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Abstract

This thesis focuses on the development of a novel loss function for deep learning-based fa-
cial recognition models. Building upon the foundation of ArcFace, the proposed loss function
integrates key concepts from recent advancements, including MagFace, CurricularFace, and
AdaFace, to enhance model performance. The ResNet architecture, specifically leveraging pre-
trained models, is fine-tuned to accommodate this new loss function. The effectiveness of the
resulting models is rigorously evaluated on the IJB-C dataset, with performance metrics high-
lighting the improvements in recognition accuracy and robustness. This research contributes
to the field of facial recognition by offering a more refined loss function that balances identity
separation and intra-class compactness, thereby improving model generalization.
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Introduction

Facial recognition represents one of the most significant innovations in the realm of biometric
recognition, emerging as a fundamental technology in applications that span from the commer-
cial sector to government use. Over the past few decades, the scientific community has focused
considerable efforts on improving the reliability and accuracy of these systems, making them
essential tools for identifying and authenticating individuals. Unlike other forms of biometrics,
such as fingerprint analysis or iris recognition, facial recognition has the advantage of being able
to operate on non-cooperative subjects without requiring physical contact with the device. This
characteristic makes it particularly suitable for monitoring in high-density environments, such
as smart cities, where security and access control are of paramount importance [1]. However,
the robustness of facial recognition systems must confront significant challenges posed by ad-
verse environmental conditions, such as uneven lighting, variations in posture, and obstacles like
glasses or hats. To overcome these challenges, deep convolutional neural networks (DCNNs)
have become central, supported by the adoption of loss functions with angular margins. These
functions optimize the representation of facial features, improving the separation between dis-
tinct classes and increasing the discriminability of facial embeddings, an aspect that translates
into a significant improvement in the overall accuracy of facial recognition systems [2].

Figure 2: Example of an CNN architecture. The main difference between a CNN and a DCNN
is the number of layers for feature learning.

iii



Face Identification and Verification: A Comparison

Within the field of face recognition, two main tasks are distinguished: face identification and
face verification. While face identification aims to recognize an individual’s identity by com-
paring a facial image to a predefined set of identities, face verification has a more limited goal,
answering a binary question: do two images belong to the same person? In other words, face
verification checks whether two facial images represent the same individual, without explic-
itly identifying who that person is. Despite these conceptual differences, the models used for
face verification and face recognition are nearly identical. Both tasks rely on models capable
of generating compact and discriminative representations of facial features, often referred to as
embeddings. Algorithms like FaceNet [3] introduced the use of embeddings to represent faces
in vector space, reducing the distance between representations of the same face and maximiz-
ing it between different faces. This innovation has greatly contributed to both face verification
and face recognition, setting a new standard in developing robust and precise models for both
applications.

Figure 3: Example of face recognition usage in a smart city.

Angular Margin Innovations

The adoption of angular margins has revolutionized the approach to facial recognition, allowing
for the overcoming of the limitations of traditional Softmax-based loss functions. For exam-
ple, ArcFace [4] introduces a constant angular margin between the input and the class vector,
deliberately increasing the distance between classes in the feature space. This strategy helps re-
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duce the risk of error, especially in uncontrolled contexts where the variability of environmental
conditions is high and the robustness of the system is crucial. These techniques demonstrate
particular effectiveness when applied to large-scale datasets, where the variety and complexity
of the data can be significant. However, creating and annotating such datasets poses a consider-
able challenge in terms of resources and time, requiring substantial human intervention to ensure
label accuracy. To address these issues, variants such as MagFace [5], which adjusts the margin
based on image quality, and AdaFace [6], which adapts the margin based on the difficulty of
the sample, have been developed. These approaches allow models to dynamically calibrate the
angular margin, further enhancing the robustness and precision of facial recognition.

Goals of the Study

My research work aims to develop a new loss function inspired by those that leverage angular
margins, such as ArcFace [4], AdaFace [6], CurricularFace [7], and MagFace [5]. The objective
is to create a hybrid between MagFace and CurricularFace, integrating the distinctive character-
istics of both into a single loss function. This approach seeks to further optimize the performance
of facial recognition models, particularly in the domain of deep learning, utilizing theMATLAB
environment through the Deep Learning Toolbox and its supporting packages. The models used
in this research were taken from the AdaFace repository and subsequently fine-tuned for our spe-
cific purposes. Furthermore, the trained models were subjected to the IJB-C [8] test to evaluate
the effectiveness and robustness of the new techniques developed.

v



vi



Contents

1 General Overview of Margin Based Loss Function 1
1.1 Evolution of Loss Functions in Deep Face Recognition . . . . . . . . . . . . . 2
1.2 ArcFace Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Empirical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 MagFace Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 MagFace Loss formulation . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Adaptive Angular Margin . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Role of the Regularization Term . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Empirical Performances . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5 Core Advantages and Applicability . . . . . . . . . . . . . . . . . . . 12

1.4 CurricularFace Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Adaptability Through Parameter t . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Pseudocode for CurricularFace Loss Function . . . . . . . . . . . . . . 14
1.4.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 AdaFace Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 Image Quality Indicator . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Development of a Novel Loss Function for Face Recognition 21
2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Cross-Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Magnitude and Clamping . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Adaptive Margin Calculation . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Magnitude Regularization . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 Penalty Mechanism for Difficult Samples . . . . . . . . . . . . . . . . 23

vii



2.1.6 Updating Parameter t . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Pre-trained Models and Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 MS1MV2, MS1MV3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 WebFace260M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Test IJB-C (IARPA Janus Benchmark-C) 33
3.1 ROC Curve and AUC Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Interpretation of AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Structure of the IJB-C Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Verification and Identification Protocols . . . . . . . . . . . . . . . . . . . . . 36
3.5 Key Metrics: TAR@FAR and AUC . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Embedding Aggregation: Mean and ERS . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Simple Mean Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Enhanced Representation Strategy (ERS) . . . . . . . . . . . . . . . . 38

3.7 Implementation of IJB-C Benchmark Testing . . . . . . . . . . . . . . . . . . 43

4 Evaluation and Analysis of Face Recognition Models 45
4.1 Baseline Results with Mean Embedding Aggregation . . . . . . . . . . . . . . 46
4.2 Baseline Results with ERS Embedding Aggregation . . . . . . . . . . . . . . . 48
4.3 Comparison with State-of-the-Art Models . . . . . . . . . . . . . . . . . . . . 52
4.4 Analysis of Results and Potential Sources of Systematic Errors . . . . . . . . . 52
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

viii



List of Figures

2 Example of an CNN architecture. The main difference between a CNN and a
DCNN is the number of layers for feature learning. . . . . . . . . . . . . . . . iii

3 Example of face recognition usage in a smart city. . . . . . . . . . . . . . . . . iv

1.1 Timeline of Loss Function development. . . . . . . . . . . . . . . . . . . . . . 2

1.2 The problem of the Softmax Loss is the distance in the embedding space between
samples of different class (Dinter) that is lower respect to the distance of samples
of the same class (Dintra) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 During training the model aims at minimizing the distance between the anchor
and the positive while maximizing the distance from the anchor to the negative. 3

1.4 Example of how samples are visualized in the Euclidean space around 9 centers. 4

1.5 Features visualizations (Softmax Loss (m=1) vs. L-Softmax loss (m=2,3,4)) in
MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Visualization of features learned with different m by using a 6- class subset of
the CASIA-WebFace dataset. With largerm the classification margin becomes
larger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Diagram of the ArcFace Loss Mechanism. This figure illustrates the computa-
tion of the ArcFace loss function, showing the introduction of an angular margin
m between the normalized feature vector and class center to enhance inter-class
separability and intra-class compactness. The pipeline proceeds from normal-
ized features and weights through the application of the angular margin, feature
re-scaling, softmax calculation, and final cross-entropy loss. . . . . . . . . . . 6

1.8 This figure illustrates the decision margins for various loss functions (Softmax,
SphereFace, CosFace, and ArcFace) used in binary classification. Each plot rep-
resents the angle distributions (θ1 and θ2) between two classes during training.
The shaded regions indicate the decision margins, with the dashed line repre-
senting the decision boundary. These margins show how each method modifies
the angles between classes to improve class separability. . . . . . . . . . . . . 7

ix



1.9 Toy examples under the Norm-Softmax and ArcFace loss on 8 identities with
2D features. Dots indicate samples and lines refer to the center direction of each
identity. Based on the feature normalization, all face features are pushed to the
arc space with a fixed radius. The geodesic distance margin between closest
classes becomes evident as the additive angular margin penalty is incorporated
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.10 MagFace learns for (a) in-the-wild faces (b) a universal embedding by pulling
the easier samples closer to the class center and pushing them away from the
origin o. As shown in our experiments and supported bymathematical proof, the
magnitude l before normalization increases along with feature’s cosine distance
to its class center, and therefore reveals the quality for each face. The larger the
l, the more likely the sample can be recognized. . . . . . . . . . . . . . . . . . 9

1.11 Distributions of magnitudes on different datasets . . . . . . . . . . . . . . . . 11

1.12 Illustrations on (ratio between CurricularFace loss and ArcFace in red, maxi-
mum cosθj in green ) in different training stages. Top: Early training stage.
Bottom: Later training stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.13 Easy and hard examples from two subjects classified by CurricularFace on early
and later training stage, respectively. Green box indicates easy samples. Red
box indicates hard samples. Blue box means samples are classified as hard in
early stage but relabeled as easy in later stage, which indicates samples’ trans-
formation from hard to easy during the training procedure. . . . . . . . . . . . 16

1.14 Conventional margin based softmax loss vs AdaFace. A framework training
pipelinewith amargin based softmax loss (a). The loss function takes themargin
function to induce smaller intra-class variations.(b) Proposed adaptive margin
function (AdaFace) that is adjusted based on the image quality indicator. . . . 17

x



1.15 Correlation between Feature Norm and Image Quality across Training Epochs.
This figure demonstrates how the feature norm ||zi|| correlates with image qual-
ity, measured by BRISQUE (Blind/Referenceless Image Spatial Quality Eval-
uator), a score where higher values indicate lower image quality. Pearson’s
correlation coefficient is used to show the strength of the linear relationship be-
tween feature norm and image quality, ranging from -1 (strong negative) to 1
(strong positive). (a) The green curve shows the increasing correlation of fea-
ture norm with image quality over training epochs, confirming feature norm as
a reliable indicator of quality. The orange curve shows a weaker correlation be-
tween the probability Pyi (confidence for the true class) and image quality. (b)
Scatter plot of feature norm vs. image quality, showing a positive relationship:
higher norms correlate with higher quality images. (c) Scatter plot Pyi of vs.
image quality, illustrating a weaker, non-linear relationship, supporting feature
norm as a more effective quality indicator. . . . . . . . . . . . . . . . . . . . 18

1.16 Comparison of Different Margin-Based Approaches in Feature Space. This fig-
ure provides a visual comparison of variousmargin-based approaches, including
the angular margin of ArcFace, the adaptive angular margin of MagFace, and
the quality-adaptive margin function of AdaFace. The arcs and decision bound-
aries represent how each method positions samples based on both quality and
difficulty. AdaFace’s margin function is shown to adjust adaptively accord-
ing to the feature norm (indicating image quality), placing greater emphasis on
higher-quality, hard samples while down-weighting unidentifiable samples with
low feature norms. The illustration highlights how AdaFace leverages adaptive
components gangle and gadd to dynamically shift the decision boundaries based
on sample quality, unlike fixed-margin approaches. . . . . . . . . . . . . . . . 19

2.1 format of models that can be imported into MATLAB . . . . . . . . . . . . . . 26

2.2 Distribution of faces inside the original MS-Celeb-1M dataset . . . . . . . . . 27

2.3 Comparisons of identities and faces betweenWebFace dataset and others public
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Date of birth, nationality and profession of WebFace260M . . . . . . . . . . . 29

2.5 Pose (yaw), age and race of WebFace42M . . . . . . . . . . . . . . . . . . . . 30

2.6 Value of the loss during training . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Percentage of accuracy value during training . . . . . . . . . . . . . . . . . . . 32

xi



3.1 This figure demonstrates the construction of a Receiver Operating Characteris-
tic (ROC) curve. The table above lists instances with their respective scores and
ground-truth classes (positive or negative). By progressively lowering the deci-
sion threshold and recalculating the True Positive Rate (TPR) and False Positive
Rate (FPR) for each threshold, a ROC curve is generated. The x-axis represents
the FPR, while the y-axis represents the TPR. . . . . . . . . . . . . . . . . . . 34

3.2 Examples of subjects included in IJB-C from various geographic regions. . . . 35
3.3 Annotation Labels included within IJB-C . . . . . . . . . . . . . . . . . . . . 36
3.4 This collage showcases artificial degradations applied to images from the LFW

[19] dataset. The first and third images are original samples, while the second
is blurred with Gaussian filtering, and the fourth has added Gaussian noise. . . 39

3.5 Representation of the images of the WIDERFace set. This dataset has a high
degree of variability in scale, pose, occlusion, expression, appearance and illu-
mination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 This image illustrates the application of the Enhanced Representation by Sub-
sampling (ERS) strategy to identify high-quality embeddings within clusters of
face images. Each cluster represents embeddings extracted from different iden-
tities, color-coded for clarity. The metrics displayed (C = Confidence, R = Re-
liability) highlight the robustness of the ERS method in selecting representative
embeddings, even when low-quality or noisy data is present. The dotted lines
connect selected embeddings to their respective subjects, demonstrating the fil-
tering process for creating robust identity templates. . . . . . . . . . . . . . . . 42

3.7 This figure depicts how the ERS strategy evaluates the quality of embeddings
based on the ERS score. The rows represent different thresholds of ERS scores:
- ERS > 0.95: High-quality embeddings with minimal noise and clear identity
representation. - 0.7 < ERS < 0.8: Moderate-quality embeddings with slightly
degraded clarity or consistency. - ERS < 0.6: Low-quality embeddings with
significant noise or distortion. This visualization demonstrates how ERS pri-
oritizes embeddings with higher scores for aggregation, effectively discarding
noisy or unreliable embeddings to improve the robustness of the final template. 42

4.1 ROC curves showcasing the performance of ArcFace. . . . . . . . . . . . . . . 46
4.2 ROC curves showcasing the performance of MagFace. . . . . . . . . . . . . . 47
4.3 ROC curves showcasing the performance of the novel Loss function. . . . . . . 47
4.4 ROC curves showcasing the performance of the novel Loss function with

ResNet-50 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 ROC curves showcasing the performance of ArcFace with ERS. . . . . . . . . 49

xii



4.6 ROC curves showcasing the performance of MagFace with ERS. . . . . . . . . 50
4.7 ROC curves showcasing the performance of the novel Loss function with ERS. 50
4.8 ROC curves showcasing the performance of the novel Loss function with ERS

and ResNet-50 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



xiv



1
General Overview of Margin Based Loss
Function

Margin-based loss functions have emerged as a pivotal innovation in the realm of deep learning,
particularly within facial recognition systems. These functions operate by creating a defined
separation, or margin, between classes in the feature space, thereby improving the discriminative
power of models. By emphasizing the angular relationships between samples, margin-based
approaches enable more robust classification in challenging conditions. This methodology not
only enhances the accuracy of facial recognition systems but also paves the way for subsequent
advancements in loss function design, ensuring that models can effectively learn from complex
and varied datasets.

1











1.2 ArcFace Loss

In the field of facial recognition, the introduction of loss functions that leverage angular margins
has significantly enhanced models’ ability to discriminate between different classes. Among
the various functions developed, ArcFace is recognized as the foundation of modern facial
recognition systems, serving as a starting point for other advanced loss functions like Mag-
Face, AdaFace, and CurricularFace. Introduced by Deng et al. in 2019, ArcFace represents the
first approach to integrate an additive angular margin within the loss function to maximize angu-
lar separability between classes [4]. By introducing this angular margin, ArcFace increases the
inter-class distance while maintaining compact intra-class clusters, improving both robustness
and accuracy.

1.2.1 Mathematical Formulation

ArcFace is based on the classical Softmax Loss but introduces an additive angular margin that
enables better discriminability of facial embeddings. Specifically, by adding an angular mar-
gin to the angles between the embedding vector and the correct class center, ArcFace succeeds
in improving the separability of vectors representing different individuals while ensuring that
representations of faces within the same class are tightly clustered [4]. This approach can be
visualized as a projection onto a hyperspherical manifold, where the feature embeddings are
pushed apart by a fixed angular distance, leading to an improved clustering effect for each iden-
tity.

Figure 1.7: Diagram of the ArcFace Loss Mechanism. This figure illustrates the computation
of the ArcFace loss function, showing the introduction of an angular margin m between the
normalized feature vector and class center to enhance inter-class separability and intra-class
compactness. The pipeline proceeds from normalized features and weights through the applica-
tion of the angular margin, feature re-scaling, softmax calculation, and final cross-entropy loss.
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These results underscore the robustness of ArcFace in handling large-scale datasets with diverse
facial variations, confirming its suitability for real-world facial recognition applications.

Figure 1.9: Toy examples under the Norm-Softmax and ArcFace loss on 8 identities with 2D
features. Dots indicate samples and lines refer to the center direction of each identity. Based
on the feature normalization, all face features are pushed to the arc space with a fixed radius.
The geodesic distance margin between closest classes becomes evident as the additive angular
margin penalty is incorporated [4].

These empirical results demonstrate that the introduction of the angular margin not only
enhances the inter-class separability but also ensures tighter intra-class clustering. This char-
acteristic has made ArcFace a foundational approach in face recognition tasks and a precursor
to subsequent loss functions like MagFace, AdaFace, and CurricularFace, which further refine
the margin-based strategy to address specific challenges such as sample quality and curriculum
learning.
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The MagFace loss function is defined as:

LMag =
1

N

N
∑

i=1

Li, Li = − log
es·cos(θyi+m(ai))

es·cos(θyi+m(ai)) +
∑

j ̸=yi
es·cos(θj)

+ λg · g(ai), (1.2)

where:

• N is the number of samples in the mini-batch.

• θyi is the angle between the embedding of sample i and the center of the correct class yi.

• s is the scale factor that amplifies angular separability.

• m(ai) is the angular margin that increases with embedding magnitude ai.

• g(ai) is the regularization function, designed to penalize samples with small magnitudes.

• λg balances the regularization term and the classification loss.

The adaptive angular marginm(ai)

1.3.2 Adaptive Angular Margin

One of the core innovations in MagFace is the adaptive angular margin m(ai), which varies
depending on the magnitude of the embedding ai. This approach addresses the limitations of
fixed-margin methods by dynamically adjusting the angular margin based on the sample quality,
thereby enhancing the inter-class separability for high-quality samples. The adaptive margin
m(ai) is defined as:

m(ai) =
mu −ml

mu −ml

· (ai −ml) +ml

Here:

• mu andml are the upper and lower bounds of the margin.

• ai is the embedding magnitude, which serves as an indicator of the quality of the sample.

High-quality samples, which typically have larger magnitudes ai, receive a larger angular
marginm(ai). This increases the angular separation between classes for these samples, leading
to enhanced class discrimination. Conversely, low-quality samples, with smaller magnitudes,
receive a reduced margin, minimizing the risk of over-penalization. This design allows Mag-
Face to adaptively balance the learning process, effectively positioning high-quality embeddings
closer to their class centers while managing low-quality samples [5].
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1.3.4 Empirical Performances

To validate the effectiveness of the MagFace loss, we conducted extensive experiments on sev-
eral popular face recognition benchmarks. In this section, we detail the empirical results ob-
tained and highlight the core advantages of MagFace over traditional fixed-margin methods.

On the LFW dataset, MagFace achieved an accuracy of 99.83%, surpassing fixed-margin
approaches such as ArcFace and CosFace, which are frequently used as baselines. These re-
sults demonstrate the model’s capability to accurately distinguish identities under controlled
conditions, underscoring how MagFace’s adaptive angular margin optimizes class separation
for high-quality samples [5].

In less constrained scenarios, such as those encountered in the IJB-B and IJB-C datasets,
MagFace consistently outperformed prior methods in terms of True Accept Rate (TAR) at vari-
ous False Accept Rate (FAR) levels. Specifically, MagFace achieved a TAR of 94.33% at FAR
10−4 on IJB-B and 95.81% on IJB-C, demonstrating robustness against challenging conditions
like pose variation, occlusion, and low image quality. These results underscore the effectiveness
of MagFace’s adaptive approach in handling high variability across samples [5].

1.3.5 Core Advantages and Applicability

MagFace sets a new standard in face recognition by combining adaptive margin management
with quality-aware embeddings. This approach enables MagFace to handle samples of varying
quality more effectively than fixed-margin methods, enhancing the model’s resilience in highly
variable environments.

The design of the MagFace regularization function ensures a structured distribution of em-
beddings, positioning high-quality samples close to their class centers and pushing lower-quality
samples towards the origin. This architecture is easily integrable into cosine-similarity-based
face recognition systems without significant modifications, making it a versatile solution for
real-time applications and high-reliability recognition tasks.
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1.4 CurricularFace Loss

Another innovative innovative approach is the CurricularFace loss function, that as introduced
to improve the performance of deep learning models in face classification through adaptive
curricilum learning [7]. CurricularFace introduces a more dynamic concept respect to the fixed
margin of ArcFace, enabling the model to adapt during training by gradually emphasizing more
difficult samples. In the initial phase, the model places greater importance on easier samples
to facilitate convergence, while later shifting focus to harder samples, emphasizing their update
during subsequent iterations [7]. This training progression makes CurricularFace more robust
in handling the variability and complexity of the training data.

1.4.1 Mathematical Formulation

The formulation of CurricularFace derives from ArcFace but expands its core idea through dy-
namic modulation of negative cosine similarity for hard samples. The loss function can be
expressed as follows:

L = − log
es·cos(θyi+m)

es·cos(θyi+m) +
∑

j ̸=yi
es·N(t(k),cos(θj))

, (1.3)

N(t(k), cos(θj)) =







cos(θj), if cos(θyi +m) ≥ cos(θj),

(t(k) + cos(θj)) · cos(θj), otherwise.
(1.4)

• s is a scalar factor;

• θyi is the angle between the weight vector of class yi and the feature vector xi;

• N(t(k), cos(θj)) is the modulation function of negative cosine similarity, which varies
based on the adaptive parameter t(k).

The key difference from ArcFace lies in the term, N(tk, cos(θj)) which modulates the negative
similarity according to the sample difficulty. For easy samples, the negative similarity is kept
close to the original, while for difficult samples, it is altered to increase their importance, making
training more efficient in handling complex cases [7].
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Algorithm 1 CurricularFace Algorithm
1: Initialize iteration count k ← 0
2: Initialize adaptive parameter t← 0
3: Initialize marginm← 0.5
4: while not converged do
5: for each sample pair (θyi , θj) do
6: if cos(θyi +m) ≥ cos(θj) then
7: N(t, cos(θj))← cos(θj)
8: else
9: N(t, cos(θj))← (t+ cos(θj)) · cos(θj)
10: end if
11: end for
12: Compute the loss L
13: Compute gradients and update parameters
14: Update t using a defined rule
15: end while
16: return optimized parameters

This algorithm initializes parameters and enters a loop that continues until convergence is
reached. Within each iteration, the algorithm adjusts the penalties for misclassified samples
based on their cosine similarities and the adaptive parameter t. The loss L is computed, and
model parameters are updated accordingly. The parameter t is updated at the end of each itera-
tion to gradually increase the emphasis on hard samples as the training progresses.

1.4.4 Empirical Results

Empirical evaluations highlight CurricularFace’s advantage over well-known margin-based and
mining-based loss functions, including ArcFace and MV-Arc-Softmax, across diverse face
recognition benchmarks. CurricularFace adaptively emphasizes easy and hard samples at differ-
ent stages of training, resulting in enhanced feature discrimination on test datasets. Achieving
a high accuracy of 99.80% on LFW, CurricularFace performs comparably to ArcFace but out-
performs other methods on pose-varied datasets like CFP-FP (98.37%) and CPLFW (93.13%),
demonstrating robustness in non-ideal conditions. On the large-scale IJB-B and IJB-C datasets,
CurricularFace reaches TARs of 94.8% and 96.1% at a FAR of 10−4, showcasing its capability
to handle challenging scenarios with high identity diversity. This performance is attributed to
the dynamic adjustment of hard sample penalties and the adaptive tuning of the t parameter,
allowing the model to focus more effectively on meaningful samples in later training stages and
to converge more stably compared to methods with fixed margins or preset weights for hard
samples.
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10−4, marking a significant reduction in error rates, especially when compared to competitive
methods. This boost in performance is attributed to AdaFace’s quality-adaptive margin, which
dynamically adjusts the emphasis on hard samples based on image quality, thereby improv-
ing discriminative capacity. Furthermore, on low-quality datasets such as TinyFace, AdaFace
achieves a Rank-1 accuracy improvement of 3.5% on average across key performance met-
rics. These empirical results underscore the efficacy of using feature norm as a proxy for image
quality, enabling AdaFace to deliver top-tier results even under challenging conditions with-
out additional computational overhead. This adaptability makes AdaFace particularly suitable
for applications where image quality is inconsistent, such as in surveillance or low-resolution
settings.
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2
Development of a Novel Loss Function for
Face Recognition

In face recognition, model accuracy and robustness are significantly impacted by the choice
of loss function during training. Although existing loss functions, such as ArcFace, MagFace,
and CurricularFace, have improved recognition performance, they still face challenges with
variations in image quality and difficulty levels. This chapter introduces a novel loss function
that combines the strengths of MagFace and CurricularFace.

The main concept is to merge the adaptive margin approach from CurricularFace with the
feature norms of MagFace, aiming to develop a more robust model capable of handling diverse
image qualities. This integration addresses the limitations of current loss functions, particularly
their sensitivity to noisy data and fixed margin settings, thereby enhancing generalization across
various datasets.

All developments were implemented in MATLAB, allowing for seamless integration with
pre-trained models from the AdaFace repository. Fine-tuning these models with the new loss
function aims to improve face recognition across different backgrounds and qualities. This chap-
ter will detail the mathematical formulation of the loss function, the selection of pre-trained
models, the training datasets employed, and the experimental setup for validation.
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2.1 Mathematical Formulation

The novel loss function proposed in this chapter is designed to enhance the robustness and adapt-
ability of face recognition models by integrating multiple concepts derived from existing loss
functions. The overall loss is expressed as follows:

L = Lce + Lreg (2.1)

where L is the total loss, Lce represents the cross-entropy loss, and Lreg denotes the magnitude
regularization term.

2.1.1 Cross-Entropy Loss

The cross-entropy loss serves as the foundational component of our model, measuring the dis-
crepancy between the predicted class probabilities and the true labels. This loss function is crit-
ical to the performance of face recognition models and is also a key element in the previously
discussed models such as ArcFace. It is defined mathematically as:

Lce = − log
es·cos(θyi+madaptive)

es·cos(θyi+madaptive) +
∑

j ̸=yi
es·N(t(k),cos(θj))

(2.2)

In this equation, s represents the scaling factor applied to the cosine similarity values, while
θyi denotes the angle corresponding to the true class label yi. The adaptive margin madaptive is
integrated into the loss, allowing the model to dynamically adjust based on the quality of the
facial embeddings.

2.1.2 Magnitude and Clamping

The calculation of the magnitude of the facial embeddings and the subsequent clamping of
this magnitude is done to ensure it remains within a predefined range. The raw magnitude,
magnituderaw, is calculated as the Euclidean norm of the facial embedding vectors, and is
given by:

magnituderaw = ∥xi∥2 (2.3)

where xi is the facial embedding of sample i, and ∥xi∥2 denotes its L2-norm, which computes
the magnitude of the embedding vector in Euclidean space. To prevent extreme magnitudes that
might affect the stability of the model, we apply clamping to restrict the magnitude within pre-
defined upper and lower bounds, denoted bymu andml, respectively. The clamped magnitude
is expressed as:
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magnitudeclamped = max (min (magnituderaw,mu) ,ml) (2.4)

This clamping ensures that the magnitude is neither too large nor too small, thereby prevent-
ing numerical instability during training and improving the model’s ability to generalize across
different input qualities.

2.1.3 Adaptive Margin Calculation

To ensure that the model can adapt to varying image qualities, we calculate the adaptive margin
based on the feature norms of the embeddings. This is expressed as:

madaptive =

(

marginu −marginl

magnitudeu −magnitudel

)

· (magnitudeclamped −magnitudel) +marginl

(2.5)
Here, marginu and marginl represent the upper and lower bounds of the margin, respec-
tively; magnitudeu and magnitudel are upper and lower bounds of the magnitude while
magnitudeclamped is derived from the normalized magnitude of the facial embeddings. This
dynamic margin effectively adjusts the difficulty level for each sample, depending on its qual-
ity, thereby allowing the model to focus on more challenging instances without compromising
overall performance. This formulation is derived from the code repository of MagFace [5].

2.1.4 Magnitude Regularization

In addition to the cross-entropy loss, we incorporate a magnitude regularization term to further
enhance the model’s capability in handling variations in embedding magnitudes. The magnitude
regularization is computed as follows:

Lreg = λ ·mean
(

1.0

magnitude2u
·magnitudeclamped +

1.0

magnitudeclamped

)

(2.6)

In this equation, λ is a hyperparameter that controls the weight of the regularization term, guid-
ing the model’s sensitivity to the magnitudes of the embeddings. By penalizing embeddings
based on their magnitude, the model is encouraged to produce more consistent and reliable rep-
resentations across different input samples.

2.1.5 Penalty Mechanism for Difficult Samples

To address the challenge of difficult samples, we implement a penalty mechanism for incorrect
classes, which is articulated mathematically as:
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N(t(k), cos(θj)) =







cos(θj), if cos(θyi +madaptive) ≥ cos(θj),

(t(k) + cos(θj)) · cos(θj), otherwise.
(2.7)

This mechanism, inherited from the approach used in CurricularFace, ensures that when the
cosine similarity of an incorrect class exceeds the adjusted threshold defined by the adaptive
margin, a penalty is applied. The parameter t(k) represents the threshold that influences the
penalty applied to the incorrect classes, thereby making the model more sensitive to challenging
examples that are often misclassified.

2.1.6 Updating Parameter t

To further refine the model’s performance, the parameter t is updated after each iteration as
follows:

t = 0.01 ·mean(cosyi) + 0.99 · t (2.8)

This update rule, as described in CurricularFace, allows the model to adaptively adjust the
penalty threshold based on the average cosine similarity of the correct class embeddings. This
mechanism effectively maintains a balance between sensitivity and robustness across the train-
ing process, enabling the model to handle difficult samples without over-penalizing them.
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Algorithm 2 Custom Loss Function with MagFace and CurricularFace Adjustments
Initialize iteration count k ← 0
Initialize adaptive margin parameters: mag_u,mag_l,m_u,m_l
Initialize regularization weight λ
Initialize parameter t← 0
while not converged do

for each input batch (X,T ) do
Compute model forward pass: X, state← forward(net,X)
Extract embeddings X ← squeeze(X)
Calculate embedding magnitudes: mag_raw ← ||X||2
Clamp magnitudes: mag_c← clamp(mag_raw)
Compute adaptive marginm_adaptive← m_u−m_l

mag_u−mag_l · (mag_c−mag_l) +m_l
Computemag_reg ← 1

mag_u2 ·mag_c+ 1
mag_clamped

Compute magnitude lossmag_loss← λ ·mean(mag_reg)
Retrieve classification layer weightsW and biases b← 0
X ← fullyconnect(X,W, b)
Normalize embeddings X ← X/||X||2
cos_theta← X

cos_theta_m← cos(θyi) · cos(m_adaptive)− sin(θyi) · sin(m_adaptive)
cond_mask ← (cos_theta− cos(π −m_adaptive)) ≤ 0
keep_val ← cos_theta− layer.mm

cos_theta_m[cond_mask]← keep_val[cond_mask]
Initialize maskmask ← true for all incorrect classes
Retrieve correct class cosines cos_yi
Create penalty mask p_mask ← (cos_yi+ 0.5 ≤ cos_theta)&mask

Apply penalty to difficult samples:
cos_theta[p_mask]← (t+ cos_theta[p_mask]) · cos_theta[p_mask]
t← 0.01 ·mean(cos_yi) + 0.99 · t
Set output logits output← cos_theta
Update logits for correct classes output← cos_theta_m
Z ← s · output
logit_softmax← softmax(Z)
loss_ce← crossentropy(logit_softmax, T )
loss← loss_ce+mag_loss
gradients← dlgradient(loss, weights, parameters)

end for
end while
return optimized parameters
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2.2 Pre-trained Models and Fine-tuning

In my research, I utilized two pre-trained models from the AdaFace repository, each based on
different ResNet architectures: ResNet-100 trained on the WebFace12M dataset and ResNet-50
trained onWebFace4M. Before importing these models into MATLAB, I had to perform tracing
of the PyTorch models, a necessary step for compatibility with MATLAB’s conversion tools.
This tracing process essentially involves running the model with sample inputs in PyTorch to
record its execution graph, transforming it into a static model that MATLAB can interpret. This
process is required by the Deep Learning Toolbox Converter for PyTorch Models in order to
properly import and modify the architecture.

Figure 2.1: format of models that can be imported into MATLAB

Once the models were successfully imported into MATLAB using the Deep Learning Net-
work Designer, I encountered some challenges with the structure of the final layers. One spe-
cific issue was that certain layers, such as the flatten operation, were not recognized by MAT-
LAB. To resolve this, I replaced the flattening operation with a Global Average Pooling layer
(’global2daverage’), which achieves similar functionality while being compatible with MAT-
LAB’s framework. I also customized the last layer to output the desired embedding for face
recognition, adapting the architecture to align with the requirements of my loss function.

Furthermore, I applied final fine-tuning steps to adjust the input size and included a dropout
layer to enhance the model’s robustness during training, ensuring that the network remains re-
silient to overfitting. Through this approach, I was able to finalize a pre-trained architecture that
is now tailored to support my novel loss function.
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for face verification and identification due to its scale and diversity, which cover a wide
range of poses, lighting conditions, and facial expressions [13].

• MS1MV3: The MS1MV3 dataset is a further improved version of MS1MV2, offering
even cleaner data with higher quality annotations. The primary objective in creating
MS1MV3 was to remove duplicate images, as well as further reduce label noise, which
was still present in MS1MV2. MS1MV3 retains approximately the same number of iden-
tities as MS1MV2 but improves the accuracy of the labels and reduces overlapping im-
ages. This dataset has been particularly useful for training models that are evaluated on
high-stakes benchmarks like IJB-C and LFW, where even small errors in annotation can
significantly affect performance [13].

Both MS1MV2 andMS1MV3 have been instrumental in developing state-of-the-art face recog-
nition models and are commonly used in conjunction with advanced loss functions like ArcFace
and AdaFace.

2.3.2 WebFace260M

The WebFace260M dataset is one of the largest benchmarks for facial recognition, offering
diversity in faces, poses, and demographic attributes. It was created by gathering images of
celebrities from Freebase and IMDB, resulting in a collection of over 265 million images from
approximately 4 million identities. Not all subjects had publicly available images, so the final
dataset included varying numbers of images per identity based on popularity [14].

To clean the noisy images collected from the web, the CAST (Cross-Architecture Self-
Training) framework was used. This involved a ResNet-100 model trained with ArcFace on
the MS1MV2 dataset, which filtered noisy data via clustering. This iterative process reduced
noise and created a cleaner subset called WebFace42M (42 million images, 2 million subjects),
with less than 10% noise, a significant improvement over datasets like MegaFace2 and MS1M,
which had noise levels of 30%-50% [14].
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2.4 Experimental Setup

The model training was conducted on a high-performance supercomputer cluster ”Blade” at
the D.E.I. department of the University of Padua, equipped with Nvidia RTX 3090 and A40
GPUs. This setup was essential to handle the computational demands of training a deep learning
model on a large-scale dataset such as WebFace260M and its variants. MATLAB, specifically
its Deep Learning Toolbox, was the primary environment for this implementation, facilitating
data handling, visualization, and custom function development. Critical support functions, such
as minibatchqueue, enabled efficient processing of mini-batches, optimizing memory use and
training speed.

For the base model architecture, a pre-trained ResNet-50 was fine-tuned using a combination
of the MagFace and CurricularFace loss functions to enhance facial feature discrimination. The
model processed input images resized to [112, 112], producing a 512-dimensional embedding
vector for each image. Since the pre-trainedmodels from theAdaFace repositorywere trained on
images in BGR format, I incorporated a custom function within the minibatchqueue to convert
images fromRGB toBGRby rearranging the color channels. Training parameters were carefully
chosen, including a mini-batch size of 256 (Thanks to the 48 GB memory of the A40 GPU, I
set the minibatchsize to 192 when using an RTX 3090), a total of 30 epochs, an initial learning
rate of 0.01, a momentum parameter of 0.9, and a learning rate drop factor of 0.5 applied every
6 epochs. Training the ResNet-50 on this setup required approximately two weeks to reach
convergence.

Key hyperparameters for the loss function were set based on recommendations from the of-
ficial MagFace repository to ensure optimal model performance. Specifically, the lower margin
marginl=0.4, upper marginmarginu=0.8, minimummagnitudemagnitudel=5, and maximum
magnitude magnitudeu=10 followed these guidelines. Additionally, the adaptive margin cal-
culation was implemented according to the repository’s proposed formula, where the margin
adjusts in response to embedding magnitudes. This margin dynamic introduces a proportional
penalty based on the model’s confidence, ensuring that embeddings with lower magnitudes re-
ceive a smaller margin, and higher-magnitude embeddings receive a larger one, directly influ-
encing the classification boundary.

Further, the loss function was designed to combine MagFace’s regularization on embedding
magnitudes with CurricularFace’s penalization for difficult samples. This design helps manage
the model’s response to challenging cases by adaptively updating the t parameter based on the
cosine values for correctly classified samples, a key feature of CurricularFace. In each epoch,
the model’s loss and accuracy were tracked to monitor convergence, and model weights were
saved as checkpoints to secure progress and allow for recovery in case of interruptions. This ro-
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3
Test IJB-C (IARPA Janus Benchmark-C)

This chapter describes the IJB-C benchmark, used to evaluate the performance of the developed
models. The IJB-C benchmark is recognized as one of the most comprehensive and challenging
in the field of facial recognition, due to its ability to include realistic scenarios with high vari-
ability in images, such as different lighting conditions, poses, and facial qualities.
Throughout the chapter, the verification and identification protocols required by the benchmark
are introduced, providing a clear definition of how the models should be tested. Additionally,
the process of embedding aggregation for templates is illustrated, which is essential to combine
the representations of images belonging to the same individual. Two aggregation strategies
are discussed in detail: the simple mean of embeddings and an advanced method called ERS
(Enhanced Representation by Subsampling), which takes into account the recognizability of in-
dividual images.
This chapter focuses on describing the techniques and experimental setups employed, laying
the groundwork for the detailed analysis of the results, which will be presented in the following
chapter.
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3.1 ROC Curve and AUC Value

The ROC curve is a graphical representation of the trade-off between the True Positive Rate
(TPR) (sensitivity) and the False Positive Rate (FPR) (1-specificity) as the decision threshold
varies. The TPRmeasures the proportion of correctly identified true positives relative to the total
number of actual positives, while the FPR measures the proportion of false positives relative to
the total number of actual negatives.

To construct an ROC curve:

• Compute similarity scores (e.g., cosine similarity) between template pairs.

• Apply different decision thresholds to classify pairs as matches (positive) or non-matches
(negative).

• For each threshold, calculate the TPR and FPR values, which form the points on the ROC
curve.

An ideal ROC curve approaches the upper left corner of the graph, where the TPR reaches 100%
and the FPR is 0%, indicating a perfect model [15].

Figure 3.1: This figure demonstrates the construction of a Receiver Operating Characteristic
(ROC) curve. The table above lists instances with their respective scores and ground-truth
classes (positive or negative). By progressively lowering the decision threshold and recalcu-
lating the True Positive Rate (TPR) and False Positive Rate (FPR) for each threshold, a ROC
curve is generated. The x-axis represents the FPR, while the y-axis represents the TPR.

3.2 Interpretation of AUC

The Area Under the Curve (AUC) is a scalar value representing the area under the ROC curve.
It provides a summary of a model’s performance across all possible thresholds:
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These protocols provide a comprehensive framework for evaluating both the discriminative
power and the robustness of face recognition models [13].

3.5 Key Metrics: TAR@FAR and AUC

To evaluate model performance on the IJB-C dataset, two primary metrics are employed: True
Acceptance Rate at a given False Acceptance Rate (TAR@FAR) and Area Under the Curve.
The TAR@FAR metric measures the proportion of correctly verified identity matches
(True Acceptances) at specific False Acceptance Rate (FAR) thresholds. For instance,
TAR@FAR=0.001 represents the percentage of true positives achieved when the false positive
rate is constrained to 0.1%. This metric is particularly valuable in security-sensitive applica-
tions, where minimizing false acceptances is crucial, as it reflects the model’s ability to balance
high accuracy with strict false positive control.
The AUC, as discussed previously, serves as an aggregate measure of the model’s discriminative
ability across all thresholds, capturing its overall capacity to distinguish between true and false
matches. A higher AUC value suggests that the model is generally better at this task, making it
an essential benchmark for comparing model performance on IJB-C.
By combining TAR@FAR and AUC, the IJB-C benchmark provides a comprehensive assess-
ment of a model’s performance under challenging conditions. These metrics allow for the analy-
sis of both accuracy and robustness, providing insight into howwell amodel can balance security
and usability in real-world applications. In particular, TAR@FAR emphasizes the model’s ef-
fectiveness in maintaining low false acceptance rates without sacrificing true positive rates, a
key requirement in practical deployments [17].

3.6 Embedding Aggregation: Mean and ERS

In template-based face recognition, the aggregation of embeddings plays a crucial role in gen-
erating robust representations of an individual’s identity across multiple images. This section
compares two embedding aggregation strategies: the simple mean method and the Enhanced
Representation by Subsampling (ERS) approach. Each method has its unique advantages and
limitations, which impact the final performance of the face recognition model.

3.6.1 Simple Mean Aggregation

The simplest method of embedding aggregation is to compute the arithmetic mean of embed-
dings obtained from multiple images of the same individual. By averaging these embeddings,
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the model generates a single, unified template that captures the shared characteristics of the sub-
ject.
While straightforward and computationally efficient, the mean aggregation method is sensitive
to outliers. Images that suffer from low quality, occlusions, or extreme variations in pose can
distort the averaged embedding, leading to a less accurate representation of the subject’s iden-
tity. This limitation often results in decreased recognition accuracy, especially when templates
are constructed from a mixture of high- and low-quality images [13].

3.6.2 Enhanced Representation Strategy (ERS)

The Embedding Recognizability Score (ERS) strategy provides an innovative approach to im-
proving face recognition by evaluating the recognizability of individual embeddings. Unlike
conventional mean aggregation methods, ERS introduces a measure of embedding quality based
on its distance from a reference centroid, representing low-quality or ”Unrecognizable Images”
(UI). This method does not require additional training or manual annotations, making it versatile
and easily adaptable to both single-image and set-based face recognition tasks [17].

ERS Process and Definition

The ERS strategy begins by defining a reference centroid, called the UI Centroid (UIC), which
represents the average embedding of unrecognizable images. These images can be obtained
through:

• Clustering embeddings derived from artificially degraded datasets.

• Utilizing large-scale in-the-wild face datasets, such asWIDERFace[18], to identify a clus-
ter of embeddings corresponding to low-quality images.

The normalized mean embedding of these images serves as the UIC, denoted as fUI.
For a given embedding fi, its Embedding Recognizability Score is calculated as:

ei = 1− ⟨fUI, fi⟩

where ⟨fUI, fi⟩ is the cosine similarity between the embedding and the UIC. Higher ERS values
indicate better recognizability, while lower values signify embeddings that are closer to the UIC
and thus harder to recognize.

Experimental results demonstrate that embeddings with high ERS scores are strongly corre-
lated with higher image quality, minimal occlusions, and frontal poses. Conversely, embeddings
with low ERS values often correspond to images affected by blurriness, occlusions, or extreme
variations in pose, making them difficult to recognize [17].
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ERS in Set-Based Face Recognition

In set-based face recognition, where each set θi contains multiple images of the same person,
ERS can be utilized during the template aggregation phase:

1. Extract embeddings f l
i for all images in the set θi.

2. Compute ERS for each embedding eli.

3. Perform a weighted aggregation of the embeddings using their ERS values as weights:

fi =

∑|θi|
l=1 w(e

l
i)f

l
i

∑|θi|
l=1 w(e

l
i)

where w(eli) is a weighting function based on ERS.

This aggregation strategy ensures that high-quality embeddings contribute more to the final
template representation, enhancing robustness against noisy or low-quality images [17].

Advantages of ERS

The ERS strategy offers several benefits:

• By prioritizing high-quality embeddings and penalizing low-quality ones, ERS reduces
the impact of noise, occlusions, and extreme variations in pose.

• ERS can be applied to set-based recognition systems without additional training.

• By incorporating recognizability thresholds, ERS minimizes false matches and improves
decision reliability, particularly in challenging scenarios.

Empirical results demonstrate that ERS significantly outperforms simple mean aggregation,
especially in scenarios with substantial variations in image quality. By focusing on embedding
recognizability, ERS provides a robust and scalable solution for face recognition tasks [17].
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Algorithm 3 ERS-Based Template Aggregation
Load image embeddings and template IDs
Load UIC (Unrecognizable Image Centroid)
Iterate Over Templates
Identify unique template IDs
for all templates t do

Retrieve embeddings for images in template t
Normalize image embeddings and UIC
Compute cosine similarity for each embedding:

cosine_similarity←
dot(fi, fUI)

∥∥fi∥∥ · ∥∥fUI∥∥

Compute ERS:
ei ← 1− cosine_similarity

Filter Embeddings
Select valid embeddings:

valid_indices← {i : ei ≥ γ}

Retrieve valid embeddings and ERS scores
Aggregate Embeddings
if no valid embeddings then

Aggregate with mean:

template_feature← mean(fi)

else
Normalize ERS scores:

e′i ←
ei

∑

ei

Compute weighted aggregation:

template_feature←
∑

(e′i · fi)

end if
Store normalized template feature

end for
Save Results
Save all aggregated and normalized template features
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3.7 Implementation of IJB-C Benchmark Testing

The test was implemented using several custom MATLAB scripts designed to handle various
stages of the IJB-C protocol, from embedding generation to template aggregation, pair match-
ing, and performance evaluation. The images required to perform the test, along with the text
files necessary for generating templates and conducting comparisons, were provided by Matteo
Grandin, the corporate representative.
Initially, I generated embeddings for each face in the dataset using trained neural networkmodel,
ensuring consistency in image sizing and format to facilitate uniform embedding extraction.
Each image from the dataset was processed, creating a feature matrix that captured critical fa-
cial characteristics for each image.
Following this, the individual embeddings were aggregated at the template level to represent
each unique identity. Aggregation methods, as discussed before, had a significant impact on the
model’s performance in identifying face pairs.
Once template-level features were established, cosine similarity scores between each pair of
templates were computed. This comparison relied on labels specifying pairs to be evaluated, al-
lowing for precise calculation of similarities based on the dot product between template feature
vectors. The similarity scores for each template pair were stored for performance assessment,
forming a core component of the ROC and AUC calculations.
Through this multi-step approach, the model’s ability to perform on a widely recognized bench-
mark was rigorously assessed, providing clear insights into the influence of feature aggregation
strategies on recognition accuracy.
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Algorithm 4 Test Pipeline
Step 1: Compute Facial Embeddings
Load image paths and template IDs
Import trained model
for all images i do

Preprocess image: ensure RGB, resize to 112× 112
Compute embedding using predict
Store embedding in matrix

end for
Save embeddings to file
Step 2: Compute Template-Level Features
Load facial embeddings and template data
Identify unique template IDs
for all templates t do

Retrieve embeddings for images in template t
Aggregate embeddings with mean or ERS startegy
Normalize template feature

end for
Save normalized template features
Step 3: Compute Cosine Similarities
Load template pair labels and normalized template features
for all template pairs (t1, t2) do

Compute cosine similarity:

similarity←
dot(t1, t2)

∥∥t1∥∥ · ∥∥t2∥∥

end for
Save cosine similarities to file
Step 4: Compute ROC Curve and TAR@FAR
Load cosine similarities and true labels
Sort similarities and labels by score
Initialize TP , FP , FPR, and TPR

for all thresholds do
Update TP and FP counts
Compute FPR← FP/N , TPR← TP/P

end for
Remove duplicate FPR values and calculate AUC:

AUC←
∫

TPR dFPR

Plot ROC curve
for all target FAR values do

Interpolate TAR@FAR using:

TAR@FAR← interp1(FPR, TPR, target FAR)

end for
return ROC curve, AUC, and TAR@FAR values
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4
Evaluation and Analysis of Face Recogni-
tion Models

In this final chapter, I present the results obtained using the IJB-C test. Initially, I analyze the
performance using simplemean aggregation for embedding vectors. Subsequently, I incorporate
the ERS strategy to evaluate its impact on the results. Finally, I compare these outcomes with
the state-of-the-art performance and provide a detailed discussion on the findings in the context
of this comparison.
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4.1 Baseline Results with Mean Embedding Aggregation

The models evaluated include ArcFace, MagFace, and the novel loss function, all trained on
ResNet-100 architectures for 30 epochs. Additionally, a ResNet-50model trained with the novel
loss function was included in the evaluation to explore its performance on a lighter architecture.
Performance was measured using TAR@FAR metrics across various thresholds and visualized
through ROC curves.

The results demonstrate that the best model overall remains the one trained with MagFace
loss on the ResNet-100 architecture. However, the ResNet-50 model trained with the novel loss
function exhibited competitive performance, particularly at lower FAR thresholds, showcasing
its potential for scenarios where computational efficiency is a priority.

Figure 4.1: ROC curves showcasing the performance of ArcFace.

TAR@FAR Value %
1.0× 10−6 21.43
1.0× 10−5 34.81
1.0× 10−4 52.23
1.0× 10−3 70.56
1.0× 10−2 85.64
1.0× 10−1 95.89

Table 4.1: TAR@FAR performance metrics for ArcFace on the IJB-C dataset.
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Figure 4.2: ROC curves showcasing the performance of MagFace.

TAR@FAR Value %
1.0× 10−6 13.75
1.0× 10−5 30.52
1.0× 10−4 51.73
1.0× 10−3 71.04
1.0× 10−2 86.01
1.0× 10−1 95.97

Table 4.2: TAR@FAR performance metrics for MagFace on the IJB-C dataset.

Figure 4.3: ROC curves showcasing the performance of the novel Loss function.
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TAR@FAR Value %
1.0× 10−6 21.01
1.0× 10−5 34.85
1.0× 10−4 51.76
1.0× 10−3 69.94
1.0× 10−2 85.32
1.0× 10−1 95.54

Table 4.3: TAR@FAR performance metrics for the novel Loss function on the IJB-C dataset.

Figure 4.4: ROC curves showcasing the performance of the novel Loss function with ResNet-50
architecture

TAR@FAR Value %
1.0× 10−6 5.05
1.0× 10−5 15.63
1.0× 10−4 37.47
1.0× 10−3 62.59
1.0× 10−2 83.79
1.0× 10−1 96.05

Table 4.4: TAR@FAR performance metrics for the novel Loss function on the ResNet-50 ar-
chitecture evaluated on the IJB-C dataset.

4.2 Baseline Results with ERS Embedding Aggregation

The models evaluated include ArcFace, MagFace, and the novel loss function, trained on
ResNet-100 architectures for 30 epochs. Additionally, a ResNet-50 model trained with the
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novel loss function was included in the evaluation to assess its performance in comparison.
For the testing phase on the IJBC dataset, embeddings were aggregated using the Enhanced
Representation Strategy (ERS), designed to optimize feature representation. Following the rec-
ommendations of the reference paper [17], the gamma value was set to 0.60, as this configuration
consistently achieved the best performance. Performance was assessed using TAR@FAR met-
rics across various thresholds and visualized through ROC curves. This section highlights the
improvements achieved by ERS compared to traditional aggregation methods, demonstrating
its effectiveness. While the model trained with MagFace loss consistently outperformed others
across most metrics, the ResNet-50 model trained with the novel loss function showed compet-
itive results, particularly in the lower FAR ranges. These results underline the potential of the
novel loss function when combined with a lightweight architecture such as ResNet-50, offering
a viable alternative for applications requiring a balance between efficiency and performance.

Figure 4.5: ROC curves showcasing the performance of ArcFace with ERS.

TAR@FAR Value (%)
1.0× 10−6 22.67%
1.0× 10−5 38.12%
1.0× 10−4 54.68%
1.0× 10−3 71.64%
1.0× 10−2 85.77%
1.0× 10−1 95.60%

Table 4.5: TAR@FAR performance metrics for ArcFace on the IJB-C dataset with ERS.
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Figure 4.6: ROC curves showcasing the performance of MagFace with ERS.

TAR@FAR Value (%)
1.0× 10−6 16.08%
1.0× 10−5 35.84%
1.0× 10−4 55.50%
1.0× 10−3 72.48%
1.0× 10−2 86.21%
1.0× 10−1 95.79%

Table 4.6: TAR@FAR performance metrics for MagFace on the IJB-C dataset with ERS.

Figure 4.7: ROC curves showcasing the performance of the novel Loss function with ERS.
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TAR@FAR Value (%)
1.0× 10−6 24.65%
1.0× 10−5 40.28%
1.0× 10−4 55.48%
1.0× 10−3 71.64%
1.0× 10−2 85.54%
1.0× 10−1 95.12%

Table 4.7: TAR@FAR performance metrics for the novel Loss function on the IJB-C dataset
with ERS.

Figure 4.8: ROC curves showcasing the performance of the novel Loss function with ERS and
ResNet-50 architecture.

TAR@FAR Value %
1.0× 10−6 7.82
1.0× 10−5 24.19
1.0× 10−4 45.82
1.0× 10−3 67.36
1.0× 10−2 85.24
1.0× 10−1 96.22

Table 4.8: TAR@FAR performance metrics for the novel Loss function with ERS strategy on
the IJB-C dataset.
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4.3 Comparison with State-of-the-Art Models

Model Train Data TAR@FAR=1.0× 10−4

ArcFace (m = 0.50) MS1MV2 96.03%
CurricularFace MS1MV2 96.1%

MagFace MS1MV2 95.97%
AdaFace (m = 0.4) MS1MV3 97.09%

Table 4.9: Performance comparison of state-of-the-art models on the IJB-C dataset, reporting
TAR@FAR metrics [6].

As shown in this table, the performance of the state-of-the-art models described in the referenced
paper significantly surpasses that of the models developed in this research.

4.4 Analysis of Results and Potential Sources of Systematic
Errors

The results obtained during this research highlight the presence of systematic errors in the eval-
uated models. Based on a detailed analysis, several potential causes for these discrepancies have
been identified:

1. Pre-trainedModel Import Issues: One of the most likely sources of error stems from the
import of pre-trained models from Python to MATLAB. As detailed in the relevant sec-
tion of this thesis, the conversion process requiredmodifications to themodel architecture,
particularly replacing layers such as the flatten operation with alternatives like global av-
erage pooling. These changes, while necessary to ensure compatibility, may have altered
the feature representation and contributed to the observed performance degradation.

2. Test Dataset Limitations: The IJB-C dataset, although a widely used benchmark for face
recognition, is not immune to potential imperfections that can affect evaluation outcomes.
It is important to note that the dataset was developed and provided by an external orga-
nization, and as such, it may inherit some issues typical of large-scale, externally curated
datasets. These issues might include mislabeled samples and unbalanced identity class
distributions. Such anomalies can introduce noise into the evaluation process, potentially
leading to biased or less reliable assessments of a model’s performance. For example,
mislabeled samples might result in incorrect predictions being unfairly penalized, while
uneven distributions of identities can lead to models being optimized for majority classes
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at the expense of minority ones. These factors highlight the importance of careful dataset
scrutiny when interpreting benchmarking results.

3. Complexity of theNovel Loss Function: The newly developed loss function, designed to
integrate the strengths of MagFace and CurricularFace, is computationally more complex
and involves multiple hyperparameters, such as the adaptive margin, angular penalties,
max and min value for magnitude and margin, the variation of the t parameter and reg-
ularization terms. While initial experiments showed promising results, the fine-tuning
process for these parameters requires more extensive study to achieve the optimal bal-
ance. This complexity might have hindered the model’s ability to generalize effectively
during testing.

4. TrainingConditions andComputational Constraints: The training process was carried
out on computational resources with specific constraints, such as limited time availability
on high-performance clusters. These restrictions may have prevented sufficient explo-
ration of hyperparameter spaces, resulting in suboptimal training of the models. More-
over, the fixed architecture (e.g., ResNet-100) may not have fully exploited the capabili-
ties of the proposed loss function.

4.5 Conclusions

The systematic errors identified in this research emphasize the importance of optimizing both
the training pipeline and the evaluation process. While the novel loss function demonstrates
potential for improving face recognition performance, further refinements are necessary to mit-
igate issues arising from computational complexity, parameter sensitivity, and dataset incon-
sistencies. Future work will involve addressing these limitations to achieve a more robust and
generalizable model.

4.6 Future Works

This thesis has explored the development and evaluation of novel loss functions for face recog-
nition models, leveraging pre-trained architectures and fine-tuning strategies. However, there
are several promising directions for future work to build upon the foundations laid in this study.
A critical next step would be to train a neural network from scratch rather than relying on pre-
trained models imported into MATLAB. This approach would provide deeper insights into how
the model architecture and loss function interact during training, without the biases introduced
by pre-trained weights. Training from scratch also offers the opportunity to fully tailor themodel
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to the specific characteristics of the dataset, potentially unlocking better performance on chal-
lenging benchmarks like IJB-C.
Another area for improvement lies in the systematic exploration of hyperparameter configura-
tions.
Furthermore, testing the proposed loss function on a wider range of datasets, including those
with diverse demographic and environmental conditions, would provide a more comprehensive
understanding of its generalization capabilities. This could also include exploring synthetic or
augmented data to simulate edge cases that are underrepresented in current benchmarks.
Finally, integrating the novel loss function into state-of-the-art architectures and frameworks
beyond MATLAB, such as PyTorch or TensorFlow, could facilitate broader adoption and allow
for comparisons with the latest advancements in the field.
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