthogonal to it x′µ, so that xµ = xµ0 + x′µ. As in
section (5.1) the measure is indirectly chosen by setting 1 =

∫
Dxµ e−∥x∥2/8π.∫

Dxµ e−Sp =

∫
Dxµ0

∫
Dx′µ e−⟨(x0+x′) |∆g(x0+x′)⟩/8π

=

∫
Dxµ0

∫
Dx′µ e−⟨x′ |∆gx′⟩/8π

= (det′∆g)
−d/2

∫
Dxµ0

∫
Dx′µ e−∥x′∥2/8π

(65)

∫
Dxµ0 ≡ Ω is the volume of space time, while

∫
Dx′µ e−∥x′∥2/8π is evaluated by

1 =

∫
Dxµ e−∥x∥2/8π =

∫
Dxµ0

∫
Dx′µ e−∥x0∥2/8π−∥x′∥2/8π

=

(
8π2∫

M d2ξ
√
g

)d/2 ∫
Dx′µ e−∥x′∥2/8π

(66)

substituting in (65) it is finally obtained∫
Dxµ e−Sp = Ω

(
8π2∫

M d2ξ
√
g
det′∆g

)−d/2

(67)

6.2 Integration over metrics

As mentioned before the strategy to handle the integration over the metrics avoiding
the divergence of the partition function is to factor out the volume of the gauge group.
Following Friedan [13] and Polchinski [14] the idea is to fixing the gauge in order to perform
the integration over just a gauge slice and obtaining the correct measure on this space by
the Faddeev-Popov method [15].
Before to go on with this method is useful to analyze the first order variation of the
metric tensor under an infinitesimal reparametrization δz ≡ vµ(z, z̄), µ = z, z̄ for later
necessity. These are obtained recalling that, for the metric tensor, the Lie derivative
along the vector field vµ(z, z̄), µ = z, z̄ can be written as £vµgmn = ∇mvn +∇nvm. The
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Weyl transformation g → e2σg induce the variation δgmn = 2δσgmn, putting everything
together:

δgmn = (2δσ +∇pvp)gmn + (P1v)mn (68)

where
(P1v)mn ≡ ∇mvn +∇nvm − gmn∇pvp (69)

is the traceless part of the deformation and is determined only by the reparametrization.
The total trace part can therefore always be obtained by a Weyl transformation. In order to
find inequivalent metrics for the surface (i.e. which are not obtained by reparametrization
or Weyl transformations) we look for symmetric traceless quadratic differentials, let’s say
hab, that are not in the image of P1:

⟨h |P1v⟩ = 0 =
〈
P †
1h
∣∣∣ v〉

The space of variation of the metric is thus decomposed in the three orthogonal subspaces:

{δgmn} = {δσgmn} ⊗ RangeP1 ⊗KerP †
1 (70)

The dimension of KerP †
1 is easier to calculate in complex coordinates once that the metric

is written, at least locally, as ds2 = 2gzz̄dzdz̄: noting that P1 = ∇1
z it is immediately seen

that
h ∈ KerP †

1 ⇐⇒ ∇zh = 0 ⇐⇒ ∂z̄h = 0 ⇐⇒ h holomorphic (71)

The dimension of holomorphic quadratic differentials was found to be 0 for g = 0, 1 for
g = 1 and 3g− 3 for g > 1 in proposition 3.5, confirming the counting of the dimension of
the moduli space of section 3.7 .
Now we can proceed with the gauge fixing. We focus on conformal metrics, leaving the
discussion of integration over moduli (KerP †

1 ) for later. Recalling that at least locally the
metric can be brought in the form gab = δab by diffeomorphisms, V olDiff can be cancelled
by choosing the slice over which integration is performed as the set of the metrics obtained
by Weyl transformations from gab = δab, i.e. gab = eϕδab, thus the chosen gauge slice reads
[ĝ] = {gab = eϕδab}.
The usual Faddeev-Popov machinery consists in inserting the identity

1 = ∆FP (g)

∫
dδσdv δ(g − ĝ) (72)

in the partition function. The so-called Faddeev-Popov determinant ∆FP is interpreted
(due to the properties of the delta function under change of coordinates) as the Jacobian
of the transformation made to integrate only over the gauge slice. ∆FP (g) is evaluated
by first computing its inverse by expanding the delta function near the identity with (68)
([14])

∆−1
FP =

∫
dδσdv δ((2δσ + ∇̂pvp)ĝ + (P̂1v))

=

∫
dδσdvdβ′ exp

{
2πi

∫
d2ξ
√
ĝβ′mn((2δσ + ∇̂pvp)ĝmn + (P̂1v)mn)

}
=

∫
dvdβ exp

{
2πi

∫
d2ξ
√
ĝβmn(P̂1v)mn

} (73)

where in the second equality the symmetric tensor field β′mn has been introduced to write
the integral representation of the delta functional, while integration over the generator of
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Weyl transformations δσ forced to consider a symmetric tensor field βmn perpendicular
to the full-trace part of the variation, thus to be traceless for the above arguments ((70)).
An expression for ∆−1

FP has thus been obtained as a path integral over commuting variables,
from the results of (5) the evaluation of its inverse ∆FP is obtained by the substitutions
of the commuting fields vm, βmn with anticommuting ones:

vm → cn, βmn → bmn (74)

Finally in complex notation the obtained expression is

∆FP (g) =

∫
DbDb̄DcDc̄

3g−3∏
j=1

b(zj)b̄(zj)e
−Sg(b,c) (75)

where
Sg(b, c) =

1

2π

∫
d2z

√
g(bzz∇zcz + c.c.) (76)

The insertion of
∏3g−3

i=1 b(zi)b̄(zi) in eq. (75) has been made to avoid the integral to vanish
for the presence of 3g − 3 zero modes for the operator ∇z (we are restricting to the case
g > 1 here).
Considering the more general case of anticommuting fields of weight n and 1 − n the
Faddeev-Popov action reads

Sg(b, c) =
1

2π

∫
d2z

√
g(b∇zc+ c.c.) (77)

The problem here is that the operator ∇z acts between spaces of differentials of different
weights thus it is not possible to chose eigenvectors with scalar eigenvalues to reduce to a
Gaussian integral, progresses to the formal solution to this problem was made by Quillen
[16] and the value of the integral is given in an heuristic way by (for example) Verlinde
E., Verlinde H. [11], Belavin, Knizhnik [17]

| detωn
j (zk)|2

det′∆1−n

det
〈
ωn
j

∣∣∣ωn
k

〉 =

∫
DbDb̄DcDc̄

(2n−1)(g−1)∏
j=1

b(zj)b̄(zj)e
− 1

2π

∫
d2z(

√
gb∇zc+c.c.)

(78)
Writing (Nn)jk ≡

〈
ωn
j

∣∣∣ωn
k

〉
=
∫
ω̄n
j ρ

1−nωn
k the substitution of the Faddeev-Popov deter-

minant in the partition function leads to the following expression

Z =

∫
Mg

3g−3∏
j=1

dmj ∧ dmj

|detω2
j (zk)|2

VWeyl

∫
dδσ

det′∆−1

detN2

(
8π2det′∆0

N0

)−d/2

(79)

where mj , j = 1, . . . , 3g − 3 are analytic coordinates on the moduli space.
The last integrand is not Weyl invariant, in fact under a Weyl transformation g → ĝ =
e−2σg with heat-kernel, short-time cutoff procedure ([18]), it is found

det′∆−1

detN2
=

det′ ∆̂−1

det N̂2

e−26SL(σ)

(
8π2det′∆0

N0

)1/2

=

(
8π2det′∆̂0

N̂0

)1/2

e−SL(σ)

(80)

22



Where SL(σ) is called Liouville action, but its explicit expression is irrelevant because
we are interested in the critical dimension, where Weyl dependence is eliminated, by
substitution of (80) into (79) it is found that the coefficient multiplying the Liouville
action is d − 26, thus the critical dimension is 26. In critical dimension the integration
over Weyl transformations cancel out with VWeyl, and the computation of the partition
function has reduced to an integration over moduli space Mg:

Z =

∫
Mg

3g−3∏
j=1

dmj ∧ dmj | detω2
j (zk)|2

det′∆−1

detN2

(
8π2det′∆0

N0

)−13

(81)
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7 Mumford forms

We will define and express in terms of theta functions the Mumford forms for a generic
n ∈ N, n > 0, while in the last paragraph it will be given the relation between the Polyakov
measure and the Mumford form for n = 2.

7.1 Mumford forms

Let Let Cg
π−→ Mg be the universal curve over moduli space Mg, g ≥ 2, defined by letting

π be the association between each point of Mg and the corresponding equivalent Riemann
surfaces. Consider for n ≥ 1 the determinant line bundle λn = detLn where Ln =

Rτ∗

(
Kn

Cg/Mg

)
is the vector bundle on Mg of rank N = (2n − 1)(g − 1) + δ1n for n > 1

((3.2)) with fiber H0 (Kn
C) at C ∈ Mg, C compact Riemann surface. The Mumford

isomorphism is
λn ∼= λcn1 , cn ≡ 6n2 − 6n+ 1 (82)

the Mumford form µg,n for g ≥ 3 is then the unique (up to a constant) holomorphic section

of the bundle λn ⊗ λ
−(6n2−6n+1)
1 nowhere vanishing on Mg (it has poles at the boundary

of Mg). To find an expression of the Mumford form the following lemma is needed.

Lemma 7.1. Given an arbitrary holomorphic function t(z) non-vanishing on M such
that t(z0) = 1 for a fixed z0 ∈ M, {ωi}i=1,...,m a basis for H0(Kn), {ϕi}i=1,...,m a basis for
H0(K1−n) and let D be a divisor of degree d, then

f (L, z0, {ωi} , {ϕi}) ≡
θ (ϕ (D −

∑m
1 xi +

∑n
1 yi)−∆)

∏m
i<j E (xi, xj)

∏n
i<j E (yi, yj)

det (ωi (xj)) det (ϕi (yj))
∏

i,j E (xi, yj)

·
∏m

1 t (xi)
∏n

1 σ (yj , z0)∏m
1 σ (xi, z0)

∏n
1 t (yj)

(83)

does not depend on the points xi, yj , i = 1 . . . ,m, j = 1, . . . , n

Proof. The idea is to prove that f is a holomorphic, non-vanishing function, thus it is a con-
stant with respect to each variables xi, yj . Firstly f is considered as a function of x1 only,
with xi, i = 2, . . . ,m, yj , j = 1, . . . , n fixed. The divisor of the theta function is found by
application of Riemann vanishing theorem (4.1): writing θ

(
ϕ
(∑d

1 ai −
∑m

2 xi +
∑n

1 yi

)
− ϕ(x1)−∆

)
it is seen that there are n zeros at yj , j = 1, . . . n and each η of the others g − n (recall
that the Riemann-Roch theorem imply that m− n = d− g + 1) satisfy

ϕ(D) + ϕ

(
n∑
1

yi

)
− ϕ

(
m∑
2

xi

)
= ϕ

(
n∑
1

yi

)
+ η

The determinant det (ωi (xj)) has trivial zeros at xi, i = 2, . . .m, and the others d− (m−
1) = g − n (again for Riemann-Roch) at

∑m
i=2 xi + ξ = D; thus ξ = η, while the other

zeros cancel out with the prime forms. For the above statement f is constant with respect
x1 (i.e. does not depend on it). The same argument applies to the other variables.

In particular the expressions needed are (t(z) is chosen to be t(z) = σ(z, z0)
2n)

f(Kn, z0, {ωn
i },∅) =

θ
(
ϕ(
∑Nn

1 xi)− (2n− 1)∆
)∏N

1 σ(xi)
2n−1

∏N
i<j E(xi, xj)

detωn
i (xj)σ(z0)

(1−2n)N

≡ 1

κ[ωn]σ(z0)(1−2n)N

(84)
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and

f(Kn, z0, {1}, {vj}) =
θ (ϕ(

∑g
1 yi − x−∆))

∏g
1 σ(yi)

∏g
i<j E(yi, yj)σ(z0)

g−1

detωi(yj)σ(x)
∏g

1E(x, yi)

≡ σ(z0)
g−1

κ[ω]

(85)

Also the following quantity is introduced

c(p) ≡
θ (
∑g

1 xi − q −∆)
∏g

i<j E (xi, xj)
∏g

1 σ (xj , p)∏g
1E (q, xi) det (ωi (xj))σ(q, p)

(86)

Now the Mumford form in terms of theta functions is given by the following theorem

Theorem 7.1 ([19]). Let {ωn
1 , . . . , ω

n
N} be any basis of H0 (Kn

C) for n ≥ 2 and N =
(2n− 1)(g− 1) + δ1n. Then for any points p, x1, . . . , xN ∈ H, the Mumford form is, up to
a universal constant:

µg,n =
θ
(∑N

1 xi − (2n− 1)∆
)∏N

i<j E (xi, xj)

det (ωn
i (xj))

∏N
1 c (xi)

(2n−1)/(g−1)
·

ωn
1 ∧ · · · ∧ ωn

N

(ω1 ∧ · · · ∧ ωg)
6n2−6n+1

(87)

The form has a pole of order 1
2n(n− 1) at the boundary ∂Mg =Mg −Mg.

Proof. Using the quantities introduced above µg,n can be written as:

µg,n = µg,n {ωn
i }

ωn
1 ∧ · · · ∧ ωn

N

(ω1 ∧ · · · ∧ ωg)
6n2−6n+1

,

µg,n {ωn
i } =

f (Kn, z0, {ωn
i } ,∅)

f (I, z0, {1}, {vj})(2n−1)2
=
κ[ω](2n−1)2

κ[ωn]

By lemma 7.1 µg,n is a holomorphic, nowhere vanishing form depending on the marking of
C, thus is the Mumford form. For later use its behaviour under modular transformations
is given by the behaviour of

θ

(
N∑
1

xi − (2n− 1)∆

)
N∏
i<j

E (xi, xj)

N∏
1

c (xi)
1−2n
g−1 .

A computation ([19]) shows that this quantity picks up the factor (ε)−4n(n−1) (det(cτ +

d))−(6n
2−6n+1), where ε is an eighth root of 1. Thus for n integer

µ̂g,n = det(cτ + d)−(6n
2−6n+1)µg,n. (88)

The boundary of the moduli space Mg −Mg is a union of divisors ∆0 ∪∆1 ∪ · · · ∪∆[ g2 ]
where each one of the points of ∆0 corresponds to the set of equivalent pinched Riemann
surfaces obtained by identifying two points a, b on a smooth genus g− 1 surface C∗, while
the points of ∆k for k > 0 correspond to pinched surfaces obtained by identifying the
points a, b on two Riemann surfaces C1, C2 of genus g1 = k, g2 = g − k respectively. This
construction is represented in figures 5 and 6 for the case g = 2.
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a

b
a ∼ b

a, b

Figure 5: Construction of M2 −M2: ∆0

a b

a ∼ b
a, b

Figure 6: Construction of M2 −M2: ∆1

A family of surfaces Ct is built in the following way: let C0 be one of the pinched surfaces
(i.e. C0 ∈ ∆k), while for t ̸= 0 Ct is a non-singular Riemann surface of genus g. It is
clear that a basis {ωn

i,t} for H0(Kn
Ct
) has dimension (2n−1)(g−1)+δ1n (proposition 3.2),

while for t = 0 one can chose only (2n − 1)((g − 1) − 1) + δ1n independent holomorphic
n−differentials for k = 0 and (2n−1)(g1−1+δ1n+g2−1+δ1n) = (2n−1)(g−2+2δ1n) for
k > 0. Thus (assume n > 1, the case of n = 1 requires straightforward modification due
to the δ1n which will be clear in the following arguments, in particular note that for K > 0
and n = 1 there are still g holomorphic differentials at t = 0) {ωn

i,0} = {ωn
j }∪ {ηm} where

ωj are the (2n− 1)(g − 2) holomorphic elements and the other 2n− 1 n−differentials ηm
has singularities at a, b given by 1

(z−a)m for 1 ≤ m ≤ n− 1, 1
(z−b)m−n+1 for n ≤ m ≤ 2n− 2

and
(

1
(z−b)n + (−1)n

(z−a)n

)
for m = 2n − 1. The cases of k = 0 and k > 0 require different

treatment:

• CASE I (k = 0): a basis ω1,t, . . . , ωg,t for H0(KCt) at t = 0 become v1, . . . , vg−1,
∂z log

E(z,b)
E(z,a) , in fact close to a, b, thanks to the construction of the prime form (4),

the last differential is ∂z log z−b
z−a = 1

z−b −
1

z−a as expected. To compute the period
matrix for t → 0, in addition to the expression of ωg, also the last b−’cycle’ now
goes from a to b must be taken in account. From these considerations the period
matrix is:

τjk(t) ∼
{
τjk j, k < g∫ b
a ωj j < g, k = g

, τgg(t) =
1

2πi
log t+O(t)

Expanding up to the leading term µg,n{ωi,t} leads to

µg,n {ωi,t} ∼ t−n(n−1)/2
(−1)nσ(a, b)(2n−1)(n−1)

∏N
i<j E (xi, xj)

det (ωj (xi) ηk (xi))
∏N

1 [E (xi, a)E (xi, b)]
n

·
θ(s)σ(a, b)2n−1

∏N
1 E (xi, a)− θ(s+ a− b)

∏N
1 E (xi, b)

(2πi)(2n−1)2
∏N

1 [c (xi)σ (a, xi)]
(2n−1)/(g−1)
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where s = (2n − 1)∆∗ −
∑N

1 xi + n(a + b) − a ∈ Cg−1. Note that since µg,n is
independent of xi, we can let xN−n+1, . . . , xN → b and then xN−2n+2, . . . , xN−n → a
to conclude for g ≥ 3 :

µg,n {ωi,t} ∼ t−n(n−1)/2 E(a, b)n−n2

(2πi)(2n−1)2
µg−1,n {ωi} (89)

• CASE II (k > 0): in this case, as already noted, a basis of holomorphic differentials
only can be chosen, so

{ωi,0} = {ωj , 1} ∪ {ωm, 2} (90)

with {ωj , 1} and {ωm, 2} basis for H0(KC1) and H0(KC1) respectively. Also the
b−cycles can be chosen to meet no modification for t → 0, thus the period matrix
behaves in the following way:

τ →
(
τ1 0
0 τ2

)
(91)

with τ1 and τ2 period matrices for C1 and C2.
Again expanding µg,n{ωi,t} it is obtained

µg,n {ωi,t} ∼ εt−n(n−1)/2µg1,n {ωj,1}µg2,n {ωm,2} (92)

where ε is a fixed (2g − 2)th root of 1 .

7.2 Relation with Polyakov measure

Recall that it had been found that the partition function of the bosonic string in critical
dimension d = 26 is the following integral over moduli space

Z = const

∫
Mg

3g−3∏
j=1

dmj ∧ dmj |detω2
j (zk)|2

det′∆−1

detN2

(
det′∆0

N0

)−13

(93)

Also in the proof of proposition 3.1 it was proved that N1 ∝ Im τ , thus the integrand can
be written as

det′∆−1

detN2

(
det′∆0

N0 detN1

)−13

|detω2
j (zk)|2(det Im τ)−13 (94)

det′ ∆−1

detN2

(
det′∆0

N0 detN1

)−13
≡ eW was found by Belavin, Knizhnik [4] to be the square of an

holomorphic non-zero function, also note that detω2
j (zk) ∈ λ2 and, from the definition,

det Im τ = det
1

2

∫
C
ωi ∧ ωj =

1

2g
det

∫
C
ωi ∧ ωj

thus using (Matone, Volpato [20])

det

∫
C
ωi ∧ ωj =

1

g!

∫
Cg

∏
k

|dzk|2|detωi(zj)|2

it follows that under modular transformations det Im τ transforms as |detωj(zk)|2, so the
map from the modulo square of the wedge product into a scalar

| detωj(zk)|2 → det Im τ (95)
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leads to the association between the modulo square of the Mumford form and the Polyakov
measure multiplied by (detN1)

13 for n = 2.
As first application of this fact it is noted that in critical dimension also modular invariance
is guaranteed, in fact the factor (det(cτ + d)−13)2 from (88) is eliminated by its inverse
coming from (det Im τ)−13 due to (24).
Additionally the ’double pole’ theorem of Belavin, Knizhnik [17] implying the divergence
of the partition function at the boundary of the moduli space, interpreted as the tachyon,
follows as a particular case of theorem 7.1 for n = 2.
Finally the factorization property of the Mumford form (92) together with the ’splitting’
of the basis for H0(KC) (90) and the period matrix (91) when the surface is pinched not in
a a−cycle, allow the factorization of a generic partition function Zn (z1, . . . , zI) [11]. The
result depends on how the points zi split over C1 or C2. Let x1, . . . , xI1+q1 be the points
C1 and y1, . . . , yI2+q2 the ones on C2, where Ii = (2n− 1) (gi − 1) and q1 + q2 = (2n− 1).
Thus the factorization for t→ 0 reads

Zn (z1, . . . , zI) (t) → t−q1q2/2Zn(xk, a; q1)Zn(yj , b; q2). (96)

7.3 Expression of the partition function without points

The expression of the Polyakov measure in terms of theta functions still isn’t satisfactory
because contains points on which it has been proved to be independent (lemma 7.1), the
solution to this redundancy can be found in Matone [21] where the expression for g = 4,
conjectured by Belavin, Knizhnik [17] was proved and a general structure for the partition
function derived for g > 4. Before to go on with this results it should be noted that
removing the points in the Polyakov measure could lead to modular or Weyl anomaly, this
problem is illustrated in detail and solved in Matone [22] for the more general case:(

det′∆0

N0

)−cn
det′∆1−n

detNn
|detωn

j (zk)|2 =

∣∣∣∣∣κ[ω](2n−1)2

κ[ωn]

∣∣∣∣∣
2 | detωn

j (zk)|2

(det τ)cn
(97)

The problem of eliminating the points arise from the fact that a positive definite (1, 1)
form used to integrate over the zero mode insertions in (78) (thus, as a metric, should take
the factor eσ under Weyl transformation) can be expressed in terms of Weyl and modular
invariant quantities. Anyway in the same article [22] all the Weyl invariant forms were
classified, in particular it was proved that the map

| ∧max ωn
j |2

| ∧g ωj |2cn
→ detNn

(det τ)cn
(98)

which associates the modulo square of the wedge products in the Mumford forms to (0, 0)
forms, allows to express the corresponding partition function

Zn =

∣∣∣∣∣κ[ω](2n−1)2

κ[ωn]

∣∣∣∣∣
2
detNn

(det τ)cn
(99)

as a Weyl and modular invariant, point independent quantity when d = 2cn. Of course
for the bosonic string this condition is satisfied in critical dimension.
Now let, as above, m1, . . . ,m3g−3 some complex analytic coordinates on the moduli space
of genus g ≥ 2 compact Riemann surfaces Mg. According to the results of the previous
section the genus g partition function of the Polyakov bosonic string is

Zg =

∫
Mg

F ∧ F̄
(det Imτ)13

, (100)
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where
F ≡ F (m1, . . . ,m3g−3)dm1 ∧ · · · ∧ dm3g−3 ,

is a holomorphic (3g − 3, 0) form nowhere vanishing on Mg with a double pole at the
boundary Mg −Mg.
Set [δ] ≡ [ab ] for the theta characteristic, the Thetanullwerte χk(Z) is

χk(Z) ≡
∏

δ even
θ[δ](0, Z), Z ∈ Hg, k = 2g−2(2g + 1) (101)

Note that in definition (101) it makes sense to consider only the 2g−1(2g +1) even charac-
teristics because the inclusion of the odd ones would make the product vanishing for each
Z. For g = 2 and g = 3 the following relations hold

F (g = 2) ∝
∧2
i≤jdτij

χ2
5(τ)

, F (g = 3) ∝
∧3
i≤jdτij

χ
1/2
18 (τ)

(102)

The problem for g ≥ 4 turned out to be of more difficult solution due to the Schottky
problem, in fact as noted at the end of section 3.4, the dimension of the Siegel upper half
space is 1

2g(g+1) and the one of the moduli space is 1 for g = 1, 3g− 3 for g > 1, so that
their dimension coincide only up to g = 3.
Introducing the quantity

Fg(Z) ≡ 2g
∑

δ even
θ16[δ](0, Z)−

( ∑
δ even

θ8[δ](0, Z)
)2

for g = 4 it was conjectured ([17]) that

F =
dτ11 ∧ · · · ∧ d̂τ ij ∧ · · · ∧ dτ44

S4ij(τ)
(103)

where the derivative of F4(Z) is written as

S4ij(Z) ≡
1 + δij

2

∂F4(Z)

∂Zij

It turns out that F4(Z) has first order zeros only when Z correspond to the period matrix
of a Riemann surface.
These facts allow to write the partition function as a residue formula:

Z4 =

∫
H4

1

(det ImZ)13

∣∣∣∣∣∧4
i≤jdZij

F4(Z)

∣∣∣∣∣
2

(104)

The above property of F4(Z) and the fact that the residues are evaluated by taking
the derivative of the vanishing denominator show that the last equation is indeed the
substitution of (103) into (100).
As said above this conjecture was proved by Matone [21] by finding for the Mumford form
µ4,2 the expression (c is a constant):

µ4,2 = ± 1

cS4ij

ω1ω1 ∧ · · · ∧ ω̂iωj ∧ · · · ∧ ω4ω4

(ω1 ∧ · · · ∧ ω4)13
(105)

in fact the square of (105) is associated to the Polyakov measure by two maps. One of them
is (95). The other one acts between the wedge product at the numerator of (105) and the
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one at (103), thus can be seen as a map from ωiωj to dτij , where dτij is the differential of
a matrix in the 9th dimensional moduli space. In order to construct such a map, Beltrami
differentials µi are introduced as the dual elements to holomorphic quadratic differentials:

1

2πi

∫
Cg

µiω
j = δji (106)

it follows that there are 3g−3 independent Beltrami differentials. Now consider the Rauch
formula

dτij(µ) =

∫
C4

µωiωj (107)

It can be proved (see [23]) that this changes the complex structure of C4, thus the LHS
is the differential of a period matrix in the moduli space, so the isomorphism (107) is the
map we were looking for to complete the association between the Mumford form and the
Polyakov measure.
Using this map Matone [24] found an infinite class of b − c (anticommuting) and β − γ
(commuting) string-like theories corresponding volume forms on Mg without poles (so
with no tachyon). In particular the product of Mumford forms µg,n with arbitrary n was
considered:

µg ≡

∏
k

(
µnk
g,k{ω

k} ∧max ωk
j

)
(ω1 ∧ · · · ∧ ωg)d/2

, nk ∈ Z (108)

where, according to theorem 7.1,
d = 2

∑
k

nkck (109)

Recalling the results (92) and (89) of theorem 7.1, which imply that each µg,k has a pole
of order 1

2k(k − 1) at ∂Mg, it is found that µg has no poles when∑
k

nkk(k − 1) =
1

6

∑
k

nk(ck − 1) ≤ 0 (110)

Substitution of (109) in (110) leads to

d ≤ 2
∑
k

nk (111)

The associations between the Mumford forms and measures on Mg allows to write the
following integrand for the partition functions

Z =
∏
k

Znk
k (112)

where

Zk =
∏
k

|µg,k{ωk}|2

(det τ)ck
(113)

The argument at the end of section 5.2 shows that nk > 0 correspond to b − c systems,
while nk < 0 to β − γ ones.
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