
U N I V E R S I TÀ D E G L I S T U D I D I PA D O VA
—

Department of Information Engineering

Department of Management and Engineering

—

M A S T E R ’ S D E G R E E I N
A U T O M AT I O N E N G I N E E R I N G

INDUSTRIAL MANIPULATORS
COLLISION DETECTION

ALGORITHMS

Supervisor: Ch.mo Dr. GIULIO ROSATI

Student: MARCO FERRARO

Academic Year 2014/2015



Marco Ferraro: Industrial manipulators collision detection algorithms, Analisi delle colli-
sioni tra manipolatori industriali: algoritmi di collision detection, © March 2015

location:
Padova

time frame:
September 2014 - March 2015



Dedicated to my family.





Abstract

In this work we present some algorithms for detecting any collision between two
robot manipulators. Collisions can be detected only if the trajectory of both manipu-
lators is known, so on the first part we develop a procedure to estimate robot trajec-
tories given only via points, robot and workcell configuration. This phase is carried
out considering an Epson® C4A601S anthropomorphic manipulator, but it may be
adapted to other robots as well. On the second part, we develop the actual general
algorithm to detect collisions, providing multiple models of each robot link which
differ in reliability and simplicity. A user interface is developed to produce one of
the models which is employed in this phase. The algorithm is then optimized for
anthropomorphic robots, in order to be performed on-line. Finally, some results on
critical situations are summarized, which show the effective behaviour even in worst
case conditions.

v





Acknowledgments

I would like to thank all the people who contributed to the realization of this work.
First of all I want to thank my supervisor, dr. Giulio Rosati, who gave me the

possibility to develop and carry out this work, which I consider as a proud milestone
in my life. I also want to thank Pd.D student Luca Barbazza, who helped me during
many phases of this work, and the Department of Management and Engineering for
giving me the possibility to carry out the experimentations in its laboratories.

Special thanks to all the people that supported me during this thesis, my university
mates Matteo, Gianluca and Riccardo, with whom I shared all these last years, and all
my friends who helped me to get to this point, with whom I share the best moments
in my life from years now.

My best gratitude finally goes to my relatives and my family, my brother Stefano,
who has always been an incentive to do my best, and mostly to my parents, Dennis
and Raffaella, who allowed me to pursue this career and supported me for every day
of my life. If I got to this milestone, it’s all your merit.

vii





Contents

1 INTRODUCTION 1

1.1 Historical background 1

1.2 Environmental background 2

2 TRAJECTORY ESTIMATION 5

2.1 Problem statement 5

2.1.1 The Go instruction 6

2.1.2 The Jump3 instruction 8

2.1.3 The Continuous Path (CP) command 9

2.2 Approximation of a Jump3 motion with Arch option 10

2.2.1 Estimation of continuous trajectory 10

2.2.2 Approximation using knots smoothing 12

2.3 Approximation of the junction between two PTP motions 17

2.3.1 Path sampling according to acceleration and deceleration times 18

2.3.2 Path sampling without robot querying 19

2.3.3 Other possibilities and improvements 21

2.4 Experimental results on trajectory estimation 22

3 COLLISION DETECTION 31

3.1 Solid interpenetration using Swept Sphere Volumes (SSV) 32

3.1.1 Interpenetration between two linear SSVs (LL algorithm) 34

3.1.2 Interpenetration between linear and polygonal SSV (LP algo-
rithm) 35

3.1.3 Interpenetration between two polygonal SSVs (PP algorithm) 40

3.1.4 Complexity of SSV modelling algorithm 41

3.2 Solid interpenetration using boxes 43

3.2.1 Complexity of collision detection algorithm using boxes 50

3.3 User interface for initial SSV setup 51

3.3.1 SSV automatic generation procedure 55

3.4 Collision detection general algorithm 57

3.4.1 Collision between two static joint configurations 58

3.4.2 Collision detection between trajectories 62

ix



x contents

4 ALGORITHM OPTIMIZATION 65

4.1 Robot Maximum Swept Volume approach 66

4.1.1 Box obstruction according to first joint position 66

4.1.2 Swept Volume computation 68

4.1.3 Collision detection between robot swept volumes 72

4.2 Group of Joints approach 76

4.3 Algorithm outline 78

4.3.1 Trajectory subdivision 78

4.3.2 Combination between different abstraction levels 79

4.3.3 High-level collision-free algorithm 80

5 EXPERIMENTAL RESULTS 83

5.1 Reliability and precision of the algorithm 83

5.2 Implementation details 84

5.3 Modelling Set-up 84

5.3.1 SSV modelling 84

5.3.2 Box modelling 85

5.4 Critical situation test 86

5.5 Simulation results 88

6 CONCLUSIONS 93

A TRAPEZOIDAL-SPEED LAW RELATIONSHIPS 95

B PROPERTIES OF TRANSFORMATION MATRICES 97

C KINEMATIC MODEL OF ROBOT MANIPULATORS 99

BIBLIOGRAPHY 103



1
Introduction

Industrial robots have made a significant improvement in manufacturing processes
automation over the last decades. Low production costs and productivity increase are
two main reasons why they have been used, so that it is common to find industrial
environments where more robots are employed for the same production line. This
can be done in an efficient way by sharing the same workspace with more robots, in
order to reduce the size of the workcell and eventually to cooperate between different
manipulators.

This work aims to build a system which is capable of detecting any collision be-
tween two robot manipulators which share the same workspace. In particular, we
want to perform this on-line, in order to not alter workcell performance. The system
we are going to build does not use any external agent to determine collisions, such
as cameras or sensors, but it only needs to know the trajectory each robot is going to
follow.

Since our algorithm will be performed on-line, this system can fit in a flexible
robotics manner, as the work cycle can be always different.

1.1 Historical background

Many works which matters with collision detection and trajectory collision-free plan-
ning have been developed over the years. Firstly developed system had to cope with
lack of computational resources, whereas over time the technological progress gave
the possibility to overcome these problems and open the road to increasingly so-
phisticated systems which could cope with high-dimensional problem with many
degrees of freedom.

Starting from 1987 Lee et al. [9] developed a solution which exploits a collision
map between only last 3 links of a 6-axes manipulator, and solved the planning
problem with a time scheduling technique, which involves speed reduction and de-
lay time superimposing. A similar solution was proposed in 1989 by O’Donnell et
al. [11], where a similar approach to the collision map called Task-Completion (TC)
diagram which involves time relationship between the two manipulators was used.
Over the years many other researchers developed this solution, extending it with a
more complex environment. In 2014, Afaghani et al. [1] proposed an improvement
of this method adding an SSV robot modelling which extends the original model
and can be adopted to a wider category of robots. A comparison with the original
algorithm performance is also shown.

Another way to solve the problem is to map the colliding obstacles into the joint
space of the robot, as Park et al. did in [7]. In this way it would be easy to determine

1



2 introduction

a collision-free trajectory just connecting the starting and the ending joint configu-
rations with a broken line. However this solution is suitable only for robots with
few degrees of freedom, as the problem complexity grows exponentially with it, and
by the way the joint-space obstacle description is not simple at all even if the other
obstacle is steady.

In order to solve collision avoidance problem, a feasible solution is made by Artifi-
cial Potential Functions, which introduce a dummy potential field which has to attract
the robot arms to places where there are no obstacles and to repulse them when they
are getting close to the obstacles [3] [8]. The main drawback is that the robot could
move through a local minima of this potential and the algorithm can remain stuck.
There are a few solution to this, depending on the number of degrees of freedom of
the problem.

Part of our work is an extension to what it has been done in [10], where different
types of robot modelling have been reviewed, including Bounding Volumes and Point
Cloud modelling. While the experimental part was mainly focused on collision with
a static generic object, our aim is to extend it to detect collisions with another robot.
Since we have a lot of more information, our method must exploit it and so part of
the modelling will be developed in a more efficient way.

In this work we are exploiting the SSV modelling as proposed in [1] and the Bound-
ing Volumes technique developed in [10], combining the fastness of the former and
the reliability of the latter. Since we will be dealing with no time relationship between
the robot trajectories, we developed an optimization of the algorithm which has the
aim of excluding all situations which aren’t harmful prior to the collision detection.

1.2 Environmental background

In our work we are dealing with mainly two types of robot manipulators, which are
a 6-axes anthropomorphous and a SCARA (4 axes), but our procedure can easily be
extended to other robots. The workcell we are dealing with may contain other objects,
such as cameras, feeders etc., but we are focusing only in the interaction between
manipulators. In this sense we are adding new features to what has been done before
(cfr. [10]), so all other collision checks can be handled in parallel or prior to our phase,
making our work almost independent to what has yet been implemented.

Each robot is provided with a controller, which purpose is to operate the move-
ment of each joint of the manipulator and guarantee to follow a reference signal
which is produced according to a higher-level movement command. In this sense the
controller represents an interface between two separate abstraction levels, the physi-
cal level, which includes all the electric drivers and all the interchange signals used
for the control phase, and the end-user level. What the end-user has at its disposition
is a particular set of instructions (depending on the robot manufacturer) which are
interpreted by the controller and then converted into reference signals for each driver.
The biggest drawback during the research of a suitable method, due to the problem
formulation, is exactly this, that is, we can operate only at user level and so we can-
not act directly on the driver nor we can get directly any information from the field



1.2 environmental background 3

as we must query all the information by the interface provided. As a consequence,
we cannot take into account any feedback from the robot and we can operate any
trajectory modification only during specified times, since the robot can be stopped
just after the execution of a single movement is completed. Moreover, we can modify
the robot trajectory just adding new via points, that is, we cannot project the entire
path. Even so, it might not be the best trajectory, as the time required to travel it
could be very long since it is the result of a kinematic chain.

On our side we are provided with a tool called Sequencer, which is at a higher ab-
straction level compared to the end-user level. This has been developed in previous
works by Robotics team at Università degli Studi di Padova. In this occasion we are
allowed to work at this abstraction level, where we can get all informations about
workcell and robot configurations. The aim of the sequencer is to handle the com-
munication through the entire workcell, which involves interaction with cameras,
sensors, feeders and all the other equipment, and then design the entire work cycle,
which includes robot trajectories. At this level, the locations for each robot movement
are generated and then they are passed to the controller as sequence of elementary
movements. An advantage of this technique is that it can be made independent of
the particular interface due to any different manufacturer.

(a) Epson® C4-A601S 6-axes manipulator (b) Epson® G6-451S SCARA manipulator

Figure 1.1: Two examples of Epson® robots [source: Epson® site].

Despite this, we will be dealing only with Epson® robot manipulators (fig. 1.1),
from which all the simulations and the analysis are obtained. Epson® interface pro-
vides the user with a simulator and a set of instructions, which can be divided into



4 introduction

many categories. The main one of our interest is the set of Robot Control Commands1,
which includes all instructions for robot movements. The sequencer eventually has
to generate elementary instructions which are compatible with this instruction set, so
we must take into account this fact. The starting point is to analyse Jump instruction,
which is the most used. We will explain it in detail in Chapter 2.

On the other side both the sequencer and all the analysis are developed in Mat-
lab

® . Some critical phases are implemented with MEX functions, which core is C++,
to exploit its fastness and task parallelism which is very frequent in our method. In
some cases we provided also Matlab-developed GUIs to integrate user control during
some configuration tasks.

Our work is organised as follow.
Chapter 2 has the aim of analysing true robot trajectories and finding an approx-

imation of them which is suitable for the collision detection phase, within a certain
tolerance.

On Chapter 3 we are providing a procedure to find whether two robots are collid-
ing, given two sets of joint positions which are supposed to be known a priori.

On Chapter 4 we analyse the collision detection problem more deeply, providing
an optimized algorithm which has the aim of improving the algorithm developed in
Chapter 3 by making it real-time executable.

Chapter 5 contains a series of experimental results and some comparisons between
different configurations available to the user.

Finally, some additional details to theoretical aspects and basic knowledge are
summarized in Appendix.

1 for a complete instructions set, see http://robots.epson.com/product-detail/168

http://robots.epson.com/product-detail/168


2
Trajectory Estimation

In this part we are trying to find a method which allows to represent a robot trajec-
tory given the initial and final configuration and a set of via points. As we will see in
Chapter 3, the trajectory must be presented as a sequence of joint positions, which
must resume it within a certain tolerance. This is the result we shall reach after this
phase.

For the sake of clarity, here the multi-robot environment is not needed as this
shall be a general procedure and all the tests have been made on a single-robot
environment.

Despite we tried to find the most possible general way, all the analysis part has
been developed with an Epson® C4A601S anthropomorphous robot. With some mod-
ifications and different tuning, the procedure may be applied to other robots.

The first thing to point out is that we are dealing with two possible representations
of the robot in space, which are the joint space and the operative or cartesian space. We
assume the reader has some familiarity with these conventions, otherwise see [4].
Usually in a simple single-robot environment the goal is to move the end effector
from one configuration (position and orientation) to another one, regardless of the
other joints configuration. In this occasion the position of all the other joints are
important since each link of the robot may collide with the other robot. For this
reason we have to monitor not only the position of the end effector but the other
joints as well. The easiest way to do this is using joint coordinates and the kinematic
model, which allows to map joint coordinates into cartesian space. What matters is
that once we know the joint configuration, we can know the position of each link
in Cartesian space and therefore the obstruction of the entire robot, given the link
shape description in each joint reference frame. For more details about the kinematic
model, see Appendix C.

To get to the final result we tried different ways and came up with some possible
solutions. Firstly, it is necessary to explain in details the environment where we are
operating.

2.1 Problem statement

At this stage we are assuming to know an initial position1, a goal position and some
via points. The aim is to find how these points are connected over time. This depends
on two main factors:

1 it could be known both in joint space or in cartesian space, the transformation between them is made
by the direct and inverse kinematics, assuming we know one of the possible robot configuration when
doing the inverse kinematics.

5



6 trajectory estimation

� the type of instruction (e. g. Jump3, Move or Go);

� the type of junction within adjacent movements (e. g. Continuous Path option
presence).

Most of the following information are retrievable from the Epson® user manual. We
summarize only the essential information which are needed for the next phase.

2.1.1 The Go instruction

This instruction moves the arm between the current and a specified position with
a Point-To-Point (PTP) motion. This is a particular type of motion which is driven
directly in joint space, which ensures the fastest movement between two points.
There are a few options attached with this instruction, including CP motion (see
Section 2.1.3) and parallel task execution, which cannot incorporate any movement
instruction but is still useful for measurement acquiring. From now on in this sub-
section we assume CP motion is not enabled.

Usually, once joint configurations q0 and qf are known, there can be different lawsPTP motion
planning parameters which perform PTP motion, all differing in simplicity, differentiability and regularity

of the motion itself. One of the most used in this field is the trapezoidal-speed law,
which consists of a first acceleration phase, a central cruise phase performed at constant
speed and a final deceleration phase (fig. 2.1). To completely determine the law some

Figure 2.1: Trapezoidal-speed law time VS position, speed and acceleration graph.

constraints must be imposed, which act like parameters to be tuned in an identifica-
tion manner. Some parameters are fundamental and will be reprised further on:

� Ta is called acceleration time and it is the time travelled when the motion is
uniformly accelerated, with acceleration a.

� analogously Td is called deceleration time and the motion during this time is
uniformly decelerated, with acceleration d.



2.1 problem statement 7

� Tc is the cruise time and it is travelled with constant speed (called cruise speed,
Vcr) and consequently no acceleration.

� T = Ta + Tc + Td is the drive time.

2.1.1.1 Experimental observations about timings in PTP motion

With reference to fig. 2.1, we will assume to know initial and final positions2 q0
and qf. The user, with a specific instruction, can set the maximum allowed speed and
acceleration factors for PTP motion respect to nominal maximum speed and acceleration.
These two values must be treated differently.

The speed factor doesn’t mean that each joint is moving with the imposed speed,
but that one of the joints is moving with its maximum speed allowed. This is because
we have n (e. g., 6, if we are considering a 6-axes robot) laws like the one depicted
in fig. 2.1 and, after some experiments, we discovered that the drive time T , the
acceleration and deceleration time (Ta,Td) are the same for all joints. In this sense
the motion law is synchronous. To maintain this constraint it is logical that not every
joint is moving with its maximum speed allowed, as long as the travel distance
∆q = q2 − q1 is different for every joint. A simple example is given by a null
travel distance for a specific joint: whatever is the scale factor, the joint will maintain
its speed to 0 through all drive time.

On the other hand, the acceleration factor depends on the maximum acceleration
available, which relies on many practical conditions, such as robot current position,
load weight and eccentricity. Hence the available acceleration is never known with
precision, unlike the speed.

If we suppose the profile to be symmetric (i. e., Ta = Td and a = d) and for a
moment we forget about the synchronisation between the joints, using law obtained
in Appendix A and after some algebraic steps we would get that

T
(i)
a =

TV
(i)
cr −∆qi

V
(i)
cr

(2.1)

which holds for every joint i. A particular equation in (2.1) is the one which gives
the most restrictive condition once we impose

V
(i)
cr = αvV

(i)
max

where αv is the speed factor and V
(i)
max is the nominal maximum speed allowed

for current joint i. The acceleration time deduced from (2.1) is the time required
to reach the cruise speed once boundary conditions (i. e., drive time, positions and
acceleration) have been imposed. First thing to notice is that T (i)a could be out of
the range

[
0, T2

]
for some joints, in which case the cruise speed is not even reached

for them. In this situation the trapezoidal law is degenerated onto a triangular law
where Ta = Td = T

2 and the overall acceleration time for all joints is Ta = T
2 .

If T (i)a ∈
[
0, T2

]
∀i, instead, there exists at least one joint which reaches its maxi-

mum speed V(i)
cr . If now we reintroduce synchronization between joints, T (i)a in (2.1)

2 The graph in fig. 2.1 represents only the relationship for one joint



8 trajectory estimation

becomes a dummy time. After some simple steps it can be shown that the dummy
speed obtained extracting V(i)

cr in (2.1) is

q̇i
(
T
(i)
a

)
=

∆qi

T − T
(i)
a

(2.2)

The critical joint is the one for which q̇i
(
T
(i)
a

)
= V

(i)
cr and consequently Ta = T

(i)
a ,

which represents the most restrictive condition in (2.1).
At this point, once we know the drive time T and the scale factor αv we know

the entire law which rules the PTP command with CP off. The only problem is the
knowledge of T . Some experimentations made with the Epson® C4A601S confirmed
that this is the right way the controller is designing the trajectory for a PTP command
with CP disabled.

To solve this problem in its entirety we need another information, which can beFinal data needed to
solve the problem either the acceleration adopted for the critical joint or the drive time T . Fortunately

we can retrieve T from the robot controller even offline, as soon as we know the
joint coordinates of the endpoints of the path. This is performed by the instruction
PTPtime in our case. Unfortunately to get this we have to query the controller from
the sequencer and this may be a problem since it represents a loss of time. Another
problem,as said, is that the acceleration available to the robot for each movement not
only depends on the value imposed by the user but mostly depends on the robot
joint displacement, the load weight and eccentricity. As a result, we can’t take into
account of a precise value of acceleration available constantly and therefore we shall
find another way to solve our problem.

2.1.2 The Jump3 instruction

This instruction is also known as 3D gate motion and combines three stages: two lin-
ear motions and one PTP motion. The linear motion is performed along a straight
line in Cartesian space. As a consequence, it is slower than the equivalent PTP mo-
tion between the same places, but it is useful in certain situation. To perform Jump3

instruction we need to provide 3 points (P2,P3,P4). The result is that from P1 (the
current point) to P2 the motion is linear, then from P2 to P3 it is a PTP motion and fi-
nally P3 to P4 it is a linear motion again. The former stage is called depart, the middle
one is the span and the latter one is approach stage. It is possible to skip the approach
or the depart phase, which is usually done when we want to perform a gate motion
with a certain number of via points, using an initial Jump3 without approach, a se-
quence of Go and a final Jump3 without depart. This is the typical situation we are
going to study.

There are a few options available for the Jump3 instruction, including the same for
Go. However, here there is another important option that will affect significantly the
trajectory.



2.1 problem statement 9

2.1.2.1 The Arch option

The Arch option anticipates the beginning of the span motion in a quantity specified
by the user, which is arch upward for depart motion and arch downward for the
approach stage. The result is that the linear and the PTP motions are joined smoothly
(fig. 2.2).

Figure 2.2: Jump3 path with Arch option enabled [source: Epson® User Manual].

This option prevents the robot to stop when it would reach P2 and P3 and conse-
quently the overall movement becomes faster. This, however, adds a new uncertainty
to our identification problem, as we don’t know when the junctions are going to
rejoin the original span trajectory, nor we know the timings of these junction phases.
This is another problem we had to cope with, considering that practical motions will
almost always include the Arch option enabled.

2.1.3 The Continuous Path (CP) command

This option is available only for a restricted set of instructions. The typical situation
when this is used is when a trajectory includes a via point. When this option is
enabled, the motion which would start from the via point is anticipated in time and
it starts when the previous motion begins its deceleration phase.

The visible result is that the trajectory legs are joined together in a smooth way
and the robot does not stop at via point reach. Moreover, crossing of via point is not
guaranteed and the point where the junction begins and ends up depends on the
speed of each joint.

For each single joint, what happens is visible in fig. 2.3. To be able to preview
the junction behaviour it would be necessary to know both the deceleration and the
acceleration available in the middle phase. If CP option is enabled between two Go in-
structions, the acceleration which could be evaluated in Section 2.1.1 may not be the
correct one since it supposes the endpoint speed is null, whereas in this case this is
not true. Of course, the controller knows exactly which is the maximum acceleration
available for every position, but this information remains hidden. For this reason, we
have to find a valid approximation of the trajectory near via points.

Summarizing, there are two main problems we want to solve:



10 trajectory estimation

Figure 2.3: Comparison between movements with CP on and off for a single joint trajectory. If the CP
option is not enabled, the robot reaches the via point and it stops there before continuing with the
second leg (as it is on the above graph). With CP option engaged, instead, each engine is driven
before, so the end effector is moving continuously [source: Epson® User Manual].

� find how Arch option joins the linear and the PTP motion and find an approxi-
mation of it;

� find how two PTP motions are joined together when CP option is engaged.

Despite seeming similar, the problem are totally different, as in the first case we have
an additional information, which is the arch upward and downward, but we have to
cope with a motion which isn’t simple as seen in joint space (the linear one), whereas
in the second case we have no information about the starting and the ending point
of the junction.

We will analyse the problems separately, even though part of the solution is com-
mon between them.

2.2 Approximation of a Jump3 motion with Arch option

From now on, we will refer to path as the physical sequence of space positions, andPath and trajectory
definitions the trajectory will be the path ruled with a time law. Moreover, the reference path is

the path which is followed without arch nor CP option enabled.
For simplicity, we refer to a depart motion, since the processing for the approach

motion is analogous.

2.2.1 Estimation of continuous trajectory

The first approach we tried was to find any time relationship which ruled the junc-
tion phase, that is, we wanted to find at which time the trajectory was re-joining the
reference one. To completely describe the approximated trajectory we need to know
the point where the reference trajectory is re-joined.The only information available is



2.2 approximation of a jump3 motion with arch option 11

that the initial trajectory is the same (fig. 2.4), so we can suppose to know the starting
point3 Pa and the starting time t0 when Pa is reached.

Figure 2.4: Path followed by the end effector during an Arch motion without appro. Points considered
are highlighted. Notice that the path followed from P1 to Pa is the same as the reference one.

After some trials, we couldn’t find any valid time relationship across a set of sam- Trajectory and path
estimation trialsple trajectories. This is due to the lack of information we have, including the fact that

we are joining one PTP motion with one CP motion and the way how they are joined
is not clear, plus any junction time law may be different between each joint (i. e., they
could even not be synchronous). Even if we could find the right time law, this should
be related to a specific final position, which has to be estimated as well.

We decided then to temporarily abandon the trajectory idea and instead we anal-
ysed only the path followed by the end-effector. Despite this, the problem to find
point Pb remains opened. As this is an approximated procedure, we must define
a tolerance within we can achieve the reference path. A first trial was to impose a
specific position and then see how close it was to the real path, varying the speed
factor, without temporarily consider the orientation (fig. 2.5).

Of course, the point imposed must be dependent on the specific path and on Arch

settings. Let dD be the Cartesian distance between Pa and P2. For this phase we
always imposed that the speed and acceleration factors were the same both for PTP
and CP motion, even though different values can be set.

First of all, we imposed Pb to be the point on the reference trajectory which is ex-
actly at Cartesian distance dD from P2 in the forward direction (otherwise it would
be Pa again, see fig. 2.4). However, this choice was good only for certain speeds,
whereas for other ones the junction point was reached before (fig. 2.5). The reason
why the trajectory follows different routes depending on the speed is due to the phys-
ical limits of each motor, for instance torque limits, which are most likely reached at

3 without loss of generality, we assume that every time it is possible to convert a position between joint
and Cartesian space.



12 trajectory estimation

Figure 2.5: Path followed by the end-effector of the robot in function of the speed factor. This is an actual
acquired robot trajectory (xz view only). Point Pb is the one which distance from P2 is exactly the
distance from P2 to Pa, which is known a priori. The reference path, instead, is always the same
regardless of the speed (black line).

high speed. However, since we don’t have any precise information about the acceler-
ation available at each moment, we cannot take into account of these limits.

Since we are mostly interested into high speed trajectories, we gave the priority
on this feature and so we tried to make Pb linearly dependent on speed. In fact in
fig. 2.5 we can notice that, apart from very low speed, the faster is the robot, the
further is Pb from P2.

At this point we can assume to know with certain precision re-joining point Pb in
Cartesian space. However the problem is still not solved, as we need to reconstruct
the path between Pa and Pb.

Without any time-related knowledge, the only thing we can try to do is to joinIdeas for joining Pa
and Pb Pa and Pb with a linear junction in joint space. However this leads to poor results,

as it would mean to impose a linear relationship between time and joint position,
which leads to a discontinuity yet on acceleration, which cannot happen in practice.
Any other position law between those two points would require time dependency,
which at this stage we don’t have. In fact the critical information we miss is the time
required to cover the junction. Since this information cannot be retrieved from the
robot, after several attempts we gave up with this idea and we switched to another
technique.

2.2.2 Approximation using knots smoothing

Let us move a step backward. Regardless of the strategy used to identify the final
trajectory, our aim is to get a series of knots which discretize the path and repre-
sent it with suitable precision. Up to now the idea was to first of all determine the
continuous trajectory and then to sample the final outcome. Since we did not get



2.2 approximation of a jump3 motion with arch option 13

any feasible result we decided to do the reverse, that is, first of all we quantize the
reference path and then we process the knots in order to approximate the real path.
Even in this case the time relationship is not solvable, but at least we hope to get a
valid path approximation.

2.2.2.1 Uniform path sampling

First of all, we need to get only a small set of points from the continuous reference
path. The easiest thing to do is to determine the number of points which we want for
each leg of the path and then uniformly divide the path leg travel according to the
joint space displacement of each joint (fig. 2.6). In other words, for a certain leg of
the path and for each joint we find the maximum and the minimum position value
(which in case of a PTP motion, like the second leg of a Jump3 instruction, are the
first and the last position) and we divide the interval into N sub-intervals, where N
remains a parameter to be chosen.

Figure 2.6: Uniform quantization of position trajectory followed by one motor, split into 10 sub-
intervals. This is specifically for one joint, but it has to be repeated for all the others. The red crosses
indicate the knots that will be used for the next phase. Notice that the subdivision is uniform along
position but not along time.

As said, this technique is suitable only for the PTP motion. During a CP motion
this method can still be used, but a better approach is to split the path according to
the end-effector travel in Cartesian space. The joint subdivision is then obtained by
performing inverse kinematics on the end-effector sampled position.

At this level, the number of samples N to keep for each leg might seem not impor- Suitable amount of
knots to keeptant, but, as we will discover in Chapter 3, the time required to the collision detection

algorithm depends quadratically on the number of knots used for the entire path, so
it advisable to keep as few knots as possible. On the other hand, the smaller is the set
of samples from the continuous path, the poorer are the results as the gap between
two consecutive knots is increasingly high. Moreover, the gap between knots directly
affects the smoothing algorithms we will explain later on. The number of knots for
each leg becomes then an important parameter which rules the performance of path
estimation.



14 trajectory estimation

Since we need to know all joints obstruction, to get useful results we need to
evaluate the position of each joint in Cartesian space4. At this point we suppose to
know the sampled path in joint space, so we need to perform direct kinematics over
the sub-chain of interest. For instance, the end-effector position is given iterating
direct kinematics until the end, while to get joint 3 position we simply iterate it until
T2a is available. For details about direct kinematics, see Appendix C.

To improve the path reconstruction for an approach and a depart motion we de-
cided to split the PTP motion in the Jump3 instruction into 2 parts. The split point is
the one for which the arch junction has rejoined the reference path (previously called
Pb). The method explained in the previous section to get this point is a good starting
point.

To cope with different arch values, we also split the depart motion of reference
path into 2 parts, of which one is the arch upward (from P1 to Pa) and the other
one is the remaining leg until the target point (from Pa to P2). In this way we can
partition the first part of the PTP motion coherently with the last leg of the depart
motion. On the approach phase an analogous method is followed.

2.2.2.2 Smoothing algorithms

Once the Cartesian reference path of each joint is sampled, we need to emulate the
smoothing process done by the controller. In this section we are analysing the Arch

option, but most of the steps can be extended to the junction between two PTP
motions.

The idea is to consider the set of neighbours of the target point (P2) knot and re-
place them with another set of knots which better approximate the real path (fig. 2.7).
We will assume the knots are enumerated consecutively along the trajectory.

Figure 2.7: Sample path approximation with smoothing procedure. The blue line represents the refer-
ence path from which we applied the smoothing, resulted in the green line with relative highlighted
knots. The real path followed by the robot is the orange one and it has been acquired from a real
experimentation. The continuous line containing estimated knots is obtained interpolating knots in
joint space with a first order interpolator (only for a clearer view).

4 with position of a joint in Cartesian space we mean the position of the origin of that precise joint,
according to the Denavit-Hartenberg table



2.2 approximation of a jump3 motion with arch option 15

There are many ways in which this can be done. Two important informations that
we have consider are the Arch upward and the speed factor, which can modify the
smoothing process. These parameters are resumed into a smoothing level (l) which is
fed into a specific algorithm. We will now outline some different algorithms which
we designed to perform the smoothing process.

symmetric algorithm The first algorithm we provided is simple. The set of
knots which will be replaced is made of 2(l− 1) + 1 adjacent knots centred around
the knot correspondent to the target point (k).

(a) Step 1 (b) Step 2 (c) Step 3 (d) Steps 4 and 5

Figure 2.8: Steps for symmetric smoothing algorithm. Knots interested by each step are highlighted in
red. Smoothing level in this example is set to 2.

The algorithm is resumed in the next steps:

1. remove 2(l− 1) + 1 knots around target knot k (fig. 2.8a);

2. add 2(l−1)+1 knots which uniformly split the interval (in joint space) between
the two knots at the boundary of the deletion set (k1 and k2 in fig. 2.8b);

3. evaluate the offset δ = 2
(
l−
⌊
l
2

⌋)
to get to the knots which distance from k is

exactly δ (fig. 2.8c);

4. position into the knot enumerated as k −
⌊
l
2

⌋
− δ and replace the next δ − 1

knots with δ− 1 knots which uniformly split the same interval (fig. 2.8d);

5. position into the knot enumerated as k+
⌊
l
2

⌋
+ δ and replace the previous δ− 1

knots with δ− 1 knots which uniformly split the same interval (fig. 2.8d).

What we are doing with these steps is to anticipate the end of the joint movement
and replace it with a linear junction in joint space (fig. 2.9).

asymmetric algorithm This algorithm has the aim of emulating the smooth-
ing made by the controller on approach and depart phases. The steps we outline are
valid for a depart phase, while for an approach phase it has to performed with com-
plementary operations. As the previous one, the amount of knots after processing is
the same as the original path. The only input provided is the smoothing level, which
has the same rule as explained for the symmetric one.



16 trajectory estimation

(a) Original path joint position. (b) Smoothed path joint position after processing.

Figure 2.9: Joint position trend before and after processing. In this case the underlying time is not
physical time, as we do not know the time dependancy after processing. Hence the time distribution
is not uniform and do not necessarily remain the same on the second leg after processing as we
do not know how long the junction will last. However this is meant to show only the position
behaviour, where the peak position is no more reached as the junction will anticipate the second
movement.

1. Move to the knot labelled as k− l− 1 and delete the following l+
⌈
l
2

⌉
knots

(fig. 2.10a);

2. add l+
⌈
l
2

⌉
knots which uniformly split the interval between the two knots at

the boundary of the deletion set (k1 and k2 in fig. 2.10b). As the number of
knots remains the same, associate deleted labels to new knots;

3. position in the knot marked as k+1 and replace the following l knots (fig. 2.10c)
with l knots which uniformly split the same interval (fig. 2.10d).

The complementary algorithm is performed in a symmetric way and it is not re-
ported here.

(a) Step 1 (b) Step 2 (c) Step 3 deletion set (d) Step 3 final result

Figure 2.10: Steps for asymmetric smoothing algorithm. Knots interested by each step are highlighted
in red. Smoothing level in this example is set to 2.

one step symmetric algorithm Another algorithm developed is a simplifi-
cation of the symmetric algorithm which considers only first two steps. The result
is the one depicted in fig. 2.8b. This can be useful sometimes when we want to mix
different algorithms processing knots serially.

3-steps symmetric algorithm Another variation of the symmetric algorithm
is to add another step which smooths the path resulting as outcome near knot la-
belled k. The additional steps are



2.3 approximation of the junction between two ptp motions 17

5. move to the knot enumerated as k−
⌊
l
2

⌋
− δ+ 1 and replace the next δ− 1 knots

(fig. 2.11a) with δ− 1 knots which uniformly split the same interval (fig. 2.11b);

6. move to the knot enumerated as k+
⌊
l
2

⌋
+ δ− 1 and replace the previous δ− 1

knots with δ− 1 knots which uniformly split the same interval (fig. 2.11b).

(a) Steps 5 and 6 (replaced set) (b) Steps 5 and 6 (final result)

Figure 2.11: Additional steps for symmetric smoothing algorithm which results in its 3 steps variation.
Knots interested by each step are highlighted in red. Previous steps are depicted in fig. 2.8.

These are the main algorithms we used and during the experimental phase we
found which one of these is most suitable for the Jump3 motion and for PTP motion,
in order to reduce the number of parameters to be tuned. In fact we would like a
simple identification algorithm which is affected only by few parameters, otherwise
we could result in an algorithm that depends too much on identification data set.

2.3 Approximation of the junction between two PTP motions

The approach to find the approximation when we want to join two PTP motions is
pretty similar to what has been done before. However, there is a fundamental dif-
ference: we don’t have any knowledge about the position nor the time when the
junction is going to leave the reference trajectory, which makes this problem even
harder to solve. On the plus side, the position trend on the two interested legs on the
reference trajectory is known and quite simple, as it follows a trapezoidal-speed law.
Moreover, Epson® suggests that the junction is going to start in coincidence with the
beginning of the deceleration phase of the previous leg and it will rejoin the refer-
ence path at the end of the original acceleration phase in the next leg. However, time
required to perform the junction is not known and neither are the maximum acceler-
ation and deceleration available. So a continuous path estimation is not feasible with
only these informations.

We then decided to follow the same approach as with the Jump3 instruction. Most New problems from
uniform path
sampling

of the observations made in Section 2.2.2.1 are valid in this occasion as well. However
there is a new problem: if we split the PTP path into uniform intervals, this will
result in an interval width (i. e., knots distance) which depends on the total travelled
length. At this stage this does not seem to produce any undesirable effect, but as



18 trajectory estimation

soon as we have to apply any smoothing algorithm, this leads to a junction length
which depends on the length travelled by each joint, which is a side effect that is not
realistic.

There is another important drawback. In fact, similarly to what we showed onPTP motion
dependency on speed

with CP on
fig. 2.2, the junction length depends on the robot speed. In this occasion, we have
experimented that the slower is the robot, the closer is the real trajectory to the
reference one. If we do not take into account the time dependency, we cannot follow
this trend, leading to poor results, as it turned out applying this method directly
(fig. 2.12).

Figure 2.12: End-effector path with uniform quantization. The black line is the reference path, the red
one is the estimated one and it is independent of the robot speed, while blue line is a real path
obtained at low speed and green one is the same for full speed. As can be seen, the estimation is
not suitable for all the possible speed factors. The problem is the same if we consider any other
joint position.

2.3.1 Path sampling according to acceleration and deceleration times

If we want to improve the uniform sampling method we have to exploit any infor-
mation available. All we know is related to the reference trajectory. If we are able to
retrieve the drive time for each PTP motion with CP off, we can straightforwardly
know the position at which each motor is starting and ending up its cruise phase.
Let Pc and Pd be the position in joint space where each motor respectively starts
its cruise and deceleration phase. For every junction, Pc refers to the next leg, while
Pd comes on the previous one. These position inherit their dependency from the
speed factor as the maximum acceleration is going to reach its limit with the rising
of the speed. As a consequence, the higher is the speed factor, the longer will be the
acceleration and deceleration phase and the further will be Pd to Pc5.

The first idea is then to split each PTP motion path into 3 parts correspondent toSpeed dependency
integration acceleration, cruise and deceleration. The number of knots N available for the whole leg

will be split as well in the parts, Na, Nc and Nd. Only at this point we can apply

5 Remember that Pc and Pd in question belong to different legs



2.3 approximation of the junction between two ptp motions 19

a uniform subdivision of each sub-interval using only the knots available for that
specific part. In this way we have solved both the problems raised with the direct
application of the uniform sampling to the whole leg. In fact, the slower is the robot,
the shorter are acceleration and deceleration phases and then the estimated path
remains close to the reference one (fig. 2.13).

After the sampling phase it follows a smoothing phase. The procedure to perform
this is the same as the one used with the Jump3 instruction, as explained in Sec-
tion 2.2.2.2. Clearly, which algorithm and smoothing level to choose are parameters
to set up during the experimental phase, as well as the number of knots available for
each leg.

This technique allowed to reach good results, combined with a good smoothing Practical
adjustments for
speed dependency

algorithm. However, there are some situations where the estimated path is far from
the real one. After some experimental observations we realised that the junction
does not always rejoin the original path in Pd and Pc, but, depending on the ratio Ta

T

and Td
T , Pc can be anticipated and Pd can be retarded. This usually happens when

Ta
T > 1

3 and Td
T > 1

3 , which means that the junction cannot last too long6. An example
is shown in fig. 2.13c, where the blue dot represents a via point where the estimated
trajectory rejoins the reference one prior to the position estimated (the green point
on its right), as TaT > 1

3 in the next leg, indeed.
The previous condition happens when the speed is high, as said before. Hence we

had to correct our estimation and impose to split each path leg either in Pc or in
qT̃ , where qT̃ corresponds to the point which is at 1/3 of the time of the reference
trajectory. The same reasoning is made for the deceleration phase. The condition to
observe depends on the most restrictive one.

The main thing about this method is that it needs to know Ta and Td from the
reference trajectory, which can be onerous in some situations. Then we provided
another method which tries to get to similar result without these quantities.

2.3.2 Path sampling without robot querying

Clearly, if we want to inherit speed dependency on sampling phase without any
knowledge of Ta and Td we have to accept less reliable results, as we need to ap-
proximate even more. To cope with this lack of information we decided to perform
something similar to the correction we made on the previous section. Since we do not
have the time dependency we apply that idea directly on the position of each joint.
In other words, we compute the joint travel between the two extrema of each path leg
and we force Pc to be at a certain fraction of the total travel, according to the speed
factor. The same is done for Pd. The mapping from speed factor to this coefficient is
obtained according to experimentations made with a set of sample trajectories.

6 Note that if we impose the acceleration coefficient to be the same as the deceleration coefficient, the
trapezoidal-speed law used by reference path is symmetric and this condition is simplified



20 trajectory estimation

(a) Speed factor set to 5%.

(b) Speed factor set to 50%.

(c) Speed factor set to 100%.

Figure 2.13: PTP motion estimation with path subdivision into acceleration, cruise and deceleration.
Green points represent the boundary knots which divide these phases. It can be seen that the split
points are moving according to the speed factor. Here only end-effector path is shown but this rule
applies to all other joints.



2.3 approximation of the junction between two ptp motions 21

Clearly, we have no warranty about the precision of our estimation, as we didn’t
with reference path timing knowledge, since both these methods are modified with
correction factors obtained with only a set of possible situations.

However, to analyse performance of these methods we validated the estimation
using another set of trajectories which realistically can be followed. This is explained
in Section 2.4.

Finally, we want to recall that this method is only a partial work, as long as it is Why we did not
follow a rigorous
way

part of another thesis work, where it has been even improved. This is only meant
to show some basic ideas about how to reach the goal, without being too rigorous
on the final outcome. As we will see in Section 2.4, the goal is not reached for every
trajectory we tried.

Another aspect which has not been faced is related to its practical implementation.
The final purpose is to run this algorithm in real time. To do this, we need to get rid
of any unnecessary operation, such as intermediate results and all plots and reports.
This is the reason why there is no time-related performance analysis at the end of
this phase.

2.3.3 Other possibilities and improvements

To cope with lack of a formal demonstration of the validity of this phase there is
another improvement which can be performed with only a small computational ad-
ditional cost. The main problem of the path estimation phase is that sometimes points

Figure 2.14: End-effector path estimation with two boundary paths. The black line is the reference path
while the green line is the estimated one. The red trajectory is the real one and it is confined within
these two.

Pc or Pd do not correspond to the points where the real path rejoins the reference
one. Eventually we will be smoothing the original path around the via points (or the
target points if we are in the approach or depart phase) providing only the smoothing
level, which can produce very different results. However, if we are able to guaran-
tee the real path to be within two estimated paths, we can solve the problem in a
collision detection manner, as we are going to replicate it for all the possible trajec-



22 trajectory estimation

tory combinations. Moreover, since most of the path is common, we can simply add
dummy knots to the estimated path, thus reducing the computational cost of repli-
cating the same algorithm. A conservative choice would be to consider a boundary
path which corresponds to the reference trajectory and the other one as processed
with the previous methods (fig. 2.14).

This, however, represents a future improvement and has not been implemented.

2.4 Experimental results on trajectory estimation

Here we summarize the main results obtained during the experimentation phase
with the final parameters. We recall that these are only partial results.

First of all, target was to estimate the real trajectory within a tolerance set to 20 mm.Practical setup and
requirements Both the reference trajectory and the real one are acquired from a real robot move-

ment. Robot in question in this phase is always an Epson® C4A601S with a 90 mm
length tool and no load within the gripper. To get the trajectory from the robot we
launched a parallel task which has to continuously acquire robot position. Obvi-
ously the acquisition is sampled. Since the data is written into a local file and then
transferred via Ethernet on a PC, we have a temporal constraint for the minimum
sampling time, below which the results are unpredictable. As a result, we set the
sampling time to Ts = 10 ms. If the target is just the path and not the temporal
distribution, we can also use the simulator. As it turned out, the reliability of the sim-
ulated path is good, whereas the time distribution depends also on the PC settings
and it may vary significantly. In our case we can say that there are not big differ-
ences between the real and the simulated path because there is no load within the
gripper of the robot. However, despite being possible to set load parameters (such
as weight, inertia and eccentricity), simulation can vary slightly more in different
situation, as the controller has a feedback from the real field. The differences can be
even more evident on the dynamics, as for example the robot might encounter accel-
eration limit problems which are not found during simulation, due to the different
real parameters of the load.

All datasets we used are composed by data acquired from a movement made of
a first depart motion, a series of PTP motions (depending on the number of via
points) and a final approach motion. This motion is repeated for different values
of speed factor, which combines acceleration and speed available. Although Epson®

instructions set allows to set a different speed and acceleration ratio both for a CP
and a PTP motion, we decided to impose a general factor (previously called "speed"
or "scale" factor) which we set to be the same for all these 4 parameters. This leads
only to a subset of all the possible combinations, but it is the most interesting in our
case. We must recall that the available acceleration is also dependent on the robot
position and on the load parameters, whereas maximum speed available is known
from Epson® manual.

First of all we want to clarify which points of the robot are considered when weRobot obstruction
points analyse the robot path. These are the origins of each Denavit-Hartenberg frame and



2.4 experimental results on trajectory estimation 23

Figure 2.15: Critical points of an Epson® C4A601S robot which will be referred to during the analysis
phase.

are depicted in fig. 2.15. As can be seen, not all critical points are interesting, as
origins of joints 3 and 4 coincide, while origin of joint 1 never moves.

Since this is only partial results outline, the processing phase has been split in two
different parts, as described in the previous section, which regards the approxima-
tion of the robot path near the target points (i. e., a Jump3 motion) and the approxi-
mation of consecutive PTP motions between via points.

Parameters used can be different as well. We report only the final values which Parameters setup

can achieve the best results. All the analysis of the PTP motion has been performed
with this setup:

� number of knots per leg including endpoints: 12 (i. e., 11 intervals);

� number of intervals for acceleration and deceleration: 3;

� number of intervals for cruise phase: 5;

� smoothing algorithm: Symmetric Algorithm;

� smoothing level applied: 2;

We can adapt the number of knots used per leg if the resulting knots for the whole
trajectory are too much. We do this simply providing less knots to the cruise phase
for each leg, which should preserve the maximum error obtained. Clearly, the first
and the last leg belong to the Jump motion and so we have to skip the acceleration
and deceleration phases for respectively PTP motions.

For the depart and approach motions the parameters employed are:

� number of intervals for straight legs: 9;

� number of intervals for arch upward and downward: 4;

� number of knots for PTP legs: 5;



24 trajectory estimation

� smoothing algorithm: Symmetric Algorithm;

� smoothing level applied: 3;

If, after the smoothing phase, there are too many knots, we can simply delete some
of them where their density is greater. This is usually frequent at low speed, where
there are a lot of knots near the via points and the target points. However this has
not been done during this analysis and it can be a future improvement.

A sample trajectory obtained with these parameters is depicted in fig. 2.16. TheResults outline

results obtained after processing these paths are instead in fig. 2.17.
To quantify the accuracy of the method we define the estimation error of a specific

knot as the minimum Cartesian distance between that specific knot position and the
real path in Cartesian space. Clearly we have to define an error for all paths followed
by each critical point of the robot. The error between the original path and the real
one is depicted in fig. 2.18, while the error obtained after processing is in fig. 2.19.
Since the estimated trajectory time distribution is not known, the x axis in these
figures represents only an identifier of the knots.

We also did some tests with additional information coming from robot querying,Tests with robot
querying as described in Section 2.3.1. Only PTP motion parts have been processed in this

phase, as the approach and depart legs are not affected by this additional informa-
tion.

We did tests with a large set of trajectories, of which we report only a resuming
table that contains main results. In Table 1 different fields appear:

� ID: it is and identifier of the trajectory under consideration;

� scale: it is the scale factor of that particular trajectory;

� V: it is the number of via points in the trajectory;

� e0P: it is the position error without any processing, using the original path. This
refers only to the PTP motion (the central one);

� e0J : it is the position error without any processing, using the original path. This
refers only to the Jump motion (i. e., approach and depart motion);

� e0: it is the position error without any processing, considering the whole path,
therefore it is the maximum between the previous two fields;

� esP: it is the estimation error after processing. This refers only to the PTP motion
(the central one);

� esJ : it is the estimation error after processing. This refers only to the Jump mo-
tion (i. e., the approach and depart motion);

� es: it is the estimation error after processing, considering the whole path, there-
fore it is the maximum between the previous two fields. This result is achieved
without robot querying;



2.4 experimental results on trajectory estimation 25

Figure 2.16: Trajectory followed by each robot critical point. The blue dotted line represents the ref-
erence path and the dots are the knots used for next smoothing phase. These results are obtained
with a scale factor set to 25% (on the top) and at full speed (on the bottom).



26 trajectory estimation

Figure 2.17: Trajectory followed by each robot critical point and its estimation after smoothing pro-
cess without robot querying. The blue dotted line represents the estimated path. These results are
obtained with a scale factor set to 25% (on the top) and at full speed (on the bottom).



2.4 experimental results on trajectory estimation 27

Figure 2.18: Position error using the original unprocessed path (cfr. fig. 2.16). These results are obtained
with a scale factor set to 25% (on the top) and at full speed (on the bottom).



28 trajectory estimation

Figure 2.19: Estimation error after processing (cfr. fig. 2.17) without robot querying. These results are
obtained with a scale factor set to 25% (on the top) and at full speed (on the bottom).



2.4 experimental results on trajectory estimation 29

� eTP: it is the estimation error after processing, with additional information from
the robot. This refers only to the PTP motion (the central one);

� eT : it is the estimation error after processing with additional information from
the robot, considering the whole path, therefore it is the maximum between the
previous field and esJ , as the smoothing process for the Jump phase is identical.

Clearly, the errors reported are intended to be the maximum error across all the
specific path. Since for each knot we have 5 different error definitions, the maximum
value may have been found for a specific critical point of the robot. On this purpose
on Table 1 we highlighted the error columns with different colors according to the
critical point which reported the maximum error: purple values indicate the critical
point is the wrist, blue one indicates the elbow and orange ones the end-effector.
Red-filled cells indicate the results which are not within the threshold imposed as
target.

The first thing we may notice is that the critical joint is almost always the end- Observations about
final resultseffector, as its position must be iterated through the entire kinematic chain. However,

error trend of wrist and hand is quite similar to this, as long as the last three joints
are imposing the arm orientation. In particular this is true for the end-effector, which
position referred to the hand is always the same. First two joints rarely appear when
considering estimation error, since they are less affected by smoothing process be-
cause their travel in Cartesian space is usually shorter than the last joints in the
kinematic chain.

Another thing to notice is that, as expected, time knowledge usually leads to better
results, as the resulting error is more often below threshold. By the way, parameters
adjustment depending on speed allowed to reach good results even at high speeds,
where the CP contribution leads to longer junctions (cfr. fig. 2.16). For the sake of
clarity, on Table 1 only 4 different speed cases were reported, but this behaviour is
found even with other speed factors.

Despite the goal is not always reached, there is a coherence outcome, as always
there is a significant reduction of the error after processing.

We remark the fact that these are only partial results, so, even if the goal has
not been reached for all trajectories, better results may be obtained improving this
technique.



30 trajectory estimation

ID scale V e0
P e0

J e0 es
P es

J es eT
P eT

[%] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
1 10 3 38.0 34.7 38.0 10.5 10.0 10.5 9.8 10.0
2 10 2 45.6 50.7 50.7 26.3 24.5 26.3 28.5 28.5
3 10 2 27.3 26.5 27.3 11.7 8.4 11.7 5.7 8.4
4 10 3 18.2 17.3 18.2 4.9 4.8 4.9 4.9 4.9
5 10 2 38.4 37.6 38.4 8.8 16.0 16.0 13.4 16.0
6 10 3 35.4 43.0 43.0 27.4 13.2 27.4 9.7 13.2
7 10 3 47.2 46.3 47.2 24.9 21.3 24.9 10.4 21.3
8 10 2 15.6 15.2 15.6 6.1 6.9 6.9 6.6 6.9
9 10 2 40.3 39.4 40.3 28.6 21.1 28.6 25.3 25.3
10 10 2 33.2 32.4 33.2 13.8 16.0 16.0 20.1 20.1
11 10 3 32.1 20.1 32.1 25.0 6.8 25.0 6.9 6.9
12 10 2 18.7 22.5 22.5 12.0 13.6 13.6 12.2 13.6
1 50 3 80.7 28.4 80.7 11.3 10.9 11.3 17.1 17.1
2 50 2 45.8 44.9 45.8 15.2 21.1 21.1 20.8 21.1
3 50 2 27.6 26.8 27.6 10.6 8.9 10.6 6.9 8.9
4 50 3 19.9 19.0 19.9 8.0 5.4 8.0 10.1 10.1
5 50 2 37.8 37.0 37.8 11.5 15.2 15.2 9.1 15.2
6 50 3 41.9 33.9 41.9 21.7 4.4 21.7 8.2 8.2
7 50 3 48.2 47.3 48.2 18.5 22.3 22.3 5.2 22.3
8 50 2 17.3 16.8 17.3 5.8 4.2 5.8 5.9 5.9
9 50 2 40.4 39.5 40.4 24.5 22.1 24.5 19.0 22.1
10 50 2 33.9 33.1 33.9 14.3 17.8 17.8 15.8 17.8
11 50 3 39.9 19.6 39.9 22.1 6.2 22.1 9.7 9.7
12 50 2 37.1 20.0 37.1 22.0 16.4 22.0 14.8 16.4
1 80 3 94.4 30.7 94.4 15.4 12.0 15.4 11.7 12.0
2 80 2 45.5 44.6 45.5 18.9 21.1 21.1 14.6 21.1
3 80 2 29.5 28.6 29.5 9.8 11.7 11.7 7.3 11.7
4 80 3 19.5 18.5 19.5 11.7 5.2 11.7 10.7 10.7
5 80 2 40.1 39.3 40.1 15.8 18.6 18.6 9.2 18.6
6 80 3 39.0 38.2 39.0 7.7 8.7 8.7 6.1 8.7
7 80 3 51.8 50.9 51.8 10.2 27.0 27.0 8.1 27.0
8 80 2 19.9 19.4 19.9 6.7 3.1 6.7 4.8 4.8
9 80 2 40.1 39.2 40.1 20.0 21.5 21.5 18.3 21.5
10 80 2 32.2 31.3 32.2 25.9 15.3 25.9 8.4 15.3
11 80 3 40.9 21.8 40.9 12.5 8.8 12.5 8.6 8.8
12 80 2 38.4 21.4 38.4 15.1 12.6 15.1 13.5 13.5
1 100 3 108.8 30.5 108.8 21.6 8.9 21.6 12.2 12.2
2 100 2 41.8 42.8 42.8 25.6 18.1 25.6 12.7 18.1
3 100 2 33.3 29.6 33.3 9.2 13.0 13.0 11.4 13.0
4 100 3 17.4 16.6 17.4 16.1 4.7 16.1 14.9 14.9
5 100 2 52.1 40.3 52.1 18.5 20.1 20.1 9.0 20.1
6 100 3 37.1 40.1 40.1 6.7 11.2 11.2 5.6 11.2
7 100 3 53.4 52.4 53.4 9.7 28.8 28.8 11.0 28.8
8 100 2 21.6 21.0 21.6 7.3 3.6 7.3 4.7 4.7
10 100 2 29.3 28.5 29.3 36.9 11.8 36.9 19.4 19.4
12 100 2 38.0 23.3 38.0 14.6 11.0 14.6 12.7 12.7

Table 1: Resuming table with main results obtained during trajectory estimation phase.



3
Collision Detection

In this chapter we shall check whether the robot trajectory planned is free from col-
lision with other obstacles. Here we must reintroduce the multi-robot environment.
There are at least three kinds of obstacles which the robot could collide into. These
can be:

� the robot itself, causing a self collision;

� another robot;

� a generic obstacle which isn’t a robot, i.e. a limit plane or any pallet.

The first situation is not very common due to the limits superimposed by the con- Self collisions

troller. Typically this type of collision could involve the end effector and the first
link. This situation can easily avoided because, unlike the other two, self collisions
depend only on the joints configuration of the robot, the size of the tool, and the
object carried by the end-effector, which are supposed to be known a priori.

The second situation is the one we are studying. The collision presence relies on Collision with
another robotboth joint configurations and on the relative positions of each robot base. Once we

know the exact trajectories of each robot we could ideally state if there is a collision
in every moment. By the way practical implementations have some drawbacks:

� the trajectory is known only within a discrete set of times, that is, we can only
test the presence of collision during precise moments in the trajectory and we
don’t know what happens from one moment to another one;

� the trajectory isn’t the real one, but it is estimated, so it is affected by errors we
must take into account;

� the robot shape isn’t the real one, but it is simplified.

The main reason for these problems is computational cost. The smallest is the set of
times we are using for each trajectory, the faster will be the detection, but the more
inaccurate will be the result. On the other hand, the simpler is the shape used, the
faster will be the detection, but the higher is the false alarm rate, which takes into
account of false collision detections, due to the approximations of the robot shapes.
We will discuss discuss this problem further on.

The third class of obstacles we can encounter is the most general and it has been Collision with other
obstaclesstudied in [10]. Since the situation can be very different, it must rely on the pres-

ence of other instruments capable of acquiring the shapes of the obstacles and their
position, such as cameras, or on a previous workcell calibration and description.

31



32 collision detection

In this work we will only focus on the second class of obstacles described and from
now on we will assume to be in this situation.

The aim of this phase is to decide whether the robot shapes are interpenetrating,Collision detection
between robots in which case we will state that the robots are colliding. The problem is then reduced

to the decision about the interpenetration between two solids, which represent and
approximate the robot shape. This problem can be solved in different ways. In [10] a
solution representing one robot with a solid and the other one using a set of points is
presented. He then postponed the problem to the existence of any point inside a solid.
The biggest drawback of this method is the right choice of the points of the second
robot. A special algorithm was developed, which had the aim of correctly distribute
these points around each robot surface. This combines accuracy and computational
cost, which is proportional to the number of point chosen. This is not an equivalent
condition for the collision presence, but in practical situations it is seen that this is
met every time there is a collision and the probability of false negative 1 is negligible.
Moreover, the point distribution remains the same in each moment, so it can be
checked once offline. Anyway the time cost is still a critical problem.

We provide instead another method, which is in some sense directly descendingRobot shape
overview from the original problem, that is, we directly consider the robot shapes. These de-

pend strictly on the joint configuration of each robot. To compute the collision test,
once we know each robot joint configuration, we would have to compute the shape of
each manipulator and then apply a solid interpenetration algorithm to these shapes.
Unfortunately, computing a solid which changes its shape at every moment is too
onerous and moreover the interpenetration test wouldn’t be too simple. In light of
this we must find a way to test collisions which doesn’t require to recompute the
shape on-line, but only a rigid transformation (translation and rotation), which is
faster to perform. The natural choice is then to consider a solid for each link of the
robot, which does only translations and rotations referring to a static frame (i.e. the
station frame).

Let’s suppose to know the shape of each link of the robot with some parametriza-
tion. The next problem, which, as said, is purely geometric, can be solved in different
ways.

3.1 Solid interpenetration using Swept Sphere Volumes (SSV)

The first method we provide uses a solid called Swept Sphere Volume (SSV). This
method has been used in several works [1] [2].

A SSV is a volume obtained with a sphere moving along a primitive, such as a
point, a line segment or a polygon. As a result, its geometric description is very easy
and it exploits the rotational invariance of the sphere (fig. 3.1). In fact, to know the
displacement of a SSV it is enough to know the sphere radius and only a few points
of the primitive, i.e. the point coordinates if the primitive is a point, the extrema

1 a false negative happens when a test result indicates that a condition failed, while it actually was suc-
cessful, in this case it means that no collision was detected while there was a true collision.



3.1 solid interpenetration using swept sphere volumes (ssv) 33

(a) Linear SSV (b) Polygonal SSV

Figure 3.1: Different types of SSVs.

points if it is a segment and the vertices of the polygon in the latter case. From now Linear SSV and
Polygonal SSVon we refer to linear SSV when the primitive is a line segment and to polygonal SSV

when it is a polygon. The former case with a single point is a degeneration of the
linear SSV and practically it is simply a sphere. Between these three, the description
which combines the most simplicity (as we see later on, one of them is a little more
complex in a collision detection manner) and usability is the linear SSV, since the
polygonal SSV can be seen as an extension of the linear one and the sphere is too
wasteful of volume.

There are a few drawbacks using this description as well. The main one is that the Drawbacks of SSV
modellingtightness of the shape can be lost if the real joint shape is not well described with a

SSV, that is, if it is a parallelepiped, the SSV will include also a volume which doesn’t
really belong to the joint. To reduce the wasted volume, different strategies can be
used:

� use polygonal SSV instead of linear SSV, which can be useful when the joint
shape is almost flat;

� use more than one SSV to describe a joint.

To accomplish these methods, a user interface has been created, which lets the user
choose how many and which type of SSV to use for each joint. This is described in
Section 3.3.

Once the type of SSV is chosen, we shall find a method to test whether two SSVs
are interpenetrating or not. In the second alternative described before we will repeat
this for each combination of SSVs between the two joints. As a result, there are
3 situations, that is, the SSVs can be both linear, polygonal or one linear and one
polygonal. In general, the collision detection phase between two joints using SSV
modelling will be referred as SSV algorithm.



34 collision detection

3.1.1 Interpenetration between two linear SSVs (LL algorithm)

This is the most frequent case, since it is the simplest one. Due to the geometric de-
scription of the SSV, we can refer to its primitive. The problem is then reduced to find
the distance between two line segments. To do this we apply the algorithm described
in [5], which explains the idea behind it and then offers a fast implementation which
is also robust to numeric problems. Here we present the theoretical aspect, leaving
the reader to the original document for the implementation details.

We start describing the line segments in parametric form. The only things we needDistance between
line segments to describe them are the 4 endpoints, here P1 and P2 for the first segment s1 and Q1

and Q2 for the second one s2, where all the points belong to R3:

P(s) = P1 + s(P2 − P1) (3.1)

Q(s) = Q1 + t(Q2 − Q1) (3.2)

where s ∈ [0, 1] and t ∈ [0, 1]. As a distance measure we simply use the euclidean
distance, which from now on will be referred to simply as distance. The squared
distance between two generic points belonging to different line segments is

R(s, t) =
∥∥P(s) − Q(t)

∥∥2 = as2 − 2bst+ ct2 + 2ds− 2et+ f (3.3)

where
a = (P2 − P1)(P2 − P1) b = (P2 − P1)(Q2 − Q1)

c = (Q2 − Q1)(Q2 − Q1) d = (P2 − P1)(P1 − Q1)

e = (Q2 − Q1)(P1 − Q1) f = (P1 − Q1)(P1 − Q1)

The goal is then to find the minimum distance between two generic points, that is, we
need to find (s, t) which minimizes R(s, t) over the domain [0, 1]× [0, 1]. Since (3.3) is
a continuously differentiable function, the problem is reduced to find the minimum
points on the domain boundary and the critical points inside it. The candidates on
the boundary are the four corners and four points on the edge, which can be found
in [5]. To do the second step, we just need to compute the gradient of (3.3), which is

∇R(s, t) = 2(as− bt+ d,−bs+ ct− e) (3.4)

and find its zeros, which amount is one if the segments are non-parallel. Conversely,
if they are parallel, the minimum distance points are infinite, but their distance is
always the same, so we can pick up any pair (s, t) which nullifies (3.4).

A brute force algorithm would compute directly these nine points, but this would
be rather slow. Since this is the bottleneck of the entire phase, we must pay attention
to each step of the algorithm and try to avoid any unnecessary operation and all
heavy computations. All these considerations are met on the algorithm described in
[5], which is the one we implemented.

Once we know the distance between two segments d(s1, s2), the collision test is
straightforward.



3.1 solid interpenetration using swept sphere volumes (ssv) 35

Proposition 1 (Collision between linear SSVs). Let s1 and s2 be two line segments
parametrized as (3.1) and (3.2), let d(s1, s2) be their minimum distance and let r1 and
r2 be the radii which generate the linear SSVs originated in s1 and s2. The SSVs are inter-
penetrating if and only if

d(s1, s2) 6 r1 + r2 (3.5)

Proof. Let’s suppose the condition (3.5) is met, then let P0 and Q0 be the minimum
distance points belonging to s1 and s2 respectively. Then the spheres which origins
are P0 and Q0 intersect because the distance between the origins is less than the sum
of the radii, and these spheres are included in the respective SSV by definition.
Conversely, two SSVs interpenetrate only if there exists two spheres (one for each
one), whose centres lie on the originating primitive, which intersect. Let {(Pi, Qi)}
be the set of pair of points for which the SSVs are interpenetrating. For any of these
pairs the condition for the relative spheres to intersect is that

d(Pi, Qi) = ‖Pi − Qi‖ 6 r1 + r2

In particular, this condition still holds for the pair (P0, Q0) for which the distance
‖Pi − Qi‖ is minimum, but, since

d̄ = d(P0, Q0) 6 d(Pi, Qi) 6 r1 + r2

holds for any pair in the set mentioned before, this means that (3.5) is met and P0
and Q0 are the minimum distance points on the segments s1 and s2.

3.1.2 Interpenetration between linear and polygonal SSV (LP algo-
rithm)

Despite being an extension for the linear SSV method, the collision detection algo-
rithm when at least one SSV is polygonal is not directly descending from the linear
case. The main difference is that the volume inside the sweep (which is highlighted
in fig. 3.2) is part of the SSV as well. To cope with this, we had to develop an ad-hoc
algorithm.

The first thing to notice is that, as we will see later on, the algorithm is reasonably
fast if the number of edges of the polygon is small, otherwise we could lose all
the advantages that this method is exploiting. Usually we will have to deal with
triangular or quadrilateral shapes, so we are not interested in complex polygons.

Another thing to notice is that we are only interested in convex polygons because
the shapes of the links we are representing are hard to represent with a polygon
which isn’t convex but has only few edges. There are also some practical reason for
this choice, as some steps on the algorithm result in an easier and faster solution.

Before going on, some conventions are imposed: Conventions about
polygonal SSV

� for each joint, a SSV reference frame is computed from the Denavit-Hartenberg
joint frame. The transformation matrix TSi is made in 2 steps:

– the DH frame is rotated so that the Z axis is orthogonal to the plane which
contains the SSV polygon;



36 collision detection

Figure 3.2: Polygonal SSV additional volume. Comparing to the linear case, the volume highlighted in
red is part of the SSV as well.

– the rotated frame is shifted along the current Z axis by a value imposed
by the user.

� all the vertices of the polygon are enumerated in a counter-clockwise sense
with respect to the SSV frame.

The first observation lets us reduce the algorithm complexity as for some steps it
can be seen as a planar problem. We now summarize the algorithm for collision de-
tection. As for the linear case, the problem can be studied with refer to the primitives
of each SSV.

Algorithm 1 Linear-Polygonal SSV collision detection (LP algorithm)

Input arguments:
• endpoints of linear SSV segment

• vertices of polygonal SSV

• radii of each SSV (Rl and Rp)

• transformation matrix between SSVs reference frame

1. Transform linear SSV points into polygonal SSV reference frame

2. Test z coordinate of (transformed) linear SSV endpoints (polygonal SSV’s z-
level is 0 in this reference frame): if{

z1 > Rp + Rl

z2 > Rp + Rl
or

{
z1 < −(Rp + Rl)

z2 < −(Rp + Rl)

is satisfied, signal no collision and exit (Out Of Range shortcut)



3.1 solid interpenetration using swept sphere volumes (ssv) 37

3. If sign(z1) 6= sign(z2), go to step A (intersection with plane), otherwise go to
step B (no intersection with plane)

A.1 Find the intersection point P0 = (x0,y0, 0) between the segment of the linear
SSV and the plane of the polygonal SSV

A.2 (Out Of Range shortcut) Given polygonal SSV points

Pi = (xi,yi, 0) , i = 1, . . . ,n

(where n is the number of vertices of the polygon), if at least one of these
conditions is met

x0 > xi + Rp + Rl ∀i = 1, . . . ,n
y0 > yi + Rp + Rl ∀i = 1, . . . ,n
x0 < xi − Rp − Rl ∀i = 1, . . . ,n
y0 < yi − Rp − Rl ∀i = 1, . . . ,n

signal no collision and exit.

A.3 If intersection point P0 is inside the polygon, signal collision and exit

A.4 Apply LL algorithm between the original linear SSV and each linear SSV
obtained with all the edges of the polygon. Signal collision if any of these
tests returns collision, otherwise there is no collision. In both cases, exit.

B.1 (Projection Out Of Range shortcut) Given the points described in step A.2 and
the endpoints Pj =

{
(xj,yj, zj)

}
j=1,2 of the linear SSV, if at least one of these

conditions is met

xj > xi + Rp + Rl ∀i = 1, . . . ,n, j = 1, 2

yj > yi + Rp + Rl ∀i = 1, . . . ,n, j = 1, 2

xj < xi − Rp − Rl ∀i = 1, . . . ,n, j = 1, 2

yj < yi − Rp − Rl ∀i = 1, . . . ,n, j = 1, 2

signal no collision and exit.

B.2 Apply LL algorithm between the original linear SSV and each linear SSV
obtained with all the edges of the polygon. If the result of any one is collision
presence, signal collision and exit.

B.3 For all the endpoints Pi of the linear SSV for which holds

|zi| < Rp + Rl (3.6)

test if their projection onto the polygonal SSV plane is inside the polygon. If
this is the case for at least one point, signal collision, otherwise there is no
collision. Exit the algorithm.



38 collision detection

There are a few observations to make about Algorithm 1. First thing to notice isSufficient conditions
in LP algorithm that some steps are not really needed since they only give a sufficient condition for

no collision. In particular, steps A.2 and B.1 only check whether the point coordinates
of linear SSV are out of range respect to the polygon vertices coordinates and could
be skipped. Step 2 instead handles the case when each endpoint of the linear SSV
is far enough from the plane of the polygon (fig. 3.3a). Though these steps seem to
be unnecessary, they are useful because they can avoid all next operations that are
computationally heavier, leading to a shorter collision detection time in most of the
situations where the SSVs are far from each other.

Step 1 requires a transformation matrix to map the points of linear SSV into the ref-Coordinates
transformation into

polygonal SSV
reference frame

erence frame given by the polygonal SSV. This algorithm is executed once we know
the joint configuration of both robots, so the transformation matrix Tis which trans-
forms any point in joint i (Denavit-Hartenberg) frame into station frame is known
a priori. The transformation matrix we need transforms the endpoints of linear SSV
in DH frame into SSV frame of polygonal SSV. Let Tlp be this matrix. To compute
it we need to pass through a common reference frame between the robots, which is
the station frame. So this matrix can be split into the product of two matrices which
have the station as reference frame:

Tlp = TspTls =
(
Tps

)−1Tls (3.7)

Tls is exactly Tis for the linear SSV, assuming we know SSV points in this reference
frame. We need only to find Tps. This matrix can be split as the product of two
consecutive transformations, that is

Tps = TisTpi (3.8)

where this time Tis is referred to the other robot (to avoid any confusion, we will
refer to it with a superscript (p)). Last transformation matrix is defined by our con-
vention and it is a static matrix which can be calculated offline. This is given by the
parameters imposed by user initial setup (see Section 3.3). Combining (3.7) with (3.8)
and exploiting the properties of inverse matrices we obtain

Tlp = T−1
pi ·

(
T(p)
ia

)−1 ·T(l)
ia (3.9)

where the inversion can be computed easily exploiting the advantages of transforma-
tion matrices (see Appendix B).

Another thing to notice about Algorithm 1 is that the transformation of coordi-
nates allows us to not use the parametrization of the plane, since any problem of
finding whether a point is inside a polygon is reduced to a planar problem. A sim-
ilar problem is solved in Section 3.2, where it remains in 3D, and we will see that
a cross product is needed. Though it is a simple operation, it is still more complex
than transforming few point coordinates, for which the matrices (i. e.Tis) must be
computed anyway for other operations on the kinematic model. For the planar prob-
lem considered, we used the algorithm explained in [6].

The step A handles the sub-case when there is intersection between the linear SSVStep A overview

segment and the plane containing the polygon. Basically there can be 2 situations:



3.1 solid interpenetration using swept sphere volumes (ssv) 39

(a) Out Of Range Condition (b) No intersection with polygon plane

(c) Intersection with polygon area (d) No intersection with polygon area

Figure 3.3: Different situations in LP algorithm.

� the intersection point is inside the polygon

� the intersection point is outside the polygon

The first case, depicted in fig. 3.3c, leads straightforwardly to a collision presence
and it is made in step A.3, while the handling of the latter one (fig. 3.3d) is given to
the LL algorithm using all the edges of the polygonal SSV, which returns a necessary
and sufficient condition for the collision presence, as the only case which would not
be treated would be the one where the linear SSV intersects only the middle volume
of the polygonal SSV, which is handled on the step before.

The step B is the sub-case when there is no intersection between the segment and Step B overview

the plane containing the polygon, but the linear SSV is not far enough from the
plane. In this case there can be two similar situations, but here they are solved in a
different way. Step B.1 exploits the projection of the endpoints of linear SSV into the
plane of the polygonal one. Practically this means only to neglect the z coordinate
of the endpoints. In this way, situations like the one plotted in fig. 3.4a can lead
to determine straightforwardly collision absence because the projections are both
outside the range of any polygon vertex. On the other hand, situation in fig. 3.4b will
be solved on step B.2 which is handled as step A.4, but this time this gives only a
sufficient condition for collision presence. In fact, if there is no collision, the segment
could be positioned as in fig. 3.4c. In this case, if the projection of at least one of the
endpoints of the linear SSV is inside the polygon, there is collision, while close-to-



40 collision detection

(a) Projection Out Of Range condition (b) Collision detectable with LL algorithm

(c) Potential collision only with middle volume (d) Collision correctly handled in step B.2

Figure 3.4: Different situations in LP algorithm in absence of intersection with the polygon plane.

edge conditions (fig. 3.4d) do not generate any trouble since they must have been
handled on the step before. This is the reason why this step is performed at last.

3.1.3 Interpenetration between two polygonal SSVs (PP algorithm)

This is the most critical algorithm, as it involves the most complex primitives. What
we have done is simply iterating LP algorithm, treating each edge of one polygon
as linear SSV and the other one correctly as polygonal. In this way we are sure to
detect all possible collisions as there must be an intersection between a linear SSV
made from one of the edges and the other polygonal SSV, that is, there cannot be
intersection between the central volumes but not between one edge and the central
volume.

We did not search for a computationally better solution since in this occasion the
shortcuts present in LP algorithm will be usually exploited several times.



3.1 solid interpenetration using swept sphere volumes (ssv) 41

3.1.4 Complexity of SSV modelling algorithm

In this section we will explain why this type of modelling is attractive, giving a
computational complexity for each algorithm developed before. Since the modelling
phase is made directly by the user, it is fundamental to keep the complexity low so
we can exploit all the advantages of this technique.

The first algorithm presented was the LL algorithm. This is the simplest one since Complexity of LL
algorithmthe other two extend this and contain a step with LL algorithm2. For each pair of

linear SSVs, collision detection is computed in constant time, so the complexity of
LL algorithm is O(1). This is why it is advisable to model as many joints as possible
with a linear SSV. If joint j1 is modelled with p1 linear SSVs and j2 with p2 linear
SSVs, LL algorithm is iterated for each combination of joints belonging to opposite
robots, that is, this is performed p1p2 times, and the collision detection performance
is O(p1p2), which means its complexity grows very fast if we use many SSVs for
each joint. This could be justified with a significant better shaping of the joint.

If we look to Algorithm 1, the first steps are performed in constant time, so they Complexity of LP
algorithmcan be neglected. The complexity of LP algorithm is then determined by the most

complex route between A and B. Let v be the number of vertices of the polygon. Steps
A.1 and A.2 are once again O(1). The test for P0 to be inside the polygon in step A.3
is instead O(v) since the complexity is proportional to the number of vertices. Finally,
step A.4 is LL algorithm iterated v times, then it is again O(v). On the other hand,
step B.1 is O(1), while step B.2 (as A.4) is O(v) and step B.3 is O(v) as step A.3.
In conclusion the routes have the same complexity and the whole LP algorithm has
complexity O(v). With this in mind, it is advisable to limit the number of edges in the
polygon, even though the shortcuts in the average case should improve the perfor-
mances. In this sense it could be more convenient to model a joint with a polygonal
SSV rather than with more linear SSVs, because in that case there is no shortcut and
all the collision detections must be performed. By the way, since this involves the
average case, this cannot be proved, but depends on experimental conditions.

Finally, since PP Algorithm is an extension of LP Algorithm iterated more times, its Complexity of PP
algorithmcomplexity is proportional to the number of vertices of each SSV. Let v1 and v2 be

the number of vertices of each polygonal SSV. PP algorithm iterates LP algorithm for
v1 times, so the complexity is raised to O(v1v2) and grows very fast if v1 and v2 are
not small. This is another reason to prefer single linear SSVs to these models, but
sometimes the shaping is a lot better with polygonal SSV, like in arm 2 of SCARA
Epson® G6653SW (fig. 3.5), where the shape is almost flat. Moreover, this a typical
situation if the robots for which we are testing collision presence are identical and
we are reasonably using the same model, so the number of joints we are modelling
with polygonal SSVs must be as low as possible.

Seeing the entire problem as a collision detection between robots, all these algo- Complexity of
collision detection
between entire
robots

rithms must be performed for each combination of joint pairs. Let n1 and n2 be the
number of joints of each robot, let l1 and l2 be the number of linear SSVs and let

2 even though there are shortcuts to avoid the steps with LL algorithm, we are interested to the worst
case condition when we calculate computational complexity



42 collision detection

(a) Quadrilateral SSV modelling (b) Single linear SSV modelling

Figure 3.5: Different modelling of arm 2 of Epson® G6653SW (SCARA robot). The linear SSV modelling
is obtained with the automatic procedure given by the user interface (see Section 3.3) and it is the
tightest volume obtainable with only one linear SSV, but still a lot more wasteful than the polygonal
modelling.

p1 and p2 be the amount of polygonal SSVs used for the whole kinematic chain.
The fastest execution, as mentioned before, is when there is only one linear SSV for
each joint, i. e., l1 = n1, l2 = n2 and p1 = p2 = 0. In this case the complexity
of collision detection is O(n1n2) since this is the number of calls to LL algorithm.
More generally, collision detection algorithm will consider all pairs of SSVs from
each robot, so it can be easily seen that LL algorithm will be invoked l1l2 times, LP
algorithm for l1p2 + p1l2 times and PP algorithm for p1p2 times. To consider all
these cases we can notice that the whole complexity is proportional to the number of
times that distance between two line segments algorithm is called, which is

∑
i pivi

on LP algorithm and
∑
i

∑
j pivipjvj on PP algorithm, where pi the i-th polygon,

vi is the number of vertices of i-th polygon and i and j on the second summation
indicate each robot. If we suppose that vi = v is constant for each polygon, the total
complexity can be resumed into

O
(
lilj + v

∑
i

pi + v
2
∑
i

∑
j

pipj

)
(3.10)

which grows rapidly with the number of polygonal SSVs used.
For example, if we consider two identical anthropomorphous 6-axes robots (so

n1 = n2 = 6) and we model one joint with a quadrilateral SSV and the other
ones with single linear SSVs, there are 25 calls to LL, 10 calls to LP and 1 call to PP
algorithm and the number of elementary operations are 25+ 40+ 16 = 81, whereas
with only linear SSVs there would be 36 elementary operations (all calls to LL algo-
rithm). Then, in the worst case, just the modelling of one arm with a polygonal SSV
could potentially double the time of collision detection, even though practically this
is seldom the case.



3.2 solid interpenetration using boxes 43

3.2 Solid interpenetration using boxes

This stage can be seen as an alternative to the previous modelling phase, but more
generally, since the results can be different and more accurate, this could be another
proper stage in the general collision detection algorithm (cfr. Section 3.4). The main
advantage of the SSV modelling is its lightness, while its main drawback is its waste-
ful of volume. The aim of this modelling is to give a more precise description of each
joint (fig. 3.6).

(a) SSV modelling with one linear SSV. (b) Box modelling with an 18-DOP box.

Figure 3.6: Different modelling types for the same link (link 4 of 6-axis Epson® C4A601S).

Again, the modelling is done off-line by the user as explained in [10], starting from
the CAD model of each link. The primitives we will deal with are convex polyhedra.
Before going on, a definition is required.

Definition 1 (Convex polyhedron). A polyhedron is said convex if its surface does not
intersect itself and the line segment joining any two points of the polyhedron is contained in
the interior or surface.

From now on, since we are dealing only with these polyhedra, we refer to them
simply as polyhedra.

Each plane containing each face defines one normal unit vector, which can have 2

opposite directions. We must adopt some conventions, which will be cleared further
on: Polyhedra

conventions
� Each face3 normal points inside the polyhedra (note that this is well defined as

the polyhedra is convex)4;

� All the faces are referred with the labels of each vertex, ordered in counter-
clockwise sense seen from inside the polygon.

To satisfy the first condition it is enough to satisfy the second one, then find a point
which lies inside the polygon given by the face and then compute the cross product
between the vector which goes from this point to any vertex and another vector

3 with face normal we refer to the normal of the plane where the face lies.
4 The important point is that all normals follow the same convention. For example, STL format coming

from CAD designs provides the opposite condition which can be easily converted.



44 collision detection

which goes from this vertex to the next one. Note that this procedure is always valid
because all the faces of a convex polyhedron are convex polygons.

Once these conditions are satisfied, the next proposition holds:

Proposition 2. Let N be the number of faces of a convex polyhedron P, let {πi}i=1,...,N bePoint inside a
polyhedra the planes containing the faces of the polyhedron parametrized in explicit form so that all the

plane normals point inside P, i. e.

πi =
{
(x,y, z)

∣∣aix+ biy+ ciz = di} where n = (ai,bi, ci) (3.11)

Then any point P = (x,y, z) ∈ R3 is inside the polygon if and only if
a1x+ b1y+ c1z > d1

a2x+ b2y+ c2z > d2

· · ·
aNx+ bNy+ cNz > dN

(3.12)

is satisfied by P, that is, if the point P lies in the positive half-space of all the planes.

It can be proven that the previous proposition is equivalent to the definition of con-
vex polyhedra. To perform collision detection we must test whether two polyhedra
are interpentrating.

Definition 2 (Interpenetration between convex polyhedra). Let P1 and P2 be two con-Interpenetration
between convex

polyhedra
vex polyhedra defined with the set of planes

{
π
(1)
i

}
i=1,...,N1

and
{
π
(2)
j

}
j=1,...,N2

relative to
each face as defined in Proposition 2, where

π
(1)
i =

{
(x,y, z)

∣∣ai1x+ bi1y+ ci1z = di1}
π
(2)
j =

{
(x,y, z)

∣∣aj2x+ bj2y+ cj2z = dj2}
The two polyhedra are said to be interpenetrating if there exist a point P0 = (x,y, z) ∈ R3

for which 
a11x+ b11y+ c11z > d11

· · ·
aN11x+ bN11y+ cN11z > dN11

(3.13)


a12x+ b12y+ c12z > d12

· · ·
aN22x+ bN22y+ cN22z > dN22

(3.14)

are both satisfied, if there is another point P1 which satisfies (3.13) but not (3.14) and if there
is a third point P2 which satisfies (3.14) but not (3.13).

The previous definition without considering points P1 and P2 would include the
case where one polyhedra is completely inside the other one, which isn’t interesting
in our problem since there will be always the crossing between two joints. This is not
hard to handle but it leads to unnecessary redundancy in the algorithm that we will
present later on.

Definition 2 is not practically easy to implement, so we need at least an equivalent
condition for two polyhedra to interpenetrate.



3.2 solid interpenetration using boxes 45

Proposition 3. Let P1 and P2 be two convex polyhedra for which one of them is not con- Equivalent condition
for interpenetration
between convex
polyhedra

tained inside the other one. P1 and P2 interpenetrate if and only if there is at least one
intersection between an edge of one of them and a face of the other one.

Proof (informal). The sufficient condition is trivial, since the point of intersection be-
longs to both polyhedra and then satisfies both (3.13) and (3.14).
Conversely, let us suppose there is interpenetration. If we demonstrate that there
exist two faces f1 and f2 respectively from P1 and P2 which intersect each other,
then one of the edges of f1 or f2 must intersect the other face. But since the set of
points belonging to each polyhedron is a compact set and the faces can be seen as
the boundary of this set, this must happen since, for hypothesis, none of these is a
subset of the other one and so the boundaries of these two sets must intersect at least
in one point.

Notice that the previous statement requires only that the intersection is from the
edge of one polyhedron to the faces of the other one, but it is not necessary that this
relationship is reversed. This means that a double pass would be needed to ensure
to detect the collision, where we pick all the edges from P1 and all the faces from P2

and then we swap the rules. A condition where a single pass would not be enough
is depicted in fig. 3.7a.

(a) Suppose we are only checking edges of the
purple polyhedron with faces of the green
one. In this case the collision would not be
found, whereas after swapping the rules it
would be detected.

(b) Suppose P1 is the purple one and P2 is
the green one. If we apply Proposition 4 as
presented, collision would not be detected,
but it will be after we swap the polyhedra
and apply it again.

Figure 3.7: Potential undetected collision.

Proposition 3 can directly be implemented to test collisions between joints, but
this algorithm would be quite complex, as we see further on. We need then some
sufficient conditions which lead to faster computation in case of collision.



46 collision detection

Proposition 4. Let P1 and P2 be two polyhedra as in Proposition 2 and letSufficient condition
for collision

V1 =
{
vi
}
i=1,...,N1

where vi = (xi,yi, zi) ∈ R3

be the set of vertices of P1. If P1 is not completely inside P2 and if there exists at least one
element of V1 which is inside P2, that is, if any vi satisfies (3.14), there is interpenetration
between P1 and P2.

Proof. It is trivial. Any vertex of P1 satisfies (3.13) by definition, then if any vi satisfies
(3.14) too the condition in Proposition 2 is met since P1 is not contained in P2.

In the previous statement the rules of the polyhedra can obviously be swapped,
but it still remains a sufficient condition even with a double pass, so we can handle
situations like in fig. 3.7b but not the one depicted in fig. 3.7a.

Since this check is faster than the previous one, it is a good idea to split the collision
algorithm in two stages performed serially, as showed in Algorithms 2 and 3.

Algorithm 2 Box collision detection - Stage 1 (Box1)

Input arguments:
• set of vertices V1 of polyhedron P1

• set of faces F2 of polyhedron P2

1. For each face fi of F2 compute the plane πi which contains it in explicit form

2. for all vi ∈ V1, test if vi is a solution of (3.14). If at least one is a solution,
trigger collision and exit algorithm.

Algorithm 3 Box collision detection - Stage 2 (Box2)

Input arguments:
• set of vertices V2 of polyhedron P2

• set of faces F1 and F2 of polyhedra P1 and P2

1. For each face fi of F1 compute the plane πi which contains it in explicit form

2. For each face plane πi of P1
For each face fj in F2:

For each edge in fj:

2.A parametrize edge, which endpoints are P1 = (x1,y1, z1) and
P2 = (x2,y2, z2):

x(t) = x1 + (1− t)(x2 − x1)

y(t) = y1 + (1− t)(y2 − y1)

z(t) = z1 + (1− t)(z2 − z1)

(3.15)



3.2 solid interpenetration using boxes 47

2.B find if current edge is parallel to the current face plane πi, i. e., if
πi =

{
(x,y, z)

∣∣aix+ biy+ ciz = di} test if

ai(x2 − x1) + bi(y2 − y1) + ci(z2 − z1) = 0 (3.16)

If (3.16) is true, skip to the next edge

2.C find the intersection point between the line that generates the current
edge and the plane πi of polyhedra P1:

x(t) = x1 + (1− t)(x2 − x1)

y(t) = y1 + (1− t)(y2 − y1)

z(t) = z1 + (1− t)(z2 − z1)

aix(t) + biy(t) + ciz(t) = di

(3.17)

which gives

t̃ = −
aix1 + biy1 + ciz1 − d

ai(x2 − x1) + bi(y2 − y1) + ci(z2 − z1)
(3.18)

2.D if t̃ /∈ [0, 1], skip to next edge, otherwise build intersection point be-
tween the edge and the plane P̃ =

(
x(t̃),y(t̃), z(t̃)

)
.

2.E (Out Of Range Shortcut) Check if any of the coordinates of P̃ is out
of the range of the same coordinate of all vertices of the face fi of
polyhedra P1, i. e. check if at least one of the following is satisfied:

x(t̃) > xj ∀j = 1, . . . ,ni
x(t̃) < xj ∀j = 1, . . . ,ni
y(t̃) > yj ∀j = 1, . . . ,ni
y(t̃) < yj ∀j = 1, . . . ,ni
z(t̃) > zj ∀j = 1, . . . ,ni
z(t̃) < zj ∀j = 1, . . . ,ni

where ni is the number of edges of face fi. If so, move to next edge

2.F Check whether P̃ is inside face fi. If so, signal collision, otherwise
move to next edge

3. If no collision has been detected, swap polyhedron P1 with P2 and perform
steps 1 and 2

4. If still no collision is detected, trigger no collision and exit.

Algorithm Box2 requires to check whether a point is inside a polygon in 3D space.
Despite being a planar problem, it is handled as a non-reduced problem for a simple
reason: to reduce it to a 2D problem we would need the transformation matrix of
the plane, which is not directly available. To compute it we would need to evaluate



48 collision detection

a cross product and then a coordinate transformation, which is a little bit more
complex compared to what we developed in Algorithm 4 (cfr. fig. 3.8).

Algorithm 4 Point inside polygon in 3D space

Input arguments:
• set of vertices V = v1, . . . , vn of polygon in 3D space

• normal n of the plane containing the polygon

• target point P
Output argument: boolean which is true if point is inside polygon

for i = 1 to n do
v12 = vi+1 − vi
v2p = vi+1 − P
vn = v12 × v2p
if verse(vn) 6= verse(n) then

return false
end if

end for
return true

Figure 3.8: Vectors considered to test if a point is inside a polygon.

Notice that vn and n are always parallel unless P is on the perimeter of the polygon,
in which case instead of testing the equiverse condition we simply denote as inside
it. Moreover, vector vi+1 will be v1 when i = n. To test the equiverse condition we
can simply test if

‖vn + n‖ > ‖vn‖+ ‖n‖ (3.19)

As can be seen, stage 1 of the algorithm is just the sufficient condition expressedObservations about
Box Algorithms in Proposition 4 and so it does not guarantee to reach the goal. As said, before con-

tinuing to stage 2 we can swap the rules of the polyhedra and re-apply stage 1. Con-
versely, Box2 algorithm is just an implementation of Proposition 3. It is composed by
3 loops which iterate through all the faces of P1, then all the faces of P2 and finally



3.2 solid interpenetration using boxes 49

all edges of each face in P2. In the inner loop it checks whether the current edge
of P2 is crossing the current face of P1. This results in a quite heavy computation,
and this is why this overall algorithm is not as fast as the ones presented with SSV
method.

Another observation is that step 2.E can be skipped, but in practice this allows
to skip test 2.F most of the times, leading to a serious improvement in practical
situations. Point 2.F is needed since until step 2.D we only know that the edge is
crossing the plane containing the other face, but we don’t know if it crosses it inside
the area of the other face.

Moreover, it must be said that the situation depicted in fig. 3.7a is quite unusual Conditions for Box
algorithm speed-upsince there must be no vertex of the purple box which crosses any face the green

one. Usually the crossing is going to happen at least one frame before. If we neglect
this situation we can have a final outcome of collision detection just performing Box1

with a single pass and Box2 skipping step 3, paying attention to the roles of P1 and
P2, which must be the same through the two stages (i. e. they have to be as described
in the outline). In fact, even with the double pass, the situation depicted in fig. 3.9a
cannot be handled with Box1, while collision can be detected with one single pass
of Box2. On the other hand, if P2 is the purple polyhedron in fig. 3.9b and we apply

(a) Box1 algorithm unhandled situation (b) Single pass Box2 algorithm potentially un-
handled situation

Figure 3.9: Box1 and Box2 algorithms potentially undetected collisions.

Box2 without step 3, we wouldn’t detect the collision, but this would be done by
previous Box1 where P2 will still be the purple one since there is a vertex of P1

inside P2. In this way we can avoid the second pass of Box2 algorithm, speeding up
the collision detection computation. We will refer to the series Box1-Box2 (without
step 3) simply as Box Algorithm.



50 collision detection

3.2.1 Complexity of collision detection algorithm using boxes

If we want to quantify the comparison between this procedure and the SSV method,
we must calculate the computational complexity of each algorithm employed.

First of all, let’s consider Box1 algorithm. As we can see in Algorithm 2, the twoComplexity of Box1
algorithm operations are made serially, so the cost is given by the most complex of them. Step

1 operates only on two vertices of each face so its complexity is5 O(|F2|). On the
other hand, step 2 has to evaluate a system of |F2| inequalities for |V1| points, i. e., its
complexity is O(|V1||F2|) and it is dominant to the previous value. In conclusion, the
complexity of Box1 algorithm is O(|V1||F2|).

Let’s now have a look at Box2 algorithm. We are not interested in step 1 since theComplexity of Box2
algorithm others will be far more complex. As explained before, there are three nested loops,

then the inner loop is computed6 |F1||F2|e2 times, where e2 is the mean number of
edges of each face in P2, which is usually constant. The inner loop’s main cost is
given by the function which tests if a point is inside a polygon, which is Algorithm 4.
As this needs to iterate through all vertices of the polygon, its complexity is O(e1).
Then, the total complexity of Box2 algorithm is O(|F1||F2|e1e2), which, if the order of
magnitude of the number of faces and edges of the polyhedra is the same (let’s say
f and e), this can be resumed into O(f2e2). If we consider the general robot collision
detection phase with n1 and n2 arms, total complexity is simply O(n1n2f

2e2).
The first observation is that, as expected, Box1 algorithm is a lot faster to perform.Comparison with

SSV algorithms The other thing is that, since we are interested in the worst case, the total complex-
ity of this method is given by the heaviest one, which is Box2. If we compare this
with the result obtained in Section 3.1.4, even though the quantities are not properly
comparable, we see that this is far more complex than the SSV modelling method.
To state this, it is easy to see it with an example: let’s suppose both boxes are paral-
lelepipeds, so f = 6, e = 4 and v = 8. First stage leads to 48 operations, while second
stage consists of almost 576 elementary operations. Even just considering the order
of magnitude of these numbers, it easy to see that the SSV modelling is a lot faster.
Moreover the modelling with simple parallelepipeds doesn’t justify the use of this
method since its aim is to obtain a more precise representation of each joint, which
is done using more complex polyhedra, as explained in [10], for which the number
of edges and faces is larger than this simple example.

It is easy to see that the worst case happens when there is no collision, while in
some situations when there is collision the detection could be found even at first
stage. As we will see on Section 3.4, if we are able to invoke Box algorithm only
when we are almost sure there is a collision, we can combine the fastness of SSV
modelling and the precision of box modelling together to get a reliable solution for
collision detection.

5 with | • | we consider the cardinality of a set in this environment
6 on the worst case, which in this occasion is particularly important since the whole algorithm goes

empty when there is no collision, even though the shortcut should be helpful



3.3 user interface for initial ssv setup 51

3.3 User interface for initial SSV setup

In this section we present a user interface which aims to design a suitable SSV model
for each robot joint. The reason why we did this is because an automatic procedure
is not always the best solution. A first problem it may encounter is the possibility
to choose between one or more linear SSVs per joint or even polygonal joints, and a
choice criteria is not easy to define.

Another problem is that it is not easy to define an optimal SSV shape, as there can
be any different criteria to do this. For example, if we consider only a simple linear
SSV, the sweep axis can be not coincident with the joint revolution axis, as long as it
depends on the joint shape.

Moreover, one may think that the optimal SSV is the one that minimizes its volume,
or better which minimizes the ratio between SSV and arm volume. This however
might not be a good criteria, as sometimes we can allow a larger volume for a single
arm which overlaps with part of the following or previous one. Since then there are
a lot of parameters which depends on practical environment, we left the user some
degrees of freedom.

The first screen provided to the user is depicted in fig. 3.10.

Figure 3.10: User Interface initial screen.

At this point no SSV is yet built, as it can be seen. Main buttons are:

� New: it allows to create an initial default SSV configuration. If a model is al-
ready loaded, it overwrites all edits;

� Load: loads a previously saved SSV configuration file;

� Reset SSV: it restores all edits to their initial values;



52 collision detection

� View buttons: allow to see joint and SSVs from a different view and eventually
to reset the initial view. The plot can also be rotated with the mouse when
pointing over the plot;

� Show checkboxes: they allow to show or hide main frames and SSVs;

� Opaque mode: with this option flagged, the surfaces become opaque. This is
useful in manual mode to check whether each joint is covered by the SSVs;

� Preview: it opens a preview window which shows the entire robot with SSV
representations of each joint;

� Save buttons: they allow to save the new or edited model, offering the option
to save with another name (with .ssv extension). Ok button closes the window
and saves any modified settings.

The main section where all edits are performed is split into tabs. Each tab contains
the settings for correspondent joint. When no model is loaded, only the tolerance
value can be set, which can be different for each joint. In this way the new model
that will be created is directly designed with this tolerance value. This represents the
tolerance of the SSV radius which is fed into the SSV automatic generation algorithm
(see Section 3.3.1). Once a model is loaded or a new model is created, these tabs
become editable (fig. 3.11).

Figure 3.11: User Interface after a new model is loaded.

For each tab, different option may be available according to the SSV type andAutomatic mode
overview quantity for the current joint selected. If there is only one simple linear SSV the pop-

up menu is not selectable. We refer to this situation as automatic mode. If a new model
is created, SSV automatic generation procedure is invoked with default parameters.
This is explained in Section 3.3.1. In fact the only options available (fig. 3.12) are:



3.3 user interface for initial ssv setup 53

Figure 3.12: User Interface with edited parameters for a linear SSV in automatic mode. SSV frame is
the one which is rotated, while other two are DH frame (the one on the corner is simply shifted).

� SSV Frame Cardan rotation: with the 3 sliders or with the edit boxes it is possible
to define 3 Cardan angles from which the rotation matrix between the SSV
reference frame and the current link DH frame is built;

� SSV Frame Euler shift: with the 2 sliders or with the edit boxes it is possible to
define the SSV eccentricity respect to the axis obtained after previous rotation.
Since sweep is performed along z axis in SSV frame, it is only necessary to
define shifts along local x and y axis.

The SSV reference frame is a custom defined frame which endpoints of SSV refer to,
in order to simplify following computation. Hence it is static compared to the link
DH frame. If we are dealing with linear SSVs, by our convention the z-axis is the one
along which the sphere is swept.

In this mode the SSV is continuously updated according to parameters set by
the user. The way how this is performed is explained again in Section 3.3.1, where,
instead of default values, user parameters are employed. Notice that in this mode
user cannot set the radius as it is evaluated automatically. Tolerance value instead
can still be edited. Despite not necessarily being the best criteria, SSV volume is also
shown in order to compare results while varying parameters.

The bottom push buttons in each tab modify the type or the number of SSVs. In
particular, Edit button has the purpose of switching the type of SSV between linear
and polygonal, Duplicate creates an exact copy of the actual SSV, while Add simply
adds one new linear SSV with default parameters. Once we add a new SSV for the
current joint, we switch to manual mode (fig. 3.13).

First thing to say is that in this mode there is no automatic procedure to check Multi-SSV design
manual mode
overview

whether the SSVs cover the whole joint, as recalled in main tab (fig. 3.13). This has



54 collision detection

Figure 3.13: User Interface for manual mode, when multiple linear SSVs are selected for each joint.
New parameters became available, while selected SSV (for which specified parameters hold) is
highlighted on the plot.

been a design choice, since in some way the user would be asked to specify how
to split the coverage, which would mean for example to define a plane which splits
the joint shape into different parts. Instead of this, we gave the user the possibility to
specify the endpoints of each SSV. Clearly, these points are referred to each SSV refer-
ence frame, which is specified as before with two transformation matrices. Therefore
it is only necessary to specify z quotes of these points. In this occasion the radius of
each SSV must be set manually, as there is not any automatic procedure to calculate
it. For this reason, the tolerance value has been dropped.

Once entered in manual mode with multiple joints the Edit button switches to
Delete function. In fact, as long as it is possible to add new SSVs it is possible to re-
move them. This opens another menu which allows to specify which SSV to remove.
It is possible to remove SSVs as long as just one linear SSV remains. Notice that
removing any SSV but last one leads to leave part of the joint uncovered. If, instead,
we are removing the last SSV available (i. e., we are switching from 2 to 1 linear SSV),
we switch back to automatic mode. In this way manual parameters are removed and
are replaced by automatic ones, while rotation and shift values remain the ones of
the last SSV remaining. At this point Delete button is replaced again with Edit button.

If we switch to a polygonal SSV, there are new options available (fig. 3.14). We de-Polygonal SSV
design manual mode

overview
cided to design only quadrilateral SSVs, despite the algorithm works for any convex
polygon. Since we are dealing with a planar polygon, we decided to build another
reference system, such that the polygon is defined on the xy plane. As for the linear
case, this frame is static compared to DH frame. The transformation matrix between
these two frames is again computed in two steps, of which the former one is the



3.3 user interface for initial ssv setup 55

Figure 3.14: User Interface for manual mode, when polygonal SSV modelling is selected for the specific
joint.

same as before and it defines rotation parameters, while the offset is defined only
with the z quote of the local frame, as we are dealing with a plane.

Once the plane is defined, the user can manually set the four points of the quadri-
lateral using the sliders in Manual Parameters section, baring in mind the final poly-
gon must be convex. The four points are defined in counter-clockwise order referring
to the xy plane. As for the multiple case, the user must define the radius, while once
again the tolerance value is no more needed.

As it seems, there is no possibility to have both linear and polygonal SSVs for
the same joint. This is another design choice. In fact, since both polygonal SSVs and
multiple SSVs modelling yet lead to high computational cost themselves, it would be
too expensive to combine these strategies for the same joint. As a consequence, if we
want to switch from multiple SSVs modelling to polygonal modelling it is necessary
to remove all linear SSVs.

3.3.1 SSV automatic generation procedure

This procedure is invoked when we are running in automatic mode. If a new SSV
model is created, we set the initial parameters to be all 0 (i. e., SSV frame is coincident
with DH frame). The aim of this phase is to create the SSV that has the smallest
volume and contains the joint, according to specified rotation and translation. First
thing to do is then to convert robot link points into SSV frame, which allows to reduce
to a 2D problem, as we will see. In fact all edges we are dealing with are straight, so
if the point cloud is contained into the SSV, the robot arm will be contained there as
well.



56 collision detection

First of all, we have to build transformation matrix TSi which transforms points
from SSV frame to DH frame. This is the inverse of the matrix we are searching for,
but it is straightforward to evaluate. Let α, β and γ be the Cardan angles around
respectively axes x, y and z imposed by the user. The rotation matrix around fixed
reference frame (i. e., DH frame) is

Rxyz = Rz(γ)Ry(β)Rx(α) ∈ R3×3

For more details about rotation matrices see Appendix B.
Now let x0 and y0 be the coordinates which define eccentricity, set up by the user.

The transformation matrix which considers both rotation and shift is finally:

TSi =


x0

Rxyz y0

0

0 0 0 1

 (3.20)

If we want to get joint points into SSV frame we must use the inverse of TSi, which
is easy to compute (see Appendix B).

This procedure is valid for whatever set of points expressed in DH coordinates,
so we can use either points from joint CAD design or vertices from 18-DOP or 30-
DOP models. In the former case the resulting SSV is tighter to the joint, whereas
in the latter one we can inherit any tolerance imposed from the Bounding Volume
computation [10]. To transform points we simply use their homogeneous coordinates
and we pre-multiply them by the transformation matrix.

Next step is to compute the radius r of the SSV. According to the current parame-
ters, the z axis in SSV frame is well defined. Hence, for each link point, we need only
to evaluate its (minimum) distance from this axis. The radius will be the maximum
between all distances found. Since we converted all points into SSV frame, z axis
has null x and y coordinates and so we can neglect z coordinate of all points as the
problem is radial. For the moment, let’s not consider the tolerance, which will be
added at the end of this procedure.

At this point, as we can see in fig. 3.15a, we obtained a cylinder which contains all
points. Following step is to find endpoints of SSV primitive. Since this procedure is
pretty similar for both top and bottom of SSV (where with top we mean that it refers
to the endpoint with greater z quote), we will report the steps only for the bottom
side.

Firstly, we evaluate the point which has the minimum z coordinate (zmin). Then
we extract only the subset of points (xi,yi, zi) for which

zi 6 zmin + r

We are now searching for the half sphere which contains all points in the volume
(fig. 3.15b) defined as:

S =
{
(x,y, z) : |x| 6 r, |y| 6 r, zmin 6 z 6 zmin + r

}
(3.21)



3.4 collision detection general algorithm 57

(a) Cylinder containing all link points, after
having computed its radius.

(b) Subset of points wherewith we compute
bottom endpoint. Point which has the low-
est z quote is highlighted in red.

Figure 3.15: SSV computation according to point cloud.

The only unknown in this problem is the sphere center z quote (zc). Whatever is this
point, the following relationship must hold:

x2i + y
2
i + (zi − zc)

2 6 r2 ∀i : zi 6 zc (3.22)

where i subscript refers to the points in S. The previous one is the distance condition
from the endpoint, which defines a sphere indeed, of which we are interested only
in the bottom half one. Since condition (3.22) must hold as equality for at least one
point, we can first of all solve the correspondent equation in zc for all points in S, and
then keep only the maximum among the two solutions. In fact the half sphere we
are searching for is pointing toward the bottom. Finally, zc is the minimum amongst
this resulting set, as we have to keep the most restrictive condition.

After having repeated this method for the top endpoint, we increase the radius by
the tolerance set up by the user, such that every link point is far at least that amount
from the SSV boundary.

3.4 Collision detection general algorithm

In this section we try to combine both types of joint modelling in order to get a solu-
tion which is suitable to the user requirements. We will propose different solutions,
which can differ for execution time and degree of precision due to particular prac-
tical set-up. First of all, we are going to solve two different problems, which can be
seen as two different level of abstraction:

� Given two joint configurations q1 and q2, find if there is collision between the
robots;



58 collision detection

� Given two joint paths q1(s) and q2(t), find if there is collision over the time.

Most of the first part has been done, but now we are going to combine the two
methods proposed.

3.4.1 Collision between two static joint configurations

A explained more times, the main collision detection problem, as we formulated it, is
when there is no collision at all. In fact both method proposed rely its worst case in
this occasion. With this in mind, it is essential that first of all collision-free situations
are handled as fast as possible, and this can be done by SSV algorithms. We can
see the purpose of that modelling as not to find real collisions, but as to discard all
further checks. In fact, both SSV and Box algorithms give necessary and sufficient
conditions for the collision, that is, they can work independently; the main thing for
both is that the modelled joints are colliding, but not necessarily the real ones. In
this sense, since box modelling can be more accurate, it can approach with more
probability the real collision. By the way, the user can yet act here if the only thing
that matters is execution time and a raw result is acceptable.

What we are trying to do in this phase is to use Box algorithm as an improve-Box algorithm as an
improvement of SSV

algorithm
ment of SSV algorithm to be invoked only when this last one triggers a potential
collision. If there is a real collision, the cost given by Box algorithm will be very low.
Conversely, every time there is a false alarm (i. e., SSV algorithm signals collision but
Box does not), the added time given by Box1 and Box2 computation is a loss of per-
formance. The probability of false alarm relies all on the accuracy of SSV modelling.
Therefore the user shall solve this trade-off: the more accurate is SSV modelling, the
more time will be spent on SSV algorithm, but the less is the probability to trigger
a false alarm and waste time on Box algorithm. This depends on practical factors: if
the robots are very close to each other, SSV modelling should be as tight as possible,
whereas, if not, the probability of false alarm could be already low and a raw first
stage modelling could be enough.

Another thing to notice is that, if there are n1 and n2 joints, ideally it would be
necessary to check n1n2 collisions between pair of joints. Depending on real robot
displacement, some of these checks might be pointless as the corresponding links
might not be physically touching, regardless of the joint configuration. This is typi-
cal for the first arm of two anthropomorphous robots (fig. 3.16). As a consequence,
we provide the user with a simple interface which allows him to exclude collision
check between any pair of joints. In a future improvement, this can easily be done
automatically.

Extending this concept, some pair of joints might be colliding with more prob-Priority checks

ability than other ones. Without any constraint, we are going to perform collision
detection serially checking a joint of one robot with all the other ones of the other
robot. If we rule the checking phase with a priority system, the time needed to find
a collision might be even reduced, without any drawback. The checking order can
be set by the user and depends on both relative robot position and trajectory and
it is not simple to describe nor it is going to work for all possible trajectories, but



3.4 collision detection general algorithm 59

Figure 3.16: A workcell example with two Epson® C4A601S anthropomorphous robots, where each
arm 1 (the one highlighted) cannot phisically touch the other arm 1 since the bases are fixed to
ground.

can always perform the less probable checks by last. Moreover, it is improving the
performance only in case of collision, but it does not affect at all the performance
time when there is no collision.

Box modelling can always be split in different sub-levels, as a simple parallelepiped Box modelling
sub-levels(OBB) reduces the computation time compared to a more complex box, such an 18-

DOP or a 30-DOP. In this way any false alarm given by SSV algorithm can be cap-
tured with a simpler model, which reduces the waste of time thanks to the skipped
computation of Box2 algorithm with a complex model. However, if Box algorithm
with an OBB model triggers a collision, another call to Box algorithm with the most
precise model is required to get the final outcome, unless the precision of OBB model
is enough. In this sense, the intermediate level could lead to another waste of time
or it could speed up the algorithm, depending on the environment. For this reason,
we developed more than one possible way to get to the final result.

3.4.1.1 Collision detection hybrid algorithms

In this section we refer to level when we want to indicate the level of modelling
precision:

� level 1 is the SSV modelling;

� level 2 is the Box modelling with OBB;

� level 3 is the Box modelling with 18-DOP or 30-DOP7.

7 Depending on requirements the user can choose between these two, baring in mind that a 30-DOP is
even more complex than a 18-DOP



60 collision detection

When we refer to the pair level/stage we are considering either Box1 or Box2 algo-
rithm, depending on the stage value. The outline of the algorithm is at joint level of
abstraction, that is, we are testing the collision for a certain pair of joints until we
have a definitive outcome, and then we repeat the same for the next pair.

The easiest way to explain the hybrid algorithm is using a Deterministic Finite
Automaton, in fact we can see each stage of the algorithm as its states. One final state
of this automaton consists of a state which is reached whenever a collision is finally
detected. For example, we can impose that a collision can be recognised as detected
only when we are performing an algorithm at level 3, which is the most accurate in
our case. Any other collision-detected trigger signal just moves the computation to
the next level. To compact the notation, we indicate the initial state as a final state as
well, baring in mind that we can exit the algorithm only when there is no collision
between the entire robots, that is, only when there is no collision between the last of
the pair of joints we are checking. If this happens for another pair of joints but last,
the transition is highlighted and we start again from first state with the next pair of
joints in the check-list.

automaton 1 : level 1-3 The first automaton we propose skips level 2 and
moves directly to level 3 as soon as a collision is detected at level 1 (fig. 3.17). The
reason why this is a good choice is explained before, since the second step can be a
wasteful of time. The choice of this DFA must result from practical considerations: if
we know a priori that the probability of false alarm is low, we are almost sure that
when level 1 triggers a collision it is a true collision and then the intermediate level
wouldn’t be helpful. This, as said, is useful when the robots are not very close to each
other or the SSV modelling is quite tight. In all automata considered here transitions
labelled with ′0 ′ mean that on the previous state no collision was detected, while ′1 ′

means that a collision was detected.

level 1start
s1 level 3

stage 1

s2

level 3

stage 2

s3

COLLISION
s4

0
1

0

0

1

1
0,1

δ(s, •) 0 1
s1 s1 s2
s2 s3 s4
s3 s1 s4
s4 s4 s4

Figure 3.17: Automaton 1: Level 1-3. The blue transition allows to proceed with following pair of joints.
On the right, transition function which represents it.



3.4 collision detection general algorithm 61

automaton 2 : level 2-3 The second automaton we present does not exploit
all the advantages of SSV modelling (fig. 3.18). For this reason, it is not going to be
used practically, but since it is very easy to implement a new automaton (we only
need to store the transition table) we developed it just for comparison reasons, in
order to understand the benefits given by SSV modelling.

level 2

stage 1
start

s1

level 2

stage 2

s2

level 3

stage 1

s3

level 3

stage 2

s4

COLLISION
s5

0

1

0

1

0

1

0

1
0,1

δ(s, •) 0 1
s1 s2 s3
s2 s1 s3
s3 s4 s5
s4 s1 s5
s5 s5 s5

Figure 3.18: Automaton 2: Stage 2-3. On the right, transition function which represents it.

automaton 3 : level 1-2-3 This automaton can be seen as the complete one
and it performs all three levels (fig. 3.19). As said for the first automaton, the second
level could represent an improvement depending on practical situation.

level 1start
s1 level 2

stage 1

s2

level 2

stage 2

s3

level 3

stage 1

s4

level 3

stage 2

s5

COLLISION
s6

0
1

0

1

0
1

0

1

0

1 0,1
δ(s, •) 0 1

s1 s1 s2
s2 s3 s4
s3 s0 s4
s4 s5 s6
s5 s0 s6
s6 s6 s6

Figure 3.19: Automaton 3: Level 1-2-3. On the right, transition function which represents it.



62 collision detection

automaton 4 : level 1 This automaton is the fastest one and exploits only SSV
modelling (fig. 3.20). In this sense it can be seen as the complementary of Automa-
ton 2. As a consequence it inherits all the pros and cons of SSV modelling. By the
way, depending on the specifications, it can always be a valid alternative.

level 1start
s1

COLLISION
s2

0
1

0,1

δ(s, •) 0 1
s1 s1 s2
s2 s2 s2

Figure 3.20: Automaton 4: Level 1. On the right, transition function which represents it.

A variation of these automata is to perform stages 1 with the double pass, tryingAutomata variations

to prevent to invoke Box2 algorithm when there is a true collision. This can be useful
when the probability that a vertex of one polyhedron is inside the other polyhedron
is high, which is common with level 3 when the number of vertices is large.

Another alternative could be to perform Box algorithm with different models, for
example with one joint represented with an OBB an the other one as a 18-DOP. By
the way, there could be benefits only in case of real collision, but since, after some
tests, we found that the main cost of the entire algorithm is given by collision-free
configuration pairs, this has not been implemented because the benefit would be
negligible.

3.4.2 Collision detection between trajectories

We now move one abstraction level forward. Given two joint configurations q1(t̄)
and q2(ū), we can now know if there is collision invoking the hybrid algorithm
explained above. We will assume that now the configurations can change through
time, so we have the sets

Q1 =
{

q1(t), t = 1, . . . ,N1 ∈N
}

Q2 =
{

q2(u), u = 1, . . . ,N2 ∈N
}

where t and u are just discrete times and do not coincide with real time displacement,
and N1 and N2 are the number of configurations each trajectory has along time.

For the next procedure we can omit the real time distribution, that is, the mapping
between the discrete time t (and u) and the real time when the particular configu-
ration is reached. This is done because we can not know the time dependency but
only a chronological sequence of positions, as in our case. However, we can have
additional informations which can improve the procedure, as we will see.

If we don’t have any information about the real time nor we have the correlation
between t and u, the only thing we can do is to check the collision for every possible
pair (

q1(t), q2(u)
)
∀(t,u) ∈ [1,N1]× [1,N2]

A typical situation is when one of the robots (let’s say robot 1 with trajectory q1(t))
has started its movement and the other one is steady and waiting to start its one. In



3.4 collision detection general algorithm 63

this condition, we refer to Master Robot as the moving robot and to Slave Robot to the
one which is querying about collision with the master one. Since we could not even
know at which time the slave is querying for collision, we must check all its temporal
sequence with every t ∈ [1,N1], even though the master current time is N1.

The first thing we could do is simply to loop collision detection for each time
sequence:

for t = 1 to N1 do
for u = 1 to N2 do

testCollision(q1(t), q2(u))
if collision then

return
end if

end for
end for

This simple procedure guarantees to get to the final result, but if the collision Alternative check
sequencehappens at the end of the trajectory its computation time is quite long. We can im-

prove computation time when there is collision exploiting correlation between path
points. Even though we don’t know the exact time distribution above the sequence of
points, in the optimal check sequence we would check the pair of joint configuration
for which its collision probability conditioned by past collision-free time pairs is the
maximum among all the remaining pairs.
Let Ct,u be the event "collision between robots with configuration q1(t) and q2(u)"
and let us indicate with C̄ its complementary. Let’s suppose we didn’t check none of
the future pairs (t̄, ū), with t̄ > t and ū > u. The previous affirmation means that
usually it doesn’t make sense to check pair (t,u+ 1) if the previous check was at
(t,u) since

P
(
Ct,u+1

∣∣C̄t,u) 6 P
(
Ct,u+α

∣∣C̄t,u), α > 1 (3.23)

This is because the prediction error variance on the right side of (3.23) tends to
increase with the rise of α as the correlation between the collision events through far
moments tends to zero. On the other hand, if there is a collision, it can be found for a
different time pair as well, thanks to the correlation between adjacent moments and
to the fact that any collision usually involves more moments.

As said, this should only give an idea on how to proceed, since theoretically all
these aspects should be taken in a more strictly way. We can’t follow a formal way
since we don’t know the time distribution and because it wouldn’t be easy to model
the collision probability between two robot configurations.

We tried to exploit this with another checking sequence. The idea is to scan all
the possible pairs in more stages, where the first stage has to cover only the most
significant pairs and the last one has to do it with all the remaining ones. We set as
most significant pairs the ones that correspond to a via point pass-through, which
are the first to be checked. If a collision happens in between two via points, it might
be handled on the first stage as well, as usually the collision lasts for at least a few
moments. We followed the next 3 stages:



64 collision detection

� On the first pass we check the collision between only the initial and the final
moments, i. e., pairs (1, 1), (N1,N2), (N2, 1), (1,N2);

� On the second stage we check all via points pairs8;

� Finally we scan all remaining pairs if still no collision is detected.

A smart choice for the last step is to cycle through all (remaining) times of slaveSmart time sequence
check robot in the inner cycle and leave the outer cycle for the master ones, which will

be performed in the opposite sense (i. e., from the last moments to the first ones of
the master robot trajectory). In this way, supposing tN is the time correspondent to
the last via point of the Master Robot, when the inner cycle is completed and no
collision is found, we are sure that there is no collision between the Slave Robot
and the last leg of the MR trajectory. This is useful if during this phase we get the
information that the MR has passed through the last via point, so we can start the
movement of the Slave one, regardless of the remaining collision test outcome, since
those potential collisions belong to the past. This obviously can be extended to all via
points of the Master Robot. In fact we are considering the worst case condition, that
is, we might be querying for collision as soon as MR has begun its movement, so we
shall check collision with the whole trajectory, but in practice there can be various
situations.

Another alternative is to split the collision algorithm in two parts at joint level: byPriority pairs
alternative first we perform collision detection only between a subset of joint pairs, called prior

pairs, and then we do the same for all the others. So we repeat the entire sequence
through time only for prior pairs, then we start again and we do the same for the
remaining joint pairs. This can be useful when we know that collision is frequent
between some particular pair of joints, such as any one which which includes the
end-effector. In this way if there is collision the time required to reveal it can be even
shortened. However no benefit is given if there is no collision at all or if the collision
involves non-prior joints. In this case, instead, there is a performance loss as each
robot kinematic model must be computed twice, as we will scan twice all possible
time pairs. A solution could be to store the kinematic model for each time if possible,
but eventually the benefits of this method must be tested on the field.

8 if CP is on, there is no passing through via points, but, as stated in Chapter 2, we can use the point
which is in the middle of the junction which avoids the via point instead



4
Algorithm Optimization

Despite the improvement obtained using hybrid algorithms, the algorithm devel-
oped in Chapter 3 cannot achieve real-time performance on most situations when
there is no collision. Real-time constraints superimposed require all the collision de-
tection stage to be performed in less than 0.1 s. This can be achieved only in case
of real collision, but in many critical collision-free paths the results obtained are not
satisfactory.

In particular, one situation which is not acceptable to be slowly detected is when
the robots are very far or when they are working in safety conditions, for example
in opposite areas (fig. 4.1).

Figure 4.1: Potentially safe working condition between two robots sharing the same workspace.

In this case there is clearly no collision but all steps of the algorithm must be per-
formed anyway. This particular situation let us think another method which would
be adopted prior to the collision detection algorithm at its actual state.

At this stage we had to focus only on anthropomorphous manipulators, to which
the methods offered are applicable. We considered this case because it is the most
common and the most interesting, as well as the most complex. If one or more robots
are SCARA, this method can still be applied with slightly variations, but its efficiency
should be verified. By the way, in this occasion there could be even more efficient
methods, based on the limited motion a SCARA robot can perform.

65



66 algorithm optimization

To perform this optimization we have to move one step backward to what we
reached at the end of Chapter 3, as long as this is going to replace the last optimiza-
tions explained in Section 3.4.2 with more efficient solutions.

4.1 Robot Maximum Swept Volume approach

At this point our algorithm does not exploit any information about the joint config-
uration (it only uses the kinematic model, but not explicitly their value). The next
step is then based on the sweep of the robot volume across the time sequence. This
method works well only when both the robots lie on parallel planes and the z direc-
tion of the robot frame is the same. In other words the results might be poor if one
of the two robots is wall-mounted or ceiling-mounted, even though the idea can be
extended to these cases.

The idea behind the next part is that most information about the obstruction of an
anthropomorphous robot with first rotational axis orthogonal to the working plane
(as it is on most anthropomorphous robots) is given by the first two joint positions
θ1 and θ2 (fig. 4.2). The approach we followed is to first represent the robot shape

Figure 4.2: Top view of a robot configuration and its bounding box obtained considering first two joints
as fixed and all possible combinations of the other four.

with a simple volume and then sweep it rotating it according to the first joint posi-
tion (fig. 4.4). We must bare in mind that this phase must be a sufficient condition
for collision absence, so we have to consider all possible configurations which can
happen along the trajectory. In Section 4.1.1 we develop a way to compute the robot
obstruction given a certain joint configuration, while its transformation into a proper
volume is described in Section 4.1.2.

4.1.1 Box obstruction according to first joint position

The basic idea which all these methods must follow is that this stage must be per-
formed prior to the algorithm developed by now, so their critical properties must
be its fastness and simpleness. As a result, we chose to reduce this problem as a
planar problem, as it is seen from a top view (fig. 4.2). In this way we neglect the z
coordinate, that is, we treat the bounding box as a rectangular parallelepiped1. On

1 from now on we refer to it simply as parallelepiped



4.1 robot maximum swept volume approach 67

the other hand this is a simplification and the bounding box could be wasteful, but
if the robots are very far from each other we can achieve good results. Conversely,
if one of the robot is wall or ceiling mounted z axis neglection could lead to poor
results as the sweep volumes may overlap frequently without any collision. This is
the reason why this specific method is not suitable in this situations.

The next step is then to find the rectangle which contains the plan view of the Bounding Box
computation with
joint 1 locked

robot, given a specific set of configurations. To do this, we imagine to lock the first
joint and then to move all other joints across all possible values they assume in the
set, so we are sure that, once we compute the swept volume (Section 4.1.2), the robot
is contained within the volume obtained.

This rectangle could be computed on-line according to the current trajectory, but
it wouldn’t be as fast as required, and certainly a brute force implementation cannot
reach the goal in time. We decided instead to do another approximation which allows
to make an off-line implementation of this method. First of all we must point out that
the width of the rectangle is mainly determined by joints 2 and 3, so the algorithm
we provided has only these two inputs. Secondly, the height is determined only by
joint 4, but this is not considered as the problem would be too complex, as we will
see later on. Instead of considering values of joint 4 to 6 across the set of values they
assume on the trajectory, we consider all possible values they can assume within
their limits, even though this may result too conservative.

The off-line phase consists on building a table which contains all possible values Off-line table
computationof θ2 and θ3 as inputs and returns the rectangle which contains the robot once θ1

is locked and according to all possible values of θ4, θ5 and θ6. The on-line phase
is then simplified to access the table and build a new rectangle which includes all
the rectangles obtained with θ2 and θ3 across the set. Clearly the table is sampled
to a subset of possible values of θ2 and θ3 and its size (and therefore its access time)
is proportional to the sampling interval. This is also the reason why having more
than two inputs has a lot higher computational cost. Hence we chose to sample the
range by intervals of 5◦, which allows to contain the table size and to have enough
resolution, without having to waste a large amount of volume.

Since this stage is performed only once off-line and it is only related to the robot,
we didn’t care about finding an efficient solution but we applied a brute force imple-
mentation.

4.1.1.1 Particularization to a subset of joints

Despite the previous method can be efficient when the robot are far, it quickly fails
when they are working a little bit closer. To still get the power of this solution we can
use the same approach for a subset of the kinematic chain instead of the full robot,
which at least lets us exclude part of the joints from collision detection in the next
stage, preserving the speeding-up approach this technique gives (fig. 4.3c).

The idea is the same as the previous one, except that we do not have to care about Reduced table

the last joints when we build the table. In particular, we may be interested only in the
sub-chain composed by the first 3 joints. In this occasion, the range of joint 3 can be
neglected as it does not affect significantly the bounding box size. This is due to the



68 algorithm optimization

(a) Sub-chain made by first 3

joints.
(b) Bounding Box for first 3

joints.
(c) Bounding Box comparison

with entire robot shape.

Figure 4.3: Bounding Box for sub-chain composed by first 3 joints.

shape of joint 3 (fig. 4.3a). In this way we can simplify the table letting it dependent
only on θ2, which reduces its access time. With this method we can achieve partial
results which can be merged together, as it is explained in Section 4.3.

4.1.2 Swept Volume computation

Once we have retrieved the bounding box with joint 1 locked, we have to compute the
sweep across the values assumed by joint 1. Since we treated the previous problem
as planar, this situation will be handled as planar as well. The idea is to find a
circular sector which contains all the rectangles obtained rotating them around the z
axis of joint 1 by θ ∈ [min(θ1),max(θ1)]. The center of this sector eventually will
not be coincident with the rotational axis, since we must handle the rear and lateral
obstruction of the robot. Hence, to completely describe the circular sector, we must
calculate its center, its radius and the bounding angles (fig. 4.4).

Figure 4.4: Robot bounding box sweep around joint 1 axis. This is the goal of this stage.

For the following procedure we will refer to the parameters shown in fig. 4.5,
which can be straightforwardly obtained from the table lookup.



4.1 robot maximum swept volume approach 69

Figure 4.5: Parameters of rectangle given by table lookup.

For simplicity, during the table computation, we have imposed rectangle height
symmetry, i. e., h+ = h− (cfr. fig. 4.4), due to robot symmetry. However this can
easily be removed and with only a few modifications to the next procedure. From
now on, since we will be dealing with joint 1 only, we will denote with θ1 and θ2 the
boundary angles of the range of the first joint.

(a) Swept of rectangle around joint 1 z

axis.
(b) Sector origin building with tangent

lines.

(c) New range and radius computation. (d) Extension to a sector ring, avoiding
the rear volume waste.

Figure 4.6: Robot bounding box building after swept plan view rectangle around joint 1 axis.

The first thing to notice is that P1 and P2 describe circle arcs as θ varies across its
range (fig. 4.6a). The effective range we must take into account, due to the symmetry,
is extended by 2γ. To build a circular sector which contains both sectors we must
find the line which passes through P ′2 and is tangent to the circle which describes the



70 algorithm optimization

rotation of P1 around [0, 2π] (fig. 4.6b). We then do the same for the other boundary
and then we find the intersection point between these lines, which will be the center
of the sector. We must point out some facts:Observations and

method limits
� The previous construction is enough condition to contain the robot shape, since
P1 does not revolve around [0, 2π], but only a sub-interval. However, since we
can exploit the tangent, the procedure is simplified and it doesn’t lead to a
significant waste of volume on the final outcome (fig. 4.7);

� The tangent lines do not intersect when joint 1 does not move. In this case this
stage can be skipped straightforwardly.

� The tangent lines could intersect on the front of the robot rather than behind it
(where the front is on the right side of each figure). This happens when l2 > l1,
which means the robot is performing a movement with major rear obstruction.
In this case it is enough to swap l2 with l1;

� The tangent building is correct until the sweep is convex, i. e., until condition
θ2 − θ1 + 2γ < 180◦ is satisfied. This is not a problem as this technique is
going to fail for large sweeps, so it is a good choice to split the trajectory into
sub-paths as we did;

� Conversely, if the sweep is small the tangent lines are almost parallel and the
radius of the sector is increasingly wide, wasting a lot of volume. For this
reason we extended this technique to circular sector rings (fig. 4.6d).

Figure 4.7: Sector boundary line building when the tangent point does not belong to the rear obstruc-
tion sector swept.

With refer to fig. 4.6, we now summarize the main steps.Swept volume
computation

procedure
The black triangle highlighted in fig. 4.6b is rectangle and both the hypotenuse

and the adjacent cathetus are known (they are l1 and l2 respectively). Therefore it is
easy to find α:

α = arccos
(
l2
l1

)
If we denote the extended range (highlighted in light red in fig. 4.6) as

∆θ̄ = θ2 − θ1 + 2γ



4.1 robot maximum swept volume approach 71

we can define the mid-range angle θ3 as

θ3 = θ1 − γ+
∆θ̄

2

and, referring to fig. 4.6c, we obtain

δ =
360−∆θ̄− 2α

2

Once again, the black triangle in fig. 4.6c is rectangle so it is easy to find that

lp =
l2

| cos δ|
and then

{
xp = −lp cos θ3
yp = −lp sin θ3

Finally, according to fig. 4.6d,

Re = lp + l1 and Ri = lp − l2

The new range is then

∆θ̃ = 180− 2δ and so

{
θ̃1 = θ3 −

∆θ̃
2

θ̃2 = θ3 +
∆θ̃
2

The extension to a circular sector ring will cost a few more steps during the collision
detection phase which we will outline on the next section, so if the original range is
quite wide we can neglect the last step and keep a simple circular sector.

The result of this modelling for the whole robot chain is shown in fig. 4.8. This is
referred to a sample trajectory travelled by an Epson® C4A601S.

Figure 4.8: Robot swept for a sample trajectory and its bounding box sector built using the technique
explained in this section (seen from two different views). Robot considered is a Epson® C4A601S.



72 algorithm optimization

4.1.3 Collision detection between robot swept volumes

Once we know the bounding volume of each robot swept, we must provide an al-
gorithm to find whether two sweeps are intersecting. This means we must find a
fast way to find the intersection between (in general) two circular sector rings. To do
this, we adopted a straightforward method which considers the intersection between
the boundaries of the sectors. This, of course, excludes the case when one is inside
the other one, but this is not meaningful as it cannot happen in practice. As long as
there are two curved lines and two straight lines for each sector boundary, we must
provide three stages which test the intersection between them.

Since we are dealing with two different reference systems, we are using two polar
representations of a circle, assuming we know the relationship between them (which
we do, as we know the workcell configuration).

Figure 4.9: Parameters of two circular sector rings with their reference systems. Superscript is for
reference system, while subscript refers to each boundary of the sector.

Before testing intersection, the first thing to do is to test whether the two circles ofIntersection-free
enough condition radii R(1)e and R(2)e are intersecting, which means that if

d , dist
(
(x1,y1), (x2,y2)

)
> R

(1)
e + R

(2)
e (4.1)

there is no intersection and we can skip all the remaining steps (fig. 4.9).

4.1.3.1 Intersection between segments

We start by defining the boundary points on the external circles in polar coordinates:

P
(1)
i :


x
(1)
pi = x1 + R

(1)
e cos θ(1)i

y
(1)
pi = y1 + R

(1)
e sin θ(1)i

i = 1, 2 (4.2)

P
(2)
j :


x
(2)
pj = x2 + R

(2)
e cos θ(2)j

y
(2)
pj = y2 + R

(2)
e sin θ(2)j

j = 1, 2 (4.3)



4.1 robot maximum swept volume approach 73

The boundary segment for each circular sector ring is then defined as
x(i)(s) = x1 + s

(
x
(1)
pi − x1

)
y(i)(s) = y1 + s

(
y
(1)
pi − y1

) i = 1, 2, s ∈

[
R
(1)
i

R
(1)
e

, 1

]
(4.4)


x(j)(t) = x2 + t

(
x
(2)
pj − x2

)
y(j)(t) = y2 + t

(
y
(2)
pj − y2

) i = 1, 2, t ∈

[
R
(2)
i

R
(2)
e

, 1

]
(4.5)

A segment of the first sector (4.4) will intersect a segment of the second one (4.5)
only if the systems (4.4) and (4.5) are simultaneously satisfied within their domains.

Let’s suppose no segment pair is parallel. Then, after some simple steps, we get

t̄ =

(
y1 − y2

)(
x
(1)
pi − x1

)
+
(
x2 − x1

)(
y
(1)
pi − y1

)
(
y
(2)
pj − y2

)(
x
(1)
pi − x1

)
−
(
x
(2)
pj − x2

)(
y
(1)
pi − y1

)

s̄ =

(
x2 − x1

)
+ t̄
(
x
(2)
pj − x2

)
x
(1)
pi − x1

i, j = 1, 2 (4.6)

If two segments are parallel, then the denominator on the first of (4.6) is zero and
clearly that solution must be dropped. The previous system has at most 4 solutions,
one for each pair of segments. The condition for intersection is then

(s̄, t̄) ∈

[
R
(1)
i

R
(1)
e

, 1

]
×

[
R
(2)
i

R
(2)
e

, 1

]
(4.7)

4.1.3.2 Intersection between circles

If (4.7) is not satisfied, we proceed finding the intersection between each pair of
circles (both the internal and the external ones which define each ring, if present).
First of all, we define the mid-range angle between the 2 sectors (fig. 4.10):

θ0 = arctan2(y2 − y1, x2 − x1)

As can be seen in fig. 4.10, this allows to find only 2 angles instead of 4, due to
symmetry:

δ1 = arccos

(
−
R22 − R

2
1 − d

2

2R1d

)
(4.8)

δ2 = arccos

(
R21 − R

2
2 − d

2

2R2d

)
(4.9)

Referring to the original systems (fig. 4.11), these lead to
α
(1)
1 = θ0 + δ1

α
(1)
2 = θ0 − δ1

α
(2)
1 = θ0 + δ2

α
(2)
2 = θ0 − δ2

(4.10)



74 algorithm optimization

Figure 4.10: Intersection parameters between circles.

Figure 4.11: Intersection between circles and sector range check.

As highlighted on fig. 4.11, the intersection points may not lie within the range of
each sector. Since angles evaluated in (4.10) are referred to the original systems, this
check is straightforward2, so there is intersection only if one of the following is
satisfied:

α
(1)
1 ∈

[
θ
(1)
1 , θ(1)2

]
α
(1)
2 ∈

[
θ
(1)
1 , θ(1)2

]
α
(2)
1 ∈

[
θ
(2)
1 , θ(2)2

]
α
(2)
2 ∈

[
θ
(2)
1 , θ(2)2

]

4.1.3.3 Intersection between circle and segment

To avoid any coordinate system conversion, we keep each segment as described in
polar coordinates. In the following procedure, we use the subscript 2 for the circle

2 every time there is an in-range check it is necessary to pay attention to modulo problems.



4.1 robot maximum swept volume approach 75

and 1 for the segment, which refers to θ1 (fig. 4.12). This procedure must then be

Figure 4.12: Intersection parameters between circle and segment.

performed for each boundary segment of each sector matching the other circles, i. e.,
it has to be done at most 8 times, swapping the rule of circle and segment. The circle
and the segment are parametrized as follows:

C2 :

{
x(θ) = x2 + R2 cos θ

y(θ) = y2 + R2 sin θ
θ ∈

[
θ
(2)
1 , θ(2)2

]
(4.11)

S1 :

{
x(ρ) = x1 + ρ cos θ1
y(ρ) = y1 + ρ sin θ1

ρ ∈
[
R
(1)
i ,R(1)e

]
(4.12)

Again, the intersection is given by any common solution between (4.11) and (4.12)
within the specified ranges. Defining the transformation3

u , tan
(
θ

2

)
such that

 cos θ = 1−u2

1+u2

sin θ = 2u
1+u2

(4.13)

we obtain, after few steps

ρ cos θ1 = (x2 − x1) + R2
1− u2

1+ u2
(4.14)

ρ sin θ1 = (y2 − y1) + R2
2u

1+ u2
(4.15)

If θ1 = ±π2 , we get u from (4.14) and we solve directly (4.15) in ρ. If θ1 = kπ (k = 0, 1)
we do the opposite, skipping the next stage which involves tangent and cotangent
computation. Let’s now consider the condition

θ1 ∈
[
π

4
,
3π

4

]
∪
[
−
3π

4
,−
π

4

]
\

{
± kπ

2
, k ∈ Z

}
(4.16)

3 the inverse transform may have some singularity problems, but these do not warn us as we will see
later on



76 algorithm optimization

If (4.16) is met, we can get ρ from (4.14) and solve (4.15), which, after simple steps,
leads to [

(x2 − x1) tan θ1 − R2 tan θ1 − (y2 − y1)
]
u2 − 2R2u+

+
[
(x2 − x1) tan θ1 + R2 tan θ1 − (y2 − y1)

]
= 0

(4.17)

avoiding any numerical problem due to the discontinuity of the tangent. If (4.17) does
not have any solution, there is no intersection between this particular circle/segment
pair. If there exist any solution ū, then we have

θ̄ = 2 arctan

(
1

2

ū

(x2 − x1 − R2) tan θ1 − (y2 − y1)

)
(4.18)

which gives

ρ̄ =
y2 − y1 + R2

2ū
1+ū2

sin θ1
If the denominator in (4.18) is 0, we simply skip the arctangent computation since
θ̄ = π and we are not interested in its sign.

Conversely, if (4.16) does not hold, we can still get ρ from (4.15) and solve (4.14);
after an analogous procedure, we get

ρ̄ =
x2 − x1 + R2

1−ū2

1+ū2

cos θ1

Regardless of the method used, the condition for intersection is

(ρ̄, θ̄) ∈
[
R
(1)
i ,R(1)e

]
×
[
θ
(2)
1 , θ(2)2

]
(4.19)

Since this is the last step, if no intersection is found after all circle/line combina-
tions, then there is no intersection between the paths considered.

4.2 Group of Joints approach

The aim of the previous technique is to avoid collision detection algorithm presented
on Chapter 3 whenever possible, since some checks across time and across space
(i. e., joint modelling) might be unnecessary. When this step fails, however, the com-
putational load remains a problem. For example, if we are dealing with two anthro-
pomorphous manipulators with 6 axes each and we analyse only the load given by
SSV algorithm, we would still have to perform LL algorithm at least 36×N1 ×N2
times, whereas if it succeeds none of them is needed. This led us thinking about
an intermediate stage which aimed to reduce the number of calls to the lower-level
hybrid algorithm developed in Chapter 3.

At this stage we cannot do any more about the robot sweep across time, so we
developed this level working only on a minor subdivision of the robot global shape.
The reason of this choice is motivated by the fact that if we can reduce the number of
entries to feed to hybrid algorithm, the number of iterations is reduced exponentially.



4.2 group of joints approach 77

For instance, a structure with only 4 elements leads to 16 iterations for each time
pair, which is less than half compared to the original check. The drawback is that
this is an additional test which does not substitute the one developed in Chapter 3

in case of failure. Once again, this improvement has been tested only on an Epson®

anthropomorphous robot, even though this can be extended to most manipulators
of the same class as the robot shape is usually similar.

(a) Links 3 and 4 (b) Links 5 and 6

Figure 4.13: Joint SSV groups formed by contiguous links of an Epson® C4A601S.

The idea is that some contiguous joints share the same rotational axis and their Robot modelling
with fewer
structures

radial size is almost the same. This is common on joint pairs 3− 4 and 5− 6 of the
Epson® C4A601S (fig. 4.13). Moreover, we may have modelled some joints with more
SSVs or with a polygonal SSV, so it is worth to anticipate the final test with a rawer
model, which is faster. As a result, we modelled the robot with fewer SSVs than
already done, grouping consecutive joints which share the z axis and anyway using
no more than one linear SSV for the other joints (fig. 4.14).

In this occasion we did not provide the user with a suitable interface, but we only
gave him the possibility to specify the tolerance of the radii of the joint groups, while
the single joints (like links 1 and 2 on fig. 4.14) inherit the parameters from a basic
configuration file, which can be processed with the GUI provided to build usual
SSVs. The way to get new SSV parameters is the same used for single joints and it is
explained in Section 3.3.

Once the modelling phase has been completed, the on-line step is identical to a nor- Collision detection
between simplified
robot structures

mal collision detection phase between two linear SSVs, which employs LL-algorithm.
If the outcome of this check is collision presence, we must perform collision detec-
tion hybrid algorithm as usual (this time between only the joints interested in the
block), otherwise we can skip any further test for the joints interested in the block
for the current time.



78 algorithm optimization

Figure 4.14: Joints SSV grouping for an Epson® C4A601S robot.

4.3 Algorithm outline

4.3.1 Trajectory subdivision

The previous algorithm can be applied to the whole trajectory, but in case of failure
we will lose all its advantages. Moreover, there are some areas where one or both the
robots can work safely, which more likely could be the workspace for only part of
the trajectory. For this reason, a smart choice is to split the trajectory into disjointed
sub-paths and then iterate this algorithm for all of these.

This split must be performed on-line, so it must be very fast. As said at the begin-
ning of this chapter, the easiest thing to do is to split the trajectory into sub-intervals
according to the first joint position. Even though fast speed-sign variation are not
very common during a PTP motion (cfr. Chapter 2) for joint 1, we decided to ap-
ply a hysteresis thresholding to the position trend (fig. 4.15), in order to avoid any
undesirable dense subdivision.

The threshold interval remains set by the user and its value can affect significantlyThresholding pros
and cons the fastness of the algorithm:

� A small threshold guarantees maximum efficiency of the optimized algorithm,
as parts of the trajectory where there is no collision are usually solved prior
to the lower-level hybrid algorithm. However, the cost to compute the robot
sweep and the intersection between sweeps can raise significantly.

� A high threshold lowers the time required to the overhead (robot sweep compu-
tation and intersection test) and it reduces the time required in case of collision-
free trajectories, but it loses its advantages as soon as there is intersection be-



4.3 algorithm outline 79

Figure 4.15: Hysteresis threholding for a sample signal.

tween the sweeps. Moreover, the thresholding must not exceed a certain value
as the sweep might become concave.

To avoid volume wasting, the robot sweep is performed according to the maximum
and the minimum value of θ1 within the specific time window and not to the actual
threshold values.

4.3.2 Combination between different abstraction levels

As we said, we can model the robot sweep using sub-chains as well. Hence, we can Sub-chains used in
the final algorithmperform multiple stages during sweep intersection check, in order to exclude at least

part of the robot from the next low-level collision detection. This could be applied
to all possible sub-chains that start from joint 1 obtainable from the robot. However
this could be uselessly expensive as the information carried by the new sub-chain
might hardly exclude sub-chains from the collision detection phase. For example,
the bounding box which considers the sub-chain composed by joints 1-2-3 of an
Epson® C4A601S is almost the same size as the sub-chain 1-2 (fig. 4.3c on page 68),
so it is not worth to perform any check with the last one, as it likely produces the
same results as the first one, which, in case of success, can exclude more joints form
the next step. The same result is visible for sub-chain which excludes only last joint
and the gripper.

As a result, we will only use models which consider sub-chains:

� from joint 1 to 3, depending only on joint 2;

� from joint 1 to 4, depending on joint 2 and 3;

� from joint 1 to 6, depending on joint 2 and 3.

The previous sub-chains will be built as described in Section 4.1.1. These models will
be integrated in the algorithm explained in next section.



80 algorithm optimization

4.3.3 High-level collision-free algorithm

At this point we developed an algorithm, whose steps are better shown as a state
diagram, like it has been done for the collision detection algorithm (fig. 4.16). This
stage is performed for each couple of time windows of each robot, as determined by
trajectory split discussed before.

The idea behind it is to avoid calls to the lower-level hybrid algorithm as many
times as possible. We start testing the intersection between the entire robot sweeps
(indicated as 6, 6 with orange background on fig. 4.16). If there is no collision, we can
skip to the next pair of sub-paths, otherwise we have to perform collision detection
between the block containing the last 2 joints of each robot, as there is no other way
to test their collision at high level. In fact, eventually we must be allowed to perform
collision detection tests between every possible pair if needed, as this must produce
a sufficient condition for collision-free paths.

We must point out that the collision state in fig. 4.16 indicates a real collision,
so any state with no background means at that stage we must first of all check
collision between the macro-groups (as explained in the previous section) and, if
they intersect, the hybrid algorithm must be invoked, inheriting the final outcome
from there.

The highlighted transition exiting from state 1 means that if the algorithm followsKinematic model
storage that route we must update and store the kinematic model of each robot for all the

time pairs belonging to the respective time windows. This is because certainly we
will have to perform either SSV or Box algorithm for each time pair within the time
windows. Therefore it is advisable to store the transformation matrices Tia as they
are likely to be needed more than once.

At this point, if no collision has been detected, we try to exclude at least the first 4

joints from the low-level collision detection (4,4). In case of intersection, we try to do
the same with sub-chain 1-2-3 (state 7), after having checked collision between the
joints which remains outside of this sub-chain. If, again, we find collision, we give
up with the robot sweep intersection test and we end up with the last macro-group
of joints remaining. Conversely, if sub-chains 1-2-3 do not collide but 1-2-3-4 do, we
skip the macro-group test and we go straightforwardly to the low level algorithm
(the blue state in fig. 4.16). If the first 4 joints do not collide with each other, instead,
we try to compare different-length chains (4,6 and then 6,4) and then we follow the
same idea as before in case one of them fails.

On fig. 4.16 more details are explained.



4.3 algorithm outline 81

6,6start
s1

SKIP
s2

56,56

s3

4,4
s5

34,56

56,34

1,56

56,1
2,56

56,2

s6

3,3
s7

34,34

34,1
1,34

34,2
2,34

2,2
2,1
1,2
1,1

s8

4,4
4,3
3,4
2,4
1,4
4,2
4,1

s9

4,6
s10

34,56

1,56

2,56

s11

6,4
s12

56,34

56,1
56,2

s13

COLLISION
s4

SKIP
s2

0

1

0

1

0

1

0

1

0

1

0

1 0

1

0

1

0

1

0
1

01

δ(s, •) 0 1
s1 s2 s3
s2 s2 s2
s3 s5 s4
s4 s4 s4
s5 s10 s6
s6 s7 s4
s7 s9 s8
s8 s2 s4
s9 s2 s4
s10 s12 s11
s11 s12 s4
s12 s2 s13
s13 s2 s4

Figure 4.16: Automaton which represents all the states of the high-level algo-
rithm and its state transition function. Transitions labelled with "1" mean
that at the previous stage a collision was detected, while a "0" means
that there is no collision between the joints interested or the sub-chain
tested. State 2 is replied twice for sake of clarity. Terminal states transi-
tion are not reported as the algorithm stops whenever it reaches one of
these states. For each state, the comma separates the joints of the first
robot (on the left) with the ones of the second robot. White states repre-
sent collision detection tests between macro-groups of joints, for example
34 indicates the block composed by joints 3 and 4. The blue labelled state
means that the joints considered are single joints and not macro-groups.
Orange-labelled states stand for robot sweep intersection stage between
the sub-chains which terminate with the joint indicated.





5
Experimental results

Here we show the main results obtained with collision detection algorithm, trying to
outline the practical meaning of parameters involved and to produce a suitable set
of options that allows to reach the best results.

5.1 Reliability and precision of the algorithm

First of all, we must point out that the main requirement for this project was the fast- Tolerance of link
representationness of the final algorithm. As we showed, the final criteria which defines collision

presence is made by the representation of each robot link by an 18-DOP or a 30-DOP.
The reliability and the degree of precision of our method are then inherited from the
precision of this modelling phase, which was previously done and is not part of this
work. Clearly, the modelling phase itself has some parameters which can be tuned
according to the user requirements, of which the main one probably is the tolerance.
As said in Section 3.3, SSV models can be made from points given by Box modelling,
so if we want to increase the tolerance we only have to update the 18-DOP model.

This is an important point and it links the work done for the trajectory identifica-
tion with the second part. In fact the trajectory which we are feeding into collision
detection algorithm is affected by some error, which we do not directly take into
account on the algorithm. The only way we can consider the estimation error is by
increasing the model tolerance by a value which ensures to take into account of max-
imum error allowable on the estimation phase. By the way, the tolerance set up does
not affect directly the collision detection algorithm performance, instead it regulates
the false alarm rate. In fact, the higher is the tolerance imposed, the more volume
is wasted for a link model and then the more probable is the event that the robot
aren’t colliding but their models do. Therefore it is important to keep the maximum
allowable error of the estimated path as low as possible.

There can be another abstraction level which can be used, which is even potentially Point Cloud
modellingmore accurate than 18 or 30-DOP modelling, which uses point cloud robot modelling,

as explained at the beginning of Chapter 3. We did not exploit this method, as it is
computationally expensive, therefore it shall be used when execution time is not
critical, for example when two robots are working in strict cooperation. Moreover,
since the tolerance to be imposed is not negligible, this modelling would be pointless
as its degree of precision lies on the knowledge of the exact robot position, i. e., at
this point it would not give more reliable information compared to a 30-DOP model.

83



84 experimental results

5.2 Implementation details

During the developing phase we implemented all the code with Matlab
® . AfterPerformance with

unoptimized
algorithm

the first part of the algorithm (the one explained in Chapter 3) was completed, we
tested it and came up with some performance results. As repeatedly said, at this
level the worst case is when two robots are very far from each other, especially if
joints are modelled with more SSVs or with polygonal SSVs. First results showed
that the execution time for a simple movement made by 50 knots for each robot
lasted for about 74 seconds. There are however even worse situations when there is
no collision but the robots are close enough to step down to level 2 or 3 (as indicated
in fig. 3.19

1) because SSV modelling is not precise enough. This step is only rising
the execution time, so that for another sample movement in which this condition is
met collision absence is found after 82 seconds, with a total of 131 steps through
level 2 or 3. However, SSV modelling allowed to gain about a 50× speed-up factor
compared to Box modelling only (i. e. using automaton 2 in fig. 3.18).

These results are far from the target, which is set to be within 0.1 s. This is theFinal
implementation

details: Matlab vs C
reason why we developed all the following part. After the completion of the entire
algorithm, we decreased to about 5 seconds in the worst case, which was way faster
than the previous approach. After some investigations, we realised that most of the
time was spent in overhead by Matlab

® , so we decided to gradually switch the
bottleneck into a C implementation performed by some MEX (Matlab EXecutable)
code. The final implementation regulates all the off-line setup and the outer cycle in
Matlab

® , including the trajectory split and the intersection between circle sectors,
whereas the inner cycles that perform SSV collision detection using LL-algorithm for
joint blocks and hybrid algorithm are written in C. This solution allowed us to reach
the final target, as we will discuss from the next section.

A final note to consider is that all the performance are given using Matlab
® timer

and iterating the entire algorithm for 50 times with the same inputs, which ensures
to not consider any untrusted value. All the processing is made with an Intel® Core™

i5 3317U processor with 4 1.70 GHz CPUs and 6 GB of RAM.

5.3 Modelling Set-up

As there are three different types of robot modelling involved, we show some results
obtained varying the available parameters.

5.3.1 SSV modelling

The user is provided with a GUI which allows to tune a lot of different settings. All
these details are reported in Section 3.3. Eventually, there can be different situations.

The simplest one is when the robot is represented with all linear SSVs (fig. 5.1a).
As previously said, this ensures the fastest precessing, but limited to this level. The

1 if we suppose to use that precise automaton



5.3 modelling set-up 85

(a) SSV modelling with one lin-
ear SSV per joint.

(b) SSV modelling with joint 2

represented with a rectangu-
lar SSV.

(c) SSV modelling with more
linear SSVs per joint.

Figure 5.1: Robot SSV modelling with different precision levels. Robot in question is an Epson®

C4A601S.

problem is that, in case of collision, the next step might not reveal any true collision.
This might be avoided a more precise model, like the ones in fig. 5.1b and 5.1c, which
however may represent a waste of time when there is no collision.

5.3.2 Box modelling

(a) Box modelling with OBB. (b) Box modelling with 18 - DOP.

Figure 5.2: Robot modelling with bounding volumes. Robot in question is an Epson® C4A601S.

As our work didn’t include this modelling, which however has been done in [10],
we report only the models we are referring to. For the simple box modelling made by
parallelepipeds we referred to an Oriented Bounding Box (OBB), which is the primitive
for the detailed box. This is shown in fig. 5.2a.



86 experimental results

On the other hand, the detailed box uses an 18-DOP obtained from the OBB which
contains each joint (fig. 5.2b). All the procedure is valid for a 30-DOP as well, but
since we don’t have a precise trajectory estimation, the level of precision given by a
18-DOP is enough, whereas a more complex model would increase processing time.

5.4 Critical situation test

To test the performance of our algorithm, we had to chose among many possible
situations. Since we want to be as conservative as possible, we fed the algorithm
with the most critical trajectories possible.

First thing to say is that all data we will be using are not real trajectory knots
but simulated ones. Moreover they do not come from the previous estimation phase
but from a simple uniform quantization of movements between effective points, i. e.,
there is no CP or Arch option involved. This is because we did not complete the
whole estimation phase (as that is part of another thesis work). Anyway, the results
interpretation is the same if the trajectory is the real one.

To produce every critical situation we used a simple GUI which allowed to move
and rotate each robot base within the workcell, with the possibility to show the robot
displacement given a certain configuration (fig. 5.3).

Figure 5.3: Simple GUI to create different workcell configurations with two robots.

One of the most critical situations is depicted in fig. 5.4a. We can see the robotA critical situation
example sweeps are very close to each other. To quantify the complexity of the situation we

can refer to the automaton in fig. 4.16. In general, the more steps are required to get
to a final state, the more time is required for the whole computation. The most critical
part of the trajectories are the middle ones. In this occasion, test between entire robot



5.4 critical situation test 87

(a) Critical robot sweeps which are very close
to each other.

(b) Sweeps modelled from all robot kinematic
chains.

(c) Sweeps modelled from only first 4 joints. (d) Sweeps modelled from only first 3 joints.
Intersection is not detected at this level.

Figure 5.4: Critical situation handling with sector-modelled sweeps.

sweeps (for the middle part of the trajectories) is going to fail2 (fig. 5.4b), as well
as the test between first 4 joints sweep (fig. 5.4c). After having tested joint blocks
present in states s3 and s6 (cfr. fig. 4.16 on page 81) without any success, finally no
intersection is found between robot sweeps made by first 3 joints (fig. 5.4d). This
represents the power of this strategy, as it can avoid to check collision between any
combination of first 3 joints for all the trajectory slice we are considering, which is
a 25% load reduction, even in this critical situation. The last step is then performed
by checking collision presence between joints considered by state s9 with hybrid
algorithm, as described in Chapter 3.

In this particular occasion, precision of SSV modelling may not be enough accurate
and Box algorithm may be repeatedly invoked to find whether there is collision
between certain pair of joints (fig. 5.5). This can lead to long processing time due to
the complexity of interpenetration between boxes algorithm (cfr. Section 3.2.1).

2 i. e., it triggers intersection between sectors, which means it needs a further investigation.



88 experimental results

(a) Real robots are not colliding. (b) SSVs for a pair of joints are intersecting.

(c) OBBs for the same pair of joints are inter-
secting.

(d) 18-DOP are not intersecting instead, which
means no collision is found.

Figure 5.5: Collision detection with SSV and Box modelling in a critical situation, handled only at
level 3.

In situations like this one, this represents the main load, which is why we tested
our algorithm with these trajectories. However, if this is limited to only few couple
of joints, execution time can remain within the limit, as it is on this case.

5.5 Simulation results

We tested the final algorithm with many situations, including other critical ones.
Since there are many parameters to be tuned, we summarized some results with
different set-ups, in order to choose the best ones. All results are shown in Table 2,
where main fields are:

� config: it represents a certain workcell configuration and a specific trajectory.
This defines some groups of simulations where we only changed collision de-
tection parameters;

� collision: NC means that trajectories did not collide, C means they did;

� N1, N2: they are the number of knots for each trajectory;

� SSV R1 and R2 models: they indicate a specific SSV model for each robot:

– B means a basic model with one linear SSV for each joint (fig. 5.1a);



5.5 simulation results 89

ID config collision N1 N2 SSV R1 SSV R2 aut thr time

[knots] [knots] model model [°] [ms]

1 A NC 50 50 B B 3 140 17.0

2 A NC 50 50 B B 3 90 29.7

3 B NC 51 54 B B 3 140 69.6

4 B NC 97 106 B B 3 140 141.6

5 B NC 51 54 B B 3 90 102.6

6 B NC 51 54 1P 1P 3 140 70.0

7 B NC 51 54 1P 1P 1 140 70.0

8 B NC 51 54 1P 1P 2 140 75.3

9 B NC 51 54 PM PM 3 140 69.6

10 C NC 53 44 B B 3 140 41.6

11 C NC 113 94 B B 3 140 82.9

12 C NC 53 44 1P 1P 3 140 41.4

13 C NC 53 44 1P 1P 1 140 41.6

14 D C 50 50 B B 3 140 9.8

15 D C 50 50 B B 3 90 15.2

16 D C 50 50 1P 1P 3 140 9.8

17 D C 50 50 1P 1P 1 140 10.3

18 D C 50 50 B B 4 140 9.7

19 E NC 50 50 B B 3 140 37.9

20 E NC 50 50 1P 1P 3 140 37.9

21 F C 51 54 B B 3 140 37.2

22 F C 51 54 1P 1P 3 140 37.8

23 G NC 52 52 B B 3 140 58.8

24 G NC 52 52 1P 1P 3 140 57.3

Table 2: Resuming table with main results obtained during collision detection phase. Red-highlighted
cells mean that time requirement is exceeded. Yellow and blue rows represent two groups of simu-
lations with the same parameters but different workcell configuration and trajectories.



90 experimental results

– 1P means there is only one polygonal joint (for joint 2) and the other ones
are linear (fig. 5.1b);

– PM means there is one polygonal joint (for joint 2) and the other ones are
linear, eventually with more SSVs for each joint (fig. 5.1c).

� aut: it is the automaton used for collision detection in hybrid algorithm. The
number refers to the same enumeration as described is Section 3.4.1;

� thr: it is the threshold used to split the trajectory into sub-intervals, employed
to find robot sweeps;

� time: it is the total time required to perform algorithm.

As can be seen, we summarized only the main results, so not all possible combina-
tions are showed for every configuration. Eventually we made the last tests varying
only one parameter, which switches between different SSV models.

The first thing to notice is that, except for two cases, the processing time limit isResults overview

almost always met, which is the main result we wanted to obtain.
The first group of simulations (labelled with "A") is the best case for the overall

algorithm and it represents two robots working behind each other, for which collision
absence is evaluated at first step, comparing entire robot sweeps. Incidentally, this
was one of the worst cases for the unoptimized algorithm, which conversely now
is coherent. Since there is no more detailed abstraction level involved, it does not
make sense to vary the number of points or SSV model, as it would produce the
same results. The only critical parameter here is the threshold for robot sweeps, as
eventually we are going to check collision between each sector combination, totalling
s1s2 checks, where s1 and s2 are the number of intervals for which the trajectory is
split. Therefore it is not surprising that processing time is rising up quickly when
reducing threshold value.

The second group of simulations is the one described in the previous section. First
of all we tried to double the number of points for each path, with a consequent rising
time, then we reduced the sector angle, obtaining similar results to the previous one.
Here then we switched to a different SSV model to test whether a more complex SSV
model takes its own benefits. As a result, we could not see any relevant difference
between these alternative models and the basic one. In fact, on one side there is less
probability to need a more detailed model (e. g., 18-DOP model), but on the other
hand the processing time is a bit raised. We then tried a different automaton among
the four described in Section. 3.4.1. Here again we couldn’t find any noticeable dif-
ference.

The reason why these parameters do not affect significantly the final execution
time is because they act on the unoptimized algorithm, which the final algorithm is
trying to avoid to invoke in order to save time when there is no collision. If we do
not consider the optimization, the results would be significantly dependent on these
parameters. Anyway, since it is the most complete and sometimes the processing time
is slightly faster, we chose to keep automaton 3 as reference for the next simulations.
We finally made a test with automaton 2, which skips SSV modelling for each joint.



5.5 simulation results 91

Unlike what can be expected, the final processing time is not very far from the
other ones. This is because collision detection phase between joint blocks is always
performed before getting to hybrid algorithm. However, this is still not convenient
compared to the other automata.

Group "C" of simulations is similar to the previous one, where we dropped the less
significant results. The final outcomes follow the same explanations of correspondent
simulations of group "B".

Group "D" represents two colliding trajectories. Parameters are chosen according
to group "B". We can see how detection times in this case are significantly lower
compared to collision-free paths, since there is no need to check the whole trajecto-
ries. In particular, as there is a true collision and it has to be detected at the most
precise level available according to the automaton chosen, there are some differences
between the automata. As there can be some false alarms close to the collision point,
level 2 present in automaton 3 allows to reach the goal in less time, which is one
reason why we chose this as default automaton. A last simulation is performed with
automaton 4, which skips all Box modelling. This is clearly faster, but can lead to
poorer results. However, the time gain is so low that it does not make sense to apply
this on the final algorithm.

In last simulation groups we only varied the SSV model. Group "F", in particu-
lar, is quite similar to group "B", where robot sweeps are very close to each other,
but eventually there is a collision. All false alarms that may occur then are rising
computation time, keeping it within the limits anyhow.

Some of the results on Table 2 were taken in order to just show the behaviour when
some parameters are wrongly set. This is exactly the case where the two simulations
exceed the limit. In fact, while all simulations are performed with about 50 knots
for each trajectory, in one case this number is almost doubled, while in the second
case the trajectory is split in too many intervals. Despite these simulations are out of
normality, both have reported some good results.

If we consider the first one, the time required for processing is nearly doubled. Consequences when
knots are doubledHowever, if we consider the behaviour of simple collision detection algorithm with-

out optimization, this should have been 4 times longer, as the number of point pairs
is four times greater. Eventually all the benefits must have come from the algorithm
optimization. This is an important result, as it allows to relax the condition for which
we need as few knots as possible for the final trajectory. This behaviour is not seen
only in this occasion, but every time we double the number of points.

The other simulation hides another important result. In fact we have always con- Consequences when
trajectories are
densely split

sidered the worst case condition, that is, we suppose to check the entire trajectory
of the Steady Robot (sometimes called Slave Robot, which is the robot that is querying
whether its trajectory is collision-free) with the entire trajectory of the Moving Robot
(or Master Robot, which is moving and cannot be halted). But this is not always the
case, as the Master Robot might be at the end of its path and so it is not necessary
to consider its entire path but only its remaining one. Since both paths are split into
sub-intervals, the best thing we can do is to check MR sweep sectors reversely. The
more are the sub-intervals, the more are the check points which allow to eventually
break the processing phase according to MR position. So if there are many intervals,



92 experimental results

in the best case the collision detection can be even faster than the best case with
fewer intervals. This is shown in fig. 5.6.

Therefore, if we can know the current position of Master Robot when we begin
collision detection phase, we can achieve the final result in less time.

Figure 5.6: Collision-free trajectory timings. On the top, sector threshold was set to 140◦, whereas on
the bottom it was set to 90◦. Horizontal axis with top scale represents the processing time required
to detect collision absence. Since we are checking the whole path of Slave Robot with sub-paths
of Master Robot in temporal-reverse order, the bottom scale represents the points along the MR
trajectory over which there is certainly no collision, where always Pi, i = 1, . . . , 4 are target points
of Jump3 motions and Vi are via points, enumerated in chronological order. This means that after
the time indicated inside every bar we are sure that Master Robot sub-trajectory made of the set of
knots indicated on the vertical axis is not colliding with the Slave Robot. The last via point which
is inside this set is reported on the bottom axis. This is why we do not encounter all points on the
MR path. These graphs show how, despite taking longer in the worst case, the second subdivision
allows to reach the goal in less time on the best case, which can happen when SR is querying for
collision when MR has almost completed his trajectory.



6
Conclusions

The aim of this work was to develop a system to detect collisions between two robot
manipulators. We developed a first collision algorithm which validity is totally gen-
eral, and then we optimized it by making it real-time executable, focusing on an-
thropomorphous robots. This algorithm needs to know real robot trajectories, which
are estimated according to practical smoothing made by the controller in our case
study. Despite having focused on Epson® manipulators, this behaviour is assumed
by many manipulators, where additional informations might be available, making
the estimation process more reliable and easier to perform.

Tests to sample paths have been performed for collision detection phase, includ-
ing critical situations which must be handled within target time. During the devel-
opment phase many parameters have been made available, which effect has been
compared during simulations. The algorithm developed allowed to combine both
reliability of Box modelling and fastness of SSV models, behaving a notable improve-
ment to the first one, without any loss in reliability.

The optimized algorithm allowed then to reach the goal within 0.1 s for all simula-
tions with correct parameters tuning and in worst case conditions. Eventual colliding
trajectories can be detected even in less time, thanks to the algorithm structure.

This system then has been integrated into previous work, in order to be put into
production in a real environment. Despite this, there has not been any practical test
on collision detection phase, because the estimation phase has been carried out in an-
other thesis work. However, simulations employed parameters which are compatible
with real robot trajectories. One of these was the number of knots for the entire trajec-
tory, which can affect significantly processing time for collision detection. Optimized
algorithm, by the way, allowed to slightly relax this condition.

A user interface has been developed in order to build an SSV model for each
joint of the manipulator. With this GUI the user can see the real time behaviour of
parameters imposed for each link, which can be different for each one. The user can
then choose the type of SSV to employ, which can affect processing time. However,
after some tests, no significant differences have been found between simple and
complex models, as a result of optimization done which is at a higher abstraction
level and aims to avoid unnecessary steps, including the ones which involve SSV
joint description.

Despite having been largely optimized, some future improvements can be per-
formed. One could be to provide a more general method which considers any type
of manipulator or any possible robot configuration inside the workcell.

93



94 conclusions

Another phase which can be the natural prosecution of this thesis is following col-
lision avoidance stage, which aims to design a new trajectory that avoids all obstacles
inside the workcell, including another robot, indeed.

Finally, all simulations and studies are carried out with a single movement, where
Master and Slave Robot roles are fixed. Once a movement is terminated, by the way,
robot roles must be swapped, so we can iterate the algorithm continuously.



A
Trapezoidal-speed law
relationships

If we want to drive one motor from a certain position q0 to a target position qf

there are different motion laws that can be planned. One of the simplest one is the
trapezoidal speed law, which ensures continuity both on position and speed (fig. A.1).

Figure A.1: Trapezoidal speed law time trend for position, speed and acceleration.

The drive law can be split in 3 parts, called acceleration, cruise and deceleration. The
middle stage is covered at constant speed (Vcr), while in the other two stages the
acceleration is constant (respectively a and d). The overall law time is called drive
time (T ), while Ta means time required to make acceleration phase, Tcr is the time
driven at constant speed and finally deceleration is performed in Td.

As the speed law is described as a piecewise-linear function (from which it inherits
the name), it is easy to obtain dynamic relationships depicted in fig. A.1:

q(t) =


q0 +

1
2Vcr

t2

Ta
0 6 t 6 Ta

q0 + Vcr

(
T − Ta

2

)
Ta < t 6 T − Td

qf −
1
2Vcr

(T−t)2

Td
T − Td < t 6 T

(A.1)

95



96 trapezoidal-speed law relationships

q̇(t) =


Vcr

t
Ta

0 6 t 6 Ta

Vcr Ta < t 6 T − Td

Vcr
T−t
Td

T − Td < t 6 T

(A.2)

q̈(t) =


Vcr
Ta

0 6 t 6 Ta

0 Ta < t 6 T − Td

−VcrTd T − Td < t 6 T

(A.3)

Depending on input parameters, next relationship may be useful:

Vcr =
qf − q0

T −
Ta + Td
2

(A.4)

If we suppose the law to be symmetric (i. e., Ta = Td and a = d) we can simplify
the previous relationships, obtaining:

q(t) =


q0 +

1
2Vcr

t2

Ta
0 6 t 6 Ta

q0 + Vcr

(
T − Ta

2

)
Ta < t 6 T − Ta

qf −
1
2Vcr

(T−t)2

Ta
T − Ta < t 6 T

(A.5)

q̇(t) =


Vcr

t
Ta

0 6 t 6 Ta

Vcr Ta < t 6 T − Ta

Vcr
T−t
Ta

T − Ta < t 6 T

(A.6)

q̈(t) =


Vcr
Ta

0 6 t 6 Ta

0 Ta < t 6 T − Ta

−VcrTa T − Ta < t 6 T

(A.7)

while (A.8) becomes now

Vcr =
qf − q0
T − Ta

(A.8)

There are many criteria for searching an optimal set of parameters, but in this
work we do not have to design a motion law. For details about motion planning and
alternative motion laws, see [12].



B
Properties of transformation
matrices

With transformation matrix in this work we mean a special matrix which combines
a rotation matrix R and an offset vector t. We always deal with points in euclidean
space when we want to apply these transforms, so we tacitly assume that R ∈ R3×3

and t ∈ R3×1. To be more precise, R belongs to a group called SO(3) and it has some
important properties, which main one is that it is orthogonal, so

R−1 = RT

This transformation is used whenever we want to denote a certain point (which is
supposed to be referred to a specific reference frame) in another reference frame.

The combination of rotation and translation defines a rigid transformation, which is
an affine transformation:

q = Rp + t (B.1)

where p ∈ R3×1 is the point we want to transform and q ∈ R3×1 is the transformed
point. To compact the notation, rotation and offset are embedded into the transfor-
mation matrix:

T =


R t

0 1

 so that


q

1

 =


R t

0 1




p

1


This transformation belongs to another special group called SE(3).

Thanks to the orthogonality property of R, if we want to revert the relation (B.1),
after few trivial steps we find that

p = R−1(q − t) = RT (q − t) (B.2)

which can be resumed into the inverse transformation matrix

T−1 =


RT −RT t

0 1

 so that


p

1

 =


RT −RT t

0 1




q

1


In this way it is easy to see that reversing a rigid transformation can be very quick
compared to the usual inverse matrix procedure. For further details about rotation
matrices, see [4].

97



98 properties of transformation matrices

Rotation Matrices evaluation

A typical situation where a rotation matrix is employed is when we want to obtain
a new reference frame by rotating another frame around a certain axis by a certain
angle. Therefore we can have 3 basic situations, one for each main axis:

Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 (B.3)

Ry(β) =


cos(β) 0 sin(β)

0 1 0

− sin(α) 0 cos(α)

 (B.4)

Rz(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 (B.5)

If we want to combine consecutive rotations, we will eventually refer to these prim-
itives, obtaining another matrix which still belongs to SO(3) and then inherits all
properties explained above.



C
Kinematic model of robot
manipulators

Reference frames

In a typical workcell it is usual to define many reference frames, in order to simplify
points localization and their processing (fig. C.1).

Figure C.1: Common defined reference frames in a workcell (source: [4]).

Most common reference frames are:

� Station Frame (S): this identifies the origin of the workcell and main axes. All
equipment inside the workcell that has to cooperate with another device uses
this frame as an interface, as this is common between all devices;

� Base Frame (B): also known as Robot Frame, it is defined for each manipulator in
the workcell. This frame is defined relative to the Station Frame;

� Wrist Frame (W): it is attached to the last link of the robot. Its relative definition
to the Base Frame depends on the current robot joint configuration;

� Tool Frame (T): it is located on the end-effector, therefore its definition relative
to the Wrist Frame is always static, unless we are changing the tool.

� Goal Frame (G): it is attached to the object we want to pick up, so it is usually
defined relative to the Station Frame.

99



100 kinematic model of robot manipulators

Joint Space vs Cartesian Space

If we want to refer to a specific point within the workspace, we can express it in two
different ways:

� Joint Space: this is an n-dimensional space, where n is the number of robot links.
In this notation, coordinates are positions of each motor.

� Cartesian Space: this is a 6-dimensional space and each vector belonging to this
space is made by 3 position and 3 orientation coordinates, due to the 6 degrees
of freedom each rigid object has.

Differences and motivations between these notations can be found in every robotics
book such as [4] and [12]. The important thing is that mapping from Joint to Carte-
sian space is always well defined, while to perform reverse transform we need to
know which configuration is used. In fact, given a point in Cartesian space, it can be
reached with different joint configurations (e. g., above or below elbow). If we sup-
pose to know which configuration is used, the reverse mapping can be performed
obtaining a unique result.

The mapping between Joint space and Cartesian space is obtained with the di-
rect kinematics (also called forward kinematics), while the reverse one is called inverse
kinematics. For more details about these aspects, see [4] [12].

Denavit-Hartenberg parameters

If we want to perform a certain movement and pick up a target object, we must
let Tool and Goal frame coincide. To do this, we have to know the transformation
matrix between the end-effector and the station frame, as long as we suppose to
know transformation between goal and station frame.

Let TTS be the transformation matrix we want to evaluate. This can be split into
consecutive transformations:

TTS = TBS ·TWB ·TTW (C.1)

The only non-static matrix in (C.1) is TWB, as the robot base is static and the tool is
supposed to be always the same.

Let Ti,i−1 be the transformation matrix which maps a point known on the refer-
ence frame attached to joint i to the reference frame on joint i− 1. The problem is
then postponed to find the matrices which make the sequence of transformations1

TWB = T1,0 · · ·Tn−1,n−2 ·Tn,n−1 (C.2)

Eventually, we have to compute joint transformation matrices Ti−1,i. We always will
be dealing with 1 degree of freedom joints, so the unknown in this problem is just
one. If the joint is prismatic, the variable is an offset, whereas if it is rotational it is
an angle. To compute this matrix we use the universal Denavit-Hartenberg notation,

1 here wrist frame is also indicated with n, as the number of robot joints, while 0 frame is robot base



kinematic model of robot manipulators 101

which allows to resume each transformation with 4 parameters, which are two angles
and two offsets (fig. C.2):

� ai−1 is the distance from Ẑi−1 to Ẑi measured along X̂i−1;

� αi−1 is the angle between Ẑi−1 and Ẑi measured about X̂i−1;

� di is the distance from X̂i−1 to X̂i measured along Ẑi;

� θi is the angle between X̂i−1 and X̂i measured about Ẑi.

For more details about the definition of reference systems employed in these param-
eters, see [4].

Figure C.2: Denavit-Hartenberg parameters (source: [4]).

Transformation matrix is then obtained as

Ti,i−1 = TRx(αi−1) ·TSx(ai−1) ·TRz(θi) ·TSz(di) (C.3)

where

TRz(θi) =


Rz(θi) 0

0 1

 and TSz(di) =


0

0

0

di

0 1


where Rz(θi) is defined in Appendix B, with obvious extension for x axis. The final
result is

Ti,i−1 =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1
sin θi sinαi−1 cos θi sinαi−1 − cosαi−1 di cosαi−1

0 0 0 1

 (C.4)



102 kinematic model of robot manipulators

An important observation is that to compute (C.2) we always need to know pre-
vious link transformation, so this procedure must be iterated serially from link 1 to
link n. Incidentally, if we halt this product at a certain link m (i. e., we have already
computed Tm−1,0), we can know the position of DH frame origin of linkm. In fact in
m-th link reference frame this has coordinates (0, 0, 0). Therefore, the origin of joint
m referred to the base frame can be evaluated as

BOm = Tm,0


0

0

0

1

 = T(4)
m−1,0 (C.5)

where the superscript means the 4-th column of Tm−1,0.
In this work we refer to kinematic model as the set of parameters and matrices

which allow to describe robot arm orientation and position given a certain joint
configuration. The central entities in this manner are transformation matrices Ti,i−1,
which are the only ones to need to be updated constantly.



Bibliography

[1] Ahmad Yasser Afaghani and Yasumichi Aiyama. On-line collision avoidance
of two command-based industrial robotic arms using advanced collision map.
Journal of Robotics and Mechatronics, 2014.

[2] Paul Bosscher and Daniel Hedman. Real-time collision avoidance algorithm
for robotic manipulators. Industrial Robot: An International Journal, 38(2):186–197,
2011.

[3] Oliver Brock and Oussama Khatib. Mobile manipulation: Collision-free path
modification and motion coordination. In Proceedings of the 2nd International
Conference on Computational Engineering in Systems Applications, pages 839–845,
1998.

[4] J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley series
in electrical and computer engineering: Control engineering. Addison-Wesley,
1989.

[5] David Eberly. Robust computation of distance between line segments. Technical
report, Geometric Tools, LLC, 2014.

[6] Kai Hormann and Alexander Agathos. The point in polygon problem for arbi-
trary polygons. Comput. Geom. Theory Appl., 20(3):131–144, 2001.

[7] Ji-Hun Kim Jung-Jun Park and Jae-Bok Song. Path planning for a robot manip-
ulator based on probabilistic roadmap and reinforcement learning. International
Journal of Control, Automation, and Systems, 2007.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Robotics and Automation. Proceedings. 1985 IEEE International Conference on, vol-
ume 2, pages 500–505, Mar 1985.

[9] B.H. Lee and C.S.G. Lee. Collision-free motion planning of two robots. Systems,
Man and Cybernetics, IEEE Transactions on, 17(1):21–32, Jan 1987.

[10] Riccardo Muraro. Modellizzazione tridimensionale di celle robotizzate flessibili.
Master’s thesis, Universitá degli Studi di Padova, 2014.

[11] P.A. O’Donnell and T. Lozano-Periz. Deadlock-free and collision-free coordina-
tion of two robot manipulators. In Robotics and Automation, 1989. Proceedings.,
1989 IEEE International Conference on, pages 484–489 vol.1, May 1989.

[12] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning
and Control. Advanced Textbooks in Control and Signal Processing. Springer,
2009.

103


	Dedication
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Historical background
	1.2 Environmental background

	2 Trajectory Estimation
	2.1 Problem statement
	2.1.1 The Go instruction
	2.1.2 The Jump3 instruction
	2.1.3 The Continuous Path (CP) command

	2.2 Approximation of a Jump3 motion with Arch option
	2.2.1 Estimation of continuous trajectory
	2.2.2 Approximation using knots smoothing

	2.3 Approximation of the junction between two PTP motions
	2.3.1 Path sampling according to acceleration and deceleration times
	2.3.2 Path sampling without robot querying
	2.3.3 Other possibilities and improvements

	2.4 Experimental results on trajectory estimation

	3 Collision Detection
	3.1 Solid interpenetration using Swept Sphere Volumes (SSV)
	3.1.1 Interpenetration between two linear SSVs (LL algorithm)
	3.1.2 Interpenetration between linear and polygonal SSV (LP algorithm)
	3.1.3 Interpenetration between two polygonal SSVs (PP algorithm)
	3.1.4 Complexity of SSV modelling algorithm

	3.2 Solid interpenetration using boxes
	3.2.1 Complexity of collision detection algorithm using boxes

	3.3 User interface for initial SSV setup
	3.3.1 SSV automatic generation procedure

	3.4 Collision detection general algorithm
	3.4.1 Collision between two static joint configurations
	3.4.2 Collision detection between trajectories


	4 Algorithm Optimization
	4.1 Robot Maximum Swept Volume approach
	4.1.1 Box obstruction according to first joint position
	4.1.2 Swept Volume computation
	4.1.3 Collision detection between robot swept volumes

	4.2 Group of Joints approach
	4.3 Algorithm outline
	4.3.1 Trajectory subdivision
	4.3.2 Combination between different abstraction levels
	4.3.3 High-level collision-free algorithm


	5 Experimental results
	5.1 Reliability and precision of the algorithm
	5.2 Implementation details
	5.3 Modelling Set-up
	5.3.1 SSV modelling
	5.3.2 Box modelling

	5.4 Critical situation test
	5.5 Simulation results

	6 Conclusions
	A Trapezoidal-speed law relationships
	B Properties of transformation matrices
	C Kinematic model of robot manipulators
	Bibliography

