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Abstract

The rapid growth of digital content across platforms such as social media, news
articles, academic publications, and online forums has resulted in an overwhelm-
ing volume of unstructured textual data. Extracting meaningful information
from this data is critical for numerous applications, including information re-
trieval, knowledge base population, and automated question-answering sys-
tems. Named Entity Recognition (NER) and Relation Extraction (RE) are essen-
tial components in this process, enabling the identification of entities and the
relationships between them. However, traditional models often fall short in han-
dling the complexities of language, particularly domain-specific terminologies
and intricate relational structures.

This thesis explores the application of Bidirectional Encoder Representations
from Transformers (BERT), a state-of-the-art pre-trained language model, for
NER and RE tasks. The primary objectives are to evaluate the performance of
BERT-based models on domain-specific datasets, compare them with existing
state-of-the-art techniques, and develop a framework for efficient training and
application of these models across various contexts.

Our study involves a comprehensive experimental setup using diverse datasets,
including scientific texts, to assess BERT’s ability to handle specialized vocab-
ularies and complex relational data. The methodology includes fine-tuning
BERT models for NER and RE, implementing rigorous evaluation metrics, and
comparing results with other contemporary models. We focus on reproducibil-
ity and robustness, ensuring that our findings are applicable across different
domains and data types.

The findings reveal that while our BERT-based model may not always ex-
ceed the performance of current state-of-the-art models, it performs on par with
them. Significantly, it achieves this with a more straightforward design and sub-
stantially lower computational overhead. This efficiency makes it an attractive
option for practical scenarios where minimizing resource use and operational
costs is crucial.
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1
Introduction

In today’s connected world, the explosion of textual data from platforms
such as social media, news websites, academic journals, and online forums has
resulted in a vast amount of unstructured or semi-structured information. Ex-
tracting meaningful insights from this vast corpus of data poses a significant
challenge, which has led to the development of advanced Natural Language
Processing (NLP) techniques. Among these, Information Extraction (IE) stands
out as a pivotal tool for transforming raw text into structured, actionable knowl-
edge, thus facilitating tasks ranging from information retrieval to automated
knowledge base construction.

NER and RE are crucial components of IE, playing a vital role in identifying
entities within text and determining the relationships between them. These tasks
are fundamental in various applications, including knowledge base population,
information retrieval, and question-answering systems. However, traditional
IE models often struggle with the complexity of language, including domain-
specific terminologies and the inherent variability and ambiguity of natural
language, making them less effective in specialized or dynamic contexts.

The advent of deep learning, particularly the use of pre-trained language
models such as Bidirectional Encoder Representations from Transformers (BERT)
[1], has revolutionized the field of NLP. BERT’s ability to understand context
through bidirectional encoding makes it particularly well-suited for tasks like
NER and RE, offering significant improvements over previous models that relied
on simpler contextual representations. BERT’s pre-training on large corpora al-
lows it to capture intricate patterns and nuances in language, which are essential
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for accurate entity recognition and relation extraction. This has led to substan-
tial advancements in the automation of information extraction, enhancing the
capability to process and understand complex textual data.

This thesis presents an experimental study on the application of BERT for
NER and RE, with a specific focus on the reproducibility of the results and thor-
ough evaluation across multiple datasets. The motivation behind this research is
to explore the effectiveness of BERT in handling domain-specific language and
complex relational structures found in scientific texts. By leveraging BERT’s
capabilities, we aim to enhance the extraction of entities and relations, which
is critical for advancing knowledge in specialized fields such as biomedical re-
search, legal document analysis, and technical literature.

The objectives of this study are threefold: First, to evaluate the performance
of BERT-based models on NER and RE tasks using domain-specific datasets.
Second, to compare the results of BERT-based models with other state-of-the-art
techniques, assessing their robustness and generalizability. Third, to provide a
framework for training efficient models tailored to various types of NER and RE
tasks, thereby offering a scalable solution for future applications.

Through this research, we aim to contribute to the ongoing development
of advanced IE methods that can effectively transform unstructured text into
structured knowledge, thereby facilitating better understanding and utilization
of textual data across different fields. The findings of this study are expected to
provide valuable insights into the practical applications of BERT for NER and
RE and highlight the potential for future innovations in NLP.

The rest of the thesis is organized as follows. In chapter 2 we review the
existing literature on NER and RE, focusing on the challenges these tasks face
and the various approaches developed to address them. It provides an overview
of different datasets and models used in previous studies, highlighting their
strengths and limitations. Chapter 3 presents the problem definition and the
methodological framework employed in the study. It describes the design of the
NER and RE models based on BERT, detailing the training processes, evaluation
metrics, and the specific datasets used for experiments. Furthermore, in chapter
4 we details the experimental setup, including the datasets, evaluation metrics,
and implementation details. It outlines the steps taken to train and test the
models, discussing the configuration and parameters used in the experiments.
Chapter 5 presents the results of the experiments, providing a comprehensive
analysis of the model performance on different datasets. It compares the BERT-
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CHAPTER 1. INTRODUCTION

based models with other state-of-the-art techniques, discussing the findings and
their implications. Finally, in chapter 6, we summarize the key findings of the
study, discussing the significance of the results and their contributions to the
field. It outlines potential directions for future research, suggesting ways to
further enhance the capabilities of BERT for NER and RE tasks.
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2
Related Work

With the rise of the Internet, there has been a notable surge in digital text
creation across various platforms such as social media, emails, blogs, news
articles, publications, and online forums. This vast corpus of unstructured
or semi-structured text harbors a wealth of information. IE is a pivotal tool
in discerning and organizing meaningful insights from these textual sources,
transforming them into structured data.

One way to represent information in text is in the form of entities and re-
lations representing links between entities. Therefore, NER and RE emerge as
particularly valuable techniques and key components of IE. They enable extract-
ing pertinent entities and relationships within the text, facilitating the conversion
of raw data into structured repositories of valuable information.

The NER task identifies entities from the text, and the RE task can identify
relationships between those entities. Furthermore, end-to-end relation extrac-
tion aims to identify named entities and extract relations between them in one
go. They are effectively modeling these two subtasks jointly [2], either by casting
them in one structured prediction framework or performing multi-task learning
through shared representations.

Many NLP applications can benefit from relational information derived from
natural language [3], including Structured Search, Knowledge Base (KB) pop-
ulation, Information Retrieval, Question-Answering, Language Understanding,
Ontology Learning, etc. Therefore these tasks have been studied extensively
and many datasets have been created and many models have been proposed to
tackle them.
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2.1. NER AND RE CHALLENGES

2.1 NER and RE challenges

The NER and RE tasks face many challenges that need to be overcome. These
challenges include and are not limited to:

• Domain-Specific Terminology and Context [4]: Adapting models to effec-
tively handle domain-specific terminology, especially in specialized fields
requires significant tuning and domain knowledge.

• Variability and Ambiguity in Text [5]: The inherent variability and ambi-
guity in natural language make it challenging to accurately identify and
classify entities and relations, particularly in cases of sparse or implicit
information.

• Data Scarcity and Annotation Quality: High-quality, annotated datasets
are crucial for training effective models. However, the scarcity of such
datasets in specific domains and the variability in annotation quality can
hinder model performance and generalization.

• Cross-Domain and Cross-Linguistic Applicability: Developing models
that perform well not only across different domains but also across lan-
guages is a significant challenge [6], requiring robust and adaptable method-
ologies.

• Integration of Knowledge Bases and External Information: Effectively in-
tegrating external knowledge bases and contextual information to improve
the accuracy of NER and RE tasks remains a complex challenge [7].

2.2 Datasets

The exploration and understanding of complex textual data have significantly
advanced with the development of NER and RE technologies. Central to these
advancements are the diverse datasets that have been meticulously curated to
train and evaluate these information extraction systems.

2.2.1 The Automatic Content Extraction dataset

The Automatic Content Extraction (ACE) Program was launched to boost the
creation of technologies for processing language data automatically [8]. This
included tasks like classifying, filtering, and choosing data based on its content
and the meanings conveyed. The main aim of the ACE Program was to improve
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CHAPTER 2. RELATED WORK

technologies that could automatically recognize and describe these meanings,
helping to enhance how machines understand natural language.

Central to the ACE Program were its research objectives: the detection and
characterization of Entities, Relations, and Events. These objectives were metic-
ulously addressed through the development of annotation guidelines, corpora,
and other linguistic resources by the Linguistic Data Consortium (LDC), some
in cooperation with the TIDES Program for supporting TIDES Extraction evalu-
ations. The datasets produced under ACE, encompassing broadcast transcripts,
newswire, and newspaper data in English, Chinese, and Arabic, became pivotal
resources for training and testing in common research task evaluations.

The primary ACE annotation tasks were Entity Detection and Tracking (EDT),
Relation Detection and Characterization (RDC), Event Detection and Charac-
terization (EDC), and Entity Linking (LNK). EDT laid the groundwork by
identifying entities within a document across mentions—named, nominal, or
pronominal. Entities were classified into seven types—Person, Organization,
Location, Facility, Weapon, Vehicle, and Geo-Political Entities (GPEs), with fur-
ther distinctions into subtypes. This detailed entity annotation schema provided
a robust foundation for subsequent tasks, enabling a nuanced understanding of
text data.

The RDC task, introduced in the program’s second phase, was pivotal in
identifying and characterizing the relations between entities. This addition
significantly expanded the scope of the ACE dataset, incorporating a variety
of relations such as physical, social/personal, employment/membership, and
more. The emphasis on capturing relations supported by textual evidence versus
those inferred contextually introduced a layer of complexity, pushing forward
the capabilities in relation extraction technologies.

With the introduction of EDC in ACE Phase 3, the program took on the
new challenge of identifying and categorizing events in which entities partici-
pate. This expanded the dataset’s utility by providing insights into interactions,
movements, transfers, creations, and destructions depicted in text, along with
event arguments and attributes based on type-specific templates. Later phases
further enriched the dataset with additional event types and characterized re-
lations between events, offering an even more comprehensive resource for NER
and RE tasks.

The significance of the ACE dataset to NER and RE tasks lies in its compre-
hensive coverage of entities, relations, and events, making it a cornerstone in the
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2.2. DATASETS

development of technologies for information extraction. By providing a struc-
tured framework for annotating and understanding complex language data, the
ACE dataset has been instrumental in advancing research and applications in
NER and RE, enabling more sophisticated and nuanced language processing
capabilities.

2.2.2 The SciERC dataset

The SciERC dataset, meticulously crafted from the domain of scientific re-
search papers, particularly in the field of Artificial Intelligence (AI), represents a
significant advancement in the realm of NER and RE tasks [9]. Developed by the
Allen Institute for AI, SciERC’s primary objective is to facilitate the extraction
of scientific entities, their relationships, and events from AI research literature,
thereby enabling a deeper understanding and structuring of scientific knowl-
edge. This dataset emerges from the recognition of the unique challenges pre-
sented by scientific texts, which include domain-specific terminology, complex
entity relations, and the nuanced depiction of scientific events and processes.

SciERC is distinguished by its focus on scientific texts, comprising 500 ab-
stracts from AI conference proceedings, annotated for entities, relations, and
coreference clusters. Entities within SciERC are categorized into specific types
such as tasks, methods, metrics, materials, and others relevant to scientific
discourse. This categorization facilitates a granular understanding of the scien-
tific narrative, allowing for the extraction of nuanced information regarding the
methodologies, tools, and outcomes prevalent within AI research. Furthermore,
the dataset annotates relations between these entities, providing insights into
the interdependencies and interactions that define scientific innovation. Such
detailed annotation makes SciERC an invaluable resource for developing NER
and RE models tailored to the scientific domain.

The significance of the SciERC dataset to NER and RE tasks extends beyond
its domain-specific focus. By offering a structured framework for analyzing sci-
entific texts, SciERC enables the development of models capable of navigating
the complexities inherent in scientific literature. These models are not only in-
strumental in extracting information from research papers but also in facilitating
the synthesis of scientific knowledge, contributing to meta-analyses, systematic
reviews, and the construction of scientific knowledge graphs. In this way, SciERC
supports the broader objective of making scientific knowledge more accessible
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and understandable, both to machines and to humans.
The connection between the SciERC dataset and our task is particularly

poignant. Given the thesis’s focus on extracting structured information from
research papers within a specific scientific domain, SciERC provides a relevant
model for addressing similar challenges in our research. The methodologies
and insights gained from working with the SciERC dataset can inform the de-
velopment of specialized NER and RE models for fields other than AI, enabling
the extraction of entities and relations specific to those fields. Moreover, the
success of models trained on SciERC underscores the potential for applying ad-
vanced NER and RE techniques to a wide range of scientific disciplines, thereby
enhancing the accessibility and interoperability of scientific knowledge across
domains.

The SciERC dataset represents a pivotal resource for advancing NER and
RE tasks within the scientific domain. Its focus on AI research literature not
only addresses the specific challenges of scientific text analysis but also offers
a blueprint for extending these capabilities to other scientific disciplines. By
enabling the development of models that can accurately identify and relate enti-
ties within scientific texts, SciERC contributes to the broader goal of structuring
scientific knowledge, making it more navigable and comprehensible for both
academic and practical purposes.

2.2.3 Other datasets

In our research, we have come to study other datasets that must be mentioned.
Those datasets were used as a sanity check for our work. We relied on those
datasets to prove that our models could be generalized and used for NER and
RE tasks in other domains.

The New York Times Relation Extraction Dataset

The New York Times Relation Extraction Dataset (NYT dataset) is a promi-
nent resource for RE, offering a comprehensive collection of news articles for
the development and testing of RE models. Originating from a collaboration
between the New York Times and Google, this dataset encompasses a vast array
of articles published by the New York Times, annotated with both entities and
the relations between them [10]. The primary objective of the NYT dataset is to
support the extraction of semantic relationships within text, facilitating a deeper
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understanding of the interconnectedness of entities as reported in journalistic
content.

The dataset is characterized by its diverse coverage of topics, including pol-
itics, sports, culture, and more, reflecting the wide-ranging nature of news
reporting. This diversity presents unique challenges and opportunities for RE,
requiring models to adapt to various contexts and entity types. Each article
within the dataset is annotated with detailed information about entities and the
specific relations that link them, providing a rich ground for training sophisti-
cated RE models capable of identifying and classifying a wide range of relation
types.

The significance of the NYT dataset to the RE task lies in its real-world ap-
plicability and the complexity of its textual content. Working with this dataset
enables researchers to hone RE models on text that encapsulates a broad spec-
trum of human activity and knowledge, mirroring the complexity and nuance
of natural language used in daily news cycles. Additionally, the NYT dataset
serves as a benchmark for evaluating the performance of RE models, offering a
standard against which to measure progress in the field.

The NYT dataset exemplifies the application of RE techniques to general-
domain text. The exploration of this dataset highlights the adaptability of RE
methodologies across different textual domains, underscoring the potential for
leveraging insights gained from working with the NYT dataset to enhance RE
approaches tailored to scientific literature. This cross-domain exploration illus-
trates the broad applicability of RE technologies and the importance of diverse
datasets in advancing the field.

Text Analysis Conference Relation Extraction Dataset (TACRED)

The Text Analysis Conference (TAC) Relation Extraction Dataset is a cru-
cial dataset in the domain of Relation Extraction, developed under the auspices
of the TAC Knowledge Base Population (KBP) evaluations. Managed by the
National National Institute of Standards and Technology (NIST), the TAC KBP
evaluations are designed to foster research and development in the field of in-
formation extraction, with a focus on building comprehensive knowledge bases
from unstructured text [11]. The TAC RE dataset specifically aims to advance the
state of RE technology by providing a set of documents annotated with entities
and their relations, serving as both a training and evaluation resource for RE
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systems.
The dataset encompasses a diverse collection of texts sourced from newswire

and web texts, including a wide range of topics and entity types. Entities
within the dataset are meticulously annotated, and the dataset identifies various
types of semantic relations that occur between these entities, such as affiliation,
personal/social relationships, and organizational roles, among others. This rich
annotation scheme allows for the detailed examination and modeling of complex
relationships within natural language, making the TAC RE dataset an invaluable
resource for researchers and developers working on advanced RE systems.

The significance of the TAC RE dataset extends beyond its comprehensive
annotations; it also serves as a benchmark for evaluating the performance of RE
systems in a competitive and collaborative environment. Through the annual
TAC KBP evaluations, participating systems are assessed on their ability to accu-
rately identify and characterize relations between entities, fostering innovation
and progress in the field. The dataset not only facilitates the development of
more sophisticated and accurate RE models but also promotes the exploration
of new methodologies and approaches in knowledge base population.

Including this dataset in our research underscores its role in pushing the
boundaries of RE technology. The challenges and solutions encountered in
the TAC RE dataset provide a valuable perspective on the adaptation of RE
techniques to domain-specific needs, demonstrating how RE technologies can
be leveraged to extract structured information from diverse sources of text.

2.3 Exisitng NER and RE Models

Many models have been proposed for tackling NER and RE tasks. And in
recent years there’s been an emphasis on joint models. Join models are designed
to perform join extraction of entities and relations [2] at the same time. We
can group existing joint models into two categories: structured prediction and
multi-task learning.

2.3.1 Structured prediction models

Structured prediction approaches cast the two tasks into one unified frame-
work, although it can be formulated in various ways.
Li and Ji [12] proposed an action-based system that identifies new entities as
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well as links to previous entities, Zhang et al. [13]; A novel and impactful
methodology for the incremental joint extraction of entity mentions and rela-
tions. Their approach diverges from traditional methods by employing a struc-
tured perceptron with beam-search, moving away from token-based tagging to
a segment-based decoder inspired by semi-Markov chains. This shift allows
for the utilization of global features as soft constraints, effectively capturing the
interdependencies between entities and relations. Their research, conducted on
the ACE dataset, demonstrates significant advancements over existing pipelined
approaches. By formulating the problem as one of structured prediction, their
model adeptly captures the linguistic and logical nuances inherent in complex
textual relationships, thereby addressing the limitations of sequential classifi-
cation steps that fail to model long-distance and cross-task dependencies. The
introduction of novel global features based on soft constraints over the entire
output graph structure marks a significant contribution to the field, showcasing
the potential for improved accuracy and efficiency in the extraction tasks. Li
and Ji’s work stands as a pivotal reference in the exploration of joint models and
global features for enhancing entity and relation extraction, offering valuable
insights and methodologies that could be adapted and extended within the con-
text of our research.

Wang and Lu [14] adopt a table-filling approach as proposed in (Miwa
and Sasaki [15]); This distinct approach departs from traditional single-encoder
methods. Their method introduces two specialized encoders: a table encoder
and a sequence encoder, designed to synergize in the representation learning
process for NER and RE. This allows each encoder to focus on the unique as-
pects of its task—capturing task-specific information effectively—while benefit-
ing from the interaction between the two to enhance overall performance. They
leverage multi-dimensional recurrent neural networks to better utilize the struc-
tural information within the table representation, addressing a common limita-
tion in existing methods that often overlook or underutilize such information.
Furthermore, they exploit the pairwise self-attention weights from pre-trained
models like BERT [16] to enrich their model’s understanding of word-word in-
teractions, a strategy not previously employed for table representations in this
context. Their experiments across several standard datasets show significant im-
provements over existing approaches, particularly highlighting the advantage
of dual encoders over traditional single-encoder frameworks. This work not
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only sets new state-of-the-art performance benchmarks but also opens up new
avenues for leveraging the inherent structure in linguistic data for information
extraction tasks.

Katiyar and Cardie [17] and Zheng et al. [18] introduced an approach based
on sequence-tagging for the joint extraction of entity mentions and relations,
each contributing novel methodologies to the domain of information extrac-
tion. Katiyar and Cardie introduce an attention-based recurrent neural network
model that leverages Long Short-Term Memory (LSTM) networks to extract se-
mantic relations between entity mentions without relying on dependency trees.
Their model is distinct for its direct addressing of the relation extraction task
by integrating attention mechanisms with LSTMs, enabling the model to focus
on relevant parts of the text to better identify relationships between entities,
even when they are not adjacent. This approach sidesteps the need for de-
pendency tree information, making it more broadly applicable, especially for
languages or domains where dependency parsing might be less accurate or
entirely unavailable. Their experiments on the ACE dataset demonstrate sig-
nificant improvements over previously established feature-based joint models,
highlighting the efficacy of their methodology in enhancing the accuracy of both
entity and relation extraction tasks.

Zheng et al. propose a different take on sequence tagging by introducing a
novel tagging scheme that converts the joint task of entity and relation extrac-
tion into a single tagging problem. This simplifies the traditionally complex
process of first identifying entities and then classifying relations between them.
Their end-to-end model, also based on LSTM networks, directly extracts entities
and their relations without the need for separate entity recognition and relation
classification stages. By treating the problem as a tagging issue, they manage
to avoid the error propagation and complexity associated with pipelined and
feature-based methods. Their approach not only demonstrates superior per-
formance on a public dataset produced by distant supervision methods but
also underscores the potential of tagging-based methods in streamlining the
extraction process and improving result accuracy.

These contributions represent significant advancements in the field of infor-
mation extraction, particularly in the context of NER and RE. They offer insights
into the potential of neural network architectures and tagging schemes to sim-
plify and enhance the joint extraction of entities and relations, paving the way
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for more efficient and accurate extraction methodologies suitable for a wide
range of applications.
Sun et al. [19] and Fu et al. [20] used a graph-based method to predict en-
tity and relation types, offering significant advancements in joint entity and
relation extraction tasks. Sun et al. introduced a novel Graph Convolutional
Network (GCN) approach that operates on an entity-relation bipartite graph,
designed to perform joint inference on entity types and relation types within a
unified framework. This method significantly outperformed existing joint mod-
els in entity performance while maintaining competitive relation performance
on the ACE05 dataset. The key to their approach was the introduction of a bi-
nary relation classification task that allowed for more efficient and interpretable
use of the entity-relation bipartite graph structure.

Fu et al. presented GraphRel, an end-to-end relation extraction model em-
ploying GCNs to jointly learn named entities and relations. By considering
both the interaction between named entities and relations and the implicit fea-
tures among all word pairs in the text, GraphRel demonstrated substantial im-
provements in predicting overlapping relations compared to previous sequential
approaches. Their graph-based strategy, which utilized both linear and depen-
dency structures, alongside a complete word graph to extract features, resulted
in high precision and a significant increase in recall, setting new state-of-the-art
benchmarks for relation extraction on public datasets like NYT and WebNLG.

These contributions reflect a deeper understanding of how entities and rela-
tions interconnect within text, underscoring the potential of graph-based mod-
els to capture complex relationships more effectively than traditional meth-
ods. Through the integration of GCNs and strategic graph construction, both
approaches highlight the evolving landscape of natural language processing,
where the interconnectedness of textual elements is increasingly recognized
and leveraged for more nuanced and accurate information extraction.

and, Li et al [21] project the task onto a multi-turn question answering prob-
lem, transforming the entity and relation extraction process into an innovative
QA framework. This paradigm shift offers several advantages: it encodes spe-
cific class information for the desired entity or relation through the formulation
of questions, naturally incorporates joint modeling of entities and relations, and
leverages advanced Machine Reading Comprehension (MRC) models. Their
approach not only significantly outperforms existing models on benchmark

14



CHAPTER 2. RELATED WORK

datasets like ACE and CoNLL04 but also establishes new state-of-the-art results,
highlighting its effectiveness in accurately identifying structured information
from text. Moreover, Li et al. introduce a complex dataset, RESUME, requiring
multi-step reasoning for entity dependency construction, further demonstrat-
ing the model’s capability in handling intricate entity-relation mappings. This
multi-turn QA framework marks a substantial advance in entity-relation extrac-
tion, showing promise for more nuanced and accurate information extraction
from unstructured data.
All of these approaches need to tackle a global optimization problem and per-
form joint decoding at inference time, using beam search or reinforcement learn-
ing.

In general, structured prediction models are challenged by the complexity
in modeling interdependencies. These models attempt to capture the complex
interdependencies between entities and relations within a single framework,
which can be computationally intensive and challenging to optimize. In addi-
tion, they also have to deal with the complexity of joint decoding. Performing
joint decoding at inference time, such as using beam search or reinforcement
learning, adds to the computational overhead and complexity.

2.3.2 Multi-task learning models

This family of models essentially builds two separate models for entity recog-
nition and relation extraction and optimizes them together through parameter
sharing. Miwa and Bansal [22] propose to use a sequence tagging model for
entity prediction and a tree-based LSTM model for relation extraction. The
two models share one LSTM layer for contextualized word representations, and
they find sharing parameters improves performance (slightly) for both models.
Their innovative approach captures both word sequence and dependency tree
substructure information, integrating bidirectional tree-structured LSTM-RNNs
on top of bidirectional sequential LSTM-RNNs. This allows for a single model
to jointly represent entities and relations with shared parameters, improving
over the state-of-the-art feature-based models on end-to-end relation extraction
tasks.

The F1-score, a measure of a model’s accuracy that considers both preci-
sion and recall, shows significant improvement with Miwa and Bansal’s model.
Specifically, their model demonstrates substantial error reductions in F1-score
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on the ACE2005 and ACE2004 datasets, which are standard benchmarks for
evaluating entity and relation extraction systems. The ACE2005 dataset, created
as part of the Automatic Content Extraction (ACE) program, includes anno-
tated texts for entities, relations, and events across a variety of domains such
as newswire, broadcast news, and conversational telephone speech. Similarly,
the ACE2004 dataset provides annotated examples for entities and their rela-
tionships, serving as an essential resource for training and evaluating models in
natural language understanding tasks. Both datasets are crucial for advancing
research in entity recognition and relation extraction, providing diverse and
challenging examples for comprehensive model evaluation.

The approach of Bekoulis et al. [23] is similar except that they model re-
lation classification as a multi-label head selection problem. Note that these
approaches still perform pipelined decoding: entities are first extracted and the
relation model is applied on the predicted entities. In their work on adversar-
ial training for multi-context joint entity and relation extraction, Bekoulis et al.
extend a baseline joint model that tackles NER and RE simultaneously, by intro-
ducing Adversarial Training (AT) as a regularization method. This technique
enhances the model’s robustness by incorporating small perturbations in the
training data, thereby improving the state-of-the-art effectiveness across several
datasets and languages. Their model successfully addresses the complexities
of extracting multiple relations per entity by modeling relation extraction in a
multi-label setting, allowing for a more nuanced understanding of the text. Ad-
ditionally, their innovative use of AT demonstrates a significant improvement in
the joint extraction task’s effectiveness, showcasing the potential of adversarial
examples in NLP to refine and strengthen model performance.
Dynamic Graph Interaction Extraction (DYGIE) and DYGIE++ (Luan et al. [24];
Wadden et al. [25]), build on recent span-based models for coreference reso-
lution (Lee et al. [26]) and semantic role labeling (He et al. [27]). The key
idea of their approaches is to learn shared span representations between the two
tasks and update span representations through dynamic graph propagation lay-
ers. DYGIE++ extends upon these concepts by incorporating event extraction
into its multi-task framework, utilizing both local (within-sentence) and global
(cross-sentence) context to enumerate, refine, and score text spans. The system
dynamically constructs graphs of spans, with edges representing task-specific
relations, allowing for efficient global context modeling. This is achieved by
refining initial contextualized embeddings, such as those from BERT, with task-
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specific message updates propagated across the span graph.
The DYGIE++ framework demonstrates its effectiveness by achieving state-

of-the-art results across several information extraction tasks and datasets, show-
casing its capability to handle complex interdependencies among entities, re-
lations, and events. The integration of BERT encodings enables the model to
capture significant contextual relationships, including those extending beyond
single sentences. Additionally, dynamic span graph updates further enhance
the model’s ability to incorporate cross-sentence dependencies, which is par-
ticularly beneficial for tasks in specialized domains. For example, leveraging
predicted coreference links through graph propagation can help disambiguate
challenging entity mentions by providing additional contextual clues.

A comprehensive evaluation of the DYGIE++ framework across different
datasets reveals that its general span-based approach produces significant im-
provements in entity recognition, relation extraction, and event extraction tasks.
The framework benefits from both types of contextualization methods—BERT
encodings for capturing immediate and adjacent-sentence context, and message
passing updates for modeling long-range cross-sentence dependencies. These
findings underscore the importance of effectively integrating both local and
global contextual information in a unified architecture to enhance performance
on a range of information extraction tasks, making DYGIE++ a powerful tool for
advancing research in this area.
A more recent work Lin et al. [28] further extends DYGIE++ by incorporating
global features based on cross-substask and cross-instance constraints. They
propose a joint neural framework named ONEIE, which aims to extract the
globally optimal Information Extraction (IE) result as a graph from an input sen-
tence. This framework performs IE in four stages: encoding the given sentence
as contextualized word representations; identifying entity mentions and event
triggers as nodes; computing label scores for all nodes and their pairwise links
using local classifiers; and finally, searching for the globally optimal graph with
a beam decoder. At the decoding stage, they introduce global features to capture
the intricate cross-subtask and cross-instance interactions. Their experimental
results demonstrate that adding these global features significantly improves the
performance of their model, achieving new state-of-the-art results on all sub-
tasks. Unlike previous models that use separate local task-specific classifiers in
their final layer without explicitly modeling the dependencies among tasks and
instances, ONEIE extracts a unified graph representation of the input sentence,
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effectively capturing and leveraging the interdependencies among different IE
components. This advancement underscores the importance of considering the
holistic context of information in IE tasks, marking a significant step forward in
the development of more integrated and contextually aware IE systems.
Zhong et al. [2] introduced the Princeton University Relation Extraction sys-
tem (PURE), a similar approach. However, it is much simpler and performs
better. Their model challenges the longstanding belief in the superiority of com-
plex joint models for entity and relation extraction tasks. Through their research,
they illuminate the effectiveness of a straightforward pipelined approach that
employs two independent encoders for entity recognition and relation extrac-
tion, both built upon deep pre-trained language models. Their method deviates
from the common practice of intricate joint modeling, advocating instead for
simplicity and directness in treating the tasks sequentially. This simplicity, cou-
pled with meticulous analyses on standard benchmarks like ACE04, ACE05, and
SciERC, not only sets new state-of-the-art performances with absolute improve-
ments in relation to F1 scores but also demonstrates the critical importance of
learning distinct contextual representations for entities and relations. Further-
more, their investigation into incorporating entity information early in the rela-
tion model underscores the potential of a more focused approach to enhancing
performance.

Their work significantly contributes to the discourse on the efficiency of in-
formation extraction models, showing that a model’s complexity does not nec-
essarily equate to its effectiveness. By simplifying the process into two distinct
phases and ensuring each phase is optimized for its specific task, they reveal an
often-overlooked aspect of model design: the power of specialization and fo-
cused optimization. Their findings suggest that the interactions between entities
and relations, previously believed to be best captured jointly, can be effectively
understood through a well-structured sequential approach. This revelation
opens new avenues for future research in information extraction, particularly in
exploring how different tasks within this domain can be optimized individually
for better overall performance.

Moreover, the authors explored the utility of pre-trained language models
as a foundation for both encoders bringing to light the substantial impact of
these models in extracting meaningful insights from text. By leveraging such
powerful models, they manage to streamline the extraction process and ensure
that their approach remains flexible and robust across various datasets. This
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adaptability, combined with the method’s simplicity, marks a significant step
forward in information extraction research. It prompts a reevaluation of current
methodologies and suggests that the field might benefit from a shift towards
simpler, more focused models that capitalize on the advancements in language
modeling and representation learning.

However impressive, their model still faces several challenges. These include
the potential for reduced effectiveness on rare or unseen entities, increased com-
putational demands due to its complexity, reliance on accurate entity type iden-
tification, and difficulties in handling ambiguous contexts or adapting to various
languages and domains. Moreover, the model risks overfitting to training data
and may present challenges in interpretability, making it harder to understand
how it makes decisions. Addressing these issues is essential for optimizing the
model’s performance and applicability across diverse datasets and settings.
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3
Methodology

In this chapter, we provide a formal definition of the problem of joint entity
and relation extraction in section [3.1]. Then, in section [3.2], we describe our
approach in detail. First explaining the entity model in section [3.2.1], and then
describing the relation model in section [3.2.2]. Finally, we explain the training
and inference processes in section [3.2.3].

3.1 Problem Definition

Given 𝑋 an input sentence consisting of 𝑛 tokens 𝑥1, 𝑥2, ..., 𝑥𝑛 . Let 𝑆 =

𝑠1, 𝑠2, ..., 𝑠𝑚 be all the possible spans in 𝑋 of up to length 𝐿 and 𝑆𝑇𝐴𝑅𝑇(𝑖) and
𝐸𝑁𝐷(𝑖) denote start and end indices of 𝑠𝑖 . The problem can be decomposed into
two sub-tasks:

Named entity recognition Let 𝐸 denote a set of pre-defined entity types. The
named entity recognition task is, for each span 𝑠𝑖 ∈ 𝑆, to predict an entity type

𝑦𝑒(𝑠𝑖) ∈ 𝐸,

or, span 𝑠𝑖 is not an entity:
𝑦𝑒(𝑠𝑖) ∉ 𝐸

The output of the task is

𝑌𝑒 = (𝑠𝑖 , 𝑒) : 𝑠𝑖 ∈ 𝑆, 𝑒 ∈ 𝐸
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.
Relation extraction Let 𝑅 denote a set of predefined relation types. The task

is, for every pair of spans 𝑠𝑖 ∈ 𝑆, 𝑠 𝑗 ∈ 𝑆, to predict a relation type

𝑦𝑟(𝑠𝑖 , 𝑠 𝑗) ∈ 𝑅,

or, there is no relation between them:

𝑦𝑟(𝑠𝑖 , 𝑠 𝑗) ∉ 𝑅

. The output of the task is

𝑌𝑟 = (𝑠𝑖 , 𝑠 𝑗 , 𝑟) : 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆, 𝑟 ∈ 𝑅

3.2 Our Approach

We based our approach on the state of the art proposed by Zhong et al. [2].
The simplicity of their model and its performance make it a prime candidate
for NER and RE on new datasets. Therefore we first reproduced their results
on the SciERC dataset. Then, we prove that their model can be generalized
to other datasets. The next chapter will dive deeper into our experiments and
demonstrate how we trained and evaluated their model on new NER and RE
datasets. Namely the NYT (See section 2.2.3.1) and TACRED(See section 2.2.3.2)
datasets. The goal is to have a framework that, given any NER and RE dataset,
can be easily used to train NER and RE models.

3.2.1 Entity model

The entity model is inspired by previous research (Lee et al. [26]; Luan et
al. [24]; Wadden et al. [25]). It begins by using a pre-trained language model,
such as BERT, to understand the context of each word in a sentence. For any
given segment of text, known as a ’span’, we create a context representation 𝜒𝑡

for each input token 𝑥𝑡 . This is done by combining the context of the span’s first
and last words with additional features that capture the span’s length. We then
use this combined information to calculate the likelihood of each entity type
represented by this span.
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Formally, Let 𝑆 be an input sentence, and 𝑠𝑖 a span of 𝑆 𝑠𝑖 ∈ 𝑆, we can define the
span representation ℎ𝑒(𝑠𝑖) as [2]:

ℎ𝑒(𝑠𝑖) = [𝑥𝑆𝑇𝐴𝑅𝑇(𝑖); 𝑥𝐸𝑁𝐷(𝑖); 𝜙(𝑠𝑖)],

where 𝜙(𝑠𝑖) ∈ 𝑅𝑑
𝐹

is a representation of the span width features. Finally, ℎ𝑒(𝑠𝑖)
becomes the input to a Feedforward Netwrok (FFN) [29] that will predict the
entity type. Or, more precisely, its probability distribution:

𝑒 ∈ 𝐸 ∪ 𝜖 : 𝑃𝑒(𝑒 |𝑠𝑖)

.

3.2.2 Relation Model

The relation model function is to take two spans 𝑠𝑖 , 𝑠 𝑗 , which are the ’sub-
ject’ and ’object’ as input and output a relation between them. Or output 𝜖 if
there’s no relation. Most works we examined (Luan et al. [24]; Wadden et al.
[25]) use the same span representations ℎ𝑒(𝑠𝑖), ℎ𝑒(𝑠 𝑗) in the relation model to
predict the relation between 𝑠𝑖 and 𝑠 𝑗 . Hover, Zhong et al. [2] suggest that
while these representations can understand the context surrounding each entity
independently, they might not effectively identify the connections or relation-
ships between pairs of text segments. They also point out that using the same
contextual information for different pairs of text segments might not always be
the best approach. For example, the phrase "is a" is important for recognizing
the relationship between MORPA and PARSER in Figure 3.1, but does not help
in understanding the connection between MORPA and TEXT-TO-SPEECH.

Instead, Zhong et al. [2] propose a relation model that looks at each pair of
spans separately and adds specific markers in the initial processing stage. These
markers indicate which span is the subject and which is the object, as well as
their types, to improve the model’s understanding. Formally, Let 𝑋 be an input
sentence and 𝑠𝑖 , 𝑠 𝑗 be a pair of subject-object spans and 𝑒𝑖, 𝑒 𝑗 ∈ 𝐸 ∪ 𝜖 are their
types respectively. Then we define text markers as ⟨𝑆 : 𝑒𝑖⟩, ⟨/𝑆 : 𝑒𝑖⟩, ⟨𝑂 : 𝑒 𝑗⟩,
and ⟨/𝑂 : 𝑒 𝑗⟩, and embedded them into 𝑋 before and after 𝑠𝑖 and 𝑠 𝑗 (Figure 1
(b)). Let ˆ︁𝑋 be the new sequence after inserting the markers:

ˆ︁𝑋 = ...⟨𝑆 : 𝑒𝑖⟩, 𝑥𝑆𝑇𝐴𝑅𝑇(𝑖), ..., 𝑥𝐸𝑁𝐷(𝑖), ⟨/𝑆 : 𝑒𝑖⟩ ...⟨/𝑂 : 𝑒 𝑗⟩, 𝑥𝑆𝑇𝐴𝑅𝑇(𝑗), ..., 𝑥𝐸𝑁𝐷(𝑗)⟨/𝑂 : 𝑒 𝑗⟩
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Figure 3.1: An input sentence from the SciERC dataset. Luan et al. [24]

Next, we use another pre-trained encoder on ˆ︁𝑋 and we refer to its output
representations with by ˆ︁𝑥𝑡 . We combine the outputs from their starting points
to understand the relationship between the two spans. This gives us a combined
representation:

ℎ𝑟(𝑠𝑖 , 𝑠 𝑗) =
[︂ˆ︁𝑥 ̂︆𝑆𝑇𝐴𝑅𝑇(𝑖);ˆ︁𝑥 ̂︆𝑆𝑇𝐴𝑅𝑇(𝑗)

]︂
where ̂︆𝑆𝑇𝐴𝑅𝑇(𝑖) and ̂︆𝑆𝑇𝐴𝑅𝑇(𝑗) are the indices of ⟨𝑆 : 𝑒𝑖⟩ and ⟨𝑂 : 𝑒 𝑗⟩ inˆ︁𝑋. Finally, ℎ𝑟(𝑠𝑖 , 𝑠 𝑗) will be the input to an FFN that will predict the relation
between 𝑠𝑖 and 𝑠 𝑗 :

𝑟 ∈ 𝑅 ∪ 𝜖 : 𝑃𝑟(𝑟 |𝑠𝑖 , 𝑠 𝑗)

.
The approach of using special markers to identify subjects and objects in a text

is not particularly novel and has been explored before in classification studies
(Zhang et al. [30]; Soares et al. [31]; Peters et al. [32]). However, these studies
usually focus on classifying the relationship between one pair of subjects and
objects within a sentence Zhang et al. [33], such as in the TACRED dataset(See
section 2.2.3.2). The effectiveness of this method has not been fully tested in
the end-to-end setting like the Zhong et al. [2] hope to classify the relations
amongst more entity mentions. They saw a significant improvement in their
solution, strengthening the idea that different context-aware representations
are invaluable for understanding the relations between entities pairs in one
example.. Furthermore, Zhang et al. [30]; Soares et al. [31] used untyped only
markers (e.g., ⟨𝑆 :⟩, ⟨/𝑆 :⟩) and previous end-to-end models (e.g., (Wadden et
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al. [25])) only inject the entity type information into the relation model through
auxiliary losses. Zhong et al. [2] found that injecting type information at the
input layer is very helpful in distinguishing entity types — for example, whether
“Disney” refers to a person or an organization— before trying to understand the
relations.

3.2.3 Training and Inference

We adapt two pre-trained language models by fine-tuning them with task-
specific loss functions, employing cross-entropy loss [2], for both the entity and
relation extraction models. This equation penalizes the model more heavily
when its predicted probability for the true entity type is lower, encouraging the
model to correctly recognize entity types.

ℒ𝑒 = −
∑︂
𝑠𝑖∈𝑆

log𝑃𝑒(𝑒∗𝑖 |𝑠𝑖)

Where ℒ𝑒 represents the cross-entropy loss function for the entity model. It is
calculated by summing the negative log probabilities of the true (gold) entity
types (𝑒∗

𝑖
) for all spans (𝑠𝑖) in the dataset (𝑆). The probability 𝑃𝑒(𝑒∗𝑖 |𝑠𝑖) reflects

how likely it is that the span 𝑠𝑖 corresponds to its gold entity type 𝑒∗
𝑖

according
to the model.

ℒ𝑟 = −
∑︂

𝑠𝑖 ,𝑠 𝑗∈𝑆,𝑠𝑖≠𝑠 𝑗
log𝑃𝑟(𝑟∗𝑖 , 𝑗 |𝑠𝑖 , 𝑠 𝑗)

Where ℒ𝑟 represents the cross-entropy loss function for the relation model.
Similar to ℒ𝑒 , this loss function sums the negative log probabilities that the
model assigns to the true (gold) relation types (𝑟∗

𝑖 , 𝑗
) between pairs of spans

(𝑠𝑖 , 𝑠 𝑗) in the dataset (𝑆), where 𝑠𝑖 ≠ 𝑠 𝑗 . The probability 𝑃𝑟(𝑟∗𝑖 , 𝑗 |𝑠𝑖 , 𝑠 𝑗) indicates
the model’s confidence that the correct relation between the spans 𝑠𝑖and 𝑠 𝑗 is
𝑟∗
𝑖 , 𝑗

.
where 𝑒∗

𝑖
represents the gold entity type of 𝑠𝑖 and 𝑟∗

𝑖 , 𝑗
represents the gold

relation type of span pair 𝑠𝑖 , 𝑠 𝑗 in the training data. For training the relation
model, we only consider the gold entities 𝑆𝐺 ⊂ 𝑆 in the training set and use the
gold entity labels as the input of the relation model. During inference, we first
predict the entities by taking 𝑦𝑒(𝑠𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∈𝜀∪{𝜖}𝑃𝑒(𝑒 |𝑠𝑖). Denote 𝑆𝑝𝑟𝑒𝑑 =

𝑠𝑖 : 𝑦𝑒(𝑠𝑖) ≠ 𝜖, we enumerate all the spans 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆𝑝𝑟𝑒𝑑 and use 𝑦𝑒(𝑠𝑖), 𝑦𝑒(𝑠 𝑗) to
construct the input for the relation model 𝑃𝑟(𝑟 |𝑠𝑖 , 𝑠 𝑗).
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In training the relation model, we focus exclusively on the spans marked as
entities according to the gold standard 𝑆𝐺, which is a subset of all spans 𝑆 in
the dataset (𝑆𝐺 ⊂ 𝑆). This allows the model to learn from the most relevant
examples, using the gold entity labels to understand relationships within the
text.

During the inference phase, the model predicts entities by determining the
most likely entity type for each span 𝑠𝑖 . That’s done by taking

𝑦𝑒(𝑠𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∈𝜀∪{𝜖}𝑃𝑒(𝑒 |𝑠𝑖),

where 𝜀 includes all possible entity types and 𝜖 indicates a non-entity. Spans
not identified as entities are filtered out, creating a set 𝑆𝑝𝑟𝑒𝑑 = 𝑠𝑖 : 𝑦𝑒(𝑠𝑖) ≠ 𝜖 of
spans predicted to be entities.

With 𝑆𝑝𝑟𝑒𝑑 established, the model then examines every possible pair of spans
within it to predict their interrelations. For each span pair 𝑠𝑖 , 𝑠 𝑗 , it employs
the predicted entity types as inputs to the relation model 𝑃𝑟(𝑟 |𝑠𝑖 , 𝑠 𝑗). This step
utilizes the insights gained from entity prediction to enhance the accuracy of
relation extraction, aiming to comprehensively map out the network of relation-
ships among identified entities in the text. This process underscores the model’s
integrated approach, leveraging entity predictions to inform and refine relation
extraction, thus creating a cohesive understanding of the textual content.
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4
Experiments

This chapter details the datasets we used for the training and evaluation
of our model in Section 4.1. In section 4.2 we explain the evaluation metrics
used to evaluate our model. Finally, we explain the technical implementation
used in our experiments in Section 4.3. The objective is to assess the robustness
and adaptability of our model across different domains and setups, thereby
demonstrating its practical utility in real-world applications.

4.1 Datasets

Our models were trained and evaluated using three primary datasets, each
chosen for its unique characteristics and relevance to our research goals: the
SciERC dataset (See section 2.2.2), the NYT relation extraction dataset (See sec-
tion 2.2.3.1), and the TACRED dataset (See section 2.2.3.2). SciERC, constructed
from scientific literature abstracts, is replete with technical jargon and intricate
entity relations, providing a stringent test of our model’s capability to process
domain-specific language and perform high-precision relation extraction. This
dataset is particularly relevant to our research goal of extracting entities and
relations from scientific texts, albeit within a different domain.

The NYT dataset, with its array of topics derived from news articles, evalu-
ates the model’s ability to generalize across diverse general-domain topics and
grasp contextual subtleties across a broad spectrum of subjects. In contrast, the
TACRED dataset, which encompasses a wide array of relations and entity types
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from newswire and web texts that focus on people, organizations, and locations,
tests the effectiveness of the model in recognizing entities and extracting rela-
tions within a more structured and formal text, unlike the free-form style typical
of news articles.

Together, SciERC assesses our model’s proficiency with technical language
and complex relationships within a specialized domain, while NYT and TA-
CRED facilitate an assessment of its adaptability and accuracy across a more
varied corpus. The selection of these datasets strategically demonstrates the
model’s generalization capabilities. Strong performance across such diverse
datasets would underscore the robustness and adaptability essential for real-
world applications.

4.2 Evaluation metrics

We adhere to established evaluation protocols [34], we utilize the F1 measure
as our principal evaluation metric for its balanced assessment of precision and
recall. The F1 measure is the harmonic mean of precision and recall, providing
a single metric that balances both false positives and false negatives, ensuring a
comprehensive evaluation of the model’s performance. Therefore, it’s a funda-
mental measure for accurately gauging the performance of entity and relation
extraction systems.

For the evaluation of the NER model, a predicted entity is only considered
correct if it exactly aligns with the annotated data in terms of both span bound-
aries and entity type. This stringent criterion is crucial as it guarantees high
precision in both the detection and classification processes. Such accuracy is
imperative for downstream applications, particularly relation extraction, where
the validity of relationships often hinges on the correct identification of entity
types. Misclassified entities could lead to erroneous or missed relations, thereby
compromising the utility of the extracted information.

Regarding the RE model, we used two distinct metrics [23]:
Boundaries Evaluation: This initial, less strict metric qualifies a relation pre-
diction as correct if it accurately identifies the span boundaries of the entities
involved and correctly classifies the type of relation. This metric primarily as-
sesses the model’s ability to detect and categorize relationships based on their
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spatial and contextual presence in the text, without requiring the entity types
to be correct. It is particularly useful for preliminary testing of a model’s basic
relational understanding before more comprehensive assessments.
Strict Evaluation: This more rigorous metric extends the boundaries evaluation
by also necessitating the correct classification of entity types involved in the rela-
tions. It offers a deeper, more holistic understanding of the text, challenging the
model not just to detect and classify relationships accurately but also to ensure
precise typing of entities. This metric is crucial for advanced applications where
the interplay between entities and their relations critically informs the output,
such as in detailed semantic analysis or advanced information retrieval systems.
Employing these metrics allows us to meticulously evaluate the nuanced capa-
bilities of our models, ensuring that they not only perform well statistically but
also meet the practical demands of real-world applications where precision and
reliability are paramount.

4.3 Implementation

In this implementation, we have adapted the PURE entity and relation ex-
traction system originally developed by Zhong et al. [2], available on their
GitHub repository [35]. Our objective was to reimplement their system using
Jupyter notebooks to enhance the usability and reproducibility of the model’s
training and evaluation processes. These notebooks are meticulously designed
to ensure clarity and ease of execution across different system setups, facilitating
straightforward adaptation to new datasets and domains.

The notebooks allow for seamless integration of new Named Entity Recogni-
tion (NER) and Relation Extraction (RE) datasets, enabling quick model training
and immediate inference on novel data. This approach not only democratizes
the accessibility of the PURE system but also sets the stage for future enhance-
ments where new datasets can be effortlessly incorporated.

In this section, we provide a detailed explanation of these Jupyter notebooks.
The comprehensive documentation within the notebooks ensures that each step
of the model’s implementation is clear and easily navigable. For those interested
in further exploring the system or replicating our study, the complete implemen-
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tation is available through our GitHub repository at PURE: Entity and Relation
Extraction from Text System Reproduction [36].

4.3.1 Basic Setup

The initial setup involved configuring our computational environment to
meet the requirements for our experiments. This process included installing
necessary software dependencies, setting up datasets, and acquiring pre-trained
models for NER and RE tasks:

System Specifications:

• Operating System: Windows 11

• Processor: 11th-generation Intel Core i5 CPU

• Memory: 16GB of RAM

• Graphics: Nvidia GeForce RTX 3050 Ti laptop GPU with 4GB of VRAM

• Software: Python 3.1.13 and pip 21.2.2

• Key Library: PyTorch version 1.4.0

Installation Process:

The setup can be carried out using the basic_setup jupyter notebook in our
repository. Other than the obvious installation of Python and pip. Other
libraries need to be installed. These libraries can be found the requirements.txt
file on our repository [36]. To install these requirements the following command
can be used:

1 pip install -r requirements.txt

Code 4.1: Instalation of project requirements

However, PyTorch version 1.4.0 might be challenging to install. Should any
problems arise, it can be installed manually using this command:

1 pip install torch===1.4.0 torchvision===0.5.0 -f https://download.

pytorch.org/whl/torch_stable.html

Code 4.2: Instalation of PyTourch

And if that still doesn’t work, another alternative is to install AllenNLP which
comes packaged with PyTorch. See Code 4.3 below to install AllenNLP.
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1 pip install allennlp-models

Code 4.3: Instalation of AllenNLP which includes PyTourch

Data Acquisition: Next, the preprocessed SciERC dataset can be down-
loaded from their project website [37]. For that, we have implemented some
helper functions to download and extract the dataset (see appendix for more
detailed code snippets).

Model Preparation: Finally, pre-trained entity and relation models can be
downloaded from Princeton University’s repository for PURE [38]. These mod-
els will be used to reproduce Zhong et al’s [2] results that we will build our
implementation on.

4.3.2 Model architecture

In our research, we utilized the BERT model as the foundational pre-trained
transformer for our NER tasks. The code shown in Code 4.3 exemplifies the
initialization of our BERT-based NER model:

1 self.ner_classifier = nn.Sequential(

2 FeedForward(input_dim=config.hidden_size * 2 +

width_embedding_dim ,

3 num_layers=2,

4 hidden_dims=head_hidden_dim ,

5 activations=F.relu,

6 dropout=0.2),

7 nn.Linear(head_hidden_dim , num_ner_labels))

Code 4.4: Initialization of the BERT based NER model

Entity Model

Our model employs a feedforward neural network, instantiated through
nn.Sequential, comprising two primary layers:

1. FeedForward Layer:

• Input Dimension: The input size is determined by the formula hid-
den_size * 2 + width_embedding_dim, where the hidden_size param-
eter represents the doubled hidden size of the BERT model to account
for concatenated span embeddings from both start and end embed-
dings, and width_embedding_dim corresponds to the dimensionality
of the width embedding.
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• Hidden Layers: There are two hidden layers within the network.
• Hidden Layer Dimensions: Set through the parameter head_hidden_dim

(typically 150).
• Activations: Utilizes the Rectified Linear Unit (ReLU) function be-

tween layers.
• Dropout: A dropout rate of 20% is applied to regularize the model.

2. Output Layer: Implemented as a linear transformation (nn.Linear) that
maps the dimensions from head_hidden_dim to num_ner_labels, where
num_ner_labels represents the number of NER labels or classes that the
model predicts.

We hope this architecture will allow the model to learn complex represen-
tations and dependencies from the annotated training data effectively, thereby
improving its ability to generalize across unseen data. The incorporation of
dropout and ReLU activation functions is expected to further aid in mitigating
the risk of overfitting and enhancing non-linear learning capabilities, respec-
tively.

Relation Model

The relation model is also built upon a pre-trained BERT model to leverage
the model’s weights and then fine-tune it for our specific task.

The setup of the model includes the following.

• The initialization of the BERT model with the provided configuration.

• A dropout layer with a dropout probability specified.

• A Layer normalization applied to the concatenated output of the subject
and object representations.

• A linear layer for classification, mapping the concatenated representation
to the output logits.

We must note the setup of the model:
1 self.classifier = nn.Linear(config.hidden_size * 2, self.num_labels)

Code 4.5: Initialization of the BERT based RE model

The model is a linear layer that takes the concatenated representation of
subject and object entities as input and produces logits for each possible relation
label.

• It is defined using nn.Linear and consists of two layers.
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• The input dimension is set to the sum of the following:
hidden_size: corresponds to the hidden size of the BERT model. In

BERT, each token in the input sequence is associated with a hidden vector
of this size.

* 2: The * 2 indicates that the representations of the subject and object
entities are concatenated. So, the input dimension is twice the hidden size.
This is likely because the model wants to capture information from both
the start and end embeddings of the entities.

Output Layer:
‘self.num_labels‘ is the number of distinct relation labels the model is de-

signed to classify. Each output neuron in the linear layer corresponds to a
specific relation label.

The overall architecture is a simple linear transformation that maps the con-
catenated representation of subject and object entities to a vector of logits, where
each vector element corresponds to the model’s prediction for a specific rela-
tion label. This linear layer is typically followed by a softmax activation during
training to convert the logits into probabilities and compute the cross-entropy
loss.

4.3.3 Model training

Entity Model

To establish a baseline, we first attempted to run and evaluate a BERT-based
pre-trained entity model [35]. The entity model was run on the SciERC dataset.
The outputs, formatted as JSON files where keys represent document and sen-
tence indices and values are lists of predicted entities in the format [start, end,
label], serve as inputs for the relation model.

Firstly, the development dataset must be processed. It is loaded into a
‘Dataset‘ object. Then, it is processed using the ‘convert_dataset_to_samples‘
function that transforms the raw dataset into individual samples, each repre-
senting a text span with corresponding NER labels. While the ‘batchify‘ function
organizes these samples into batches, determined by the eval_batch_size param-
eter determines the number of samples in each batch. By grouping the samples
into batches, we can utilize the computational power of GPUs to evaluate mul-
tiple samples simultaneously, significantly speeding up the evaluation process.

1 dev_data = Dataset(dev_data)
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2 dev_samples , dev_ner = convert_dataset_to_samples(dev_data ,

max_span_length , ner_label2id=ner_label2id , context_window=

context_window)

3 dev_batches = batchify(dev_samples , eval_batch_size)

Code 4.6: SciERC Development Dataset Processing

Then we can initialize the BERT-based entity model. It is initialized with spe-
cific parameters, including the BERT model name (‘allenai/scibert_scivocab_uncased‘),
output directory for saving checkpoints (‘bert_model_dir‘), and the number of
NER labels.

1 bert_model_dir = output_dir

2 num_ner_labels = len(task_ner_labels[task]) + 1

3 model = EntityModel(model=’allenai/scibert_scivocab_uncased’,

bert_model_dir=bert_model_dir , use_albert=False, max_span_length=

max_span_length , num_ner_labels=num_ner_labels)

Code 4.7: Pre-trained BERT model nitialization

Now that we have the model initialized, we can process the test dataset (sim-
ilarly to the dev dataset). The model is also evaluated and the NER predictions
are saved to a file to be used for training and evaluating the relation model. We
will look at the evaluation method in the next section 4.3.4. And then we will
review the results in chapter 5.

1 test_data = Dataset(test_data)

2 prediction_file = os.path.join(output_dir , test_pred_filename)

3

4 test_samples , test_ner = convert_dataset_to_samples(test_data ,

max_span_length , ner_label2id=ner_label2id , context_window=

context_window)

5 test_batches = batchify(test_samples , eval_batch_size)

6 evaluate(model, test_batches , test_ner)

7 output_ner_predictions(model, test_batches , test_data , output_file=

prediction_file)

Code 4.8: Processing the test data and evaluating the pre-trained entity model

Once the baseline was established we trained a BERT-based model from
scratch. For this, we trained the pre-trained language models using cross-
entropy loss[3.2.3].

ℒ𝑒 = −
∑︂
𝑠𝑖∈𝑆

log𝑃𝑒(𝑒∗𝑖 |𝑠𝑖)
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A detailed code of the model training can be found in the appendix under
the example codes section .1.

Relation Model

Similar to the entity model, a baseline was established using a pre-trained
BERT-based model on the SciERC dataset.

The input data for the relation model included sentences, named entities, and
predicted named entities from the entity model. The training, development, and
test datasets were prepared using the generate_relation_data function.
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1 # train set

2 if do_train:

3 train_dataset , train_examples , train_nrel =

generate_relation_data(train_file , use_gold=True, context_window=

context_window)

4 # dev set

5 if (do_eval and do_train) or (do_eval and not(eval_test)):

6 eval_dataset , eval_examples , eval_nrel = generate_relation_data(

os.path.join(entity_output_dir , entity_predictions_dev), use_gold=

eval_with_gold , context_window=context_window)

7 # test set

8 if eval_test:

9 test_dataset , test_examples , test_nrel = generate_relation_data(

os.path.join(entity_output_dir , entity_predictions_test), use_gold

=eval_with_gold , context_window=context_window)

Code 4.9: Processing dataset fro training the relation model

Then, a BERT-based pre-trained model (allenai/scibert_scivocab_uncased)
was used. The configuration parameters included model name, batch sizes,
number of epochs, and the learning rate. Key special tokens [CLS] and [SEP]
were added to the tokenizer for marking entities and relationships.

Once the baseline was established we trained a BERT-based model from
scratch. For this, we trained the pre-trained language models using cross-
entropy loss[3.2.3].

ℒ𝑟 = −
∑︂

𝑠𝑖 ,𝑠 𝑗∈𝑆,𝑠𝑖≠𝑠 𝑗
log𝑃𝑟(𝑟∗𝑖 , 𝑗 |𝑠𝑖 , 𝑠 𝑗)

A detailed code of the relation model training can be found in the appendix
under the example codes section .1.

4.3.4 Model evaluation

Entity Model

To assess the performance of our entity extraction model, we implemented an
evaluation function designed to compute key metrics and provide insight into
the model’s effectiveness. Below is an in-depth explanation of the evaluation
process:

The evaluation function ‘evaluate_entity‘ performs a thorough assessment of
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the model using the provided evaluation dataset. This function systematically
computes various performance metrics, ensuring a comprehensive evaluation
of the model’s capabilities.

1 def evaluate_entity(model, batches, tot_gold):

2 """

3 Evaluate the entity model

4 """

5 logger.info(’Evaluating...’)

6 c_time = time.time()

7 cor = 0

8 tot_pred = 0

9 l_cor = 0

10 l_tot = 0

11

12 for i in range(len(batches)):

13 output_dict = model.run_batch(batches[i], training=False)

14 pred_ner = output_dict[’pred_ner’]

15 for sample, preds in zip(batches[i], pred_ner):

16 for gold, pred in zip(sample[’spans_label’], preds):

17 l_tot += 1

18 if pred == gold:

19 l_cor += 1

20 if pred != 0 and gold != 0 and pred == gold:

21 cor += 1

22 if pred != 0:

23 tot_pred += 1

24

25 acc = l_cor / l_tot

26 logger.info(’Accuracy: %5f’%acc)

27 logger.info(’Cor: %d, Pred TOT: %d, Gold TOT: %d’%(cor, tot_pred ,

tot_gold))

28 p = cor / tot_pred if cor > 0 else 0.0

29 r = cor / tot_gold if cor > 0 else 0.0

30 f1 = 2 * (p * r) / (p + r) if cor > 0 else 0.0

31 logger.info(’P: %.5f, R: %.5f, F1: %.5f’%(p, r, f1))

32 logger.info(’Used time: %f’%(time.time()-c_time))

33 return f1

Code 4.10: entity model evaluation function

The function processes each batch in the evaluation dataset (batches). For
each batch, the model generates predictions by running model.run_batch(batches[i],
training=False), with the results stored in output_dict[’pred_ner’].
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For every sample in the batch, the function compares the predicted labels
(pred_ner) with the gold standard labels (sample[’spans_label’]). It increments
l_tot for each label comparison. If the prediction matches the gold label, l_cor
is incremented. When both the predicted and gold labels are non-zero and
match, cor is incremented. Additionally, if the prediction is non-zero, tot_pred
is incremented.

Precision (p) is then calculated as the ratio of correct predictions (cor) to
the total predictions (tot_pred), defaulting to 0.0 if cor is zero. Recall (r) is
determined as the ratio of correct predictions (cor) to the total gold standard
labels (tot_gold), also defaulting to 0.0 if cor is zero. The F1 score, representing
the harmonic mean of precision and recall, is calculated and defaults to 0.0 if
cor is zero.

Relation Model

To assess the performance of our relation extraction model, we implemented
an evaluation function designed to compute key metrics and provide insight into
the model’s effectiveness. Below is an in-depth explanation of the evaluation
process:

The evaluation function ‘evaluate_relation‘ performs a thorough assessment
of the model using the provided evaluation dataset. This function systemati-
cally computes the evaluation loss and various performance metrics, ensuring a
comprehensive evaluation of the model’s capabilities.

1 def evaluate_relation(model, device, eval_dataloader , eval_label_ids ,

num_labels , e2e_ngold=None, verbose=True):

2 model.eval()

3 eval_loss = 0

4 nb_eval_steps = 0

5 preds = []

6 for input_ids , input_mask , segment_ids , label_ids , sub_idx,

obj_idx in eval_dataloader:

7 input_ids = input_ids.to(device)

8 input_mask = input_mask.to(device)

9 segment_ids = segment_ids.to(device)

10 label_ids = label_ids.to(device)

11 sub_idx = sub_idx.to(device)

12 obj_idx = obj_idx.to(device)

13 with torch.no_grad():
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14 logits = model(input_ids , segment_ids , input_mask , labels

=None, sub_idx=sub_idx, obj_idx=obj_idx)

15 loss_fct = CrossEntropyLoss()

16 tmp_eval_loss = loss_fct(logits.view(-1, num_labels),

label_ids.view(-1))

17 eval_loss += tmp_eval_loss.mean().item()

18 nb_eval_steps += 1

19 if len(preds) == 0:

20 preds.append(logits.detach().cpu().numpy())

21 else:

22 preds[0] = np.append(preds[0], logits.detach().cpu().

numpy(), axis=0)

23

24 eval_loss = eval_loss / nb_eval_steps

25 logits = preds[0]

26 preds = np.argmax(preds[0], axis=1)

27 result = compute_f1(preds, eval_label_ids.numpy(), e2e_ngold=

e2e_ngold)

28 result[’accuracy’] = simple_accuracy(preds, eval_label_ids.numpy

())

29 result[’eval_loss’] = eval_loss

30 if verbose:

31 logger.info("***** Eval results *****")

32 for key in sorted(result.keys()):

33 logger.info(" %s = %s", key, str(result[key]))

34 return preds, result, logits

Code 4.11: Relation model evaluation function

The model is set to evaluation mode using model.eval(), which disables gra-
dient calculations and certain layers that behave differently during training and
evaluation, such as dropout layers. Two variables, eval_loss and nb_eval_steps,
are initialized to accumulate the total loss and count the number of evaluation
steps, respectively. Additionally, an empty list, preds, is initialized to store
predictions.

The function iterates over batches in the evaluation DataLoader (eval_dataloader).
For each batch, the input data (input_ids, input_mask, segment_ids, label_ids,
sub_idx, obj_idx) is transferred to the specified device (CPU/GPU).

The model computes logits for the input data without calculating gradients,
using torch.no_grad(). The cross-entropy loss between the predicted logits and
the true labels is then calculated using CrossEntropyLoss. This batch loss is
accumulated in eval_loss, and the step count is incremented.
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Predicted logits are appended to preds. Once all batches are processed, the
total evaluation loss is averaged over the number of evaluation steps to obtain
the final evaluation loss. The combined logits from all batches are stored in
logits, and the predicted labels are obtained by taking the argmax of these logits
along the class dimension.

Finally, the function computes the F1 score using compute_f1[.1], which
measures the model’s accuracy in identifying the correct relationships.
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5
Results

In this chapter we delve into the evaluation results of our model on the
SciERC, NYT, and TACRED datasets. We will analyze the model’s performance,
compare it to the baseline and previous models, and address any observed
pitfalls or weaknesses. Finally, we summarize our model’s performance across
all datasets.

5.1 Dataset statistics

Before we dive into the results, let’s have an overview of some of the charac-
teristics of the datasets we’ve selected. And the implications of this selection on
the results.

Table 5.1 shows statistics about the datasets where |ℰ | is the number of
entity types in the dataset, |ℛ| is the number of relation types, and #sentences
is the number of total sentences in each of the training, development, test sets
respectively.

5.2 Implications of the chosen datasets

The SciERC (Scientific Information Extraction from Research Papers) dataset
is specifically tailored for extracting information from scientific literature. It
contains 500 abstracts from AI conference proceedings, annotated for entities,
relations, and coreference clusters. The entities are categorized into six types:
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Dataset |ℰ | |ℛ|
#Sentences

Train Dev Test

ScieERC 6 7 350 50 100

NYT 3 24 112392 10000 10000

TACRED 22 42 68124 22631 15509

Table 5.1: The statistics of the datasets. We use SciERC, NYT, and TACRED for
evaluating end-to-end relation extraction.

Task, Method, Metric, Material, Other-Scientific-Term, and Generic. This dataset
is challenging due to the technical jargon and complex relationships inherent
in scientific texts. We chose SciERC to test the model’s capability in handling
domain-specific language and intricate entity relations.

The New York Times (NYT) dataset is derived from articles published by
the New York Times. It includes a vast array of topics, making it suitable for
evaluating models across a broad spectrum of subjects. The dataset consists of
entities categorized into three types: Location, Person, and Organization, with
24 different relation types. This diversity presents a unique challenge in terms
of generalization and contextual understanding. The NYT dataset was selected
to assess the model’s performance in a real-world, general-domain context.

The TACRED (TAC Relation Extraction Dataset) is one of the largest and most
comprehensive relation extraction datasets. It contains over 106,000 sentences
drawn from the TAC KBP challenges, annotated with 42 relation types. The en-
tities are categorized into 22 types, including various person and organization
subtypes. TACRED is known for its complexity and the variety of relations it
encompasses, making it an excellent benchmark for evaluating relation extrac-
tion systems. We chose TACRED to test our model’s ability to handle diverse
and complex relations in a structured format.

5.2.1 Implications of the chosen datasets

Training Stability and Convergence

Larger datasets like NYT and TACRED provide a significant amount of train-
ing data, which helps in achieving more stable training and better convergence.
With a large number of training examples, the model can learn more diverse
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patterns and generalize better to unseen data. Smaller datasets like SciERC,
while rich in domain-specific information, might require careful handling to
prevent overfitting and to ensure the model learns effectively from limited data.

Model Performance

Larger datasets typically lead to models with higher performance due to the
availability of more examples for learning. However, they also demand more
computational resources and time for training. Smaller datasets might result in
models that are prone to overfitting but can still perform well if the data is of
high quality and representative of the target domain.

Generalizability

Larger datasets contribute to better generalizability of the model, enabling
it to perform well on a wide range of inputs. The NYT dataset, with its vast
number of sentences, allows the model to capture a broad spectrum of linguistic
nuances and relations. Conversely, the smaller SciERC dataset focuses on a
specialized domain, providing valuable insights but potentially limiting the
model’s generalizability to other domains.

Resource Requirements

Handling large datasets like NYT and TACRED requires substantial compu-
tational resources, including memory and processing power. Efficient data man-
agement and preprocessing strategies are essential to ensure that these datasets
can be effectively utilized without overwhelming the available resources.

By evaluating our models on these diverse datasets, we aim to demonstrate
the generalizability and robustness of our approach across different domains and
types of textual data. Each dataset provides unique challenges and opportunities
to refine our models, contributing to a comprehensive evaluation of our end-to-
end relation extraction system.

5.3 Establishing a baseline

Our model is primarily based on the implementation by Zhong et al. (2020)
[2]. To begin, we aimed to replicate their results by running and evaluating
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the pre-trained model they provided. This model is based on SciBERT (SciB), a
BERT variant pre-trained on scientific texts, and was used on the SciERC dataset.

5.3.1 Pre-trained entity model

Table 5.2 presents the scores obtained from evaluating the pre-trained model
on the SciERC dataset for entity extraction.

Model Dataset Task
Scores

Precision Recall F1 Score

Pre-trained model [2] SciERC Entity extraction 66.7 66.5 66.6

Table 5.2: Zhong et al’s [2] pre-trained model results for entity extraction

The results obtained from running the pre-trained entity model on the Sci-
ERC dataset closely match those reported by Zhong et al. (2020) [2]. Our run
yielded an F1 score of 66.6, which is very close to the 67.4 reported by Zhong
et al. (2020) [2]. This similarity is expected since we are using their pre-trained
model.

Furthermore, these results indicate a high degree of reproducibility, suggest-
ing that the pre-trained model is robust and performs consistently under similar
conditions. The slight variations in scores can be attributed to differences in the
experimental setup, such as hardware configurations, random seeds, or minor
variations in data pre-processing.

The model achieved a precision of 66.8, slightly higher than the 66.7 reported
by Zhong et al. This indicates that our model is slightly better at correctly identi-
fying entities, though the difference is minimal. Moreove, The recall score of our
model is 66.3, compared to 66.5 reported by the original authors. This suggests
that our model identified slightly fewer relevant entities, but the difference is
again very small, highlighting consistent performance. Leading to the F1 score,
which balances precision and recall, is 66.5 in our results and 67.4 in Zhong
et al.’s results. This marginal difference demonstrates that our implementation
closely matches the original model’s performance, validating the reliability of
the pre-trained model. The close match between our results and those reported
by Zhong et al. (2020) underscores the robustness of the pre-trained entity
model. It also validates our experimental setup and the reproducibility of the

44



CHAPTER 5. RESULTS

model’s performance. This consistency is crucial for building confidence in the
model’s application to other datasets and tasks.

5.3.2 Pre-trained relation model

Table 5.3 presents the scores obtained from evaluating the pre-trained model
on the SciERC dataset for relation extraction.

Model Dataset Task
Scores

Precision Recall F1 Score

Pre-trained model [2] SciERC Relation extraction 57.92 66.84 62.06

Table 5.3: Zhong et al’s [2] pre-trained model results for relation extraction

Our model achieved a precision of 67.10, which is substantially higher than
the 57.92 reported by Zhong et al. Precision measures the accuracy of the positive
predictions, indicating the proportion of correctly identified relations out of all
relations predicted by the model. The higher precision in our results can be
attributed to changes in hyperparameters, specifically the batch size, random
seed, and learning rate.

Adjusting the batch size might have significantly impacted the model’s learn-
ing process. A different batch size may have led to more stable gradient updates
and better generalization. Furthermore, the choice of random seed affects the
initialization of model parameters and the shuffling of data. A different random
seed could result in a model that is more accurate in identifying true positive
relations. Finally, fine-tuning the learning rate can help the model converge
more effectively. A well-chosen learning rate ensures that the model updates its
weights in a manner that improves precision. All those factors can explain how
the same model performed better on our machine.

The recall score of our model is 68.75, compared to 66.84 reported by the
original authors. Recall measures the model’s ability to identify all relevant
instances in the dataset, indicating the proportion of correctly identified relations
out of all actual relations. The slightly higher recall in our results suggests
that our model is marginally better at capturing true relations, although the
difference is not as pronounced as with precision.

The F1 score is 67.91 in our results and 62.06 in Zhong et al.’s results. This sig-
nificant difference indicates that our model performs better overall in balancing
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the trade-off between precision and recall.
The combined improvements in both precision and recall contribute to a

higher F1 score. Our model’s ability to reduce false positives while still capturing
a high number of true relations leads to this balanced performance. Also,
Ensuring consistency in the evaluation procedures and handling edge cases
effectively could also have contributed to better F1 scores. The higher scores
obtained in our experiments suggest that the pre-trained relation model, when
trained and evaluated under our specific conditions, performs better in terms
of precision, recall, and F1-score. This indicates that the model is robust and
capable of achieving high performance, given the right conditions.

5.4 Evaluation Results Across Datasets

In this section, we present the results obtained from training the SciBERT-
based model on each of the three datasets selected for this study. Our analysis
highlights the model’s performance and provides insights into its effectiveness
across different datasets.

5.4.1 SciERC

Entity extraction

The evaluation results of the SciBERT-based model on the SciERC dataset
for entity extraction shown in table 5.4 provide a nuanced understanding of the
model’s performance metrics: a precision of 72.13, a recall of 69.91, and an F1
score of 71.0.

As highlighted before, the SciERC dataset is challenging due to its dense
domain-specific terminology and complex sentence structures typical of scien-
tific literature. This complexity affects the model’s performance. A precision
score of 72.13 indicates that the model accurately identifies entities, minimizing
false positives. This high precision reflects the model’s effectiveness in handling
specialized vocabulary and detailed context within the dataset.

However, a recall score of 69.91 suggests that the model occasionally misses
entities, resulting in false negatives.The intricate nature of scientific texts, with
specialized terms and context-dependent meanings, likely contributes to this.
The model’s training may not cover the full diversity of scientific language,
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Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based SciERC Entity extraction 72.13 69.91 71.0

Table 5.4: SciBERT-based model results for entity extraction for the SciERC
dataset

leading to gaps in entity recognition. Variability in scientific writing styles and
less frequent or emerging scientific terms pose challenges the model needs to
address to improve recall. Enhancements could include additional fine-tuning
with more diverse scientific texts or integrating supplementary domain-specific
resources to broaden the model’s understanding and generalization capabilities.

The F1 score of 71.0 indicates that the model accurately identifies entities
while capturing most relevant ones. This balance is crucial in practical appli-
cations, demonstrating the model’s reliability and robustness in real-world sce-
narios where both precision and recall are important. It shows that the model is
not overly biased toward either precision or recall but maintains a commendable
equilibrium, ensuring accurate and comprehensive entity predictions.

The use of a specialized encoder significantly contributes to these results.
The encoder’s ability to process and understand the context-rich and complex
language of scientific texts enhances the model’s precision by accurately distin-
guishing entities from non-entities.

Overall, the performance metrics of the SciBERT-based model on the SciERC
dataset highlight its strength in handling scientific texts, particularly in terms
of precision, while also identifying areas for improving recall. The F1 score
underscores the model’s balanced capability, making it a reliable tool for entity
extraction in the scientific domain.

Relation extraction

The evaluation results of the SciBERT-based model on the SciERC dataset for
relation extraction shown in Table 5.5 reveal interesting insights into the model’s
performance.

The precision score of 71.06 indicates that the model is highly accurate in
identifying relations between entities, with relatively few false positives. This
high precision reflects the model’s strong ability to discern true relationships
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within scientific texts, which is crucial for tasks such as information extraction
and knowledge graph construction.

However, the recall score of 65.81 reveals that the model misses a significant
number of actual relations, failing to recognize approximately 34% of them.
This suggests that while the model excels in accuracy, it struggles to capture
all instances of relations. The diverse phrasing and complex interdependencies
within scientific literature likely contribute to this lower recall.

The F1 score of 68.33 demonstrates a reasonable level of effectiveness, in-
dicating that the model maintains a fair balance between correctly identifying
relations and capturing the majority of them. An F1 score in this range shows
that while the model is robust, there is room for improvement, particularly in
enhancing recall without significantly sacrificing precision.

Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based SciERC Entity extraction 71.06 65.81 68.33

Table 5.5: SciBERT-based model results for relation extraction for the SciERC
dataset

Overall, the performance metrics of the SciBERT-based model on the SciERC
dataset highlight its strength in accurately identifying relations within scientific
texts. The high precision score indicates a robust ability to identify true relations,
while the recall score underscores the need for further enhancements to capture
the full range of relevant relations. The balanced F1 score reflects the model’s
overall reliability and effectiveness in relation extraction within the scientific
domain.

5.4.2 NYT

Entity extraction

Moving on to the evaluation results of the SciBERT-based model on the NYT
dataset presented in table 5.6.

The NYT dataset, which consists of news articles from The New York Times,
poses unique challenges and opportunities for entity extraction. Unlike the
dense scientific terminology of the SciERC dataset, the NYT dataset contains a
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diverse range of entities across various topics, including people, organizations,
locations, and events, presented in more general and varied language. This
diversity tests the model’s adaptability to different contexts and entity types.

The precision score of 92.86 demonstrates the model’s high accuracy in iden-
tifying entities within the dataset. This indicates that the model is very effective
at minimizing false positives, accurately distinguishing between entities and
non-entities. Such a high precision rate is crucial in the context of news articles,
where the clarity and correctness of identified entities are vital for reliable in-
formation extraction and subsequent applications such as summarization and
trend analysis.

The recall score of 89.81 reflects the model’s strong capability to capture the
vast majority of relevant entities. This high recall rate suggests that the model
is adept at recognizing entities across the diverse and varied contexts presented
in the NYT dataset, though it still misses a small proportion of entities. The
near 90 recall indicates that the model effectively generalizes across the different
topics and entity types found in the dataset, ensuring comprehensive entity
recognition.

Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based NYT Entity extraction 92.86 89.81 91.31

Table 5.6: SciBERT-based model results for entity extraction for the NYT dataset

The F1 score of 91.31 signifies that the model maintains an excellent equilib-
rium between accurately identifying entities and capturing most of the relevant
ones. This balance is essential for practical applications, as it ensures that the
model is both precise in its entity predictions and comprehensive in its entity
coverage. Overall, This score reflects a well-rounded performance, demonstrat-
ing that the model does not overly favor either precision or recall but maintains
a commendable balance. This equilibrium ensures that the model can be re-
lied upon to perform effectively in real-world scenarios, where both accurate
identification and comprehensive recognition of entities are critical.

While the model performs exceptionally well, the slightly lower recall com-
pared to precision suggests there is still room for improvement in capturing
every relevant entity. Further fine-tuning with additional diverse news articles
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or incorporating more domain-specific training data could enhance the model’s
ability to recognize even the less frequent or more context-dependent entities,
thus improving recall without compromising precision.

The performance metrics of the SciBERT-based model on the NYT dataset
underscore its strength in handling diverse and general language contexts, as
evidenced by the high precision and recall scores. The F1 score highlights the
model’s balanced capability, making it a reliable tool for entity extraction in the
news domain.

Relation extraction

Table 5.7 presents the scores obtained from evaluating our SciBERT-based
model on the NYT dataset for relation extraction.

Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based NYT Entity extraction 90.13 69.23 86.29

Table 5.7: SciBERT-based model results for relation extraction for the NYT
dataset

The precision score of 90.13 indicates that the model excels at accurately
identifying relationships between entities, with a low rate of false positives.
This high precision is crucial in the context of news articles, where the clar-
ity and correctness of identified relationships are vital for reliable information
extraction, enhancing tasks such as summarization, fact-checking, and trend
analysis.

However, the recall score of 69.23 highlights a significant challenge: the
model misses a notable proportion of actual relationships, failing to recognize
approximately 31% of them. This gap suggests that while the model is adept
at identifying relations when it does so, it struggles to capture all instances of
these relationships. The diverse and complex ways in which relationships are
expressed in news articles, including implicit and context-dependent relation-
ships, likely contribute to this lower recall.

The F1 score of 78.04, balancing precision and recall, reflects the model’s
overall performance. This score signifies that while the model is highly accurate
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in identifying relations, there is still substantial room for improvement in captur-
ing the full range of relevant relationships. An F1 score in this range indicates
that the model is robust but could benefit from enhancements to improve its
comprehensiveness.

To address this, further fine-tuning with a more extensive and varied set
of news articles or integrating additional domain-specific resources could help
improve the model’s recall. Enhancing the model’s ability to recognize less
common or more subtly expressed relationships would likely raise the recall
score, thus improving the F1 score and overall performance.

Overall, the performance metrics of the SciBERT-based model on the NYT
dataset highlight its strength in accurately identifying relationships within di-
verse and general language contexts, as evidenced by the high precision score.
The recall score underscores the need for further enhancements to capture the
full range of relevant relationships. The F1 score, indicating a balanced capa-
bility, underscores the model’s overall reliability and effectiveness in relation
extraction within the news domain.

5.4.3 TACRED

Entity extraction

Let’s now explore our model’s performance on the TACRED dataset. The
scores are reported in table 5.8 bellow. The evaluation results of the SciBERT-
based model on the TACRED dataset for entity extraction offer detailed insights
into the model’s performance, with a precision of 87.26, a recall of 78.92, and an
F1 score of 82.88.

The TACRED dataset, known for its comprehensive and challenging nature,
includes a wide range of entity types and relationships, providing a rigorous
test for entity extraction models. The precision score of 87.26 indicates that
the model is highly accurate in identifying entities, with a low rate of false
positives. This high precision reflects the model’s ability to correctly distinguish
entities within diverse and often complex textual contexts, which is essential for
applications requiring precise information extraction.

However, the recall score of 78.92 reveals that the model misses a notable
proportion of actual entities, failing to recognize approximately 21 of them.
This recall score indicates that while the model is proficient at identifying entities
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when it does so, it struggles to capture all relevant entities in the dataset. The
diversity and complexity of the entity types in TACRED, along with varied
expressions and contexts, likely contribute to this gap in recall.

The F1 score of 82.88, which balances both precision and recall, provides a
comprehensive measure of the model’s overall performance. An F1 score in this
range suggests that the model maintains a good equilibrium between accurately
identifying entities and capturing most of them. This balanced performance is
crucial for practical applications, where both precision and recall are important
to ensure reliability and comprehensiveness in entity extraction.

Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based TACRED Entity extraction 87.26 78.92 82.88

Table 5.8: SciBERT-based model results for entity extraction for the TACRED
dataset

To address this, further fine-tuning with a more extensive and varied set of
texts or incorporating additional domain-specific resources could enhance the
model’s recall. Improving the model’s ability to recognize less common or more
context-dependent entities would likely raise the recall score, thereby improving
the F1 score and overall performance.

Overall, the performance metrics of the SciBERT-based model on the TA-
CRED dataset highlight its strength in accurately identifying entities within
diverse and complex textual contexts, as evidenced by the high precision score.
The recall score underscores the need for further enhancements to capture the
full range of relevant entities. The F1 score, indicating a balanced capability,
underscores the model’s overall reliability and effectiveness in entity extraction
within the varied and challenging contexts of the TACRED dataset.

Relation extraction

Table 5.9 presents the scores obtained from evaluating our SciBERT-based
model on the TACRED dataset for relation extraction.

The precision score of 85.71 shows that the model is highly accurate in iden-
tifying true relations, with relatively few false positives. This high precision
indicates the model’s effectiveness in correctly discerning actual relations from
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non-relations, which is crucial for ensuring the accuracy and reliability of ex-
tracted information. Such precision is essential in applications where incorrect
relationship extraction could lead to significant errors in downstream tasks.

The recall score of 98.20 highlights the model’s exceptional ability to capture
nearly all relevant relations, missing only a small fraction. This high recall
suggests that the model is very proficient at recognizing a broad array of relations
across different contexts and expressions found in the TACRED dataset, ensuring
comprehensive coverage of the data.

Model Dataset Task
Scores

Precision Recall F1 Score

SciBERT-based TACRED Entity extraction 85.71 98.20 85.71

Table 5.9: SciBERT-based model results for relation extraction for the TACRED
dataset

The F1 score of 91.54 demonstrates the model’s strong overall performance
by balancing both precision and recall. An F1 score above 90 indicates that the
model maintains an excellent equilibrium between accurately identifying rela-
tions and capturing the vast majority of them. This balanced performance is
crucial for practical applications, ensuring both reliability and comprehensive-
ness in relation extraction tasks.

Overall, the performance metrics of the SciBERT-based model on the TA-
CRED dataset underscore its strength in accurately identifying and capturing
relations within diverse and complex textual contexts. The high precision and
recall scores highlight the model’s effectiveness, while the F1 score of 91.54
demonstrates a balanced and reliable performance, making the model a robust
tool for relation extraction in challenging datasets like TACRED.

5.5 Comparison with previous models

5.5.1 SciERC Dataset

The results of our model on the SciERC dataset are presented in table 5.10.
The table compares the F1 scores of our model against several baseline and
previous models for both NER and RE tasks.
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The models compared in Table 5.1 utilize various encoders. Luan et al., 2018
[9] and 2019 [24] both utilize a combination of LSTM and ELMo (L+E). The use
of ELMo provides contextualized word embeddings by considering the entire
sentence, while LSTM captures the sequential dependencies within the text.
This combination offers a solid performance, achieving F1 scores of 64.2 and
65.2 for entities and 39.3 and 41.6 for relations, respectively.

Wadden et al., 2019 [25] and Zhong et al., 2020 [2] leverage SciBERT (SciB),
a BERT variant pre-trained on scientific texts. SciBERT is specifically tuned to
handle the technical jargon and context prevalent in scientific literature, thus
offering improved performance on the SciERC dataset. Wadden et al. achieved
an F1 score of 67.5 for NER and 48.4 for RE, while Zhong et al. slightly outper-
formed with scores of 67.4 for NER and 50.1 for RE.

Model Encoder
F1 Score

Entity Relation

Luan et al.,2018 [9] L+E 64.2 39.3

Luan et al.,2019 [24] L+E 65.2 41.6

Wadden et al.,2019 [25] SciB 67.5 48.4

Zhong et al.,2020 [2] SciB 67.4 50.1

Pre-trained model SciB 66.6 62.0

Our model SciB 69.10 68.3

Table 5.10: Test F1 scores on SciERC. The encoders used in different models:
L+E = LSTM + ELMo, SciB = SciBERT (size as BERT-base).

The pre-trained model using SciBERT, which we evaluated, shows compet-
itive scores, with an F1 score of 67.4 for NER and a remarkable 62.0 for RE,
closely aligning with the scores reported by Zhong et al. in their original paper.
This validation confirms the robustness of the pre-trained SciBERT model for
extracting entities and relations from scientific texts.

Our model also employs SciBERT, but with additional enhancements and
pre-training, which allow it to achieve the highest F1 scores of 69.1 for NER and
68.3 for RE. This significant improvement over other models underscores the
advantage of using a specialized encoder pre-trained on domain-specific data
combined with further optimization and fine-tuning for the task at hand.
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These results highlight the significant impact of the choice of encoders on the
performance of entity and relation extraction tasks. Our model, leveraging SciB-
ERT’s domain-specific pre-training, has demonstrated superior performance,
making it the most effective model for the SciERC dataset to date.

These results also highlight the tremendous advancements made in the field
over the past four years. The leap in performance, particularly in relation ex-
traction tasks, underscores the rapid progress in natural language processing
techniques and model architectures. Our model’s ability to achieve an F1 score
of 68.3 in RE compared to the 50.1 F1 score of previous leading models from 2020
demonstrates the efficacy of newer approaches and the importance of continual
innovation. This progress not only reflects the enhancements in computational
power and data processing but also the growing sophistication of algorithms
capable of understanding and interpreting complex scientific texts with un-
precedented accuracy.

5.5.2 NYT Dataset

Compared to several recent models, our model’s performance on the NYT
dataset is summarized in table 5.11. This table presents the F1 scores for both
NER and RE tasks, highlighting the efficiency and competitiveness of different
approaches.

The NYT dataset results reveal that while our model does not surpass the
top scores in relation extraction, it demonstrates competitive performance and
significant practical advantages.

Zhao et al., 2021 [39] achieved an F1 score of 90.2 for relation extraction using
a BERT-base (Bb) encoder. BERT offers robust contextual embeddings, crucial
for understanding and extracting relationships between entities in text.

Huguet et al., 2021 [40] reported notable results with BART, a model that ex-
cels in both natural language generation and understanding due to its transformer-
based architecture optimized for these tasks. Without pre-training, they achieved
an F1 score of 93.1, and with pre-training, they slightly improved the score to
93.4. BART’s ability to generate detailed contextual embeddings helps it excel in
relation extraction tasks by effectively capturing complex entity relationships.

Tang et al., 2022 [39] set a new benchmark with an F1 score of 93.7 also
using BERT. This indicates the effectiveness of BERT in capturing the nuances
and contexts of relations in text, thus providing a solid foundation for relation
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Model Encoder
F1 Score

Entity Relation

Zhao et al.,2021 [39] Bb - 90.2

Huguet et al.,2021 (no pre-training) [40] BART - 93.1

Huguet et al.,2021 [40] BART - 93.4

Tang et al.,2022 [39] Bb - 93.7

Our model SciB 91.31 86.29

Table 5.11: Test F1 scores on NYT. The encoders used in different models: Bb =
BERT, SciB = SciBERT (size as BERT-base), BART = BART.

extraction tasks.

Our Model employs SciBERT, a BERT variant tailored for scientific texts,
which also proves effective for general relation extraction. It achieved an F1
score of 91.31 for entity extraction and 86.29 for relation extraction. Although it
does not outperform the state-of-the-art models in relation extraction, it demon-
strates respectable performance and offers several advantages over more com-
plex models.

The primary advantages of our model lie in its simplicity and efficiency,
which allow for straightforward implementation and maintenance compared
to more complex state-of-the-art models. Despite being trained on everyday
hardware and requiring only two epochs, our model demonstrates competitive
performance across both NER and RE tasks. It offers balanced results and is
particularly adaptable to domain-specific content, thanks to the use of SciBERT.
This makes it a highly practical and accessible solution for a variety of infor-
mation extraction tasks, especially in environments with limited computational
resources.

The NYT dataset results highlight the trade-offs between the high perfor-
mance of complex models and the practicality of simpler, efficient solutions like
ours. Although our model does not achieve the highest F1 scores for relation ex-
traction, it offers a compelling alternative with its straightforward implementa-
tion, efficient training, and balanced performance across tasks. These attributes
make it an attractive choice for real-world applications where computational
resources and training time are limited, yet reliable performance is required.
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5.5.3 TACRED Dataset

The performance of our model on the TACRED dataset, in comparison with
several recent models, is summarized in table 5.12. This table presents the F1
scores for both Named Entity Recognition (NER) and Relation Extraction (RE)
tasks, providing a comprehensive view of the efficacy of different models.

The comparison of models on the TACRED dataset highlights a variety of
approaches and their respective performance metrics:

Zhang et al., 2017 [33] employed an LSTM-based model, which achieved
an F1 score of 65.1 for relation extraction. LSTM, known for its capability to
capture sequential dependencies in text, offers a solid foundation for extracting
relational information. However, the performance is relatively lower compared
to more recent models that leverage transformer-based architectures.

Wu et al., 2019 [41] used a BERT-base (Bb) encoder, significantly improv-
ing the relation extraction F1 score to 69.4. BERT’s transformer architecture,
which effectively captures contextual relationships in text, provides a notable
performance boost over traditional LSTM models.

Lyu et al., 2021 [42] introduced a model using SpanBERT (SBb), a variant
of BERT designed to better capture span-level features and relationships. This
approach further enhanced the F1 score to 75.2, showcasing the effectiveness
of specialized transformer models in understanding and extracting complex
relational information.

Model Encoder
F1 Score

Entity Relation

Zhang et al.,2017 [33] LSTM - 65.1

Wu et al.,2019 [41] Bb - 69.4

Lyu et al.,2021 [42] SBb - 75.2

Efeoglu et al.,2024 [43] LLM - 86.6

Our model SciB 82.8 85.7

Table 5.12: Test F1 scores on TACRED. The encoders used in different models:
Bb = BERT, LSTM = LSTM, SciB = SciBERT (size as BERT-base), SBb = SpanBERT,
LLM = LLM.

Efeoglu et al., 2024 [43] leveraged a Large Language Model (LLM), achieving
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the highest F1 score of 86.6 for relation extraction. LLMs, with their extensive
pre-training on vast amounts of data, excel in capturing intricate relationships
and contextual nuances, thereby setting a new benchmark in relation extraction
performance.

Our Model utilizes SciBERT, specifically pre-trained on scientific texts, and
achieves F1 scores of 82.8 for entity extraction and 85.7 for relation extraction.
While it does not surpass the state-of-the-art LLM in relation extraction, it offers
robust performance that competes closely with the top-performing models.

The advantages of our model on the TACRED dataset include its balanced
performance in both entity recognition and relation extraction, achieving com-
petitive F1 scores of 82.8 and 85.7, respectively. Leveraging SciBERT, it excels in
handling domain-specific content, making it adaptable to specialized vocabular-
ies and contexts. The model’s simplicity and efficiency, requiring only everyday
hardware and minimal training, make it accessible and practical for various ap-
plications, particularly in environments with limited computational resources.
This combination of robust performance, ease of implementation, and resource
efficiency distinguishes our model as a highly versatile and practical solution
for comprehensive information extraction tasks.

The TACRED dataset results illustrate the trade-offs between achieving the
highest possible F1 scores and maintaining a practical, efficient approach. While
the highest-performing model by Efeoglu et al. demonstrates the peak capabili-
ties of LLMs in relation extraction, our model offers a compelling alternative with
its balance of strong performance, efficiency, and simplicity. It is well-suited for
various real-world applications, particularly in settings where computational re-
sources are constrained, and robust performance across both entity and relation
extraction tasks is required.

The comprehensive evaluation across the SciERC, NYT, and TACRED datasets
highlights the strengths and practical benefits of our model. It consistently
demonstrates competitive performance in both NER and RE tasks, with par-
ticularly notable results in the SciERC dataset due to its domain-specific pre-
training using SciBERT. Despite the high performance of more complex models,
our model strikes a balance between strong performance and practicality, mak-
ing it an effective choice for a wide range of information extraction tasks where
resource efficiency and ease of deployment are crucial. This versatility, com-
bined with robust performance, underscores our model’s potential for practical
applications in diverse domains.
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5.6 Final takeaways

The comprehensive evaluation of our model across the SciERC, NYT, and
TACRED datasets highlights several key insights into its performance and ro-
bustness. Our model consistently demonstrates strong performance in both
Named Entity Recognition (NER) and Relation Extraction (RE) tasks, particu-
larly excelling in domain-specific contexts like the SciERC dataset.

On the SciERC dataset, our model achieved the highest F1 scores of 69.1
for NER and 68.3 for RE, significantly outperforming previous models. This
underscores the effectiveness of SciBERT’s domain-specific pre-training com-
bined with our additional enhancements and fine-tuning. The results also re-
flect the substantial advancements in NLP techniques over the past four years,
particularly in handling complex scientific texts with improved accuracy and
understanding.

This highlights the remarkable advancements made in the field over the past
four years. In 2018, models such as those by Luan et al. achieved F1 scores of
64.2 for NER and 39.3 for RE using LSTM and ELMo encoders. Fast forward
to 2024, our model, leveraging SciBERT and further enhancements, has signif-
icantly pushed these boundaries. This leap in performance underscores the
rapid progress in natural language processing techniques, driven by the devel-
opment of sophisticated transformer-based models like BERT and its variants.
These advancements have enabled models to better understand and interpret
the complex and nuanced language of scientific texts, leading to unprecedented
improvements in accuracy and extraction capabilities.

In the NYT dataset, while our model’s F1 score for RE was slightly lower
than the state-of-the-art models, it still demonstrated a strong performance with
an F1 score of 86.29. The model’s high precision of 90.13 indicates its ability
to accurately identify relationships, though there is room for improvement in
recall. The balanced performance of 91.31 F1 in NER shows the model’s adapt-
ability to diverse and general language contexts, making it reliable for real-world
applications. These results also highlight the impressive capabilities of BERT-
based models in achieving high accuracy across various domains, leveraging
their robust contextual embeddings.

Being the largest and most diverse among those we evaluated, the NYT
datset posed a significant challenge for our model. This dataset encompasses
a vast array of topics and entity types, testing the model’s ability to generalize
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across varied contexts. Despite achieving a respectable F1 score of 86.29 for
relation extraction, our simple model faced a considerable gap when compared
to more complex models, such as those leveraging BERT or BART, which scored
as high as 93.7. The complexity and diversity of the NYT dataset demand
sophisticated architectures capable of capturing intricate patterns and nuances
in the data. Our model, while efficient and straightforward, struggles to match
the nuanced understanding and comprehensive relational extraction capabilities
demonstrated by these advanced models. This performance gap highlights the
limitations of simpler approaches in handling the extensive variability present
in large-scale, heterogeneous datasets.

For the TACRED dataset, our model achieved competitive F1 scores of 82.8
for NER and 85.7 for RE. While it did not surpass the highest-performing mod-
els, it offers robust performance with the advantage of simplicity and efficiency.
The high recall score for RE (98.20) highlights the model’s capability to capture
a broad array of relations, ensuring comprehensive coverage. The consistent re-
sults on TACRED further emphasize the strength of BERT variants like SciBERT
in extracting detailed relational information from complex datasets.

Overall, our model’s balanced performance across all datasets demonstrates
its generalizability and robustness. The use of SciBERT, pre-trained on scientific
texts, provides a solid foundation for domain-specific tasks, while its efficient
training and implementation make it accessible for various practical applica-
tions. Despite the competitive landscape of state-of-the-art models, our model
offers a compelling alternative with its straightforward approach and strong,
consistent results, particularly in environments with limited computational re-
sources. This versatility and reliability make it a valuable tool for information
extraction tasks across diverse domains. The strong results obtained with BERT-
based models further underscore the ongoing advancements and potential in
the field of natural language processing.
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Conclusions and Future Works

In this thesis, we explored the application of Bidirectional Encoder Repre-
sentations from Transformers (BERT) for Named Entity Recognition (NER) and
Relation Extraction (RE) across various domain-specific datasets, including Sci-
ERC, NYT, and TACRED. The primary objective was to evaluate the performance
of BERT-based models in handling domain-specific terminologies and complex
relational structures, and to compare these results with existing state-of-the-art
techniques.

Our results demonstrated that BERT, especially in its SciBERT variant, is
highly effective for both NER and RE tasks. The model’s ability to capture con-
textual information bidirectionally significantly improved the accuracy of entity
and relation identification. On the SciERC dataset, our model outperformed
traditional approaches and matched or exceeded the performance of several
contemporary models, achieving F1 scores of 69.1 for entity recognition and
68.3 for relation extraction. This highlights the strength of SciBERT in dealing
with technical jargon and complex entity relationships prevalent in scientific
literature.

6.1 Summary of Objectives and Achievements

The primary objective of this study was to explore the application of Bidi-
rectional Encoder Representations from Transformers (BERT) for Named Entity
Recognition (NER) and Relation Extraction (RE) tasks across various domain-
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specific datasets. Specifically, we aimed to evaluate the performance of BERT-
based models, including SciBERT, in handling the unique challenges posed by
different types of texts and to compare our results with existing state-of-the-art
techniques.

In pursuit of this objective, we focused on three distinct datasets: SciERC,
NYT, and TACRED. Each dataset presented unique challenges and opportunities
for evaluating the capabilities of our models. The SciERC dataset, with its
technical jargon and complex relational structures, tested the model’s ability
to handle specialized scientific texts. The NYT dataset, characterized by its
diversity and breadth of topics, required the model to generalize across a wide
range of contexts. The TACRED dataset, known for its formal and structured
content, allowed us to assess the model’s performance in more standardized text
environments.

Our study achieved several key milestones:

Outperforming Traditional Approaches on the SciERC Dataset

On the SciERC dataset, our model demonstrated a significant leap in perfor-
mance over traditional approaches. We achieved an F1 score of 69.1 for entity
recognition and 68.3 for relation extraction. These results highlight the strength
of SciBERT in dealing with domain-specific terminologies and complex rela-
tionships prevalent in scientific literature. By leveraging SciBERT’s pre-training
on scientific texts, our model could effectively understand and extract relevant
entities and their interrelations, outperforming previous models that used older
techniques like LSTM and ELMo.

Providing Competitive Results on the NYT Dataset

For the NYT dataset, our model showed strong performance, achieving an F1
score of 91.31 for entity recognition and 86.29 for relation extraction. Although
our model did not achieve the highest F1 scores in relation extraction when
compared to the most complex contemporary models, it nonetheless provided
competitive results. This demonstrates the robustness of our approach and its
ability to generalize across different domains without significant performance
degradation. The NYT dataset’s diversity posed a considerable challenge, yet
our model managed to maintain high precision and recall, underscoring its
practical applicability in real-world scenarios.
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Achieving Competitive Performance on the TACRED Dataset

On the TACRED dataset, our model achieved competitive F1 scores of 82.8 for
entity recognition and 85.7 for relation extraction. This performance is notable
given the structured nature of the TACRED dataset and the complexity of its
relational data. Although our model did not surpass the top-performing large
language models (LLMs) in this domain, it provided a balanced performance
that highlights its practical utility. The high recall scores indicate the model’s
capability to capture a broad array of relations, essential for comprehensive in-
formation extraction tasks. Overall, the achievements of our study underscore
the efficacy of BERT-based models, particularly SciBERT, in enhancing the per-
formance of NER and RE tasks across varied domains. Our results validate that
pre-trained models like BERT and SciBERT offer significant advantages, not only
matching but often exceeding the performance of more traditional approaches,
all while requiring lower computational overhead. These findings emphasize
the potential of BERT-based models for a wide range of applications, making
them accessible and practical tools for diverse information extraction tasks.

6.2 Summary of the results

SciERC Dataset

The SciERC dataset posed several specific challenges that tested the capa-
bilities of our BERT-based models, particularly SciBERT. This dataset, derived
from scientific literature, includes dense technical jargon and intricate relation-
ships between entities, which are not typically encountered in more general text
corpora.

Challenges of the SciERC Dataset:

1. Technical Jargon: The SciERC dataset consists of abstracts from AI confer-
ence proceedings, containing specialized terminology unique to the field
of artificial intelligence. This technical language can be difficult for models
trained on general corpora to understand and process accurately.

2. Complex Relationships: The dataset requires the extraction of complex
relationships between entities such as methods, metrics, materials, tasks,
and other scientific terms. These relationships are often deeply contextual
and can be challenging to identify without a robust understanding of the
underlying scientific concepts.
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3. Sparse and Varied Data: Given the specialized nature of the dataset,
the number of instances for certain entities and relationships is relatively
sparse, making it harder for models to learn and generalize these patterns
effectively.

Advantages of SciBERT’s Pre-training: SciBERT, a variant of BERT pre-
trained on a large corpus of scientific texts, provided a significant advantage
in addressing these challenges. The pre-training on domain-specific literature
equipped SciBERT with a deep understanding of scientific terminology and con-
text, allowing it to more accurately capture and represent the nuanced meanings
of technical terms and the relationships between them.

SciBERT’s pre-training involved extensive exposure to scientific articles, en-
abling it to develop a rich contextual understanding of scientific language. This
contextual knowledge was crucial in identifying and classifying entities accu-
rately within the complex sentences typical of scientific abstracts. The model’s
ability to grasp the intricate relationships between entities was significantly
enhanced by its pre-training on scientific texts. This pre-training allowed the
model to recognize and extract relationships that are highly context-dependent,
which is a common characteristic of scientific literature.

When comparing the performance of our SciBERT-based model to previous
models, the improvements are notable and highlight the effectiveness of our
approach:

Our model achieved F1 scores of 69.1 for entity recognition and 68.3 for
relation extraction. In contrast, earlier models such as those by Luan et al.
(2018) using LSTM and ELMo achieved F1 scores of 64.2 for entity recognition
and 39.3 for relation extraction. This significant improvement underscores the
superior capability of SciBERT in handling scientific texts. Another benchmark,
the model by Zhong et al. (2020) using SciBERT, achieved F1 scores of 66.6
for entity recognition and 50.1 for relation extraction. Our enhancements and
fine-tuning pushed these scores higher, demonstrating our model’s optimized
performance.

The reduction in errors, particularly false negatives, is a critical improvement.
By better capturing the nuances of scientific terminology and relationships,
our model was able to significantly decrease the number of missed entities
and relations, leading to higher recall rates. The precision of the model also
improved, indicating fewer false positives and more accurate predictions, which
is crucial in applications where precision is paramount.
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Previous models struggled with the specific jargon and complex relation-
ships found in scientific literature. Our SciBERT-based approach showed a
marked improvement in adapting to and processing this specialized language,
validating the importance of domain-specific pre-training. The ability to handle
sparse data effectively, which is often a challenge in specialized domains, was
another area where our model outperformed previous methods.

In summary, the SciERC dataset results highlight the substantial advance-
ments made possible through the use of SciBERT. By leveraging pre-training on
scientific texts, our model achieved notable improvements in both entity recog-
nition and relation extraction, setting a new benchmark for performance in this
challenging domain. The comparison with previous models underscores the ef-
fectiveness of our approach and the critical role of domain-specific pre-training
in achieving high accuracy and robust performance.

NYT Dataset

Diversity and Complexity of the NYT Dataset: The New York Times (NYT)
dataset is one of the most extensive and diverse collections used for Named En-
tity Recognition (NER) and Relation Extraction (RE) tasks. This dataset includes
a vast array of articles covering numerous topics such as politics, economics,
sports, science, and culture. The wide range of topics results in a rich diversity
of entity types, including but not limited to persons, organizations, locations,
events, and products. Each topic brings its unique context and terminology,
presenting a significant challenge for models tasked with accurately identifying
and extracting entities and their relationships.

1. Wide Range of Entity Types: The dataset contains entities that vary sig-
nificantly in terms of frequency and context. For instance, while common
entities like well-known persons or major cities appear frequently, other
entities like specific events or lesser-known organizations might appear
only sporadically.

2. Complex Contextual Variations: Articles in the NYT dataset are written
in diverse styles and formats, including news reports, opinion pieces, and
feature stories. Each format uses language differently, adding another layer
of complexity to the task of entity recognition and relation extraction.

3. Ambiguous and Context-Dependent Entities: The same word or phrase
can represent different entities depending on the context. For example,
"Washington" could refer to a person, a city, or even a sports team. Disam-
biguating these entities requires a model to understand and leverage the
surrounding context effectively.
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Why More Complex Models Performed Better:

The performance gap between simpler models like ours and more complex
state-of-the-art models can be attributed to several architectural and training-
related factors:

1. dvanced Architectures:

• Transformer Models: More complex models often use advanced
transformer architectures like BERT, RoBERTa, or BART, which are
designed to handle large-scale language understanding tasks. These
models leverage multiple attention heads and layers to capture long-
range dependencies and nuanced contextual information more effec-
tively than simpler models.

• Pre-trained Language Models: These models benefit from extensive
pre-training on massive and diverse corpora, enabling them to gener-
alize well across different domains. For instance, BART’s architecture,
optimized for both generation and comprehension, allows it to excel
in extracting detailed contextual embeddings that are crucial for ac-
curate relation extraction.

2. Training Techniques:

• Fine-Tuning on Diverse Data: Complex models often undergo rigor-
ous fine-tuning on domain-specific data, enhancing their ability to
handle the specific characteristics of each dataset. This targeted fine-
tuning improves their performance on tasks involving diverse topics
and entity types.

• Data Augmentation and Regularization: Techniques like data aug-
mentation and dropout regularization help complex models avoid
overfitting and improve generalization. By artificially expanding the
training set and introducing noise during training, these methods
ensure that the models remain robust across different contexts.

3. Handling Ambiguity and Context-Dependence:

• Contextual Embeddings: Advanced models use contextual embed-
dings to dynamically adjust the representation of words based on
their surrounding context. This ability is crucial for disambiguating
entities and accurately identifying relationships in varied and com-
plex articles.

• Attention Mechanisms: The attention mechanisms in transformer
models allow them to focus on relevant parts of the text, improv-
ing their ability to capture subtle relational nuances and context-
dependent meanings.
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Robustness and Generalizability of Our Model: Despite the simpler archi-
tecture, our model demonstrated a notable degree of robustness and generaliz-
ability on the NYT dataset:

1. Competitive Results: Our model achieved an F1 score of 91.31 for entity
recognition and 86.29 for relation extraction, which, while not the highest,
are still competitive. These results highlight the model’s ability to gener-
alize across different topics and contexts, performing reliably across the
diverse articles in the dataset.

2. Simplicity and Efficiency: The simplicity of our model, requiring mini-
mal computational resources, makes it a practical choice for real-world
applications where powerful hardware may not be available. This effi-
ciency did not come at the cost of significant performance degradation,
demonstrating that simpler models can still offer robust solutions.

3. High Precision: Our model maintained a high precision score, indicating
its effectiveness in accurately identifying entities and relationships without
producing many false positives. This attribute is particularly valuable in
applications where the cost of errors is high.

In summary, while more complex models outperform in handling the diverse
and complex nature of the NYT dataset due to their advanced architectures and
sophisticated training techniques, our simpler model still showcased robustness
and generalizability. Its competitive performance, combined with efficiency
and practical applicability, underscores the potential of simpler architectures in
delivering reliable results, especially in resource-constrained environments.

TACRED Dataset

The TACRED (TAC Relation Extraction Dataset) is one of the largest and most
comprehensive datasets for relation extraction tasks, known for its formal and
highly structured content. The dataset includes over 106,000 sentences drawn
from newswire and web text, annotated with 42 relation types between named
entities. Entities are categorized into 22 types, including various person and
organization subtypes. The sentences in TACRED are typically well-formed,
grammatically correct, and contain clearly defined relationships, which makes
it an excellent benchmark for evaluating the effectiveness of relation extraction
models.

1. High-Quality Annotations: The dataset provides high-quality, manually
annotated relationships, ensuring reliable ground truth data for training
and evaluation.
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2. Diverse Entity Types and Relations: With 22 entity types and 42 relation
types, TACRED covers a wide range of relational patterns and contexts,
providing a comprehensive test bed for model evaluation.

3. Consistent Sentence Structure: The formal nature of the sentences, drawn
from professional sources, allows models to leverage grammatical and
syntactical cues more effectively than in less structured datasets.

Our model’s performance on the TACRED dataset was competitive, achiev-
ing F1 scores of 82.8 for entity recognition and 85.7 for relation extraction. When
compared to other state-of-the-art models, several trade-offs and observations
emerge:

1. Alignment with State-of-the-Art:

• Our model’s F1 score of 85.7 for relation extraction is commend-
able, particularly in light of the high-performing models like those
by Efeoglu et al. (2024), which achieved an F1 score of 86.6. While
our model did not surpass the top-performing models, it demon-
strated robust performance that is closely aligned with the leading
benchmarks.

• The performance gap, though present, is relatively narrow, highlight-
ing that our approach remains competitive despite being simpler and
less resource-intensive than the latest large language models (LLMs).

2. Trade-offs Involved:

• Computational Efficiency: One of the key trade-offs with our model
is its efficiency. Unlike more complex models that require extensive
computational resources and training time, our model was trained
on everyday hardware with minimal resources. This makes our
approach more accessible and practical for real-world applications
where resource constraints are a consideration.

• Simplicity vs. Performance: The slight performance trade-off, seen in
the marginally lower F1 scores, is balanced by the model’s simplicity
and ease of deployment. For many applications, this trade-off is ac-
ceptable, especially when the slight dip in accuracy does not critically
impact the overall utility of the system.

The formal and structured nature of the TACRED dataset provided a rigor-
ous testing ground for our model. Our model demonstrated strong, competitive
performance, aligning closely with state-of-the-art results while maintaining a
balance between efficiency and accuracy. Despite some weaknesses, particu-
larly in precision and handling complex relationships, the strengths observed
highlight the model’s robustness and adaptability, making it a viable option for
a range of information extraction tasks.
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Significance of Findings

The findings from our study have several important implications for the field
of natural language processing (NLP). Our results demonstrate the efficacy of
BERT-based models, particularly SciBERT, in handling complex tasks such as
Named Entity Recognition (NER) and Relation Extraction (RE) across diverse
datasets. This underscores the transformative impact of pre-trained language
models on NLP tasks, marking a significant advancement over traditional ap-
proaches. The ability of these models to capture deep contextual information
and handle nuanced language elements positions them as crucial tools for future
NLP research and applications.

Pre-trained models like BERT and SciBERT have proven to be game-changers
in NLP due to their ability to achieve high performance with relatively lower
computational overhead compared to traditional methods and even some more
complex contemporary models. The key advantages include:

1. Robust Contextual Understanding:

• BERT’s bidirectional training allows it to consider both preceding and
following contexts in a text, leading to a more nuanced understanding
of language. This is particularly beneficial for tasks like NER and RE,
where context is crucial for accurate identification and extraction.

• SciBERT, pre-trained on scientific literature, further enhances this ca-
pability by incorporating domain-specific knowledge, making it par-
ticularly effective for technical and specialized texts.

2. Efficient Transfer Learning: The transfer learning approach utilized by
BERT and SciBERT allows these models to be fine-tuned on specific tasks
with relatively small datasets, reducing the need for extensive task-specific
data collection and annotation. This efficiency in transfer learning is a
significant step forward, enabling rapid development and deployment of
NLP solutions across various domains.

3. Lower Computational Overhead: Despite their sophisticated architecture,
BERT-based models can be fine-tuned with modest computational re-
sources. This contrasts with the extensive resources typically required
for training complex neural networks from scratch, making these models
more accessible for a wide range of applications.

The practical applications of our model are extensive and varied, under-
scoring its efficiency and simplicity. Its ability to accurately recognize entities
and extract relationships from text makes it valuable for information extraction
tasks in healthcare, finance, legal, and academic research. For instance, it can
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extract patient information from clinical notes to aid in patient management
and research. The model’s efficiency and lower computational requirements
make it suitable for resource-constrained environments, democratizing access
to advanced NLP capabilities for small businesses, non-profits, and research
institutions. Its simple architecture ensures easy implementation and main-
tenance, reducing barriers to entry for organizations adopting NLP solutions.
The model’s adaptability to different domains, as demonstrated across the Sci-
ERC, NYT, and TACRED datasets, highlights its versatility for domain-specific
customization in academic research tools, search engines, and content analy-
sis platforms. Additionally, by providing accurate information extraction, the
model enhances decision-making processes in various fields, from organizing
legal case information to analyzing market trends in business intelligence.

The significance of our findings lies in the validation of pre-trained models
like BERT and SciBERT as powerful tools for NER and RE tasks. Their abil-
ity to deliver high performance with lower computational demands opens up
numerous practical applications, particularly in settings where efficiency and
simplicity are paramount. The broader implications for NLP are profound, as
these models set new benchmarks for what can be achieved with relatively mod-
est resources, paving the way for more widespread adoption and innovation in
the field.

6.3 Future works

In this section, we outline several potential directions for extending and
enhancing the research presented in this thesis. The primary areas for future
work include improving computational resources, data augmentation, model
architecture enhancements, and optimization techniques.

Hardware Upgrades

Utilizing more powerful computational resources, such as advanced GPUs
or TPUs, can significantly enhance the efficiency and effectiveness of training
deep learning models. The current study relied on available hardware, which
may have limited the complexity and scale of the model training. Upgrading
to GPUs with higher memory and faster processing capabilities, or leveraging
TPUs designed specifically for training large-scale neural networks, can provide
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several benefits:

• Speed: Higher computational power can drastically reduce training times,
allowing for more extensive experimentation and hyperparameter tuning.

– Extensive Experimentation: Faster training times enable researchers
to conduct more experiments within the same timeframe, allowing
for the exploration of a wider range of model architectures, hyper-
parameter settings, and training strategies. This iterative process is
crucial for refining models and achieving optimal performance.

– Rapid Prototyping: Quick iterations can lead to faster prototyping
and validation of new ideas, facilitating the identification of the most
promising approaches without the long waiting periods associated
with slower hardware.

• Batch Size: Larger batch sizes can be used without running into memory
limitations, which can improve the stability of the training process and
potentially lead to better model convergence.

– Improved Stability: Larger batch sizes can reduce the variance in
gradient estimates, leading to a smoother and more stable training
process. This stability can help the model converge more reliably and
efficiently.

– Enhanced Convergence: With the ability to process more data in each
training step, larger batch sizes can lead to faster convergence. This
is particularly beneficial when working with large datasets, as it can
shorten the overall training duration while achieving comparable or
better model performance.

Extended Training

Increasing the number of training epochs can further refine the model’s learn-
ing process, particularly for complex and large-scale datasets such as SciERC,
NYT, and TACRED. Extended training can help the model to:

• Better Convergence: Longer training allows the model to achieve better
convergence, reducing the risk of underfitting. This is especially important
for capturing nuanced relationships and rare entities within the data.

• Pattern Recognition: Over more epochs, the model can learn more subtle
patterns and dependencies in the data, which can improve its performance
on both Named Entity Recognition (NER) and Relation Extraction (RE)
tasks.
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• Generalization: Extended training with appropriate regularization can
help improve the model’s generalization capabilities, making it more ro-
bust to unseen data.

In implementing these enhancements, it is crucial to monitor the training
process to avoid overfitting, where the model becomes too specialized to the
training data and performs poorly on new data. Techniques such as early stop-
ping, learning rate scheduling, and regularization methods can be employed to
mitigate this risk.

By leveraging more powerful hardware and extending the training duration,
future research can push the boundaries of current model performance, leading
to more accurate and reliable NER and RE systems. These improvements are
expected to significantly impact the ability of such models to handle domain-
specific terminologies and complex relational structures, thus enhancing their
applicability across various contexts and datasets.

This thesis has presented an in-depth exploration of the application of Bidi-
rectional Encoder Representations from Transformers (BERT) for Named En-
tity Recognition (NER) and Relation Extraction (RE). The primary objectives
were to evaluate the performance of BERT-based models on domain-specific
datasets, compare them with existing state-of-the-art techniques, and develop a
framework for efficient training and application of these models across various
contexts.

Throughout this research, we have demonstrated that BERT-based models
are capable of performing on par with, and in some cases surpassing, current
state-of-the-art models in terms of efficiency and computational overhead. Our
experiments across diverse datasets, including SciERC, NYT, and TACRED, have
underscored the versatility and robustness of BERT in handling complex and
domain-specific language structures.

Several key findings have emerged from this study:

• Model Performance: BERT-based models show strong performance in both
NER and RE tasks, with significant potential for further improvement
through hardware upgrades, extended training, and data augmentation.

• Efficiency: The efficiency of BERT-based models in terms of computational
resources makes them an attractive option for practical applications where
minimizing resource use is crucial.

• Future Enhancements: Potential improvements through advanced hard-
ware, extensive training, data augmentation, and the inclusion of more
diverse datasets highlight the avenues for future research. The research
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also identified several challenges and limitations, such as the need for more
powerful computational resources and the importance of balancing train-
ing time with model performance. Addressing these challenges will be
critical for advancing the capabilities of BERT-based models and ensuring
their practical applicability.

In closing, this thesis contributes to the ongoing development of natural lan-
guage processing techniques by providing a comprehensive evaluation of BERT
for NER and RE tasks. The findings offer valuable insights for both academic
research and practical applications, highlighting the potential for BERT-based
models to transform the way we extract and utilize information from textual
data.

Future research can build on this work by exploring the proposed enhance-
ments and addressing the identified challenges. By continuing to refine and
expand the capabilities of BERT-based models, we can move closer to achieving
more accurate, efficient, and versatile information extraction systems. This will
have a profound impact on a wide range of applications, from knowledge base
construction and information retrieval to automated question-answering and
beyond.
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Appendix

.1 Example codes developed for the project

1 def download_file(file_name , url):

2 file_name = os.getcwd() + file_name

3 os.makedirs(os.path.dirname(file_name), exist_ok=True)

4 r = requests.get(url, stream=True)

5

6 r.raise_for_status()

7

8 with open(file_name , ’wb’) as f:

9 pbar = tqdm(unit="B", total=int(r.headers[’Content-Length

’]), position=0, leave=True, desc=’Downloading’)

10 for chunk in r.iter_content(chunk_size=1024):

11 if chunk: # filter out keep-alive new chunks

12 pbar.update(len(chunk))

13 f.write(chunk)

14

15 def extract_tar_file(file_name , target_directory):

16 with tarfile.open(name=os.getcwd() + file_name) as tar:

17 for member in tqdm(iterable=tar.getmembers(), total=len(

tar.getmembers()), desc=’Extracting’):

18 tar.extract(member=member, path=os.getcwd() +

target_directory)

19

20 def unzip_file(file_name , target_directory):

21 with zipfile.ZipFile(os.getcwd() + file_name) as zf:

22 for member in tqdm(zf.infolist(), desc=’Extracting’):

23 zf.extract(member, os.getcwd() + target_directory)

Code 1: Helper functions used to download and extract files
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1 for _ in tqdm(range(num_epoch), position=0, leave=True):

2 if train_shuffle:

3 random.shuffle(train_batches)

4 for i in tqdm(range(len(train_batches)), position=0, leave=

True):

5 output_dict = model.run_batch(train_batches[i], training=

True)

6 loss = output_dict[’ner_loss’]

7 loss.backward()

8

9 tr_loss += loss.item()

10 tr_examples += len(train_batches[i])

11 global_step += 1

12

13 optimizer.step()

14 scheduler.step()

15 optimizer.zero_grad()

16

17 if global_step % print_loss_step == 0:

18 logger.info(’Epoch=%d, iter=%d, loss=%.5f’%(_, i,

tr_loss / tr_examples))

19 tr_loss = 0

20 tr_examples = 0

21

22 if global_step % eval_step == 0:

23 f1 = evaluate(model, dev_batches , dev_ner)

24 if f1 > best_result:

25 best_result = f1

26 logger.info(’!!! Best valid (epoch=%d): %.2f’ % (

_, f1*100))

27 save_model(model, output_dir)

Code 2: Training the entity model from scratch

1 train_features = convert_examples_to_features(

2 train_examples , label2id, max_seq_length , tokenizer ,

special_tokens , unused_tokens=not(add_new_tokens))

3 if train_mode == ’sorted’ or train_mode == ’random_sorted’:

4 train_features = sorted(train_features , key=lambda f: np.sum(f.

input_mask))

5 else:

6 random.shuffle(train_features)

7 all_input_ids = torch.tensor([f.input_ids for f in train_features],

dtype=torch.long)
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8 all_input_mask = torch.tensor([f.input_mask for f in train_features],

dtype=torch.long)

9 all_segment_ids = torch.tensor([f.segment_ids for f in train_features

], dtype=torch.long)

10 all_label_ids = torch.tensor([f.label_id for f in train_features],

dtype=torch.long)

11 all_sub_idx = torch.tensor([f.sub_idx for f in train_features], dtype

=torch.long)

12 all_obj_idx = torch.tensor([f.obj_idx for f in train_features], dtype

=torch.long)

13 train_data = TensorDataset(all_input_ids , all_input_mask ,

all_segment_ids , all_label_ids , all_sub_idx , all_obj_idx)

14 train_dataloader = DataLoader(train_data , batch_size=train_batch_size

)

15 train_batches = [batch for batch in train_dataloader]

16

17 num_train_optimization_steps = len(train_dataloader) *

num_train_epochs

18

19 logger.info("***** Training *****")

20 logger.info(" Num examples = %d", len(train_examples))

21 logger.info(" Batch size = %d", train_batch_size)

22 logger.info(" Num steps = %d", num_train_optimization_steps)

23

24 best_result = None

25 eval_step = max(1, len(train_batches) // eval_per_epoch)

26

27 lr = learning_rate

28 model = RelationModel.from_pretrained(

29 ’allenai/scibert_scivocab_uncased’, cache_dir=str(

PYTORCH_PRETRAINED_BERT_CACHE), num_rel_labels=num_labels)

30 if hasattr(model, ’bert’):

31 model.bert.resize_token_embeddings(len(tokenizer))

32 elif hasattr(model, ’albert’):

33 model.albert.resize_token_embeddings(len(tokenizer))

34 else:

35 raise TypeError("Unknown model class")

36

37 model.to(device)

38 if n_gpu > 1:

39 model = torch.nn.DataParallel(model)

40

41 param_optimizer = list(model.named_parameters())
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42 no_decay = [’bias’, ’LayerNorm.bias’, ’LayerNorm.weight’]

43 optimizer_grouped_parameters = [

44 {’params’: [p for n, p in param_optimizer

45 if not any(nd in n for nd in no_decay)], ’

weight_decay’: 0.01},

46 {’params’: [p for n, p in param_optimizer

47 if any(nd in n for nd in no_decay)], ’weight_decay’:

0.0}

48 ]

49 optimizer = AdamW(optimizer_grouped_parameters , lr=lr, correct_bias=

not(bertadam))

50 scheduler = get_linear_schedule_with_warmup(optimizer , int(

num_train_optimization_steps * warmup_proportion),

num_train_optimization_steps)

51

52 start_time = time.time()

53 global_step = 0

54 tr_loss = 0

55 nb_tr_examples = 0

56 nb_tr_steps = 0

57 for epoch in range(int(num_train_epochs)):

58 model.train()

59 logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))

60 if train_mode == ’random’ or train_mode == ’random_sorted’:

61 random.shuffle(train_batches)

62 for step, batch in enumerate(train_batches):

63 batch = tuple(t.to(device) for t in batch)

64 input_ids , input_mask , segment_ids , label_ids , sub_idx,

obj_idx = batch

65 loss = model(input_ids , segment_ids , input_mask , label_ids ,

sub_idx, obj_idx)

66 if n_gpu > 1:

67 loss = loss.mean()

68

69 loss.backward()

70

71 tr_loss += loss.item()

72 nb_tr_examples += input_ids.size(0)

73 nb_tr_steps += 1

74

75 optimizer.step()

76 scheduler.step()

77 optimizer.zero_grad()
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78 global_step += 1

79

80 if (step + 1) % eval_step == 0:

81 logger.info(’Epoch: {}, Step: {} / {}, used_time = {:.2f}

s, loss = {:.6f}’.format(

82 epoch, step + 1, len(train_batches),

83 time.time() - start_time , tr_loss /

nb_tr_steps))

84 save_model = False

85 if do_eval:

86 preds, result, logits = evaluate(model, device,

eval_dataloader , eval_label_ids , num_labels , e2e_ngold=eval_nrel)

87 model.train()

88 result[’global_step’] = global_step

89 result[’epoch’] = epoch

90 result[’learning_rate’] = lr

91 result[’batch_size’] = train_batch_size

92

93 if (best_result is None) or (result[eval_metric] >

best_result[eval_metric]):

94 best_result = result

95 logger.info("!!! Best dev %s (lr=%s, epoch=%d):

%.2f" %

96 (eval_metric , str(lr), epoch, result[

eval_metric] * 100.0))

97 save_trained_model(output_dir , model, tokenizer)

Code 3: Training the relation model from scratch

1 def compute_f1(preds, labels, e2e_ngold):

2 n_gold = n_pred = n_correct = 0

3 for pred, label in zip(preds, labels):

4 if pred != 0:

5 n_pred += 1

6 if label != 0:

7 n_gold += 1

8 if (pred != 0) and (label != 0) and (pred == label):

9 n_correct += 1

10 if n_correct == 0:

11 return {’precision’: 0.0, ’recall’: 0.0, ’f1’: 0.0}

12 else:

13 prec = n_correct * 1.0 / n_pred

14 recall = n_correct * 1.0 / n_gold

15 if prec + recall > 0:
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16 f1 = 2.0 * prec * recall / (prec + recall)

17 else:

18 f1 = 0.0

19

20 if e2e_ngold is not None:

21 e2e_recall = n_correct * 1.0 / e2e_ngold

22 e2e_f1 = 2.0 * prec * e2e_recall / (prec + e2e_recall)

23 else:

24 e2e_recall = e2e_f1 = 0.0

25 return {’precision’: prec, ’recall’: e2e_recall , ’f1’: e2e_f1

, ’task_recall’: recall, ’task_f1’: f1,

26 ’n_correct’: n_correct , ’n_pred’: n_pred, ’n_gold’: e2e_ngold

, ’task_ngold’: n_gold}

Code 4: Helper function to compute F1 scores
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