
Università degli Studi di Padova

Dipartimento di Ingegneria dell’ Informazione

Tesi Magistrale in Ingegneria Informatica

A distributed CMS for small enterprises aggregation

Supervisor Master Candidate
MauroMigliardi DavideMartini
Università di Padova

Anno Accademico 2018/2019

ii

8 Luglio 2019

Dedicato alla mia famiglia,
per il vostro inestimabile affetto e supporto.

iv

Abstract

As online platforms are increasingly part of everyday life, e-commerce and digital marketing
campaigns are commonpractices for big companies that aim to build a solid brand awareness
and engage new customers. Small and medium-sized enterprises are individually adopting
these strategies, especially by publishing their products and services on popular social net-
works. On the other hand, groups with a common line of business could also benefit from
the exposition as a single, organized structure. This scenario is relevant especially for com-
munities of micro firms that belong to rural contexts and produce geographically branded
goods. However, these small enterprises lack the resources and the expertise to implement
and maintain a traditional centralized system. Moreover, competition makes entrepreneurs
suspicious and less disposed to delegate content management to a potentially biased moder-
ator.

Thus, the goal of this work is to design and implement a distributed contentmanagement
system (CMS) for small enterprises aggregation and the online promotion of their products.

The proposed solution overcomes several issues combining two fundamental technolo-
gies. The first one regards Ethereum smart contracts and its blockchain to record interac-
tions and the state of the system in a verifiable and permanent way. The second one is the
so called InterPlanetary File System or IPFS, whose role is to allow the distribution of pub-
lished contents in a peer-to-peer fashion. Both are described in deep in order to provide a
comprehensive and detailed explanation of the proposed system.

v

vi

Sommario

Le piattaforme online sono sempre più presenti nella nostra vita quotidiana, così il com-
mercio in rete e le campagne di marketing digitale sono diventate pratiche comuni per le
grandi aziende che mirano a costruire marchi riconosciuti e ad attrarre nuovi potenziali cli-
enti. Analogamente, le piccole e medie imprese adottano le medesime strategie pubbliciz-
zando i prodotti e servizi offerti nei più popolari social network. D’altro canto, è possibile
affiancare ad una strategia di promozione individuale la presenza in piattaforme che coinvol-
gono aziende operanti nel medesimo settore. Questo scenario è particolarmente importante
se si considerano comunità di micro imprese artigiane che creano prodotti di alta qualità e
legati al territorio. Tuttavia, queste piccole realtà non possiedono le risorse nè le conoscenze
per organizzarsi e sostenere i costi di un sistema centralizzato. Inoltre, la competizione rende
gli imprenditori diffidenti nel collaborare e nel delegare la gestione dei propri contenuti ad
un manager potenzialmente parziale.

Da ciò nasce l’obiettivo di questo lavoro che consiste nel progettare ed implementare un
sistema distribuito di gestione dei contenuti (CMS) per l’aggregazione di piccole imprese e la
promozione online dei loro prodotti.

La soluzione proposta risolve e supera diversi problemi combinando principalmente due
tecnologie. La prima riguarda gli smart contracts di Ethereum e la relativa blockchain che
permette di registrare le interazioni e lo stato del sistema in modo verificabile e permanente.
La seconda è il cosiddetto InterPlanetary File Systemo IPFS, il cui ruolo è di permettere la dis-
tribuzione dei contenuti pubblicati attraverso un protocollo peer-to-peer. Entrambe queste
tecnologie sono descritte approfonditamente così da fornire una presentazione dettagliata il
sistema proposto.

vii

viii

Contents

Abstract v

List of figures xi

1 Introduction 1

2 CMS architecture design 5
2.1 The state of the art . 5

2.1.1 Principles of blockchain technology 6
2.1.2 Blockchain in complex systems 8

2.2 The designed architecture . 9
2.2.1 Technologic components . 10
2.2.2 Architecture overview . 12

3 Ethereum and Solidity 17
3.1 Ethereum fundamentals . 17

3.1.1 Ethereum state and accounts . 18
3.1.2 Transactions, Gas and Blocks . 19
3.1.3 Transition function and the EVM 21
3.1.4 Ethereum consensus protocol . 23

3.2 Solidity . 26
3.2.1 Contracts . 26
3.2.2 Variables . 27
3.2.3 Visibility, functions and modifiers 28

4 The InterPlanetary File System 31
4.1 IPFS background . 31

4.1.1 Distributed hash tables and Kademlia 31
4.1.2 BitTorrent . 33
4.1.3 Git’s directed acyclic graph . 35

4.2 IPFS design . 37
4.2.1 Peer identities . 38
4.2.2 Network and Routing . 39
4.2.3 BitSwap protocol . 41
4.2.4 Objects and Files . 44

ix

4.2.5 Naming . 45

5 CMS implementation 47
5.1 Requirements analysis . 48

5.1.1 Functional requirements . 48
5.1.2 Non-functional requirements 50

5.2 Project set up . 51
5.3 Smart contract implementation . 55

5.3.1 Data model . 55
5.3.2 EtherAd state variables . 58
5.3.3 The contract owner and access controls 59
5.3.4 The voting procedure and moderation policies 61

5.4 Front-end implementation . 71

6 Conclusions and future works 79

References 82

Acknowledgments 87

x

Listing of figures

2.1 Bitcoin blockchain model. 7
2.2 Designed architecture model. 13

3.1 Ethereum block model. 22

4.1 Git DAG example. 37

5.1 Project structure. 54
5.2 CMS home content. 74

xi

xii

1
Introduction

Small and medium-sized enterprises (SMEs) are considered the backbone of the European
economy and this fact is clearly stated in the annual report for the European Commission on
SMEs [1]. Indeed, in 2017, there are more than 24.48million SMEs which is the 99.8% of
all enterprises in the EU-28 accounted for non-financial business sector. They also employ
over 94, 76 million workers, which is the 66.4% of the total and they are responsible for
the 56.8% of the value added which corresponds to 4, 160.7 trillion Euros per year. The
SMEs category includes also the so calledmicro enterprises. They are characterized by a small
amount of employees, in general lower than 10 units, and a total balance sheet lower than 2
million Euros. These micro firms are extremely common in the EU-28, since they account
for the 93.1% of all companies and the 93.3% of all SMEs. In spite of their wide diffusion,
they employ only 41, 98million workers, which is 29.4% of the total for the non-financial
business sector. These numbers are unexpectedly low in comparison to those provided by
small and medium-sized enterprises which are accounted for 20.0% and 17.0% respectively
of total employment.

While sectors such IT, software development, green technologies and fin-tech are well dis-
posed to cooperation and internationalization, consolidated SMEs in the EU-28 are mainly
concentrated in industries which export relatively little. Indeed, a big number of enterprises
operate in wholesale and retail trade 26.3%, manufacturing 8.8%, business services 19.2%,
constructions 14.2%, accommodation and food services 8.0%. This explains why, in 2017,
slightly more than 55% of SMEs were active in industries which export less than 5% of their

1

turnover while only 7.3% of SMEs accounts foreign sales for 10% or more of the total.
This trend is particularly true for micro enterprises in the retail trade and manufacturing

industry. An interesting case of study is Italy [2], where SMEs cover the 99.9% of all en-
terprises and 28.6% are micro firms. These ones provide 45.9% of overall employment and
they aremainly focused inmanufacturing sector (31% of the total). Micro enterprises in this
industry provide 31.1% of all SMEs value added which is higher proportion than the EU-28
average. However, their target is mainly domestic clients and only 3.8% of themwere selling
their products or services beyond the EU in 2017. Given the fact that many micro firms are
located in rural contexts or produce geographically branded goods, their business can benefit
from e-commerce and coordinated initiatives of digitalmarketingwhich represent untapped
opportunities for Italian and European SMEs.

These considerations prove the need of aggregation and cooperation in online presence
for communities of micro, small and medium-sized enterprises that share a common line of
business. However, SMEs (especially micro firms) may lack the economical resources and
the expertise to build and maintain a traditional centralized web-site where group members
could promote or sell their goods. Moreover, entrepreneurs want to decide independently
their way of presenting, advertising and selling the products. This is an understandable be-
haviour, since competition mines their trust and sense of commitment to each other as a
community. As consequence, they are less disposed to delegate their promotion policies to a
potentially biased moderator of the central web-site. These barriers make SMEs prone to in-
dividual digital marketing initiatives, which are often limited to the publication of contents
in popular social networks.

However, as described before, in terms of brand awareness and both domestic and inter-
national customers engagement, the online exposition as a single and organized structure
is an additional business opportunity that SMEs should exploit. Thus, in this document I
propose a distributed content management system (CMS) that allows small and medium-
sized enterprises to advertise their products overcoming the previously discussed issues. The
core of my work is not only a design study, but also a precise implementation that highlights
strengths and weaknesses of the adopted strategy. As it will be discussed in the following
chapters, my solution makes each member of the community responsible for the content
presented, which is authenticated and can be modified only by the rightful owner. In addi-
tion, in order to reduce entrepreneurs’ suspects, the management policies of both members
and contents should be unbiased. In my solution, this is achieved through a majority vote
that is triggered by a participant that wants to performmoderation operations like expelling

2

amember or removing a content from the platform. Also the registration of a new enterprise
in the community has to be approved with a vote from the verified users.

After the definition of the problem and provided a justification for its importance, my
workflow followed the organization of this document:

• Chapter two gives an overview on the state of the art and describes eventual solutions
to this problem in the literature. Then, I describe my proposal that heavily relies on
two main technologies: Ethereum [3] and the InterPlanetary File System [4].

• Chapter three describes Ethereum in deep. Topics like blockchain state, accounts,
smart contracts, transactions, blocks, consensus protocol and the Solidity program-
ming language are explained.

• Chapter four regards the InterPlanetary File System, which is commonly referred as
IPFS. In particular, it is presented as a content-addressable, peer-to-peer protocol for
storing and sharing data that combines consolidated technologies like BitTorrent and
Git.

• Chapter five dives into the implementation of the proposed architecture. Particular
attention is given to the pros, cons and trade-offs that I faced during the software de-
velopment.

• Chapter six concludes the document describing the results achieved and future works.

3

4

2
CMS architecture design

The first step of my work was to search eventual strategies in the literature that deal with
or can be applied to the problem of online aggregation of SMEs. Thus, the first section of
this chapter reports my study of the state of the art and provides some insights in interesting
solutions adopted. Once my research was completed and I had a clear understanding of the
current technology, I designed my architecture. The resulting distributed CMS is described
in the second section of this chapter. Here, the goal is to provide an overview of the system
in order to show novelties and differences in comparison to other solutions proposed in the
literature. As explained in the introduction of this document, the system is explained in its
details in chapter five.

2.1 The state of the art

In the literature, there is no research whose goal is explicitly to design a distributed content
management system for SMEs aggregation. However, my scenario can be split in two sub-
problem that have been studied in the literature. The first one is to establish trust on the
state of the common platform where the community of SMEs publish their products. The
second one regards themoderation of contents and groupmembers, but its implementation
heavily depends on the solution adopted to address the previous issue. As explained in the
introduction, these are crucial requirements in my scenario where each entrepreneur in the
community shows a skeptical behaviour towards other members and a potentially biased

5

third party moderator.
In the literature, the first problem refers to the topic of consensus in distributed systems,

which has been studied since 1970s alongside the rise of distributed databases and trans-
actions. Once Bitcoin [5] was born in 2008, the blockchain technology gained interest in
the scientific community. It has been employed in a wide range of distributed architectures
where a trusted record or a consensusmechanism has to be implemented. Its application can
be found also in themost recent and advanced distributedmarketplaces and content delivery
networks. These topics are particularly interesting due to their similarities to the problem of
online SMEs aggregation.

Thus, in order to provide a brief description of the papers and systems that inspired the
design of my architecture, it is important to present the principles of blockchain technology.
Its study was an important aspect of my work also because the proposed CMS heavily relies
on it.

2.1.1 Principles of blockchain technology

Currently, there is no standard regarding blockchain technology and each implementation
has its peculiar features. However, they all combine peer-to-peer networking, asymmetric
cryptography, cryptographic hashing and a consensus protocol. Thus, general concepts are
presented in order to understand blockchain’s role in more complex scenarios. A detailed
description will be dedicated only to the Ethereum implementation in chapter three, since it
is relevant for the designed CMS.

A permissionless blockchain can be defined as a public, decentralized, replicated and po-
tentially immutable ledger. It records all transactions denominated in the system’s cryptocur-
rency and its correctness can be verified by anyone. A blockchain is typically implemented
as a linked list of blocks which are composed of an header and a set of transactions. In order
to realize the chain, each header contains a pointer which is the cryptographic hash of the
previous block and other information that depend on the implementation. This pattern is
important since it allows the verification of the chain integrity. Indeed, if someone modifies
the content of a block, its new hash is different from the one in its successor and so on. On
the other hand, transactions specify some transformation on the state of the blockchain and
they are usually organized in structures like the Merkle hash tree [6] in order to allow their
verification in an efficient and secure way. In order to provide a graphical representation, a
simplified image of the Bitcoin blockchain is shown in Fig. 2.1. When a new transaction is
performed, it is broadcast in the network and it remains pending until a node adds it to a new

6

Figure 2.1: Bitcoinblockchainmodel.

block. The insertion of a block has to be agreed by all the peers of the network that have a
copy of the blockchain. This is performed through a consensus protocol and there are many
of them, as it is well explained in [7].

For instance, Bitcoin uses the famous proof-of-work (PoW) which requires a node (also
called miner) to collect pending transactions and solve a mathematical puzzle that is compu-
tationally expensive. It consists in finding a nonce to insert in the block header, so that the
resulting block hash presents d consecutive zero bits. Using, for instance SHA-2-256, the re-
quired work is exponential in d but its correctness can be verified by executing a single hash.
In a sense, d represents the difficulty of the puzzle and it is calibrated so that a new block is
found, on average, once every ten minutes. Once a miner finds a proof-of-work, it broad-
casts the new block to all nodes in the network. Then, they check its validity and express
their acceptance of it by mining the next one in the chain which contains the hash of the
accepted block as the previous hash. Nodes earn an amount of coins for each block mined
as an incentive to be honest and as a reward for the CPU time spent in resolving the puzzle.
In order to receive the prize, a miner inserts as first transaction a special one that starts a new
coin owned by the creator of the block. This also provides a way to initially distribute coins
into circulation, since there is no central authority to issue them.

A crucial aspect in blockchain is represented by forks. They may occur if two miners find
two different blocks built on the same previous one. Each consensus protocol has to resolve
this situation and, for instance, Bitcoin implements the acceptance of the longest chain as
the correct one. In this case, an attacker that wants to modify a transaction in a block must

7

have the majority of the computing power on the network in order to create a fork of the
blockchain that is longer than the official one.

Finally, it is important to mention that Bitcoin transactions can include reference to de-
terministic scripts that operate on the transaction inputs and produce some outputs. This
shows the intention tomake the blockchain as the basis of general purpose platforms andnot
only related to payment systems. This happened especially with Ethereum, where scripts are
replaced with smart contracts, which can be considered as self-executing code that enforce a
digital contract.

2.1.2 Blockchain in complex systems

As stated before, the blockchain is the standard technology applied in modern systems and
literature proposals to solve the problem of trust on the status of a distributed system. How-
ever, it is usually one of many components employed in complex scenarios. Now, I briefly
describe some works that I studied in order to design my distributed content management
system for SMEs aggregation.

The first research that inspired my system is described in [8]. This paper presents a so-
lution for moderating a generic peer-to-peer content delivery network. In particular, it pro-
vides a proof-of-concept implementation that extends Twister [9] architecture. Twister is a
microblogging platform that relies on Bitcoin to authenticate users, which are stored on the
blockchain as usernames and public key pairs. On the other hand, contents posted by au-
thenticated members are distributed through a BitTorrent network. The paper proposes an
authoritative control over the system using cryptographic accumulators that contain the net-
work administrators. The accumulator containing the founders is stored on the blockchain
since its genesis block. In thisway, once a user receives a command, it is able to decidewhether
to accept or to ignore it by inspecting the blockchain. For instance, if a delete request comes
from the author (verified through its public key) or it is sent by a member registered in the
accumulator, the operation is allowed and thus performed by the user. The paper also de-
scribes a way to add new administrators introducing a new type of transaction that can be
performed by group members. In particular, this procedure is implemented through the
scripting system of Bitcoin.

More recent studies face these problems in different scenarios by applying the so called dis-
tributed web technologies. An interesting research that caught my attention is [10]. In this
paper, the authors propose a decentralizedmarketplace, which is obviously a similar topic to
the case in study. The goal of their work is to overcome the limitations that a centralized plat-

8

formmay impose on sellers. In particular, they focus on the fees paid both when listing and
selling products and the lack of privacy of users’ data. This research describes an architecture
which is based on Ethereum, MongoDB and the InterPlanetary File System. In particular,
the role of the Ethereum blockchain is to store authentication information, while IPFS is
responsible to keep and distribute item data in a decentralized fashion. In this system, Mon-
goDB is used to optimize the blockchain query process but this is a potential central point of
failure. This issue is also pointed out by the authors that suggest to replace MongoDB with
a decentralized service like BigChainDB [11].

This combination of Ethereum and IPFS is also presented in [12]. Here the goal is to
build a decentralized social network addressing the problems of security and privacy that
emerged from the recent leakage scandal from Facebook to Cambridge Analytica [13]. In
the proposed architecture, the Ethereum blockchain and IPFS hold the same role as in the
previous system. The business logic of the platform (e.g. the follow-unfollow mechanism)
is addressed via smart contracts while IPFS performs the actual storage and delivery of the
posts.

The study of these systems proposed in the literature leadme to the following conclusions.
Considering a distributed scenario where untrusted parties publish content on a common
platform, the suggested architecture relies on two components:

• A blockchain to provide a trusted system state and a secure business logic that allows
user authentication.

• A distributed system to deal with the actual content distribution and availability.

Thus, this structure is consolidated, even though the involved technologies change with
the years. On the other hand, while the problem to authenticate the owner of a content has
been addressed, none designed a system that allows a truly unbiased moderation. Indeed,
also in [8] the control is performed by the group of administrators in an authoritative way.
Therefore, my architecture is similar to the proposed ones, but the novelty is the presence of
a trusted and democratic moderation mechanism. Its actual implementation is described in
detail in chapter five, while the next section provides an overview of the system.

2.2 The designed architecture

In order to provide an organized presentation, this section is divided in two parts. The first
one describes the process that I followed to choose the technologies that best fit in my ap-

9

plication. The second one provides an overview of the system and how these components
interact.

2.2.1 Technologic components

Considering my conclusions on the analysis of the state of the art, I started my design by se-
lecting the two elements that best suit the problemneeds. At first, the blockchain technology
has to satisfy these requirements:

• It must be public and permissionless, since SMEs may not have the expertise to run
a full blockchain node and commit new blocks. Moreover, the group is dynamic be-
cause SMEs can freely join and leave the application.

• It must be programmable in a flexible and easy-to-use way. This is a crucial aspect due
to the complexity of the application’s business logic.

• It must be able to sustain the potential growth of the community. Scalability is not
a major issue since the platform aims to aggregate SMEs that share a line of business
and a common geographic location. However, transaction speed is to keep in consid-
eration in order to provide a responsive user experience.

• It must provide side libraries that allow interoperability, especially in order to access
the blockchain from the browser. This is important because the presence of a client
software to be installed is a big downside that limits the popularity of distributed appli-
cations. This clearly explains the requirement since the platform is meant to advertise
SMEs’ products and engage both domestic and international clients.

• The technology is still considered to be in its infancy, so the presence of documenta-
tion and a community of developers is appreciated.

Currently there are many blockchain platforms, but I chose Ethereum since it respects all
the crucial requirements. In particular, it provides a virtual machine that runs smart con-
tracts written in Solidity. Moreover, the block time in Ethereum is more or less fifteen sec-
onds, which is considerably lower than the ten minutes of Bitcoin. However, the most im-
portant fact is that in order to talk to a node from inside a JavaScript program, the Ethereum
Foundation provides a library called Web3.js [14] that exposes an interface for JSON-RPC
methods.

The second choice I had to make regards the distributed system for content storage and
delivery. Here the requirements are fewer but important as well:

10

• It must implement an addressing mechanism that provides a content identifier suit-
able to be stored on Ethereum. This is crucial since the trusted state of the common
platform is guaranteed by the blockchain.

• It must be accessible via JavaScript from the user browser. The installation of a client
software could be tolerated by SMEs that post on the platform, while this is imprac-
tical for casual visitors. As stated for the blockchain, this clashes with the goal of the
application.

Here, I had to choose from two possibilities that satisfy these issues. Swarm [15] and the
InterPlanetary File System are very similar in the goal since they claim to offer an efficient
decentralized storage layer. In particular, they both address data on the network through
the content hash rather than its location and this is extremely important for one big reason:
consistency. Indeed, if the file location is stored in the blockchain and the related IPFS node
leaves the network or removes it, the system can no longer see the content even though an-
other peer may have a copy of it. A worse situation may happen if the node with the desired
data is malicious and swaps the original file with another one. Thus, the usage of content
hash as identifiers to keep in the blockchain is critical since it prevents these scenarios. As
regards the differences between the two technologies, they can be seen in the development
status and in implementation technicalities. As a developer, I decided to rely on IPFSbecause
it has an official JavaScript implementation, a wider adoption and a dedicated community,
even though Swarm has a stronger relationship with Ethereum peer-to-peer library.

One of the biggest problems that all decentralized storage systems have to face is data per-
sistence. It is not reasonable that a node stores and delivers other users’ content without
an incentive. This is a known issue and solutions like Storj [16] and Sia [17] rely on the
blockchain technology. Also the founders of the IPFS started an interesting project called
FileCoin [18] which is based on the same principle. In FileCoin, miners earn the native pro-
tocol token by cryptographically proving continuous data storage, while clients pay them
to store or distribute files and to retrieve data. Thus, IPFS and Filecoin are complementary
protocols: the first one allows peers to store, request, and transfer verifiable content with
each other, while the second provides the missing incentive structure. As stated before, in
my design I use only IPFS because FileCoin presents two aspects that compromise its ap-
plicability. The first and the most important one is the current impossibility to perform
cross-chain operation between Ethereum and FileCoin. Apart from the development diffi-
culties, this may lead to inconsistencies and security issues on the platform. The second one
regards the fact that FileCoin requires users to pay a fee in order to retrieve a content from a

11

miner. FileCoin developers justify this choice saying that the fee is meant to repay the miner
for the bandwidth used during the data transfer. This obviously makes FileCoin unsuitable
for my advertisement application because new customers are casual visitors of the platform
that must be able to freely see the posted products.

The problem of data persistence is also taken in consideration by Swarm. As stated be-
fore, Swarm is still in a proof-of-concept stage with a Go implementation. However, the
teamworking on Swarm have announced that they are planning on adding an incentive stor-
age layer based on Ethereum. For sure, this will make Swarm the preferred persistent data
storage technology for distributed applications that rely on Ethereum due to their deep con-
nection and interoperability. Therefore, a future work to improve my design could be the
switch from IPFS to Swarm once the technology is ready for production. By now, the issue
of data persistence remains unresolved in the current architecture even though I mitigated
this problem in the implementation of the system. Since this aspect is not relevant to describe
the components of the architecture and their interaction, further information are given in
chapter five.

2.2.2 Architecture overview

In conclusion, the overall designed system is shown in Figure 2.2. The arrows represent the
main interactions between the technological components that I chose to implement the ar-
chitecture. The enumeration in the picture refers to the process of loading the single-page
application and show the home content. I considered this action because it is the most com-
plex one that involves all the technologies previously presented. Obviously, if we consider
other operations, the order may change or some interactions could not be performed. Fol-
lowing the enumeration in the image, I provide a brief description of their meaning.

1. In order to access the advertisement platform, a user can simply use its own favourite
browser. As stated before, this is extremely important because a mandatory dedicated
software installation is a big downside for the popularity of the application. However,
it is possible for an user to be part of the Ethereum and/or the IPFS networks by run-
ning a local node. In particular, having a 24h online IPFS node could interest SMEs
that want to be sure about the availability of their posted products.

2. Once the user has opened the browser, it has to retrieve the front-end assets of the ap-
plication from IPFS. The URL that the user has to enter is typically formatted like
https://<gateway_address>/ipfs/<content_hash>, where <content_hash> is the hash
that identifies the front-end assets on IPFS. If the user is running a local peer, then

12

Figure 2.2: ModelofthedesignedadvertisementplatformforSMEs’aggregation.

it can request the files from the daemon set on localhost:8080. Otherwise, it can ac-
cess the network through the so called public gateways and retrieve them just like in
a traditional client-server architecture. IPFS gateways are third-party nodes that fetch
content from the IPFS network and serve it to the user overHTTPS. Currently, there
are 39 gateways available and the user can select the preferred and online one [19].
During the development of my work, I used the one provided by CloudFlare since it
appeared to be the most reliable. However, in order to upload the front-end assets of
the application I had to run a local node. The persistence of these files on IPFS is cru-
cial, otherwise the advertisement platform can not be accessed. Therefore, since IPFS
does not guarantee data persistence, this responsibility should be in charge of the one
that committed the system. Hosting an IPFS node instead of a traditional web server
is meant to make the overall architecture suitable for Swarm.

3. The user receivesHTML, CSS, JavaScript and JSON files from IPFS through the gate-
way or the local node and the browser renders the application. In particular, it gets the
compiled smart contract which exposes its application binary interface (ABI) in JSON
format and other JavaScript libraries required in the system. Points two and three are
performed only once in order to access the platform which is designed as single-page
application.

13

4. In order to perform business logic operations and inspect the status of the system,
the user has to trigger a function from the application’s smart contract through a call
or a transaction to the Ethereum blockchain. More information are given in chap-
ter five, but, as an example, this procedure happens when retrieving the IPFS hash
of products published by the community of SMEs or when posting a content on the
platform. The interaction with Ethereum in the browser is possible thanks to the
Web3.js library. However, the user has to be part of Ethereum peer-to-peer network
sinceWeb3.js only exposes an interface for JSON-RPCmethods. Unfortunately, there
is no work-around and a piece of software has to be installed. In order to limit this
downside and ease the access to the platform, it is enough to download MetaMask
[20] instead of an Ethereum full node. MetaMask is a popular browser extension that
allows to easily manage an Ethereum wallet and automatically injects Web3.js in the
window object. Under the hood, it relies on Infura [21] with a zero-client approach
and uses its APIs to connect to different Ethereum networks. Thus, this add-on is
mandatory for common browsers and I used it for FireFox and Chrome in order to
test the system. Currently, there are some projects that aim at building browsers inte-
grated withWeb3.js like Brave [22]. Also the Ethereum Foundation proposed its own
browser called Mist [23], but the project has been recently deprecated.

5. If the function triggered on the smart contract has a return value, it is usually exposed
by Web3.js as a JavaScript array or object, depending on type conversion. Then, it is
possible to perform further computations using these data as parameters. In the case
in focus, the returned value could be the array of strings representing the IPFS hash of
valid contents published on the platform. The actual implementation is a bit different
and is described in chapter five.

6. Once the IPFS hash of all contents are available, it is possible to download them from
the peer-to-peer network. However, instead of retrieving the file from a public gate-
way as explained in the first step, the system relies on the JavaScript implementation
of IPFS. This library is received by the user once the point two is performed. Themo-
tivation behind this choice is that the upload operation is not granted by IPFS public
gateways. Once the content is received it is possible to show it to the user through the
presentation logic of the application.

7. The upload operation of a file is the reason behind the usage of IPFS.js [24] library.
In particular, once the front-end assets are collected, the platform is implemented so
that each user is actually running an IPFS node in its browser. This allows to upload
contents form a local node, but this fact is also used to deal with the problem of data
persistence on IPFS. As stated before, a product is available in if there is at least a peer
that provides it. Thus, a possible way to mitigate the problem is to have file replicas
on the network. This is exactly the motivation behind the presence of this step in the

14

operation of showing the home content. Indeed, each product downloaded for pre-
sentation purposes is then added and pinned by the local node thatmakes the content
available to the network. In order to better explain this mechanism, it is described in
chapter five. Obviously, this process introduces inefficiencies, especially in terms of
user experience, but these problems are limited with an accurate implementation and
a reasoned presentation logic. As stated before, this is a work around to the problem
of application’s content persistence, which remains unresolved in general. However,
there are two positive side effects. The first one regards the fact that each member in
the SMEs’ community is the first responsible for the availability of its own content,
which can easily be granted through IPFS.js by staying on the application’s web page.
Thus, members’ selfish behaviour and lack of commitment to each other have a pos-
itive impact on content availability due to this replicas procedure. In addition, also
casual visitors of the platform are contributing to the system. In this scenario, replicas
are a valid backup strategy to limit the problem of data persistence on IPFS. The sec-
ond one regards the fact that once a product is published, its IPFS hash is permanently
and securely stored on Ethereum blockchain. Thus, even though there is no peer in
the network that provides that content, it is enough for the owner to upload again the
same file in IPFS with no costs and the system is consistent.

15

16

3
Ethereum and Solidity

This chapter is a comprehensive description of Ethereum. A deep study of this blockchain
tecnology was an important component of my work since Ethereum is fundamental in the
designed content management system. The exposition is divided in two sections. The first
one regards accounts, transactions, blocks and their validation in Ethereum. The second one
is dedicated to Solidity, the main programming language for smart contracts.

3.1 Ethereum fundamentals

Vitalik Buterin was impressed by the blockchain technology introduced by Bitcoin and its
scriptingmechanism. His idea was to extend its applicability beyond the payment system, so
in late 2013 he announced Ethereum [25] [26]. His intention was to provide a blockchain
with a built-in, fully fledged, Turing-complete programming language that could be used
to create smart contracts. These programs are the core of Buterin’s idea because they allow
developers to encode arbitrary state transition functions and implement a secure business
logic for any distributed application in few lines of code.

The concept of smart contracts is not introduced by Ethereum, but it was coined in 1990s
by Szabo that defined it as ”a set of promises, specified in digital form, including protocols
within which the parties perform on these promises” [27]. Szabo also expected that smart
contracts could be extremely functional, but his idea did not see the light till the emergence
of blockchain technology.

17

As explained in the previous chapter, a permissionless blockchain is a decentralized, veri-
fiable and potentially immutable ledger that records transformations of the state. In Bitcoin
payment context, the state is a representation of the ownership of all coins mined and not
yet spent (UTXOs). Thus, the concept of transaction expresses the evolution of the system
from a state to another. Therefore, in order to understand the structure of Ethereum it is
important to define its state and how transactions are composed, performed and validated.

3.1.1 Ethereum state and accounts

The (world) state in Ethereum is a mapping that defines unique pairs (address, account). Ad-
dresses are 160-bit identifiers, while accounts have a common structure even though they
can be distinguished in two types. There are the so called externally owned accounts (EOAs)
controlled via public-private key, which are usually associated to humans ormachines. Then,
there are the contract accounts, also known as smart contracts, which are controlled by their
code. Both are composed by four fields:

• The nonce is a value that represents the number of transactions sent from this address
or, in the case of contract accounts, the number of creations performed.

• The balance of the account in Wei, which is the smallest denomination of Ether, the
cryptocurrency provided by Ethereum. The conversion rate is 1 Ether= 1018 Wei.

• The storage of the account, which is organized as a modifiedMerkle Patricia tree ([26]
Appendix D) to encode contents of the account. This persistent data structure is also
called Trie and it provides a mapping between arbitrary-length byte arrays. The core
of the Trie is to expose a single value that identifies a given set of key-value pairs.

• Thehashof the code if the account is of contract type, otherwise it contains theKeccak-
256 hash of the empty string. This is the code that gets executed once this address
receive a message call. Obviously, it can read from and/or write to the account’s stor-
age. Unlike the other fields, it is immutable and it can not be modified after account
construction.

As stated in the previous chapter, each node in the Ethereum network stores (at least) a
copy of the data in the current (world) state. This is done with an off-chain database that
maintains a mapping of byte arrays to byte arrays which can be accessed by users through
an external application, most likely an Ethereum client. On the other hand, the blockchain
maintains only the Trie’s root in order to minimize the on-chain storage needs, thus its over-
all size. As consequence, it is possible to retrieve information about the current Ethereum

18

(world) state by querying this database which is charge of its persistence. This procedure is
usually referred as a call in contrast to a transaction.

3.1.2 Transactions, Gas and Blocks

A transaction is a single cryptographically-signed data package that allows the evolution of
Ethereum (world) state. There are two types of transactions with two different purposes:
contract creation and message call transactions. The first ones can be committed by an EOA
that deploys anew smart contract inEthereumstate. The secondones canbe created either by
an external entity or a contract and they target a contract account. Message call transactions
are performed in order to transfer Ether to the recipient and/or trigger the execution of a
function in the target contract thatmodifies the (world) state. Both transaction types provide
a common structure and two peculiar fields:

• A nonce that represents the number of transactions sent by the sender.

• A scalar value called g Price equal to the amount of Wei to be paid per unit of Gas
for all computation incurred as a result of the execution of this transaction.

• A number g Limit equal to the maximum amount of Gas that should be used in
executing this transaction. This is paid a-priori, before any computation is done and
may not be increased later.

• The target to of the transaction. This field contains the 160-bit address of the recipient
in case of amessage call transaction. Otherwise, the value is set to 0 in case of a contract
creation.

• The valuewhich is the amount ofWei to be transferred to the message call’s recipient.
In the case of a contract creation transaction, this number represents the initial balance
of the newly created account.

• Values corresponding to the SECP-256k1 signature of the transaction and used to
determine the sender ([26] Appendix F). They are called as v, r and s.

• A byte array of unlimited size that specifies the input data in the message call transac-
tions. This field is referred as data and it is used to specify the contract function to
execute and eventually to pass input parameters.

• A byte array of unlimited size that specifies the code for the procedure of contract
account initialization. This init field is peculiar of contract creation transaction.

19

In this listing that describes the structure of transactions, I introduced a fundamental con-
cept in Ethereum which is Gas. Any programmable computation has its own universally
agreed fee, which is expressed in Gas and not in the internal cryptocurrency. In a sense, the
g Limit field implicitly states the maximum number of computational steps that the execu-
tion of this transaction is allowed to take. On the other hand, the g Price states the amount
of Ether required to purchase a Gas unit. It is important to remark that the concept of Gas
is relegated to the scope of a transaction, while Ether represents the actual coin in the system.
Therefore, in order to send a transaction, an account has to pay in advance theminer using its
balance, because it is the one that performs the actual computation and the transition from
a (world) state to another one. Here it is important to remark that if a contract function
only performs at most read operations on the current (world) state, it does not use any Gas.
This happens because miners are not involved since there is no evolution in the (world) state
and thus no transaction. In general, miners are allowed to select the transactions they want
to include in the next block. As consequence, transactions with a higher g Price will more
likely be chosen because the miner will receive a higher amount of Ether. Thus, the sender
has a trade-off to make between paying less Ether and the chance that its transaction will be
mined in a shorter period of time.

All the presented data structures are organized into blocks which are the core elements of
the blockchain. As stated in the previous chapter each block has a header and a body. The
latter keeps information about the comprised transactions, but also a set of headers whose
blocks are sibling of the current block’s parent (such blocks are known as ommers). The
presence of this field can be understood once Ethereum’s consensus protocol is described.
As regards the header, an Ethereum block has many fields some of which refer to structures
already mentioned:

• TheKeccak256-bit hashof the entire parent block’s header. This piece of information
is called parentHash.

• The Keccak 256-bit hash of the ommers list in the body of the current block. This
piece of information is called ommersHash.

• The 160-bit address of the EOA that mined this block. It represents the beneficiary to
which all fees are transferred.

• The Keccak 256-bit hash of the new (world) state Trie’s root. This piece of informa-
tion is referred as stateRoot.

20

• The Keccak 256-bit hash of the Trie’s root populated with transactions listed in the
body of the current block. This field is referred as transactionsRoot.

• The Keccak 256-bit hash of the Trie’s root that contains the receipts of each transac-
tion listed in the body of the block. This field is called receiptsRoot.

• The Bloom filter which is a probabilistic data structure that states if an element is part
of a set without false positives. It is used to efficiently address log entries created from
the receipt of each transaction listed in the body. This field in the header is logsBloom.

• A number that represents the difficulty of this block. It can be calculated from the
previous block’s value and the timestamp.

• A scalar value equal to the number of previous blocks. The enumeration starts from
zero which is assigned to the genesis block.

• The current g Limit expenditure per block.

• The total amount of g Used in all transactions included by this block.

• A timestamp expressed as Unix’s time format set at this block’s inception.

• A byte array containing data relevant to this block. This must be 32 bytes or fewer
and it is referred as the extraData field.

• A 256-bit hash calledmixHash. Combined with the nonce of the block, it proves that
a sufficient amount of computation has been performed in order to mine this block.

• A 64-bit hash which is referred as the nonce of the block. As stated in the previous
chapter, it can be considered as the proof-of-work in such a consensus protocol.

The overall block structure is shown in Figure 3.1.

3.1.3 Transition function and the EVM

The executionof a transaction implies the evolutionof the system froma state to another one.
In particular, the progress is achieved with the addition of a new block. This procedure is
defined in the Ethereum protocol with a transition function that, given the current (world)
state and a transaction as inputs, it returns the new state which is broadcast to Ethereum
peers. A nice example is provided in [25], where it is easy to see some validity tests and simple
operations performed by this function.

21

Figure 3.1: Ethereumblockmodel.

• It checks if the transaction is well-formed. In particular, it verifies the signature using
v, r and s and if the noncematches the one in the sender’s account.

• It checks if the sender’s balance has an amount of Ether which is enough to purchase
the required Gas. In this case, the transaction cost is subtracted from the sender’s
account balance and its nonce is increased. Otherwise, an error is thrown and the tran-
sition is stopped.

• It sets the Gas of the current transaction to g Limit and subtract an amount that
depends on the bytes of the transaction.

• It checks if there is an amount of Ether to be transferred to the recipient by inspecting
the value field. Then, in case the transaction has data in init, a new smart contract is
created with a balance equal to value. Otherwise, the transaction is of type message
call and the specified amount of Ether is transferred to the recipient. Moreover, if the
target is a contract account, the related code specified in data is executed using the
provided Gas.

• It reverts state changes in case of a failure in Ether transfer (e.g. the sender does not
have such an amount in its balance) or in code execution (e.g. the g Limit is lower
than the value required for the computation which results in an out of Gas excep-
tion). In particular, the payment of Gas fees are not reverted and they are added to
the miner’s balance anyway.

22

• It refunds the fees to the sender depending on the remaining Gas and transfers the
Ether paid for Gas consumed to the miner.

However, this description of the transition function does not answer to two important
questions. The first one regards where the code is actually run since Ethereum has a dis-
tributed architecture. The second one regards the actual code execution once a contract ad-
dress receives a message call. The former is easily answered: since each transaction is added
into a block, the called contract codewill be executed by theminer and then by all nodes that
download and validate the blockchain. This is important in order to keep consistency in the
copies of the (world) state stored by each peer. On the other hand, in order to describe how
it is run by nodes, I have to introduce the Ethereum virtual machine (EVM).

The official programming language used to develop smart contracts is Solidity, but the
code is compiled into bytecode or EVM code for the actual execution. At a low level, it
defines operations that allow to access three types of memory spaces:

• The stackwith 32-byte elements.

• Thememory, an infinitely expandable byte array.

• The contract’s storage previously described when introducing Ethereum accounts.

It is important to remark that unlike the storage, data in the stack or in the memory is
not persistent since their scope is respectively a transaction and a contract function. The
knowledge of these concepts is fundamental for developers that design smart contracts for
Ethereum. As regards the EVM, the code execution is an iterative procedure that starts by
fetching the current instruction corresponding to the EVM’s program counter. Each instruc-
tion has its own definition in terms of how it affects the computational state of the EVM. In
particular, Ethereum specifies their Gas consumption and the way each operation interacts
with the stack, the memory and the storage. Once the selected operation is performed, the
program counter is incremented and this cyclic routine continues until the end of the code
is reached or an error (e.g. the out of Gas exception) occurs.

3.1.4 Ethereum consensus protocol

Ethereum implemented a proof-of-work (PoW) consensus protocol which has been briefly
described in the previous chapter. Since the mining process is responsible to distribute new
coins in the system, the execution of the PoW function should be as accessible as possible and

23

not relegated to people with specialized hardware like ASICs. For instance, this is a problem
for Bitcoin because the only task that ASICs have to solve is SHA-2-256 which is clearly
CPU-intensive. Thus, an accessible ASIC-resistant mining procedure is found by designing
a sequential memory-hard PoW function such that it is not possible to find multiple nonc
at the same time by running the procedure in parallel.

The resulting algorithmproposed since the first version of Ethereum is called Ethash. The
proof-of-work function takes as input the new block’s header without nonce andmixHash,
the candidate nonce for the block and a large dataset which is required to computemixHash.
The output is an arraywith themixHash of the newblock as first item and as second element
a pseudo-randomnumbernwhich is cryptographically dependent on the hash functionused
and the dataset. The input nonce is valid if n is less or equal to 2256 divided by the new block’s
difficulty value. Further details on Ethash are provided in [26] Appendix J.

As regards the double-spending problem, Ethereum provides an alternative solution to
Bitcoin’s which consists in automatically choose the longest chain in the network. Indeed,
Ethereum developed a strategy called Greedy Heaviest Object subTree or GHOST protocol.
It requires thatminers focus onwhichever chain themost otherminers are working on. Due
to differences in data propagation over the network, this procedure tends to create more
uncles. This explains the need to store the block’s ommers. Nevertheless, the blockchain
itself is equally secure and this method allows for higher throughput of transactions than
Satoshi’s solution.

In conclusion, it is important to say that the EthereumFoundation is extremely active and
innovative in termsof consensusprotocols. For instance, Ethashhas changedmany times and
it is said to be gradually replaced once Ethereum 2.0 is released. Indeed, important projects
like Casper FFG [28], Casper CBC [29] and Plasma [30] are showing an increasing interest
towards the proof-of-stake (PoS) consensus protocol. The assumption behind PoS is that
who holds a stake (i.e. deposit, currency) in a network is prone to act correctly because it
is in its interests. In other words, the more stake a node has, the higher should be its will
in preserving the system. Following this principle, in PoS-based blockchains, a set of nodes
called validators take turns proposing and voting on the next block. The weight of each
vote depends on the size of the validator’s stake. Anyone who holds Ether can request to
be promoted as validator by sending a special transaction that locks up their coins into a
deposit. The process of creating and agreeing tonewblocks is thendone through a consensus
algorithm. Thus, there are many different implementations, but they all can be split in two
categories:

24

• chain-based PoS selects a validator in each time interval, and assigns that node the
right to create a single block. The new block must point to the one at the end of the
previously longest chain.

• Bizantine Fault Tolerant (BFT) proof of stake chooses randomly the validators with
the right to propose blocks, but consensus is established through a multi-round pro-
cess. In this procedure, every validator votes for some specific block during each round
and once this process ends, all (honest and online) validators permanently agree on
whether or not include a block in the chain. The core difference is that the consensus
on a block does not depend on the length or size of the chain after it.

The motivation behind this interest in proof-of-stake is that, in comparison to PoW, it
provides significant advantages.

• There is no need to consume large quantities of electricity in order to run the consen-
sus protocol and secure a blockchain, while energy efficiency has become an issue for
PoW systems.

• Due to energy savings, there is not as much need to issue as many new coins in order
to motivate participants and repay the electricity involved in the mining process.

• Proof-of-stake allows to design many mechanisms to discourage the creation of cen-
tralized cartels or prevent them from acting in a harmful way to the network.

• It reduces centralization risks, as economies of scale are much less of an issue. In PoS
the amount of coins of a validator directly represents its vote weight, on the other
hand having mass-production equipment is an advantage for proof-of-work.

• It has the ability to make various forms of 51% attacks vastly more expensive to carry
out than proof-of-work.

An interesting protocol similar to PoS is proof-of-authority (PoA) where instead of se-
lecting validators through stake, they are chosen by identity. In this context, identity means
the correspondence between a validator’s personal identification on the platform with offi-
cial documentation for the same person. The idea of ”staking identity” means voluntarily
disclosing who you are in exchange for the right to validate the blocks. Thus, since users’
identity and actions are public, they are prone to behave correctly and preserve the network
in order to maintain their good reputation. One problem that PoA tries to overcome is the
fact that stake in PoS is not a good measure for a node’s commitment to the network. For
instance, PoS may consider as equal validators both a newbie and an early adopter user with

25

the same stake. The proof-of-authority protocol uses identity as a equalized stake which is
understood and valued the same by all actors. Proof-of-authority is important for Ethereum
since there are services likeParity [31] as far asRinkeby andKovan test networks that are based
on PoA. As it will be described in chapter five, the proposed CMS is deployed on Ropsten
test network which is based on proof-of-work protocol, just like Ethereum’s main network.

3.2 Solidity

The goal of this section is to provide an overview of the official programming language used
to build smart contracts on Ethereum. This is not a Solidity documentation, rather a pre-
sentation of its most important constructs and their correspondence to what I described in
the previous section about Ethereum. Everything reported in this section regards Solidity
version 0.5.10.

3.2.1 Contracts

Solidity is a statically-typed programming language that allows to define smart contracts.
Since theymanagemoney and, as stated in the previous section, their code field is immutable,
a contract with bugs may lead to serious problems. The DAO [32] is a perfect example, be-
cause this crowd-funding platformhas been attacked in 2016 and around 60millionUSDol-
lars have been stolen. This attack has been nullified by performing a hard fork on Ethereum
main network, but since that accident, many researchers and developers listed some good
practices in designing and coding smart contracts [33].

From a developer point of view, a contract is similar to the concept of class in the object-
oriented programming paradigm. Indeed, they may contain state variables, functions, func-
tion modifiers, events, struct types, and enum types. Each contract may have only one con-
structor which is executed before it is actually deployed on the blockchain. This procedure
can be considered as performing a contract creation transaction and it can be split in two
steps. The first one is to compile the Solidity code into bytecode understandable by the
EVM. The easiest way to do this is in JavaScript by using Node.js and Solc package. From
the resulting object it is possible to inspect the actual bytecode and the contract’s application
binary interface (ABI). The second step is to actually deploy the contract on Ethereum via
Web3.js. In particular, the only mandatory input is the ABI but other options can be pro-
vided as fallbacks for calls and transactions that involve the newly created contract account.

26

As explained in chapter five, in the implementation ofmyCMS I relied onTruffle framework
and its built-in functions to easily compile and deploy the contract.

3.2.2 Variables

In Solidity, the type of each variable needs to be specified. Moreover, there is no undefined
or null value and each newly declared variable has always a default value. In general, Solidity
groups variables in two categories:

• value type variables are always copied when they are used as function arguments or
in assignments. For instance, booleans and integers are primitive types in this class.
Another important data type of this category is address. An address variable can store
the160-bit address of anEthereumaccount. Given an account address, it is possible to
retrieve its balance inWei (address.balance) and send a given amount of coins to itwith
address.transfer(amount) (reverts on failure) or with address.send(amount) (returns
false on failure and the current contract will not stop with an exception).

• reference type variables can be modified through multiple different names. Arrays,
structs and mappings belong to this category.

As stated in the previous section, each code operation can access and modify three types
of memory spaces, but only the storage of the contract account guarantees data persistence.
This is reflected in Solidity once the programmer creates a new variable. Indeed, it is manda-
tory for reference type variables to explicitly provide also their data location which can be
calldata,memory or storage. In particular, calldata can be used only for function arguments
since it is a non-modifiable, non-persistent area. On the other hand, value type variables are
stored in thememory by default. An exception from this is provided by state variabl which
are maintained in the storage field of the contract account independently from their type.
Another difference between data locations is their costs in terms of Gas for read, write and
re-size operations.

Solidity also provides three special variables whose scope is the global namespace:

• Themsg variable allows to inspect the current message call transaction. In particular,
it is possible to retrieve the sender address (msg.sender), the amount ofWei transferred
to the contract in the current transaction (msg.value), the data field (msg.data) or only
the first four bytes of data that identify the triggered contract function (msg.sig). This
variable is updated any time a newmessage call transaction is addressed to the contract
i.e. each time an external function call happens.

27

• The block variable allows to inspect the current block. In particular, it is possible to
retrieve the beneficiary i.e. the address of its miner (block.coinbase), the number of
the block (block.number), its g Limit (block.gaslimit), the difficulty parameter used in
themining process (block.difficulty) and its timestamp (block.timestamp). Sinceminers
choose the transactions to include in a block, the block variable refers to the one the
transaction is being included in. Thus, these information depend on when the miner
executes the current transaction.

• The tx variable allows to inspect the current transaction. In particular, it is possible
to retrieve its Gas price (tx.gasprice) and the original sender (tx.origin). The difference
between tx.origin andmsg.sender is easily explained by recalling the previous section.
Message call transactions can be performed by EOA and contract accounts to com-
municate with each other. However, a transaction is always originally triggered by an
externally owned account and eventually it may lead to an interaction between con-
tracts. Therefore, it is clear that tx.origin always provides the address of the EOA that
started the transaction, whilemsg.sendermay ormay not be equal to tx.origin depend-
ing on the implementation. In particular, they refer to the same address if there is no
external function call in the code executed with the original transaction.

In the implementation of the CMS, I used a lot themsg.sender variable in order to provide
authentication of the users.

3.2.3 Visibility, functions and modifiers

As stated before, a contract is similar to a class and in this analogy, its functions can be re-
ferred to methods. As in other programming languages, Solidity defines the visibility that
developers can assign to functions and state variables.

• Functions labelled as external are part of the contract interface, so they can be called
via message call transactions from other contracts and EOA. This functions can not
be called internally from the contract itself unless th keyword is used.

• Functions or state variables declared as public are part of the contract interface and they
can be either called internally or via message call transactions. In particular, Solidity
automatically generates getter functions for public state variables.

• Functions or state variables labelled as internal can only be accessed from within the
current contract or contracts deriving from it.

• Functions or state variables declared as private are only visible for the contract they are
defined in and not in derived contracts. It is important to recall that making some-
thing private only prevents other Ethereum accounts from calling it or modifying its
value, but it will still be readable to the whole world outside of the blockchain.

28

By default, each function in Solidity has the right to modify the contract’s state variables.
However, it is possible to specify two types of functions that are not allowed to write new
values on state variables nor to send Ether from the contract balance. In particular, view
functions promise not to modify the state, so they are perfect as getters. Moreover, pure
functions do not allow neither to read state variables and also the access to block, tx andmsg
is limited. Therefore, view and pure functions do not use any Gas and they are executed
directly by the Ethereum node the caller is connected to. As stated before, these operations
are referred as calls as opposite to actual transactions. The complete list of restrictions for
these functions can be consulted in Solidity documentation.

Lastly, I want to mention modifiers, payable and fallback functions because I used them
in the project. A modifier can be used to easily change the behaviour of functions. It is
commonly applied to automatically check a condition prior to executing the function. The
combination ofmodifiers, state-reverting exceptions (like require(bool)) and special variables
is important to perform an authentication control over the account that called a function.
As regards payable and fallback functions, they address the problem of receiving the Ether
sent in the message call transaction. All coins collected by these function are in the contract
balance which can be inspected with address(th).balance. In particular, a contract can have
exactly one unnamed fallback function. This external function has no arguments and no
return values. It is executed on a call to the contract if none of the other functions match
the given function identifier or if no data was supplied at all. It is important to have this
function because it allows the contract to receive coin without executing any code.

29

30

4
The InterPlanetary File System

As explained in chapter two, the InterPlanetary File System (IPFS) is the technological com-
ponent that I chose for the storage and the delivery of contents published by SMEs on the
platform. Therefore, in order to integrate IPFS in my system, I had to study this content-
addressable, peer-to-peer protocol. This chapter is split in two sections: the first one pro-
vides a brief description of consolidated technologies that inspired IPFS, then the second
one explains how IPFS is actually designed and particular focus is given to BitSwap protocol.

4.1 IPFS background

IPFS [34] aims at creating a global, versioned, peer-to-peer file system that replaces HTTP
andprovides amore open anddecentralizedweb. Inorder to achieve this goal, IPFS reinvents
and relies on consolidated technologies like distributed hash tables, the BitTorrent protocol
and Git.

4.1.1 Distributed hash tables and Kademlia

DistributedHashTables (DHTs) arewidelyused to coordinate andmaintainmetadata about
peer-to-peer systems. Themost fundamental aspects of aDHT is the existence of a common
key space and the definitionof a lookup(x) operation,which returns data associatedwith a key
x. In a file sharing context, keys represent both nodes’ identifiers and files addressed by the
system. A peer with key x is responsible for the storage of information about files whose keys

31

are closer to x than any other node identifier according to some distance function. Moreover,
all peers maintain information about a subset of other participants in the network, usually
O(logN) whereN is the total number of peers in the system. Thus, a DHT provide a sort of
scalable routingmechanism that peers have to follow in order to retrieve the desired key. Sev-
eral peer-to-peer systems have implemented these concepts each with their peculiar features.
The one that mostly inspired IPFS is Kademlia [35] and its modified version S/Kademlia
[36].

In Kademlia, the keys are 160-bit values (or 128-bit depending on the implementation)
and the distancemeasure is definedwith the bitwiseXORoperation. Each node inKademlia
keeps a list of peers with a distance between 2i and 2i+1 from itself for each 0 ≤ i < 160.
In other words, the i-th list can contain nodes whose identifiers have a common prefix of
160 − i bits. Therefore, for small values of i the lists will generally be empty, but for bigger
i they can grow up to size k. The parameter k is chosen so that any given k peers are very
unlikely to have a failure within an hour to each other. These lists are named k-buckets after
this value k. The elements in each list are triplets (IP, UPD port, NodeID) and an entry
is added after a direct interaction with the related peer which proves its availability in the
network. It is important to notice that since the number of nodes in each list decreases with
smaller distances, k-buckets with smaller i provide a much more detailed description of the
network in the neighborhood of the node in focus. This is a general feature of DHTs: each
peer has better knowledge of the close keys, but it has information to reach the opposite
side of the key space anyway. Moreover, in Kademlia, the storage information about a file
referencedby the key x is addressedby the k closest nodes to x. It is also possible to implement
a policy to replicate files distributed by the system in order to improve their availability. For
instance, consider a peer that publishes a file with key x. Instead of just informing the k
closest nodes to x about the new file it can provide to others, it could also transfer them
the actual data. In this way, the k closest nodes to x are the ones responsible to serve it in
the network. However, this replicas policy introduces a big overhead in the system and it
forces peers to download and distribute unknown files also against their will while they are
participating in the network. Therefore, depending on the purposes of the system that relies
on Kademlia DHT, this replicas procedure may or may not be implemented even though
the original protocol includes it by default.

Kademlia provides four protocol messages:

• ping is called by a node to see if the recipient of the message is alive.

32

• store is used to instruct a peer to store a (key, value) pair in the DHT.

• find_node is a RPC that passes a 160-bit node identifier to the recipient. Then it re-
turns the (IP, UPD port, NodeID) triplets for the closest k peers to the target it is
aware of. Usually, these values come from the same k-bucket if it has enough entries.

• find_value is very similar to find_node but in case the recipient actually has the re-
quired key, it returns directly the associated file.

Therefore, the general lookup(x) operation is actually addressed by Kademlia through the
find_node and find_value functions. They are both performed by a node which at first, se-
lects n peers from the closest k-bucket to the target key x. Then, it asynchronously forwards
the request for their k closest known nodes to x. Once it receives the responses, the initiator
updates its k-buckets and repeats the procedure by selecting n of the newly retrieved nodes.
This process continues until no peers closer to the target are found or the requested value is
retrieved.

One of the problems of Kademlia is given by nodes’ identifiers. Indeed, they are random
values of 160-bits and they may not be equally distributed over the key space. Moreover,
it should be hard for an attacker to generate a large number of node IDs or choose a node
key freely. This should be done to prevent the Eclipse attack which tries to place malicious
nodes in the network in order to cut off from it one or few target nodes. Another reason
to do this is to impede the Sybil attack that consists in creating a big fraction of nodes to
control the moderation/reputationmechanism that drives all peers’ behaviour. S/Kademlia
addresses these security issues introducing a procedure for the generation of node identifiers.
In particular it provides a PKI that ensures peers’ authentication and the messages’ integrity.
Then it impedes the Sybil and Eclipse attacks with a sort of proof-of-work puzzle. Another
problem regards the lookup(x) procedure because it fails as soon as a single malicious peer
is queried. S/Kademlia extended the process by making lookups independent and ensuring
that the routing paths are actually disjoint. More information about this can be found in
[36].

4.1.2 BitTorrent

BitTorrent [37] is a very popular peer-to-peer file sharing protocol and its data exchange pro-
cedure heavily inspired the design of IPFS.

In BitTorrent, the nodes in the network do not transfer entire files with each other since
they are split into piec . The information about published contents are provided by their

33

authors via torrent files. A torrent contains several metadata like the name, the size, the hash
of all pieces and the length of each segment. Thus, in order to retrieve and participate in
the distribution of a content, a node has to have its torrent. Then, it is able to join a swarm
of peers that share the same torrent in order to download and upload simultaneously each
segment of data. Indeed, each torrent has a field that expresses the URL of a tracker which is
a server that eases the communication between peers by keeping a log of nodes in the related
swarm. The tracker is not directly involved in the transfer of data and does not have a copy
of the file. However, it is a potential central point of failure and newer versions of the proto-
col introduced tracker-less torrents, where the process of finding peers that provide a file is
replaced by a Kademlia-like DHT called Mainline [38].

If we consider a specific torrent and its swarm, the BitTorrent protocol defines three types
of peers:

• A downloader is simply a peer that does not have all file’s pieces and it is currently
downloading them.

• A seed is a node that uploads the already collected pieces for other peers in the swarm.
Obviously, it may be also a downloader in case it does not have the whole file.

• A leecher is a downloader that does not contribute to the upload of data segments.
Therefore, a leecher has a negative effect on the swarm.

Obviously, the fact that someone has the torrent of a file does not imply its actual availabil-
ity in the network. Indeed, this is only guaranteed if all its pieces are provided by online peers.
BitTorrent mitigates this issue by studying carefully the sequence followed by a downloader
to request data. The goal is to replicate different pieces on different peers as soon as possible.
This is important for file persistence, especially for unpopular contents. Indeed, it should
be avoided a situation in which every seed has all the pieces that are currently available and
none of the missing ones. Moreover, a carefully designed policy improves the performance
of the protocol. For instance, if many downloaders request the same piece at the same time,
the seeds that provide it may not have the required bandwidth to satisfy the demand.
The algorithm implemented by BitTorrent is called rarest first [39] and selects the next

piece to download as the one that is provided by the smallest number of seeds. In particular,
each downloader retrieves these information from the tracker or using Mainline protocol
messages. The idea behind this algorithm is obviously to reduce the risk of missing one or
more pieces once a seed leaves the network. However, the rarest first procedure is modified
by combining three additional policies:

34

• The random first states that the first four pieces to download are chosen randomly,
then the rarest first can be applied. Here, the aim is to permit a downloader to retrieve
quickly its first data segments. This is also important for the choke algorithm.

• The strict priority is applied to the so called blocks or sub-piec . They are the actual
transmission unit in which all pieces are split. This policy states that once a block has
been downloaded, the others of the same piece are requested with the highest priority.
The goal of the strict priority is to complete the download of a piece as fast as possible.

• The end game mode is the consequence of the fact that the protocol requests the same
block to different nodes. This pipelining principle is implemented to retrieve pieces
as quickly as possible. Thus, each time a block is received, the end game mode sends
a remove message for the received block to all the peers that have the corresponding
pending request.

Another issue that affects the file availability and distribution is provided by leechers. In-
deed, their selfish behaviour certified by a small share ratio should be penalized due to their
lack of commitment in the swarm. This problem is addressed by BitTorrent with the chok-
ing algorithm. A node can temporarily refuse to upload to another one, but still accept data
from it. This limitation in the cooperation between peers in the same swarm is called choke.
Thus, the basic idea of the choking algorithm is that a node keeps uploading to peers that
have recently shared pieces with it, otherwise it chokes the connection. This policy is a sort
of tit-for-tat strategy, but there is the problem to determine which peers to choke and which
to unchoke. A downloader unchokes every 10 seconds the three peers with highest share ra-
tio with itself and every 30 seconds it unchokes a random peer. Therefore, each downloader
can have at most four remote peers as unchoked at the same time. The randomly chosen
node is called the optimistic unchoking peer and this strategy is mainly implemented to give
new peers their first piece to share. With the introduction ofMainline DHT, this algorithm
has been slightly modified especially for seeds that can provide all pieces. However, its de-
scription goes beyond the purposes of this chapter and further information can be found in
[39].

4.1.3 Git’s directed acyclic graph

Version control systems (VCSs) record changes to a file or set of files over time in order to
be able to recall specific versions in the future. They are fundamental tools to manage soft-
ware development workflows, especially when more people are involved in the project and
conflicts may occur. Git is a content-addressable filesystem and undoubtedly it is the most

35

popular distributed VCS. Git represents a repository’s history with a directed acyclic graph
(DAG)where nodes are linked through hashes. This data structure is extremely important in
IPFS since files are split in content blocks and aMerkle DAG describes how they fit together.

Git defines basically four main types of nodes for its DAG. They are called objects and,
given a repository, they can be found in the .git/objects folder.

• The blob (binary large object) is the object type used to store the contents of each file.
Each blob is associated with a key that allows to retrieve it. A blob is created for each
file passed to the command git add.

• The tree object allows to store a group of files together, so it is similar to a directory. A
single tree contains one or more entries, each of which is the SHA-1 hash of a blob or
sub-tree.

• The commit object specifies the top-level tree for the snapshot of the project at a spe-
cific point. In particular, it stores the information about the author, the committer,
the eventual parent commit and the provided message.

• The annotated tag is an object used to emphasize specific points in a repository’s his-
tory as being important. They contain the tagger name, email, date and a message.

These objects are content addressed, so each one has its own identifier and it is possible to
inspect their content with the command git cat-file. This identifier is obtained with SHA-1
and the first two characters are used to name the directory in .git/objects that contains the
object, while the remaining ones identify the object file. As an example, the DAG resulting
from Listing 4.1 is shown in Figure 4.1 where keys are truncated to the first seven characters.

Listing 4.1GitDAGexample
1: $ g i t i n i t
2: $ e cho ” Th i s i s t h e README” >> README
3: $ g i t add README
4: $ g i t commit −m ” f i r s t commit ”
5: $ e cho ”Modify t h e README” >> README
6: $ g i t add README
7: $ mkdi r d i r
8: $ e cho ” He l l o ” >> d i r / h e l l o . t x t
9: $ g i t add d i r
10: $ g i t commit −m ” s e c ond commit ”
11: $ g i t t a g −a −m ” ann o t a t e d t a g ” v0 . 1 3 0 30 a8d

36

Figure 4.1: GitDAGexample.Nodesinredareblobs,thoseinyellowaretrees,commitsareinlightgrayandtheonein
lightgreenistheannotatedtag.

In particular, line 2 creates a blobwith key 329688 and line 4 creates the commit a44dd7d
and the tree 3030a8d. Then, I modified the README file and I created the blob a1a4d2a
containing the entireREADME.At line9 I added the tree8c3c7fb that contains thehello.txt
file e965047. The commit 8f81932 resulting from line 9 created the tree 4872d23 that in-
cludes the sub-directory dir with its content and the modified README. Finally, the anno-
tated tag with identifier 27faa12 that points to the object 3030a8d is created.
It is important to notice that the parent of the second commit is exactly the hash of the

first one. This shows how it is possible to inspect the history of the repository by following
the hash links between nodes. Moreover, this implies that versioningmetadata like branches
and tags accessible from .git/refs are simply pointers that contain the SHA-1 identifier of the
related object. Using the command git log –graph it is possible to inspect the graph created
by commit nodes.

4.2 IPFS design

The InterPlanetary File System is a peer-to-peer system designed as a stack of protocols that
implement different functionalities combined in three main components:

• libp2p [40] addresses theproblemofnodes’ identity generation andverification. Then,
it provides the network protocols that manage peers’ connection and the routing pro-

37

cedures to locate specific nodes and objects. It also introduces a protocol for data ex-
change between peers called BitSwap. With this protocol, nodes only store and/or
distribute content they explicitly want to store and/or distribute. Therefore, there is
no content replication policy implemented by default.

• The InterPlanetary LinkedData (IPLD) [41] organizes objects into aDAGthatmakes
IPFS a content-addressed and versioned file system. This implies an interesting feature
of IPFS which is the fact that published data are immutable. That’s because changing
an object would change its hash and thus its identifier, making it a different object
altogether.

• The InterPlanetary Name System (IPNS) [42] is a naming layer that manages the
creation of mutable pointers to permanent objects and human-readable names.

This section covers all these aspects, but it is important to remark that IPFS is constantly
updated, so it is possible that implementation details may change in the future.

4.2.1 Peer identities

The first problem to address in apeer-to-peer system is todefine a procedure that assigns node
identifiers in a secure way. In particular, it should be able to prevent the Sybil and Eclipse
attack, but also to provide a nodeId that actually authenticates a peer (i.e. none should be
able to steal or fake a nodeId).
The solution adopted in libp2p is the one designed by S/Kademlia with its static crypto-

puzzle. In order to create its own nodeId, each peer has to generate a private and public key
pair. If x is the public key, the node has to compute a value P defined as

P = H(H(x)) (4.1)

where H a cryptographically secure hash function. Then, the procedure introduces an
integer parameter d which represents the overall difficulty. Finally, if P has at least d most
significant bits set to zero, the nodeId isH(x). Otherwise, the procedure is repeated from
the generation of the keys until a valid P is found.

The complexity of this crypto-puzzle is exponential in d and, as stated before, it is very
similar to the proof-of-work consensus protocol. Thus, it is particularly effective against
Eclipse attack because a node can not choose its identifier freely. Therefore, it is almost im-
possible to control a part of the network or cut off one or more peers. Moreover, since peers

38

exchange their public keys once they first connect in the network, this solution allows to per-
formnodes’ authentication. Indeed, once a node receives a signedmessage, it can validate the
signature and then checks if the sender solved the crypto-puzzle. This can be done simply by
verifying ifH(sender.pubKey) equals its nodeId. In case the two values do not match, the
connection with the other peer is terminated.

Finally, a note on the hash function and a little clarification about nodeId. In order to
update the system once newer and more secure hash functions will be defined, IPFS allows
to select the desiredH. The consistency of the system is achieved by storing digest values in a
multihash format [43]. In particular, it specifies in the prefix a code to identify the hash func-
tionH used and the number of bytes in the digest. For instance, consider a peer with public
key ”hello world” that uses SHA-2-256. At first, it computes the hash of the key which is
0xb94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9. This
is not the proper nodeId as stated before, because it is not in themultihash format. Thus, it
requires a prefix of two bytes to be appended: one that identifies SHA-2-256 and the other
that references a 32 bytes long digest. Currently, their respective value is 0x12 and 0x20.
Finally, the concatenated result is encoded in base58 and the resulting nodeId for this peer
is QmaozNR7DZHQK1ZcU9p7QdrshMvXqWK6gpu5rmrkPdT3L4. As conse-
quence, a peer that receives a message from that node still has all the information to check
the validity of the crypto-puzzle and the signature of the message. As explained later, this
multihash format is also used to identify objects provided by the network.

4.2.2 Network and Routing

The libp2p library is designed to allow IPFS to run over any transport protocols. Moreover,
IPFS will be able to operate on top of architectures like NDN [44], since there is no assump-
tions made about the network layer in the protocol. In order to achieve this goal, IPFS uses
addresses inmultiaddr format [45]. They allow each node to define the details of the proto-
cols it runs and the corresponding information. For instance, /ip4/192.0.2.42/tcp/443 is a
validmultiaddr because it is composed as a chain of (protocol name, value) pairs. Sincemul-
tiaddr specifies how peers communicate with each other, usually a complete address ends
with /ipfs/nodeId in order to identify nodes in the swarm. Finally, libp2p provides an ICE-
like protocol [46] to accomplish NAT traversal and it also implements HMAC to perform
message authentication.

Moreover, libp2p is responsible for the routing procedures that allow to find a specific
node and the peers that provide a particular object. The solution adopted by IPFS is a DHT

39

based on S/Kademlia and Coral [47] which can be considered as extentions of Kademlia. In
particular, IPFS provides an interface with five main protocol messages:

• find_peer is called to get themultiaddr addresses of a specific node.

• set_value is used to instruct a node to store small metadata in its DHT. The format is
as always a (key, value) pair.

• get_value is used to retrieve the data corresponding to a specific key in a DHT.

• provide_value announces that the current node can serve an object with a given iden-
tifier expressed inmultihash format.

• find_value_peers is used to collect a minimum number of nodeIds that provide a spec-
ified object.

An alternative to thisKademlia-like routing is provided bymulticastDNS. In this strategy,
when a node starts or detects a change in the local network, it sends a query for all peers. As
responses arrive, the peer updates its information about the others in the local database. This
proves the flexibility of IPFS routing system which can be changed to fit users’ needs as long
as the described interface is met.

As an example, Listing 4.2 shows how these routing procedures can be accessed with IPFS
command line interface. In particular, the first line starts a local node and it is possible to
inspect known peers with the command in line 3. It provides not only their nodeIds, but
also theirmultiaddr. Then, all DHT operations are listed from line 4. As you can see, all the
original protocolmessages described before are provided (even thoughwith different names)
and the query command is added, which is used to find the closest nodeIds to a given nodeId.
Check the documentation [48] for a more detailed description.

Listing 4.2 IPFSCLIcommandsthatmapsroutingprotocol
1: $ i p f s daemon
2: ## n e x t commands i n a n o t h e r t e r m i n a l
3: $ i p f s swarm a d d r s
4: $ i p f s dht f i n d p e e r <nodeId >
5: $ i p f s dht f i n d p r o v s <key >
6: $ i p f s dht g e t <key >
7: $ i p f s dht p r o v i d e <key >
8: $ i p f s dht put <key > <v a l u e >
9: $ i p f s dht que r y <nodeId >

40

4.2.3 BitSwap protocol

In IPFS, BitSwap is responsible for data distribution between peers but it does not guar-
antee their persistence nor it creates content replicas. Like BitTorrent, in this protocol im-
plemented by libp2p, files are split in blocks which is the smallest unit of data transferable.
Another similarity is provided by the principles inspiring the exchange strategy. However, a
substantial difference is that in BitSwap there is no concept of swarm of peers that provide
pieces of a specific torrent. Indeed, each node can acquire the blocks it needs regardless of
what files those blocks are part of.

In order to explain howBitSwapworks, consider, for instance, a peer x that sends a request
message for a set of desired blocks to some knownnodes. Now, suppose that after some steps
of the routing procedure, at least a peer y that serves those pieces is found. BitSwap allows y
to decide whether to begin the data transfer or not depending on the commitment to each
other, which ismeasured in termsof bytes exchanged in thepast. The share ratio r (also called
debt ratio) is a concept considered also by BitTorrent’s choking algorithm, but in BitSwap it
is the core parameter of a function that states the probability of sending a block to x given
the current share ratio.

P (send|r) = 1− 1

1 + exp(6− 3r) where r =
bytes_sent

bytes_received+ 1
(4.2)

Now, if r is between 0 and 1 it means that y is in debt with x, so it will likely accept the
transfer. On the other hand, as the bytes credit (i.e. the ratio) grows, the probability drops.
The reason is obviously to deal with leechers that never share blocks to others and to choke
deteriorated relationships between nodes until a fairer balance is re-established. Moreover,
this function does not penalize too much seed nodes that want to serve blocks without any-
thing in exchange.

It is interesting to notice that having a slightly positive or equal share ratio is a good invest-
ment for peers and this fact leads to a side effect regarding pieces’ distribution. Indeed, if x
is an honest node in debt with y, it is in its interest to re-balance the share ratio because y has
proven to be a reliable seed. On the other hand, y can exploit its credit by requesting blocks
to x who will transfer them with high probability. The easiest strategy that leads to this bal-
ance condition regards rare blocks. For instance, y is one of the few other peers that serve
some rare pieces of potentially popular contents. On the other hand, x is someone that had
to request those data in order to complete a download. The lack of providers makes x prone

41

to accept the transfer from y even though this leads to the creation of a debt with it. There-
fore, BitSwap implicitly incentives nodes in the network to cache rare pieces, even if they are
not interested in them directly because those blocks potentially guarantee high share ratio
with other peers. In a sense, this remembers the rarest first policy implemented by BitTor-
rent since the result is the dissemination of rare pieces which improves content availability
and persistence.

In order to perform block exchange and this transfer decision, the BitSwap protocol de-
fines a set of state information that each peer has to maintain.

• A set of ledgers, one for each of the nodes it is connected to. Each ledger contains the
nodeId of the partner and the information regarding bytes sent and received to/from
it.

• A set of peers that represents currently open connections.

• A need_list that contains themultihash values of blocks needed by the current node.

• A have_list that contains themultihash values of blocks the current node can transfer
to others.

• A want_list that contains themultihash values of blocks wanted by the current node.
As opposed to need_list, it also contains blocks that the current node downloads to
re-balance the share ratio with some of its partners.

Moreover, BitSwap defines an interface that all peers have to satisfy. In particular, it con-
sists in four main methods that manage nodes’ interaction. Obviously, they integrate and
rely on the routing procedures described before.

• The open function aims at creating a new connectionwith a specified node. The caller
sends a message to the recipient that contains a ledger. In particular, if the two peers
have exchanged blocks in the past, the ledger is a copy of the one stored by the sender,
otherwise its fields are set to zero. The recipient of an open message compares the
provided ledgerwith the one in its possession and if theymatch, it can decide to accept
the connection. In case it is refused, the receivermay ignore further requests by default
for the duration of a timeout.

• The send_want_list function can be called once a peer has at least one open connec-
tion in order to advertise its want_list. Currently, a node sends the want_list once a
connection is opened and then after a randomized timeout. In addition, a new mes-
sage is sent in case the want_list is modified. The receiver, checks if it has any of the
requested blocks in its have_list and then it decides whether to transfer the data or not
depending on Function 4.1.

42

• The send_block function simply transfers a block in the want_list from a peer to the
other using the protocol specified with its multiaddr. Once the data is received, the
node verifies the integrity of the data with the same procedure as the one described for
peer identities. Then, if the test is passed, the block is removed from the recipient’s
need_list. Finally both the peers involved update their respective ledgers to keep con-
sistence in the amount of bytes exchanged and the receiver removes the block from its
want_list. If the data fails the test, the receiver is free to refuse future requests.

• The close function is called to inform the partner peer that the connection is closed.
The message provides a boolean parameter to the recipient that states if the intention
to tear down the connection is the sender’s or not. The second case is often due to
internal errors or to a lack of messages received in an interval of time. At this point
the partner’s want_list can be removed and eventually, a new open procedure can be
called to re-establish a new connection.

Finally, it is important to remark that while a connection is established between two peers
x and y, both know the want_list of each other. Therefore, if x requests a block provided by
y but it currently has no block to exchange, x could update its want_list and seek also pieces
wanted by y but with lower priority. This can be done in order to re-balance the share ratio
during the current connection and the consequence is a wider dissemination of blocks in the
network.

Listing 4.3 IPFSCLIBitSwapexample
1: $ i p f s daemon
2: ## n e x t command i n a n o t h e r t e r m i n a l
3: $ i p f s g e t Qmdsrpg2oXZTWGjat98VgpFQb5u1Vdw5Gun2rgQ2Xhxa2t
4: ## wh i l e download i s runn ing , i n a n o t h e r t e r m i n a l
5: $ i p f s b i t sw a p w a n t l i s t
6: $ i p f s b i t sw a p l e d g e r <nodeId >
7: L ed g e r f o r < p e e r . ID Qm* r5QBU3>
8: Debt r a t i o : 0 .000000
9: E x c h a n g e s : 1 1
10: B y t e s s e n t : 0
11: B y t e s r e c e i v e d : 2 8 8 3 7 3 8

As an example, considerListing 4.3where in line3wewant todownload from thenetwork
a large file. It is a video of a lesson taken by Juan Benet, the author of IPFS, at Stanford
University in 2015. Under the hood, the get command selects one of the peers returned

43

by find_value_peers routing procedure. While the connection is open and the download is
running, it is possible to inspect the want_list of the other node with the command at line 5.
Finally, once the download is over, we can inspect the ledger and thank the seed. Note that
the share ratio is zero because we did not send anything back in exchange.

4.2.4 Objects and Files

As stated before, libp2p is responsible to make IPFS a peer-to-peer system where nodes ex-
change blocks of data with a defined policy. On top of this layer, IPLDbuilds aMerkleDAG
where objects (i.e. DAG’s nodes or vertices) are referenced with identifiers created from their
content’s hash. Moreover, the edges in the graph are embedded in the source objects as iden-
tifiers of the destinations. This idea is clearly similar to Git’s DAG described before and it is
one of the most important feature that make IPFS suitable for my project. Indeed, as stated
in chapter two, this content representation is perfect to be stored in the blockchain.

Therefore, the first issue that IPLD has to address is obviously to provide a specification
for object identifiers (CIDs). How to address contents is a problem that interests also under-
lying layers, thus the first version of CIDs has the samemultihash format of nodeIds, where
the first byte represents the hash function used and the second one is length of the digest
in bytes. Moreover, all CIDs of the first version use SHA-2-256 and they are encoded in
base58 by default. On the other hand, newer CID format (version 1) has four fields but
retro-compatibility is guaranteed.

• mbase is a multi-base prefix describing the base that encodes this CID.

• version is the version number of the CID i.e. 0 or 1.

• mcodec is a multi-codec identifier used to serialize and deserialize the block once it is
sent from peer to peer. Currently supported formats are JSON, YAML, XML and
others.

• The usualmultihash determined from the hash of the data.

These CIDs are important because they make IPFS links permanent. In other words, it
means that each object and also eachmodified version of the same content have unique iden-
tifiers. Therefore, even if an object published in the past is no longer available in the network,
its identifier is still valid andmaintained in theDAGby available parents. Once it is clear how
to address objects, IPLD defines four main types of nodes in the DAG in order to model a
versioned file system:

44

• The blob object represents a file and contains an addressable and transferable unit of
data. Therefore, there is a match between each blob and the related block provided
by peers. Moreover, these objects can only have incident edges in the DAG.Here, it is
important to notice the similarity with Git’s blob.

• The list object represents a large file that is split into an ordered sequence of blobs
because it does not fit in a single block. It is also possible for a list to contain other
list objects. Therefore, this type of vertex has many outgoing edges pointing to the
related blobs and lists in theDAG.As stated before, these relationships aremaintained
in the parent node that stores all the CIDs of its children in a list. This type of node is
introduced in order to keep consistency with underlying protocols.

• The tree object represents a directory and it is basically the same concept as Git’s tree.
Like list objects, trees are meant to maintain many outgoing edges pointing to blobs,
lists and other sub-trees.

• The commit object represents a snapshot in the version history of any object repre-
sented in the DAG. Therefore, it can be linked to any blob, list, tree or commit. As
consequence it is possible to reveal differences between two versions by comparing the
commit objects in focus and all their children.

The publication of a new object can be performed by any peer in the network by simply
adding its CID in theDHT.Then, anyone that knows the key can download the content and
eventually add it to their have_list. In order to ensure the persistence of particular objects in
the local storage and save it from garbage collection operations, a node can pin these contents.
However, this procedure does not guarantee at all the data persistence in the network, which
can be provided if and only if there is at least a peer serving all content’s blocks.

A good example of these concepts can be found in IPFS white paper [34].

4.2.5 Naming

At this point of the protocol stack, IPFS is a peer-to-peer system for exchanging blocks of
data representing a content-addressed and version-aware DAG of objects. However, it is
convenient to have mutable pointers to permanent objects like Git’s branches and tags. For
instance, this can be useful in order to automatically redirect people to the last version of a
content even though they do not have the newer CID. As stated before, IPNS is the compo-
nent that provides this functionality taking inspiration from self-certifying file system [49].
IPNS is a simple service that assigns every user a mutable namespace where it can publish

an object signed with its private key. This namespace is accessible from /ipns/<nodeId> and

45

themost important fact to remember is that nodeIds do not change. Therefore, if the author
of a content knows in advance that newer versions will be released, it should publish the
content under a commit object with IPNS and share the related address. Then, once an user
retrieves the stored object, it can verify that the signature matches the public key and nodeId
of the peer.

As consequence, in IPFS there are twomain types of paths to address contents in theDAG:

• mutable references begin with /ipns/ and they are pointers to permanent objects. In
the set_valuemessage of the routingprocedure, the actualmetadata added in theDHT
is the pair (nodeId, ns_object_hash).

• immutable references begin with /ipfs/ and represent the actual CID of permanent
objects.

Finally, since these addresses are difficult to remember due to hashes, IPFS improves user
friendliness and readability. Indeed, it allows users to link others’ objects directly into their
own ones, creating a web of trust. Moreover, it allows IPFS to look up /ipns/ addresses in its
DNS TXT records.

46

5
CMS implementation

Once I designed the CMS architecture, and after having studied in deep its two main com-
ponents, I moved to the actual implementation of my solution for SMEs online aggregation
and product advertisement. The organization of this chapter followsmyworkflow as a devel-
oper. At first, I listed all the functional and non-functional requirements that the proposed
CMS has to satisfy. Some of those have already been pointed out previously and guided me
through the architecture design. However, their clear and complete definition was impor-
tant in order to implement the software functionalities. In particular, I focused on the prob-
lemof unbiasedmoderation of both contents and groupmembers. The solution I adopted is
a majority vote triggered each time a controversial decision has to be taken. Then, I searched
for useful frameworks and tools capable of easing the implementation of the software. Once
the project organization had been set up, I begun with the actual coding.

Although the architecture of the proposed CMS is not the standard structure of a web
application, it is possible to identify all the features of the Model-View-Controller (MVC)
design pattern. Indeed, the smart contract represents the controller component that imple-
ments the business logic of theCMS.As regards themodel, the responsibility of application’s
data can be split between the Ethereum blockchain and IPFS. As stated before, the identi-
fiers of published contents provided by IPFS (CIDs), the group members etc. are stored in
a persistent way in the storage state field of the contract account. On the other hand, the ac-
tual upload and download of both product images and enterprises’ logos are performed via
IPFS.js. Therefore, the software development begun with a precise implementation of the

47

smart contract. Then, I designed the view component starting from the navigation process
that a standard user has to follow and the mockups to describe the content disposition. In
particular, the presentation logic of the application exposes all the functionalities provided
by the contract.

5.1 Requirements analysis

This section discusses the requirements that the system has to satisfy. In order to define
them properly, it is important to recall the main goal of the software. It consists in a dis-
tributed CMS that has to provide a common platformwhere SMEs can advertise their prod-
ucts. Moreover, moderation policies of both contents and group members have to be unbi-
ased in order to overcome entrepreneurs’ skepticism.

5.1.1 Functional requirements

Functional requirements define what the systemhas to do. The following list describes them
all and provides a brief motivation for each one.

• The applicationhas tomodel enterpriseswhichprovide general information likename
and e-mail. Moreover they can have a profile picture to show their logo.

• The application has to keep track of registered enterprises in a permanent and secure
way. This is mandatory in order to identify different users of the platform which can
be either casual visitors (i.e. potential customers the platform is meant to attract) or
group members.

• The application has to allow a group member (i.e. a registered enterprise) to update
its personal information. In particular, it has to be possible for a registered member
to update the logo of its enterprise.

• The application has to allow the registration of new members in the community of
enterprises. Moreover, it has to check not to insert two times the same user. This is
important in order to pursue the aggregation of SMEs.

• The application has to model a product and provide some information like a brief de-
scription and its price. Moreover, each post can have a picture of the related product.

• The application has to allow registered enterprises to publish products on the plat-
form. Each user has to be able to retrieve and inspect all posts.

48

• The application has to maintain a list of all products published by each of the regis-
tered enterprise in a persistent way. This is mandatory in order to show authenticated
posts and identify their author.

• The application has to model a poll which is used to evaluate the consensus of the
community on a moderation decision. This procedure is mandatory in order to en-
sure entrepreneurs about the impartiality of the platform.

• Thepoll has toprovide a subject, a brief description and an expiration time. Moreover,
it has to keep track of voters in order to avoid double voting.

• The application has to allow registered users to inspect the details of an active poll.
Moreover, it has to allow only registered enterprises to vote.

• There can be atmost one active poll at a time and the number of voters can not change
while a poll is running. This is mandatory in order to keep consistency during the
voting procedure.

• The poll has to record the number of actual voters and how votes are distributed be-
tween pros and cons. The decision is approved and the moderation consequence is
performed if and only if a quorum is passed (i.e. the actual voters are more than
50% + 1 of the total) and the number of yes votes is greater than no votes.

• The application has to trigger a poll once a registered enterprise notifies a moderation
issue. There can be three situation that require a poll. The first one regards a poten-
tially inappropriate content to be removed. The second one is to decide whether to
ban a member of the community which has been signaled as misbehaving. The third
and last one regards the acceptance of a new enterprise in the group.

• The application has to allow registered enterprises to remove their own posts. This
procedure has to be performed correctly without any community decision if there is
no active poll on a post in focus. Moreover, any member can leave the community
freely. However, this can be done when there is no poll running.

• The application has to provide a web interface that allows both casual visitors and
registered enterprises to interact with the system. Themotivation behind this require-
ment was already mentioned in chapter two and it regards the popularity of the plat-
form. Indeed, it is meant to engage new customers and a dedicated software installa-
tion reduces drastically the amount of reachable people.

• The web interface has to provide a home page where all posted products can be seen
by the visitors of the platform. Moreover, the home page has to contain a menu to
ease the navigation process.

49

• The web interface has to provide a profile page which is accessible only if the current
user is registered in the community. This page has to list all information of the current
member and the products it posted. From this page, a user has to be able to update
its information, its profile picture andmost importantly to post a new product in the
platform.

• The web interface has to provide a poll page where registered enterprises can see if
there is an active poll. This page has to report the details of the poll and it has to allow
the current user to vote if it has the right.

• The web interface has to allow the registration of a newmember in the community of
SMEs.

The next sections of this chapter, especially the ones dedicated to the implementation of
the smart contract and the web interface will emphasize how these requirements are satisfied.

5.1.2 Non-functional requirements

Non-functional requirements define the features and qualities of the system and they are
listed in the following.

• The application state has to be verifiable by any user, especially by entrepreneurs of
the community. The motivation behind this feature is the lack of commitment and
trust to each other. Therefore, as pointed out in chapter two, the application relies on
blockchain technology and in particular on Ethereum.

• The responsibility of actual content availability shall be at first in charge of their au-
thors. The reasonbehind this feature is again the skeptical behaviour of entrepreneurs.
Therefore, the application has to rely on a peer-to-peer protocol that allows the stor-
age and the delivery of all images. As explained in chapter two, the application uses
IPFS and it implements a simple replica policy which is not granted by IPFS.

• The content disposition in the home page of the application shall be randomly shuf-
fled. This is important because in thisway, each content could appear at the beginning
of the home page. Therefore, the visibility that the platform provides to posted prod-
ucts is unbiased. This policy is required in order to overcome entrepreneurs’ suspects
of favoritism.

As already said, some of these requirements have already been identified before and dur-
ing the design of the application. Indeed, the issues regarding state verification and content
authentication, storage and distribution lead me to rely on Ethereum and IPFS.

50

5.2 Project set up

The very first step in the actual implementation of the CMS was to search for a framework
and tools for developing Ethereum smart contracts. One of the most popular is Truffle [50]
which allows to easily compile, deploy and test contracts. It can be installed withNode Pack-
ageManager (NPM) so, at first I downloaded Node.js [51] onmymachine running Ubuntu
18.04. Then, I was able to install Truffle which currently comes with version 5.0.5. It also
provides a local blockchain server with a GUI that displays the transaction history and chain
state. This tool is called Ganache [52] and it is very useful to develop and test contracts with-
out actually deploying them in public blockchains like Ethereum main network, Ropsten,
Rinkeby or Kovan.

At this point, I created aGit repository andmyTruffle project called EtherAd, whose final,
but also simplified structure is shown in Figure 5.1. As you can see, it presents many folders
and files whose role is summed up in the following list.

• The build/contracts folder contains the smart contracts compiled with the command
truffle compile. These files are in JSON format, so it is possible to read them and in-
spect the ABI object. The contract compilation is implicitly called by truffle migrate
command if not manually performed before.

• The contracts folder contains all the contracts of the project written in Solidity. The
default empty project comes with a Migrations.sol file and its role will be explained
in a following point. As you can see, the EtherAd.sol contract which is the core of
EtherAd is placed in this folder.

• The dist folder and all its content is meant to be published on IPFS. Recalling Figure
2.2, it is the IPFS object requested and obtained through public gateways or a local
node in order to interact with the web interface of the application. In particular, its
CID isQmQvz7QC6u1ojFncmm3cWCCCPG1ZtLXH2maC9diBt4kf4R.
It contains the whole src folder and all the compiled contracts. In order to upload it
to IPFS, I actually had to install IPFS v0.4.19 on my machine.

• The migration folder is meant to contain JavaScript files required for the Truffle mi-
gration process which is triggered by truffle migrate command and called in order to
deploy one or more contracts. The default Truffle project comes with a file called
1_initial_migration.js. This file is parsed the first time the truffle migrate command is
called and it specifies that the contract in focus isMigrations.sol. Then the procedure
compiles it and generates a contract creation transaction which actually deploys it on
a network. ThisMigrations.sol essentially maintains a counter that identifies a file in
themigration folder and it is updated each time a migration is performed. Therefore,

51

once I created my EtherAd contract and I wanted to deploy it, I also had to create
a 2_deploy_contracts.js file that references EtherAd.sol. All this process is useful espe-
cially in case the project involves many contracts interconnected with each other and
the developer wants to add or modify one. Indeed, instead of re-deploying all con-
tracts, this migration procedure allows the developer to specify only the affected ones,
thus saving contract creation transactions and Ether.

• The src folder contains all the assets used to build the web interface of the application.
It has three sub-folders and an HTML file. As their name suggests, in css there are
some stylesheets written in CSS, in img there are some images used in the front-end
design and in js there are some JavaScript files. They will be discussed in the next sec-
tions but, it is important to mention two important libraries contained in js folder.
The first one is the JavaScript implementation of IPFS, which is called IPFS.js (I used
version 0.34.4) and it has been already introduced in chapter two. The second one is
the truffle-contract [53] package. In particular, it is required in order to expose an ab-
straction of compiled contracts and easily perform transactions and/or calls to trigger
the execution of contracts’ functions. The current version available is 3.0.6.

• The test folder ismeant to contain files with JavaScript or Solidity codewhich are used
by Truffle to run tests on the contracts. This procedure can be executed with truffle
test command and I used this feature especially with Ganache before the implemen-
tation of the web interface and the poll procedure. As explained later in this chapter,
the voting functionality requires a scheduling mechanism whose integration in the
project makes this testing unfeasible. The ones I run were written in JavaScript with
the Mocha [54] testing framework provided by Truffle.

• bs-config.js is a configuration file for lite-server [55], which is a Node package that I
used to ease front-end development. It is useful because it serves a web application
in a browser tab and it automatically refreshes the page whenever a HTML, CSS or
JavaScript file changes.

• The package.json file is an important configuration file forNPMand thewhole project.
Indeed, it specifies the required dependencies on Node packages to be installed with
the command npm install. Once the npm install procedure ends, it generates the
node_modul folder with all installed packages and the package-lock.json file which
provides some information on those modules like version etc. In package.json file I
specified two main dependencies: the already mentioned lite-server (version 2.3.0)
and truffle-hdwallet-provider [56] which currently comes in version 1.0.5. This last
package is a Web3.js provider used to sign transactions for an Ethereum address given
its mnemonic phrase and an Ethereum network access. Its goal in the project is to al-
low Truffle to deploy the contracts or test them on public networks spending Ether

52

from my personal balance. Indeed, Truffle has to pay the Gas used during the con-
tract creation or message call transactions and someone has to fund this operations.
Finally, I also added two other packages mainly because the project is added on Git.
The first one is Truffle itself so that whoever clones the repository can install the exact
same set up that I used. The second one is dotenv [57] version 7.0.0 which allowed
me to create and manage the content of .env file.

• The truffle-box.json file comes by defaultwith eachTruffle project. It is a configuration
file that allows to create box which are essentially boilerplates for other users available
from Truffle website. Since I was not interested in this feature, I ignored it in my
project.

• The truffle-config.json file is very importantbecause it defines relevant configurationpa-
rameters. At first it specifies the Solidity compiler to use. I relied on Solc [58] version
0.5.1providedby theEthereumFoundation andbundledwithTruffle. Then it allows
to specify the networks on which the contracts can be deployed and tested. There-
fore, I created a development network that points to Ganache private blockchain set
at 127.0.0.1 and port 7545. Then I defined the object that references Ropsten which
is the test network where I actually deployed application’s contract. As stated before,
Ropsten is a public blockchain with the same PoW consensus protocol as Ethereum
main network. This is the reason why many software products are tested on Rop-
sten before actually deploying them on the main network where real money are in-
volved. Moreover, blocks, accounts and transactions can be easily inspected on Rop-
sten throughEtherscan [59]. However, since I donot run a local Ethereumnode, I had
to specify a provider that allows the connection with Ropsten network. In order to
solve this issue, I relied on Infura decentralized infrastructure, which requires the cre-
ation of a project on their platform in order to access their Ethereum endpoints. Then,
I set the Ropsten provider with truffle-hdwallet-provider specifying the mnemonic
phrase of my personal Ethereum account and the access point given by Infura at the
URL https://ropsten.infura.io/<infura_project_id>. Finally, other information can be
provided like the maximum amount of Gas that Truffle can use for each transaction
on Ropsten.

• The .env file is meant to store a variable that addresses the secret mnemonic phrase of
my Ethereum account. This is used by truffle-hdwallet-provider to sign transactions
performed by Truffle to deploy contracts and test them. Moreover, it stores a variable
that specifies the project identifier I created on Infura.

At this point, the project set up is almost complete, but we still miss an important compo-
nent. As pointed out in chapter two, both SMEs and casual visitors of the platform could not
reasonably install and run an Ethereum node in order to interact with the CMS. The easiest

53

Figure 5.1: Projectfilesstructure.Thisdiagramissimplifiedsincethecontentofsomefoldersisnotrepresentedin
ordertosavespace.

solution is MetaMask extension that allows the communication between any contract de-
ployed on any Ethereum network (both public or private, so Ganache included) and a web
interface throughWeb3.js. In order to connectwithRopsten, alsoMetaMask relies on Infura
infrastructure. In this way, as pointed out in chapter two,MetaMask is the only piece of soft-
ware whose installation is required by any user that visits the CMS. In particular, MetaMask
allows to create an Ethereum (externally owned) account from a mnemonic seed phrase or
to import other ones via private key.

At this point we need some Ether to spend for contracts deployment and testing. This
can be easily performed via Metamask faucet for Ropsten [60] where we can ask for free

54

Ether. Obviously, these coins do not exist in the Ethereummain network, because the trans-
action that transfered Ether in the balance is on a different blockchain. As regards Ganache,
it provides 10 accounts with 100 coins each and they can be imported via private key. It is
important to say that in case Ganache is the target network for the deployment of a contract,
the amount of Gas used is taken from the first account in the list.

Finally, I want to mention that in order to develop the software, I used Atom editor since
it provides useful packages for the Solidity language.

5.3 Smart contract implementation

Once all project components are set up properly, I moved to the actual implementation of
EtherAd contract which is defined inEtherAd.sol and it is the one that coordinates the busi-
ness logic of the application. This section does not comment all the code, but it focuses on
its most interesting aspects, how the requirements are satisfied and the design choices I had
to make.

5.3.1 Data model

The very first issue I had to face was how to model enterprises. The first option I had, was
to define them as stand alone contracts. In order to understand the consequences of this
choice, consider for instance, a user with x as Ethereum address that wants to be registered
in the community. In this scenario, it should call a specific function of EtherAd contract
that creates a new enterprise instance (i.e. contract account with address y). This practice
is possible thanks to the new keyword provided by Solidity and the actual contract creation
transaction is performed by the EOA referenced by x. Then,EtherAd has to keep amapping
that associates x with y. This is not important only to know and maintain the registered en-
terprises, but also to perform easy operations. Consider, for instance, that x now wants to
update its profile picture because the enterprise logo has changed. In order to do so,EtherAd
should perform a message call transaction to the correct contract account. Notice that the
function to update this information is in the enterprise contract and not inEtherAd because
it has no right to modify directly the storage field of y account. Otherwise, x can also call di-
rectly this (public or external) function, for instance via Web3.js. Anyway, in this scenario, y
is literally exposed to any account on the network. Therefore a control on the accessibility
of this function has to be implemented in order to allow only x to update its logo eventually
through EtherAd. As pointed out by [33], there are some good practices to follow in order

55

to code situations like this in a secure way. Another minor issue regards the efficiency in re-
trieving information about registered enterprises. Indeed, these data are spread in Ethereum
(world) state and not in a specific account.

Therefore, using contracts to model enterprises seems an overkill of the problem which
can be solved more easily with structs. Indeed, the definition of an enterprise struct within
EtherAd allows to create andmaintain a variable for eachmember of the community directly
in the contract meant to control the business logic of the application. The same discussion
can be extended also to the requirement of modelling both products and the poll. If we con-
sider that the applicationhas to store all products posted by each of the registered application,
it is clear that relying on structs is definitely a better design choice. Moreover, since the inser-
tion of a new enterprise in the group has to be approved with a voting procedure and given
the fact that registered members and posted products can be banned, it is not reasonable to
create stand alone contracts that exist independently on the state of the platform.

In addition to the structs for products, enterprises, and thepoll, I also createdone tomodel
a circular buffer of Ethereum addresses. Its role is described in the next subsection and in
the one dedicated to the moderation policies. The definition of all these data structures is
reported in Listing 5.1, Listing 5.2, Listing 5.3 and Listing 5.4. Notice that the Enterprise, the
Product and thePoll structs satisfy the requirements about the information to bemaintained
by the application. In particular, the Enterprise and the Product have a field that represents
the CID provided by IPFS respectively for their profile image and product picture. Here it
is possible to notice how well IPFS permanent identifiers can be integrated with Ethereum
blockchain. Moreover, the presence of arrays, mappings and so many integers is explained
in the next section because it is linked to state variables of EtherAd contract. Finally, I want
to mention the PollStat and PollSubject fields which are enum data types important in the
moderation procedures.

Listing 5.1Productstruct
1: s t r u c t P r odu c t {
2: b y t e s 3 2 pID ;
3: s t r i n g p roduc t Image IPFSHa sh ;
4: s t r i n g p r o d u c tD e s c r i p t i o n ;
5: u i n t p r o d u c t P r i c e I nWe i ;
6: u i n t e P o s t L i s t P o i n t e r ;
7: }

56

Listing 5.2Enterprisestruct
1: s t r u c t E n t e r p r i s e {
2: s t r i n g eName ;
3: s t r i n g eMa i l ;
4: a d d r e s s eAdd r e s s ;
5: s t r i n g p r o f i l e Im a g e I P F SHa s h ;
6: u i n t e L i s t P o i n t e r ;
7: u i n t i n L i s t P o i n t e r ;
8: b y t e s 3 2 [] e P o s t L i s t ;
9: mapping (b y t e s 3 2 => P rodu c t) e P o s t S t r u c t s ;
10: }

Listing 5.3Pollstruct
1: s t r u c t P o l l {
2: P o l l S t a t u s s t a t u s ;
3: P o l l S u b j e c t s u b j e c t ;
4: a d d r e s s eAdd r e s s ; / / E n t e r p r i s e i n f o c u s
5: b y t e s 3 2 pID ; / / E v e n t u a l p r odu c t i n f o c u s
6: u i n t y e s V o t e s ;
7: u i n t noVot e s ;
8: s t r i n g p o l l D e s c r i p t i o n ;
9: u i n t e x p i r a t i o nT im e ;
10: a d d r e s s [] e B a l l o t S t a t u s ; / / E n t e r p r i s e s t h a t v o t e d
11: }

Listing 5.4CircularBufferstruct
1: s t r u c t C i r c u l a r B u f f e r {
2: a d d r e s s [1 0] l i s t ;
3: u i n t s t a r t ;
4: u i n t end ;
5: u i n t s i z e ;
6: }

57

5.3.2 EtherAd state variables

At this point, it is possible to identify the state variables ofEtherAd contract which aremain-
tained permanently in the account’s storage. Obviously, there has to be a data structure that
contains the enterprises currently registered in the platform. The usual strategy in Solidity is
to have a mapping between address and Enterprise variables. However, since mappings are
not iterable, there must be also an array of addresses that contains all the keys. In the code I
named these data structures respectively eStructs and eList. Here, each address that references
anEnterprise both in themapping and in the array is the one of the user that registered in the
CMS. An important aspect to consider is that any modification of these data structure is a
contract call transaction that needs to be funded. Therefore, in order to save Gas, insertions
and removals must be performed efficiently. I addressed this issue simply without sorting
the elements in the array andmaintaining in each Enterprise an integer value that represents
its index in eList. In this way, the search of a specificEnterprise can be done inO(1) through
themapping. Moreover, a newmember can be added both at the end of eList and in eStructs
inO(1). Finally, the removal of anEnterprise can be done in two steps. At first, it is retrieved
from the mapping, then its index in the array is available and the removal can be performed
in O(1) by swapping it with the last element and reducing eList’s length. These operations
are constant in the number of elements also in case a the data structures need to be resized
because they are in the storage of the contract. This solution is also adopted to store all the
products posted by each enterprise. Indeed, each Enterprise contains a mapping between
keys of 32 bytes and Product variables called ePostStructs together with the array ePostList
containing all the identifiers. In particular, the key of a Product is generated with the Keccak
256-bit hash of the string that concatenates the Ethereum address of the related Enterprise
with its description. Finally each Product has the integer that specifies its index in the array
of the related Enterprise. All these details can be found in Listing 5.1 and Listing 5.2.

Together with the mapping and the array that maintain registered enterprises, other state
variables are required. At first, an instance of Poll to manage the voting procedure. Then a
CircularBuffer variable named inList and another mapping called inStructs between address
and Enterprise. These last variables are mandatory due to the fact that an enterprise is ac-
cepted in the community if and only if it is approved with a poll. Therefore, they represent
the structures to temporary maintain candidates that want to enter the group. Finally, there
are three state variables whosemeaning is explained in the following of this section dedicated
to the contract implementation. The first one is the address of the owner ofEtherAd, which

58

references the EOA that deployed the contract. This address is defined as payable, so this
means that EtherAd contract can transfer coins from its own balance to this account. The
other two are the instance of Aion contract and an integer value representing a fee. Their
role will be cleared in the section dedicated to the moderation policies.

In conclusion, EtherAd state variables are summed up in Listing 5.5. For sake of clarity,
the following discussion will reference these variables directly.

Listing 5.5EtherAdstatevariables
1: a d d r e s s [] p u b l i c e L i s t ;
2: mapping (a d d r e s s => E n t e r p r i s e) p u b l i c e S t r u c t s ;
3: C i r c u l a r B u f f e r p u b l i c i n L i s t ;
4: mapping (a d d r e s s => E n t e r p r i s e) p u b l i c i n S t r u c t s ;
5: P o l l p u b l i c e P o l l ;
6: a d d r e s s p a y a b l e p u b l i c c on t r a c tOwne r ;
7: Aion p u b l i c a i o n ;
8: u i n t p u b l i c aionAmount ;

5.3.3 The contract owner and access controls

As explained in chapter three, each contract has a constructor and inEtherAd it is responsible
to initialize state variables. In particular, it specifies the address of the contract ownerwhich is
the one used by Truffle to deploy EtherAd. Moreover, the constructor creates an Enterprise
associated to this address and inserts it directly in the group of registered members. In order
to justify this choice, it is important to figure out who could actually commission this CMS
for SMEs online aggregation.

Themost reasonable promoter of such an initiative is the public administration thatwants
to improve and create growth opportunities for the local economy. Therefore, it may want
to have peculiar and exclusive privileges on the platform even though the moderation poli-
cies are delegated to the community. For instance, only the owner of the contract should
be allowed to withdraw coins from EtherAd balance. The presence of some coins can be
due to donations performed by accounts to the contract or to the moderation policies (see
next subsection). This money can be used by the public administration to fund this project
of SMEs aggregation. Indeed, even though fundamental information are publicly available
and permanently stored on Ethereum blockchain, the front-end assets of the application has
to be always available in order to let users access the web interface of the platform and ease

59

its visibility. In the architecture shown in Figure 2.2, those files are provided via IPFS but,
as said many times, it does not guarantee data persistence. Therefore, the only solution to
comply with this issue is to host an always online IPFS node that serves those contents in the
network. This responsibility should be in charge of the contract owner which can (partially)
fund these expenditures with EtherAd balance. Moreover, the public administration may
want the exclusive right to deactivate EtherAd contract. This can be performed implement-
ing a function in EtherAd that calls selfdestruct(address) operation provided by Solidity. In
particular, it transfers all Ether stored in the contract balance to a designated target and then
the account’s storage and code is removed from the (world) state.

Due to the importance of the contract owner, in EtherAd I defined not two, but three
levels of accessibility.

• There are two functions whose execution can be triggered only by the contract owner.
One is called withdrawEth() which transfers all the coins in EtherAd balance to the
owner. This explains why the state variable that references the address of the public
administration is defined as payable. The other is meant to call selfdestruct(address)
and transfer all the coins to the owner itself.

• There are many functions whose execution can be triggered only by registered mem-
bers of the community. For instance, those called by an enterprise to update its name,
e-mail or the CID of the logo, but also the function that allows the publication of a
new product on the platform. Other relevant ones in this category are those involved
in the moderation policy and in the voting procedure. Notice that the access control
over these functionalities was a clear requirement of the application. Obviously, the
contract owner has access to all the mentioned contract functions since it is a member
of the group.

• There are functionswhose execution can be triggered by anyEthereumaccount. They
are simple getters designed to retrieve information and show them in the web inter-
face. To this category also belongs the unnamed fallback function of EtherAd con-
tract which can be used to receive donations.

As already mentioned in chapter three, these access controls are performed with a combi-
nation ofmodifiers and require(bool) clauses. In particular, they rely onmsg.sender in order
to check the exact address of the account that called the function. Indeed, using tx.originmay
cause vulnerabilities toEtherAd. For instance, consider an EOA registered in the group that
calls a function on amalicious contract whose code triggers in turn theEtherAd function to
update the logo of its enterprise. If the access control is based on tx.origin, the contract in the

60

middle can specify the new profile image of the enterprise. Here, it is important to remark
that the groupmembermay not be aware of what the contract code does, even though every-
thingonEthereum is public and visible in the (world) state. This is the reasonwhymsg.sender
is almost always the better choice. Listing 5.6 shows how this kind of access control is actually
performed.

Listing 5.6EtherAdaccesscontrolexample
1: f u n c t i o n i s R e g i s t e r e d (a d d r e s s a) p u b l i c v i ew r e t u r n s (boo l) {
2: i f (e L i s t . l e n g t h == 0) r e t u r n f a l s e ;
3: r e t u r n (e L i s t [e S t r u c t s [_a] . e L i s t P o i n t e r] == a) ;
4: }
5:
6: m o d i f i e r o n l y R e g i s t e r e d E n t e r p r i s e s () {
7: r e q u i r e (i s R e g i s t e r e d (msg . s e n d e r)) ;
8: _ ; / / Con t inue e x e c u t i n g r e s t o f f u n c t i o n code
9: }
10:
11: f u n c t i o n u p d a t e E P r o f i l e P i c t u r e (s t r i n g memory _newIpf sHash)
12: p u b l i c o n l y R e g i s t e r e d E n t e r p r i s e s {
13: e S t r u c t s [msg . s e n d e r] . p r o f i l e Im a g e I P F SHa s h = _newIpf sHash ;
14: }

These access conditions are verified by the miner that receives the message call transaction
and decides whether to insert it in the next block or to drop it and revert its own state.

5.3.4 The voting procedure and moderation policies

The moderation of both contents and registered enterprises is probably the most important
and challenging feature of the designed system. Indeed, while the integrity of the applica-
tion’s state is publicly guaranteed by Ethereum blockchain, the moderation still remains one
of the main sources of entrepreneurs’ skepticism. As already mentioned in the requirement
analysis, the solution I designed relies on a majority vote procedure instead of a potentially
biased authority. This is a simple idea but it leads to a win-win scenario. Indeed, the public
administration is in favour of delegating the moderation of the platform because it is an ad-
ditional cost to bear. At first, it should pay an operator responsible for these controls. Then,
it has to fund thesemoderation procedures because they aremessage call transaction that use

61

Gas tomodify the contract storage. Therefore, the voting strategy is convenient for the public
administration, even though special rights should be reserved as last resort like the possibil-
ity to deactivate EtherAd. On the other hand, this solution assigns to each member of the
community the responsibility to control what is published andwho can post in the platform.
This is exactly what entrepreneurs want: an unbiased procedure to measure consensus on a
moderation decision. Obviously, it is in entrepreneurs’ interest that the community respects
someminimum standards, otherwise their brands will be damaged. Therefore, a voting pro-
cedure directly managed by the members of the group is a more effective and responsive
solution to define and maintain those standards rather than an authoritative moderation.

As clearly stated in the requirement analysis, the operations that has to involve a poll are
the acceptance of a candidate in the community of SMEs, the decision about the ban of a
group member and the removal of a posted product. As consequence, I had to implement
this voting procedure in EtherAd before the actual moderation functionalities. At first, I
had to design the Poll struct, which is shown in Listing 5.3. An obvious feature of a poll
is that it identifies a well defined period of time in which voters can express their opinion.
Once the expiration time is reached, it is possible to count the votes and claim the winner.
This was the biggest issue I had to face in this project because of the distributed nature of the
blockchain.

In order to provide a more detailed description of the problem and a clear explanation
on how I solved it, let me recall two fundamental fields of the Poll. The first one is the sta-
t , which identifies the poll as EXPIRED or IN_PROGRESS. Then, there is the expira-
tionTime which is an integer value that specifies when it actually expires. In particular, once
a groupmember triggers a voting procedure with a message call transaction, it implicitly sets
the expirationTime of the poll as block.timestamp plus the duration of the poll expressed in
seconds. The block.timestamp depends on the block in which the transaction is added by
a miner, while the duration is hard coded in EtherAd. I set this value as 600 seconds (i.e.
10minutes) for testing purposes, but in practice it should be bigger to provide a reasonable
amount of time to vote. This point together with the quorum value should be studiedmore
in the future. Anyway, this definition of expirationTime is reasonable since the timestamp of
a block must be strictly larger than the timestamp of the previous one. Moreover, it should
not be possible for any account to set the duration of a poll for two security reasons. The first
one regards the fact that a malicious registered member may set expiration time far in the fu-
ture. Since EtherAd has at most one active poll at a time, this attack prevents the possibility
to perform othermoderation procedures. The second reason is that the distribution of votes

62

is always visible in Ethereum (world) state, even though the contract may not expose them
directly with a getter function. Therefore, it could be possible for the malicious member to
change the expiration time of the poll as soon as it is satisfied of the result.

However, this acceptable definition of the expirationTime is not enough to solve all the
issues of a poll. For instance, it identifies clearly a point in the future after which all trans-
actions triggered to express a vote should be dropped by miners. On the other hand, it is
still possible that a transaction meant to start a new poll is executed before the one meant
to count the votes. This situation should be prevented, because it overwrites ePoll which
is the unique Poll state variable (see Listing 5.5), thus nullifying the just expired poll before
any moderation consequence is performed. Therefore, EtherAd has to implement access
controls on functions that manipulate ePoll considering both themsg.sender and when the
respective transactions can be included in a block. Before diving into this discussion, it is
important to clearly identify the functions in focus.

• vote(bool) allows a registered member to vote. The resulting transaction increases
y Vot or noVot in ePoll depending on the vote expressed by the user.

• startPoll(args) allows a registeredmember to start a poll. Inparticular, it provides some
information like the address of theEnterprise in focus, the identifier of the Product in
case it is the subject of the moderation procedure etc. As you can see in the Poll struct
definition shown by Listing 5.3, all these details are maintained by ePoll. Moreover,
this function is responsible to set the stat of ePoll as IN_PROGRESS and the expi-
rationTime of the new poll.

• countVot () is triggered to count the votes and eventually update the state of the appli-
cation depending on the result. Moreover, this function has to set the stat of ePoll
asEXPIRED and reset all its fields for a future poll. More details about this function
will be explained later.

Now, ePoll can be in three different situations which depend on the combination of two
factors. The first one is the value of its stat field. The second factor is when a transac-
tion is mined with respect to expirationTime. The overall access control over the previously
described functions is implemented through require(bool) clauses and it is summed in the
following list.

• ePoll is in progress if its stat value is IN_PROGRESS and the transaction is meant
to be in a block whose timestamp is lower than expirationTime. If the transaction
references the vote(bool) function and it is generated by a registered member of the

63

group, it is executed correctly. On the other hand, all transactions meant to close the
poll or start a new one are dropped by miners because the poll is running.

• ePoll is active if its stat value is IN_PROGRESS and the transaction ismeant to be in
a block whose timestamp is bigger than expirationTime. If the transaction references
the vote(bool) or startPoll(args) functions, it is dropped by miners independently on
the sender. This is reasonable becauseEtherAd is waiting for a transaction that counts
the votes, performs the moderation consequences and closes the poll.

• ePoll is expired if its stat value is EXPIRED and the transaction is meant to be in
a block whose timestamp is bigger than expirationTime. If the transaction references
the startPoll(bool) function and it is generated by a registered member of the commu-
nity, it is executed correctly. On the other hand, EtherAd blocks the access to both
vote(bool) and countVot () functions, because the poll is expired and already invali-
dated.

The hard coded definition of expirationTime and this access control based on the ePoll
status prevents anyone to misbehave or any error due to the order in which transactions are
mined. Indeed, there is no possibility to start a new poll while another one is in progress or
active. Moreover, there is no chance to vote once the poll is active or expired. Finally, it is
not possible for anyone to end the poll while it is in progress or expired. However, this is
not enough because there is another way to attack the platform. Indeed, if none calls the
countVot () function, ePoll will remain in the active status and further moderation decision
can not be performed. Therefore, there must be someone that performs the related transac-
tion.

A good intuition is to define countVot () as a public function. In this way, literally any
Ethereum account can call it, but reasonably it is more likely to be executed by a member of
the community since it is in their interest to moderate the platform and protect their brands.
On the other hand, we have to consider the selfish behaviour of entrepreneurs and the fact
that the account that calls countVot () has to fund the transaction cost. This may lead to a
situation where each registered member wants to close the moderation issue but it waits for
another one todo it. Inorder toovercome this potential deadlock, a simple idea is to attribute
the responsibility to call countVot () to the registered member that started the poll. In fact,
this is not a solution because none and nothing will ever guarantee for the reliability of this
account. Therefore, in order tomake this last solution feasible, theremust be amechanism to
force the member to end the poll. For sake of simplicity, let me call x this registered account
that started the poll.

64

The first idea is to leverage on the balance of themember tomake it behave correctly. Con-
sider, for instance, the case in which x had to transfer a big amount of Ether to EtherAd’s
balance to start the poll, but with the promise of a complete restitution coded in countVot ().
This scenario is interesting because not performing the transaction to close the poll will cost
a lot to a malicious account. Moreover, also in case x is disposed to lose money to attack the
platform, it is still possible for another member to call countVot (). As consequence, the ob-
tained result is a big donation to the platform accessible by the contract owner. Even though
this situation seems to be ideal, it presents some cons that convinced me to discard its im-
plementation. At first, the amount of Ether to commit has to be big enough to discourage
x to misbehave. However, not all members may have such an amount of money and this
prevents some registeredmembers to initialize a moderation issue which will be delegated to
the ones that havemore Ether. Moreover, entrepreneursmay be scared about this procedure,
not mainly for the money exchange but for the risk that the contract owner itself steals the
moneywhile poll is in progress. The other issue regards a scenario inwhich x is the one under
attack by an account in the community. Since the order in which transactions are mined de-
pends on theirG Price, an attacker could try to call countVot () before x. In case it succeeds
in this procedure, x can not have its money back otherwise the risk in case of a malicious x is
nullified.

The second idea is to programmatically schedule the transaction to end the poll directly
once x calls startPoll(args). In thisway, countVot () is funded by x itself and itwill be executed
for sure. Therefore, this solution prevents any misbehaviour from x but also nullifies the
risk of an attack to x from another groupmember. Indeed, the additional amount of money
required by x is limited to afford the cost of the Gas used by the transaction for countVot ().
Therefore, if the attacker calls this function before x, simply itwill pay the transaction instead
of x. In fact, in this scenario it is not mandatory for countVot () function to be declared as
public, since it is EtherAd itself to call it. The problem with this solution is that it is not
possible to be implemented due to the nature of smart contracts. As already mentioned
in chapter two, they are programs stored in Ethereum (world) state whose code is executed
only whenminers receive the related request. Therefore, in order to call itself in the future, a
smart contract should be run at that specific time. In this way, it can generate the transaction
that triggers the execution of the scheduled function. However, this is impossible because
there will be none supposed to run that contract at that specific time. This loop is the reason
why every transaction is originated by an EOA, also in case of message call type which may
involve multiple contracts in sequence. Therefore, the only way to schedule a transaction in

65

the future is to have an EOA that performs it at the desired time. So this idea does not solve
anything since it brings back the original problem of who will call countVot ().

However, since the problem of scheduled transactions is a known issue, there are services
that provide this facility in a secure way. The one that I chose is Aion [61] because it requires
a small fee and it is available for Ropsten test network. Inmy scenario, this schedulingmech-
anism performs a sequence of actions described in the following list.

1. EtherAd has to call the scheduleCall(args) functionofAion smart contract. Therefore,
it creates an instance of such contract which is maintained as state variable (see Listing
5.5) and initialized inEtherAd constructorwith the address ofAion contract deployed
onRopsten. The scheduleCall(args) function requires fourmain arguments. The first
one is the time when the scheduled transaction should be created. In my scenario, it
is specified by the value of expirationTime. The second one is the target of the trans-
action which is EtherAd itself. The third one specifies theG Price for the scheduled
transaction. The final one is the function to be triggered which is countVot (). Fi-
nally, with the transaction related to scheduleCall(args) I have to transfer some Ether
to Aion contract in order to pay the fee for the service and the cost of the Gas used by
the scheduled transaction.

2. If it is the first time for EtherAd to request a scheduled transaction with Aion, the
scheduleCall(args) function creates a dedicated contract to deposit the funds trans-
ferred by EtherAd to schedule the transaction. Further requests will always involve
this exact contract. The idea of using a contract as a deposit is a well designed secu-
rity mechanism because it proves and allows anyone to verify that EtherAd money
can not be touched by Aion for any other purpose rather than scheduling the desired
transaction.

3. An off-chain process inspects the blockchain until a verified block whose timestamp
is greater than expirationTime arrives. At this point, it automatically creates a transac-
tion to Aion smart contract which in turn triggers the contract described in 2 to call
the countVot () function. If the amount of Ether transferred by EtherAd to sched-
ule the transaction is not enough to fund the Gas used, the transaction is dropped by
the miner and an out of Gas exception is raised. On the other hand, all the exceeding
Ether are transferred back to EtherAd balance within the same transaction. The esti-
mation of theGas used for the scheduled transaction is performed in advance byAion
contract.

Relying on Aionmakes the implementation of this second solution not only feasible, but
also convenient. Indeed, x is the first responsible of the poll it started. It can not misbe-
have because countVot () is scheduled and funded in advance. This last aspect can be easily

66

hard coded as an access control for the moderation function. Indeed, it is enough to inspect
msg.value and if it is zero or less than the required amount for Aion procedure, the transac-
tion to start a poll is dropped. Moreover, the risks taken by x are very limited because the
amount of money involved is little, especially with respect to the solution that leverages x
balance to make it behave correctly. The worst case scenarios of this implementation are
mainly two. The first one regards a malicious member of the community that succeeds in
calling countVot () before the scheduled transaction is mined. This could possibly happen
since theG Price of the scheduled transaction is hard coded inEtherAd and thus it is visible
from Ethereum (world) state. The consequence is that the Ether allocated by x are blocked
in the contract created by Aion. However, in order to keep them there, the attacker has to
anticipate Aion for every future countVot () call, otherwise all the money will be transferred
toEtherAd. This makes the attack expensive in the long period, especially if the community
continues to perform poll procedures. The second one regards the situation in which Aion
does not perform the scheduled transaction due to any internal problem. Exactly like the
previous case, all the money is still safe in the dedicated contract, so they can be refunded in
the future and it is still possible for any Ethereum account to call countVot () autonomously.
This is due to the fact that it is mandatory to declare countVot () as public in this implemen-
tation, otherwise Aion could not call it.

The overall voting functions are summed up in Listing 5.7, Listing 5.8 and Listing 5.9.

Listing 5.7EtherAdpseudo-codeforvote(bool)function
1: f u n c t i o n v o t e (boo l _ v o t e) p u b l i c
2: o n l y R e g i s t e r e d E n t e r p r i s e s {
3: r e q u i r e (i s I n P r o g r e s s (e P o l l)) ;
4: r e q u i r e (! h a sVo t ed (msg . s e n d e r)) ;
5:
6: i f (_ v o t e) {
7: e P o l l . y e s V o t e s = e P o l l . y e s V o t e s + 1 ;
8: } e l s e {
9: e P o l l . noVot e s = e P o l l . noVot e s + 1 ;
10: }
11:
12: / / Keep t r a c k o f v o t e r s
13: e P o l l . e B a l l o t S t a t u s . push (msg . s e n d e r) ;
14: }

67

Listing 5.8EtherAdpseudo-codeforstartPoll(args)function
1: f u n c t i o n s t a r t P o l l (a r g s) p r i v a t e {
2: r e q u i r e (i s E x p i r e d (e P o l l)) ;
3: r e q u i r e (e L i s t . l e n g t h > 2) ; / / At l e a s t t h r e e v o t e r s
4:
5: / / S e t e P o l l f i e l d s p a s s e d a s a r g s t o s p e c i f y i t s s u b j e c t
6: e P o l l . s t a t u s = IN_PROGRESS ;
7: e P o l l . e x p i r a t i o nT im e = b l o c k . t ime s t amp + 600 * s e c o n d s ;
8: a i o n . s c h e d u l e C a l l . v a l u e (aionAmount) (e P o l l . e x p i r a t i o nT im e ,
9: a d d r e s s (t h i s) , g a s P r i c e , e n cod e (” c oun tVo t e s () ”)) ;
10: }

Listing 5.9EtherAdpseudo-codeforcountVotes()function
1: f u n c t i o n c oun tVo t e s () p u b l i c {
2: r e q u i r e (i s A c t i v e (e P o l l)) ;
3:
4: u i n t t o t = e P o l l . y e s V o t e s + e P o l l . noVot e s ;
5: boo l app ro v ed = (t o t >= (e L i s t . l e n g t h /2 + 1)) &&
6: (e P o l l . y e s V o t e s >= (t o t / 2 + 1)) ;
7:
8: i f (a pp rov ed) {
9: i f (e P o l l . s u b j e c t == P o l l S u b j e c t . BAN_POST) {
10: r emov eP rodu c t (e P o l l . eAdd r e s s , e P o l l . pID) ;
11: } e l s e i f (e P o l l . s u b j e c t == P o l l S u b j e c t . BAN_ENTERPRISE) {
12: r em o v e E n t e r p r i s e (e P o l l . eAdd r e s s) ;
13: } e l s e i f (e P o l l . s u b j e c t == P o l l S u b j e c t . ADD_ENTERPRISE) {
14: a d d E n t e r p r i s e (e P o l l . eAdd r e s s) ;
15: }
16: }
17: / / R e s e t a l l e P o l l f i e l d s
18: e P o l l . s t a t u s = EXPIRED ;
19: i f (i n L i s t . s i z e > 0) {
20: s t a r t P o l l (a r g s) ; / / New p o l l t o admi t new member
21: }
22: }

68

I actually did not include all the details and technicalities regarding their exact implemen-
tation in EtherAd. Indeed, I decided to structure this discussion so that it follows the way I
approached the problem of the majority vote. In particular, I focused on the issues I faced,
the solutions I designed and a precise evaluation of pros and cons for each one. However, I
still have to explain how the actual moderation procedures are integrated with the described
poll strategy.

As regards the decisions about whether to ban a registered member and remove a posted
product, their implementation in EtherAd is very similar. Therefore, let me describe only
the procedure that a registered user x has to follow in order to request a moderation decision
on a content published on the platform. At first, it has to call removeProductRequest(address,
byt) and specify the address of the author and the identifier of the Product in focus. In par-
ticular, it is a payable function which performs two access controls. The first one is that the
caller has to be a group member. The other one checks with msg.value that the transaction
created by x sends to EtherAd balance at least aionAmount Ether. However, since I have to
provide registered members the possibility to remove their own products without involving
a poll, this transfer is not required in case the Product in focus is published by x itself. No-
tice that it is mandatory for removeProductRequest(address, byt) to be defined as payable
in any case. As regards the aionAmount parameter, it is set as state variable (see Listing 5.5)
and defines the sum of Aion fee plus the cost to pay the Gas for countVot () function. A part
from the fixed G Price of the transaction which is hard coded in startPoll(args), the value
of aionAmount should depend on the involved operation because they consume different
amounts of Gas. Moreover, if the poll does not approve the moderation issue, countVot ()
may not perform any consequence (see Listing 5.9). Therefore, it is possible that some Gas
is saved and x should be refunded for the exceeding Ether sent to EtherAd balance. How-
ever, given the fact that the public administration (i.e. the contract owner) has to fund the
hosting of an IPFS node to make the web interface always accessible, I decided differently.
Indeed, aionAmount is a fixed value which is enough to fund the most expensive modera-
tion consequence. Moreover, in case there are some savings from countVot (), they are not
transferred back to x. In this way, the exceeding Ether can be used by contract owner to
fund the hosting service since it is the only one allowed to withdraw from EtherAd balance.
This procedure is safe since Aion refunds all unused Ether and defines a certain source of
incomes in addition to casual donations to EtherAd. Moreover, the community of SMEs
is also in favour of this tiny contribution because it is meant to sustain the visibility of the
advertising platform. All these considerations about access controls can be extended also to

69

removeEnterpriseRequest(address) function and partially to addEnterpriseRequest(args).
At this point, removeProductRequest(address, byt) checks if there are at least three poten-

tial voters to start an eventual poll (see access control in Listing 5.8). In case there are only two
elements in eList, the removal of a posted product is performed only if the Product in focus
is published by x itself or if x is the contract owner. This is done internally by removeProduc-
tRequest(address, byt) with the private function removeProduct(address, byt), whose role
is to remove the Product instance from the storage field of EtherAd contract. Now, consider
a scenario in which the minimum amount of voters to start a poll is satisfied. In case the
Product to be banned is published by x itself, removeProductRequest(address, byt) allows
the direct removal as explained before only if ePoll is not in progress or if its subject is not
the Product in focus. The last possibility is that x specifies a content posted by another reg-
istered member. Obviously, if the ePoll is not expired, the request is dropped as shown in
Listing 5.8. Otherwise, removeProductRequest(address, byt) calls internally startPoll(args)
specifying the information regarding the goal of the poll and the product in focus. This is
the reason why startPoll() is defined as private in Listing 5.8. Then, countVot () is triggered
by Aion and in case the moderation decision is approved, removeProduct(address, byt) is
finally called. As stated before, the function called to remove a registered member of the
community follows the analog procedure.

On the other hand, the addEnterpriseRequest(args) is a little bit different. At first, in case
there are less than three members in the group, the responsibility to insert a new member is
directly given to the contract owner. A part from this specific situation, an enterprise that
wants to enter the community has to be approved with a poll. However, if it performs the
request while ePoll is not expired, its transaction has to be dropped. Therefore, in order to
reduce the occurrences of this issue, I relied on inList and inStructs (see Listing 5.5). Once a
candidate calls addEnterpriseRequest(args), the function checks that the caller is not already
member of the group, then it controls that the user transferred aionAmount Ether to the con-
tract balance and inspects the size of inList. In case the buffer is completely filled, the trans-
action is dropped and the candidate has to repeat the request in the future. Otherwise, the
function creates an Enterprise instance with all the information provided by the candidate.
Then, this variable is added in inStructs and its address is inserted in inList. Now, in case the
ePoll is expired and the candidate is the only element in inList, addEnterpriseRequest(args)
behaves just like the other moderation functions. Indeed, it internally calls startPoll() and
once it expires, countVot () may call addEnterprise(address) depending on the voting result
(see Listing 5.9). This private function moves the candidate from inList and inStructs to

70

the group of registered members which is maintained by eList and eStructs. On the other
hand, if the poll is not expired or there are previous candidates to be processed, addEnterpris-
eRequest(args) stops its execution. In this last situation, someone has to trigger the admission
poll for the first candidate in the CircularBuffer. As you can see from Listing 5.9, the respon-
sibility of this issue is in charge of the Ethereum account that calls countVot () function. The
presence of Aion ensures that all requests arrived to EtherAd will be processed.
One of the potential risks of this implementation regards the fact that an attacker may

continue to fill inList in order to monopolize all the polls and prevent other moderation
decisions. However, it is important to notice that such attack is extremely expensive in the
long period because every time themalicious account calls addEnterpriseRequest(args), it has
to fund EtherAd with aionAmount Ether. A major issue that could affect the application
is the Sybil attack. Indeed, if a user controls the 50% + 1 of all registered members in the
community, it can actually decide the results of all thepolls for anymoderationdecision. This
is an issue thatEtherAd can not deal with because it can only guarantee not to have duplicate
address in eList. In fact, the correspondence between each Ethereum account and a different
person is an open problem. However, I designedEtherAd so that it is not possible to ban or
modify the contract owner. In this way, it is always possible for the public administration to
access EtherAd balance and eventually deactivate the contract.

5.4 Front-end implementation

Once the functionalities of EtherAd contract have been implemented in order to satisfy the
requirements, I moved to design the web interface of the application. At first, I had to keep
in mind that all front-end assets are meant to be published and distributed with IPFS as
shown in Figure 2.2. This mademe decide to design the advertising platform as a single-page
application (SPA) in which the navigation of the user is actually performed by changing the
content presented by the unique web page. In particular, this implies that all required code
and libraries for the SPA has to be contained in one IPFS tree object. As already mentioned
in the description of the project structure, the /dist folder serves this exact purpose. How-
ever, its availability in the IPFS network has to be guaranteed, otherwise the visibility and the
accessibility of the platform are compromised. As said in the previous section and in chapter
two, I supposed that the one who committed the CMS addresses this responsibility by host-
ing an always online IPFS node with that specific object pinned in its have_list. Anyway, the
choice of a SPA is almost mandatory due to the features of IPFS and its role in the designed

71

architecture. Consider, for instance a usual web application where the navigation process re-
quires to load different pages from a web server. In my scenario, each of these pages should
be a different IPFS object. Now, the simple navigation from the home page to the profile of
the current user and backwards is impossible to solve with IPFS. Indeed, in the home page
I can not specify the href attribute of any anchor element for the profile page and vice versa
because both need the CID of the target which depends on its content. This problem is the
equivalent of creating a loop in IPFS object DAG, which is acyclic because edges are stored
in source nodes as the cryptographic hash (i.e. the CID) of the target object. On the other
hand, in case the navigation of the user flows from the homepage to the profile and it can not
move backwards, it is possible to design the application with different IPFS objects because
there are no loops. However, designing the platform as a SPA is clearly a better choice that
gives me more freedom as a developer.

At this point, the previous considerations and the functional requirements gaveme all the
premises to design the web interface of the application. At first, I started with creating the
mockups for the different contents to show in the SPA in order to have a visual represen-
tation of the final result. In particular, I decided to create a fixed navbar in the top and a
menu on the left side in order to ease the navigation flow and the accessibility to stand alone
functionalities provided by EtherAd. This basic structure is common to all mockups and it
is implemented in the index.html file under the src folder of the project. More in detail, the
navbar shows the application logo and the Ethereum address of the current visitor. On the
other hand, the menu contains two toggle forms and several buttons. The first ones allows
the user respectively to request its admission in the community by providing all required in-
formation and to donate Ether to the platform. Then, there is a button used by the contract
owner to withdraw all the money from EtherAd balance. The others are used to trigger the
related JavaScript functions in the app.js file that set the content of the main div element in
the SPA. I designed four main mockups, one for each of the contents to show.

• The home content is meant to show the products posted by registered enterprises,
which it is the main goal of the advertisement platform. However, since the number
of published products will be reasonably bigger than the members of the community,
I decided to present at first the enterprises with their information. Then, an user can
inspect all the products posted by each of them in a second stepwith a toggle div. This
is done in order to limit the loading time of the home content due to the procedure of
image replicas implemented with IPFS.js. From this page it is possible to request the
removal of a registered member and/or of a posted product. Moreover, the order in
which the enterprises are presented in the home page is randomized. This satisfies the

72

non-functional requirement meant to provide unbiased visibility to registered mem-
bers.

• The profile content is only visible if the current user is registered in EtherAd. At first,
it is meant to show the information of the community member and it provides the
functionalities to update them. From this page, it is possible to post a new product
on the platform specifying its image, a brief description and its price. Then, the profile
content lists all the products posted by the current enterprise. Here, it is possible to
directly remove one of them without involving the poll procedure. Finally, in case
the user notices that one or more of its images is no longer available on IPFS, it can
re-upload the exact same files from this profile page without any cost since EtherAd
will not be modified.

• The poll content is visible if the user is registered inEtherAd and if ePoll is in progress.
In particular, it is meant to show the details of the current voting procedure like its
goal and the subject of the moderation decision. From this page it is also possible to
vote for the running poll.

• The info content is meant to provide a brief description of the software and a helper
section to guide users. For instance, it explains that MetaMask extension is required
and how to get Ether from its faucet.

The final result for the home content is shown in Figure 5.2. In particular, I linked Boot-
strap v4.3.1 and other CSS files in the header of my index.html document in order to cus-
tomize the style of the presentation logic.

During the architecture design in chapter two, I introduced IPFS.js since it solves and/or
mitigates some issues. At first, it allows any visitor of the platform to run an IPFS node
directly in its browser. In this way, each user is autonomous, since it can download the pic-
tures of published products and the logos of registered companies through its own peer and
without relying on a hard coded public gateway. This is important because if the selected
one is no longer available, it is not possible to change it without modifying the CID of /dist
folder. Therefore, the visibility and the accessibility of the application is affected because the
URL of the SPA will be different since it is /ipfs/<CID_of_dist_object>. A possible work
around to this issue is to rely on IPNS. In this way, the web application is accessible at /ip-
ns/<PA_node_id>, where thismutable address references the IPFS node hosted by the pub-
lic administration which points to the last version of /dist object. This can also be a good
idea for future upgrades in the presentation logic of the application. However, the CMS
does not rely on IPFS.js for casual visitors, but it is mainly meant to ease the entrepreneurs

73

Figure 5.2: HomecontentoftheSPA.Thisscreenshotshowsthedispositionofregisteredenterprisesandtheirprod-
ucts.NoticetheURLofthepagewhichshowsthatIreliedonCloudFlareIPFSgatewaytoretrievefront-endassets.

registered on the platform. Indeed, as alreadymentioned in chapter two, it is not possible to
upload contents on the IPFS peer-to-peer network through public gateways. Therefore, in
order to update a picture or to publish a new one, each of the registeredmembers in the com-
munity has to run an IPFS node. This is even more crucial given the fact that the only way
for entrepreneurs to guarantee the availability of their contents is to have an always online
peer that serves them on the network. In this scenario, IPFS.js is handy because it allows to
avoid the installation of a node from scratch, which could be complicated for inexperienced
entrepreneurs.

Since IPFS.js allows each visitor of the platform to run a peer, I can exploit this tomitigate
the problem of data persistence with a replicas procedure not integrated in IPFS itself. This
is important also because entrepreneurs may not have the expertise nor they want to afford
the costs for hosting an IPFSnode. The replicas policy I implemented in JavaScript is actually
very simple. Indeed, once the user retrieves any CID from EtherAd contract via Web3.js, at
first it has to download the image with the peer provided by IPFS.js. At this point, I simply
hard coded the procedure to add and pin the content to the local node’s have_list. Thismech-
anism introduces some obvious delays, but it achieves its goal and it has some advantages. At
first, it allows to actually spread the contents in the IPFS network, thusmaking the discovery
and file transfer more efficient through the DHT. Finally, it provides more possibilities for

74

the local node to balance its share ratio with other peers. This is particularly important for
casual visitors of the platform because they usually behave as leechers.

Since the interaction with EtherAd contract is performed via JavaScript with Web3.js, let
me show how this is done in app.js which is included as a script in index.html after truffle-
contract.js and ipfs.js. At first, I designed a JavaScript object calledAppwhich contains all the
properties andmethods required to manage the SPA. Once the page is loaded, I set up three
main components:

• App.web3Provider is created from the web3 object injected directly by MetaMask in
the window. In particular, it specifies the provider used to connect with the selected
Ethereum network. As already explained, the one referenced by MetaMask is Infura,
but it is possible to configure it in order to use Ganache.

• App.account specifies the current Ethreumaccount logged inMetaMask. It is retrieved
with web3 as web3.eth.accounts[0] and its value is also shown in the top navbar of the
SPA.

• App.etherad is the JavaScript object representing an instance of EtherAd contract. It
is obtained using truffle-contract.js which has to parse the compiled contract. That’s
why EtherAd.json has also to be included in /dist folder together with the files in /src.
The interaction between App.etherad and the Ropsten network where I actually de-
ployed the contract is possible throughApp.web3Provider.

• App.ipfs represents the instance of an IPFS node created with IPFS.js constructor.
At this point, the user has an online peer whose identifier can be inspected with the
App.ipfs.id() asynchronous function.

In order to show how the procedure for image replicas and the interaction between web
interface and EtherAd contract are performed, let me describe two operations.

The first one regards the presentation of the registered enterprises in the home content
whose result is shown in Figure 5.2. It is performed by calling a method of the App object
named renderHomeContent() which builds the HTML to be inserted in the SPA. Since this
function has to download the profile images of the registered enterprises, at first it creates
and shows a loading animation by calling the auxiliary function setLoading(true). At this
point, it performs a call to EtherAd contract to retrieve all the members of the community.
Since eStructs is not iterable, at first I had to retrieve eList and then search each element in the
mapping (see Listing 5.5). Notice that these operations do not modify the Ethereum (world)
state, thus they are not transactions to be funded and their return values come directly by the

75

inspection of the blockchain stored by the Ethereum node the user is currently connected
via Infura. At this point, considering the i-th Enterprise instance, it is possible to inspect
the IPFS identifier of the blob object that represents its logo and download it with the local
peer. If this operation succeeds, it is possible to add the file and make it available for other
nodes in the network. On the other hand, a default image from the /imgs folder is shown.
Finally, renderHomeContent() builds anHTML template for the current enterprise and it is
appended to the main div of the SPA. This procedure is shown in Listing 5.10 and the final
result is the one in Figure 5.2.

Listing 5.10Pseudo-codeforApp.renderHomeContent()function
1: r enderHomeContent : a s y n c f u n c t i o n () {
2: App . s e t L o a d i n g (t r u e) ;
3: v a r c o n t e n tD i v = $ (” # c o n t e n t ”) ;
4: c o n t e n tD i v . html (” ”) ;
5:
6: c o n s t r E n t e r p r i s e s = aw a i t App . e t h e r a d . g e t E L i s t () ;
7: / / C r e a t e a s h u f f l e d a r r a y t o r andom i z e t h e p r e s e n t a t i o n
8: f o r (v a r i = 0 ; i < s h u f f l e d A r r a y . l e n g t h ; i ++){
9: c o n s t e n t e r p r i s e = aw a i t
10: App . e t h e r a d . e S t r u c t s (r E n t e r p r i s e s [s h u f f l e d A r r a y [i]]) ;
11: v a r pp = ”< img s r c = \ ” . . / img s /No−Image−I c on . png \ ” >” ;
12: c o n s t i p f sC ID = e n t e r p r i s e [3] ;
13: i f (i p f sC ID != ”” && ip f sC ID != und e f i n e d) {
14: c o n s t f i l e s = aw a i t App . i p f s . g e t (i p f sC ID) ;
15: i f (f i l e s . l e n g t h == 1) {
16: a w a i t App . i p f s . add (f i l e s [0] . c o n t e n t) ;
17: pp = ”< img s r c =\” d a t a : imag e / * ; b a s e64 , ” +
18: f i l e s [0] . c o n t e n t . t o S t r i n g (” b a s e 6 4 ”) + ” \ ” > ” ;
19: }
20: }
21: / / B u i l d t h e e n t e r p r i s e t emp l a t e
22: c o n t e n tD i v . append (e n t e r p r i s e T em p l a t e)
23: }
24:
25: App . s e t L o a d i n g (f a l s e)
26: }

76

Listing 5.11Pseudo-codeforApp.removePost(eIndex,pIndex)function
1: r emov ePo s t : a s y n c f u n c t i o n (e Index , p Index) {
2: App . s e t L o a d i n g (t r u e) ;
3:
4: c o n s t i s R E n t e r p r i s e = aw a i t
5: App . e t h e r a d . i s R e g i s t e r e d (App . a c c o un t) ;
6: i f (! i s R E n t e r p r i s e) {
7: App . s e t L o a d i n g (f a l s e) ;
8: r e t u r n ;
9: }
10:
11: / / C o n t r o l s om i t t e d on i npu t pa r ams
12: c o n s t eAdd r e s s = aw a i t App . e t h e r a d . e L i s t (e I n d e x) ;
13: c o n s t pID = aw a i t
14: App . e t h e r a d . g e t EPo s t ID (eAdd r e s s , p Index) ;
15: c o n s t f e e = aw a i t App . e t h e r a d . g e tA ionamount () ;
16: c o n s t i s P o l l E x p i r e d = aw a i t App . e t h e r a d . i s P o l l E x p i r e d () ;
17: i f (i s P o l l E x p i r e d) {
18: a w a i t App . e t h e r a d . r emov eP r odu c tR equ e s t (eAdd r e s s , pID ,
19: { from : App . a c coun t , t o : App . e t h e r a d . a d d r e s s , v a l u e : f e e }) ;
20: }
21: e l s e {
22: c o n s o l e . l o g (” P o l l no t e x p i r e d , r e t r y l a t e r ”) ;
23: App . s e t L o a d i n g (f a l s e) ;
24: r e t u r n ;
25: }
26:
27: App . s e t L o a d i n g (f a l s e)
28: App . r enderHomeContent () ;
29: }

As an example of the interaction betweenweb interface andEtherAd contract, consider a
registered member of the community that wants to remove a product published by another
enterprise. This action can be done directly from the home content (see Figure 5.2) and the
consequences from the contract point of view have been described in the previous section.
Once the user clicks on the remove button, it triggers the App.removePost(eIndex, pIndex)

77

asynchronous function. At first, it performs a call to EtherAd contract to check if the cur-
rent user is registered in the community and another one to verify whether ePoll is expired.
In this case, the transaction that triggers the removeProductRequest(address, byt) function
can be performed. Let me point out a couple of things from Listing 5.11. At first, eIndex and
pIndex represent respectively the index of the enterprise in eList and the one of the product
in the ePostList field of the related Enterprise (see Listing 5.2). The actual product identifier
is retrievedwith the contract call at line 13. The second thing to notice is that I decided to im-
plement again the same access controls on the poll. This is notmandatory since it isEtherAd
that has to save the application state securely, but in this way I prevent users to experience
errors thrown by MetaMask due to a dropped transaction by the miner. Finally, observe
the format of the transaction to remove the product from EtherAd state. A part from the
function arguments, I added an object that specifies the sender, the recipient and the amount
of Ether involved in the transaction. The first two parameters are not mandatory, since each
transaction is signed automatically byMetaMask using the private key of the current account
and the default recipient is specified by the definition ofApp.etherad. The only mandatory
field is the value because as stated in the previous section, the removeProductRequest(address,
byt) function has to be funded to afford the voting procedure. Indeed, MetaMask by de-
fault subtracts from the account’s balance only the amount required to pay the Gas for the
transaction. The code shown in Listing 5.11 is actually simplified from all the particular cases
described in the previous section.

78

6
Conclusions and future works

In this work, I proposed to address the issues that prevent SMEs and micro firms from ex-
ploiting the opportunity of online aggregation for product advertisement. These obstacles
can be summed up in three aspects. The first one regards the entrepreneurs’ commitment
as a community which is mined by the competition and their selfish behaviour. The sec-
ond one is their skepticism to delegate the moderation of the community to a potentially
biased authority. Finally, the lack of resources and expertise to run and maintain a central-
ized systemwhich are relevant in case the initiator of the project is a micro firm or the public
administration.

The CMS I designed and implemented presents a fully distributed architecture which is
shown in Figure 5.1. Indeed, each enterprise in the community is the first responsible for the
availability of their published contents in the InterPlanetary File System (IPFS) peer-to-peer
network. Moreover, the business logic of the application is implemented in a decentralized
fashionwith the Ethereumblockchain. However, the current impossibility to guarantee data
persistence in IPFS for the front-end assets of the web interface imposes the initiator of sys-
tem to bear some hosting costs. The decision to rely on IPFS instead of a traditional web
server is meant to show and implement exactly the same architecture in case it is available a
technology that provides interoperability with Ethereum and includes an incentive mecha-
nism to make peers store others’ data in a secure and persistent way.

Then, I focused on mitigating the major sources of skepticism that mines entrepreneurs’
trust to each other and to the common advertisement platform. In order to overcome this

79

situation, the software I designed heavily relies on the Ethereum blockchain which allows to
maintain the state of the CMS in a verifiable and secure way. This guarantees entrepreneurs
that all community members can not misbehave since all allowed operations are hard coded
in the smart contract that manages the business logic of the system.

Finally, I faced the issue about the presence of an authoritative moderator that makes en-
trepreneurs suspicious about any decision to be biased. As a consequence, I addressed this
problem by implementing a majority vote in the smart contract of the application. Indeed,
each moderation decision triggers a poll that defines the consensus of the community on a
specific subject. In this way, the entrepreneurs themselves are the ones that define the quality
standards of the published contents and the initiator of the CMS (e.g. the public adminis-
tration that wishes to support the aggregation of entrepreneurs) delegates these moderation
costs to registered members.

In conclusion, my work provides a solid basis for a content management system that suits
the needs of small aggregations of SMEs as it is fully distributed and without a central au-
thority for content moderation, but there is still room for improvements.

The first one I envision would be to switch from IPFS to Swarm once its development sta-
tus reaches a more stable version. With Swarm it should be possible not to force the initiator
of theCMS to host an always online node, since the storage of allHTML,CSS and JavaScript
files for the web interface can be funded with the exceeding of the moderation procedures
plus an eventual fee payed by each community member. Moreover, entrepreneurs may de-
cide to fund the persistent storage of their contents or maintain the current implementation
where they have to run a peer to guarantee the availability of their contents. At the time of
writing, Swarm seems the most interesting technology since its incentive mechanism will be
based onEthereum, thus its interoperabilitywith the business logic of the application should
be guaranteed.

Then, besides refining the quorum value and the duration of the poll, another issue that
I did not tackle in chapter five regards the anonymity in the voting strategy. Indeed, since
all transaction can be inspected in the blocks of the Ethereum blockchain, it is actually pos-
sible in the current implementation to retrieve what a target account has voted in a specific
poll. This privacy concern is relevant for entrepreneurs due to possible rivalries between
members of the community. This problem is an active topic in the literature and a very in-
teresting study is proposed in [62]. In this paper, the authors describe their solution tested
on Ethereum blockchain and the many technical difficulties they encountered. The most
critical one is that the number of voters can be up to sixty due to the g Limit value for a

80

block, which is set by the miners at 4.7million Gas.
Finally, this platform can be extended not only to advertise products, but directly to sell

them just like in online markets. The interaction between buyers, couriers and registered
enterprises should be carefully managed via smart contracts to prevent frauds and malicious
behaviours of one or more of the involved actors.

81

82

References

[1] K. L. R. A. R. D. F. M. M. R. S. Muller, Mattes, “Annual report on european smes
2017/2018,” 2018.

[2] ——, “Italian sba fact sheet 2017/2018,” 2018.

[3] [Online]. Available: https://github.com/ethereum/go-ethereum

[4] [Online]. Available: https://github.com/ipfs/ipfs

[5] Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[6] Merkle, “Secrecy, authentication andpublic key systems: A certifieddigital signature.”
Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University., 1979.

[7] A. B. A.M.M.D. Bano, Sonnino, “Sok: Consensus in the age of blockchains,” arXiv
preprint arXiv:1711.03936, 2017.

[8] P. Migliardi, Merlo, “On the feasibility of moderating a p2p cdn system: a proof-of-
concept implementation,” 2015 10th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 2015.

[9] Freitas, “Twister: the development of a peer-to-peer microblogging platform,” Inter-
national Journal of Parallel Emergent and Distributed Systems, 2015.

[10] P. M. M. Prasad, Dantu, “A decentralized marketplace application on the ethereum
blockchain,” IEEE 4th International Conference on Collaboration and Internet Com-
puting, 2018.

[11] [Online]. Available: https://github.com/bigchaindb/bigchaindb

[12] G. L. Xu, Song, “Building an ethereum and ipfs-based decentralized social network
system,” IEEE 24th International Conference on Parallel and Distributed Systems,
2018.

83

https://github.com/ethereum/go-ethereum
https://github.com/ipfs/ipfs
https://github.com/bigchaindb/bigchaindb

[13] H. Isaak, “User data privacy: Facebook, cambridge analytica, and privacy protection,”
2018 IEEE Computer Society, 2018.

[14] [Online]. Available: https://github.com/ethereum/web3.js

[15] [Online]. Available: https://github.com/ethersphere/swarm

[16] [Online]. Available: https://github.com/storj/storj

[17] [Online]. Available: https://gitlab.com/NebulousLabs/Sia

[18] [Online]. Available: https://github.com/filecoin-project/go-filecoin

[19] [Online]. Available: https://ipfs.github.io/public-gateway-checker

[20] [Online]. Available: https://github.com/MetaMask/metamask-extension

[21] [Online]. Available: https://github.com/INFURA

[22] [Online]. Available: https://github.com/brave/brave-browser

[23] [Online]. Available: https://github.com/ethereum/mist

[24] [Online]. Available: https://github.com/ipfs/js-ipfs

[25] Buterin, “A next generation smart contract and decentralized application platform,”
Ethereum foundation, 2014.

[26] Wood, “Ethereum: a secure decentralized generalized transaction ledger,” Ethereum
foundation, 2014.

[27] Szabo, “Smart contracts: Building blocks for digital markets,” 1996.

[28] G. Buterin, “Casper the friendly finality gadget,” Ethereum foundation, 2018.

[29] [Online]. Available: https://github.com/ethereum/cbc-casper

[30] B. Poon, “Plasma: Scalable autonomous smart contracts,” Ethereum foundation,
2017.

[31] [Online]. Available: https://github.com/paritytech

84

https://github.com/ethereum/web3.js
https://github.com/ethersphere/swarm
https://github.com/storj/storj
https://gitlab.com/NebulousLabs/Sia
https://github.com/filecoin-project/go-filecoin
https://ipfs.github.io/public-gateway-checker
https://github.com/MetaMask/metamask-extension
https://github.com/INFURA
https://github.com/brave/brave-browser
https://github.com/ethereum/mist
https://github.com/ipfs/js-ipfs
https://github.com/ethereum/cbc-casper
https://github.com/paritytech

[32] [Online]. Available: http://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/

[33] Z. Wöhrer, “Smart contracts: Security patterns in the ethereum ecosystem and so-
lidity,” 2018 International Workshop on Blockchain Oriented Software Engineering,
2018.

[34] Benet, “Ipfs - content addressed, versioned, p2p file system (draft 3),” arXiv preprint
arXiv:1407.3561, 2014.

[35] M. Maymounkov, “Kademlia: A peer-to-peer information system based on the xor
metric,” Revised Papers from the First International Workshop on Peer-to-Peer Sys-
tems, 2002.

[36] M. Baumgart, “S/kademlia: A practicable approach towards secure key-based rout-
ing,” 2007 International Conference on Parallel and Distributed Systems, 2007.

[37] Cohen, “Incentives build robustness in bittorrent,” Proceedings of the 4th USENIX
conference on Networked systems design and implementation, 2003.

[38] K. Wang, “Measuring large-scale distributed systems: Case of bittorrent mainline
dht,” IEEE International Conference on Peer-to-Peer Computing, 2013.

[39] M. Legout, Urvoy-Keller, “Rarest first and choke algorithms are enough,” Internet
Measurement Conference, ACM SIGCOMM conference, 2006.

[40] [Online]. Available: https://github.com/libp2p/

[41] [Online]. Available: https://github.com/ipld/ipld

[42] [Online]. Available: https://github.com/ipfs/go-ipns

[43] [Online]. Available: https://github.com/multiformats/multihash

[44] Z. Y. L. Li, Xu, “Packet forwarding in named data networking: Requirements and
survey of solutions,” IEEE Communications surveys and tutorials, 2018.

[45] [Online]. Available: https://github.com/multiformats/multiaddr

[46] [Online]. Available: https://tools.ietf.org/html/rfc8445

85

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/libp2p/
https://github.com/ipld/ipld
https://github.com/ipfs/go-ipns
https://github.com/multiformats/multihash
https://github.com/multiformats/multiaddr
https://tools.ietf.org/html/rfc8445

[47] M. Freedman, Freudenthal, “Democratizing content publication with coral,” Pro-
ceedings of the 1st conference on Symposium on Networked Systems Design and Im-
plementation, 2004.

[48] [Online]. Available: https://docs.ipfs.io/reference/api/cli/

[49] K. Mazieres, “Self-certifying file system,” PhD thes , 2000.

[50] [Online]. Available: https://github.com/trufflesuite/truffle

[51] [Online]. Available: https://github.com/nodejs/node

[52] [Online]. Available: https://github.com/trufflesuite/ganache

[53] [Online]. Available: https://github.com/trufflesuite/truffle/tree/master/packages/
truffle-contract

[54] [Online]. Available: https://github.com/mochajs/mocha

[55] [Online]. Available: https://github.com/johnpapa/lite-server

[56] [Online]. Available: https://github.com/trufflesuite/truffle/tree/master/packages/
truffle-hdwallet-provider

[57] [Online]. Available: https://github.com/motdotla/dotenv

[58] [Online]. Available: https://github.com/ethereum/solidity

[59] [Online]. Available: https://ropsten.etherscan.io/

[60] [Online]. Available: https://faucet.metamask.io/

[61] [Online]. Available: https://github.com/ETH-Pantheon/Aion/

[62] H.McCorry, Shahandashti, “A smart contract for boardroom voting with maximum
voter privacy,” IACR Cryptolo ePrint Archive, 2017.

86

https://docs.ipfs.io/reference/api/cli/
https://github.com/trufflesuite/truffle
https://github.com/nodejs/node
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/truffle/tree/master/packages/truffle-contract
https://github.com/trufflesuite/truffle/tree/master/packages/truffle-contract
https://github.com/mochajs/mocha
https://github.com/johnpapa/lite-server
https://github.com/trufflesuite/truffle/tree/master/packages/truffle-hdwallet-provider
https://github.com/trufflesuite/truffle/tree/master/packages/truffle-hdwallet-provider
https://github.com/motdotla/dotenv
https://github.com/ethereum/solidity
https://ropsten.etherscan.io/
https://faucet.metamask.io/
https://github.com/ETH-Pantheon/Aion/

Acknowledgments

Scrivere quest’ultima pagina è veramente un insieme di emozioni indescrivibili: c’è sod-
disfazione per aver terminato un percorso di studi importante a cui ho dedicato tutto il mio
impegno, c’è la consapevolezza che oggi si chiude un capitolo importante della mia vita ed
infine l’entusiasmo per le nuove esperienze che mi aspettano. Desidero quindi ringraziare
tutti coloro che mi sono stati vicino, mi hanno supportato e sopportato in questi anni sia
all’università che al di fuori.

Ovviamente non posso che iniziare dai miei genitori, mamma Alba e papà Valter. Siete
sempre stati presenti e mi avete incoraggiato in ogni mia scelta anche se vi sono costate più
sacrifici di quanto mostrate. Oggi non avrei mai raggiunto questo risultato senza di voi, il
vostro sostegno e il vostro affetto. Spero di avervi reso orgogliosi di me, vi voglio bene.

Voglio dedicare un pensiero anche a mio fratello Francesco. La tua allegria mi ha aiutato
molto a distrarmi dallo stress e dalle difficoltà che ho incontrato in questi anni di ingegne-
ria. Ora che hai intrapreso questo mio stesso percorso, spero di farti da spalla almeno tanto
quanto tu lo sei stato per me.

Un grande grazie lo devo anche a tutti gli zii, zie, cugini e cugine che mi hanno pensato
soprattutto durante queste ultime fatiche. In particolare, ai miei nonni Carlo, Luciana e
Giovanna che hanno sempre creduto in me, esame dopo esame. Forse è anche grazie a tutte
le vostre candele se ho raggiunto questo importante traguardo.

Poi ci sono tutti gli amici con cui ho affrontato questo percorso. Apartire daMarco, ilmio
collega e compagno di corso con cui ho condiviso gioie, dolori, ma soprattutto tanti progetti
e chiamate su Skype. Poi ringrazio Ludovica ed Andrea, i bioingegneri più simpatici del DEI
con cui ho passato molte avventure e pause pranzo. Infine a Giovanni, Stefano e Sebastiano,
gli amici dei tempi del liceo con cui trascorromolti sabati sera tra film discutibili e chiacchere
in libertà.

Un ringraziamento finale lo dedico al prof. Migliardi per la sua disponibilità e la sua
pazienza nel seguirmi in questo lavoro. Quando ho scelto questa tesi, l’ho vista come una
sfida e un’opportunità per dimostrare a me stesso di essere in grado di gestire un progetto
complesso in cui avrei dovuto imparare da solo molti argomenti. La consapevolezza che mi
ha lasciato questa tesi è una spinta notevole verso il mondo del lavoro che mi aspetta.

87

	Abstract
	List of figures
	Introduction
	CMS architecture design
	The state of the art
	Principles of blockchain technology
	Blockchain in complex systems

	The designed architecture
	Technologic components
	Architecture overview

	Ethereum and Solidity
	Ethereum fundamentals
	Ethereum state and accounts
	Transactions, Gas and Blocks
	Transition function and the EVM
	Ethereum consensus protocol

	Solidity
	Contracts
	Variables
	Visibility, functions and modifiers

	The InterPlanetary File System
	IPFS background
	Distributed hash tables and Kademlia
	BitTorrent
	Git's directed acyclic graph

	IPFS design
	Peer identities
	Network and Routing
	BitSwap protocol
	Objects and Files
	Naming

	CMS implementation
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Project set up
	Smart contract implementation
	Data model
	EtherAd state variables
	The contract owner and access controls
	The voting procedure and moderation policies

	Front-end implementation

	Conclusions and future works
	References
	Acknowledgments

