
Università degli Studi di Padova

Department of Mathematics “Tullio Levi-Civita”

Master Degree in Mathematics

Il problema della configurazione dinamica dello
spazio aereo: un approccio basato su modelli di

cammino minimo vincolato

The Dynamic Airspace Configuration Problem:
an approach based on constrained shortest paths

Supervisor Candidate

Prof. Luigi De Giovanni Luca Dalla Costa

Badge n. 2048573

Academic year 2023/2024

July 19th 2024

Poi, visita al celebre museo e
incontro con la più emozionante
scultura di tutti i tempi, la Nike
di Samotracia!

Contents

Abstract 2

1 Introduction 3

2 Previous works and mathematical formulations 6
2.1 Literature review . 6
2.2 Mathematical formulations for the dynamic airspace configu-

ration problem . 7
2.2.1 Relevant notation . 7
2.2.2 Integer Linear Programming model 8
2.2.3 Graph representation 9

3 Theoretical tools 12
3.1 Fundamentals of Graph Theory 12
3.2 The shortest path problem . 13

3.2.1 Labelling algorithms for the shortest path problem . . 13
3.3 Constrained shortest path . 13
3.4 Labels . 14

3.4.1 Label setting, label correcting 14
3.4.2 Dominance criteria . 15

4 Complexity and resource-extended graph approach 16
4.1 Reduction from the TSP . 16

4.1.1 Valid approach dropping quiescence 17
4.2 Resource-extended graph approach 18

4.2.1 Definition of linear resources 19

5 A label-based approach to the Dynamic Airspace Configu-
ration problem 21
5.1 Label representation of the added constraints 21

5.1.1 Cost and permanence update 23
5.1.2 Quiescence update . 23
5.1.3 Components for recovering the optimal path 24

5.2 First set of dominance rules 25

1

5.2.1 Dominance relations between label components 25
5.2.2 Utility of every domination condition 25
5.2.3 Properties of the dominance criterion 27

6 A constrained shorted path approach for dynamic airspace
configuration 28
6.1 Description of the proposed method 28

6.1.1 Data preparation . 30
6.1.2 Labels initialization 30
6.1.3 Label expansion . 31

6.2 Algorithm insights arising from implementation issues 33
6.2.1 A consideration on paths derived from different con-

figurations . 33
6.2.2 Some coding issues . 34
6.2.3 Focusing on past relations instead of future ones . . . 35
6.2.4 Flagging dominated labels 35
6.2.5 Skipping dominated labels 36
6.2.6 Potential for parallel implementation 36

7 Improved dominance rules 37
7.1 Alternative update of quiescence component 37
7.2 Exploiting graph sparsity . 38

7.2.1 Permanence component 39
7.2.2 Quiescence component 39

7.3 Size-scalability and heuristic approach 40

8 Computational results and discussion 43
8.1 Instances generation . 43

8.1.1 Merging graph structures 44
8.1.2 Forming compatibility sets 45

8.2 Benchmarking results and observations 46
8.2.1 Results observations 47
8.2.2 Some data on labels 48
8.2.3 Results of a heuristic 49

9 Conclusion and future work 50

A Instance generation 51

B Python code 53
B.1 Exploration block . 53
B.2 Label encoding . 54
B.3 Labels’ domination and expansion 55

References 59

Abstract

The Dynamic Airspace Configuration (DAC) problem consists in the deter-
mination of a sequence of airspace partitions, subject to side restrictions
regarding steadiness. A recent work illustrates a Integer Linear Program-
ming (ILP) model for the resolution of DAC, also presenting a graphical
reformulation of the model on a weighted graph.

In this thesis, after defining the problem in its operational context, we
use the graph formulation of DAC to discuss its computational complexity.

We then propose a new exact method for DAC based on constrained
shortest paths, making use of labels that are suited to express the side
constraints.

The proposed method has been implemented in Python and tested on
realistic instance created on purpose. Computational results have been col-
lected and compared to the performace of the ILP model solved by a general
purpose mathematical programming solver, namely Cplex.

After extensive testing on small and medium-sized instances, we outlined
two main scenarios. When the graph is sparse, our method results more
effective than Cplex. On the contrary, when an instance presents a large
number of feasible solutions, our method performs worst, due to the large
number of non-dominated labels to store and process. In order to tackle
the latter case, we describe a heuristic domination strategy, that grants fast
solving times, without any guarantee on the quality of the solution, but with
solutions that, in our tests, are close to the optimal ones.

2

Chapter 1

Introduction

Aviation plays an increasingly important role in the global transportation
network. As such, it becomes apparent the importance of understanding
what problems could arise, and develop ad-hoc methods to approach them.

The first topic to face is the estimated increase in number of flights [14].
Different studies underline the need to reconcile a high volume of traffic
with a limited air space capacity. The constraint on capacity derives from
the way Airspace Traffic Control (ATC) entities guarantee a certain degree
of security: a team of operators is lined up, and is responsible of defining
traffic regulations, such as rerouting or planning delays on departures. These
regulations intend to limit and keep under control phenomena as conflicting
routes and hotspots, i.e. portions of the airspace with high-density demand.

The notion of capacity is associated to the concept of sector. We derive
from [9] an approach based on the elementary and collapsed sectors. An ele-
mentary sector is a 3D portion of the airspace. A collapsed sector is defined
by the union of one or more adjacent elementary sectors. An airspace con-
figuration is a partition of the collection of elementary sectors, each element
of the partition will be a different collapsed sector. Starting from the same
group of elementary sectors, different configurations can be achieved. For
a clear view on configurations and collapsed sectors, we refer to Figure 1.1.
It is obtained by [7] as result of their work on methods for the formation of
configurations.

The capacity of a collapsed sector is the maximum number of flights
that the collapsed sector controllers can monitor without exceeding a default
maximum workload. The capacity of a sector depends, among other things,
on its size and geometry, but the capacity is dynamic and changes over time
to allow ATC to operate in safe conditions. Thus, the set of configurations
that can be achieved in a specific time of the day is also dynamic.

Another aspect we must take into account regards transitions, and plau-
sible moves between subsequent configurations. The term transition refers
to the process of abandoning a configuration in favor of another one; it is

3

Figure 1.1: An example of configuration, and its decomposition into col-
lapsed sectors [7].

an operation that both requires time and coordination, for this reason we
must control the number of transitions and a degree of similarity between
configurations involved. We can not impose a severe twist on the shape of
sectors in a short time window, it would affect the performance of the opera-
tors. To this end, we focus on the concept of compatibility: we consider two
configurations compatible when they present only small differences between
each other. Thus, a major change could be performed only through a series
of smaller ones.

Further constraints to be taken into account are related to the steadiness
of the sequence of configuration to be operated, which limit frequent changes,
as discussed in [9, 16]. We do not provide the details here, instead we report
their considerations in Section 2.2.

We are ready to state a formulation for the Dynamic Airspace Configu-
ration (DAC) problem. Assume to know in advance the air traffic demand,
i.e. the list of routes and timetables of flights that demand to cross the
airspace volume. Given the limited capacity, DAC asks to determine a se-
quence of compatible configurations that responds best to the distribution
of routes, thus minimizing the excess of demand, i.e. the difference between
the demand and the total capacity provided by a configuration.

In Chapter 2, we present different takes on DAC, given how the liter-
ature on the problem flourishes with diverse approaches. In particular, we
will focus on [9], in which the authors describe the problem through a Inte-
ger Linear Programming (ILP) formulation, and touch on the possibility to
represent it as a constrained shortest path problem on a weighted graph.

In Chapter 3, we describe some notions related to graph theory: we
present the Resource Constrained Shortest Path Problem (RCSPP), and
describe the basics about labeling methods.

In the following chapters, we collect our contributions. We devote Chap-
ter 4 to shed some light on the complexity of the graph-based problem pre-
sented by [9]. In particular, we show that general values for the parameters
it uses make the problem NP-hard, by reduction from the Travelling Sales-

4

man Problem (TSP). Additionally, we illustrate how the drop of a specific
subsets of constraints leads to a polynomial resolution process, thanks to a
graphical reformulation. Finally, we present a first adaptation of a method
proposed in the literature for the RCSPP, with the intent to solve the graph
formulation for the DAC problem. We conclude by highlighting the limita-
tions of this solution method.

In Chapter 5, we improve the graph and label representation towards a
more efficient optimization method. In particular, we focus on the relation
between paths’ labels on the graph and the DAC problem constraints, and
we define dominance criteria between labels.

Chapter 6 is devoted to the implementation of the proposed optimization
approach for DAC. It presents the pseudo-code of the required procedures
and discusses some implementation details, in particular about the repre-
sentation of the labels and its impact on the overall efficiency.

In Chapter 7, we suggest and present a refinement of the previous dom-
inance criteria; additionally, we touch on possible heuristics.

In Chapter 8, we discuss the results from the implementation of our
method in Python; we offer a detailed view on how we generated some
medium-sized instances, starting from a collection of realistic ones proposed
in [9]. We reserve Chapter 9 for conclusions. In the appendix, we provide
the code of our work in Python.

5

Chapter 2

Previous works and

mathematical formulations

Scientific literature outlines two main classes of problems: the first regards
static formation of sectors, while the second focuses on dynamic alternation
of configurations.

2.1 Literature review

We refer to [16] for an in-depth analysis of the literature regarding static
and dynamic airspace configuration problems.

The static problem of designing sectors, also referred to as sectoriza-
tion problem, involves designing sectors with constraints on shape, such
as compactness, connectedness, and convexity, posing computational chal-
lenges. Two main approaches are used: the graph-based approach, which
uses graphs to model intersections and segments of trajectories with Voronoi
diagrams [21] to define sector borders, and the cell-based approach, which
partitions airspace into smaller blocks combined into sectors [7]. Various op-
timization methods, including metaheuristics (e.g., genetic algorithms, local
search [7]) and machine learning techniques (e.g., random forests [17]), are
used to solve the problem and assess workload.

After determining the sectors, the configuration problem involves de-
ciding which sectors to open to partition the airspace. Solutions include
classifying airspace elements and using models like Integer Programming
within a State-Task Network framework [14]. Methods to solve the con-
figuration problem include genetic algorithms [18], machine learning (e.g.,
Neural Networks), and enumeration algorithms, such as branch-and-price
[20] and coin-or-branch methods [13].

6

2.2 Mathematical formulations for the dynamic

airspace configuration problem

Here we report two mathematical formulations for the Dynamic Airspace
Configuration (DAC) problem, as proposed in [9], and partially in [16].
These formulations are respectively based on mathematical programming
and graph theory. In this introduction we enlist the components common
to the two approaches.

We presented informally the DAC problem in Chapter 1, introducing the
the concepts of (elementary or collapsed) sector, capacity, traffic demand,
configuration and compatible transitions.

We recall that the intent is to compute a sequence of compatible airspace
configurations, minimizing the need for interventions (delays, deviations).
Thus the objective is to minimize the excess of demand, with respect to
the limited capacity of the airspace volume. We assume to know the traffic
information in advance, and to possess a finite collection of achievable con-
figurations. Reference [16] underlines the main advantage of considering a
predefined collection of configurations: it grants the proposed approach the
independence from the method used for the formation of configurations.

2.2.1 Relevant notation

Reference [16] considers a time-horizon discretized into small intervals, called
time periods. The problem consists in the determination of a configuration
to implement for each time period. This configuration is referenced as the
active one. The decision process is also discretized: A configuration change
is permitted only at discrete times, in correspondence of a time period.

We report the relevant notation:

• T is the set of decision time periods in which the time horizon is
discretized,

• C is the family of airspace configurations,

• Ec
t is a non-negative parameter that measures the overload (or excess)

of traffic demand in configuration c at decision time period t. If the
demand is lower than the capacity, we set the value to zero.

• Ct denotes the set of configurations available at time period t

• Ct+1
c is the set of configurations that can be reached at time period

t+ 1 if at time period t the active configuration is c.

The authors consider a 24 hours time horizon, divided into 5 minutes
intervals. As a result T = {1, . . . , 288}.

7

We now cover two aspects regarding steadiness. In order to limit frequent
changes, the authors introduce the concept of permanence. Following a
configuration change, the configuration must remain active for tp instants.
It satisfies tp g 1, reflecting that a configuration can not remain active for
less than 1 instant. Additionally, Reference [9] introduces the concept of
quiescence. It represent a cool-down time to wait, before an abandoned
configuration could be reactivated. It is referred by the symbol tq. We ask
that any interval of length tq + 1 does not contain the same configuration
in non-adjacent times. It satisfies tq g 2, since a configuration can not be
abandoned and reactivated in less time.

We note that imposing tp = 1 and tq = 2 would result in the constraints
being automatically satisfied. For the purpose of our study, we consider
tp = 3 (15 minutes) and tq = 12 (one hour), representing realistic time
periods. Nonetheless in the following we are going to make some observations
valid for general values.

We underline that the two constraints cover different aspects, but they
are nonetheless related. In fact, whenever tq f tp the quiescence constraint
would drop, since it would be satisfied automatically. Imagine to abandon
a configuration c at time t∗, in favor of c′ at time t∗ + 1; then for tp instant
a feasible solution will maintain active c′, and the first return to c can occur
starting from

t g t∗ + tp + 1 > t∗ + tq.

2.2.2 Integer Linear Programming model

Following [9, 16], here we state a formal ILP model for the problem at hand.
The decision variables form the following groups:

• xct is a binary variable taking value 1 if configuration c is active at time
period t, and 0 otherwise;

• sct is a binary variable taking value 1 if there is a transition to con-
figuration c at time period t (i.e., c is active at time period t and not
active at time period t− 1), and 0 otherwise.

The objective function sums the traffic overload over each sector. In [16]
they consider a second term in the objective function, which penalizes con-
figurations that use a large number of sectors, in order to penalize underload
phenomena. We did not consider this aspect.

8

The model is the following.

min
∑

t∈T

Ec
tx

c
t

s.t.
∑

c∈Ct

xct = 1 ∀t ∈ T (2.1)

xct −
∑

c′∈Ct+1
c

xc
′

t+1 f 0 ∀t ∈ T, ∀c ∈ Ct (2.2)

t+tp−1
∑

τ=t

∑

t∈Cτ

scτ f 1 ∀t ∈ T (2.3)

xct − xct−1 f sct ∀t ∈ T, ∀c ∈ Ct (2.4)

xct +

t+tq
∑

τ=t+1

sct f 1 ∀t ∈ T, ∀c ∈ Ct (2.5)

xct , s
c
t ∈ {0, 1} ∀t ∈ T, ∀c ∈ Ct

Constraint (2.1), combined with the hypothesis xct ∈ {0, 1}, imposes
a feasible solution to achieve exactly one configuration per instant. (2.2)
restricts the choices for the next configuration, it has to be chosen within
those compatible to the current one. Constraint (2.4) state a connection
between the variables xct and sct .

Equations (2.3) and (2.5) formalize the requests on permanence and
quiescence.

2.2.3 Graph representation

As suggested in [9], the problem at hand can be represented by the means of
a weighted graph, on which we aim to determine a path of minimum weight,
subject to additional constraints.

Start by constructing the graph. Consider a pair (t, c), where time t ∈
T = {1, . . . , 288}, and the configuration c is picked among Ct, i.e. those
available at time t. For any formed pair, place a vertex, and arrange them
in columns, by increasing time coordinate. We assume to identify as the
same configuration (t, c) and (t′, c), for any t′ > t. Hence, in the following
figures, same row will mean same configuration. In Figure 2.1, we give an
idea on the shape of a transition graph.

Arcs connect exclusively compatible configurations, belonging to adja-
cent columns; also, arcs are always directed towards increasing times. For-
mally, we place an arc starting from (t, c1) to (t + 1, c2) only if c1 and c2
are compatible. A natural consequence is that the resulting graph is acyclic.
The cost of an arc represents the excess of demand, associated to the activa-
tion of the configuration the arc enters. Thus, every arc entering the same
node shares the same cost.

9

Figure 2.1: Example of a transition graph [16]

a

b

c

1 2 3 4 5

Figure 2.2: Assuming tp = 3, permanence is violated

Assuming to arrange the same configuration at same height, one could
easily represent which paths are feasible and which are not. Figures 2.2,
2.3 work to this end; we imagine grey arcs representing the transition graph
and we highlight the arcs included in a certain path; letters and numbers
placed, respectively, to the left and above the graph represents a coordinate
system for the transition graph, made of, respectively, configurations and
discretized time intervals.

Recalling the role of permanence and quiescence, respectively, one could
reinterpret those in terms of the graph. Any time a path includes an arc
that connects two different configurations, both the following must occur:
the next tp − 1 arcs have to connect the newly activated configuration to
itself, Figure 2.2 violates it by changing too soon configuration at time 4
(assuming tp = 3); the following tq − 1 arcs can not reenter the abandoned
configuration, this time Figure 2.3 repeat an abandoned configuration before
the end of the period of quiescence (assuming tq = 12).

10

a

b

c

1 2 3 4 5 6

Figure 2.3: Assuming tq = 5, quiescence is violated.

We observe that, ignoring constraints on permanence and quiescence,
we can solve the DAC problem as an instance of the weighted shortest path
problem, with non-negative cost on every arc.

Most importantly, we note that the addition of these sets of constraints
make the resolution by SPP algorithms unfeasible: a said algorithm would
consider only information on the cost of an arc, and could not include in-
formation on future behaviour of a partial path. It could be shown, by
constructing ad-hoc instances, that any algorithm would violate at least one
side constraint, by creating a graph with a zero-cost unfeasible path, see
Section 3.2.1.

One could think of the possibility to transform the arcs of the graph, or
the graph itself, in order to reduce the problem to a SPP instance. We cover
some details about this topic in Section 4.1.1.

11

Chapter 3

Theoretical tools

We collect here some basics definitions from [2, 3, 19].

3.1 Fundamentals of Graph Theory

An undirected graph is defined as a pair of finite sets (V,E); where V is non
empty, and E is a collection of unordered pairs {u, v} ∈ V ×V . The elements
of V are called vertices or nodes, and edges those of E. G′ = (V ′, E′) is a
subgraph of G if V ′ ¦ V and E′ ¦ E.

Whenever needing to model a direction within a movement, one should
make use of the notion of oriented graphs (digraph). in that case, we speak
of arcs, instead of edges. A is formed by ordered pairs (u, v); u will be the
tail of the arc, and v its head.

We define the degree of a vertex as the number of edges incident with that
node. In case of ordered graphs, one should differentiate between in-degree,
and out-degree.

Two nodes u, v in a graphs are said to be connected when there’s a u−v
path in G. Connection forms an equivalence relation on V , thus a partition
on the vertices. If G has exactly one equivalence class, the graph itself is
said to be connected. Two nodes are defined as adjacent if there’s an edge
connecting them. The adjacency list of a node refers to the set of nodes
adjacent to a given one.

A path is defined as a sequence of adjacent nodes v1v2...vk. The length
of a path is defined as the number of nodes it connects. We define a cycle
as a path v0v2 . . . vk, with k g 3, v0,...,vk−1 all different nodes, and vk = v0.
When a graph does not contain cycles, it is called acyclic. Any subgraph of
an acyclic graph, is itself acyclic.

12

3.2 The shortest path problem

From [3] we recover the following description of the Shortest Path Problem
(SPP). Associate to each edge e of G a real number w(e), called weight.
Given a subgraph H of a weighted graph, the weight w(H) of H is the
sum of the weights

∑

e∈E(H)w(e) on its edges. Many optimisation problems
amount to finding a subgraph of a certain type with minimum (or maximum)
weight.

The SPP problem is well studied, and there exists numerous variations
in the literature [2]. We will report exclusively an approach we found more
related to our work.

3.2.1 Labelling algorithms for the shortest path problem

We want to focus on algorithms that update labels to solve the SPP, like
the Dijkstra or the Bellman-Ford algorithms. We report here an informal
explanation. We suggest [3] for a in-depth analysis.

Starting from a node s, we iteratively consider paths of increasing length.
We associate to every node a numerical value, called a label, corresponding
to the distance associated to the best path we found so far, since there could
be more than one. We couple the nodes that are still to be reached with the
value +∞.

Up to completion, this process stores only an upper bound on the mini-
mum distance; and the label associated to each node could vary during the
process, when a better path is determined. Reference [19] states and proves
an optimality certificate of an optimal path computed by the Bellman-Ford
algorithm. Reference [3] does a similar thing with the Dijkstra method.
Both these certificates obtained optimality of a partial path, based on opti-
mality of the previous steps performed. They are proved by induction: we
obtain optimality at step k, considering labels obtained at step k − 1 and
evaluates the effects the addition of an arc.

It is important to note that, at current stage, this method do not store
any information about the path associated to the minimum cost. For this
reason, it is important to associate every best value to a predecessor node.
Doing so, we obtained a one to all best shortest path.

3.3 Constrained shortest path

The Resource Constrained variation of the shortest path problem (RCSPP)
was studied by Desrocher in 1986 [11]. It finds application, for example, in
the framework of the Vehicle Routing Problems (VRP). It is not uncommon
to find papers that intertwine the two topics, e.g. [4, 5, 11].

The main side constraint, added to the original problem, come from the
definition of additional cost components, each conditioned to a given bound.

13

In this context, an arc has associated multiple weights, one could express
the collection of them with a vector.

The typical way these costs add up is linear, but [11] consider the pos-
sibility to use non-decreasing, or non-linear functions. We do not report
the details; we cite it to justify the use of max and min functions, that we
are going to make in Section 5.1.1, when defining the resource consumption
update functions.

Even asking for the graph to be acyclic, and focusing on just one resource,
the problem is known to be NP-hard [6, 8]; we report that [5] describes a
pseudo-polynomial label-setting approach, valid whenever the update func-
tion for the resource consumption are linear.

The vast majority of literature seems to focus on the 1-resource problem,
or on a generic set of resources with linear update functions. In a recent
study [15], the most common techniques are presented and compared, those
are: dynamic programming, Lagrangian relaxation and labeling methods.
We focus on the latter, and give a brief presentation.

Literature also presents a refinement of the RCSPP, in which the optimal
solution must not contain subcycles. This problem is called the Elementary
Resource Constrained Shortest Path (ERCSPP). In general, it results harder
to solve, confronted with the RCSPP, nevertheless, ERCSPP and RCSPP
problems coincide whenever defined on an acylic graph.

3.4 Labels

Even limiting the scope to the SPP framework, there are different meaning
for the expression labeling.

A label is a compact way of representing a path, it sums up the informa-
tion about the consumption of each of the resources [4, 5]: specifically we
identify a label l with the consumption of each resource (cost, r1, . . . , rk).
All the labels, associated to paths that reach a generic node v, starting from
a given source, are collected in a list; every node has such a list, possibly
empty. A label does not constrain the associated path in any way, it just
collects data, such as unreachable configurations [4]. One could define a
method that ignores or discards those labels that do not satisfy given crite-
ria, when exploring the graph.

When proposing a labeling algorithm one should disclose the criteria re-
garding: the exploration of the graph, how those labels update when crossing
an arc, and most importantly how those labels relate to each other [11].

3.4.1 Label setting, label correcting

We recall that even within the framework of the SPP the terminology “la-
beling method” is not a novel thing. For example, the Dijkstra algorithm

14

or the Bellman-Ford algorithm for the shortest path is often referenced as a
labelling algorithm.

We derive from [2] a clear statement, regarding the difference between
label setting and label correcting methods. Typically, the algorithmic ap-
proaches for solving shortest path problems are subdivided into two groups:
label setting and label correcting. Both are iterative; and they vary on the
method used to update the labels. The first class treats labels as permanent,
once set in the course of iterations. In contrast, the other considers labels as
temporary, until the final step iteration, when they all become permanent.

In short, label setting assigns a set of labels and an increasing subset of
them will not be modified along the duration of the method; contrary to
that, a label correcting could modify any list of labels, when a better one
comes up.

Regarding the theme of better labels, and in general the process of rank-
ing them, we should introduce the topic of dominance criteria between labels.

3.4.2 Dominance criteria

It should be natural to assume that storing all the labels is not an effective
way to solve any problem, even if possible. One should define some criteria
which grant the possibility to (at least partially) rank the labels [5]. Ranking
the labels translates to the possibility of expanding exclusively those that
are more promising [12].

In general, one should state how the labels should compare, for one
to be more desirable than one another, thus we say for one to dominate
the other. As an example, consider a minimization problem, and a single
resource, with linear non-decreasing update rule, bounded to respect an
upper limit. Assume now to possess two labels l1, l2; consider the relative
pair (cost, resource) = (ci, ri), i ∈ {1, 2}. We prefer l1 over l2, or say that
l1 dominates l2, if both the following are satisfied: c1 f c2 and r1 f r2.

Typically, when working with more than one resource, is not possible
to think of a total relation order. Both [5, 12] define a lexicographical or-
der, which is a total order. Most often than not, some pairs could not be
compared, and to describe this situation we use the term Pareto optimality.
Formally, it is the set of labels that are not dominated by any other. Other
documents use the definition of efficient labels. This event of incompara-
bility arises commonly, since it could happen that, given two labels l1, l2,
each has a non-dominated component: e.g. c1 < c2 but r1 > r2, thus none
is univocally better than the other.

We can also differentiate between strict or loose dominance, with the
latter typically referring to cases in which two labels perform equally. We
do not make this distinction, even in case of equality our method keeps just
one of the two labels, i.e., we only consider strictly dominating labels.

15

Chapter 4

Complexity and

resource-extended graph

approach

The objective of the chapter is to begin tackling the graph formulation pre-
sented in Section 2.2.3. Our first task has been to determine the complexity
of the problem, without any assumption about the shape of the graph: what
configuration are present, for how long, how they relate etc.

4.1 Reduction from the TSP

We now show that, the Dynamic Airspace Configuration problem is NP-
Hard. We will obtain this by reduction from the Traveling Salesman Problem
(TSP).

Consider to this end a directed graph G = (V,A), on which we aim to
determine a minimum cost Hamiltonian cycle, according to an arc metric
where cij is the cost a an arc (i, j) in A. Let us build a DAC instance
as follows. Consider T = {1, ..., |V |, |V | + 1}, and Ct = V as the set of
configurations present for every t ∈ T . Suppose that the compatibility
conditions, thus Ct+1

c for ∀t ∈ T , are defined by the arcs present in G. The
cost of every transition is defined as the cost of an arc in the original graph.
Ask now for tp = 1, and tq = |V | − 1.

Note that, in the DAC instance, a configuration, thus a node of G, could
be maintained in consecutive times only if self-loops are present in G. This
scenario could be avoided through a preprocess. Thus, once the method
chooses a node at time t, it must select a different one at time t+1. By the
definition of quiescence provided in 2.2, any configuration visited at time
t > 1 can not be reactivated. The unique node that could be repeated is the
first one, at times 1 and |V |+ 1.

16

As a consequence, if a solution were to exist for the DAC reformula-
tion, we would obtain a Hamiltonian cycle: it can not contain sub-cycles
due to the quiescence constraint. We underline the fact that in the event of
every partial path being expandable exclusively towards prohibited config-
urations, closing a sub-cycle, the method would determine the absence of a
feasible solution; that is, if TSP is infeasible, the corresponding DAC will
be infeasible as well and viceversa.

We remark that the operation of reducing the TSP on the graph G to its
DAC reformulation is a polynomial operation: it only needs to compute T ,
Ct, C

t+1
c and Ec

t . We imagine a black box computing the solution for DAC;
finally, the solution for DAC is directly encoded into a solution for the TSP,
without any computation in between.

4.1.1 Valid approach dropping quiescence

We disclose here what would be a graphical reformulation for the Problem
presented in Section 2.2.3, if we enforce exclusively permanence.

For any arc of the graph, connecting (t∗, c) to (t∗ + 1, c′) with c′ ∈
Ct∗+1, we substitute the arc with a set of them, such that they satisfy by
construction the permanence constraint, as detailed in Section 2.2. Consider
an arc, between (t∗, c) and (t∗ + 1, c′), and drop it. Now, starting from
t = t∗ + tp, if c

′ is present (i.e. c′ ∈ Ct), place an arc from (t∗, c) to (t, c′).
Now consider t+ 1, if c′ is present in Ct+1 ∩ Ct+1

c′ , place an arc from (t∗, c)
to (t+1, c′). Continue this procedure, progressively augmenting t, up to the
first moment in which c′ ̸∈ Ct. See Figure 4.1, where we highlighted an arc
before the transformation, and the set of arcs we added to replace it; grey
arcs can be ignored, they represent a portion of the other arcs of the graph.

The interpretation of an arc between (t∗, c) and (t′, c′) is: activate c′ at
t∗ + 1, maintain it up to time t′ g t∗ + tp. Thus, permanence is satisfied. It
can happen to drop an arc from a node (t, c), without adding any back. It
represent the impossibility for any partial path to spread and keep feasibility,
changing configuration at (t, c).

The importance to insert a set of arcs lies in the necessity to model the
possibility for a path to keep active a configuration longer than tp instants.
Meanwhile, we insert arcs at consecutive times, and stop when the config-
uration disappears, given the interpretation we stated before: it would not
make sense to maintain a configuration active for a period of time, and in
that interval having the configuration not achievable.

While the number of nodes would remain the same, we could deduce a
large upper bound on the number of arcs that can be possibly added. Recall
T from the notation of Section 2.2, let n =

∑

t∈T,c∈Ct |Ct
c|; we can not add

more than n · |T | arcs, obtained by replacing every arc with |T | copies of it.
In reality, the number of additions would be much smaller, since the amount
of arcs to add depend both on the time coordinate of a node, and the size

17

a

b

c

1 2 3 4 5 6 1 2 3 4 5 6

Figure 4.1: Example of reformulation of the arcs, when only permanence is
enforced (not all arcs represented).

of its neighbourhood.
Concluding, The procedure adds at most a quantifiable number of arcs,

and that it can be solved by an algorithm for the Shortest Path Problem in
polynomial time. Thus, if we enforce exclusively permanence the problem
is still polynomial solvable.

4.2 Resource-extended graph approach

Literature does not provide ready-to-use methods that could force a path
to repeat a node, it would not make sense on a general graph, especially in
the VRP framework.

Reference [12] studies a method to discard short enough cycles in the
context of the RCSPP . It also recall previous studies, as [5]. This approach
compromises between the ERCSPP and the RCSPP (see Section 3.3).

Our interest to study literature regarding cycle-elimination, comes from
the possibility to drop the time component in the DAC formulation (as de-
fined in Section 2.2.3), and imagine to work on a different graph. Nonethe-
less, this method works exclusively considering a set of resources with linear
updates, and would not apply directly to our problem. Most part of liter-
ature focuses on linear update rules, thus making the suggested methods
often inapplicable.

In the framework of vehicle routing problems, it is defined the concept
of mutual exclusion: two nodes could not belong to the same path, for it to
be feasible. We can not apply this concept, in order to mimic quiescence, as
defined in Section 2.2, we would need a triplet of nodes. Excluding (t, c) and
(t′, c) for t < t′ < t+ tq is not sufficient, it includes the feasible scenario of a
path keeping active c in the interval [t, t′]; also, we cannot exclude (t, c′) and
(t′, c) with c′ ̸= c, since it includes the feasible scenario of a path changing
the active configuration. We need to forbid paths to assume a triplet of
nodes: (t, c), (t+ 1, c′) with c′ ̸= c, and (t′, c) with t+ 1 < t′ < t+ tq.

18

4.2.1 Definition of linear resources

Here we define some resources in details, specifying the respective cost for
every arc of the graph. We will show the limitation of this approach and
abandon it shortly. Consider the following: permt,c and quiest,c, that repre-
sent respectively permanence and quiescence, see Section 2.2. Focus on the
first collection of resources, we set the resource cost to be: tp − 1 for any
arc that enters the node (t, c) from a different configuration, i.e. any node
of the type (t − 1, c′) with c′ ̸= c; −1 for every arc connecting (t, c) to its
tp − 1 future copies, i.e. (t + s, c) with 0 f s f tp − 1; finally 0 elsewhere.
The upper bound we fix for this resource is 0, forcing a path to cross all the
tp−1 arcs with cost −1, whenever a new configuration is achieved. Refer to
Figure 4.2, we highlight the arcs that have an impact (positive or negative)
on the resource consumption; we assume tp = 3, thus only two arcs connect-
ing b to itself are highlighted. We imagine grey arcs to be all the arcs of the
transition graph, with zero cost.

−1 −1

2

2

a

b

c

1 2 3 4 5

Figure 4.2: Linear resource consumption - permanence. tp = 3.

The second family of resources to be defined will have cost +1 for any
arc that connects (t, c) to any other configuration c̃ at t + 1, and also cost
+1 for any arc that in t̃ ∈ {t + 1, . . . , t + tq − 1} enters c from a different
configuration, 0 otherwise. The bound value is +1, forcing any feasible path
to include at most one of these arcs, see Figure 4.3.

We want to underline the importance of time dependence of these re-
sources: we distinguish multiple resources for the same configuration at dif-
ferent times. If we were to drop this consideration, the consumption check
would be performed on the totality of a path, eventually leading to undesired
scenarios. It could happen that a path violates a constraint, while managing
to satisfy the cost condition, by some opportune choice in multiple times.
An example could be a path that abandons prematurely a configuration,
thus violating permanence constraint, however managing to satisfy the cost
condition, by keeping the configuration active more than needed in a later
moment, as shown in Figure 4.4; we imagine the black arcs representing said
unfeasible path.

19

(...)

+1

+1

+1 +1 +1

+1 +1 +1

a

b

c

1 2 3 4 5

Figure 4.3: Linear resource consumption - quiescence. tq g 4.

(...)

(...)

(...)

tp − 1 tp − 1

−1 −1 −1 −1

Figure 4.4: unfeasible scenario, accepted by cost conditions, if time compo-
nent were to be discarded.

On the contrary, the distinction based on time does enforce the con-
tributes to be adjacent.

20

Chapter 5

A label-based approach to

the Dynamic Airspace

Configuration problem

In Chapter 2, the DAC problem has been formulated as a shortest path
with additional constraints on an acyclic graph. In this chapter, we explore
a method based on defining resource-related labels. Labels plays the role
of storing all necessary information to build feasible and optimal paths.
Imagine to follow a partial path and ask what knowledge is vital, in order
to respect the constraints? We remark that we have to answer given only
information collected up to the current node, and keeping in mind that the
more data is stored, the more expensive the computation becomes.

This approach is not necessarily better than the one presented in Section
4.2.1, we are trading a large number of resources with a huge number of
partial paths that spread from a initial node. Our objective is to develop
and test some effective pruning strategies, that will permit to solve the
problem efficiently.

5.1 Label representation of the added constraints

As introduced in Section 3.4, in order to talk about labels optimization, we
have to define what is a label for the problem at hand, and how to compare
them.

Referring to the notation of Section 2.2, every label is associated to a
partial path on the transition graph. We enlist the components of a label:

• cost is the total exceeded demand, we sum the cost on the arcs forming
the partial path associated to the label;

• perm ∈ {0, . . . , tp − 1} represents the number of times a partial path

21

has to repeat the last node visited, before a feasible change of config-
uration;

• qu ¦ T ×C, is the collection of deactivated configuration in the last tq
moments; it stores pairs formed by time of deactivation and abandoned
configuration.

We present an example of a label, associated to a feasible path high-
lighted in Figure 5.1. We start from a label with zero cost, maximum per-
manence minus one (tp − 1, reflecting the fact that we already kept the
current configuration active for a time interval) and empty quiescence set;
additionally we assume tp = 3, tq = 12 as in Section 2.2. In short, we
represent the label with l = (0, 2, ∅), associated to the node (1, b).

Since we are considering a single partial path, we refer to the the label
associated to any stage of the path with l; thus we present how l changes
when the partial path traverses an arc. We state here any time a partial
path crosses an arc, the label representing the path is associated to the last
node of the path, with a suitable time component, i.e. the length of the
corresponding partial path.

We consider to traverse the arc from (1, b) to (2, b), l becomes (3, 1, ∅).
We note that the other arcs, connecting (1, b) to (2, a), (2, c) can not be
traversed, since we have a non-null value for permanence.

We repeat the operation with the second arc of the path, obtaining
(5, 0, ∅). Now the label have a zero value for permanence, and it is eligible
for expansion towards different configurations.

We decide to traverse the arc that connects (b, 3) to (a, 4). Permanence
is set again at tp − 1 = 2, and now the quiescence set equals {(3, b)}. In
short, l = (10, 2, {(3, b)}). The remaining operations are similar to the first
two. We conclude with the label l = (17, 0, {(3, b)}) associated to the node
(6, a).

3 2

5

0 7
a

b

c

1 2 3 4 5 6

Figure 5.1: Example of a feasible path

The idea of defining sets in labels is inspired by the work of [4]. In it,
the authors define sets of unreachable nodes, each associated to a different
path. Ultimately those paths are compared, preferring those that has less

22

unreachable nodes. A similar approach is suggested in [11, 12] for effective
pruning.

5.1.1 Cost and permanence update

The cost update is simple: sum to the current cost component the weight of
the arc to traverse. The other two components have a non-linear update rule,
as considered by [11]. Precisely, let l = (cost, perm, qu) a label associated
to the node (t, c), consider firstly the permanence update.

permt+1,c′ =

{

max{permt,c − 1, 0}, if c′ = c

tp − 1, if c′ ̸= c
(5.1)

This way, we obtain a deceasing effect when a partial path keeps a given
configuration, and we reset the timer whenever a transition occurs. We recall
that from the moment in which the value reaches zero, the partial path could
spread to different configurations. It is irrelevant to know exactly how much
time has elapsed from the activation of the current configuration, as long as
the permanence constraint is satisfied; thus, it is natural to make use of the
function max.

5.1.2 Quiescence update

For the quiescence, we add to qut,c the pair (texit, c), whenever we abandon
a configuration in favor of a different one. While a node is present in the set,
the associated configuration can not be reactivated, thus the path could not
expand towards the corresponding nodes. Clearly, it is of no use to maintain
the list of every configuration a label has came across, and abandoned. After
some time, some old configurations could be legitimately reactivated, and it
may become disadvantageous to drag outdated information.

We want to determine a formula, which can describe the obsolescence
time of the quiescence constraint, i.e. the moment in which such constraint
is validated, from that moment onward it will always be valid. The use of
this concept will be determinant in future parts of the work, as we will see
in Section 7.2.2.

The determination of configurations towards which a partial path could
sprout is carried out at time t. Thus, for a path to enter a precise node at
time t + 1, it is necessary for the (eventual) related quiescence constraint
to be considered obsolete, hence discarded, up to time t. At given time t,
a constraint associated to the node (texit, ∗) is to be considered obsolete if
and only if

t g texit + tq (5.2)

Let us follow through with an example. Assume texit of a given configuration
is 0. Then a path could revisit that configuration at t = tq + 1. As a

23

consequence, the formula assess the quiescence constraint to be obsolete at
time t = tq, and valid for any t f tq − 1.

Furthermore, what does it mean to update the quiescence, and when
does it happen? We speak about updating quiescence, when we perform
a check aimed to determine if some quiescence constraints have become
obsolete; consequently they are discarded. This operation is performed for
every label active at a given time. In the following definition it will be
implicit.

Finally, imagine to traverse an arc connecting (t, c) to (t+ 1, c′); we can
write

qut+1,c′ =

{

qut,c if c′ = c

qut,c ∪ {(t, c)}, if c̃ ̸= c
(5.3)

5.1.3 Components for recovering the optimal path

Similar to section 3.2.1, we do not store in every label the associated path
traversed, rather just a few information about its parent label. Given the
fact that every node has attached a list of labels, we need to store multiple
parameters to identify univocally the parent. We make use of three compo-
nents: the position pos in the list of labels, the parent node prtNode and
the position of the parent label prtLbPos, within the list of labels associated
to prtNode. The position pos of a label is used for identification.

The way the optimal path is recovered is simple: once arrived at termi-
nation, sort the labels by cost. Then, construct a path backwards, following
the directions of prtNode and prtLbPos. Up to now, there are no rule on
which path to prefer in case of ties; Reference [16] defines a secondary cost,
preferring configurations formed by less collapsed sectors.

One could ask if it is possible to recover the position of a label, based
exclusively on the set of information stored in the labels. In fact, one could
travel backwards the graph, subtracting every time the cost of a node. We
recall that the cost of a node does not depend on the arc chosen. And one
could observe that the permanence attribute would communicate when a
transition occurred, and the quiescence would reveal the abandoned con-
figuration. The real problem arises when we want to reconstruct a path
that kept configuration active for a long period of time. Both permanence
and the quiescence would not provide information after some time. Thus,
traversing backwards we could have to manage a label that does not com-
municate the exact moment of transition, and its origin, thus we would be
open to interpretation on the source of the transition.

24

5.2 First set of dominance rules

Surely one could not expand to termination all partial paths, due to obvious
limitations of the computational resources (testing showed that the code
could not reach termination even after eight hours of computation); it is thus
fundamental to determine some rules which grant the possibility to discard
non-optimal paths, and preserve the optimality of the solution. Here few
simple criteria will be discussed.

5.2.1 Dominance relations between label components

Since labels are composed of multiple components, in order for a label l1 to
dominate another label l2, a series of conditions must occur.

The cost condition is the easiest to allocate in this context: we ask for
cost1 f cost2. A similar condition describes the rule for the permanence:
we demand

perm1 f perm2 (5.4)

The relation portrays the possibility for label l1 to possibly spread earlier,
having to wait less time. The conditions on quiescence are double, and the
latter explains the need to store the deactivation time of each configuration.
Firstly, we ask

C(qu1) ¦ C(qu2) (5.5)

where C(qui) = {c ∈ C : (t, c) ∈ qui for some t ∈ T}; it translates to the
request of l1 having the same, or smaller, set of configurations that can not be
reactivated. Then we observe that the time of exit is a crucial information,
since it determines the moment a given configuration could be reactivated.
Thus we determine the following condition

timej,1 f timej,2, ∀j ∈ C(qu1) ∩ C(qu2) (5.6)

where timej,i refers to the time of deactivation of the configuration j, ac-
cording to the label i. Since C(qu1) ¦ C(qu2), it would be equivalent to
consider j ∈ C(qu1).

5.2.2 Utility of every domination condition

We go through a few toy-examples, in order to give a visual grasp on the
role of each of these rules. These scenario are unavoidably artificial, but
they aim to show how certain paths could become unreachable, following an
incorrect pruning, due to imprecise rules.

Imagine to compare two labels l1, l2 with cost1 < cost2. If we were to
drop one between the permanence (5.4) or first quiescence checks (5.5, we
would obtain the undesired scenarios depicted in Figures 5.2, 5.3.

25

a

b

c

1 2 3

Figure 5.2: permanence check
dropped

a

b

1 2 3

Figure 5.3: quiescence check
dropped

In Figure 5.2, we imagine cost1 < cost2, and 0 = p2 < p1 = 1, qu1 =
qu2 = ∅. Thus l2 could spread from the initial node, and l1 can not. Without
the check on permanence (5.4), l2 would be considered dominated, thus
discarded. We highlight in cyan the arcs that the partial path exclusive for
the partial path associated to l2. We note that with following these pruning,
node (3, a) is non reachable by the method.

In Figure 5.3, we imagine the two labels satisfying cost1 = cost2, perm1 =
perm2 = 0 and

∅ = C(qu2) ¢ C(qu1) = {1}

without the check on quiescence (5.5), l2 would be considered dominated
and discarded. thus the solution could not reach the node (2, a) and (3, a).

Finally, and most importantly, consider two labels such that cost1 =
cost2, p1 = p2, C(qu1) = C(qu2) but there exists an element c ∈ C(qu1) such
that tc,1 > tc,2. Without the third check, the two labels would be considered
equal, and one of the two would be discarded based on arbitrary criteria.
We can construct instances that (after some time) recreate a scenario in
which C(qu1) ̸¦ C(qu2), thus the label we kept has a strictly smaller set of
configuration to expand towards.

This observation demonstrates that if two labels do not satisfy all the
conditions of the dominance criteria, even if they performs equally at a
certain node, there exists examples in which one label could result strictly
better than the other in future times; thus, it underline the importance to
consider collectively all the conditions of the dominance criterion.

These rules check the possibility for a partial path to conveniently spread
in the future, and are extremely conservative. In Chapter 7, we state some
observations that permit to form more grounded domination criterion: we
use little information about the future of a partial path, in order to investi-
gate the real possibility for a label to produce optimal paths.

26

5.2.3 Properties of the dominance criterion

Implemented collectively, these rules grant that whenever a label is dis-
carded, there is at least another label with minor cost, possibility to spread
sooner, and equal destinations to spread towards. This consideration follows
as a consequence of the domination criteria being a partial relation order.

First thanks to the following lemma, one obtains that deactivation times
are univocally identifiable, given a label.

Lemma 5.1. A configuration could not appear more than once in the qui-
escence component of a label.

Proof. Suppose that a configuration appears twice; hence the configuration
has been deactivated two times, before the previous of the two occurrence
could be eliminated by obsolescence. This means that the configuration has
been reactivated, while still being classified as prohibited; concluding an
absurd.

Lemma 5.2. Furthermore, the relation dominates forms a partial order on
the set of labels associated to any node.

Proof. The relation is clearly reflective. We prove anti-symmetricity. Let
l1, l2 two labels, such that l1 f l2 and l2 f l1. Then cost1 = cost2, since both
cost1 f cost2 and cost1 g cost2 are true. The same could be showed for
permanence. Regarding quiescence, similarly it follows C(qu1) = C(qu2);
for every c ∈ C(qu1) it again follows tc,1 = tc,2 ∀c ∈ C(qui). The two labels
equate each other on any component, thus l1 = l2 by the definition we stated
in Section 5.1. Focusing on transitivity, let l1, l2, l3 labels associated to the
same node, such that l1 f l2 f l3. It follows cost1 f cost2 f cost3, and
a similar argument will prove both perm1 f perm3 and C(qu1) ¦ C(qu3).
Finally, for every c ∈ C(qu1), it is true that tc, 1 leqtc, 2 f tc, 3. Thus l1 f l3.

Regarding the partiality of the order, one could think of the following
example. Consider two labels, l1 and l2, with cost1 < cost2 and perm1 >
perm2. Regardless from the quiescence, they are not comparable.

An important consequence of Property 5.2 is that the order in which one
compares the Labels is irrelevant, at least from a theoretical point of view.

The authors of references [5, 12] suggest the definition of a lexicographic
total ordering of the labels. This ordering consists in asking equality for
all resources up to a certain index i∗, where one is strictly smaller than the
other, and no requests for i > i∗. This could not apply directly in our case,
since it would contradict the second condition on quiescence.

27

Chapter 6

A constrained shorted path

approach for dynamic

airspace configuration

In this chapter, we propose an algorithmic approach to DAC that stems
from graph formulation presented in Section 2.2.3, the representation of
permanence and quiescence constraints discussed in Section 5.1 and the
dominance rule described in Section 5.2.1.

6.1 Description of the proposed method

We present the algorithm we implemented for the resolution of the con-
strained shortest path problem that formulates DAC, as detailed in Section
2.2.3.

Reference [11] details the components of a general dynamic programming
RCSPP algorithm. In particular it enlists the following steps: initialization,
path extension, dominance step, and finally a filtering step. Initialization
refers to the definition of a single label from which the method starts; path
extension means to consider all the partial paths, in some order, and expand
them towards any feasible destination; the dominance step is a process sub-
sets of labels are compared, consequently only the most promising are main-
tained. Finally the filtering step recovers a feasible solution. Furthermore,
reference [11] collects several remarks, e.g. the importance of effective dom-
inance criteria, how their definition strongly depends from the description
of the problem at hand.

In Algorithm 1, we present our scheme to approach the problem. First
of all, we compute the transition graph (thus Ct, Ct+1

c ∀t ∈ T) and costs for
every transition (Et

c). This operation depends on two parameters: graph,
traffic; given the fact that the construction of transition graph is independent
from cost of transitions; see Section 8.1 for a detailed description on how

28

instances are built.
After the initialization of the first label, we scroll the values for time t > 1

(line 4), here we recall T = {1, . . . , 288}. For each value of t considered, we
skim the achievable configurations, i.e., Ct. For every configuration c ∈ Ct,
we decide to expand the labels associated to (t − 1, c), when present and
connected to (t, c). Thus we add the expanded labels to (t, c). In Algorithm
1, this process corresponds to Lines 5 − 9. Consequently, consider every
configurations c ∈ Ct−1. We want to expand the labels associated to c,
towards every compatible configuration c′ ∈ Ct

c. We recall that the process
of expansion depends on the destination (see Section 5.1.1,5.1.2): the cost
varies with c′, and not every transition is feasible for every label. We have
perform two checks: if c′ = c we already computed the expansion operation;
additionally, inside the expansion process, we are going to determine the list
of labels feasible for expansion towards c′. Refer to Lines 9-17.

In Line 12 of Algorithm 1, we use the command skip. It commands to
ignore the following operations, and jump to the next iteration of the for
cycle; in this case it means to consider the next c′.

Algorithm 1 Master procedure

Require: graph,traffic ∈ {0, . . . , 10}
Ensure: optimal solution for the RCSPP, or certificate of unfeasibility
1: Prepare data: depending on the values of graph and traffic, recover

Ct, Ct
c ∀t, c. Compute cost (excess of demand) for each transition.

2: Initialize the labels.
3: for Every instant t > 1 do
4: for Every conf c ∈ Ct do
5: if c ∈ Ct−1 and is connected to (t, c) then
6: Expand labels from (t− 1, c) and add them to (t, c)
7: end if
8: end for
9: for Every conf c in Ct−1 do

10: for Every compatible destination c′ ∈ Ct
c do

11: if c′ = c then
12: Labels already expanded. skip
13: else
14: Expand labels from (t− 1, c) and add them to (t, c′)
15: end if
16: end for
17: end for
18: end for
19: Recover the minimum cost path, feasible by construction.

Thus the exploration method is breadth first: it performs every possible
operation at time t, before considering t + 1. The expansion procedure

29

consider every possible destination. The domination step is included in the
expansion procedure. Finally, a optimal path is recovered with the standard
procedure described in in Section 3.2.1.

In the following paragraphs, we describe the components regarding the
computation of the necessary data, thus the initialization and expansion
processes for the labels.

6.1.1 Data preparation

The block of functions corresponding to Line 1 of Algorithm 1 has been
provided by the authors of [9]. We recall that configurations are composed
of smaller components, namely elementary and collapsed sectors.

We imagine to know in advance the capacity and traffic for each collapsed
sector. From this knowledge, the excess of demand of each configuration is
computed, at every time, as the linear sum of the excesses for each collapsed
sector composing it. How capacity and excesses are built from elementary
sectors up to collapsed sectors is thoroughly explained in Appendix A.

6.1.2 Labels initialization

Aiming to develop a general algorithm, we considered the possibility for the
graph to start (resp. end) with more than one configuration. For this reason,
we define two dummy configurations, that have no real-world translation.
Their only purpose is to connect multiple nodes to a single source (resp.
sink).

We start from the node (0, InitialDummy), considering a single label
with: zero cost, zero permanence, and empty quiescence set. The first
action to perform is to add and traverse an arc, from the initial dummy
configuration, to every adjacent node. The cost of this newly added arcs
corresponds to the excess of demand at time one of each configuration.
Similarly, at the end of the day, we want to collect all labels in one place,
in order to compare them. Thus, we will repeat the process with the final
dummy configuration, however now the cost will be 0 on every arc.

We note that between time 0 and time 1, the dummy configuration will
enter the quiescence set. This will produce no effect on the path search,
since the dummy configuration does not appear in the near future, and it
appears in all the label. Meanwhile, the permanence value will be set to
tp − 1, coherently with the request to wait an appropriate time before the
first transition.

Up to now there are no constraints regarding the final values of perma-
nence or quiescence, so we sort labels based exclusively on cost.

30

6.1.3 Label expansion

Given (t, c) as starting point, and (t+1, c′) as destination, what we ask the
expansion function is to expand and subsequently funnel the labels, through
a series of controls, returning only those non dominated. Label expansion
is given by Algorithm 2.

Algorithm 2 Expansion process

Require: time, cc: current conf, nc: next conf
Ensure: A list of expanded, non dominated, labels
1: Make a copy of the labels
2: Discard labels that could not be expanded towards nc, recalling function

IsExpandible (Algorithm 3)
3: Expand remaining labels, by recalling for each an expansion function,

pass as parameters t, cc, nc; define ExpandedList the list of updated la-
bels.

4: if |ExpandedList| > 1 then
5: for l1 ∈ ExpandedList do
6: for l2 ∈ ExpandedList, pos(l2) > pos(l1) do
7: Confront the two
8: if l1 f l2 then
9: Discard l2; skip to the next l2

10: else
11: if l2 < l1 then
12: Discard l1; skip to next l1
13: end if
14: end if
15: The two are incomparable; next l2
16: Execute isPareto(t+1. l1, nc)
17: if Label is Dominated then
18: Discard l1
19: end if
20: end for
21: end for
22: end if
23: Return the (possibly empty) Pareto efficient list of labels

The first inspection Algorithm 2 performs is to control which labels are
eligible for expansion, refer to Line 2. This operation is performed for each
label individually, running Algorithm 3 on the label. We recall that a label
is always expandable towards its current node at time t+ 1, when present.
Thus, we apply Algorithm 3 by passing as argument the next configuration
and time. We note that whenever the function return is executed, further
operation are not considered. With this fact, we simplified the if-else state-

31

ments, e.g. from Line 2, it follows that nc ̸= cc.

Algorithm 3 Check feasibility for expansion

Require: cc: currconf, nc: next conf
Ensure: True if the label could expand towards nc, False otherwise.
1: if Next and current configurations coincide then
2: Return True
3: end if
4: if Perm(label) > 0 or nc ∈ Quies(Label) then
5: Return False
6: end if
7: Return True

We return to Algorithm 2. Line 3 will perform operation described
in Section 5.1.1. Starting from Line 4, we compare every pair of labels
eligible for expansion, to spot eventual dominated ones. We note that, since
the domination criteria are well posed, we can skip a portion of operations
whenever a label is classified dominated. In fact, it is not useful to determine
what other labels it does dominate, or is dominated by, since we already
found a better one. Thus, we detail the scenarios of Lines 9, 12 of Algorithm
2. If l1 dominates l2, we discard it; equivalently, we can ignore any possible
future operation regarding it: such as checking if l2 f l1. If l2 dominates
l1, we discard l1, and do not compare the remaining labels against l1; those
labels are going to confronted against the current l2 in the future.

In Lines 8,11 of Algorithm 2, we perform a check on the domination
between l1 and l2. In the implementation we will se in B this check is
performed by a function Dominates. We do not detail its definition, since
we have already extensively discussed the domination criteria in Sections
5.2.1, 7.1, 7.2. We defined the function Dominates to exclusively check if
the first dominates the second, and not viceversa. The motivation is that,
in some cases, we are almost certain that a label could not dominate the
other, and we prefer to avoid computing operations of which we anticipate
the result.

Brief mention goes to the function isPareto called by Algorithm 2 at
Line 16, its role is to confront a label in hand with all the labels that have
been already added to a node. In such a way, we could decide to expand
exclusively labels that we know already determined being non dominated.

We note the independence between the checks performed on Pareto ef-
ficiency, Lines 16-19 of Algorithm 2, and the one performed by scrolling in
pairs all the labels, Lines 5-15. they could be rearranged, with equal (the-
oretical) results. In our code, due to implementation needs, we decided to
separate the two in different cycles.

32

6.2 Algorithm insights arising from implementa-

tion issues

The goal of this section is to detail the decision process regarding the for-
mation of the code we presented. The order of operations may have resulted
unintuitive, thus we want to enlist some consideration related to implemen-
tation issues.

6.2.1 A consideration on paths derived from different con-

figurations

We had to balance opposite approaches as: update all the labels, and let
the dominance check (Algorithm 2, Lines 4-15) take care of it later, opposed
to update a single label at a time, and checking right away if it is non
dominated by any label on the associated node. We opted for a hybrid
approach, having in mind both these goals: bound the number of checks
regarding dominance, and keep the code readable, without jumps between
operations.

We recall that when a path changes configuration, the permanence is
reset to tp − 1, and the abandoned configuration is added to the quiescence
set, as stated in Section 5.1.1. Thus, we outline two scenarios that will
lighten the domination step, to consider when a general algorithm compares
two labels, associated to the same configuration c, with different parent
nodes.

Assume to possess l1, l2 associated to the same node (t, c). Assume
that the parent node c′ of l1 is different from c, i.e. the path associated
to l1 just changed configuration. Instead, Assume that l2 is derived from
a path that repeated the configuration c, i.e. the parent node of l2 is the
current configuration. As a consequence, the permanence value of l2 is
strictly smaller than the one associated to l1. Thus, l1 can not dominate l2.

Consider again l1, and assume to possess a new label l3, both r to related
(t, c); furthermore, assume l3 is derived from c′′ ̸= c′. By recalling the
rules for expansion, it follows that both labels contain, in their respective
quiescence set, the parent node associated to time t− 1. As a consequence,
neither of the two can dominate the other, since they could either: contain
different elements in the quiescence set, or the same elements at different
times. The explanation is simple: in the first case, they would violate the
first condition on quiescence (5.5); meanwhile, in case the quiescence sets
equal each other, they would contain both c′, c′′, and violate the second
condition on quiescence (5.6).

In our algorithm these consideration are implicitly included in the way
the functions are placed. We decided to first expand paths (labels) that
maintain the configuration (Algorithm 1, Lines 5-8), and only subsequently
proceed with other operations. In particular, we compare labels with the

33

same origin in Algorithm 2, Lines 4-15,20-22; subsequently, the labels that
we want to place in (t, c) and are derived from c′ ̸= c, are compared with
labels derived from (t− 1, c) in Algorithm 2, Lines 16-19.

It is important to remark that this observation does not affect the exact-
ness of the approach. Consider two labels not compared by this observation
at time t, and associated to the same configuration c; they are going to be
compared at t + 1, as labels originated from the same configuration. Ref-
erence [11] makes a couple of remarks on waiting some time before starting
comparing labels, thus postponing operation as in our case. In particular,
it states that it may be convenient to compute it exclusively when there is
a guarantee on the number of labels that would be discarded; we preferred
to compute domination check at each moment, but find this suggestion im-
portant for future development.

6.2.2 Some coding issues

During the phase of coding, we encountered some obstacles, due to Python’s
nature.

Recall Algorithm 2 line 1, we asked to make a copy of the labels, we want
to cover the motivations behind the operation. In general, we do not want
the list of labels associated to (t, c) to be modified, by any of the operations
involving them, e.g. the expansion procedure. Instead, We would like to
compute and work on a second support list. By python construction, this
operation is possible through the use of the function deepcopy, which create
an exact replica of any object; meanwhile other methods did not work as
intended.

A major drawback of the deepcopy function is the time it asks to perform
a task, especially on large objects. Since the expansion of a label varies with
the destination, one could have to repeat this operation as many times as
the number of possible transitions.

Fortunately, recalling how the update method works, we should note
that the update of permanence and quiescence does not depend on where
an arc is directed; the process of expansion cares exclusively to differentiate
if the current configuration is repeated or not.

Thanks to this observation, one could solve the inconvenience by defin-
ing up to two replicas of the list of labels associated to a node (t, c): one
time if the current configuration c ∈ Ct+1

c , and another time for all the re-
maining configurations, i.e. Ct+1

c \ {c}, considered collectively; Performing
such approach, the method would not have to repeat the process of deep-
copying for each destination. The scheme would be the following: starting
from (t, c), choose any compatible destination (t + 1, c′) with c′ ̸= c; derive
the labels with new components (cost, permanence, quiescence), and add
the updated labels to the considered configuration c′. Then, subtract to all
these so-formed labels the cost of the transition. Repeat the operation with

34

a new compatible configuration. Note that quiescence and permanence do
not change.

6.2.3 Focusing on past relations instead of future ones

Following the considerations of Section 6.2.2, we want to discuss our choice
to focus on past compatibilities.

It would be natural to develop a method that, given a node (t, c), consider
its labels and expand them to any future neighbour (t + 1, c′) ∀c′ ∈ Ct+1

c ,
without considering -for the moment- the domination checking. Nonetheless,
this approach does not take in mind the consequences of the Section 6.2.1.
To this end, we want to collect some considerations on the advantages of an
elitist strategy when expanding the labels. Thus to define a preference on
which labels to prioritize in the expansion process.

A future-oriented method may not have derived the best labels for a
given configuration, and have already added labels that may end discarded
in a few moments. By the contrary, an elitist perspective would avoid this
scenario, considering as first thing more promising collections of labels over
others.

In order for a method of this type to cohabit with the considerations
on deepcopying, we underline the importance of defining two different for
cycles, as in Algorithm 1 (the first: Lines 5-9, the second: Lines 10-18). In
the first one, a proposed method would have to deepcopy exclusively labels
on arcs with destination equal to origin. Then, in the second cycle, the
method could make use of the procedure described in Section 6.2.2.

6.2.4 Flagging dominated labels

In Algorithm 2 we proclaimed the intent to discard a label that has been
classified dominated. In practice, we implemented a list isDominated, com-
posed of Bools, of length equal the number of labels to consider. In the
i-th position, it stores the information regarding the respective label. We
are going to outline in a short while our take on labels structures. For now,
just consider that the code stores them in a ordered lists, thus the concept
of position is well defined.

Following the definition of such list, it arises the necessity to compute
and store the position of a label; this could be performed in two ways. The
first is to cycle through the labels and compute the position with builtin
commands, e.g. index. in Python. The second is to store the value, using a
counter that has to be updated accordingly to each plausible scenario.

We implemented the second approach, since we thought the use of the
function index to be too slow. Between one iteration and the next, we know
which label (thus position) we are considering, and the command would not
make use of this information; rather, it would search the entire list every

35

time. In Algorithm 2 we did not report the use of this counter as a matter
of readability. Note that also the function isPareto, Algortihm 2 Line 16,
would have to work with this list, instead of discarding labels.

Once Algorithm 2 terminates, we return exclusively labels whose corre-
sponding value in the isDominated list is False.

6.2.5 Skipping dominated labels

As a consequence of maintaining all the dominated labels, it is important to
decide when it is possible, and when it is necessary to avoid some operations.

Let us go through a scenarios of possibility. Recall Algorithm 2 line 12,
and the explanation provided in Section 6.1.3. Imagine to have flagged a
label l as dominated at a early stage of the process, it is not necessary to
perform any other operation regarding it. The transitivity of the domination
criteria guarantees that: any label dominated by l is also dominated by the
labels l′ that dominates l. Paired with the knowledge that Algorithm 2
consider all the labels, a method without immediate eliminations does not
differ from said Algorithm.

In practice, consider l to be a label, classified dominated in a early stage
of the method. Referring to Algorithm 2 line 5, consider l1 = l; we can
skip an entire portion and consider the next value for l1. it is important to
place a check on the related value of isDominated, before the l2 for cycle,
i.e. Line 6 of Algorithm 2. Similarly, when cycling l2 we should place there
another check on isDominated. There is no motive to determine if a label
is dominated by just one or multiple labels.

Consider now the scenario of necessity. Imagine to possess two identical
labels, there is no necessity to keep the both of them; at the same time, the
dominance criteria must not discard them both. Thus, once we found that
l1 dominates l2, we do not check if also l2 dominates l1. And we skip to the
next l2.

6.2.6 Potential for parallel implementation

We want to note here that some components of the algorithm could be
computed in parallel. Different destinations does not share information, so
one could compute those labels independently. Keep in mind that, before
the procedure could advance to future times, all the processes has to be
concluded.

36

Chapter 7

Improved dominance rules

Quel motore doveva essere un
rottame, a meno che...
Montandolo a casaccio, i nostri
meccanici ne abbiano azzeccato
uno migliore del vero
straturbo Perrari!

Zio Paperone e l’avventura in
formula 1

The collection of rules, presented in Section 5.2.1, has been implemented
and allow solving the DAC problem. However, after scaling up the size of the
instances, they become nonetheless unpractical. The performance testing
showed sensibly larger running times with respect to solving ILP model for
the DAC problem (see Section 2.2.2) with a state of the art mathematical
programming solver.

The reason has proven to be rooted in the large number of labels that
it had to treat at every instant. With the aim of reducing the number of
active labels, we tried to invert the order of operations within the Algorithm
1 (see Section 6.1), trying to early generate dominating labels, obtaining only
marginal gains.

In this section, we describe more grounded domination rules, that make
use of some additional observations regarding the future of a partial path:
how permanence and quiescence relates; or reachable configurations starting
from a given node. In general, we will discuss how to loosen up the original
dominance criteria that tested to be too strict, resulting in a weak pruning.

7.1 Alternative update of quiescence component

Despite the fact that the model we considered have the values of tp and
tq set, we discussed what would happen arranging differently the values of

37

these parameters.
In general, we recall that for any value of tq such that tq f tp, the

quiescence constraint will be automatically verified, see Section 2.2. We
want to adapt this observation to scenarios in which tq g tp +1, in order to
obtain in advance the validation of some quiescence constraints, equivalently
their elimination, see Section 5.1.2.

Assume to follow a partial path, referred by a label l = (cost, 0, qu),
and to enter c′ at time t∗ + 1; now the related label would become l′ =
(costl +Et

c′ , tp − 1, qul ∪ {c}). Then, ranging from t∗ +1 to t∗ + tp, the path
can only repeat the configuration c′, as observed in Section 2.2.

In these first part of a path, quiescence does not play a role in the
definition of what configurations are reachable or not, it is sufficient to know
the value of permanence, see Algorithm 3. Thus, it would be a good fit to
update ahead of time the quiescence set qu, as in Section 5.1.1, imagining to
be at t = t∗ + tp. Performing this operation could possibly relax a portion
of the constraints active on l′ and, as a consequence, l′ could perform better
in the domination procedure at node (t∗ + 1, c′), as explained in Algorithm
2.

Formally, let l = (costl, perml, qul) be a label with perml > 0 at time
t = t∗; then the next perml moves are set: the partial path related to l must
repeat the last visited configuration. Thus, we should update quiescence as
if t = t∗ + perml. The new time of obsolescence of a quiescence constraint
related to a label l, as defined in Section 5.1.2, becomes

t g timec,l + tq − perml (7.1)

7.2 Exploiting graph sparsity

The first crucial fact to remember is the following: pruning is best when
operated before a label could spread. The more we carry a label, the more
it spreads and adds up to the total process time.

We came to the realization that the dominance criterion we presented, see
Section 5.2.1, does not take into account if distinguishing, thus maintaining,
different labels serves a real purpose. It could happen that two labels could
produce the same outcome, even when evaluated as non comparable, making
us carry twice the same potential solution.

Consider two labels l1, l2, associated to the same node (t, c), and assume
they resulted non comparable, see Chapter 5 and Algorithm 2. This response
from the domination criteria does not provide, for neither of the two, any
certificate regarding future expansions, e.g. future compatibilities and, as a
consequence, exclusive feasible solutions. In particular, it is not guaranteed
that abandoning one of the two would result in a strict loss, regarding the
optimal value for the problem.

38

To mitigate this behaviour, we want to take in account more informa-
tion, especially regarding the near future of a path, hoping to catch a more
grounded motivation to the usefulness to keep multiple labels.

7.2.1 Permanence component

Starting with the permanence, though it is correct that a strictly smaller
value leads to the ability to spread sooner, this property has to meet the
condition of having in reach configurations different from the one active.

Imagine to compare two partial paths, related to labels l1, l2, with same
costs, same quiescence sets, but different permanence values; if, from the
moment the first one acquires the ability to transition, up to the moment
the second gain the same ability, there is no possibility to change active
configuration, then there is no advantage to distinguish the two labels. In
fact, the first partial path would continue repeating the active configuration.
Then the partial paths would both reach a node (the only one reachable)
where two labels would compare equal. We suggest to include this infor-
mation in advance into the domination criteria; in order to avoid making a
distinction that would not result in any advantage.

Formally, let l1, l2 be two labels, both associated to the node (t∗, c); with
perm values of p1, p2, such that p1 < p2. l2 could still be compared to l1 if

Ct′

c = {c}, ∀t′ ∈ {t∗ + p1, . . . , t
∗ + p2}. (7.2)

7.2.2 Quiescence component

Let us focus now on quiescence. Again, let l1, l2 be two labels, and assume
that l1 does not dominate l2 by quiescence. By recalling the domination
criteria of Chapter 5, implemented in Algorithm 2, we conclude that the
cause is either one of the following:

C(qu1) \ C(qu2) ̸= ∅ (7.3)

or
{i ∈ C(qu1) ∩ C(qu2) : timei,1 > timei,2} ≠ ∅. (7.4)

Considering timei = 0 if i ̸∈ C(qu), we could merge the two scenarios within
the latter expression.

Similarly to Section 7.2.1, we want to identify two labels if the condition
that makes them non comparable does not have an effect on the expansion
of the partial paths.

Let c′ any configuration arising from (7.4), if c′ is not reachable from
the current node, up to the moment both quiescence constraints become
validated, see Sections 5.1.2 and 7.1, then the two labels are still comparable.

39

Formally, let l1, l2 two labels associated to a node (t∗, c); let c′ be a
configuration arising from (7.4), assume c′ ∈ c ∈ C(qu1)∩C(qu2), define the
obsolescence time for l1, l2 as follows:

obsT imei = tc
′

i + (tq − 1)− permi for i ∈ {1, 2} (7.5)

we note that tci f t∗ − 1. Observe that in the scenario c′ ̸∈ C(qu2), the
expression (7.5) is not useful; however, enforcing permanence, we recall that
the partial path associated to l2 can not transition for perm2 time intervals.
Thus, in the case c′ ̸∈ C(qu2) we set obsT ime2 = t∗ + perm2 and obsT ime1
as the result of the expression (7.5).

Finally, we can state:

c′ ̸∈ Reachablet,c, ∀t ∈ {obsT ime2, . . . , obsT ime1} (7.6)

where the term reachable hide the necessity to compute all the nodes that can
be reached from the node (t∗, c) up to time t ∈ {obsT ime2, . . . , obsT ime1}.
Thus, one should compute it by merging subsequent Ct

c sets.
In our implementation, we wrote another expression, simpler to handle,

but more strict: we asked c′ ̸∈ Ct ∀t ∈ {obsT ime2, . . . , obsT ime1}.
The two conditions presented in Sections 7.2.1 and 7.2.2, implemented

together, grant a significant drop in computation times, and keep the the
algorithm exact. We want to emphasize the fact that the validity of these
condition is certainly intertwined with the sparsity of the graph at hand,
see Section 8.1: typically, a configuration that appears in the first moments
of a day is not present after few hours. Thus, the quiescence constraints
are automatically satisfied, by the shape of the instances. Nonetheless these
domination criteria could be applied as well to a general graph, they just
would not be as effective in that case. In 8, we the results of the testing we
performed.

7.3 Size-scalability and heuristic approach

The current procedure is a breadth first approach, or equivalently we collect
labels in ordered lists, and process them with a First-In First-Out (FIFO)
queue method. Thus we are certain that before reaching a given time t∗ we
have explored, thus expanded, all best paths up to t∗. A limitation to this
method is the fact that before it could compute a feasible solution, it has
also process all the others. In this section we propose an informal analysis
of possible ideas towards a heuristic search on the graph that provides good,
although non provably optimal, solution to the DAC problem..

The literature does not offer simple effective solutions, reference [15]
presents two insights, that fall short in our context. The first aims to dis-
card all nodes that, once reached, could not permit the partial path to

40

be completed maintaining feasibility. This analysis is performed operating
a one-to-all shortest path instance, starting from the destination, in or-
der to compute all the minimum resource consumption to reach each node.
Nonetheless, our consumption update rule is non linear, and thus it would
not be effective.

The other suggested method is to compute a double search in both di-
rections, but experiments show it does not offer any time advantage. By the
contrary, a recent paper [1] suggests to launch multiple parallel searches,
which start from different depots. It would be somewhat applicable, if we
could define those depots as stopping points within the graph. We could
rank them based on the possibility to spread towards other configurations.
Sadly, the shape constraint it would ask on the graph is too restrictive: in
our datasets, configuration disappear at the end of each time period, and
would possibly lead to the definition of depots at the end of each hour. This
approach could not be generalized, thus we have to abandon it.

Reference [18] strongly advocates against computing one solution at a
time, while reference [15] speaks about the curse of dimensionality, when
considering a dynamic programming approach with a large size network.
We did not consider classical metaheuristics, in fact it would not be an easy
task to define a good criterion for a neighbourhood of a solution.

We found that the major reason of large computation times is the size
of labels to manage, if we were to define heuristics domination criteria we
would certainly obtain better results. A first idea is to define a elitist rule,
which maintains the best k labels ordered by cost. We opt for this method,
for a simple effective solution. Nonethless, One has to keep in mind the
limits of this approach, we saw earlier that cost alone can not guarantee any
information about the future.

We thought to adapt the best insertion approach, in order to consider
some information about the expansion of a path. We started by considering
the following observation: changing configuration constrains the path for a
period of time, while keeping the current node at a major cost could lead
to better option by the next turn. So, what we opted for is to rank the
destinations at each time. Then, let the labels both expand towards the
current configuration (when possible), and towards the best n reachable
nodes, where n is a parameter.

The ranking method works as follows: order the configurations c ∈ Ct+1

based on the average cost over the next tp moments. If a configuration
could not be kept for this amount of time, assign a very large cost, so that
the ranking process would punish it. We observe that small n values could
lead to unfeasibility, while larger values for the parameter would make this
heuristic ineffective, since we expand all the paths.

The pseudocode is reported in Algorithm 4.
Then, we would have to adapt the cycle presented in Algorithm 1 Lines

9-17, in order to include the rank we performed. A good way to perform it,

41

Algorithm 4 heuristic expansion

for c ∈ Ct+1 do
if c ∈ Ct+1+s ∀s ∈ {0, tp − 1} then

AvgCostc =
∑t+tp

τ=t+1 e
τ
c/tp

else
AvgCostc = very large cost

end if
end for
Rank c ∈ Ct+1 based on AvgCost

in Python at least, consists in not reordering each set Ct+1
c , as it would be

a time consuming procedure, rather we would scroll Ct+1 -already ordered-
skipping configurations that are not present in Ct+1

c .
This process is still a breadth first approach, but the testing showed fast

enough performances, even on large datasets.

42

Chapter 8

Computational results and

discussion

We collect in this chapter the result of the implementation in Python of
our label-setting algorithm for the DAC problem, as presented in Chapter
6. We collect the solving times computed on different groups of instances,
divided by size and type. We underline the presence of two classes of data:
sparse and dense; we decided to test our method on datasets characterised,
respectively by, a large number of transitions opposed to a sparse transition
graphs.

8.1 Instances generation

An instance of the DAC problem is comprised of three parts: the compo-
sition of the configurations, the compatibility graph, and the traffic data.
The graph implicitly include the configurations and stores the information
regarding which configurations could be achieved at a given hour, and which
transitions are possible between those. Meanwhile, the traffic is used to com-
pute the costs, precisely the excess of demand, related to every elementary
sector, for every hour. Thus, given a set of transition graphs and a set of
traffic demand, any two elements of the corresponding sets can work inter-
changeably, making possible a lot of combinations.

The authors of [16] kindly provided a set of ten both graphs and traffic
files. Those has been used as ground-zero for the testing of the algorithm.
Soon enough, it arose the necessity to come up with richer datasets including
large-size instances, in order to deeply test the limits of our code. To have
an idea on the dimension of these instances, one could refer to the first row
of Table 8.1.

The provided datasets has been crafted with the aim to mimic realistic
conditions, and could not be replicated by simplistic rules, see Appendix A.
We could, in fact, decide to create a configuration that partitions randomly

43

the airspace, but that would loose the intent to respect, e.g., compactness
and convexity conditions on collapsed sectors.

We warn the reader about a specific structure of these instances: the
configuration set Ct is defined at the start of an hour, and kept unchanged
for the rest of that hour, i.e. C12·t+1 = · · · = C12·(t+1) for t ∈ {0, . . . , 23};
we recall that every Ct is defined over a 5 minutes interval, see Section 2.2.
We accept overlaps for achievable configurations, if we consider consecutive
hours. Thus, going through the instances, they satisfy the following:

C1 = · · · = C12 = {1, . . . , n},

C13 = · · · = C24 = {k, . . . ,m}, with k f n+ 1

We limit to consider the first two hours, i.e. from C1 to C24, for simplicity.
Also Ct

c are determined at the start of every hour, and kept constant for
that hour.

Most of all, one should amend the absence of configurations that appears
and disappears in a short time window, without being achievable for the full
hour. This addition does not have a realistic counterpart, in fact it would
go against the interest of controllers to have short-lived configurations, thus
in contrast with the requests explicitly stated in [9, 16]. Nonetheless, their
eventual presence in a generic instance is what make so difficult coming
up with effective domination criteria. It is the quiescence that fuels the
large number of labels, while also prohibiting the activation of an extremely
convenient configuration, if it were to appear.

8.1.1 Merging graph structures

We briefly comment on dimensions of ground-zero instances, in order to ap-
preciate better the size of the datasets we are going to build. They start,
and end, with a unique configuration achievable, composed of a unique col-
lapsed sector. We then subsequently split this sector in various way, up to
obtaining less than a dozen of configurations, all achievable in the middle of
the day; configurations are compatible with at most 6 others.

In order to obtain realistic large-size instances, we propose to merge
graph structures from different ground-zero instances, forming larger pools
from which the algorithm could choose the active configuration. We de-
scribe compatibility rules between these nodes in Section 8.1.2. At the same
time, we observe there is no need to touch the traffic data, since these con-
figurations are computed starting from elementary sectors, see Appendix
A.

Thus, we merged k ∈ {3, 5, 7, 9} graphs from the ground-zero instances,
meaning that we chose k instances ∀t we computed the union of Ct

i for i ∈
{1, . . . , k}. The combinations one could produce are numerous, quantifiable
by the bynomial function.

44

Alternatively, we propose another method of creating configurations:
augment the number of configurations available at each time; i.e. if at
time t there are n configurations, add at each moment of that hour k con-
figurations, with k ∈ {1, 5, 9}. This process wanted to mimic the possibility
to start and end the procedure with more choices. Nonetheless, the results
are compatible by the ones we obtained through merging. Both in terms of
instances’ size and solving times. For this reason, we decide absorb together
the solving times we collected.

8.1.2 Forming compatibility sets

We ditched the idea to determine compatibilities based on random criteria,
since all of the realistic intents would be lost. Thus we inferred some rules,
giving a deep look to how different configurations relate to each others.

We thought of a sparse approach. It maintains exclusively the compat-
ibilities present beforehand. The result is a truly sparse graph, given the
fact that, during the hour, some configurations may be related only to them-
selves, or to an additional one; this description is not exhaustive, since some
other configurations have a net of links that connects them to the majority
of Ct+1.

Secondly, we thought of a dense criterion. This time, we aimed to ap-
proximate how the process works. During the first twelve hours, we accept,
hence possibly move to, more complex configurations: we want them to use
a larger number of (collapsed) sectors; while we bound how much they can
change, in order to define it a viable transition. By the contrary, in the
second half of the day, we move to simpler configurations; here we could
decide how quickly we want this process of shrinking to happen.

n order to give a clear grasp on magnitude of the instances we formed,
consider that now the peak of achievable configuration reaches 65 nodes
(instead of 9), and the maximum number of compatible transitions is 30,
enforcing sparsity, and 55 choosing the dense criterion.

Now we describe technically what the measure does, when deciding if
configurations c1, c2 are compatible. We remember that a configuration
is composed of numerous collapsed sectors, each formed by a collection of
elementary sectors. Thus, the condition is described by a request on the
collapsed sectors.

During the hour, we want to connect configurations as similar as possi-
ble, bounding with a constant the number of collapsed sectors that changes
between the two. We experimented with the value of this constant, in order
to have a rich graph, while avoiding it having every configuration compati-
ble with every others. We observe that the condition reflects the part of the
day: in the morning, it counts the number of collapsed sector that would get
added; while in the afternoon it counts the ones which would get removed.

A more precise criterion should take in mind the composition of each

45

Sparse Graph Stats Solving Times (s)

Name |V | |A| |V |/|T | |A|/(|V | · |T |) Cplex Dom 1 Dom 2

sparse 1 1356 2965 4,7 1,91 0,68 1,61 0,12
sparse 3 4258 9701 14,8 2,03 7,98 3,57 0,4
sparse 5 6914 15625 24 2,11 32,12 6,07 0,64
sparse 7 9453 21542 33,1 2,13 75,45 5,92 0,64
sparse 9 11440 26007 39,7 2,13 122,34 8,74 1,11

Table 8.1: Results and dimension on sparse instances.

collapsed sector, but that would again result in a sparse graph. Thus we de-
cided to keep this simplistic rule, which provided instances with the desired
properties..

At the end of each hour, the condition slightly changes, now becoming
the following: two configurations are compatible with each other, if every
collapsed sector of one configuration is obtained through an operation of
splitting or merging applied to any collapsed sector in the other configura-
tion.

Finally, we collect these instances in groups, depending on the value of
k, number of graphs we merged, and the criterion used to determine the
compatibilities.

8.2 Benchmarking results and observations

We encoded the algorithms presented in Section 6.1, with domination cri-
teria presented in Section 7.1, using the Python programming language,
version 3.10. We ran experiments on a Windows machine, with 8Gb of Ram
and a 11th-Gen i5 Intel processor. We also solved the model presented by
2.2.2, through a general purpose mathematical programming solver, namely
Cplex [10]. We acknowledge that both the model and its expression in
python has been provided by the authors of [9].

We collected solving times on the method detailed in Chapter 6 with
both our domination criteria: the basic one of Chapter 5, referenced by
Dom1 ; and the improved version of Chapter 7, referenced by Dom2. For
each value of k, and type of compatibility criterion, we tested the algorithm
on ten instances and three values of traffic. We recall graphs and traffic data
are independent and can be used interchangeably. We collected the results
and computed the average for each group.

In the following tables, refer to 8.1 and 8.2, each row corresponds to a
different sized collection of graphs. There are collected average measures on
the size of these graphs. In particular, the total number of nodes and arcs,
the average size of Ct and Ct

c. Thus, it is natural to observe the similarity
within the average measurements that does not depend on the set of arcs A.

46

Dense Graph Stats Solving Times (s)

Name |V | |A| |V |/|T | |A|/(|V | · |T |) Cplex Dom 1 Dom 2

Dense 1 1356 3635 4,7 1,91 0,26 44,73 0,32
Dense 3 4258 21094 14,8 4,08 2,69 1803 9,09
Dense 5 6914 48566 24 6,65 9,24 >16000 56,62
Dense 7 9453 88033 33,1 8,54 41,94 - 231,05
Dense 9 12121 134876 42,1 10,93 73,05 - 565,82

Table 8.2: Results and dimension on dense instances.

We focus for a moment on the first set of domination criteria. Given
the definition of sparse compatibility conditions, the first row of Table 8.1
represents exactly the original instances from [9].

The results seems promising: our basic approach has been able to com-
pete with Cplex. This clearly motivated the need to create additional -larger-
instances.

Tested on different datasets, see for example the first row of Table 8.2,
we can note a difference that begins to form between the solving times of the
two methods. This difference can only exacerbate when considering larger,
denser, instances.We observe that the very large number of labels to manage,
leads the the graph based approach to DAC to running time sometime over
one hour. For this reason, we soon decided to not test further the first set
of rules.

We observe that our basic method is faster then Cplex when working on
a large sparse graph. the reason would lie in the presence of a huge number
of variables taking value zero (i.e. all the non activated configurations).
Nonetheless, this success does not outweigh the impracticality that is shown
when working with any other type of graph.

8.2.1 Results observations

Through an intense testing, we checked that both the domination criteria
find the optimal value, accordingly to the theory, though spending signifi-
cantly different amounts of time.

It seems that the second set of dominance rules (refer to Chapter 7) out-
performs vastly the first (refer Chapter 5) with both compatibility criteria;
additionally, it does not fall behind heavily when scaling the problem. It is
true that the method could not keep up with Cplex, but the solving time
are somewhat acceptable, given the fact that it asks for a few minutes. All
depends on the concept of applications: some papers approached the prob-
lem of sectorization (refer to Chapter 1) as a quick tool to use, from which
we would expect fast solving times. By the contrary, we do not consider this
aspect of the problem, so 10 minutes could be an acceptable waiting time
when planning the operations for the following day or week.

47

Part of the credits goes to the formulation of the method, in particular
its component to control the domination before the addition of a label to the
group. We repeated some tests using old criteria for domination, confronting
the old implementation code (which firstly adds every labels, from all origins,
and only then applies domination), to the one we presented in 6.1. We could
appreciate a clear gain in solving times.

8.2.2 Some data on labels

In previous sections, we stated our suspicion towards a dependence between
high solving times, and a large number of labels to treat. We decided to
shed some light on the phenomenon, computing some indicators regarding
the number of labels processed. It would be interesting to compare the
different exact methods presented, in order to highlight the difference in the
size of labels computed, thus the effectiveness of the domination criteria.

First set Second set

Name Tot Avg Max Tot Avg Max

sparse 1 15475 9 31 3578 2 10
sparse 3 53049 11 38 10902 2 20
sparse 5 53049 11 38 19125 2 34
sparse 7 99401 13 70 24899 2 42
sparse 9 143692 12 56 28091 2 27

Dense 1 75302 40 1146 5846 3 78
Dense 3 806585 186 4871 33008 7 284
Dense 5 - - - 156416 19 1538
Dense 7 - - - 380566 35 2366
Dense 9 - - - 500151 41 2908

Table 8.3: Data on labels processed.

In Table 8.3 we read the total number of labels managed by the algo-
rithm, then the average over the totality of nodes, and finally the max value
of labels a single node had stored in at least one moment. We do not report
the minimum amount of labels processed, since it would be constantly 1:
the single label processed at the beginning. We want to insist instead on
the concept of average: the graphs present nodes behaving differently, even
within the same time coordinate. We started by considering exclusively the
average on time, as to represent the total number of labels treated at a
given time. But that result did not consider that at different times different
amounts of nodes are present. Thus we opted for this measure. Reporting
the max wants to give a measure that could effectively represent the concept
of a graph being dense, and how well the domination criteria perform: a low
max value implies that the domination criteria are counterbalancing the size
of possible expansions.

48

By juxtaposing the Tables 8.1, 8.2 and 8.3, one could see a clear trend
with the number of labels skyrocketing with the first criterion for domi-
nation, and the solving times behaving accordingly. We could appreciate
that when considering sparse instances, both domination criteria do an ac-
ceptable job, but it is just a consequence of the shape and sparsity of the
datasets. Rather, when considering the dense graphs, the criteria presented
in Chapter 7 truly shines. And a solving time so high is justified by the fact
that, even if the number of labels is relatively low, there is a huge amount
of nodes.

8.2.3 Results of a heuristic

We want to recall that our approach suffer from the fact that before the
method ends, there is no feasible solution, as anticipated in section 7.3. We
also observe that Cplex works formulating almost instantly a solution, then
spending a lot of time making it better or proving it is optimal through
advanced methods. If one necessitates a solution in short amount of times,
recurring to a heuristic would be fundamental.

It is necessary to mention the fact that the shape of the instances surely
play a role: we suspect that if we were to drop the majority of labels and
keep the first label to arrive to a node, we could obtain good-enough results,
in sensibly less time.

We suggest to repeat the tests on different instances, in order to highlight
consequences of the performed choices. Additionally, one should try testing
the method on real world instances, as done by the authors of [16], and
others.

We implemented the heuristic presented in Section 7.3. We could appre-
ciate solving times being near 1 second, for both Dense7, Dense9. A gap
is present between optimal values, but too small to be concerning: we could
see different solutions having values like 20782 as optimum, and 20815 from
heuristic, an 0.15% increase.

Once again we note that we could not advocate much for this method,
since it does not guarantee anything on feasibility and optimal value. Its
major strength is the possibility to launch different values for the parameter,
knowing that it would imply much smaller solving times, than solving the
instance with exact methods.

49

Chapter 9

Conclusion and future work

We considered the Dynamic Airspace Configuration(DAC) problem, a prob-
lem from arising in Air Traffic Management, in which it is asked to determine
an optimal sequence of configurations, in order to minimize the excess of de-
mand, interpreted as the number of flights that exceeds a limited capacity.
The problem present side constraints regarding steadiness, we focused on a
model presented by [9], in which the concepts of permanence and quiescence
are introduced.

We proved the DAC problem being NP-hard, following the addition of
quiescence constraints alone, thanks to a reduction from the Travelling Sales-
man Problem (TSP); we also proved that the DAC problem can be solved in
a polynomial time, if we were to enforce exclusively permanence constraints.

We modeled the problem as an instance of the Resource Constrained
Shortest Path Problem (RCSPP), defining an appropriate set of resources
and related labels. Additionally, we proposed an exact method based on
labels optimization, defining the components that form a label, how to ex-
pand and compare them. We focused, in particular, in the definition of two
valid dominance criteria.

We implemented the proposed method, and tested it on large instances
we generated starting from realistic ones we were provided. We compared
the results of our method against a Integer Linear Programming formulation
for DAC proposed by [9], solved by a general purpose ILP solver, namely
Cplex, interfaced by Python programming language. We showed the effec-
tiveness of our method in the case the graph is sparse; on the contrary,
Cplex performs better when our proposed approach has to compute a large
number of non-dominated partial paths.

We implemented a fast heuristics that performed well on the test in-
stances, however it does not guarantee any optimality gap.

As future work, the graph representation of DAC and the RCSPP ap-
proach proposed in this thesis can be expanded to accommodate for robust-
ness issues, in order to take traffic demand uncertainty into account.

50

Appendix A

Instance generation

We go through some of the work performed by one of the authors of [9].
The airspace is discretized as a 60x100 grid. A set of points scattered

on thee grid are considered as origin and destination of all the flights. The
points are chosen with the following criteria: 4 fixed points in the middle of
the grid, 3 random points on both the bottom and top rows, and 5 random
points on both the leftmost and rightmost columns.

A route can connect two interior points, or an interior point to one on
the border. In order to generate the routes, the author uses a parametric
equation, representing a section of an ellipse, of which we can control the
curvature. For each pair of points, two values of the parameter are consid-
ered, thus generating two different routes. Once the set of routes is formed,
the author picks a sample of it, keeping 1500 of them.

The total time frame is one day, subdivided in five-minutes intervals.
For each flight, it is chosen a random time of departure, and a permanence
time on every element of the grid is assigned. Once the traffic is known, the
grid is partitioned in 60 elementary sectors, formed taking in consideration
the location of the points in which traffic tends to accumulate.

The capacity of elementary sectors is defined starting from the traffic
demand within the day. It considers 85% of the highest value of occupa-
tion, plus a small random component, that could vary at each time interval.
Meanwhile, the capacity of a collapsed sector is computed following this
idea: take the max of the elementary sectors capacity, and add three addi-
tional flight for every other elementary sector. The increment is bounded by
a 30% factor. This means that a different arrangement of elementary sectors
could lead to different capacity configurations. It is not a linear function
ruling how the capacities adds up.

The transition graph is a 288-partite graph, given the 5 minute time
windows. It starts considering a single collapsed sector, formed by the union
of every elementary sector. For every hour, it considers a group of configu-
rations. Every hour the number of feasible configuration changes, increasing

51

in the first 12 hours of the day, and decreasing after. At the end of the day,
again only one configuration is permitted: the one formed by the union of
all elementary sectors.

The compatible configurations are determined by operations of splitting
and merging, the number of derived configurations is random. These con-
figuration are collected in different groups, depending on the origin. Transi-
tions are acceptable exclusively between configurations of the same group.

52

Appendix B

Python code

Here we report the code we implemented.

B.1 Exploration block

The following functions corresponds to Algortihm 1 presented in Chapter 6.

def Algo():

starttime=time.time()

initLabels ()

for t in T[:-1]:

for conf in CONFt[t+1]:

#expand first native labels

if conf in PASTtc[t,conf]:

Labels[t+1,conf]+= updateLabels ((t,conf ,conf))

#collect foreigners labels in a list

LbToAdd=[]

for PrevConf in PASTtc[t,conf]:

if PrevConf == conf: continue

LbToAdd += updateLabels ((t,PrevConf ,conf))

Labels[t+1,conf]+=LbToAdd

#refresh labels position after pruning

counterPos = 0

for l in Labels[t+1,conf]:

l.pos=counterPos

counterPos+=1

#print statistics

print(f’{t,[len(Labels[t,conf]) for conf in CONFt[t]]}’

)

conclude ()

endtime=time.time()

if Labels[’finalDummy ’] != []:

Labels[’finalDummy ’].sort(key=lambda l: l.cost)

optPath=RecoverPath ()

return (Labels[’finalDummy ’][0].cost , optPath , float(

endtime-starttime))

53

return

This code is different from the pseudocode presented in Chapter 6: it
does not use a double for cycle, thus it will operate more than once the deep
copy operations. As previously stated, that code should grant marginal
gains, but we reported here the code that we used for testing. Also the
pseudocode does not define the function Conclude, useful to collect in one
place all the labels and compare them. It is our filtering step [11].

What follows is a collection of the function we used. Also Algo() is
defined as a function, since we are going to recall it multiple times, aiming
to automate the benchmarking process on multiple graphs and traffic.

We follow with the operations of initialization and conclusion.

def initLabels ():

’’’Initialize the labels ’’’

for conf in CONFt[0]:

Labels[(0,conf)]=[lb(e[conf][0])]

for t in T[1:]:

for c in CONFt[t]:

Labels[(t,c)]=[]

Labels[’finalDummy ’]=[]

return

def conclude ():

for c in CONFt[T[-1]]:

suppLbList=copy.deepcopy(Labels[T[-1],c])

Labels[’finalDummy ’]+=[lb(cost=l.cost ,prtNode=c, prtLabPos=

l.pos) for l in suppLbList]

return

B.2 Label encoding

We opted to store labels using a class.

global Labels #dict : key = (time , conf) tuple. element: list

of labels associated

Labels={}

class lb: #label

’’’singular label ’’’

def __init__(self , cost = 0, permanescence = 1, quiescence

= {}, LabPos = 0, prtNode =

’dummy’, prtLabPos = 0):

self.cost = cost

self.perm = permanescence

self.qu = quiescence

self.pos = LabPos #ID of a label.

self.prtNode = prtNode

self.prtLabPos = prtLabPos

54

In a previous version, we represented them in a list, but that resulted in
a more convoluted notation, and some difficulties when it came to printing
information. This time, using some class methods, we could decide what
attribute to return when a label is printed.

def __repr__(self):

return f’(cost: {self.cost}, perm: {self.perm}, quies:

{self.qu}, prt: {self.

prtNode})’

B.3 Labels’ domination and expansion

def dominates(self ,adversaryL ,CurrTime ,CurrConf):

if self.cost > adversaryL.cost:

return False

if self.perm < adversaryL.perm:

for s in range(tp-adversaryL.perm ,tp-self.perm):

if bool(set(CONFtc[CurrTime+s+1,CurrConf]).

difference(set(

[CurrConf]))):

#adversaryL can spread before Self.

return False

QuarantinedKeys=[key for key in self.qu.keys() if key

not in set(adversaryL.

qu.keys())] #keys that

potentially make

uncomparable the two

labels

if bool(QuarantinedKeys):

for key in QuarantinedKeys:

ObsTime=self.qu[key]+(tq-1)-(tp-self.perm)

for s in range(CurrTime+1,ObsTime+1):

if key in CONFt[min(s,T[-1])]:

#adversaryL could enter more node

return False

QuarantinedKeys=[key for key in set(self.qu.keys()).

intersection(set(

adversaryL.qu.keys()))

if self.qu[key]>

adversaryL.qu[key]]

if bool(QuarantinedKeys):

for key in QuarantinedKeys:

ObsTime=self.qu[key]+(tq-1)-(tp-self.perm)

AdvObsTime=adversaryL.qu[key]+(tq-1)-(tp-

adversaryL.perm

)

for s in range(AdvObsTime ,ObsTime+1): #col +1 o

senza? CON.

vedi sopra

if key in CONFt[min(s,T[-1])]:

return False

55

return True

We want to comment the fact that we used a large number of list descrip-
tors, they have been extremely useful to describe concisely the condition we
wanted. Also, we expressed the if statements in nested fashion, in order to
squeeze out as much time gains as possible.

Regarding the other, simpler, modules.

def newQu(self ,CurrTime ,CurrConf , ConfMantained: bool =

False):

newQu=copy.deepcopy(self.qu)

if not ConfMantained: newQu[CurrConf]=CurrTime

for obsoleteKey in [key for key in self.qu.keys() if (

self.qu[key] <=

CurrTime - (tq -1) + (

tp - self.perm))]:

newQu.pop(obsoleteKey)

return newQu

def newPerm(self ,ConfMantained = False):

return min(self.perm+1,tp) if ConfMantained else 1

def isExpandible(self ,CurrConf , NextConf):

’’’return a Bool value representing if a given label

can be expanded ’’’

if NextConf==CurrConf:

return True

if self.perm < tp or NextConf in self.qu.keys():

return False

return True

def expanded(self ,CurrTime ,CurrConf ,NextConf):

’’’return a label transformed ’’’

return lb(self.cost + e[NextConf][CurrTime+1], self.

newPerm(NextConf==

CurrConf), self.newQu(

CurrTime ,CurrConf ,

NextConf==CurrConf),

len(Labels[CurrTime+1,

NextConf]), CurrConf ,

self.pos)

56

References

[1] Saman Ahmadi, Guido Tack, Daniel D. Harabor, and Philip Kilby.
“A Fast Exact Algorithm for the Resource Constrained Shortest Path
Problem”. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence 35.14 (May 2021), pp. 12217–12224. url: https://ojs.aaai.
org/index.php/AAAI/article/view/17450.

[2] Ravindra K. Ahuja, James B. Orlin, Thomas L. Magnanti, and Ravin-
dra K. Ahuja. Network flows : theory, algorithms and applications /
Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. eng. Har-
low: Pearson, 2014. isbn: 9781292042701.

[3] John Adrian Bondy, U. S. R. Murty, and John Adrian Bondy. Graph
theory / J.A. Bondy, U.S.R. Murty. Graduate texts in mathematics.
New York: Springer, 2008. isbn: 1846289696.

[4] Luigi De Giovanni, Nicola Gastaldon, and Filippo Sottovia. “A two-
level local search heuristic for pickup and delivery problems in express
freight trucking”. In: Networks (2019).

[5] Martin Desrochers and Francois Soumis. “A Generalized Permanent
Labelling Algorithm For The Shortest Path Problem With Time Win-
dows”. In: INFOR: Information Systems and Operational Research
(1988).

[6] Irina Dumitrescu and Natashia Boland. “Algorithms for the Weight
Constrained Shortest Path Problem”. In: International Transactions
in Operational Research (2001).

[7] Patrik Ehrencrona Kjellin. Airspace Sectorisation Using Constraint-
Based Local Search. 2014.

[8] Michael R. Garey, David S. Johnson, and Michael R. Garey. Com-
puters and intractability : a guide to the theory of NP-completeness
/ Michael R. Garey, David S. Johnson. eng. ¡¡A ¿¿series of books
in the mathematical sciences. San Francisco: Freeman, 1979. isbn:
0716710455.

[9] De Giovanni, Galeazzo, and Lulli. “An IP approach for dynamic airspace
configuration”. In: (2024).

57

[10] IBM. Cplex library for Python implementation. https://ibmdecisionoptimization.
github.io/docplex-doc/mp/index.html.

[11] Stefan Irnich and Guy Desaulniers. “Shortest Path Problems with Re-
source Constraints”. In: Column Generation. Ed. by Guy Desaulniers,
Jacques Desrosiers, and Marius M. Solomon. Boston, MA: Springer
US, 2005, pp. 33–65. isbn: 978-0-387-25486-9. url: https://doi.
org/10.1007/0-387-25486-2_2.

[12] Stefan Irnich and Daniel Villeneuve. “The Shortest-Path Problem with
Resource Constraints and k-Cycle Elimination for k g 3”. In: IN-
FORMS Journal on Computing 18.3 (2006), pp. 391–406. url: https:
//doi.org/10.1287/ijoc.1040.0117.

[13] Sameer Kulkarni, Rajesh Ganesan, and Lance Sherry. “Dynamic Airspace
Configuration Using Approximate Dynamic Programming: Intelligence-
Based Paradigm”. In: Transportation Research Record 2266.1 (2012),
pp. 31–37. url: https://doi.org/10.3141/2266-04.

[14] M Florencia Lema-Esposto, Manuel Ángel Amaro-Carmona, Nativi-
dad Valle-Fernández, Enrique Iglesias-Mart́ınez, and Adrián Fabio-
Bracero. “Optimal dynamic airspace configuration (DAC) based on
state-task networks (STN)”. In: Proceedings of the 11th SESAR Inno-
vation Days, Online (2021), pp. 7–9.

[15] Leonardo Lozano and Andrés L. Medaglia. “On an exact method for
the constrained shortest path problem”. In: Computers & Operations
Research 40.1 (2013), pp. 378–384. issn: 0305-0548.

[16] De Giovanni Luigi, Galeazzo martina, Lulli Guglielmo, and M. Floren-
cia Lema-Esposto. “An Integer Programming approach to Dynamic
Airspace Configuration”. In: 2024.

[17] Francisco Pérez, Victor Gomez Comendador, Raquel Jurado, Maŕıa
Zamarreño Suárez, Dominik Janisch, and Rosa Valdés. “Dynamic model
to characterise sectors using machine learning techniques”. In: Aircraft
Engineering and Aerospace Technology ahead-of-print (Jan. 2022).

[18] Marina Sergeeva, Daniel Delahaye, Catherine Mancel, and Andrija Vi-
dosavljevic. “Dynamic airspace configuration by genetic algorithm”.
In: Journal of Traffic and Transportation Engineering (English Edi-
tion) 4.3 (2017), pp. 300–314. issn: 2095-7564. url: https://www.
sciencedirect.com/science/article/pii/S2095756417301927.

[19] Marco Di Summa. Appunti di Ottimizzazione Discreta. Chap. 6,7.

[20] Tambet Treimuth, Daniel Delahaye, and Sandra Ulrich Ngueveu. “A
branch-and-price algorithm for Dynamic Sector Configuration”. In:
2016.

58

[21] Min Xue. “Airspace Sector Redesign Based on Voronoi Diagrams”.
In: Journal of Aerospace Computing Information and Communication
(2009).

59

