
Master Thesis in Computer Engineering

How to create persistent, human- and

machine-readable citations of Web Rankings

Master Candidate Supervisor

Alessandro Lotta Prof. Gianmaria Silvello

Student ID 2054786 University of Padova

Academic Year
2022/2023

Abstract

Data citation is a practice that has been a concern for many years and in the
last decades has gained a growing interest due to the increasing importance
of data in scholarly communication and business field. The practice of citing
data aims to give credit and attribution acknowledging the contributions of data
creators, collaborators, scientists, and institutions, while also ensuring the re-
producibility of data by guaranteeing long-term access to these resources. In
this context, an emerging topic revolves around the overlooked domain of repro-
ducible web rankings, a branch of information retrieval that focuses on capturing
information related to searches conducted on search engines and systems, and
generating citations based on this data. This topic finds applications in vari-
ous domains, including scientific research and decision-making processes. This
thesis introduces the "ranking citation" model developed and made available
in the form of a Chrome extension named "Unipd Ranking Citation Tool." It is
constructed based on technologies from web development such as RDF graphs,
ontologies, JSON languages, and Research Object, adhering to Linked Open
Data and FAIR (Findable, Accessible, Interoperable, and Reusable) principles.
The tool provided to users is capable of meeting the requirements necessary
for reproducing web rankings, offering an automated method to produce both
human- and machine-readable resources.

iii

Contents

Abstract ii

List of Figures xi

List of Tables xiii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1

2 Background 7

2.1 Data Citation . 7
2.1.1 Principles of Data Citation 9
2.1.2 Implementation and system requirements 11

2.2 FAIR Data principles . 14
2.3 Citing Web Rankings . 16

3 Technologies and methods 17

3.1 Citation Model . 17
3.2 RDF . 18
3.3 Ontology Model . 22
3.4 JSON and JSON-LD . 24
3.5 The Research Object . 25

3.5.1 RO-Crate . 27

4 Methodology 31

4.1 Citation Generation and Persistence 31
4.1.1 Data gathering . 31

v

CONTENTS

4.1.2 Creation of the output resources 35
4.1.3 Publication on Zenodo . 38
4.1.4 Construction of the textual citation 40

5 System Design and Development 43

5.1 Overview on Chrome extensions 43
5.1.1 Message Passing . 44
5.1.2 Asynchronous methods and Promises 45

5.2 The Chrome Extension CLI Framework 46
5.3 Workflow and Architecture . 46

5.3.1 Options Menu and Setup 47
5.3.2 The extension’s popup . 49
5.3.3 Capturing and Processing Data 50
5.3.4 Upload Phase and Data preparation 51
5.3.5 Publication and Generation of the Citation 53

5.4 Considerations on the supported platform 53

6 Use Case and Applications 55

7 Conclusions and Future Works 63

References 65

Acknowledgments 69

vi

List of Figures

2.1 A description of the FAIR principles taken from [35] 15

3.1 Example of an RDF graph taken from https://www.w3.org/TR/
rdf11-primer/ . 19

3.2 Representation of an example of an ontology. The diamonds
represent the individuals, the arrows are the relationships, and
the circles are the classes that group the individuals and have a
hierarchical structure . 24

3.3 Research Objects goals, principles, and methods taken fromhttps:
//www.researchobject.org/overview/ 26

4.1 A graphical representation of the Ranking Citation Ontology 33
4.2 A graphical representation of the ordering of the results using

RDF Collections . 34
4.3 Graphical representation of an example of the output files con-

tained in the deposit . 38

5.1 The Unipd Ranking Citation Tool architecture diagram 47
5.2 Unipd Ranking Citation Tool: Options page. 48
5.3 The Unipd Ranking Citation Tool popup’s page 49

6.1 Image of the web page for the Unipd Ranking Citation Tool, available
at https://rankingcitation.dei.unipd.it/ 56

6.2 Screenshot of the ranking results obtained from an example of a
search query on the Google Scholar systems 57

6.3 Representation of the information captured from the third-ranked
result of the example. 58

6.4 Representations of the temporary citation and permanent citation
generated with the example . 60

xi

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/
https://www.researchobject.org/overview/
https://www.researchobject.org/overview/
https://rankingcitation.dei.unipd.it/

LIST OF FIGURES

6.5 Screenshots of the final page of the deposit published on Zenodo
Sandbox. In the example, the number of captured pages is 2 . . . 61

xii

List of Tables

4.1 Object Properties . 35
4.2 Data Properties . 36
4.3 JSON context . 36
4.4 Data citation formats . 41

5.1 Uploading Errors . 52
5.2 Available filters for each system 54

xiii

List of Code Snippets

3.1 N-Triples serialization . 20
3.2 Turtle serialization . 20
3.3 RDF/XML serialization . 21
3.4 JSON-LD serialization . 21
3.5 RO-Crate definition . 28
6.1 Ordering of the ranking given by the blank nodes 59

xvii

List of Acronyms

API Application Programming Interface

CSV Comma-Separated Values

CLI Command Line Interface

DOI Digital Object Identifier

DOM Document Object Model

JSON JavaScript Object Notation

JSON-LD JSON Linked Data

LOD Linked Open Data

LODE Live OWL Documentation Environment

NPM Node Package Manager

OpenAIRE Open Access Infrastructure for Research in Europe

ORCID Open Researcher Contributor ID

PNG Portable Networks Graphics

RDA Research Data Alliance

RDF Resource Description Framework

RO Research Object

RO-Crate Research Object Crate

ROSC Research Objects for Scholarly Communication

UI User Interface

URI Unique Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

xix

1
Introduction

Citations are one of the fundamental components in the context of schol-
arly communication, serving as references to the sources of information and
research to support the author’s work and the propagation of knowledge. The
advent of the Internet and the emerging World Wide Web have introduced new
ways of sharing and accessing sources of information. As the web continuously
evolves, data has gained central importance having a huge impact on all aspects
relative to the web information. Experimental and observational data in the
field of scientific research is now stored in scientific databases available on the
web. This scientific data has all moved to digital content for most of the research
disciplines. In recent years, there has been an emerging need to transition to
open, data-rich and linked data environment following the FAIR (Findable, Ac-
cessible, Interoperable, Reusable) data principles, with the intent of facilitating
the sharing and propagation of knowledge across different domains.

In this context increasingly driven by data, it is progressively becoming
crucial to properly attribute citations to the data that is being referenced and
used. Citation of resources has evolved into a new form of Data Citation, which
is emerging as a critical concern for researchers, scientists, and data authors. The
concept of data citation has its origins in the late 90s, although initially it wasn’t
adopted by researchers due to the lack of interest in implementing tools based
on it [22]. In the last years, there has been a growing interest in defining the
principles and structures for new data citation systems, driven by the increasing
production of data and by a set of motivations identified by Silvello in [31]. Data
citation practices acknowledge the efforts and contribution of every data creator

1

and curator involved in the process of generating the research object, uniquely
identifie all the resources related to it, enhance knowledge propagation and
discovery, and enable the reproducibility of experiments. Additionally, the use
of data citation helps to keep track of the impact that the research findings have
on the community.

CODATA1, Research Data Alliance (RDA)2, Force-113, and Research Objects
for Scholarly Communication (ROSC)4 are some of the most important groups
of researchers involved in the definition of data citation standards and best
practices which culminated in the publication of the Joint Declaration of Data
Citation Principles (JDDCP). This document provides the guidelines for data ci-
tation implementations, which are: importance, credit and attribution, evidence,
unique identification, access, persistence, specificity and verifiability, and inter-
operability and flexibility. The development of data citation systems still has
to take into account different requirements, such as the proper identification of
datasets at different levels and the automatic generation of the citation.

An emerging field in the context of data citation is the citation of information
retrieval (IR) rankings. Information retrieval is a field of study focused on finding
and presenting relevant information from large datasets, while as ranking we
intend the ordering of items based on their relevance and usefulness to a specific
query. This topic was introduced by the RDA Data citation working group
which exposes the applications of and reasons to make retrieval result rankings
reproducible [24].

The thesis focuses on a narrower scenario in the citation of IR rankings
that is the citation of web rankings, which specifically refers to the ranking of
websites on search engines. The vast volume of data constantly created and
updated on the web results in a dynamic and continuous flow of information
that is subject to constant change. As a consequence, search engines and search
systems update their results in response to the queries used for the research,
which results in non-static rankings. Several factors affect how these rankings
are determined, such as the relevance of the results to the prompted query,
keywords and links, new information, and security and speed of the page. Web

1https://codata.org/about-codata/
2https://www.rd-alliance.org/about-rda
3https://force11.org/info/about-force11/
4https://www.w3.org/community/rosc/

2

https://codata.org/about-codata/
https://www.rd-alliance.org/about-rda
https://force11.org/info/about-force11/
https://www.w3.org/community/rosc/

CHAPTER 1. INTRODUCTION

rankings play a significant role both in research studies and in the business
field. For example, they can be applied to extract subsets of data from search
platforms such as Google Scholar, Google Search, and Scopus Elsevier, but also
from search engines implemented in social media like Twitter. They are also
valuable for supporting decision-making processes, illustrating previous study
absence, and providing context for a study.

The objective of this thesis is to establish a methodology for reproducing
web rankings for the purpose of citing them. To accomplish this task, the thesis
presents the implementation of a system that is able to generate citations of web
rankings by introducing a new ’ranking citation’ model. The tool presented has
been developed as a Chrome extension named Unipd Ranking Citation tool and is
based on the use of FAIR and Linked open data (LOD) principles. By following
these principles the tool enables seamless interconnection with other resources
available on the network, making data accessible and promoting transparency,
reproducibility, and open access to the research objects.

The extension provides an accessible user interface that is activated as soon
as the user performs a query search on one of the supported platforms, includ-
ing Google Scholar, Google Search, Scopus, Bing, and Twitter. The generated
web rankings are captured by the extension, which starts a process for generat-
ing the citation. This process involves different phases namely data gathering,
creation of the output resources, upload and publication on Zenodo, and the
construction of the textual citation. In synthesis, the whole process consists
of capturing all the relevant information displayed on the result page, creating
the output resources (RDF graph, screenshot, and the related metadata) from
this data, uploading these resources on a specific online service, and publishing
them ensuring persistency and accessibility. The final phase involves the cre-
ation of the textual citation which includes the metadata relative to the author,
collaborators, affiliation, title of the research, publication date, and the identifier
of the resource. All the citations generated are displayed in the popup of the
extension, where they can be retrieved, copied, or removed.

The development of the tool was directed into an open data approach, for
this reason, the Zenodo service was chosen to publish the research objects.

Regarding the technological aspect, the extension is built upon the RDF graph
structure and JSON-LD (Linked Data) language, which is used as a serialization
method for storing the RDF triples. The RDF triples describe the information
captured using the subject-predicate-object formulation and are integrated with

3

the Ontology model (Ranking Citation Ontology). The ontology provides ex-
tensive documentation for the classes, properties, and attributes utilized. The
classes contained in the ontology are used to model the essential components of
the web rankings and those involved in the creation of the citation. The System
class represents the platform used to make the research and it can vary between
search engines dedicated to scholar publications (Google Scholar, Scopus), or in-
tegrated in social networks (Twitter), or general purpose search engines (Google
Search, Bing). The Search Query describes the query prompted by the User and
executed by the System in use. The Search Query produces the Ranking Snap-
shot which represents the result page displaying the resulting rankings and the
other visible information. The results are organized and ordered implementing
rdf:List, and they are modeled with the Search Result class.

An important component of the extension is the integration of the Research
Objects, in the form of RO-Crate. This is a tool introduced by the ROSC group
in 2013 with the intent of providing a way to package research artefacts in a way
that is both human and machine readable. Research Objects are introduced in
the extension with the ro-crate-metadata.json file, which allows to define the
structure of the deposit and to package the output resources for the generation
of the citation.

The developed tool is able to accomplish the task of providing a way of cit-
ing a web ranking, with an automatic process that guarantees consistency and
completeness. The tool was also developed to be as easy as possible to config-
ure and utilize, indeed it was built as a Chrome Extension, upon the Chrome
Extension CLI framework, so that everyone is able to run it in their own browser.

The thesis is organized in the following way.
The second chapter is dedicated to the presentation of the research topic by

introducing the concept of data citation and its significance. It describes past
contributions in the field, its evolution over time, and its main concerns and prin-
ciples. Moreover, it highlights the importance of citing web rankings. Chapter
3 delves into the core technologies and methods involved in the creation of the
ranking citation model, focusing on data structures, RDF graphs, the Ontology
model, and Research Objects. The following chapter explains the steps involved
in the generation of the actual citation. This includes the process of data gather-
ing, the upload and publication of files in Zenodo, and the construction of the
textual citation. Chapter 5 provides an in-depth explanation of the architecture

4

CHAPTER 1. INTRODUCTION

of the developed tool, starting from the foundational components, such as the
Chrome extension framework, and following the workflow of the extension to
describe its details. The last chapter showcases one example of usage of the tool,
facing the steps of installation and setup, and describing the user interface and
experience while providing screenshots of the tool for better comprehension of
the context.

5

2
Background

2.1 Data Citation

Various definitions are proposed for the concept of data citation: "A key prac-
tice underpinning the recognition of data as a primary research output rather
than as a by-product of research" [11], "formal ways to ground the research find-
ings in a manuscript, upon their supporting evidence, when that evidence con-
sists of externally archived datasets." [6]. A definition that is generally accepted
is "Data citation is the practice of referencing data products used in research. A
data citation includes key descriptive information about the data, such as the
title, source, and responsible parties." [10]. This is the definition of data citation
given by the United States Geological Survey (USGS), an agency founded by the
United States government, dealing with various scientific disciplines including
biology, geography, geology, and hydrology.

Data citation is not a new concept, Parsons et al. [22] in a recent review from
2019 describe the history of data citation from the late 1990s when this con-
cept emerged, and its evolution through the years. They state that it has gained
increasing interest over the past few decades due to recent advances in technolo-
gies and driven by the need for automated citation generation methodologies.
The article also highlights that the basic principles have been established but
there are remaining concerns that need to be evaluated regarding human credit
and machine accessibility to the data.

In [8] Crosas et al. review the evolution of data citation standards and
practices in a similar way. Additionally, they outline the benefits of citing data,

7

2.1. DATA CITATION

including the enhanced ability to link data with the publication referring to it, en-
abling new forms of scholarly publishing, promoting interdisciplinary research,
and facilitating replication and extension of previous research. Moreover, they
also present an example of a possible citation format, similar to the one used for
referencing publications following the BibTeX citation style:

Author(s), Year, Dataset Title, Global Persistent Identifier, Data Repository
or Archive, version or subset

In the article from 2018 [31], Silvello delves deep into the aspects concerning
the fundamentals of data citation, providing an overview of various contribu-
tions and approaches in this field. The article emphasizes the importance of
treating data as first-class research objects and highlights the need for a general
agreement on data citation rules and practices. The paper analyses what are
the main motivations and the needs for citing data. A great incentive is given
by the increasing production of data in research findings, together with the in-
troduction of new tools for managing, accessing, analyzing, and sharing data
happening in the latest years. The main motivations for data citation can be
identified in:

• Data attribution
• Data connection
• Data discovery

• Data sharing

• Data impact

• Reproducibility

Data attribution consists of giving the proper credit to scientists and re-
searchers who produce and manage the data. Proper attribution is achieved
by correctly specifying the people responsible for creating, curating, collecting,
and analyzing the research data. Data connection and discovery express the
need to relate the scientific papers with the data on which they are based and to
identify this data with consistent methods. These features enhance access and
consultation of the data and allow the expansion of the researcher’s knowledge
by reaching and discovering new resources. Data sharing is also an essential
factor enabling data discovery and reuse, and it represents an incentive for col-
laboration and further studies on the research topic. The recognition of data

8

CHAPTER 2. BACKGROUND

impact is an essential component of data citation. Data impact is intended as
a way to measure and discover how and where the data being cited is used,
an aspect that is relevant also for funding agencies directing investments into
the research field. The ’Make Data Count’ project [7], through the COUNTER
Code of Practice for Research Data [13], defines a way to count data downloads,
which are considered the most valuable measures of data impact together with
the citation count. The importance of these two aspects is identified in the re-
search of Kratz and Strasser [17], which also highlights the importance of having
defined and formal citation practices adopted by researchers. Data citation has
also an impact on reproducibility, enabling other researchers to reuse the data
and replicate the workflows for verifiability and validation purposes.

An essential incentive in the adoption of data citation for scholarly publica-
tions is the integration with Linked Open Data. The connection of Linked Open
Data principles to the data citation model represents a significant factor strictly
related to the motivations for citing data and in particular for data sharing, data
connection, and data discovery.

In [30], Silvello addresses the topic of data citation in the context of Linked
Open Data (LOD). The paper presents a methodology for effectively citing LOD
subsets and discusses the impact of using this methodology, which is based
on named graphs Resource Description Framework (RDF) quads semantics.
Through a use case and application of this methodology, the paper demonstrates
that "exploiting the LOD paradigm enables persistent, dereferenceable, variable
granularity and human- and machine-readable citations of LOD subsets". This
enhances the reproducibility, transparency, and knowledge sharing of research.

The need for more transparency, openness, and reproducibility in scientific
research is also addressed in the journal article from 2015 ([19]) titled "Promot-
ing an Open Research culture", which highlights the limited implementation
of open practices in current research studies. Additionally, it introduces the
Transparency and Openness Promotion (TOP) guidelines for shared and open
practices across journals, including citation and replication standards, and data-
sharing standards.

2.1.1 Principles of Data Citation

Over the last decade, various working groups have focused their efforts
on establishing and implementing standards and best practices for data citation.

9

2.1. DATA CITATION

CODATA-ICTSI (International Council for Scientific and Technical Information),
Research Data Alliance (RDA) Data Citation Working Group, Force-11 Data
Citation Group, and Research Objects for Scholarly Communication (ROSC) (a
World Wide Web Consortium (W3C) community established in 2014) are the
most important among others. As stated in [3], these groups have considerable
overlap in membership and collaborate with each other through joint activities
and cross-memberships for the task of defining data citation principles, but
they have different areas of interest. For example, RDA is interested in building
infrastructures for data management, Force-11 is involved in reforming scholarly
communication in a general context, while ROSC is concerned with "technical
approaches for managing data, publications, software, and other objects created
in scientific research" [3].

In [1, 25] are presented the principles defined by the various groups, and in
the manifesto [18] is finalized the Joint Declaration of Data Citation Principles (JD-
DCP) that consists in the list of eight principles obtained from the collaboration
of the task groups:

• Importance: Data should be considered legitimate, citable products of
research. Data citations should be accorded the same importance in the
scholarly record as citations of other research objects, such as publications

• Credit and attribution: Data citations should facilitate giving scholarly
credit and normative and legal attribution to all contributors to the data,
recognizing that a single style or mechanism of attribution may not be
applicable to all data.

• Evidence: In scholarly literature, whenever and wherever a claim relies
upon data, the corresponding data should be cited.

• Unique Identification: A data citation should include a persistent method
for identification that is machine actionable, globally unique, and widely
used by a community

• Access: Data citations should facilitate access to the data themselves and
to such associated metadata, documentation, code, and other materials, as
are necessary for both humans and machines to make informed use of the
referenced data.

• Persistence: Unique identifiers, and metadata describing the data, and
its disposition, should persist—even beyond the life span of the data they
describe

• Specificity and Verifiability: Data citations should facilitate identification
of, access to, and verification of the specific data that support a claim. Ci-
tations or citation metadata should include information about provenance
and fixity sufficient to facilitate verifying that the specific timeslice, version

10

CHAPTER 2. BACKGROUND

and/or granular portion of data retrieved subsequently is the same as was
originally cited.

• Interoperability and Flexibility: Data citation methods should be suffi-
ciently flexible to accommodate the variant practices among communities,
but should not differ so much that they compromise interoperability of
data citation practices across communities.

Many of these principles are also part of the reasons explaining the impor-
tance of data citation for the research community. Among them, Identification
is an essential feature that allows us to uniquely identify datasets and research
outputs by assigning each one an alphanumeric string. Methods and techniques
for referencing this data are required to be specific and guarantee persistence
over time. The most used identifiers include Archival Resource Key (ARK),
Universal Unique Identifier (UUID), Research Resource Identifiers (RRID), and
Digital Object Identifier (DOI). These identifiers are globally unique alphanu-
meric strings assigned by a registration agency and provide a persistent link to
the location of the resource, ensuring long-term accessibility and referencing.
It is worth noting that various identifiers have or are being developed for other
research objects and entities. Among them, the Open Researcher Contributor
ID (ORCID)1 was developed for assigning an identifier to individual researchers,
authors, and contributors of scholarly communication. The Research Organiza-
tion Registry (ROR) Community2, is developing persistent identifiers assigned
to research organizations.

2.1.2 Implementation and system requirements

The implementation of a data citation system needs to take into account
different considerations and concerns.

In the context of unique identification, the use of persistent identifiers (PID)
such as DOI is not enough to solve all the identification problems. The reason
for this is that a citation system needs to be able to uniquely identify and cite ac-
cordingly different levels of details and subsets of data [9], the same happens for
bibliographic citations where it is possible to both cite entire documents or cite
only single pages and even single passages. By adopting variable granularity
practices, data citation systems enable researchers to precisely reference specific

1https://orcid.org/
2https://ror.org/

11

https://orcid.org/
https://ror.org/

2.1. DATA CITATION

portions of the dataset. This is particularly important for interdisciplinary re-
search, where different disciplines could be in need of referencing only small and
different sections of data. Different solutions have been proposed to overcome
the granularity problem: using Research Resource Identifiers (RRIDs) assigned
to scientific resources [2], assigning a PID with a unique key to identify every
single XML node exploiting a rule-based citation system [5], assigning PIDs
to queries [26] which allows access and retrieval of a specific data subset, and
adopting the nanopublication model [14] for research data.

Nanopublications "are the smallest unit of publishable information" and "are
expressed in a knowledge graph format that is formal and machine-interpretable"3.
They are implemented with the RDF language and are composed of three el-
ements: the assertion which constitutes the main content of the nanopublica-
tion, the provenance describing how the assertion has been generated with its
methods, and the publication info containing all metadata about the nanop-
ublication. Fabris et al.[12] proposed the nanocitation framework for citing
single nanopublications and an open-source system4 that enables the automatic
creation of citation text snippets and landing pages.

Another fundamental concern required in the implementation of a data cita-
tion system is the need for an automatic process for the generation of the citation
[4, 26], which should include the necessary and relevant metadata information
and a consistent format and style. Completeness and consistency of data cita-
tions can be achieved by providing tools and software that enable automatic
citation functionalities to users who are not experts in this field. Some scien-
tific databases and services already include this functionality. An example is
the Zenodo open repository, which allows researchers to deposit any research
material and assigns a DOI to each upload. The service also enables the user to
choose the format in which the citation should be exported, including BibTeX,
CSL, DataCite, Dublin Core, and JSON/JSON-LD.

Other relevant concerns regarding citation systems include fixity, which
refers to the ability to keep the data accessible and unchanged over time. This
involves developing systems that implement a versioning mechanism and safe-
guarding against losses and corruption of data. Finally, data citations should be
able to adapt to the different data types, models, and formats implemented in

3https://nanopub.net/
4http://nanocitation.dei.unipd.it/

12

https://nanopub.net/
http://nanocitation.dei.unipd.it/

CHAPTER 2. BACKGROUND

different domains.
Various solutions have been implemented to accomplish the task of data

citation. The Dataverse5 project is an open-source software web application
that allows researchers to share, preserve, cite, explore, and analyze research
data. It is supported by the Institute for Quantitative Social Science (IQSS) at
Harvard University. Among its features, it offers the possibility to cite the dataset
in a standardized and automatic way, allowing researchers to get credit and
recognition for their work. Additionally, it incorporates the Universal Numerical
Fingerprint (UNF) mechanism, which consists of a PID to specific digital objects
or subsets of data and allows to identification of data with different granularities.
Dataverse has a lot of features but is not able to handle dynamic datasets and the
main disadvantage is that it only allows citing the data that has to be manually
gathered and stored in a Dataverse repository.

Another relevant solution is represented by the Whole Tale project 6. This is
an "NSF-funded Data Infrastructure Building Block (DIBBS) initiative to build a
scalable, open source, web-based, multi-user platform for reproducible research
enabling the creation, publication, and execution of tales" [33]. These tales are
Research Objects encapsulating both data and code, together with the entire
software environment in which the research is conducted. Additionally, tales
are completed with their metadata information. This project provides a good
example of the efforts directed at finding ways to package data and generate a
citable and re-executable Research Object. Nonetheless, this has to be combined
with other tools for generating the citation from the packaged resources.

The article [23] proposed an approach to persistently cite arbitrary subsets in
relational databases, a method based on the use of deterministic timestamped
queries and incorporates a database schema with a versioning system to han-
dle evolving data. This system, however, doesn’t provide a suitable means to
automatically generate human and machine-readable citations. Moreover, as
mentioned above, in [30] Silvello proposed a method for producing human
and machine-readable data citations based on the citation of RDF subgraphs
through the use of named graphs. This approach focuses on the specific subject
of Linked Open Data providing the descriptive metadata and uniquely identify-
ing the cited object. Additionally, it presents a solution to the problem of variable

5https://dataverse.org/best-practices/data-citation
6https://wholetale.org/

13

https://dataverse.org/best-practices/data-citation
https://wholetale.org/

2.2. FAIR DATA PRINCIPLES

granularity but the composition of the references is not done automatically.
The existing solutions and approaches present important contributions to

the field of data citation but they don’t address the specific subject of web
rankings. In the citation of web rankings, it is necessary to have a tool that is
able to collect information about the whole search environment including the
results, their ordering, the user information, the system, and the query, and
once this data is collected the tool should generate the reference from it. All
of this has to be done in an automatic way, which is helpful in reducing errors
and avoiding the repetition of the gathering process for each result and for big
quantities of data. From this data, the tool should also be able to produce both
human and machine-readable resources facilitating human comprehension and
maintaining an optimal efficiency for machine operations. Moreover, due to
the dynamic nature of the web, a versioning system is needed to keep track of
the changes in different time instants and to replicate past versions of the data
captured.

Overall, the solutions presented above have a positive impact on data citation
but they are not able to provide all the listed features required for web rankings
in a single tool.

2.2 FAIR Data principles

Data sharing is an important advantage provided by data citation practices.
The research community benefits from data sharing which promotes trans-
parency, encourages collaboration, enables better decision-making, and facili-
tates knowledge discovery. In this context, a group of academics and private
stakeholders reunited in a workshop named ’Jointly Designing a Data Fairport’
held in the Netherlands in 2014. The conclusions obtained from the workshop
resulted in "The FAIR Guiding Principles for Scientific Data Management and
Stewardship" [35]. The article was reviewed, curated, and published by a dedi-
cated group composed of members of the FORCE11 community in 2016, in the
journal called ‘Scientific Data’, an open-access, online journal for descriptions
of scientifically valuable datasets, and research that advances the sharing and
reuse of scientific data. The FAIR Data principles present a set of concise, high-
level, domain-independent guidelines to support the reuse of scholarly data, in
response to the need to define the goals and desiderata of good data manage-
ment and stewardship. These principles are not only applied to the data itself,

14

CHAPTER 2. BACKGROUND

Figure 2.1: A description of the FAIR principles taken from [35]

but also to the algorithms, tools, and workflows that are involved with that data.
These guidelines support both manual and automated deposition, exploration,
sharing, and reuse on a wide range of technologies and implementations.

FAIR stands for Findable, Accessible, Interoperable, and Reusable. These are
the four core concepts extracted from the original meeting, they are reported in
Figure 2.1.

A great number of stakeholders benefits from the application of these guide-
lines: researchers who want to share, get credit, and reuse each other’s data;
professional data publishers offering their services; software and tool builders
for data analysis and reusable workflows; funding agency with an increasing
interest for long term data stewardship; and the research community for ad-
vancing and discovery of knowledge concerning data. These principles provide
great advantages also in tasks of data retrieval and analysis assigned to computa-
tional agents and machine operators, allowing discovery, access, and integration
of scientific data and scholarly objects.

15

2.3. CITING WEB RANKINGS

2.3 Citing Web Rankings

The task of citing web rankings poses a significant challenge for which no
solution has been proposed until this thesis. Web rankings are generated by
search engines that are running on the web and provide websites, documents,
and other data related to the query prompted by the user. The RDA Data Citation
Working Group recognizes the citation of information retrieval rankings as a
relevant and emerging concern in the field of scientific research [24]. The group
emphasizes the necessity to implement a mechanism that allows reproducing
retrieval result rankings, which are continuously updated due to the addition,
alteration, and deletion of their documents. The challenge that is posed consists
of preserving the state of the system and the relevant information relative to the
elements in the ranking list.

Reproducible rankings find applications in various domains including sci-
entific experiments, business intelligence reports, online learning systems, and
auditable decision-making processes. In scientific experiments and research, it
is sometimes needed to extract subsets of data or documents from digital pub-
lication database systems like Google Books and Medline, or from social media
sites, Twitter feeds, and Wikipedia pages, where content is frequently updated.
Business intelligence reports rely on reproducible rankings to justify and support
decision-making, especially in the context of press monitoring and social media
surveillance. Similarly for rigorous auditing in contexts like patent retrieval, re-
producible rankings ensure transparency and fairness by enabling evaluation of
the quality and relevance of the retrieved information and addressing potential
biases and errors.

To address these challenges, the thesis proposes a “ranking citation” model
developed in the form of the Unipd Ranking Citation tool, which enables re-
searchers and users to automatically generate reproducible and persistent cita-
tions in the field of web rankings. The tool is built as a Chrome extension to
facilitate its access and usage from any browser and for anyone who needs it in
the above-mentioned contexts.

16

3
Technologies and methods

3.1 Citation Model

In the context of citation and cited data, adherence to the FAIR (Findability,
Accessibility, Interoperability, Reuse) data principles [35] is essential. While
these principles are generally applied to data in a broader context, they have
particular importance in complementing the data citation principles, which in-
clude persistence, immutability, and reusability for both machine and human
interpretability. To achieve these goals it is important to include both human-
and machine-readable resources with the citation object.

Machine-readable data formats, which include Comma-Separated Values
(CSV), RDF, and JavaScript Object Notation (JSON), are designed for devices
and machines, and are usually complex to comprehend for humans. They en-
able rapid extraction and utilization without the need for human intervention.
On the other hand, human-readable data aims to facilitate human usage and
understanding, exploiting resources such as PDF documents containing natural
language, or visual representations like images and tables to enhance compre-
hension.

To guarantee human readability, the tool incorporates a set of functions to
capture single or multiple screenshots of the web pages displaying the rankings
to be cited. These captured pages are then saved in Portable Networks Graphics
(PNG) format, which has the advantage of implementing a lossless compression
along with gamma and chromaticity correction, making it more suitable for

17

3.2. RDF

Web-based teaching and projects [34] compared to other image formats such as
JPEG, and GIF. Additionally, it produces files of bigger size resulting in sharper
and higher quality images overall.

The captured screenshots display all the information contained in the result-
ing pages, and the number of screenshots taken for a specific capture depends
on the number of pages specified in the settings of the tool. For each supported
search system, the information present in the screenshot includes the user query
in the search bar, the resources and links resulting from the research, the fil-
ters included, and other relevant elements. These screenshots complementing
the other output files are effective in providing visual confirmation of the accu-
racy and correct execution of data capturing. Moreover, they offer a rapid and
easy-to-understand way of presenting the data captured.

For machine readability, the tool is able to extract information from web
rankings and generate the output data in the form of an RDF Graph. This serves
as a structured representation for efficient data processing and integration in
machine-readable contexts.

In the following subsections are described the features incorporated in the
citation tool.

3.2 RDF

RDF [27] is a standard model for data interchange and sharing across different
sources and domains on the web. It serves as the foundation for the represen-
tation and organization of knowledge and, as already stated, RDF provides a
standard model for representing and exchanging data in a machine-readable
format. RDF was initially adopted as a recommendation by W3C in 1999, and
subsequent specifications were presented. The RDF 1.1 specification was pub-
lished in 2014 and is currently being adopted, while a new version (RDF 1.2) is
in development.

The RDF graph is structured as a collection of interconnected nodes, repre-
senting the entities or resources, and edges, which are relationships that depict
the properties among them. The RDF data is stored in triples, each one ex-
pressing a statement in the form of subject-predicate-object. The subject in the
triple is a resource identified with a Unique Resource Identifier (URI) or a blank
node. The object also indicates a resource identified with URI, but it can also be
a literal or a blank node. The predicate is a resource connecting the subject and

18

CHAPTER 3. TECHNOLOGIES AND METHODS

Figure 3.1: Example of an RDF graph taken from https://www.w3.org/TR/
rdf11-primer/

object in a relation, identified again with a URI. Blank nodes are anonymous
resources without a URI that cannot be used in a global scope on the Web but
allow to represent logical reasoning within the local graph, such as ordering and
representation of structured values. Literals are used to identify values such as
numbers and dates. They are divided into plain literals and typed literals. Plain
literals are strings combined with a language tag, used for natural language.
Typed literals, instead, are strings combined with a datatype URI, which restrict
and define the values to be used.

URIs are unique sequences of characters that identify a logical or physical
resource used by web technologies. The use of URIs allows for addressing
every resource in the graph, making them accessible across the web. Nodes
from different graphs having the same URI are merged together. By utilizing
globally unique identifiers, RDF graphs enable the integration and interlinking
of heterogeneous datasets from various sources and allow for the representation
of Linked Open Data.

RDF triples are represented and stored with types of serialization. One way
to represent RDF graphs is with the use of graphical diagrams [], however, this is

19

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/

3.2. RDF

efficient for human comprehension but not understandable by machines. Other
common ways are text representations, which include:

• N-Triples1: the simplest form of serialization for the RDF triples, using full
URIs for the resources written between angle brackets (< >). Each triple
terminates with a ’.’.

• Turtle/N32: an extension of N-Triples combined with Curie notation, pro-
viding abbreviations and namespaces to reduce the amount of text and
enhance interpretability

• RDF/XML3: it’s the first RDF serialization used. More verbose than the
others due to the XML tree structured syntax, well suited for web infras-
tructures, but it is difficult to comprehend and use.

• JSON-LD4: modern approach preferred in web applications, combining
JSON and Linked Data. It is also easy to read and use for those accustomed
to working with JSON.

Other types of serializations used are N-Quads for named graphs and TriG,
an extension of the Turtle format.
<http://dbpedia.org/resource/Bob_Marley > <http://www.w3.org

/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person>
.

<http://dbpedia.org/resource/Bob_Marley > <http://www.w3.org/2000/01/
rdf-schema#label> "Bob Marley"@en .

<http://dbpedia.org/resource/Bob_Marley > <http://www.w3.org/2000/01/
rdf-schema#label> "Bob Marley"@fr .

<http://dbpedia.org/resource/Bob_Marley >
<http://www.w3.org/2000/01/rdf-schema#seeAlso> <http://dbpedia.org/

resource/Rastafari > .
<http://dbpedia.org/resource/Bob_Marley > <http://dbpedia.org/ontology
/birthPlace > <http://dbpedia.org/resource/Jamaica> .

Code 3.1: N-Triples serialization

@prefix dbr: <http://dbpedia.org/resource/>.

@prefix dbo: <http://dbpedia.org/ontology/>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

dbr:Bob_Marley

a foaf:Person ;

1https://www.w3.org/TR/n-triples/
2https://www.w3.org/TR/turtle/
3https://www.w3.org/TR/rdf-syntax-grammar/
4https://www.w3.org/TR/json-ld11/

20

https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/json-ld11/

CHAPTER 3. TECHNOLOGIES AND METHODS

rdfs:label "Bob Marley"@en ;

rdfs:label "Bob Marley"@fr ;

rdfs:seeAlso dbr:Rastafari ;

dbo:birthPlace dbr:Jamaica .

Code 3.2: Turtle serialization

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:ns0="http://dbpedia.org/ontology/"

xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person rdf:about="http://dbpedia.org/resource/Bob_Marley">

<rdfs:label xml:lang="en">Bob Marley </rdfs:label>

<rdfs:label xml:lang="fr">Bob Marley </rdfs:label>

<rdfs:seeAlso rdf:resource="http://dbpedia.org/resource/Rastafari

"/>

<ns0:birthPlace rdf:resource="http://dbpedia.org/resource/Jamaica

"/>

</foaf:Person>

</rdf:RDF>

Code 3.3: RDF/XML serialization

{ "@context": {

"dbr": "http://dbpedia.org/resource/",

"dbo": "http://dbpedia.org/ontology/",

"rdfs": "http://www.w3.org/2000/01/rdf-schema#",

"foaf": "http://xmlns.com/foaf/0.1/" },

"@graph": [

{ "@id": "dbr:Bob_Marley",

"@type": ["foaf:Person"],

"rdfs:label": [

{"@value": "Bob Marley", "@language": "en"},

{"@value": "Bob Marley", "@language": "fr"}

]

"rdfs:seeAlso": [{"dbr:Rastafari"}],

"dbo:birthPlace": [{"dbr:Jamaica"}]

}

]

}

Code 3.4: JSON-LD serialization

21

3.3. ONTOLOGY MODEL

Generally, the Turtle serialization is the preferred one in combination with
the Curie notation, which allows to define bindings of URIs to single words.
It uses the dot (’.’) to end a triple, but it also adds other two elements, the
semicolon (’;’) to add triples sharing the same subject, and the comma (’,’) to
separate objects that have the same subject and predicate, without the need to
write them on different lines.

In the case of the Unipd Ranking Citation Tool, the serialization method
adopted is JSON-LD which is more suitable for Web applications, and easy
to read by researchers who are not specialized in programming languages. Ad-
ditionally, JSON-LD is designed to integrate with modern Web Application
Programming Interface (API)s and allows for easy linking with other datasets
thanks to its linked data nature.

RDF graph data can be manipulated with the use of SPARQL (SPARQL Pro-
tocol and RDF Query Language) query language 5, which recommendations are
specified by the W3C consortium. SPARQL queries assume the format of Turtle
syntax and are used to retrieve triple patterns along with their conjunctions and
disjunctions. SPARQL also supports aggregation, subqueries, negation, creat-
ing values by expressions, extensible value testing, and constraining queries by
source RDF graph.

3.3 Ontology Model

Building the RDF graph for the Unipd Ranking Citation tool involves the cre-
ation of the Ontology model that serves as the foundation for representing the
specific domain of interest, i.e. web rankings and data citation.

The term ontology was first introduced in the philosophical field concerning
the study of the concepts of being, existence, becoming, and reality [20]. This
concept was then adopted by AI researchers to indicate computational models
which enable certain kinds of automated reasoning[21]. Over time, the term
evolved to refer to theories of modeled worlds and knowledge system compo-
nents.

While the RDF graphs provide a framework for representing data in a flexible
and extensible way, the purpose of ontologies is to define the semantics and

5https://www.w3.org/TR/sparql11-query/

22

https://www.w3.org/TR/sparql11-query/

CHAPTER 3. TECHNOLOGIES AND METHODS

formalization, enabling a more comprehensive and structured representation of
the knowledge. Integrating the ontology model with RDF involves mapping the
concepts, properties, and relationships to the actual data in the graph.

Ontologies describe the concepts, entities, and relationships within a given
domain, providing a vocabulary of terms and a set of relationships to govern
their usage. The same word adopted in different domains could assume different
meanings, which are defined by its ontology. In the context of the Unipd Ranking
Citation tool, the ontology helps in defining and establishing the meaning of terms
like "Search Query," "System," "Ranking Snapshot," "User," and "Search Result,"
along with their interconnections and properties.

The key components that define the structure of the ontology model are
individuals, relationships, attributes, and classes (Figure 3.2). Individuals or
instances are the basic components of an ontology, they represent specific objects
or instances in the domain of interest, including both concrete and abstract
objects. Relationships, often referred to as Object Properties, are binary relations
between individuals and classes to other individuals and classes. They are used
to represent the ontology structure, and thanks to the subClassOf statement
they enable to define hierarchies. Attributes or Data properties are used to
describe the characteristics and values of individuals in the ontology, the values
of the attributes are defined using specific data types. Furthermore, Classes, also
known as concepts, are abstract collections of individuals and objects, defining
concepts or categories within the domain, and describing the requirements for
membership in the class. Classes can be organized in taxonomies (knowledge
organized in parent/child structure) through the use of relationships between
them. The ontology model also includes restrictions, rules, and axioms to
express constraints, logical relationships, and inference rules. They allow to
specify additional constraints within the ontology.

An important category of ontologies are the Foundational ontologies repre-
sent models of common objects (concepts) which are applicable across a wide
range of domains. They can be used as building blocks and integrated into
other ontologies to provide a more comprehensive description of the concepts
facilitating the interoperability among ontologies aligned to the same founda-
tional ontology. They also have the advantage that one doesn’t need to ’reinvent
the wheel’, but can adopt the basic categories and relations, already defined, to
represent the subject domain. Some examples of the most used foundational

23

3.4. JSON AND JSON-LD

Figure 3.2: Representation of an example of an ontology. The diamonds rep-
resent the individuals, the arrows are the relationships, and the circles are the
classes that group the individuals and have a hierarchical structure

ontologies are Dublin Core Metadata Initiative (DCMI)6 a set of fifteen items
to describe digital or physical resources, focusing on essential attributes like
title, creator, subject, description, and date; Friend of a Friend (FOAF)7 Ontol-
ogy designed to represent social relationships and personal information, finds
applications in social networking and in the creation of people’s profiles; Sim-
ple Knowledge Organization System (SKOS)8 designed to represent taxonomies
and classification systems, allowing for the creation of hierarchical structures,
associative links, and mappings between concepts.

3.4 JSON and JSON-LD

JSON [15] is a lightweight interchange format for storing and transporting
data, commonly used to represent structured data. It is a format that at the
same time is easy to generate and parse from a machine or device, and it is
easy to read and understand also for humans. It is syntactically identical to the
code for creating JavaScript Objects but independent from any programming
language, nonetheless, many of the most used programming languages provide
functions for parsing and generating JSON objects. The structure of a JSON
object is composed of key-value pairs called properties, separated by commas
and surrounded by curly braces ’ { } ’. The key-value pairs consist of a key (string),

6https://www.dublincore.org/
7http://xmlns.com/foaf/0.1/
8https://www.w3.org/2004/02/skos/

24

https://www.dublincore.org/
http://xmlns.com/foaf/0.1/
https://www.w3.org/2004/02/skos/

CHAPTER 3. TECHNOLOGIES AND METHODS

and a value that can be of type string (strictly in double quotes), number, boolean,
object, or array.

JSON Linked Data (JSON-LD) [16] is an extension of JSON, designed for rep-
resenting Linked Data, which supports linking to other resources on the web.
JSON-LD is compatible with all the JSON parsers and generators, and it intro-
duces global identifiers through URIs as in RDF to disambiguate keys shared
among different JSON documents, the ability to annotate strings with their lan-
guage, and facility to express one or more directed graphs. The JSON-LD format
is recommended by W3C and RDA to represent RDF data, both for the advan-
tages stated above of combining both human- and machine-readability and for
the simplicity of use inherited from the JSON objects.

3.5 The Research Object

A recent approach for implementing FAIR data was introduced with the
notion of Research Object (RO) [28]. The concept of Research Object emerged
as a means to address the challenges of organizing, sharing, and reproducing
while preserving scientific research artifacts.

In 2013 a working group from the W3C community called Research Objects
for Scholarly Communications (ROSC)9 was established. The goal of the working
group is to create a platform for scholars, librarians, publishers, archivists, and
policymakers to discuss the requirements and expectations for defining a new
form of scholarly communication which enables better reuse and reproduction
of research results and knowledge [29]. ROSC aims to define the requirements,
gather use cases, and propose best practices and guidance for facilitating the
publishing and sharing of research objects. Research Objects are intended as the
combination of all the research assets, including data used and generated, meth-
ods for producing the data, together with people and organizations involved in
the study.

Following the core principles of identity, aggregation, and annotation, the
Research Object offers several benefits for the scientific community. Firstly,
it enables reproducibility by packaging the research artifacts along with their
metadata, code, and workflows. This helps for the repeatability of the experi-

9https://www.w3.org/community/rosc/

25

https://www.w3.org/community/rosc/

3.5. THE RESEARCH OBJECT

Figure 3.3: Research Objects goals, principles, and methods taken from https:
//www.researchobject.org/overview/

ments and the permanent storing with their context. Secondly, Research Objects
provide a unified structure to organize and describe the research components,
allowing for easy understanding and access to the data and methodologies.
Thirdly, they facilitate the sharing and referencing by bundling the documen-
tation together with the resources. This contributes also to the longevity and
preservation of the outputs, by making them accessible and understandable
over time. Other fundamental principles that research objects should exhibit in-
clude reusability, traceability, attribution, metadata, lifecycle, management, and
security. Figure 3.3 showcases the main goals, principles, and methods adopted
by the initiatives involved in the Research Objects field.

The major problem encountered with Research Objects was that the im-
plementation required a large technology stack and wasn’t easily usable by
end-user. That’s why a community of researchers, developers, and publishers
introduced and developed the Research Object Crate (RO-Crate), to facilitate the
generation of multiple types of FAIR research artefacts.

26

https://www.researchobject.org/overview/
https://www.researchobject.org/overview/

CHAPTER 3. TECHNOLOGIES AND METHODS

3.5.1 RO-Crate

RO-Crate [32] is a lightweight and adaptable packaging format for creating
Research Objects, that answers the question of how to package a directory with
all its material. RO-Crate provides a human- and machine-readable resource
that aims to be simple and easy to understand for developers, showcasing a
guide regarding best practices. RO-Crate was introduced as a combination
of the Research Object with the method of Data Crate10. Data Crate defines a
standard way of packaging file-based research data for reuse and distribution. It
is based on the already existing Bagit11 packaging specification and has the goal
of maximizing the utility and comprehension of data, enabling the discovery of
data, and automating the ingest and storing into repositories.

In [32] the RO-Crate community defines the norms that should be followed
for the development of RO-Crate and the packaging of FAIR data. These include
simplicity, developer friendliness, focus on examples and best practices instead
of rigorous specifications, and reuse just enough web standards.

The RO-Crate format relies on JSON-LD with schema.org12 annotations,
providing a means for data persistence and ensuring long-term accessibility.
Schema.org is a collaborative, community activity with a mission to create,
maintain, and promote schemas for structured data on the Internet, on web
pages, in email messages, and other online resources. It provides a vocabulary
to enhance the research objects with structure metadata and contextual infor-
mation, covering entities, their relations, and their actions. This structured data
markup enhances the presentation of search results and enables various appli-
cations to extract and utilize information from web pages in a more organized
and consistent manner. RO-Crate follows the Linked Data and FAIR principles
to describe the resources, using global identifiers and relationships to link them.
The JSON-LD metadata uses linked data to describe data resources, as well
as contextual entities like people, organizations, software, and equipment as a
series of interconnected JSON-LD objects.

Its structure is composed of a Root Data Entity, which is the directory contain-
ing all the material and the RO-Crate Metadata File (ro-crate-metadata.json).

10https://github.com/UTS-eResearch/datacrate
11https://dbpedia.org/page/BagIt
12https://schema.org/

27

https://github.com/UTS-eResearch/datacrate
https://dbpedia.org/page/BagIt
https://schema.org/

3.5. THE RESEARCH OBJECT

This is the main file describing the content and metadata concerning the struc-
ture of the directory and the user who created it. The minimal information
required by the metadata file are name, description, datePublished, and
license. Other metadata can be added depending on the goal of the specific
RO-Crate.

3.5 displays an example of the RO-Crate metadata file used in the extension
developed for the Ranking Citation tool. It contains the root directory as well as
the output files, which include the data gathered, the authors, and the snapshot
of the page.

{

"@context": "https://w3id.org/ro/crate/1.1/context",

"@graph": [

{

"@id": "./",

"@type": "Dataset",

"datePublished": currentYear ,

"hasPart": [

{ "@id": "output-data.jsonld" },

{ "@id": "ranking-snapshot-page1.png" }

],

"author": { "@id": user_id }

},

{

"@id": "ro-crate-metadata.json",

"@type": "CreativeWork",

"about": { "@id": "./" },

"conformsTo": { "@id":"https://w3id.org/ro/crate/1.1"

}

},

{

"@id": "output-data.json",

"@type": "File",

"author": { "@id": user_id },

"encodingFormat": "application/json",

"name": "result data"

},

{

"@id": ranking-snapshot-page1.png,

"@type": {"File", "ImageObject"},

"author": { "@id": user_id },

"encodingFormat": "image/png",

28

CHAPTER 3. TECHNOLOGIES AND METHODS

"name": "screenshot"

},

{

"@id": user_id,

"@type": "Person",

"name": ZENODO_USER ,

"affiliation": AFFILIATION ,

}

]

}

Code 3.5: RO-Crate definition

The structure of the JSON object is specified by the RO-Crate, which produces
an RDF graph included in a single ’@graph’ array, containing all the entities, con-
tained inside curly brackets (’{ }’) in a flat list. Files, folders, people, workflows,
images, videos, and other data and metadata related to the research are con-
sidered entities, and each one of them is registered with its own corresponding
path with respect to the root folder (’./’). Each entity represents the correspond-
ing RDF triples with a subject, property, and object, which can be either literal
string values or JSON lists. The @id tag is mandatory for every entity, it contains
the name or local identifier for the resource. The @type is used to describe the
type of resources represented by the entity. For example, an image should be
assigned the types "File" as well as "ImageObject", whilst the author is stored
with the type "Person". The other terms seen in the @graph array are taken from
the Schema.org vocabulary, such as "name" and "author".

The ’@context’ array is applied to map to Schema.org terms, already defined.
More specifically, the @context element maps the terms used for the graph
entities to their corresponding URIs that define their semantics, and among the
most used contexts, we have Schema.org and SKOS. In this way, it is possible
to use shorter keys instead of full URIs, making the text more readable and
organized.

Some examples of applications of RO-Crate for data, datasets and workflows
are: WorkflowHub13 a FAIR workflow registry that through the use of Work-
flow RO-Crates allows to package an executable workflow with all necessary
documentation; Life-Monitor14 a testing and monitoring service for computa-

13https://about.workflowhub.eu/
14https://crs4.github.io/life_monitor/

29

https://about.workflowhub.eu/
https://crs4.github.io/life_monitor/

3.5. THE RESEARCH OBJECT

tional workflows; Language Data Commons of Australia Program (LDaCAP)15
is a project using RO-Crate as an interchange and archive format for language
data; and ROHub16 a platform developed to support the creation, sharing, and
management of scientific work and operational processes via Research Objects.

15https://www.ldaca.edu.au/
16https://www.rohub.org/

30

https://www.ldaca.edu.au/
https://www.rohub.org/

4
Methodology

.

4.1 Citation Generation and Persistence

The process of creating the citation involves several phases that include data
gathering, creation of the output resources, publication on Zenodo, and the
construction of the textual citation.

This chapter will delve into each of these steps in detail.

4.1.1 Data gathering

The first phase in the generation of the citation involves gathering data from
the web ranking, which is a fundamental function of the tool. The process begins
when the user interacts with the tool while on the search page or result page of
one of the supported systems, which is displaying the results obtained from a
search query prompted by the user.

The tool uses web-scraping techniques and analyzes the Document Object
Model (DOM) of the webpage to capture the necessary data. The DOM is
a programming interface for HTML and XML documents, defining the docu-
ment structure and how it can be managed. Using the DOM it is possible to
access and manipulate all the elements of the HTML including IDs, classes,
tags, attributes, and styles as well as the elements themselves. The main meth-
ods used for this purpose are getElementById(), getElementsByClassName(),

31

4.1. CITATION GENERATION AND PERSISTENCE

getElementsByName(), and getElementsByTagName(), which are respectively
returning an element with the given id and all the elements with the given class
name, name value, and tag name. The first two methods are crucial and largely
adopted for the data gathering phase of the tool being presented.

The RDF Graph’s basic structure is defined to organize and represent data,
the graph is then populated with the collected data. The graph’s structure
incorporates classes, data properties, and object properties (see figure 4.1).

The model for the Ranking Citation Ontology was created with the use of a tool
called Protégé1. Protégé is an open-source ontology editor that provides a graph-
ical interface for easily creating and editing ontologies stored with one of the
supported formats. This software was developed by the Standford University
School of Medicine and initially released in 1999, and it offers both desktop and
web-based (called WebProtégé) versions. Apart from the Ontology creation and
graphical interface, other features provided by Protégé include customization
and extension of the tool with plugins, inferencing and reasoning capabilities
to detect implicit relationships and logical inconsistencies in the ontology, vi-
sualization tools for the ontology structure, and integration with external data
sources, databases, and web services. Additionally, it supports OWL (Web On-
tology Language) and RDF languages and allows to export the created ontology
and to import of external ontologies using standard ontology formats such as
Turtle, RDF/XML, and JSON-LD syntax.

The first step in the generation of the model for the ranking citation task is
the creation of the classes with Protégé. The classes considered for modeling
the citation are the following:

• Search Query: specifies the query performed by the user and executed
on a specific System. The data collected for the search query comprises
the query text, the language in which it is written (actually taken from the
navigator language), and most of the search filters applied for that specific
query, each system manages the filters for the research in a different way.

• System: encapsulates the description of the service adopted for web re-
search. It is limited to the currently supported systems: Google Scholar,
Google Search, Bing, Scopus, and Twitter. The data collected for this type
of entity is limited to the name of the system and its base URL.

• Ranking Snapshot: represents the snapshot of the ranking, encapsulating
the properties of date and time at which the citation is captured, and the
number of pages captured.

1https://protege.stanford.edu/

32

https://protege.stanford.edu/

CHAPTER 4. METHODOLOGY

System executedBy

hasSettings

Search
Query

performs

hasSettings

SubClassOfUser

produces

hasResult

fromSystem

Ranking
Snapshot Settings

rdf:rest

Search
Result

belongsTo

rdf:first

rdf:List

dateTime

nPages
schema:title

nPages

schema:url

authors

publicationYear

currentPage

browser

browserVersion

browserLanguage

userOS

isLogged

userNamequeryText language filters
foaf:

Person

Figure 4.1: A graphical representation of the Ranking Citation Ontology

• Settings: specifies the general settings of the browser in use. It collects in-
formation about the browser’s version and language, the user’s Operating
System, and if the user is logged in.

• User: indicates other relevant information about the user consisting of the
username and its ORCID.

• Search Result: models each result that appears during the research. The
properties captured are the result’s URL, title, the authors that contributed
to it, the publication year or period, and the result page in which it was
found.

In addition to the above-mentioned classes there is the Person class. This
class was taken from the FOAF ontology and is connected with the relationship
subClassOf with the User class, indicating that the user of the system is an
actual person.

In the context of ranking citations, it is essential to keep track of the order
in which the results appear. Representing ordered data with RDF language is a
non-trivial task but there are a variety of methods dealing with that, including
Collections and Containers. RDF Collections are defined linked lists consist-
ing in the chaining of nodes of type rdf:List. They are defined by three key

33

4.1. CITATION GENERATION AND PERSISTENCE

resultList
rdf:List

result1
SearchResult

rdf
:fir

st

_:bnode1
rdf:Listrdf:rest

result2
SearchResult

rdf
:fir

st

_:bnode2
rdf:Listrdf:rest

result3
SearchResult

rdf
:fir

st

rdf:nil
rdf:rest

Figure 4.2: A graphical representation of the ordering of the results using RDF
Collections

properties: rdf:first pointing to the actual item in the list, rdf:rest pointing
to the next node of the collection, and rdf:nil indicating the end of the list.
Every node of type rdf:List has a rdf:first object and is connected to the
next node(list) with the rdf:rest relationship, until the last node in the ordering
which points to the rdf:nil node. In the case of the Ranking Citation tool, the
items in the list are the instances of the SearchResult class. A first instance of
the class rdf:List is created and it is the one connected to the RankingSnapshot
class. All the other interconnected nodes of type List are blank nodes, which
are only used for ordering reasons and don’t have a global scope, and as al-
ready explained the last blank node points to the null node representing the
ending of the ordering. Figure 4.2 shows how the RDF Collection mechanism is
implemented in the developed tool.

Together with the description of the classes above there are listed also the
properties relative to the classes themselves. These properties are called Data
Properties and are used to enrich the content of each concept with attributes and
values relevant to it. The relationships interconnecting classes to data properties
or other classes are named Object Properties. The Object and Data Properties
used for modeling the Ranking Citation Ontology are described in detail with
their characteristics in the tables 4.1 and 4.2 respectively. The domain of these
properties indicates the class or union of classes to which an instance using the
given property is belonging. In the case of Object Properties, the range defines
the classes for values that properties can assume. Instead for the Data properties,
the type is used to state the specific data type and values that can be assigned to
the property.

34

CHAPTER 4. METHODOLOGY

Object property domain range

belongs to List Ranking Snapshot
executed by Search Query System
first List Search Result
from system Ranking Snapshot System
has result Ranking Snapshot List
has settings Search Query or User Settings
performs User Search Query
produces Search Query Ranking Snapshot
rest Search Result List

Table 4.1: Object Properties

4.1.2 Creation of the output resources

Once the data is captured, it is organized and stored in an RDF graph rep-
resented as a JavaScript Object, which is then parsed into a JSON-LD Object.
For this purpose, a Javascript array is created and all the data is pushed into it
with an automated process that cycles through the ranking results and repeated
for all the selected pages. This array is then parsed into JSON-LD with the
Json.stringify() function. More details about this on the next chapter. The
JSON-LD object includes a @context element that maps unique long URIs to local
attribute names, which are then used in the @graph array. The attribute names
used are reported in table 4.3, and they enable the integration of well-known
ontologies and vocabularies, such as RDF Schema, schema.org, and the FOAF
vocabulary among others.

Moreover, the context contains the namespace ’rco’, which is used to indicate
the base URL2 of the Ontology model: the Ranking Citation Ontology model.
The URL directs to the web page containing the documentation which provides
a clear understanding of all its components, which were described in chapter
4.1.1.

The documentation for the ontology model is generated with Live OWL
Documentation Environment (LODE)3, an online tool that automatically extracts
classes, object properties, and data properties along with named individuals,
annotation properties, general axioms, and namespace declarations, and renders

2https://rankingcitation.dei.unipd.it/ontology/
3https://essepuntato.it/lode/

35

https://rankingcitation.dei.unipd.it/ontology/
https://essepuntato.it/lode/

4.1. CITATION GENERATION AND PERSISTENCE

Data property domain type

authors Search Result [string]
browser Settings string
browser language Settings string
browser version Settings string
current page Search Result int
date time Ranking Snapshot string
filters Search Query [string]
is logged Settings boolean
language Search Query string
n pages Ranking Snapshot int
name System string
publication year Search Result gYear
query text Search Query string
title Search Result string
url Search Result any uri
user name User string
user OS Settings string

Table 4.2: Data Properties

namespace url

foaf http://xmlns.com/foaf/0.1/
owl http://www.w3.org/2002/07/owl
rco https://rankingcitation.dei.unipd.it/ontology/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs http://www.w3.org/2000/01/rdf-schema
schema https://schema.org/

Table 4.3: JSON context

them as an ordered list in a human-readable HTML page that can be copied and
used freely. To create the documentation with LODE the user simply needs
to put the link of the ontology, which has to be publicly available, and after
selecting a few optional parameters it is possible to let the service proceed in
the automatic extraction and creation of the documentation. By integrating an
ontology generated with Protégé with the documentation obtained from LODE
it is possible to obtain an optimal human-readable resource that enhances the
comprehension of the model, and that can be easily integrated into any web
page with few adjustments.

One additional feature provided by the extension is the generation of one

36

CHAPTER 4. METHODOLOGY

or multiple screenshots of the web pages containing the results. This has the
objective of creating human-readable resources for the citation object offering a
visual representation of the web page at the time of capturing which includes
additional resources like images and videos that are not collected with the data
for the results but can be helpful for providing context. To protect user privacy
some of the user’s data displayed by the systems are removed from the generated
image. For example, when users are logged into the Google Search system, their
current location is displayed at the bottom of the page. The tool contrasts this
behavior by simply removing that specific element from the DOM of the web
page.

The final resource that is generated by the tool is the metadata for the
RO-Crate, which describes the structure of the deposit. It specifies all the
names and paths of the screenshots and output data, attributing them to the
author, who is stored along with its ORCID. The ro-crate-metadata.json
file which can be seen in 3.5 is a typical example of the output file describ-
ing the organization of the Research Object. More in detail, the @context
is linking the metadata to the RO-Crate definition on the web at the URL
https://w3id.org/ro/crate/1.1/context. The @graph array is composed of
different entities, the first of them has id "./" and indicates the root directory
of the object and is enhanced with other metadata such as the date of publica-
tion ("datePublished"), which is computed during the execution of the code,
and the "hasPart" attribute indicating the ids of the output files. The second
entity refers to the metadata file itself and is linked to its specification on the
web. The following entities are the file containing the data collected in the RDF
graph and the screenshot. Both of these are enriched with the attributes relative
to the author, name, and encoding format namely "application/json" and
"image/png". The final entity is the user, who is the creator of the citation and
is identified through its ORCID, name, and affiliation.

Before the publication of the resources, it is necessary to create the files from
the structures defined above. Indeed until this step, all the output files are
simply stored as JavaScript arrays/objects in the code, except for the image files.
Storing the ro-crate-metadata.json and output-data.jsonld files requires
first parsing them as JSON objects with the function JSON.stringify() which
converts Javascript values into JSON strings. The parsed files are then saved
as Blob objects and subsequently encapsulated into JavaScript File objects. This
step is essential to avoid the need to download the resources in the user’s local

37

https://w3id.org/ro/crate/1.1/context

4.1. CITATION GENERATION AND PERSISTENCE

Figure 4.3: Graphical representation of an example of the output files contained
in the deposit

storage, and this allows to process the files directly in the extension’s code to
proceed with the publication.

4.1.3 Publication on Zenodo

Once all the output files and resources are generated, the next step is to
publish them on Zenodo.

Zenodo [36] is a multi-disciplinary open-access repository developed for the
Open Access Infrastructure for Research in Europe (OpenAIRE) program and
maintained by CERN. It stores datasets, documents, and other research material,
providing a platform for researchers to share, preserve, and cite their scientific
outputs while promoting the use of Open Data. Zenodo allows researchers
to create their own folders, called deposits, assigning a unique DOI to each
of them. These deposits, which can be cited thanks to their DOI, allow for
permanent storage of data and are enhanced with a versioning feature to keep
track of the changes, which is applied also for reproducibility purposes.

The tool prepares the deposit’s metadata, which includes the title, notes,
description, keywords, and authors. The title is customized based on the query
text and the system used for capturing the web ranking. In addition to this, the

38

CHAPTER 4. METHODOLOGY

description contains details about the Zenodo User that is publishing, including
its affiliation, the time and date of the publication, and the number of pages
captured, together with the notes that specify the creators of the tool being used.
The list of keywords is used to facilitate the search of the deposit created with
the tool and includes some predefined keywords, such as the name of the tool
(Unipd Ranking Citation Tool), and others that can be added by the user. Next,
with the use of Zenodo API, the deposit is created, and all the files are uploaded
and finally published with their metadata, making them permanent.

Thanks to the DOI assignment, versioning management, metadata support,
and principles of open access to data, Zenodo represents an optimal choice
for the task of citing web rankings, providing persistence and reproducibility
capabilities, in a way that aligns with best practices for data sharing and scholarly
communication.

Managing citations and testing with Zenodo Sandbox

As stated previously, once the deposit with the data is published on Zenodo,
the published resource is assigned its unique DOI and becomes permanent,
making the removal of the deposit virtually impossible. In this context, it
is important to consider potential errors related to connection issues, server
issues, or user actions while utilizing the extension, and that could prevent the
correct publication of the resource. To overcome this challenge, two solutions
are implemented.

Before the publication in Zenodo, the tool incorporates a mechanism to
generate temporary citations associated with the uploaded deposit, which is not
yet published and therefore lacks a DOI. While this temporary citation cannot
be used as a formal textual citation, it serves as an intermediate step. Users
can interact with the temporary citation, making corrections or additions. Once
satisfied they can proceed to publish the deposit and generate the proper citation.
Further chapter 5.3.5 describes more in detail the process for generating these
temporary citations and their differences from the permanent citations, which
can actually be used.

To further facilitate the evaluation and refinement of the extension, users are
provided with the option to choose between using Zenodo or its trial version
called Zenodo Sandbox. Zenodo Sandbox [37] is a clone of Zenodo, specifically
designed to test applications. The testing environment is useful for practicing

39

4.1. CITATION GENERATION AND PERSISTENCE

with the Zenodo interface and API protocols, and to understand the deposition
and management capabilities of the platform, before working with the actual
research data. Everything on the Sanbox works in the same way as in the
standard Zenodo, except that once a resource is published the DOI returned
in the response’s metadata is a fake one. This means that the user is able
to experiment with the tool using Sandbox and generate the citation and the
deposit, but the generated citation will not be permanent and therefore not
usable for referencing purposes. Preserving a resource on Zenodo Sandbox is
not a safe strategy since the sandbox environment can be cleaned at any time
and the stored data could be deleted.

The two features specified above enable researchers to effectively manage the
publication process, providing flexibility for revisions and a controlled testing
environment.

4.1.4 Construction of the textual citation

Upon successful publication on Zenodo, the researcher receives a response
back, which contains relevant information for constructing the citation. The re-
sponse serves as the foundation for constructing the textual citation. It includes
the deposit’s DOI, a list of the creators/authors, the title of the deposit, and the
publication date/period.

The styles and formats used for the text of data citations are a crucial mat-
ter in scholarly communication. There are multiple data citation formats to
choose from but it is important that the citation includes at least the following
information:

• creator(s) and contributor(s)

• date of publication

• title of dataset
• publisher

• identifier (DOI) and/or URL of the resource

The choice of the style may depend on the discipline of the research, examples
of the most used formats are displayed in table 4.4. The format for the presented
tool was chosen as the most suitable for the web ranking citation task, keeping
only the essential information but also the most relevant. Examples of it are
shown in the next chapters.

40

CHAPTER 4. METHODOLOGY

Citation format Example

APA (6th edition) Smith, T.W., Marsden, P.V., & Hout, M. (2011).
General social survey, 1972-2010 cumulative file
(ICPSR31521-v1) [data file and codebook]. Chicago,
IL: National Opinion Research Center [producer].
Ann Arbor, MI: Inter-university Consortium for
Political and Social Research [distributor]. doi:
10.3886/ICPSR31521.v1

MLA (7th edition) Smith, Tom W., Peter V. Marsden, and Michael
Hout. General Social Survey, 1972-2010 Cumula-
tive File. ICPSR31521-v1. Chicago, IL: National
Opinion Research Center [producer]. Ann Arbor,
MI: Inter-university Consortium for Political and So-
cial Research [distributor], 2011. Web. 23 Jan 2012.
doi:10.3886/ICPSR31521.v1

Chicago (16th edition) Smith, Tom W., Peter V. Marsden, and Michael Hout.
2011. General Social Survey, 1972-2010 Cumulative
File. ICPSR31521-v1. Chicago, IL: National Opin-
ion Research Center. Distributed by Ann Arbor, MI:
Inter-university Consortium for Political and Social
Research. doi:10.3886/ICPSR31521.v1

IEEE T. W. Smith, P. V. Marsden, and M. Hout, "General So-
cial Survey, 1972-2010 Cumulative File. ICPSR31521-
v1. Chicago, IL: National Opinion Research Cen-
ter. Distributed by Ann Arbor, MI: Inter-university
Consortium for Political and Social Research," doi:
10.3886/ICPSR31521.v1.

Table 4.4: Data citation formats

For each displayed citation, the tool provides functionality to copy and re-
move the citation, although, once published, it cannot be truly removed from
the upload destination but only from the extension. The citation built upon
these elements ensures that the researcher’s work is properly attributed, cited,
and referenced.

41

5
System Design and Development

The model proposed in the preceding chapters has been implemented as a
Chrome extension/plugin, to enhance accessibility and facilitate its usage for
researchers. The extension is currently available on the dedicated web page
https://rankingcitation.dei.unipd.it/, which provides detailed instruc-
tions on the installation process and how to effectively utilize it.

This chapter will delve into the specific aspects of the extensions’ architecture,
following the workflow of the tool.

5.1 Overview on Chrome extensions

Google Chrome extensions are programs installed in the Chrome web browser
that enhance and extend its functionalities and features. Built upon the same
web technologies adopted for the development of web applications, mainly
HTML, CSS, and JavaScript languages. Chrome extensions have access to all
the JavaScript API available on the web, in addition to Chrome APIs specifically
built for extensions. Among them, the chrome.scripting API is used to execute
scripts injected in the web pages, the chrome.storage API to store, retrieve and
track changes to the user data, and the chrome.tabs API that enables interaction
with the Chrome tabs system for creating, modifying, and rearranging tabs.
Many of the Chrome APIs use Asynchronous methods that return a Promise
once an operation is finished.

The basic structure of each Chrome extension includes the following files:

43

https://rankingcitation.dei.unipd.it/

5.1. OVERVIEW ON CHROME EXTENSIONS

• The manifest (manifest.json) file serves as the backbone of the Chrome
extension. It is the only required file and it is located in the root directory.
Contains the configuration details, such as the extension’s name and ver-
sion, declares the permissions, and identifies the content and background
scripts.

• The service worker or background script handles and listens for browser
events, that can run also when the user is not interacting with them. It is
supposed to act as a central hub for the extension and is able to make API
requests and communicate with the other components.

• Content scripts are injected into the web pages, enabling them to edit and
manipulate the page’s content and behavior. While content scripts have
limited access to the Chrome APIs, they can communicate with the service
workers.

• The popup provides a User Interface (UI) to interact with the extension
and access its features. Additional UI components, such as options pages

and context menus, can extend the functionality of the extension.

Typically, a Chrome extension is developed to accomplish a specific task, it
can be composed of multiple modules but it should serve a single purpose.

Developing the proposed tool as a Chrome extension offers the advantage
of quick accessibility through its popup, eliminating the need to develop and
connect to an external web page.

5.1.1 Message Passing

In the process of the generation of the citations using the Unipd Ranking Ci-
tation tool, a significant amount of information and data are exchanged between
the scripts injected in the web pages and the background and popup scripts. The
communication relies on the message-passing mechanism, provided by Chrome
extensions, which enables seamless interaction and data sharing among the dif-
ferent components of the extension.

Message passing consists of a two-sided communication between the exten-
sion and content scripts, where each side can listen or send messages to the
other end, and respond on the same channel. Two models of communication
can be established, simple one-time requests and long-lived requests, with the
latter allowing the exchange of multiple messages within the same context.

Simple one-time requests are the primary methods used by the tool, allowing
for the transmission of a single message to another script and receiving at most
one response back. This is achieved using the runtime.sendMessage() and
tabs.sendMessage() methods. The difference between the two is given by the

44

CHAPTER 5. SYSTEM DESIGN AND DEVELOPMENT

fact that sending messages to the content script requires knowing the tab where
the script is injected. On the other hand, listening to messages can be done
with the runtime.onMessage event listener. The responses are handled using
Promises.

Messages exchanged between the components are JSON Objects of any type.
In the context of the Unipd Ranking Citation tool, they are composed of a mes-
sage/command property that states the intended action, and a payload property
that carries the necessary data. This structure for the messages enhances code
organization and facilitates error checking, ensuring a robust and manageable
communication system.

5.1.2 Asynchronous methods and Promises

The development of Chrome extensions involves the implementation of nu-
merous event listeners and API calls, many of which rely on asynchronous
methods.

Asynchronous programming is a JavaScript technique that enables the pro-
gram to execute time-consuming tasks without blocking the execution of other
tasks. Instead of waiting for a task to finish, asynchronous methods enable
the code to execute tasks concurrently. Asynchronous programming serves
as a replacement for synchronous programming, preventing the browser from
becoming unresponsive during long-running operations.

Promises are the foundation for managing asynchronous operations enabling
the handling and tracking of their results. Promises are objects returned by
asynchronous functions and represent the current state of the operation. They
can assume one of three states: Pending, the initial state before the Promise
succeeds or fails; Resolved, indicates that a Promise is completed; and Rejected,
indicates a failed Promise. Promises allow for chaining operations and handling
success or error cases using the .then() and .catch()methods.

In the context of Chrome extensions, asynchronous methods and Promises
are essential for performing background tasks such as handling page events
like page loading, tabs creation, and receiving or uploading data from and to
external sources.

45

5.2. THE CHROME EXTENSION CLI FRAMEWORK

5.2 The Chrome Extension CLI Framework

By default, Chrome extensions cannot import external JavaScript libraries
and Node modules. To address this limitation, there are different solutions
and workarounds, the one integrated into this tool is the Chrome Extension
Command Line Interface (CLI)1, a command-line development tool that simpli-
fies the setup, development, and deployment process.

The framework includes the Webpack, a module bundler that is able to
generate a single JavaScript file containing all the packages included through the
require() function, solving the previously mentioned problems. Additionally,
The Chrome Extension CLI provides a project template to start developing the
extension, defining its structure with essential folders and source files. The
"src" folder contains the background, content, and popup scripts, along with the
stylesheets for the HTML pages. The "public" folder includes the user-accessible
files, such as the HTML files for the popup and the code relative to the options
page. It also stores the icons and images’ directory and the manifest file for
the configuration. Additionally, it provides access to Node and Node Package
Manager (NPM) for efficient dependency management.

The Chrome Extension CLI framework allows for a quick and simple de-
velopment process, offering an automatic reload feature, that ensures that any
code change is immediately reflected in the extension. A "build" folder is con-
tinuously updated encapsulating all the files that constitute the compiled and
packaged version of the extension, ready for deployment.

5.3 Workflow and Architecture

In this section, we will delve deep into the architecture of the Unipd Ranking
Citation tool, outlining the various steps involved in the process of generating
the citation. Figure 5.1 presents a detailed image of the architecture, illustrating
the key steps.

1https://github.com/dutiyesh/chrome-extension-cli

46

https://github.com/dutiyesh/chrome-extension-cli

CHAPTER 5. SYSTEM DESIGN AND DEVELOPMENT

output-data

[5]
[11]

[12]

Popup
Cite this ranking!

Your Citations

popup.js
runtime.sendMessage
storage.sync.get
confirmation message
 => Fetch API: publish

[13]
[4]

[Json Object]

contentScript.js
runtime.onMessage
document.querySelectorAll

[6]

Rank1

Rank2

Rank3

QUERY

filters

Scholar

[6]

Options

Other Keywords

Zenodo Metadata

Other Auhtors

Pages

SAVE

options.js
storage.sync.set
storage.sync.get

Storage API

[2]

[3]
Background

runtime.onInstalled

[8]

tabs.create
scripting.executeScript

RO Crate

Fetch API
 - deposit, files

Rank1

Rank2

Rank3

QUERY

filters

Scholar

Rank1

Rank2

Rank3

QUERY

filters

Scholar

getScholarRanks.js
document.querySelecto
html2canvas

getScholarRanks.js
document.querySelector
html2canvas

getScholarRanks.js
document.querySelectorAll
html2canvas

Rank1

Rank2

Rank3

QUERY

filters

Scholar

[1]

"START"

[7]

[9]

[10]

- Zenodo metadata
- DOI for citation

Figure 5.1: The Unipd Ranking Citation Tool architecture diagram

5.3.1 Options Menu and Setup

The first phase begins with the installation of the tool on the Chrome web
browser. The background script activates the onInstalled listener (step [1]), a
runtime listener that is fired when the extension is installed, updated, or when
the Chrome browser is updated. This listener triggers the openOptionsPage()
function, a standard function of the extension that directs the user to the options
page specified in the manifest file (step[2]).

The options page is utilized as a configuration page for the user’s settings and
preferences. Figure 5.2 displays all the settings accessible from the options page.
The Zenodo metadata section allows users to configure the account details for
Zenodo or Zenodo Sandbox, including the username, ORCID, affiliation, and
personal access token. The keywords section allows the user to include person-
alized keywords in the deposit, in addition to the predefined ones. The Other
Authors section enables users to specify additional authors or collaborators for
attribution of the research, every new author requires the name and ORCID for

47

5.3. WORKFLOW AND ARCHITECTURE

(a) (b)

Figure 5.2: Unipd Ranking Citation Tool: Options page.

proper publication. Additionally, the options page presents a section where it is
possible to select the desired number of pages to consider for capturing rankings
during the research process.

Once the required input fields are filled, users can save the settings by click-
ing on the dedicated Save button at the top of the page. This action triggers
the saveOptions() callback function defined in the script, which utilizes the
Chrome Storage API (step[3]) to save the data. The Chrome Storage API is
divided into four storage areas: local, sync, session, and managed. The local
storage stores data locally with a limit of 5MB, and the data is cleared when the
extension is removed. The sync storage instead syncs the data into the Chrome
browser where the user is logged in if syncing is enabled, otherwise, it works the
same as local storage. The Unipd Ranking Citation tool primarily uses sync stor-
age to facilitate usage across different devices. To save the data, the tool Storage
API provides the storage.sync.set()method, while the storage.sync.get()
method retrieves the data from the saved keys. This function is used to fill the in-
put fields every time the options page is displayed, with the information defined
previously.

The correct execution of the saving process is indicated through a message
that disappears after a short time.

48

CHAPTER 5. SYSTEM DESIGN AND DEVELOPMENT

Figure 5.3: The Unipd Ranking Citation Tool popup’s page

5.3.2 The extension’s popup

Once the configuration settings are filled with the required fields, the user is
able to access the popup page, which provides a user interface to interact with
the extension, accessible by clicking on the extension’s icon. The popup content,
shown in Figure 5.3, displays the title ’Ranking Citation’ along with the options
button allowing to access the previously described options page.

Below that, the popup page is divided into two sections. The first section
includes the button for capturing the citation, which is available only if the cur-
rent page matches one of the supported search systems (Google Scholar, Google
Search, Bing, Scopus, Twitter). This check is performed using the match()
method, comparing the Uniform Resource Locator (URL) with predefined reg-
ular expressions. If the page is supported, the users can proceed to capture the
citation by clicking on the button. Instead, if the page is not supported, a red
message is displayed without the button, indicating that the citation cannot be
generated on the current page.

The second section of the popup, with the title ’Your Citations’, contains a

49

5.3. WORKFLOW AND ARCHITECTURE

list of all the available citations, including both temporary and proper citations.
Temporary citations are displayed as yellow cards, indicating that they are up-
loaded but not yet published. These citations also include a publish button that
once clicked allows the user to definitively publish them. On the other hand,
proper citations are represented as blue cards, meaning that they are ready to
use, and include a button to copy the text of the citation in the navigator clip-
board. Additionally, some control systems are implemented and displayed in
the popup’s capture button. More in detail, when the user clicks on the Capture
button, the button text changes from ’Capture this citation!’ to ’Capturing the cita-
tion...’ to provide visual feedback that the process is in progress. Additionally,
the button becomes non-clickable to prevent multiple simultaneous capture re-
quests. If any error occurs during the process, the popup is able to capture it
and display an error message informing the user about the encountered issue.

The errors captured include upload and publication errors on the upload
platform chosen, and the errors coming from background and content script. If
any of those occur, it is sufficient to reload the page and try again, otherwise for
more complex errors some code corrections may be needed.

5.3.3 Capturing and Processing Data

Clicking the button displayed on the popup starts the process of capturing
the data (step[4]).

First, a message is sent from the popup script to the content script, which
is injected into the currently visualized page, using the tabs.sendMessage()
method. This method requires the id of the tab where the content script is in-
jected, which is determined by querying the active pages using thetabs.query()
method. On the other side, the content script checks for any message containing
the ’START’ keyword (step [5]), using the runtime.onMessage event listener.
In this stage, the content script captures the data from the web page (step[6]),
following the process specified in chapter 4.1.1, with the exception of collecting
the ranking results.

The specific techniques for acquiring information may vary depending on
the search system in use, which will be discussed in later chapters. Once the data
is successfully captured, the content script sends a response message back to the
popup, containing the RDF graph stored as a JSON Object (step[7]). The popup
script directly forwards the response’s data to the background script using a

50

CHAPTER 5. SYSTEM DESIGN AND DEVELOPMENT

one-time request including it in the payload along with the command keyword
’CREATE RO’.

After receiving the message, the background script executes thegetPagesRanks()
function. This function first opens the new pages where the ranking results will
be captured, using the tabs.create() method (step[8]). The number of new
pages created depends on the value specified in the options page.

In this step it is important to note two aspects: one is that the user is
able to specify filters during the research, affecting the rankings of the re-
sults. These filters are transported to the newly opened pages, ensuring con-
sistency. The second aspect to take into account is that a new script is in-
jected into each of the newly opened pages (step[9]). This is achieved with
the scripting.executeScript() method, which requires, as a parameter, the
tab where each script needs to be injected. Each injected script has access to
the DOM content and accomplishes the task of capturing the remaining data,
consisting of the actual ranking of results.

Once the injected scripts finish collecting the ranking data, they each send a
message to the background script containing the collected data in the payload.
The background script waits until all the scripts accomplish their task before
proceeding with the next steps in the citation generation process.

5.3.4 Upload Phase and Data preparation

The next stage is the upload phase, initiated when calling the uploadData()
function. In this step, the information provided on the options page is retrieved
using the storage.sync.get() method. Providing the predefined keys it is
possible to access the personal access token, name of the Zenodo user, affiliation,
ORCID, keywords, preferred upload destination, additional authors, and the
number of pages to capture.

The next step (step[10]) involves creating the Research Object Crate (RO-
Crate) following the process described in section 4.1.2. The RO-Crate defines
the structure of the output files and provides attribution to the authors speci-
fied in the options. The gathered data is then converted into JSON, with the
JSON.stringify() function, stored into a Blob object, and then converted into
a JavaScript File variable.

The output files are sent to the server using the JavaScript Fetch API, which
provides access and manipulation of parts of the communication protocol. The

51

5.3. WORKFLOW AND ARCHITECTURE

fetch() function is used to connect to the Zenodo REST API, which allows
the uploading and publishing of research outputs, retrieving published records,
and downloading/uploading of files. The first fetch call generates the deposit
and returns the ID for the deposit. Subsequent calls are made to upload the
’output-data.jsonld’ file, containing the collected data for the RDF graph, and
the ’ro-crate-metadata.json’ file (step[11]). The Fetch API is Promise-based and
resolves in a Response object representing the response to the request that is
sent. The fetch() promise only rejects in case of network errors.

The tool handles various errors that can occur (see table 5.1), including HTTP
errors, and sends them to the popup script using a one-time request with the
keyword ’ERROR’. The popup script then displays them through alerts and by
changing the capture button accordingly.

If the upload of the first two resources has been successful, the background
script sends a message to the injected pages to initiate the process of capturing
screenshots for each page. Each injected page includes a ’runtime.onMessage’
listener that waits for the keyword ’ADD SCREENSHOT’ along with the page
number. Upon receiving this message, the html2canvas method, from the
homonym library, is invoked.

Thehtml2canvasmethod2, combined with theHTMLCanvasElement.toBlob()
method is able to render the body element of the HTML page as a canvas image.
This image is then converted into a Blob Object and further transformed into a
JavaScript File variable. The file is then uploaded using the fetch() call, with the
deposit ID and access token passed as the payload from the background script.

Error Name

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
409 Conflict
415 Unsupported Media Type
429 Too Many Requests
500 Internal Server Error

Table 5.1: Uploading Errors

2https://html2canvas.hertzen.com/

52

 https://html2canvas.hertzen.com/

CHAPTER 5. SYSTEM DESIGN AND DEVELOPMENT

5.3.5 Publication and Generation of the Citation

The final phase starts once all the screenshots have been successfully up-
loaded to the deposit in Zenodo or in Zenodo Sandbox. The popup script is
notified with a simple one-time request containing as payload the deposit ID,
access token, and upload destination, necessary for the publication. To ensure
the user’s intention to proceed with the publication, a confirmation message is
displayed on the popup page.

If the user agrees to publish, a fetch call is made to post the deposit and create
the permanent citation (step[12]). The text of the citation is generated using the
information contained in the response of the fetch call, including the deposit
DOI, creators, title, and publication date. Additionally, it is specified the upload
destination and the link to the DOI of the resources. The updateCitation()
function is called to generate the blue card for the permanent citation. This card
also contains a button to remove the citation from the extension and a button
to copy the text of the citation into the clipboard. The card is then inserted in
the ’Your Citations’ section, which displays the citations captured previously
(step[13]).

If the user chooses not to publish the deposit, the popup script generates the
temporary citation. This citation appears as a yellow card with a remove button
and a button that calls the publishTempCitation() function, which handles the
publishing at a later moment. The text of the temporary citation is the same
as the text of a proper citation, except for the link that contains the deposit id
instead of the DOI for the resources.

The storage.sync.set()method is used to store the citations (both tempo-
rary and permanent) with their respective deposit ID. Then thestorage.sync.get()
method allows retrieving each saved citation and displaying that on the popup.
The storage.sync.remove(key) method, triggered with the remove button, is
used to delete the citation with the specified key. This action doesn’t actually
delete the deposit from the upload destination, but only the citation reference
from the extension.

5.4 Considerations on the supported platform

During the development of the Unipd Ranking Citation tool, the systems cho-
sen to support the citation of web rankings were Google Scholar, Google Search,

53

5.4. CONSIDERATIONS ON THE SUPPORTED PLATFORM

Scopus, Bing, and Twitter. These platforms were selected for their popular-
ity and to provide accessibility both for academic researchers, students, and
professionals, but also for general users seeking citation-related information.

A key aspect in the tool’s development was the reliance on data extracted
from the DOM components of each platform. As web pages’ structure frequently
changes, it is essential to maintain and update the tool to ensure compatibility
with the evolving platforms.

To adapt the tool to each supported system, specific code sections were
implemented to handle the different filters available on each platform (see table
5.2). The filters allow users to customize the search criteria to find specific
results. However, the considered systems are provided with different levels
of filtering. For instance, Google Scholar and Scopus provide more advanced
filtering options, while Google Search and Bing have a more limited selection.

System Filters captured

Google Scholar include patents
since/until year
sort by relevance/date
result type (any/review articles)

Google Search and Bing from past hour/day/week/month/year
since/until date

Scopus open/limited/closed access
from/to year
exclude/only publication year

Twitter display top/latest/people/images/videos
exclude/only replies and links
since/until date

Table 5.2: Available filters for each system

Furthermore, each supported platform requires specific code to capture
the ranking results. The background script is able to check the name of the
system in use and select the correct scripts to inject into the page (select-
ing one from getScholarRanks.js, getGoogleRanks.js, getScopusRanks.js,
getBingRanks.js, or getTwitterRanks.js). While the structure of the scripts
remains consistent, the methods for extracting elements from the DOM differ
depending on the platform. For instance, the script for Twitter doesn’t allow
capturing multiple pages since Twitter’s feed can only be viewed by scrolling
the page, meaning that the number of results captured is limited compared to
the other systems.

54

6
Use Case and Applications

The following section presents a practical example of the application of the
Unipd Ranking Citation Tool, providing a step-by-step explanation of the process
along with screenshots for reference.

To begin, the user must install the extension on the Google Chrome browser.
The page located at the URL
https://rankingcitation.dei.unipd.it/ is a dedicated web page built with
HTML, CSS, and JavaScript, to present the tool (Figure 6.1). The page offers a
description of the main features, a link to the Ontology documentation, and a
link to the Zenodo landing page. Moreover, the page contains an installation
guide and a brief “Get Started” guide that explains how to use the extension.

The installation of the tool is accomplished by following the provided link,
which directs to a shared Google Drive folder1, which provides only visual-
ization (and download) access. The folder contains the build version of the
extension that can be downloaded on the local machine in the compressed zip
format. After extracting the folder, it is possible to navigate to the Chrome Exten-
sion page that can be reached by either entering the URL chrome://extensions
on a new tab or by clicking on the Extensions menu puzzle button and selecting
the “Manage Extensions” option at the bottom of the menu. The user must
enable the developer mode, on the top right of the page, and click on the “Load
unpacked extension” that opens a window to select the extension directory from

1https://drive.google.com/drive/folders/1UV2INVtBfrkVs6UnNgkcQZ7cgYCNhIUe

55

chrome://extensions
https://drive.google.com/drive/folders/1UV2INVtBfrkVs6UnNgkcQZ7cgYCNhIUe

Figure 6.1: Image of the web page for the Unipd Ranking Citation Tool, available
at https://rankingcitation.dei.unipd.it/

the previously downloaded folder. It is important to note that the correct exten-
sion directory is the one containing the manifest.json file. At this point, the
extension should be correctly installed.

As soon as the installation is completed, the extension’s options page is pre-
sented, as shown in Figure 5.2. As explained in chapter 5, all the information
required on this page must be provided to use the extension. The access token
can be obtained from one of the two upload destinations, Zenodo or Zenodo
Sandbox. The two platforms do not share the same information, since Sand-
box is only a trial version, meaning that a user who wants to publish on both
of them, will need two create two accounts. To produce the access token for
uploading and publishing the deposits, the user needs to navigate to the “Ap-
plications” page of the personal account and from there, generate a new token
with deposit:actions and deposit:write scopes. The alphanumeric string
that is generated has to be copied to the options page. The First and Last names
fields, together with the ORCID field should be filled with the information on
the user that owns the account in the upload destination chosen. The ORCID
is necessary for proper attribution of the deposit in Zenodo, and if the user
does not have one, it must be created to interact with the extension. Below the
fields for inserting the affiliation and choosing the upload destination, there’s

56

https://rankingcitation.dei.unipd.it/

CHAPTER 6. USE CASE AND APPLICATIONS

Figure 6.2: Screenshot of the ranking results obtained from an example of a
search query on the Google Scholar systems

the keywords section. The options menu enables users to add and subsequently
remove keywords in addition to the default ones. Keywords can be added to
help in the traceability of the cited resources stored in Zenodo and enhance the
discoverability of related research. In the “Other Authors” section the users
can add collaborators. By clicking on the ‘add’ button, a new form is revealed
to input the name, ORCID, and affiliation of the new author, who can then be
inserted into the list of collaborators displayed underneath. The final field is for
specifying the number of pages to capture, with a default value of 1. The input
field allows selecting a range from 1 to 10 pages. Adding more pages is useful to
integrate additional information but increases the size of deposits, slowing the
capturing process and possibly creating confusion in the produced output.

At this stage, the user is able to interact with the features provided by the
extension and perform a query search on one of the supported systems. For
demonstration purposes, Google Scholar is chosen due to its advanced filters
and since it is able to provide us with a comprehensive overview of the process
and results. The upload destination selected is Zenodo Sandbox since it’s a
demonstration platform. An example query is “Artificial intelligence in health
care” which yields a substantial number of search results that are frequently

57

Figure 6.3: Representation of the information captured from the third-ranked
result of the example.

updated (Figure 6.2).
To refine the results the user can select the filters on the left-side panel of the

page. As stated previously, the Google Scholar platform implements filters for
custom ranges of time, for result sorting and type, and to include patents and
citations. In this example, we limit the results to the ones published since 2023,
sort by relevance, and exclude both patents and citations.

Once the user is satisfied with the displayed results and has chosen the
number of pages to capture in the extension’s options, they can proceed to cite the
current web ranking. By clicking on the extension’s icon (a blue magnifying lens
with white citation marks on a yellow background), the popup page is activated,
displaying the “Cite this ranking!” button and the “Your citations” section
with previously captured citations, both permanent (blue cards) and temporary
(yellow cards). Clicking the blue button starts the process of capturing the
data and generating the citation. The button turns into a non-clickable element,
changing its color to orange and the text to “Capturing the citation...” to indicate
that the task is running in the background. The steps described in chapter 5.3.3
are executed at this stage.

Figure 6.3 shows an example of what data is captured in one of the results.
The data captured for each result comprise the title, which additionally encapsu-
lates the link to the web address where the resource can be viewed, the authors
involved and the publication years are the ones displayed on the second row of
the result. The information for the current page number is computed from the
Scholar page URL and is not obtainable from the result itself.

Since the result considered is the third one in the ranking, it is connected to
the second through a blank node of type rdf:List, as shown in 6.1. The values of
the “@id” elements correspond to the URLs of the second and third results in
the ranking respectively.

58

CHAPTER 6. USE CASE AND APPLICATIONS

{

"@id": "_:bnode1",

"rdf:first": {

"@id": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187878

/"

},

"rdf:rest": {

"@id": "_:bnode2"

}

},

{

"@id": "_:bnode2",

"rdf:first": {

"@id": "https://wires.onlinelibrary.wiley.com/doi/abs

/10.1002/widm.1487"

},

"rdf:rest": {

"@id": "_:bnode3"

}

},

Code 6.1: Ordering of the ranking given by the blank nodes

After a small amount of time elapses to gather the data and capture the
screenshots of the pages, the extension’s popup will display the confirmation
message, if no error occurred during the process. This message indicates that
the deposit and output files have been successfully uploaded and are ready to
be published. For demonstration purposes, the direct publication in Zenodo
Sandbox is not confirmed, so a temporary citation is generated (yellow card
in Figure 6.4). The temporary citation presents a first version of the textual
citation containing the authors’ names, search query, system, date of capture,
and upload destination as in the final citation. However, it does not include the
DOI of the deposit since it is generated only after publication.

At this point, the user can check the deposit just created by navigating to
Zenodo and accessing the personal “Upload” section, where all stored files can
be viewed and edited. If the user is satisfied with the content, the next step
is to publish the deposit by clicking the dedicated button on the right side of
the citation card. Once the publication process is complete (which will take a
few seconds), the temporary citation becomes a permanent citation (blue card
in Figure 6.4), and the DOI of the resource is added to the text, incorporating a
link that directs to the deposit’s page (Figure 6.5).

59

Figure 6.4: Representations of the temporary citation and permanent citation
generated with the example

The entire process for capturing the web ranking is now complete, and the
citation can be copied and utilized for referencing the output data for research
purposes.

An example of effective use of this citation is to cite the ranking to compare
the results obtained at different points in time, evaluating the evolution of AI
techniques in the health care field.

60

CHAPTER 6. USE CASE AND APPLICATIONS

Figure 6.5: Screenshots of the final page of the deposit published on Zenodo
Sandbox. In the example, the number of captured pages is 2

61

7
Conclusions and Future Works

The work presented in this thesis is a contribution to the data citation prac-
tices and implementations for scholarly communication. The "Unipd Ranking
Citation tool" targets the emerging field of reproducible information retrieval
(IR) rankings, focusing on the rankings produced by various search systems,
namely web rankings. The tool provides a way to gather the information from
the web rankings making them persistent and accessible, and generating a cita-
tion for the collected data, which can be used as a reference in scientific publica-
tions and business reports. Citing reproducible web rankings has applications
both in the research field ensuring credit to the authors and verifiability of the
resources, and in the business field where it is used to justify decision-making
processes and monitor changes in the companies’ rankings and social media
tendencies.

The tool is able to overcome most of the problems related to data citation,
indeed it provides an intuitive Chrome extension that is able to automatically
capture the necessary data and generate the citation requiring only a starting
input command and setup configuration from the user. Concerns related to
fixity and versioning of the cited resources are solved thanks to the integration
of the Zenodo platform which ensures persistency and long-term accessibility
to the published repositories, assigning persistent identifiers (with the DOI
system) to each version of the deposit and to the deposit itself. This also makes
the resources reproducible in case of any update or deletion of files inside the
deposit. The "Unipd Ranking Citation tool" is adapting to different systems
and platforms, it currently operates in five different systems namely Google

63

Scholar, Google Search, Scopus Elsevier, Bing, and Twitter. It also adheres to the
Linked Open Data principles by using unique identifiers in the form of URIs.
This enables interoperability and integration of the output resources with other
resources available on the web.

The extension has been presented by first giving an in-depth explanation of
its features and components that are integrated, including Research Objects, RDF
graphs, the Zenodo API, and the JSON-LD language. Subsequently, there has
been an in-depth explanation of the whole process for generating the citation and
delving into the details concerning the architecture of the developed extension.
Finally, to demonstrate the extension’s functionalities an example of a search
query performed on the Scholar system is given.

As for now, the tool operates correctly for most of the queries performed in
the listed search systems, but future development could help in improving its
stability to errors which sometimes are caused by certain types of data or the
advent of specific conditions. These limitations are due to the fact that the tool
relies on parsing the DOM of web pages which could change over time. For
these reasons, the tool will need to be updated and its capabilities could also be
expanded to support other platforms employed by the users.

The following steps are to adopt the tool in different fields and to acquire more
data so that it can be compared and queried using the SPARQL language with the
triples produced in the output files. The growing popularity of AI systems and
chatbots could benefit from the integration of reproducible rankings. Among
other functions they are provided, some of them such as Google’s Bard have the
capability to report the best results available on the web upon a request from the
user. Reproducible rankings can help Bard to rank the results that it generates
by providing it with a set of criteria that can be used to assess the quality of
the results, making them more accurate and reliable. In addition, the citation of
web rankings can be useful in the learning process of AI and chatbots, because
they can help to learn about the factors that are important for ranking results.

64

References

[1] Micah Altman et al. “OUT OF CITE, OUT OF MIND: THE CURRENT
STATE OF PRACTICE, POLICY, AND TECHNOLOGY FOR THE CITA-
TION OF DATA”. In: Data Science Journal 12 (Dec. 2013), pp. 1–75.

[2] Anita Bandrowski et al. “The Resource Identification Initiative: a cultural
shift in publishing”. In: Brain and Behavior 6 (Dec. 2015), n/a–n/a. doi:
10.1002/brb3.417.

[3] Christine Borgman. “Data Citation as a Bibliometric Oxymoron”. In: Feb.
2016, pp. 93–116. isbn: 9783110308464. doi: 10.1515/9783110308464-008.

[4] Peter Buneman, Susan Davidson, and James Frew. “Why Data Citation Is
a Computational Problem”. In: Communications of the ACM 59 (Sept. 2016),
pp. 50–57. doi: 10.1145/2893181.

[5] Peter Buneman and Gianmaria Silvello. “A Rule-Based Citation System for
Structured and Evolving”. In: IEEE Data Eng. Bull. 33 (Jan. 2010), pp. 33–41.

[6] Helena Cousĳn et al. “A Data Citation Roadmap for Scientific Publishers”.
In: bioRXiv 5 (Nov. 2018). doi: 10.1038/sdata.2018.259.

[7] Helena Cousĳn et al. “Bringing Citations and Usage Metrics Together to
Make Data Count”. In: Data Science Journal 18 (Mar. 2019). doi: 10.5334/
dsj-2019-009.

[8] Merce Crosas. “The Evolution of Data Citation: From Principles to Imple-
mentation”. In: IASSIST Quarterly. Vol. 37. May 2014, p. 62. doi: 10.29173/
iq504.

[9] Merce Crosas et al. “Automating Open Science for Big Data”. In: The
ANNALS of the American Academy of Political and Social Science 659 (Apr.
2015), pp. 260–273. doi: 10.1177/0002716215570847.

65

https://doi.org/10.1002/brb3.417
https://doi.org/10.1515/9783110308464-008
https://doi.org/10.1145/2893181
https://doi.org/10.1038/sdata.2018.259
https://doi.org/10.5334/dsj-2019-009
https://doi.org/10.5334/dsj-2019-009
https://doi.org/10.29173/iq504
https://doi.org/10.29173/iq504
https://doi.org/10.1177/0002716215570847

REFERENCES

[10] Data Citation - USGS. url: https://www.usgs.gov/data-management/
data-citation.

[11] Data Citation Awareness - ANDS. url: http://ands.org.au/guides/data-
citation-awareness.html.

[12] Erika Fabris, Tobias Kuhn, and Gianmaria Silvello. “A Framework for
Citing Nanopublications”. In: Aug. 2019, pp. 70–83. isbn: 978-3-030-30759-
2. doi: 10.1007/978-3-030-30760-8_6.

[13] Martin Fenner et al. “Code of practice for research data usage metrics
release 1”. In: (Feb. 2018). doi: 10.7287/peerj.preprints.26505.

[14] Paul Groth, Andrew Gibson, and Johannes Velterop. “The Anatomy of
a Nano-publication”. In: Information Services and Use 30 (Sept. 2010). doi:
10.3233/ISU-2010-0613.

[15] Introducing JSON. url: https://www.json.org/json-en.html.

[16] JSON-LD 1.1. url: https://www.w3.org/TR/json-ld/.

[17] John E Kratz and Carly Strasser. “Researcher perspectives on publication
and peer review of data”. In: PloS one 10.2 (2015), e0117619. doi: 10.1371/
journal.pone.0117619.

[18] “Data Citation Synthesis Group: Joint Declaration of Data Citation Prin-
ciples”. In: ed. by Maryann Martone. San Diego, CA: FORCE11, 2014. doi:
https://doi.org/10.25490/a97f-egyk.

[19] Brian Nosek et al. “Promoting an Open Research Culture”. In: Science (New
York, N.Y.) 348 (June 2015), pp. 1422–5. doi: 10.1126/science.aab2374.

[20] Ontology. url: https://en.wikipedia.org/wiki/Ontology.

[21] Ontology definition 2007. url: http://web.dfc.unibo.it/buzzetti/
IUcorso2007-08/mdidattici/ontology-definition-2007.htm.

[22] Mark Parsons, Ruth Duerr, and Matthew Jones. “The History and Future
of Data Citation in Practice”. In: vol. 18. Nov. 2019. doi: 10.5334/dsj-
2019-052.

[23] Stefan Pröll and Andreas Rauber. “Scalable data citation in dynamic, large
databases: Model and reference implementation”. In: 2013 IEEE Interna-
tional Conference on Big Data. 2013, pp. 307–312. doi: 10.1109/BigData.
2013.6691588.

66

https://www.usgs.gov/data-management/data-citation
https://www.usgs.gov/data-management/data-citation
http://ands.org.au/guides/data-citation-awareness.html
http://ands.org.au/guides/data-citation-awareness.html
https://doi.org/10.1007/978-3-030-30760-8_6
https://doi.org/10.7287/peerj.preprints.26505
https://doi.org/10.3233/ISU-2010-0613
https://www.json.org/json-en.html
https://www.w3.org/TR/json-ld/
https://doi.org/10.1371/journal.pone.0117619
https://doi.org/10.1371/journal.pone.0117619
https://doi.org/https://doi.org/10.25490/a97f-egyk
https://doi.org/10.1126/science.aab2374
https://en.wikipedia.org/wiki/Ontology
http://web.dfc.unibo.it/buzzetti/IUcorso2007-08/mdidattici/ontology-definition-2007.htm
http://web.dfc.unibo.it/buzzetti/IUcorso2007-08/mdidattici/ontology-definition-2007.htm
https://doi.org/10.5334/dsj-2019-052
https://doi.org/10.5334/dsj-2019-052
https://doi.org/10.1109/BigData.2013.6691588
https://doi.org/10.1109/BigData.2013.6691588

REFERENCES

[24] A. Rauber and M. Parsons. Data Citation Working Group Mtg @ P19. url:https:
//www.rd-alliance.org/system/files/documents/220623_rda_p19_

wgdc_slides.pdf, slide 52. June 2022.

[25] Andreas Rauber et al. Data Citation of Evolving Data: Recommendations of
the Working Group on Data Citation (WGDC). Oct. 2015. doi: 10.15497/
RDA00016. url: https://doi.org/10.15497/RDA00016.

[26] Andreas Rauber et al. “Identification of Reproducible Subsets for Data
Citation, Sharing and Re-Use”. In: Bulletin of the IEEE Technical Committe
on Digital Libraries 12.1 (May 2016). doi: 10.5281/zenodo.4048304. url:
https://doi.org/10.5281/zenodo.4048304.

[27] RDF - Semantic Web Standards - W3C. url: https://www.w3.org/RDF/.

[28] Research Object. url: https://www.researchobject.org/.

[29] ROSC Community Group Charter. url: https://www.w3.org/community/
rosc/rosc-community-group-charter/.

[30] Gianmaria Silvello. “A Methodology for Citing Linked Open Data Sub-
sets”. In: Sept. 2014. doi: 10.13140/2.1.2806.0489.

[31] Gianmaria Silvello. “Theory and Practice of Data Citation”. In: Journal of
the Association for Information Science and Technology 69 (Jan. 2018), pp. 6–20.
doi: 10.1002/asi.23917.

[32] Stian Soiland-Reyes et al. “Packaging research artefacts with RO-Crate”.
In: Data Science 5 (Jan. 2022), pp. 1–42. doi: 10.3233/DS-210053.

[33] Whole Tale project - About. url: https://wholetale.readthedocs.io/en/
stable/README.html.

[34] Richard Wiggins et al. “Image File Formats: Past, Present, and Future1”. In:
Radiographics: a review publication of the Radiological Society of North America,
Inc 21 (Nov. 2000), pp. 789–98. doi: 10.1148/radiographics.21.3.
g01ma25789.

[35] Mark Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific Data 3 (Mar. 2016). doi: 10.
1038/sdata.2016.18.

[36] Zenodo. url: https://zenodo.org/.

[37] Zenodo Sandbox. url: https://sandbox.zenodo.org/.

67

https://www.rd-alliance.org/system/files/documents/220623_rda_p19_wgdc_slides.pdf
https://www.rd-alliance.org/system/files/documents/220623_rda_p19_wgdc_slides.pdf
https://www.rd-alliance.org/system/files/documents/220623_rda_p19_wgdc_slides.pdf
https://doi.org/10.15497/RDA00016
https://doi.org/10.15497/RDA00016
https://doi.org/10.15497/RDA00016
https://doi.org/10.5281/zenodo.4048304
https://doi.org/10.5281/zenodo.4048304
https://www.w3.org/RDF/
https://www.researchobject.org/
https://www.w3.org/community/rosc/rosc-community-group-charter/
https://www.w3.org/community/rosc/rosc-community-group-charter/
https://doi.org/10.13140/2.1.2806.0489
https://doi.org/10.1002/asi.23917
https://doi.org/10.3233/DS-210053
https://wholetale.readthedocs.io/en/stable/README.html
https://wholetale.readthedocs.io/en/stable/README.html
https://doi.org/10.1148/radiographics.21.3.g01ma25789
https://doi.org/10.1148/radiographics.21.3.g01ma25789
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://zenodo.org/
https://sandbox.zenodo.org/

Acknowledgments

First of all, I would like to thank Professor Gianmaria Silvello who was the
Supervisor for my thesis. Thanks for supporting and helping me in completing
the project, which was part of the Research Training activity for my Master’s
Degree, and also for letting me contribute to the research paper derived from
this project.

I would also like to thank my parents, brother, and sister for supporting me
in achieving my goals during these years of study at the University of Padova,
especially my mother and father for financially sustaining my studies and for
helping me in making important decisions.

Finally, I want to thank my friends for sharing this journey together and
making these years feel funnier and more exciting.

69

	Abstract
	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Background
	Data Citation
	Principles of Data Citation
	Implementation and system requirements

	FAIR Data principles
	Citing Web Rankings

	Technologies and methods
	Citation Model
	RDF
	Ontology Model
	JSON and JSON-LD
	The Research Object
	RO-Crate

	Methodology
	Citation Generation and Persistence
	Data gathering
	Creation of the output resources
	Publication on Zenodo
	Construction of the textual citation

	System Design and Development
	Overview on Chrome extensions
	Message Passing
	Asynchronous methods and Promises

	The Chrome Extension CLI Framework
	Workflow and Architecture
	Options Menu and Setup
	The extension's popup
	Capturing and Processing Data
	Upload Phase and Data preparation
	Publication and Generation of the Citation

	Considerations on the supported platform

	Use Case and Applications
	Conclusions and Future Works
	References
	Acknowledgments

