
Università degli Studi di Padova

Facoltà di Ingegneria Industriale

Corso di Laurea Magistrale in

Ingegneria Aerospaziale

Graph-Based
Simultaneous Localization

And Mapping
Using a Stereo Camera

Lorenzo Salvucci

Relatore:

Prof. Stefano Debei

Supervisore:

Marco Pertile

Anno accademico 2014-2015

Contents

Introduction 9

1 Simultaneous Localization And Mapping 11

1.1 Introduction . 11

1.2 Problem Overview . 12

1.3 Taxonomy of the SLAM Problem 15

1.4 SLAM Paradigms . 17

1.4.1 Extended Kalman Filter 17

1.4.2 Particle Filters . 19

1.4.3 Graph-Based . 23

Graph-Based Implementation 30

2 Introductive Remarks 31

2.1 On Graph-Based SLAM . 31

2.2 On This Implementation . 33

3 Back End 37

3.1 Introduction . 37

3.2 Least Squares Minimization 38

3.2.1 The Gauss-Newton algorithm 40

5

3.3 Graph Optimization . 44

3.3.1 Uncertainty Estimation 51

3.3.2 Robustness to Outliers and Bad Initialization 51

3.4 Appendix - Derivation of Jacobian Blocks 54

4 Front End 59

4.1 Introduction . 59

4.2 Image processing . 60

4.2.1 Epipolar geometry . 61

4.2.2 Match Validation . 63

4.2.3 Triangulation . 65

4.3 Data Association . 69

4.3.1 SLAM Algorithm Overview 71

5 Results and discussion 75

5.1 Experimental Setup . 75

5.2 Results . 82

Conclusions 99

6

Introduction

The ability of a robot to localize itself while simultaneously building a map

of its surroundings is a fundamental characteristic required for autonomous

operation in unknown environments when external referencing systems such

as GPS are absent. This so-called Simultaneous Localization And Mapping

(SLAM) problem has been one of the most popular research subjects in

mobile robotics for the last two decades, and despite significant progress in

this area, it still poses great challenges. At present, robust methods exist

for mapping environments that are static, structured, and limited in size,

while mapping unstructured, dynamic, or large scale environments remains

an open research problem.

The interest in the SLAM field derives from the apparent advantage that

the utilization of robots with SLAM capabilities would bring with respect to

the safety, costs and feasibility of a wide spectrum of applications ranging

from the inspection of unsafe areas in emergency situations to planetary

exploration. Published approaches are also employed in unmanned aerial

vehicles, autonomous underwater vehicles, self-driving cars, industrial and

domestic robots, and even inside the human body [1].

The work of this thesis was aimed at implementing a vision-based SLAM

algorithm for a robot equipped with a stereo camera. Vision systems are

an attractive choice of sensor and have increased in popularity for SLAM in

9

recent years; they not only have become much cheaper and compact than

traditional SLAM sensors such as laser range finders and radar systems, but

also provide more information per sample and work with much higher data

rates. Chapter 1 will describe the characteristics of the Simultaneous Lo-

calization And Mapping problem and the approaches developed to solve it

from a general point of view, while chapter 2 will give some brief remarks on

the peculiarities of the current implementation. The optimization algorithm

used to numerically compute a solution to the problem at hand will be de-

scribed in chapter 3, while chapter 4 will discuss the utilization of the stereo

camera as a sensor. Finally, the performances of the developed algorithm

will be presented in chapter 5.

10

Chapter 1

Simultaneous Localization And

Mapping

1.1 Introduction

Consider a robot roaming an unknown environment, equipped with sensors

to observe its surroundings. In such a scenario, one will likely be interested

in keeping track of the robot’s motion within the unknown setting or in ob-

taining a spatial map of the environment itself. If no information is provided

from the outside, however, the problem presents a chicken-and-egg situation:

precise localization is required to build an accurate map, and an accurate map

is necessary to locate the robot precisely. It is therefore clear that solving

either the localization or the mapping problem requires in all cases solving

both at the same time. This chapter will discuss the main aspects that are

involved in this type of situation (sections 1.2, 1.3) and give an overview of

the various methods developed to date to address the problem (section 1.4).

11

1.2 Problem Overview

Let the term pose denote the combination of position and orientation nec-

essary to define the configuration of a rigid body in 2D or 3D space. Then,

the motion of the robot in the unknown environment can be described by a

sequence of poses

x0:T = {x0, ..,xT}.

The initial pose x0 is assumed to be known (it can be chosen arbitrarily),

while the others cannot be sensed directly. While moving, the robot acquires

a sequence of odometry measurements that provide information about the

relative displacement between two consecutive locations. Such data might

be obtained from the robot’s wheel encoders, from the controls given to the

motors, from an IMU, etc. Let ut denote the odometry measurement that

characterizes the motion from pose xt−1 to xt; then the sequence

u1:T = {u1, ...,uT}

describes step by step the motion of the robot along the full path. For noise-

free motion, this information would be sufficient to recover the trajectory x1:T

from the initial location x0. However, odometry measurements are noisy, and

path-integration techniques inevitably diverge from the truth.

Finally, let m denote the true map of the environment. The environment

may be comprised of landmarks, objects, etc., and m describes their loca-

tions. Along its path, the robot senses its surroundings with some kind of

instrument, acquiring a set of observations of the environment

z0:T = {z0, ...,zT}

12

Figure 1.1: Graphical model of the SLAM problem. Arcs indicate causal

relationships, and shaded nodes are directly observable to the robot. Through

these quantities, we want to estimate the map of the environment and the

path of the robot.

that establish information between the robot poses xt and the elements of

the map m.

The SLAM problem then consists in recovering the map of the world m and

the path x1:T followed by the robot, given the initial position x0, the odom-

etry measurements u1:T and sensor observations z0:T . Figure 1.1 illustrates

the variables involved in the problem. If the robot path were known and

sensor readings perfect, registering the observations z0:T acquired from the

various poses into a common coordinate system would be sufficient to create

a unique global map. Unfortunately, two main problems arise:

1. As discussed above, any mobile robot’s self-localization system suffers

from imprecision, hence the positions from which the observations of

the environment are taken are not known exactly.

2. Sensor measurements are affected by noise, and therefore the observa-

tions of the environment will not be perfectly consistent, either.

13

Therefore, given the uncertain nature of the quantities at stake, the SLAM

problem is usually described by means of probabilistic tools [2, 3]. The prob-

lem is thus reformulated as estimating the posterior probability distribution

over the robot’s trajectory and the map of the environment, given all the

measurements plus the initial position:

p (x1:T , m | z0:T , u1:T , x0).

To solve this problem, the robot needs to be endowed with two more

mathematical tools: a motion model relating odometry measurements ut to

robot locations xt−1 and xt, and a measurement model describing the work-

ing of sensors (i.e. relating measurements zt to the map m and the robot

location xt). In SLAM, it is common to think of those models as probability

distributions as well: p (xt | xt−1, ut) characterizes the probability distri-

bution over the location xt assuming that the robot started from xt−1 and

measured odometry data ut (motion model), and likewise p (zt | xt, m) is

the probability distribution for a measurement zt taken at a given location xt

in a known environment m (sensor model). These relationships corresponds

to the arcs in Fig. 1.1.

Provided that these models are known, various paradigms have been de-

veloped to tackle the SLAM problem. The choice of the type of algorithm

to use will depend on the peculiarities of the application at hand and on

the desired properties; the following section will give more insight on this

subject.

14

1.3 Taxonomy of the SLAM Problem

SLAM algorithms can be classified along a number of different dimensions.

As it will be clear, there is no single best solution to the SLAM problem.

The method chosen will depend on a number of factors, such as the desired

map resolution, the update time, the nature of the environment, the type

of sensor the robot is equipped with, and so on. In the following the main

distinctions of SLAM algorithms will be briefly discussed; more details can

be found in [3].

Online Versus Offline

The first distinction that can be made is whether the SLAM algorithm pro-

cesses data in real time (online) or not (offline). While offline methods are

often batch (they process all data at the same time), online algorithms are

usually incremental and are needed when some sort of real-time decision is

to be made (e.g. when a robot must control its next motion step, or another

process is waiting for input). To allow computation in real time, online meth-

ods must privilege speed and efficiency over accuracy; on the other hand, if

the algorithm is passive (see below), real-time processing may not be indis-

pensable, and therefore an offline method may be preferred to compute a

more accurate solution.

Volumetric Versus Feature-Based

In volumetric SLAM, the map is sampled at a resolution high enough to allow

for photorealistic reconstruction of the environment. The resulting map is

dense; therefore the computation can become quite involved. Typical repre-

sentations include occupancy grids [2], voxel grids, surface maps and octrees

15

[3]. On the other hand, feature-based algorithms only extract individual ele-

ments (landmarks) from the sensor stream. This results in a sparse represen-

tation of the environment that is easier to handle but also less satisfactory

as far as structure reconstruction is concerned. Feature-based algorithms

tend to be more efficient, but their results may be inferior to volumetric ap-

proaches due to the fact that the extraction of features discards information

from the measurements. The choice of a particular map representation de-

pends on the sensors used, on the characteristics of the environment, and on

the estimation algorithm. Landmark maps are often preferred in environ-

ments where locally distinguishable features can be identified and especially

when cameras are used. In contrast, dense representations are typically used

in conjunction with range sensors (laser scanners, lidars, etc.).

Active Versus Passive

In passive implementations, some other entity controls the robot, and the

SLAM algorithm is purely observing. The vast majority of algorithms are of

this type; they give the robot designer the freedom to implement arbitrary

motion controllers and pursue arbitrary motion objectives. In active SLAM,

the robot actively explores the environment in pursuit of an accurate map.

This yields more accurate maps in less time, but it constrains robot motion.

Static Versus Dynamic

Static algorithms assume that the environment does not change over time,

while dynamic methods allow for changes. The vast majority of SLAM liter-

ature assumes static environments; dynamic effects are often treated just as

measurement outliers. Methods that reason about motion in the environment

are more involved, but tend to be more robust in most applications.

16

1.4 SLAM Paradigms

As the basic taxonomy above suggests, many types of SLAM algorithms are

possible. To address all these situations, the main mathematical frameworks

developed to date are three: the Extended Kalman Filter, the Particle Filter,

and the Graph-Based representation.

1.4.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) formulation of SLAM is historically

the earliest [4], and perhaps the most influential. This approach assumes a

feature-based environmental representation, in which objects can be effec-

tively represented as points in an appropriate parameter space, and Gaus-

sian noise in odometry and sensor measurements (i.e. the motion model

p (xt | xt−1, ut) and the sensor model p (zt | xt, m) can be represented by

normal distributions). Then, a single state vector is used to store the robot

poses and a set of landmarks, with an associated error covariance matrix rep-

resenting the uncertainties in these estimates: the EKF algorithm represents

the state of the system by a multivariate Gaussian distribution

p (x1:t, m | z0:t, u1:t, x0) = N (µt, Σt)

in which the high-dimensional vector µt contains the robot’s best estimate

of its own location and the location of the features in the environment, while

the matrix Σt is the covariance of the robot’s estimated error in the guess

µt; details on the implementation can be found in [5]. The covariance ma-

trix is usually distinctly non-sparse, with off-diagonal elements capturing the

correlations in the estimates of different variables. These correlations come

along because the robot’s location is uncertain, and as a result the locations

17

Figure 1.2: EKF applied to the SLAM problem [3]. The robot’s path is a

dotted line, and its estimates of its own position are shaded ellipses. Eight

distinguishable landmarks of unknown location are shown as small dots, and

their location estimates are shown as white ellipses.

of the landmarks in the map are uncertain. The effects of this correlation

are shown in figure 1.2. The robot navigates from a starting pose that serves

as the origin of its coordinate system. As it moves, its own pose uncertainty

increases, as indicated by uncertainty ellipses of growing diameter. It also

senses nearby landmarks and maps them; landmark uncertainty combines

the fixed measurement uncertainty with the increasing pose uncertainty, and

therefore grows over time as well. The interesting transition is illustrated in

figure 1.2d: the robot observes the landmark it saw in the very beginning of

the path, and whose location is relatively well known. Through this observa-

tion, the robot’s pose error is reduced, and due to the correlations between

18

variables, this reduces the uncertainty for other landmarks in the map as

well. This effect is one of the most important characteristic of the SLAM

posterior: information that helps localize the robot is propagated through

the map, and as a result the quality of the entire solution is improved.

A key issue of the EKF approach that caused its partial decline in the

last few years lies in the quadratic nature of the covariance matrix. As the

robot moves and observes new features, new states are added to the system

state vector. The size of the covariance matrix grows quadratically with the

size of the state vector, and therefore memory consumption and processing

time are O(n2) in the size of the map, which can pose great limitations even

for medium scale mapping.

1.4.2 Particle Filters

The first application of particle filtering to the SLAM problem can be tracked

back to [6]. Particle filter (or Sequential Monte Carlo) methods represent the

posterior through a set of samples (particles); each particle is best thought

as a concrete guess as to what the true value of the state may be. By

collecting many such guesses, the particle filters capture a representative

sample from the posterior distribution. Sampling allows particle filters to

represent any kind of probability distribution over the robot poses with ease;

as the particle set size goes to infinity, the result has been shown (under some

mild conditions) to approach the true posterior distribution.

At any point in time t, the algorithm maintains K particles of the type

(x
[k]
0:t, µ

[k]
1 ...µ

[k]
n , Σ

[k]
1 ...Σ

[k]
n)

that contain

19

• a sample path x
[k]
0:t, assumed to be known perfectly. The path uncer-

tainty is not lost, but rather reflected in the presence of other particles

holding a different belief of the trajectory.

• a set of N gaussians with means µ
[k]
i and variances Σ

[k]
i , representing

the landmarks in the map.

The fact that elements of the map in a particle are stored as single low-

dimensional Gaussians instead of being variables of a unique high-dimensional

multivariate distribution is one of the advantage of particle filter methods

over EKF implementations. The justification for this decomposition arises

from a specific conditional independence assumption that can be applied in

the context of the single particles. In SLAM, any dependence between mul-

tiple landmark estimates comes from the mediation through the uncertain

robot path. If the robot poses are assumed to be known (as is in each parti-

cle), then all landmark estimates become independent. This implies that if

a large Gaussian were used to represent the entire map (one per particle, of

course), the off-diagonal elements between different landmarks would remain

zero. It is therefore legitimate to implement the map more efficiently, using

N small Gaussians, one for each landmark.

The algorithm works as follows. Initialization sets each particle’s robot

location to its known starting coordinates, and zeroes the map. Then:

• When an odometry reading is received, for each particle new locations

are generated stochastically using the probability distribution given by

the motion model:

x
[k]
t ∼ p (xt | x[k]

t−1, ut).

x
[k]
t−1 is the previous location, which is part of the particle. This prob-

abilistic sampling step is easily implemented for any robot whose kine-

20

matics can be computed.

• When a measurement zt is received, two things happen: first, for each

particle k an importance weight is computed that measures how impor-

tant the particle is in the light of the new sensor measurement. If n is

the index of the sensed landmark, the importance weight is computed

from the sensor model as

w[k] = p (zt | x[k]
t , µ

[k]
n , Σ[k]

n).

Next, a step called resampling takes place: a set of new particles is

drawn from the set of existing ones, with the probability of drawing a

particle being its normalized importance weight. The intuition behind

resampling is simple: particles for which the acquired measurement

is more congruent with the state have a higher chance of surviving

the process, while particle whose state is less likely in the light of the

new information will probably be discarded. Resampling is necessary

to control the number of particles maintained, that otherwise would

scale exponentially with the dimension of the underlying state space.

Finally, based on the measurement zt, the means µn and covariances

Σn are updated for the new set of particles, following the standard

EKF update rules [5].

As time passes, particles with bad estimates of the state tend to be discarded

by the resampling process, while good particles survive to retain a sample of

the posterior probability distribution over the robot trajectory and the map.

Particle filter algorithms have some remarkable properties. First, by

decorrelating the landmarks they sidestep some of the issues arising from the

natural inter-feature correlations in the map, which plagued the EKF. Using

advanced tree methods to represent the maps, the update can be performed

21

Figure 1.3: Occupancy grid map generated from laser range data, based

on pure odometry (left) and resulting from a scan-matching particle filter

algorithm (right) [7].

in time logarithmic in the size of the map N, and linear in the number of par-

ticles K, while EKF needed quadratic time. Second, they allow for multiple

data association hypotheses. The term data association denotes the process

of identifying the entity a given observation refers to (see section 4.3). In case

of an ambiguous situation, it is straightforward to make data association de-

cisions on a per-particle basis, while EKF implementations must commit to

the same hypothesis for the entire filter. As a result, while EKF is extremely

vulnerable to outliers, this extra degree of freedom grants particle filters a

significant improvement in robustness. Furthermore, they can be extended

to obtain dense map representations. Figure 1.3 shows a grid-based version

in which Gaussians were replaced by occupancy grid maps obtained from

scan matching [7]. These properties, along with the relative ease of imple-

mentation, have made particle filters a popular choice; on the negative side

however, the number of necessary particles can grow very large, especially

for robots seeking to map multiple nested loops.

22

1.4.3 Graph-Based

The Graph-Based method draws its intuition from a graphical representa-

tion of the SLAM problem. Landmarks and robot poses can be thought

of as nodes in a graph, linked by soft constraints established by odometry

measurements and sensor observations. Relaxing these constraints yields the

robot’s best estimate for the map and the full path. From a theoretical point

of view, the graph-based approach has been known for quite a while [8], but

only became popular for SLAM in the last few years due to the compara-

bly high complexity of solving this constrained optimization problem using

standard techniques. Recent insights into the structure of the SLAM prob-

lem and advancements in the field of sparse linear algebra however resulted

in efficient approaches to the optimization problem at hand. Consequently,

graph-based methods have undergone a renaissance, and currently belong to

the state-of-the-art techniques with respect to speed and accuracy.

Referring to figure 1.4, every time an odometry measurement ui is re-

ceived, a new pose xi is created and linked with the previous one with a

constraint based on the odometry measurement itself. Each observation of

the environment zij creates a constraint between a landmark j and the pose i

from which it is observed. As the robot explores the environment, the graph

grows in size as new nodes and constraints are added; nevertheless, the graph

is typically sparse, in that each node is only connected to a small number of

other nodes. Optimization with respect to the various constraints then yields

the map of the environment and the path of the robot that best agree with

odometry and sensor data. It can be shown that optimizing the graph with

respect to the squared error introduced by the various constraints (section

3.2) is equivalent to computing a Gaussian approximation of the posterior

probability distribution over the robot’s path and the map [9].

23

Figure 1.4: Illustration of the graph. xi denote robot poses, ui odometry

measurements, mi landmarks, and zij sensor observations.

This representation of the problem has a number of interesting properties.

• The number of nodes and constraints in the graph is (at worst) linear

in the time elapsed, and the graph is sparse. This causes graphical

SLAM methods to scale to much higher-dimensional maps than EKF

and particle filters. In EKF SLAM, the space and update time required

to handle the covariance matrix grow quadratically with the size of the

map. Particle filter methods overcome this issue decorrelating features

in the map, but the resulting advantage is somewhat reduced by the

necessity to store a significant number of particles. In graphical meth-

ods, no such limitation exists: memory consumption and time required

for sparse optimization are linear in the size of the map.

• The graph is a very convenient representation of the problem. Any

additional information on the topology of the scene or on the robot’s

trajectory can be easily integrated into the graph by adding appropriate

constraints between the nodes. Subsets of nodes or even single variables

can be fixed by excluding them from the optimization process [9], and

nodes can be grouped to simplify the problem [10].

24

Figure 1.5: Pose-graph corresponding to a data-set recorded at MIT Killian

Court, before (left) and after optimization (right) [9].

• The formulation can be extended to dense map representations (figure

1.5). In this case, the graph is only comprised of poses; dense mea-

surements are compared to provide additional information about robot

displacement, which is used to further constrain the poses. Once the

graph has been optimized, the map is obtained by rendering the dense

measurements according to the calculated robot poses.

• Although the original formulation assumes Gaussian probability dis-

tributions, the method can be extended to account for multi-modal

distributions with a max-mixture model [11].

• Erroneous constraints can be easily identified and managed (see section

3.3.2). This is a crucial requirement for a robust implementation.

• Although most methods in the field optimize over the entire path at

each iteration possibly leading to computational requirements too de-

manding for online application, hierarchical approaches have been de-

veloped that overcome this limitation [10]. These algorithms structure

the problem in various levels by grouping nodes in the graph (figure

25

Figure 1.6: Three-level hierarchy for a 2,000 nodes and 8,647 constraints 3D

network [10].

1.6). Optimization on the higher levels is faster and provides a work-

ing solution for online applications, while the best accuracy can still be

retrieved optimizing the full problem offline.

Table 1.1 summarizes the main characteristics of the graph-based method

confronted with EKF and particle filters. The advantageous properties of

the graph-based approach determined its choice as the method to implement

for this work.

EKF Particle Filters Graph-Based

Complexity O(n2) O(k log(n)) O(n)

Map Sparse Sparse/Dense Sparse/Dense

Assumed

Distributions
Gaussian

Poses: Any (Sampling)

Landmarks: Gaussian

Gaussian,

Multi Modal

Flexibility/

Robustness
- Multiple Data Association

Robust to Outliers

Multi-Modal Distributions

Flexible Graph Handling

Large Scale Mapping - Less complex than EKF
Linear Complexity

Hierarchical Maps

Table 1.1: Comparison of SLAM paradigms.

26

Graph-Based Implementation

29

Chapter 2

Introductive Remarks

2.1 On Graph-Based SLAM

As it was already introduced, graph-based methods represent the SLAM

problem through a graph that once optimized yields the robot’s path and

the map that are more likely given all sensor measurements. Two main tasks

can be identified in the process: constructing the graph from raw sensor data

and optimizing it.

Front-End: Graph Construction

The part of the algorithm that is responsible for building the graph from the

raw measurements is called the SLAM front-end. The graph is constructed

according to the following criteria:

• Initialization adds the first pose (the origin) to the empty graph. Ad-

ditional poses are added to the graph each time an odometry measure-

ment is received. New poses can be initialized to the value predicted

by the motion model given the previous pose and the odometry read-

31

ing. Then, the odometry measurement is used to generate a constraint

between the new pose and the previous one.

• From each pose, a number of features of the environment will be ob-

served. For each observation, the algorithm must recognize whether it

is relative to a feature already added to the map or not (the so-called

data association). Then,

– If correspondence to a feature of the map is found, a constraint

is added between that feature and the current pose based on the

observation;

– If no correspondence is found, a decision must be made whether

to add the apparently new feature to the map or not; if the feature

is added to the map it is constrained to the current pose.

Clearly, the algorithm needed to perform these tasks will strongly depend on

the type of sensor used. The details of the front-end for this implementation

will be discussed in chapter 4.

Back-End: Optimization

Once the graph has been built by the front-end, it needs to be optimized.

This task involves solving a large error minimization problem and is ac-

complished by the so-called back-end. The back-end works on an abstract

representation of data (the graph) and therefore its implementation is inde-

pendent of the type of sensor the robot is equipped with. The back-end for

this implementation will be discussed in chapter 3.

32

2.2 On This Implementation

The work of this thesis was aimed at implementing a vision-based SLAM

algorithm. For a long time in the history of the SLAM field, much attention

was given to sensors such as laser range finders and sonars, for the ease of

relating their measurements with the geometry of the environment. Cam-

eras on the other hand capture the world’s geometry only indirectly through

photometric effects, and for many years it was thought too difficult to turn

the sparse sets of features popping out of an image into reliable long-term

maps. Nowadays, however, cameras are well-understood, compact, accurate,

non-invasive and very cheap, making them an appealing sensor for mobile

robotics. Cameras are not only much cheaper than alternative sensors such

as laser range finders and radar systems, but they also contain more infor-

mation per sample and work with much higher data rates. Furthermore,

cameras provide a way to identify features. Most SLAM approaches rely

on geometric parameters to recognize landmarks: observations are predicted

from landmark positions and the current robot pose estimate, and compared

to the actual observations. When the errors on some of these positions are

large, e.g. when the robot reperceives landmarks after having travelled a

long loop trajectory, the association can become ambiguous. This is all the

more difficult when the robot is evolving in 3D, the errors in the estimate

of the 6 parameters of the robot position having rapidly a drastic influence

on the predicted landmark observations. A robust way to solve the data

association problem then is to recognize landmarks independently from their

position estimate: a good visual feature detection and matching algorithm

can provide this ability. The sum of all these proprieties determined a great

increase in the popularity of vision-based SLAM systems over the last years.

To use cameras as a sensor, two different setups are possible: stereo and

33

monocular. With stereo vision, the 3D coordinates of features with respect

to the robot are easily obtained by matching and triangulating points in the

stereoscopic image pair. If the robot is endowed with a single camera, on

the other hand, only the bearings of the features can be observed. A single

observation therefore is not sufficient to compute the state of a landmark

completely, and a dedicated procedure that integrates several observations

over time is required to initialize and update landmarks, which implies a

significant complication of the algorithm. A comparison of the results of

stereo and monocular approaches is presented in [12]. In this work, the two

setups produce similar results as far as accuracy is concerned; therefore, given

the greater complexity of monocular systems, stereo vision was chosen as the

solution to use.

Referring to the taxonomy outlined in section 1.3, the map representation

resulting from the use of a stereo camera is clearly feature-based. Moreover,

the algorithm that has been developed is static. Changes in the environment

could cause potential outliers and therefore lead to a less accurate result. The

system is passive (it does not control the motion of the robot, but is simply

observing) and incremental: at each time step, the front end expands the

graph and the back end optimizes it, so that at the next time step the graph

is expanded from the optimum configuration just obtained. The algorithm

thus works continuously interleaving the execution of front end and back

end. Being incremental, it is suited for online application if computational

requirements are met (see chapter 5).

To keep the implementation as general as possible, no odometry informa-

tion was assumed to be available. Therefore, no constraint directly links the

poses in the graph, which are correlated only through landmark observations.

The resulting algorithm works solely on the data obtained from the stereo

34

camera; a sequence of stereo images with the associated calibration parame-

ters are the only things required for motion and environment reconstruction.

Finally, the algorithm solves the full 3D problem (6 degrees of freedom). If

the robot is equipped with an IMU that provides the pitch and roll angles, the

algorithm can be sped up by removing these variables from the optimization

process (see section 3.4).

35

Chapter 3

Back End

3.1 Introduction

In graph-based SLAM [3, 9, 10], poses and landmarks are represented by

nodes in a graph linked by soft constraints encoding sensor measurements.

Such a graph represents an overdetermined problem, because in normal con-

ditions each node will have multiple constraints attached to it (a landmark

will have a link to each pose from which it has been seen, and a pose will

have a link to each landmark that can be seen from it). Once the graph has

been set up from raw sensor data by the front end (chapter 4), optimization

with respect to the various constraints yields the optimum configuration of

the nodes, i.e. the best estimate of the robot path and the map given all

sensor information. There are however many ways of defining optimum, de-

pending upon the criteria chosen to evaluate performance. In graph-based

SLAM, the standard optimization procedure is least squares minimization.

The reason for this is closely related to probability estimation: optimizing the

graph with a least squares scheme is the equivalent of estimating a Gaussian

approximation of the posterior distribution over the robot trajectory and the

37

map [9]. This chapter therefore will give a general overview of the method of

least squares (section 3.2) followed by a discussion on its application to the

SLAM problem in particular (section 3.3).

3.2 Least Squares Minimization

LetX be a state vector representing the (unknown) configuration of a system

and {zi}i=1:n a set of n noisy measurements about the state X. Given the n

functions {fi(X)}i=1:n that map X to the expected measurements {ẑi}i=1:n,

we want to estimate the state X∗ for which the expected measurements ẑ1:n

best agree with the actual measurements z1:n (figure 3.1).

Figure 3.1: Graphic representation of the problem.

The optimum configuration of the system is found minimizing a global error

function F (X) that quantifies the deviation of the expected observations

from the actual ones. This function is the total squared error introduced by

the n real measurements with respect to the expected measurements, and

can be expressed as follows.

The (non-squared) error ei(X) relative to a single measurement is simply

the difference between its expected value and its actual value:

38

ei(X) = zi − ẑi = zi − fi(X) (3.1)

Since the measurements can be multi-dimensional (e.g. the 3D position of a

landmark), the non-squared error in general will be a vector. Furthermore,

we consider that sensor observations are affected by noise. Assuming that

this noise can be modelled with a Gaussian distribution with mean zero and

information matrix Ωi [9], the squared error e2i (X) of a measurement can be

written as

e2i (X) = eTi (X) Ωi ei(X),

in which the information matrix of the measurement is included to account

for its uncertainty. A measure of the information matrix can be given by

the inverse of the observation covariance matrix; the higher the accuracy

of a measurement, the smaller the covariance matrix and the bigger the

information matrix, which means that measurements with higher confidence

will have a greater weight in the process. The squared error of a measurement

is a scalar and as the non-squared error depends only on the state X. The

problem is then formalized as finding the state X∗ that minimizes the sum

of all the squared errors introduced by each measurement:

X∗ = argmin
X

F (X)

= argmin
X

n∑
i=1

e2i (X)

= argmin
X

n∑
i=1

eTi (X) Ωi ei(X)

(3.2)

39

3.2.1 The Gauss-Newton algorithm

A general solution for the problem (3.2) would be to derive F (X) and find its

nulls. However, if the functions fi(X) (and therefore ei(X)) are not linear

in all unknowns, the problem can become very complex and in general has

no closed form solution; therefore, a numerical approach becomes necessary.

Under the assumptions that a good initial guess for the state X is available

and that the error functions are smooth in the neighbourhood of the minimum

[9], the problem can be solved by iterative local linearizations. The procedure

can be summarized as follows:

1. Linearize the error functions ei (X) around the initial guess X.

2. Compute the resulting (approximated) global error function F (X).

3. Compute its derivative, set it to zero and solve to obtain a new state.

4. Iterate until convergence.

This procedure, also known as Gauss-Newton algorithm, will now be dis-

cussed in greater detail. The error functions of the single measurements can

be approximated around the initial guess X̌ by a Taylor expansion:

ei(X̌ + ∆X) ' ei(X̌)︸ ︷︷ ︸
ei

+J i(X̌)︸ ︷︷ ︸
Ji

∆X (3.3)

Where J i(X̌) is the Jacobian of the i−th error function evaluated at X̌:

40

J i(X̌) =

∂ei,1(X̌)

∂X1

∂ei,1(X̌)

∂X2
· · · ∂ei,1(X̌)

∂Xm

∂ei,2(X̌)

∂X1

∂ei,2(X̌)

∂X2
· · · ∂ei,2(X̌)

∂Xm

...
...

. . .
...

∂ei,l(X̌)

∂X1

∂ei,l(X̌)

∂X2
· · · ∂ei,l(X̌)

∂Xm

(3.4)

With the linearization in (3.3), we can keep X̌ fixed and carry out the

minimization in the increment ∆X. The squared error in the neighbourhood

of the initial guess X̌ becomes

e2i (X̌ + ∆X) = [ei(X̌ + ∆X)]T Ωi [ei(X̌ + ∆X)]

' (ei + J i ∆X)T Ωi (ei + J i ∆X)

= (eTi + ∆XTJTi) Ωi (ei + J i ∆X)

= eTi Ωiei + eTi ΩiJ i∆X + ∆XTJTi Ωiei + ∆XTJTi ΩiJ∆X

(3.5)

in which dependency on X̌ of ei and J i has been omitted for simplicity.

Since e2i (X̌ + ∆X) is a scalar, all summands on the right-hand side of (3.5)

are scalars and therefore we can transpose any of them. Transposing the

third term and considering that Ωi = ΩT
i (it is an information matrix) we

obtain:

e2i (X̌ + ∆X) ' eTi Ωiei︸ ︷︷ ︸
ci

+2 eTi ΩiJ i︸ ︷︷ ︸
bTi

∆X + ∆XT JTi ΩiJ i︸ ︷︷ ︸
Hi

∆X

= ci + 2 bTi ∆X + ∆XTH i ∆X.

41

The global error function is the sum of the squared errors of the individual

measurements, therefore:

F (X̌ + ∆X) =
n∑
i=1

e2i (X̌ + ∆X)

'
n∑
i=1

(ci + 2 bTi ∆X + ∆XTH i ∆X)

=
n∑
i=1

ci︸ ︷︷ ︸
c

+2

(
n∑
i=1

bTi

)
︸ ︷︷ ︸

bT

∆X + ∆XT

(
n∑
i=1

H i

)
︸ ︷︷ ︸

H

∆X

in which c, bT and H do not depend on ∆X: the global error function in

the neighbourhood of the current solution X̌ is thus approximated with a

quadratic form in ∆X,

F (X̌ + ∆X) ' c+ 2 bT∆X + ∆XTH∆X (3.6)

with

bT =
n∑
i=1

eTi (X̌) Ωi J i(X̌) (3.7) H =
n∑
i=1

JTi (X̌) Ωi J i(X̌) (3.8)

The first derivative of a quadratic form f(x) = xTHx+ bTx is [13]

∂f(x)

∂x
= (H +HT) x+ b

Hence, taking the derivative of (3.6) with respect to ∆X yields

42

∂F (X̌ + ∆X)

∂∆X
' ∂

∂∆X
(c+ 2bT∆X + ∆XTH∆X)

= 2b+ (H +HT)∆X

Setting it to zero and considering that from (3.8) it follows H = HT (since

Ωi = ΩT
i) we obtain

0 = 2b+ 2H∆X

Which in turn leads to the linear system

H∆X = −b (3.9)

And the solution for the increment ∆X that minimizes the approximated

global error function is therefore

∆X = −H−1b

which can be used to update the current estimate of the state X̌. Thus, the

iterative scheme can be summarized this way:

1. Given the initial guess/current state estimate X̌, calculate for each

measurement ei(X̌) from (3.1) and J i(X̌) from (3.4)

2. Calculate b from (3.7) and H from (3.8)

3. Solve the linear system (3.9) for the increment ∆X

4. Update the state X̌new = X̌ + ∆X and iterate until convergence.

The following section will investigate the application of this result to the

optimization of the SLAM graph.

43

3.3 Graph Optimization

Let us give a formulation of the SLAM problem appropriate to apply the

method of least squares introduced in section 3.2. The notation is as follows:

(Î, Ĵ , K̂) Global reference frame

(X, Y, Z) Global coordinates

(̂i, ĵ, k̂) Robot reference frame

(x, y, z) Robot coordinates

In graph-based SLAM, we are interested in determining the position of a

number of nodes, each representing a robot pose or a landmark. Once a

global reference frame (Î, Ĵ , K̂) has been defined (generally fixing the first

pose as the origin), the parameters necessary to define a robot pose i are

its location (Xi, Yi, Zi) and the three attitude angles (αi, βi, γi). This is

equivalent to specifying the origin and orientation of the robot reference

frame with respect to the global reference frame. On the other hand, for a

point landmark j the only geometric parameters necessary to characterize

it are its global coordinates in the map (Xj, Yj, Zj). A given configuration

of the nodes in the graph can then be described by a single state vector X

storing all these variables (poses and landmarks):

XT =
(
XT

1 XT
2 · · · XT

n

)

Where each X i is a column vector representing a pose (6 variables) or land-

mark (3 variables).

44

Since it was assumed that no odometry information is available, the mea-

surements are just the observations of the landmarks from the various poses.

In the following the subscript i will be used to refer to a pose, while the sub-

script j will always denote a landmark. Using a stereo camera we are able to

triangulate points, and therefore each observation will be a measurement of

the position of landmark j relative to pose i (i.e. the coordinates of landmark

j in the robot reference frame of pose i):

zij =

xij

yij

zij

 ,

with an associated information matrix Ωij that encodes triangulation uncer-

tainty (see section 4.2.3).

The functions fij(X) mapping the state vector to the expected obser-

vations are simply the geometric transformations that map the global co-

ordinates of a pair pose-landmark to a predicted relative measurement (see

section 3.4). Clearly, this geometric transformation has the same form for all

pairs pose-landmark and the expected observation of landmark j from pose

i only depends on the relative geometry between the two, thus:

ẑij = fij(X) = f(X i,Xj). (3.10)

We now have all instruments necessary to apply the Gauss-Newton algo-

rithm to the SLAM problem. Recalling the procedure discussed in section

3.2:

45

1. Given the current state estimate X, calculate for each measurement

eij(X) = zij − ẑij and J ij(X) =
∂eij(X)

∂X

2. Build the linear system from (3.7) and (3.8):

bT =
∑
ij

eTij Ωij J ij and H =
∑
ij

JTij Ωij J ij

3. Solve the linear system H∆X = −b for the increment ∆X, update

the state and iterate.

Since the expected observation of a landmark j from a pose i only depends

on the relative geometry between the two, it is clear that also the error term

eij(X) will depend on X i and Xj alone. This is apparent from (3.10): since

eij(X) = zij − ẑij, it follows that eij(X) = eij(X i,Xj). This implies that

∂eij(X)

∂Xk

= 0 if k 6= i, j

and therefore the Jacobian J ij will be zero everywhere except in the columns

corresponding to X i and Xj:

J ij(X) =

 0 · · · 0
∂eij(X i,Xj)

∂X i︸ ︷︷ ︸
Aij

0 · · · 0
∂eij(X i,Xj)

∂Xj︸ ︷︷ ︸
Bij

0 · · · 0

 .

The sparse nature of the Jacobian influences the structure of the linear system

(3.9). The right-hand side is

46

bT =
∑
ij

bTij =
∑
ij

eTij Ωij J ij

In which each bTij can be written as

bTij = eTij Ωij J ij

= eTij Ωij (0 · · · Aij · · · Bij · · · 0)

=
(

0 · · · eTij ΩijAij · · · eTij ΩijBij · · · 0
)

and hence it is non-zero only at the blocks corresponding to X i and Xj

(figure 3.2):

Figure 3.2: Structure of bij

Similarly, for the matrix H we can write

H =
∑
ij

H ij =
∑
ij

JTij Ωij J ij

with

47

H ij = JTij Ωij J ij

=

0
...

AT
ij

...

BT
ij

...

0

Ωij (0 · · · Aij · · · Bij · · · 0)

=

. . .

AT
ijΩijAij · · · AT

ijΩijBij

...
. . .

...

BT
ijΩijAij · · · BT

ijΩijBij

. . .

which is non-zero only at the four blocks ii, ij, ji and jj (figure 3.3).

Figure 3.3: Structure of H ij

48

Taking the sum of all terms results in the structure shown in figure 3.4. Since

every node is involved in at least one constraint, each block of b will have a

contribution and therefore the resulting vector will be dense. On the other

hand, each node is usually connected to a small number of other nodes, and

therefore the matrixH typically retains a sparse structure. For the matrix to

turn dense it would require every node in the graph to be connected to every

other; this corresponds to the situation in which the entirety of the features

in the environment is observed from each pose, which is quite unlikely to

occur.

Figure 3.4: Resulting structure of the system

In addition to being sparse, H is positive definite by construction [9]. This

allows the system to be solved very efficiently using sparse Cholesky de-

composition. As shown in chapter 5, this results in the time required for

49

optimization being linear in the size of the map; it is this remarkable pro-

priety that gives graph-based algorithms the great computational advantage

discussed in chapter 1.

From figure 3.4 it is apparent that each measurement zij contributes only

to the i-th and j-th block of b, and to blocks ii, ij, ji, jj of H . Therefore the

linear system (3.9) can be built from (3.7) and (3.8) in an efficient way. For

each observation:

• compute the error eij = zij − ẑij(X i,Xj)

• compute the blocks of the Jacobian

Aij =
∂e (X i,Xj)

∂X i

Bij =
∂e (X i,Xj)

∂Xj

• update the coefficient vector:

b̄
T
i += eTij ΩijAij b̄

T
j += eTij ΩijBij

• update the blocks ii, ij, ji and jj of the system matrix:

H̄
ii

+= AT
ij ΩijAij H̄

ij
+= AT

ij ΩijBij

H̄
ji

+= BT
ij ΩijAij H̄

jj
+= BT

ij ΩijBij.

Once the system has been built, one more step is necessary to be able to

solve it. Since the error of a constraint eij depends only on the relative

50

position of the connected nodes X i and Xj, it follows that the error F (X)

of a particular configuration is invariant under a rigid transformation of all

the nodes. This results in the system (3.9) being under determined. To solve

the problem it is therefore necessary to fix the position of one of the nodes;

one way to do this is by constraining the increments to that node to be zero.

If k is the index of the node to be fixed, this can be done by simply adding

the identity matrix to Hkk (the k-th diagonal block of H): from (3.9) it

can easily be seen that this operation is equivalent to adding a constraint

∆Xk = 0. In this implementation, the first pose is initialized and fixed in

the origin for the entire run.

3.3.1 Uncertainty Estimation

Once the optimum configuration of the graph has been computed, estimating

the uncertainty of the various nodes is a straightforward operation. Given

the linearization point, the system matrix H represents also the information

matrix of the current system configuration (that is a Gaussian estimate of the

true state) [9]. The diagonal blocks of its inverse represent the covariances

of the various nodes of the graph, that can be used to draw the absolute

uncertainty ellipses. Computing the uncertainties relative to a given node

i is also straightforward: these covariances can be obtained as the diagonal

blocks of the inverse of a reduced HessianHred obtained fromH by removing

the rows and the columns corresponding to node i. This was the method use

to compute the uncertainties shown in chapter 5.

3.3.2 Robustness to Outliers and Bad Initialization

Most SLAM approaches assume that the constraints generated by the front-

end are affected by noise but no outliers are present, i.e. there are no con-

51

straints that identify actually different places as being the same one. This

corresponds to the assumption of having a perfect SLAM front-end. As will

be seen in chapter 4 however, developing the perfect front-end that produces

graphs which are free of outliers is hard to achieve due to perceptual aliasing,

and a single data association error is often sufficient for traditional methods

to produce inconsistent maps, compromising the entire process. Moreover,

even in the absence of outliers, converging to the correct solution is challeng-

ing for non-linear error minimization algorithms if the initial guess is far from

the correct solution. Therefore, optimization back-ends need to be resilient

to outliers, as well as be robust to bad initialization.

Agarwal et al. [14] successfully demonstrated an effective method for

optimizing constraint networks in presence of outliers and bad initial guesses.

In their so-called dynamic covariance scaling (DCS) approach, the original

least squares formulation (3.2)

X∗ = argmin
X

∑
ij

eTij(X) Ωij eij(X)

is augmented introducing for each constraint a scaling factor sij :

X∗ = argmin
X

∑
ij

eTij(X) (s2ij Ωi) eij(X).

This weight is used to dynamically adjust the effect of constraints on the

optimizer based on the original error term χ2
ij = eTij(X) Ωij eij(X) that

they would introduce in the system. The intuition behind this approach is

simple: if the error relative to a certain constraint is large, it means that the

current configuration of the graph is far away from what the constraint is

telling, so the degree of uncertainty of that constraint is increased by scaling

52

Figure 3.5: Performance of Dynamic Covariance Scaling (DCS) in the pres-

ence of outliers (top two rows) and bad initialization (bottom row) for publicly

available datasets [14]. DCS is shown to converge to the correct result where

standard methods fail to reach the optimum solution.

down its information matrix. Thus, constraints that are far away from the

expectation will have smaller influence on the optimization. The scaling

variable sij is computed as

sij = min

(
1,

2Φ

Φ + χ2
ij

)

where Φ is a free parameter. A detailed derivation of this scaling function

and an analysis of the impact of Φ can be found in [14]. The scaling function

for a constraint remains flat when χ2
lij
≤ Φ. In this region, DCS behaves like

a normal squared kernel without any scaling. As the error increases, DCS

scales the information matrix gradually. This has the effect of the error still

53

being squared but with reduced weight. As χ2
lij
−→∞, sij −→ 0.

Figure 3.5 shows the results obtained with DCS in [14]. As can be

seen, the algorithm is remarkably robust compared to traditional methods

(Levenberg-Marquardt and Gauss-Newton) and converges to the correct so-

lution even in presence of a relevant number of outliers. Discussion of DCS

for this implementation can be found in chapter 5.

3.4 Appendix - Derivation of Jacobian Blocks

In this section an explicit expression will be derived for computing the blocks

of the Jacobian Aij and Bij in the case at hand. Given the geometry of the

problem, the expected observation of a landmark j from pose i is the position

of j relative to i, projected in the reference frame of i. With the notation

introduced in section 3.3:

ẑij(X i,Xj) =

x̂ij

ŷij

ẑij

 = Ri

Xj −Xi

Yj − Yi
Zj − Zi

where Ri is the rotation matrix from the global reference frame to the robot

reference frame. If (αi, βi, γi) are the classic yaw, pitch and roll angles of the

robot in pose i, then (the subscript i is dropped for simplicity):

Ri =

cosα cos β sinα cos β − sin β

cosα sin β sin γ − sinα cos γ sinα sin β sin γ + cosα cos γ cos β sin γ

cosα sin β cos γ + sinα sin γ sinα sin β cos γ − cosα sin γ cos β cos γ

54

Therefore

eij(X i,Xj) = zij − ẑij(X i,Xj)

=

xij

yij

zij

−Ri

Xj −Xi

Yj − Yi
Zj − Zi

=

xij −R11(Xj −Xi)−R12(Yj − Yi)−R13(Zj − Zi)

yij −R21(Xj −Xi)−R22(Yj − Yi)−R23(Zj − Zi)

zij −R31(Xj −Xi)−R32(Yj − Yi)−R33(Zj − Zi)

(3.11)

Assuming that the robot is equipped with an inertial measurement unit,

the pitch and roll angles can be determined directly [15]. Therefore, the

variables of the problem reduce to

X i =

Xi

Yi

Zi

αi

 Xj =

Xj

Yj

Zj

for a pose and a landmark respectively. Thus, the blocks of the Jacobian for

an observation of landmark j from pose i are:

55

Aij =
∂eij(X i,Xj)

∂X i

=

∂eij,1
∂Xi

∂eij,1
∂Yi

∂eij,1
∂Zi

∂eij,1
∂αi

∂eij,2
∂Xi

∂eij,2
∂Yi

∂eij,2
∂Zi

∂eij,2
∂αi

∂eij,3
∂Xi

∂eij,3
∂Yi

∂eij,3
∂Zi

∂eij,3
∂αi

Bij =
∂eij(X i,Xj)

∂Xj

=

∂eij,1
∂Xj

∂eij,1
∂Yj

∂eij,1
∂Zj

∂eij,2
∂Xj

∂eij,2
∂Yj

∂eij,2
∂Zj

∂eij,3
∂Xj

∂eij,3
∂Yj

∂eij,3
∂Zj

Confronting with equation 3.11, it is apparent that the left 3x3 block of

matrix Aij is the matrix Ri. For the last column, we can write:

∂eij,1
∂αi

= −∂R11

∂αi
(Xj −Xi)−

∂R12

∂αi
(Yj − Yi)−

∂R13

∂αi
(Zj − Zi)

∂eij,2
∂αi

= −∂R21

∂αi
(Xj −Xi)−

∂R22

∂αi
(Yj − Yi)−

∂R23

∂αi
(Zj − Zi)

∂eij,3
∂αi

= −∂R31

∂αi
(Xj −Xi)−

∂R32

∂αi
(Yj − Yi)−

∂R33

∂αi
(Zj − Zi)

with

∂R11

∂αi
= − sinαi cos βi = −R12

∂R12

∂αi
= cosαi cos βi = R11

∂R13

∂αi
= 0

56

and similarly for the other rows, yielding

Aij =

R11 R12 R13 R12(Xj −Xi)−R11(Yj − Yi)

R21 R22 R23 R22(Xj −Xi)−R21(Yj − Yi)

R31 R32 R33 R32(Xj −Xi)−R31(Yj − Yi)

while for the matrix Bij it is apparent from 3.11 that

Bij = −Ri .

57

Chapter 4

Front End

4.1 Introduction

The front end of the SLAM algorithm is the part that builds the graph based

on sensor measurements. Clearly, the procedure needed to accomplish this

task strongly depends on the type of sensor the robot is equipped with. In

the case of this implementation, the front end must convert stereo images

in spatial measurements, and use them to add landmarks and constraints to

the graph. This implies two fundamental steps:

1. Images must be processed to extract quantitative information about

the environment. This includes identifying correspondences in the two

views and triangulating points to obtain spatial measurements, as will

be discussed in section 4.2.

2. To build the graph, each measurement must then be associated to the

correct landmark in the map (or used to create a new one). This so-

called data association problem is one of the most challenging parts

when designing SLAM algorithm and will be discussed in section 4.3.

59

4.2 Image processing

Sensor information in a given time step comes in the form of a pair of stereo

views. To extract spatial information, these images are processed using the

C++ library OpenCV. The procedure involves selecting interest points in an

image, finding their counterparts in the other view, and then triangulating

points to obtain quantitative measurements.

Interest points in the images are selected using the SURF algorithm im-

plemented in OpenCV. SURF was chosen among other feature detectors for

its good compromise between speed and repeatability [16]. For each detected

keypoint, a SURF descriptor is computed. Descriptors are 64 or 128-entries

vectors calculated from image parameters in the neighbourhood of the con-

sidered pixel, and are invariant to small scaling and rotation transformations

(i.e. to small camera movements). In the case of stereo images, the change in

perspective between the two views is limited, and therefore the descriptors of

corresponding points will be similar. This enables the matching of features in

the two images comparing their descriptors; the matching procedure assigns

the correspondence to points that are closest to each other in the descriptors

space, with the distance computed as a Euclidean norm. This procedure

relies solely on image parameters, and does not consider the geometry of the

problem; a typical result is shown in figure 4.3. It can be seen that although

some features are matched correctly, a relevant number of outliers is present.

Triangulating erroneous matches would result in meaningless environment

measurements; the presence of such outliers can cause a substantial degra-

dation in the final solution of the SLAM algorithm, and therefore these false

positives must be carefully removed. To do so, the geometry of the problem

must be taken into account; the next sections will provide more insight into

the subject.

60

Figure 4.1: The pinhole camera model [17]. In real cameras, the image

plane is actually behind the centre of projection, and produces an image that

is rotated 180 degrees; here however the projection problem is simplified by

placing a virtual image plane in front of the centre of projection to produce

an unrotated image.

4.2.1 Epipolar geometry

The 2D image captured by a camera can be thought of as the projection of the

3D world on an image plane through a centre of projectionC (pinhole camera

model, figure 4.1). Within the framework of this simple model, consider now

a system of two cameras portraying the same scene from different points of

view (figure 4.2). Denote with x and x′ the projections on the two image

planes of the same 3D point X. Supposing that we only know the projection

in the left image x, we may ask how its counterpart in the right view x′

is constrained. From the information given by the left image alone, the 3D

pointX resulting in the projection x could lie anywhere on the ray emanating

from the camera centre C through x. This ray in space is imaged in the right

view as a line l′; hence, the projection x′ cannot lie anywhere on the right

image plane, but must belong to this line. This constraint can be used to

narrow the search for matching pairs in stereo images and to reject outliers.

61

Figure 4.2: Point correspondence geometry [17]. The two cameras are indi-

cated by their centres C and C ′ and image planes. An image point x projects

to a ray in 3D space defined by the first camera centre, C, and x. This ray is

imaged as a line l′ in the second view. The 3D point X which projects to x

must lie on this ray, so the image of X in the second view must lie on l′.

Referring to figure 4.2, let e′ denote the projection on the right image plane

of the left camera centre C. Then it can be seen that the line l′ necessarily

intersects this point, regardless of the position of x. The point e′ is called

an epipole, and therefore the line l′ is called an epipolar line. To each point

x in the left image, there exists a corresponding epipolar line l′ in the right

image (and vice-versa). Therefore a map

x 7→ l′

exists from a point in one view to its corresponding epipolar line in the other

view [17]. If image points are expressed in homogeneous coordinates [18],

this correspondence can be written in the form

62

l′ = F x (4.1)

in which F is a 3x3 matrix representing a map from the 2-dimensional projec-

tive plane of the first image to the pencil of epipolar lines through the epipole

of the second image e′. F is called the fundamental matrix of the system

and clearly depends on the relative geometry between the two cameras.

A key implication follows from the above relationship. If points x and x′

are the projections of the same 3D point X, then x′ lies on the epipolar line

l′ = Fx corresponding to x. In homogeneous coordinates this is written as

x′T l′ = 0. Confronting with (4.1) it immediately follows that if points x and

x′ correspond, then

x′TF x = 0. (4.2)

This so-called epipolar constraint is of utmost importance, in that it gives a

way of characterizing the fundamental matrix without any reference to the

geometric configuration of the two cameras, i.e. only in terms of correspond-

ing image points. It can be shown that F has seven degrees of freedom, and

therefore at least seven point correspondences are needed to estimate it [17].

The ability to compute the fundamental matrix from image correspondences

alone provides an effective tool to remove outliers in the matching process,

as will be discussed in the next section.

4.2.2 Match Validation

Figure 4.3 showed an example of keypoints matched based on their SURF

descriptors. As it was seen, descriptor matching relies on image parameters

only and produces many outliers, making the result unusable for detecting

63

consistent landmarks. Fortunately, the epipolar constraint provides a useful

tool to validate matches taking into account the geometry of the problem.

This can be done (for undistorted images) by estimating the fundamental

matrix F from (4.2) with a Random Sample Consensus (RANSAC) scheme.

The procedure can be summarized as follows.

1. From the set of matched point pairs, many random subsets of seven

pairs each are drawn.

2. For each subset, the corresponding fundamental matrix is estimated

from eq. 4.1 with a least-squares algorithm.

3. The goodness of the computed fundamental matrix for each case is mea-

sured by counting how many of the other point pairs satisfy equation

4.1 (within a certain threshold).

4. The fundamental matrix with the highest number of inliers is selected

as the best solution; matches that do not satisfy the epipolar constraint

for this F are considered outliers.

This method effectively identifies point pairs that do not fit the most likely

geometry of the problem. It can handle practically any ratio of outliers,

although care must be taken to adjust the threshold according to image

resolution and noise. The result of applying the procedure to the stereo pair

of figure 4.3 is shown in figure 4.4: as it can be seen, erroneous matches that

do not satisfy the epipolar constraint have been removed. Although this

geometric validation is usually very effective, however, it is not guaranteed

to always eliminate all outliers. The epipolar constraint states that if x and

x′ correspond, then x′ TFx = 0, but the vice-versa is not necessarily true: if

two image points satisfy the constraint x′ TFx = 0, this does not imply that

64

x and x′ correspond. Erroneous correspondences that happen to satisfy the

epipolar constraint thus will not be discarded. An example of this case is

shown in figure 4.5 (in which both the left and right keypoint sets are drawn

in the same image). This situation suggests a somehow naive but effective

approach to identify surviving outliers based on anomalous image coordinates

of matching points. The mean distance between the image coordinates of

points in the left and right view is then calculated along with the standard

deviation, and the pairs for which the distance exceeds the 3σ boundary

are removed; the process is repeated iteratively until no further change is

produced.

Although a 100% effectiveness in providing only correct matches is not

realistic, the above procedure has been seen to produce quite reliable results.

Given the calibration parameters of the stereo camera, the surviving matches

can then be triangulated to estimate their position in space.

4.2.3 Triangulation

For this step, the algorithm relies on a third-party mid-point triangulation

method, that however does not provide a measure of the uncertainty. To

estimate it, a Gaussian approximation is used [19, 20]. Each triangulated

observation is obtained from a stereo measurement of the type

x =

xL
yL
xR
yR

 + N (0, Nt)

where (xL, yL) and (xR, yR) are the image coordinates in pixels of the ob-

served feature in the left and in the right view, while N (0, Nt) represents

a random sample drawn from the normal distribution with mean 0 and co-

65

variance Nt used to model sensor noise. Assuming that for each camera the

image coordinate errors are decorrelated, Nt can be written as

Nt = diag
(
σ2
xL
, σ2

yL
, σ2

xR
, σ2

yR

)
with σxL , σyL , σxR and σyR the standard deviations in pixels of the match

measurement. This observation results in a triangulated measurement

X =

Xw

Yw

Zw

 + N (0,Σt)

with (Xw, Yw, Zw) the world coordinates of the landmark and Σt the obser-

vation covariance matrix. A transformation matrix from the known Nt (that

depends on camera parameters) to the unknown Σt can be estimated with a

first order Taylor approximation as

Wt =

∂Xw

∂xL

∂Xw

∂yL

∂Xw

∂xR

∂Xw

∂yR

∂Yw
∂xL

∂Yw
∂yL

∂Yw
∂xR

∂Yw
∂yR

∂Zw

∂xL

∂Zw

∂yL

∂Zw

∂xR

∂Zw

∂yR

Then, the observation covariance matrix can be expressed as

Σt = WtNtW
T
t .

This matrix can be used to draw the confidence ellipses for the triangulated

points. Figure 4.7 shows an example of confidence ellipses obtained with this

method; as expected, the depth measure is the most uncertain, with the error

increasing with the distance from the camera (that is located in the origin).

66

Figure 4.3: Results of SURF descriptor matching in stereo images (detail).

Figure 4.4: Surviving matches that satisfy the epipolar constraint after ap-

plication of the RANSAC scheme (detail).

67

Figure 4.5: Stereo matches after the epipolar validation. Both left and right

keypoints are shown in the left view, respectively with red and blue circles. In

the centre of the image, an apparent outlier survived the geometric validation.

Figure 4.6: The outlier has been removed by the 3σ validation scheme.

68

Figure 4.7: Confidence ellipses for triangulated points; the stereo camera

sits in the origin.

4.3 Data Association

Triangulating stereo matches yields a set of spatial observations that are

however useless if we do not know which landmark originated a given obser-

vation. Since the robot poses and the locations of the various landmarks are

not known precisely, it is not straightforward to associate a certain measure-

ment to the correct landmark. In vision-based SLAM, the task can be aided

by visual information provided by the cameras.

In most existing approaches, visual data association to a landmark in the

map is based on the squared euclidean distance between descriptors

E = (di − dj) (di − dj)T ,

where di and dj denote the mean descriptors of an observed feature (obtained

averaging the left and right view descriptors) and of a stored landmark.

The landmark in the map that minimizes the distance is regarded as the

69

correct data association if E is below a certain threshold; otherwise, a new

landmark is created. As explained in section 4.2, when the same point is seen

from slightly different viewpoints, the values in its descriptor remain quite

similar. However, if the point of view changes significantly, the difference in

the descriptor will be remarkable and the check using the Euclidian distance

is likely to produce a wrong data association.

Gil et al. [21] proposed an improvement of this method based on the Ma-

halanobis distance. For each landmark in the map, a mean descriptor d̄l is

stored, while a descriptor covariance matrix Sl keeps track of the landmark

appearance in various views. The covariance is calculated assuming the ele-

ments in the descriptor are independent of each other. When searching for

a correspondence for a feature with descriptor df , the Mahalanobis distance

M = (d̄l − df)S−1l (d̄l − df)T

is computed for all stored landmarks. The correspondence is assigned to the

landmark that minimizes this distance if M is below a predefined threshold;

otherwise, df is considered a new landmark. This method was shown in [21]

to produce better results compared to euclidean distance data association,

but still relies on image parameters only.

The procedure developed for this implementation stems from this ap-

proach, but also takes into account the geometric configuration of the sys-

tem. The absence of odometry information however complicates the process

significantly. As a new set of observations comes, in fact, the pose from which

these are obtained is not even known approximately, making a geometric as-

sociation impossible. Therefore, tracking of features across multiple frames is

used to obtain information on their identity for immediate association (figure

4.8), while for features that are seen for the first time, association must be

delayed to the subsequent time step, when more information on the actual

70

Figure 4.8: Tracking of features across consecutive frames.

pose will be available. The resulting procedure has been seen to produce

good results. In the following section, description of the data association

process is given in the context of the entire SLAM algorithm. For the rest

of the chapter, the term feature will denote a 3D point observed in a given

time step, while landmark will refer to a 3D point stored in the map.

4.3.1 SLAM Algorithm Overview

1. At the initial time step t0, pose p0 (the origin) is added to the (still

empty) graph. The stereo pair S0 is triangulated, but the features

observed from this pose are not added to the graph for the moment.

Features are added to the map as landmarks only when they have been

seen at least from two consecutive poses.

2. At time t1, a new pose is added to the graph. Since no odometry

information is available, the previous pose is always used to initialize

the new one (i.e. pn = pn−1). Unless abnormal displacement has

occurred between the two, this provides a reasonable initialization.

71

3. The stereo pair S1 is triangulated. We now have two sets of observed

features.

4. L1 (the left view of S1) is matched with L0 (the left view of S0). The

resulting m correspondences are features that have been seen in two

consecutive views. Therefore, they are added to the graph as land-

marks. Their position is initialized with their coordinates relative to

p0 (the origin) which are known from the observations in t0. The ob-

servations {z0j, z1j}j=0...m of these landmarks from p0 and p1 are con-

straints between poses and landmarks that are also added to the graph.

For each landmark that was added to the map, the mean descriptor and

covariance are stored.

5. The back end optimizes the graph. This among other things moves p1

from the origin to its optimum location.

6. Time step t2. Pose p2 is created and set equal to p1. S2 is triangulated.

L2 is matched with L1. Each match can now be of two types.

(a) A feature in L2 can be matched to one in L1 that was already

added to the map in t1 (i.e. it is a landmark). In this case, the

only thing that is added to the graph is a constraint between that

landmark and p2. The landmark descriptor and covariance are

updated with the new information from L2.

(b) A feature in L2 can also be matched to one in L1 that is not a

landmark. In this case, a new landmark is added to the graph. It

is initialized with the global coordinates given by its observation

from p1 (which is now known) and constrained to p1 and p2 with

the relative observations. In this case therefore one landmark

72

and two constraints are added to the graph. The mean landmark

descriptor and covariance are also stored.

Once the procedure has been repeated for all matches between L2 and

L1, the graph has acquired a number of new landmarks and constraints.

7. The graph is optimized.

8. Timestep t3 (and tn in general). pn is initialized as pn−1. Sn is trian-

gulated; Ln is matched with Ln−1. From now on, three cases can be

individuated.

(a) A feature in Ln can be matched to one in Ln−1 for which corre-

spondence to a landmark was already established in the previous

time step. In this case, the correspondence is propagated to this

feature, and the only thing that is added to the graph is a con-

straint between that landmark and pn. The landmark descriptor

and covariance are updated.

(b) A feature in Ln can be matched to one in Ln−1 that was not iden-

tified as a landmark in the previous time step. In this case, before

adding a new landmark, the algorithm tries to establish a corre-

spondence between this pair of features and an existing landmark.

Two strategies have been implemented to do this. Strategy A finds

the n landmarks in the map that are nearest to the location where

the new one would be initialized (given by its coordinates relative

to pn−1). Then, among the n nearest landmarks, correspondence

is assigned to the one that minimizes the Mahalanobis distance

M = (d̄l − d̄f)S−1l (d̄l − d̄f)T ,

73

if M is below a certain threshold. Here d̄l is the mean descriptor of

the landmark, d̄f the mean descriptor of the pair of features, and

Sl the covariance matrix of the landmark descriptor. Strategy

B on the other hand simply assigns the correspondence to the

nearest landmark in the map if M does not exceed the threshold;

the performances of the two strategies will be compared in section

5.1. If the correspondence is confirmed, two constraints to the

landmark are added to the graph (one from pn−1 and one from

pn). The mean landmark descriptor and covariance are updated.

(c) If the minimum Mahalanobis distance is above the defined thresh-

old, the two features are considered to be a new landmark, that

is therefore added to the graph in the same way as before. It is

initialized using its position relative to pn−1 and constrained to

pn−1 and pn.

Steps 7 and 8 are then repeated until the end of the run. They form the

backbone of the algorithm, while steps 1-6 provide an initialization made

necessary by the delayed data association scheme. The algorithm was tested

with a stereo data set acquired in the laboratory of the department of me-

chanical engineering at the University of Padova; the results will be presented

in the next chapter.

74

Chapter 5

Results and discussion

5.1 Experimental Setup

To test the algorithm, an indoor stereo dataset was acquired in the laboratory

of the department of mechanical engineering at the University of Padova. The

experimental setup is the same used in [22], with two Basler ace acA2000-

340kc cameras fixed on a 54 cm arm and mounted both on a rotary stage

and on a linear slide (figure 5.1). The rotary stage is driven by a high

precision stepper motor while the linear slide is provided with a graduated

scale, in order to compare the measurements obtained by the visual system

with known rotations and displacements. The stereo camera has a height

from the ground of 1.1 m and a downward tilt angle of 0◦. A Kowa LM6HC

6mm wide-angle lens is mounted on the cameras; this nominal focal length

combined with the camera sensor size results in a field of view of 86◦x 53◦.

This lens was seen in [22] to be the most suitable to operate a visual odometry

algorithm in the same indoor environment with the same stereo bench (the

other lenses tested being f = 10 mm and f = 50 mm). Figure 5.9 shows three

views of the laboratory obtained with this set-up; image resolution is 2040 x

75

Figure 5.1: The set-up used to acquire stereo images.

1086 pixels.

Before analyzing a simulated robot trajectory, the algorithm was tested

with elementary translation and rotation datasets. In the translation tests,

the stereo camera was displaced along the 1350 mm linear slide with a step

of 10 mm; after each step the motion was stopped and two images were

acquired, so that a stereo pair is available every 10 mm. The same procedure

was repeated using the rotary stage to obtain -90◦/+90◦ datasets; in this case

the stereo images were acquired with a 1◦ step.

According to the results summarized in figures 5.2 to 5.5 and to exten-

sive testing, data association strategy A (see section 4.3.1) appears to yield

the most precise results when a low value is used for the Mahalanobis dis-

tance threshold, both in the case of translation and rotation (figures 5.2, 5.4).

However, it also appears to be far less robust than strategy B to the outlier

associations that result from an increase of said threshold. In fact, raising

the Mahalanobis threshold means increasing the number of uncertain land-

76

Figure 5.2: Data association comparison for a low Mahalanobis threshold

translation test (M = 500). a: Measured vs imposed displacement. b: Ground-

truth error. Other relevant parameters are: SURF detector threshold = 700,

step = 10 mm.

Figure 5.3: Ground truth errors for high Mahalanobis threshold translation

tests. a: M = 3,000; b: M = 10,000. Other relevant parameters are: SURF

detector threshold = 700, step = 10 mm.

mark associations that are confirmed. This can be desirable to decrease the

size of the map (figure 5.6) and therefore the computational load (if the level

77

Figure 5.4: Data association comparison for a low Mahalanobis threshold

rotation test (M = 500). a: Measured vs imposed rotation. b: Ground-truth

error. Other relevant parameters are: SURF threshold = 700, step = 1◦.

Figure 5.5: Ground truth errors for high Mahalanobis threshold rotation

tests. a: M = 3000; b: M = 10000. Other relevant parameters are: SURF

detector threshold = 700, step = 1◦.

of confidence required to confirm a landmark correspondence is decreased, a

part of the observed features that would be added to the map will be asso-

ciated to already existing landmarks instead). However, this will necessarily

also increase the ratio of erroneous constraints introduced in the graph. Fig-

78

Figure 5.6: Final number of landmarks in the map vs Mahalanobis threshold

for (a) 1350 mm translation, 10 mm step and (b) 90◦ rotation, 1◦ step. SURF

detector threshold was set to 700 in both cases.

ures 5.3 and 5.5 compare the performances of the two strategies when the

threshold is increased; as it can be seen, strategy B appears to be far more

robust to outliers, retaining good precision even when strategy A fails to

converge to the right solution (figures 5.3b, 5.5). This is due to the fact that

strategy B takes as a candidate for association to a feature only the land-

mark that is nearest to it in the map; therefore, wrong associations identify

as referring to the same landmark observations that are not far from each

other anyway. Thus, the error introduced by a wrong strategy B association

is limited; strategy A on the other hand can result in greater discrepancies.

From figure 5.6 it can be seen that for a given Mahalanobis threshold,

strategy A results in a smaller number of identified landmarks compared

to strategy B; this is due to the fact that strategy A takes n candidates

for association (in this case n = 20), increasing the probability to find a

match in the map for a feature that would be otherwise be added to it. This

partially reduces the computational overhead resulting from the much lower

Mahalanobis threshold needed by scheme A to retain precision.

79

Figure 5.7: Number of stereo matches found and relative processing times

on an Intel i5 480M CPU vs. SURF detector threshold.

Finally, in a fashion similar to the Mahalanobis threshold increase:

• Increasing the SURF threshold decreases computational times, at the

cost of a decreased quality of the solution. A higher SURF threshold

in fact diminishes the number of features that are extracted from the

images, decreasing image processing times (figure 5.7) and also the

size of the map, that will be less detailed but also more efficient to

optimize. However, since less landmarks will be available to estimate

the trajectory, this also decreases the quality of the solution. As in the

case of the Mahalanobis threshold increase, data association scheme A

is the most sensible to this dilution of precision, while scheme B can

cope with greater SURF threshold increases without extreme losses.

Reasonable values of the SURF threshold are in the order of 500 -

3000, depending on the expected size of the map and desired accuracy.

• Increasing the translation/rotation steps reduces not only the number

of poses but also that of landmarks (fewer poses mean fewer observa-

tions and therefore fewer landmarks added to the map). This results

80

Figure 5.8: a: Error in the estimated rotation vs. rotation imposed in a

single step. b: Detail of figure (a). Other relevant parameters are: SURF

threshold = 500, data association scheme = A, Mahalanobis threshold = 500.

in a smaller graph (faster optimization) but also in a decrease of pre-

cision, that once again is greater for scheme A than for scheme B. For

the datasets examined, translations were reconstructed correctly even

with the maximum step (1350 mm). The case of rotation however is

different, because while in the case of pure translation the features in

the center of the image remain visible even with large steps, moder-

ate rotations can change the scene seen from the camera completely,

depending on the width of the field of view. This can make the track-

ing of features across subsequent frames impossible, and if no known

landmarks are observed from the new pose either (e.g. because the

robot is exploring a new area), the algorithm will fail to estimate the

pose. Figure 5.8 shows the error in the estimated rotation versus the

imposed rotation step for a favorable case. As it can be seen, preci-

sion is remarkable in the range 0◦÷ 10◦, where the fields of view of the

two subsequent steps overlap greatly and many common features can

be individuated. As the rotation step increases however, the number

81

of tracked features decreases, reducing precision until angle estimation

ultimately fails. Although in this case the algorithm succeeded in esti-

mating rotation steps up to 55◦, this was achieved in optimal conditions

(low SURF and Mahalanobis threshold, high distance from the objects

in the environment (⇒ greater number of detected features, see be-

low)). The maximum estimable step decreased to 10◦/15◦when using

higher thresholds with objects near to the camera (2-3 m), suggesting

that in real applications where image acquisition is regulated by time

rather than displacement, the need to cover rotations with a higher

number of frames could be the bottleneck of the SLAM system.

5.2 Results

After testing the algorithm with elementary translations and rotations, var-

ious datasets taken at different locations in the laboratory were combined

to simulate robot motion through the environment and obtain a full map

of the room. The ideal robot starts its trajectory from the location shown

in figure 5.9a, then moves forward 130 cm, looks to its left (+90◦) and to

its right(-90◦), then continues forward towards the wall that can be seen in

figure 5.9a and 5.9b, and finally turns backwards to its right (figure 5.9c). A

first simulation aimed at obtaining a precise map of the environment was run

on this simulated path with data association scheme A, a SURF threshold of

2500, a Mahalanobis threshold of 500, a rotation step of 3◦ and a translation

step of 11 cm. This resulted in the map shown in figure 5.10; the final graph

is comprised of 284 robot poses and 4140 landmarks.

The calculated trajectory and map agree with the simulated robot path

and the actual environment. Observing the map, shapes and objects of the

82

Figure 5.9: Sample views of the laboratory (left camera view).

83

Figure 5.10: 2D and 3D views of the generated map. Grey dots represent

landmarks, while brown dots (poses) represent the midpoint of the stereo

camera baseline, with an arrow indicating the direction of the field of view.

84

Figure 5.11: Detail of the robot’s trajectory.

laboratory can be recognized. The upper side of view 5.9a is the side where

the windows are located; five desks can be individuated on that part. On the

opposite side, four desks are comprised between the two doors, and another

lies after the second door. On the right-hand side of the map, where the

robot’s path begins, the empty area near the blackboard that is visible in

figure 5.9c can be recognized, while on the opposite wall, towards the end of

the robot’s trajectory, the machinery of figure 5.9b can be identified. The

measures of the calculated map match the true size of the laboratory (15 m x

6 m). As far as trajectory is concerned, figure 5.11 shows the reconstruction of

the 11 cm translation and 3◦ rotation pattern. Unfortunately, ground-truth

is not available in this case because the simulated path was obtained merging

independent datasets; this is also the reason for the visible discontinuities in

the estimated trajectory. Another feature that is apparent in figure 5.11 is

the motion on a circular arc in correspondence of rotations. This is due to

the fact that the axis around which rotation takes place does not intersect

the stereo camera baseline; thus, imposing a rotation of the rotary stage also

causes the midpoint of the baseline to move on a small circular arc.

85

Figure 5.12: Data association.

Figure 5.12 provides details on the data association process. Fig. 5.12a

shows for each step the number of landmarks identified by propagating the

correspondence from previous steps through frame matching (see section

4.3.1), while fig. 5.12b shows associations by map search. As it can be

seen, the majority of landmark correspondences are found by the tracking of

features across subsequent frames rather than by map searches. Finally, fig.

5.12c shows that the number of landmarks added to the map at each step

only accounts for a minor part of the total observations.

86

Three major decreases in the number of observed features can be indi-

viduated around steps 50, 100 and 220 (events 1, 2 and 3). The reason for

this can be tracked down to particular orientations of the stereo camera that

occur in correspondence of these three events. The tests were performed in

a rectangular room, and when the camera rotation angle is ±90◦, the optical

axes are parallel to the short walls. In this configuration, the observed ob-

jects are closer to the cameras (up to a distance of about 2-3 m), resulting

in a decrease in the number of observable features, as reported also in [22].

This affects the precision with which the robot pose is estimated. As it can

be seen in figure 5.13, as the rotation angle approaches +90◦ (event 1) or

−90◦ (events 2 and 3), both position and orientation uncertainty (estimated

as explained in section 3.3.1) grow significantly. However, as the robot rotates

back, known landmarks re-enter the field of view, providing information that

helps localizing the robot so that the uncertainty decreases again. This does

not happen however after the third event (step 220), because in that case

the camera after rotating continues exploring new parts of the environment

instead of re-observing known features. The situation in which not enough

features are observed can also lead to erroneous pose estimates, as in the case

near event 1 shown in fig 5.14a; fortunately, subsequent information propa-

gates through the map, allowing the previous pose estimates to be corrected

(fig 5.14b).

A possible solution to this loss of precision could be to adjust the SURF

detector threshold when the count of observed features falls below a certain

number, in order to obtain more matches. However in this case this was

not considered necessary, since the map and trajectory are reconstructed

correctly anyway, and decreasing the SURF threshold would increase the

time required for both stereo matching and optimization.

87

Figure 5.13: Estimated pose uncertainty at the end of the run.

Figure 5.14: Pose estimate correction. a: Erroneous pose estimate with the

relative uncertainty ellipse. b: The pose has been corrected and the uncer-

tainty reduced in the light of subsequent information.

88

Figure 5.15: Estimated and actual errors for a low Mahalanobis thresh-

old translation test (M = 500). a: Scheme A. b: Scheme B. Other relevant

parameters are: SURF detector threshold = 700, step = 10 mm.

Figure 5.16: Estimated and actual errors for a low Mahalanobis threshold

rotation test (M = 500). a: Scheme A. b: Scheme B. Other relevant parameters

are: SURF detector threshold = 700, step = 1◦.

As far as the precision of the estimated pose is concerned, although a

proper ground-truth reference for the whole path is not available, an esti-

mation of the uncertainty can be calculated as explained in section 3.3.1.

Figures 5.15 to 5.18 show a comparison between the estimated uncertainty

and the actual error for translation and rotation datasets for which ground

truth is available. As it can be seen, when the Mahalanobis threshold is set

89

Figure 5.17: Estimated and actual errors for a high Mahalanobis thresh-

old translation test (M = 500). a: Scheme A. b: Scheme B. Other relevant

parameters are: SURF detector threshold = 700, step = 10 mm.

Figure 5.18: Estimated and actual errors for a high Mahalanobis thresh-

old rotation test (M = 10000). a: Scheme A. b: Scheme B. Other relevant

parameters are: SURF detector threshold = 700, step = 1◦.

to a low value (figures 5.15, 5.16) the computed uncertainty provides a rea-

sonable estimate of the actual error, especially in the case of scheme A;

furthermore, rotations seem to cause a less precise estimation of the actual

error compared to translations.

When the Mahalanobis threshold is increased, it can be seen from figures

90

Figure 5.19: Uncertainty ellipses increasing in size in the neighbourhood of

event 3.

5.17 and 5.18 that scheme A fails to estimate not only the correct displace-

ment, but also the relative uncertainty. This is due to the fact that the

uncertainty estimation method of section 3.3.1 assumes that the various con-

straints are uncertain due to sensor noise, but correct in the data association.

As the Mahalanobis threshold is increased and data association outliers are

introduced in the system, therefore, the estimation of uncertainty is not reli-

able any more (figures 5.17a, 5.18a). Scheme B however continues to provide

a good estimation of both pose and uncertainty even with high Mahalanobis

thresholds; this is probably due to the smaller errors that wrong scheme B

associations introduce (as already discussed), to the smaller probability of es-

tablishing wrong constraints (since fewer potential candidates are examined

for each association compared to scheme A), or both.

Figure 5.13 shows the estimated uncertainty over the entire robot’s path;

from the above considerations and figures, a conservative estimate of the error

(∼ 4 standard deviations to account for outliers in the data association) is 20

mm for the position and 0.15◦ for the orientation before event 3, and 50mm,

91

Figure 5.20: Processing times.

0.8◦ after event 3 (figure 5.19). At the end of the path, where the robot faces

the door of the laboratory perpendicularly, its ground-truth displacement is

unknown, but the nominal rotation of the frame in the relative dataset is

-270◦. The robot’s estimate of its orientation, after a relevant displacement

and several rotations, is -269.8◦ ,with an estimated standard deviation of 0.2◦.

Figure 5.20 shows the processing times to run the simulation on a 2.67

GHz Intel Core i5-480M CPU. As it can be seen, feature detection, descrip-

tion and matching in stereo images account for a relevant part of the total

92

Figure 5.21: Variables and computational time growth.

time (5.20a). Frame matching on the other hand operates on the same key-

points already detected and described for stereo matching, and therefore

requires a smaller amount of time; data association is a simple search in the

map and is carried out very rapidly (5.20b). As expected, optimization time

increases linearly with the size of the graph (figure 5.21b). Since the size of

the graph is roughly linear in the number of poses considered, this results

in a linear increase of the optimization time with the number of poses (fig-

ure 5.20c); peaks in the graph are relative to steps in which more than one

Gauss-Newton iteration was carried out. The total time required to process

a step at the beginning of the simulation is mainly due to stereo matching,

while towards the end graph optimization demands about as much time.

Although a good precision was obtained with this simulation, processing

times were too high for real-time application; therefore, a second simulation

with increased steps and thresholds was run to investigate online operation

capability. The steps were increased to 50 cm for translations and 10◦ for ro-

tations, while the SURF threshold was increased to 3500, with the additional

possibility to adjust it when the number of observed features is insufficient.

93

Figure 5.22: 2D and 3D views of the generated map.

94

Figure 5.23: a: Estimated uncertainty and b: processing times for the fast

simulation.

Since robustness is to be privileged over precision in online applications,

scheme B was used for data association; to speed up the computation, the

Mahalanobis threshold was increased to 5000. The resulting map shown

in figure 5.22 is comprised of 78 robot poses and 979 landmarks. As ex-

pected, the map is now much sparser; recognizing objects of the environment

is harder, but the shape and size of the obtained map and the estimated

trajectory agree with the ones in figure 5.10.

Figure 5.23a shows the uncertainty estimation for this second run. Sim-

ilarly to what happened in the previous simulation (figure 5.13), +90◦/-90◦

orientations of the camera result in an increased uncertainty, the last be-

ing permanent since no loop closures take place afterwards. After the final

event, an error estimate of 80 mm for the position and 1.3◦ for the orienta-

tion (∼ 4σ) can be inferred for this run. Thus, the computed map is sparser

and the uncertainty greater compared to the previous simulation, but the

overall loss of precision is limited.

Processing times are shown in figure 5.23a; as it can be seen, optimization

is now much faster, although the number of iterations carried out per step is

95

greater (see table 5.1) due to the fact that the increased displacements result

in a worse initialization of the new nodes added to the graph. The time

required for image processing on the other hand does not decrease much,

as expected from figure 5.7. These results suggests that potential for online

application is present if image processing is sped up; a possible way to achieve

this other than transferring image processing on a GPU is to decrease frame

resolution. The stereo images used in this work have a resolution of 2040 x

1086 pixel each, and a parallel work on the same data showed that decreasing

image size dramatically reduces the amount of time required for processing

while still retaining a good precision of the resulting observations [23].

Finally, table 5.1 summarizes significant figures for the two simulations

discussed in this chapter.

96

Simulation 1 (Precise) Simulation 2 (Fast)

Translation Step 11 cm 50 cm

Rotation Step 3◦ 10◦

Data Association Scheme A Scheme B

Mahalanobis Threshold 500 5000

SURF Threshold 2500 3500

Total Poses 284 78

Total Landmarks 4140 979

Total Constraints 30958 3229

Image Processing (Avg.) 2.58 s 2.49 s

Optimization (Avg.) 1.212 s 0.341 s

Iterations Per Step (Avg.) 1.10 2.05

Final Position Uncertainty (4σ) 50 mm 80 mm

Final Orientation Uncertainty (4σ) 0.8◦ 1.3◦

Table 5.1: Comparison of the two simulations.

97

Conclusions

A graph-based Simultaneous Localization And Mapping algorithm was im-

plemented and tested. As a robot explores its surroundings, images coming

from a stereo camera are processed to identify features in the environment

and calculate their coordinates by triangulation. The estimated position and

visual appearance of the observed features are then used to establish a cor-

respondence with previously seen landmarks, and a non-linear optimization

algorithm estimates the followed path and the structure of the environment

that are most likely in the light of these informations.

The precision and performance of the algorithm was studied with both

elementary transformations and a simulated complex trajectory in an indoor

environment. Pose estimation precisions in the order of ∼3 mm over a 1350

mm translation and of ∼0.1◦ over a 90◦ rotation were achieved for elementary

transformations for which ground truth was available. At the end of the

complex trajectory, a conservative estimate of pose uncertainty was (50 mm,

0.8◦) for a detailed, computationally intensive simulation and (80 mm, 1.3◦)

for a sparser efficient run; the resulting map was in both cases coherent with

the structure of the environment.

Two data association schemes were tested, one relying more on the visual

appearance of features and one giving more weight to geometric proximity;

the former was found to be more precise, while the latter proved to be more

99

robust in less favourable cases. For both schemes, the precision of the es-

timated solution was seen to increase as the image detector threshold, data

association threshold and displacement step were decreased, but this also

resulted in increased processing times.

As far as real applications are concerned, pose estimation was seen to

fail when relevant rotations of the field of view occurred between consecutive

images; therefore, a minimum frame rate requisite for the whole system would

likely result from the need to cover rotations with a higher number of frames.

Finally, while the optimization time is linear in the size of the map and

shows potential for real-time operation, image processing was seen to be the

bottleneck of the system that must be removed before considering an online

application.

100

Bibliography

[1] P. Mountney, D. Stoyanov, A. Davison, G.Z. Yang, Simultaneous stere-

oscope localization and soft-tissue mapping for minimal invasive surgery.

Medical Image Computing and Computer-Assisted InterventionMICCAI,

347-354, Springer Berlin Heidelberg (2006).

[2] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics. MIT Press, Cam-

bridge (2005).

[3] B. Siciliano, O. Khatib, Springer Handbook of Robotics. Springer-Verlag

Berlin Heidelberg, 1st edition (2008).

[4] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial relation-

ships in robotics. Uncertainty in Artificial Intelligence 2, 435-461, Elsevier

Science Publishers B.V. (1988).

[5] P.S. Maybeck, The Kalman filter: An introduction to concepts. Au-

tonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong. Springer, Berlin,

Heidelberg (1990).

[6] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM: A factored

solution to the simultaneous localization and mapping problem. Proceed-

ings of the Edmonton AAAI National Conference on Artificial Intelligence

(2002).

103

[7] D. Hähnel, W. Burgard, D. Fox, S. Thrun, An efficient FastSLAM Algo-

rithm for Generating Maps of Large-Scale Cyclic Environments from Raw

Laser Range Measurements. Proceedings of the 2003 IEEE/RSJ Confer-

ence on Intelligent Robots and Systems (2003).

[8] F. Lu, E. Milios, Robot Pose Estimation in Unknown Environments by

Matching 2D Range Scans. Journal of Intelligent and Robotic Systems

18, 249-275 (1997).

[9] G. Grisetti, R. Kümmerle, C. Stachniss, W. Burgard, A Tutorial on

Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine

4 vol.2, 31-43 (2010).

[10] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, C. Hertzberg, Hier-

archical optimization on manifolds for online 2D and 3D mapping. 2010

IEEE International Conference on Robotics and Automation (ICRA),

273-278 (2010).

[11] E. Olson, P. Agarwal, Inference on networks of mixtures for robust robot

mapping. The International Journal of Robotics Research 32(7), 826-840

(2013).

[12] T. Lemaire, C.Berger, I.K. Jung, Vision-Based SLAM: Stereo and

Monocular Approaches. International Journal of Computer Vision 74(3),

343-364 (2007).

[13] K.B. Petersen, M.S. Pedersen, The Matrix Cookbook (2012).

http://matrixcookbook.com

[14] P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, W. Burgard, Robust

map optimization using dynamic covariance scaling. Proceedings of 2013

104

IEEE International Conference on Robotics and Automation (ICRA),

62-69 (2013).

[15] J. Vaganay, M.J. Aldon, A. Fournier, Mobile Robot Attitude Estima-

tion by Fusion of Inertial Data. Proceedings of 1993 IEEE International

Conference on Robotics and Automation, 277-282 (1993).

[16] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-Up Robust Features

(SURF). Computer Vision and Image Understanding 110, 346-359 (2008).

[17] R. Hartley, A. Zisserman, Multiple View Geometry In Computer Vision.

Cambridge University Press, 2nd edition (2003).

[18] D. Marsh, Applied Geometry for Computer Graphics and CAD.

Springer, 2nd edition (2005).

[19] L. Matthies, S. Shafer, Error modeling in stereo navigation. IEEE Jour-

nal of Robotics and Automation 3(3), 239-248 (1987).

[20] W. Brink, C. E. Van Daalen, W. Brink, Probabilistic outlier removal

for robust landmark identification in stereo vision based SLAM. 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems,

2822-2827 (2012).

[21] A. Gil, O. Reinoso, O. M. Mozos, C. Stachniss, W. Burgard, Improv-

ing Data Association in Vision-based SLAM. Proceedings of the 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22] M. Pertile, S. Chiodini, S. Debei, E. Lorenzini, Laboratory calibration

and comparison of three visual odometry systems. IX Congresso MMT,

48-55 (2014).

105

[23] G. Soldà, Implementation and experimental verification of a 3D-to-2D

Visual Odometry algorithm for real-time measurements of a vehicle pose.

Master Thesis, University of Padova (2015).

106

