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Abstract

Recently two different metabolic phenotypes have been discovered in breast can-

cer cells. As increasing evidence shows how metabolism is directly connected

to cancer invasiveness, it is of interest to identify which enzymes lead to the

expression of each phenotype. As first contribution of this work, we present

a novel kinetic model that approximates mitochondrial metabolism. Thereafter,

we investigate the behaviour of the system through multiple numeric simulations.

Ultimately, we show that it is possible to replicate each phenotype through the

over-expression of a limited set of enzymes.

Abstract (versione italiana)

Recentemente sono stati identificati due distinti fenotipi metabolici nelle cellule

di cancro al seno. Data la crescente evidenza di come il metabolismo cellulare

sia fondamentale nel determinare l’invasivitá del cancro, é di interesse mettere

in rilievo quali siano gli enzimi che portano all’espressione di ciascun fenotipo.

Nella prima parte di questo lavoro viene presentato un modello originale per

approssimare il metabolismo mitocondriale. Successivamente, il comportamento

di questo sistema é analizzato tramite una serie di simulazioni numeriche. In

tal modo si vuol dare evidenza come sia sufficiente modificare l’espressione di un

ristretto gruppo di enzimi per manifestare ognuno dei due fenotipi.
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Introduction

Mitochondria are cellular organelles that perform many fundamental tasks for

the cell. Besides ATP production, they also provide important intermediates

for the biosynthesis of macromolecules such as proteins, lipids and nucleotides.

Accordingly, they qualify as primary determinants of the metabolism of the entire

cell.

Since the studies of Otto Warburg in 1924, it is well-known that the behaviour

of these organelles in cancer is consistently altered. The initial belief was that

mitochondria were impaired in cancer cells, thus leading to their malfunctioning.

Only in recent years this notion was refuted and mitochondrial metabolism has

instead emerged as a crucial component of several signalling pathways involved

in tumorigenesis. Thus a better understanding of the key steps involved in mi-

tochondrial metabolism could reveal novel therapies to block these pathways,

consequently hampering the proliferation of cancer cells. In particular in this

work, starting from some new experimental data, we focus our attention on the

metabolism of breast cancer cells. However it is important to remark that these

metabolic pathways comprise numerous enzymes which, in turn, are character-

ized by multiple feedback mechanisms. Therefore the analysis of these networks

is often not intuitive and requires an analytical approach to obtain trustworthy

results. We addressed this problem through kinetic modelling.

Here is the organization of the present work. In Chapter 1 are summarized the

main pathways that branch off from mitochondrial metabolism as well as their

different regulation between healthy and cancer cells. In Chapter 2 is described

the mathematical model we built in order to replicate mitochondrial metabolism

in breast cancer cells. Thereafter, in Chapter 3, this model is utilised to analyse

two distinguishable metabolic phenotypes that have been recently identified in

breast cancer cells. In particular we aim to highlight a small set of enzymes

that is responsible for the manifestation of each phenotype. Finally, in Chapter
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4, we draw some conclusions and we give a brief review regarding alternative

approaches that could be deployed in the future to further analyse this subject.
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Chapter 1

Metabolism in Cancer

The aim of this chapter is to outline the primary reactions involved in energy

production and biosynthesis. Thereafter we want to analyse the main differences

between metabolism in normal and tumour cells. In particular we will see how

mitochondria play a central role in these processes, hence the importance of

modelling mitochondrial metabolism.

Glycolysis constitutes the first phase of most carbohydrate catabolism as it

breaks down glucose to form pyruvate with the net production of two molecules

of ATP. This pyruvate can be used in either anaerobic glycolysis (via lactate

dehydrogenase) or in aerobic respiration (via the tricarboxylic acid cycle). Notice

that the latter results in a production of ATP significantly higher (38 versus 2

molecules of ATP produced per molecule of glucose). Consequently, the first

pathway is usually used by the cell only if there is no oxygen available. However

we will see that this does not hold true in the case of tumour cells.

It is important to note that from this route, that starts from glucose and ar-

rives to pyruvate, branch off other major pathways such as the pentose phosphate

pathway (PPP) and the synthesis of serine, see Fig.1.1. In particular PPP leads

to the production of reducing equivalents (namely NADPH) that are in turn used

for lipid synthesis, and also ribose-5-phosphate (R5P) that is instead essential for

nucleotides production, see Fig.1.3. On the other hand serine is implicated in the

production of numerous metabolites such as glycine, cysteine, sphingolipids and

folate.

If pyruvate enters the mitochondria, it is then oxidized in order to generate

energy and other species that are in turn used for the synthesis of lipids and

5



1. METABOLISM IN CANCER

Glycogen
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Figure 1.1: Main branches of metabolism departing from glycolysis. G6P: glucose-

6-phosphate; PPP: pentose phosphate pathway; 3PG: 3-phosphoglycerate; TCA:

tricarboxylic acid cycle; OXPHOS: oxidative phosphorylation.

proteins (citrate and oxalacetate respectively).

More precisely, the mitochondrial ATP production relies on the electron trans-

port chain (ETC), composed of respiratory chain complexes I-IV, which transfer

electrons taken from NADH and FADH2 to reduce oxygen to water. Simul-

taneously, H+ are pumped in the intermembrane space, thus forming a strong

electrochemical gradient across the inner membrane. Consequently this gradient

is used to produce energy by the ATP synthase complex, as H+ protons tend to

return inside the inner membrane. Thereafter the adenine nucleotide translocase

(ANT) catalyses the exchange of mitochondrial ATP with cytosolic ADP. It is

important to note that ATP has a strong inhibitor effect on glycolysis creating

thus a feedback mechanism.
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1.1 WARBURG EFFECT

1.1 Warburg effect

Now we will describe the overall characteristics that distinguish the metabolism

observed in tumour cells versus that of normal cells.

The fundamental observations, that constitute the basis of our current knowl-

edge, arise from the studies of Otto Warburg dating back to 1924. Precisely, what

Otto Warburg discovered is that most cancer cells produce energy by a high rate

of glycolysis followed by lactic acid fermentation in the cytosol, rather than by the

oxidation of pyruvate in mitochondria, even in the presence of O2. For this rea-

son this kind of metabolism is also denominated ’aerobic glycolysis’. This seems

counter-intuitive as we already explained how this pathway is quite inefficient

in terms of ATP production with respect to aerobic respiration. Otto Warburg

proposed that this atypical behaviour was due to defects in the mitochondria.

However, this explanation appears nowadays not founded since it was observed

in many cancers an upregulated aerobic glycolysis without any mitochondrial

dysfunction or oxidative phosphorylation (OXPHOS) disruption [5, 6]. In these

cancers, OXPHOS continues as normal and produces as much ATP as OXPHOS

in normal tissues under the same oxygen pressures. In general, tumour cells

display a wide variety of levels of aerobic glycolysis, in fact the contribution of

glycolysis to ATP production ranges from over 50% to less than 5% in some cells

[13].

Furthermore it is important to note that this type of metabolism is not solely

found in cancer cells but constitutes a common feature of rapid cell proliferation

[10, 11].

In recent years, extensive research has been devoted to the study of the pecu-

liarities of tumour cells metabolism. Consequently, a copious literature has been

developed regarding the various metabolic mutations that have been identified in

cancer. In the following paragraphs we will try to give a comprehensive summary

about the central results. In particular, we will describe the overall regulation

of the main pathways (PPP, ROS production, serine synthesis, etc) whereas in

Chapter 2 we will focus on the individual enzymes involved in mitochondrial

metabolism.
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1. METABOLISM IN CANCER
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Figure 1.2: Main steps of glycolysis. DHAP: dihydroxyacetone phosphate; GADP:

glyceraldehyde-3-phosphate. 1: hexokinase; 2: phosphoglucose isomerase; 3: 6-

phosphofructo-kinase; 4: fructose-biphosphate aldolase; 5: trisephosphate iso-

merase; 6: glyceraldehyde phosphate dehydrogenase + phosphoglycerate kinase

+ phosphoglycerate mutase + enolase; 7: pyruvate kinase.

1.1.1 Glycolysis and OXPHOS

Glucose enters cells via a family of twelve functional glucose transporters (GLUTs),

denominated GLUT-1 to GLUT-12. The majority of them are tissue-specific, for

example, GLTU-1 (all tissues but abundance in brain and erythrocyte), GLUT-2

(liver), GLUT-3 (brain), GLUT-4 (muscle/fat), and GLUT-5 (small intestine).

Among the GLUTs, GLUT-1 is a rate-limiting transporter for glucose uptake,

and its expression correlates with anaerobic glycolysis. GLUT-1 has an influence

not only on glucose uptake/utilization but also on tumorigenic features [7, 8, 9].

The first, and arguably major, point of regulation of the glycolysis pathway

is constituted by the enzyme 6-phosphofructo-kinase (PFK) which catalyzes the

phosphorylation of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (Fru-

1,6-P2), see Fig. 1.2. Four different genes coding different isozymes (PFKFB14)

have been identified to date [51, 52, 53, 54, 55]. They differ not only in their tissue

distribution but also in their kinetic and regulatory properties. These isoforms

were found to be over expressed in various types of cancer [56, 57, 58, 59].

Another important step of glycolysis reprogramming, that leads to the War-

burg effect, is the switch in isoform of pyruvate kinase (PK). Many types of
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1.1 WARBURG EFFECT

cancer cells use the M2 isoform of pyruvate kinase (PKM2) instead of the M1

isoform of the enzyme (PKM1) as normal tissues do [107, 154, 158, 155]. This is

a significant difference since PKM2 exhibits an activity considerably lower than

PKM1. More specifically PKM2 can exist in two forms: tetrameric (active) or

dimeric (inactive). PKM2 is also is tightly regulated, its allosteric effectors in-

clude Fru-1,6-P2 and numerous amino acids. It is believed that this enzyme acts

as a switch channelling the carbon flux to ATP production (active form) or into

biosynthetic pathways (inactive form) according to the state of the cell. More

precisely, when the levels of amino acids are low, the slower PKM2 leads to accu-

mulation of earlier glycolytic intermediates, diverting them to pathways such as

hexosamine synthesis, PPP, amino acids production. Moreover this results in the

accumulation of phosphoenolpyruvate (PEP), which functions as a feedback in-

hibitor of the glycolytic enzyme triosephosphate isomerase. This in turn activates

PPP [14, 15].

Another characteristic of cancer metabolism resides in the increased ROS pro-

duction [17, 107], in particular superoxide (O−2 ) and hydrogen peroxide (H2O2)

appear to be increasingly produced by mitochondria in cancer cells. ROS are

involved in tumour angiogenesis [18] as well as in promoting invasion and metas-

tasis of cancer cells [19]. However, it is important to note that ROS act as a

double-edged sword for cancer cells since they are also a major contributor to

oxidative damage [16]. Thus the cellular level of ROS must be maintained within

a certain range so that they promote cancer cell growth without causing severe

oxidative damage. Up to a certain extent of glycolysis, the malate-aspartate

shuttle through the mitochondria is able to restore the NADH imbalance [5].

Also de novo serine metabolism, which feeds into the one-carbon metabolism,

produces NADPH and glutathione, which modulate ROS levels [20, 21]. In this

regard it has been validated that the increased glucose metabolism in cancer cells

compensates partially for increased fluxes of H2O2 produced in mitochondria by

producing higher amounts of both NADPH as a cofactor for H2O2 metabolism

and pyruvate for directly scavenging H2O2 in a deacetylation reaction to form

acetic acid and H2O [22, 23, 24]. In addition, ROS and PKM2 form a negative

feedback loop to maintain ROS in a tolerable range. PKM2 can be oxidized by

H2O2, which leads to a reduction of its activity and augmentation of flux of gly-

colytic intermediates into PPP [14, 15]. In [111] was proposed the idea that the

9



1. METABOLISM IN CANCER

G6P

6-phosphogluconate NADPH

1

2

Ribulose-5-phosphate NADPH
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6

5

Figure 1.3: Main steps of the pentose phosphate pathway. R5P: ribose-5-

phosphate; F6P: fructose-6-phosphate; PRPP: phosphoribosyl pyrophosphate.

1: glucose-6-phosphate dehydrogenase+glucolactonase; 2: 6-phosphogluconate

dehydrogenase; 3: phosphopentose isomerase; 4: phosphopentose epimerase, 5:

transketolase; 6: transaldolase; 7: phosphoribosyl pyrophosphate synthetase.

feedback mechanism between glycolysis and ATP could be compromised in cancer

cells, thus promoting the high levels of glycolysis observed in tumour cells. More

specifically, it is known that the level of free tubulin varies over the course of the

cell cycle and thus undergoes a periodic pattern during cell proliferation. What

they found out is that this protein affects the activity of the voltage dependent

anion channel (VDAC), which allows the passage of small hydrophilic molecules,

including ATP, across the outer membrane of mitochondria. Consequently free

tubulin, through inhibition of VDAC, could potentially avoid the inhibition of

glycolysis that usually happens when ATP is produced.

1.1.2 Genes involved in cancer metabolism

So far, different transcriptional factors have been identified as possible promoters

of the Warburg effect.

Perhaps the most famous transcriptional factor is hypoxia-inducible factor
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1.1 WARBURG EFFECT

(HIF). There are three isoforms in the HIF family: HIF-1, HIF-2 and HIF-3 with

HIF-1 and HIF-2 better studied and HIF3 functions poorly understood. Among

the three, HIF-1 is the only one that is ubiquitously expressed and it is the

most relevant to cancer. HIF-1, like all HIFs, consists of an oxygen-dependent

α-subunit and a constitutively expressed β-subunit. Under normoxia, HIF-1α

is modified by prolyl hydroxylases (PHDs). Consequently HIF-1α is recognized

by the von Hippel-Lindau protein and its associated ubiquitinase, resulting in

the degradation of the protein. Under hypoxia, on the other hand, the reduced

oxygen supply diminishes the activity of PHDs, which are further inhibited by

ROS released from stressed mitochondria. Consequently, HIF-1α binds to HIF-

1β to form a stabilized HIF-1. HIF-1 complex then promotes the transcription

of numerous genes involved in glucose transport, glycolysis, pH regulation and

vasculogenesis, allowing cancer cells to rapidly adapt to hypoxia [36, 38, 37, 112].

Notably, HIF-1 was found to regulate the activity of both PFK [60] and to be

a PHD-induced coactivator for HIF [39]. Furthermore, the activity of HIF-1α

is regulated by the sirtuin gene (SIRT) family. SIRT is a mitochondrial NAD-

dependent deacetylase that has the capacity of destabilizing HIF-1α. In particular

it has been shown that the loss of SIRT3 leads to HIF-1α stabilization through

an increase of ROS production. Accordingly, the loss of SIRT3 has been shown to

result in aberrant mitochondrial metabolism while its over-expression represses

glycolysis and proliferation in breast cancer cells [33, 34, 35]

Another important transcription factor is c-Myc, which has been implicated

in regulating glycolysis in tumour cells through transactivation of lactate dehy-

drogenase A [29], up-regulation of GLUT-1 genes [28] and coordinate induction

of all glycolytic enzymes [26].

Notably, there exists cross talk between Myc and HIF. More precisely, the for-

mer can stimulate HIF-1α, HIF-1α can inhibit the activity of c-Myc and HIF-2α

can instead enhance it [25, 27]. Moreover, both HIF and Myc activate hexoki-

nase 2 (HK2) and pyruvate dehydrogenase kinase1 (PDK1), leading to augmented

glycolytic rates and conversion of glucose to lactate [31].

The phosphoinositide 3-kinase (PI3K) signalling pathway is linked to both

growth control and glucose metabolism. PI3K signalling, through Akt, can reg-

ulate glucose transporter expression, enhance glucose capture by hexokinase and

stimulate phosphofructokinase activity [50]. The PI3K pathway also renders cells

11



1. METABOLISM IN CANCER

dependent on high levels of glucose flux [49].

In [113] they observed that the Warburg effect shows significant correlation

with the levels of c-Myc and HIF-1α in breast cancer cell lines. Notably, in the

same study, Akt did not appear to play a significant role. However in [30] it was

reported that human glioblastoma cells metabolize glucose in correlation with

Akt activity in vitro.

Finally it is necessary to mention the transcriptional factor p53, which is a

well known tumour suppressor [40]. In particular, this transcriptional factor can

induce the arrest of the cell cycle in case of DNA damage and it is also able to

trigger apoptosis if this damage proves to be irreparable. Recent studies have

revealed a number of functions of p53 in the regulation of glucose metabolism

and energy production pathways, including glucose transport [44], glycolysis [43],

TCA cycle [45] and glutaminolysis [41, 42], ETC/OXPHOS [46] and PPP [47, 48].

1.2 Glutamine

The main substrates to mitochondrial metabolism are by far glucose and glu-

tamine. For example, in rapidly proliferating cultured glioblastoma cells most of

acetyl-CoA comes from glucose whereas essentially all of oxacelate comes from

glutamine [64]. The simplest mechanism to explain the enhanced use of both

glutamine and glucose by tumour cells is that metabolism of the two nutrients

is co-regulated. However, recent findings suggest that they can be regulated by

independent signalling pathways within the same cells. In a glioblastoma cell

line with genomic c-Myc amplification, the inhibition of Akt signalling led to a

decrease in glycolysis but had no effect on glutamine metabolism, which was only

inhibited when c-Myc was suppressed to normal levels [65].

In the following paragraphs we will describe the transporters that allow the

entry of glutamine inside the cell, then we will discuss in more detail glutamine

metabolism and we will finally give an overview of the major transcriptional

factors involved in its regulation.

1.2.1 Glutamine transporters

The SLC (solute carrier) transporters (≈ 400 in number) in mammalian cells

comprise of 52 distinct gene families [62]. Among them, fourteen are capable

12



1.2 GLUTAMINE

of transporting glutamine across the plasma membrane. They are found in four

families: SLC1, SLC6, SLC7, and SLC38. More precisely we have one trans-

porter in SLC1, two transporters in SLC6, five transporters in SLC7 and six

transporters in SLC38. However, it is generally thought that the members of

the SLC38 family are the principal transporters for glutamine. It is important

to note that none of these transporters is exclusively selective for glutamine and

that not all of these transporters function in the influx of glutamine into cells.

Some of the glutamine transporters are obligatory exchangers (i.e. capable of

mediating either the influx or efflux of glutamine depending on the concentration

gradients) whereas some function as active transporters in one direction. While

most glutamine transporters mediate the influx of the amino acid into cells, some

mediate the efflux of the amino acid out of the cells. We now describe in more

detail these glutamine transporters.

SLC1 family

The SLC1 gene family consists of transporters for anionic amino acids (aspar-

tate and glutamate) or neutral amino acids [71]. SLC1A4 (also known as ASCT1)

and SLC1A5 (also known as ASCT2) are the transporters for neutral amino

acids, the former being selective for alanine, serine, and cysteine and the latter

for alanine, serine, cysteine, threonine and glutamine. The term ASCT stands

for Alanine-Serine-Cysteine Transporter. Both transporters are Na+-coupled and

function as obligatory exchangers.

SLC1A5 is expressed in the intestine, kidney, lung, testis, skeletal muscle, and

adipose tissue. It mediates the Na+-coupled influx of glutamine in exchange for

the efflux of any of the other four amino acid substrates. Recently, SLC1A5 is was

found to be up-regulated in many cancer types, including triple-negative breast

cancer [68, 69] and melanoma [70].

The activity of SLC1A5 seems to be coupled with two other amino acid trans-

porters, namely SLC7A5 and SLC7A11. SLC7A5 mediates the efflux of glutamine

from the cells in exchange for the influx of leucine. On the other hand, SLC7A11

is a cystine-glutamate exchanger, which functions always in the import of cystine

into cells under physiologic conditions, and the imported cystine is then used in

the synthesis of the antioxidant molecule glutathione. The expression of SLC7A11

is also increased in several cancers [72].

13



1. METABOLISM IN CANCER

SLC6 family

The SLC6 gene family is known as the Na+/Cl−- coupled neurotransmitter

transporter family because of the inclusion of transporters for a variety of neu-

rotransmitters in this family (e.g. GABA, serotonin, dopamine, norepinephrine,

and glycine) [73]. However, the SLC6 gene family does also contain transporters

for amino acids that do not function as neurotransmitters; among these trans-

porters are the glutamine transporters SLC6A14 and SLC6A19.

SLC6A14 is characterized by a broad substrate selectivity and it is obligatorily

coupled to a Na+ gradient as well as a Cl− gradient [74]. It recognizes 18 of the

20 amino acids as substrates, with glutamate and aspartate being the only two

amino acids excluded by the transporter. SLC6A14 appears to be up-regulated in

certain cancer types that comprise estrogen receptor-positive breast cancer [75].

SLC6A19 transports all neutral amino acids including glutamine and it is

coupled only to Na+.

SLC7 family

Among the five glutamine transporters in the SLC7 gene family, four (SLC7A5,

SLC7A6, SLC7A7, and SLC7A8) specifically interact with SLC3A2 whereas SLC7A9

interacts specifically with SLC3A1. Each of these transporters functions as an

obligatory exchanger. SLC7A5 and SLC7A8 are known as LAT1 and LAT2 re-

spectively; ’LAT’ refers to ’system L amino acid transporter’ where ’L’ indicates

their preference for leucine. Both transporters do interact with all neutral amino

acids but prefer large amino acids such as leucine, isoleucine, valine, tyrosine,

phenylalanine, tryptophan, glutamine, andmethionine. Both are expressed in a

wide variety of tissues and cells. SLC7A5 is the primary transporter for neutral

amino acids in the endothelial cells lining the bloodbrain barrier [76]. On the

other hand, SLC7A8 is highly expressed in the absorptive cells of the intestine

and kidney where it is present in the basolateral membrane, thus participating in

the efflux of amino acids from the cells into the circulation. SLC7A5 expression is

increased in many cancers, particularly in melanoma, lung cancer and colon can-

cer [77]. On the other hand, there is very little information on whether SLC7A8

plays any role in cancer.

SLC7A6 and SLC7A7 are Na+-dependent, they mediate the influx into cells

14



1.2 GLUTAMINE

of neutral amino acids coupled to the efflux of cationic amino acids. These trans-

porters are expressed in the basolateral membrane of absorptive epithelial cells

of the intestine and kidney.

SLC7A9 involves an obligatory exchange of cationic amino acids with neutral

amino acids. It is expressed predominantly in the absorptive tissues such as

the intestine, kidney, and placenta, and is located on the apical membrane of

the absorptive epithelial cells in these tissues. Under physiologic conditions, the

transporter facilitates the influx of cationic amino acids in the cells coupled to

the efflux of neutral amino acids from the cells.

SLC38 family

The SLC38 transporters are functionally identified as amino acid transport

systems A and N; system A (A stands for alanine-preferring) refers to a Na+-

dependent transport process selective for neutral amino acids including alanine

while system N (N stands for amino acids with nitrogen in the side chain) refers to

a Na+-dependent transport process selective for glutamine, asparagine, and histi-

dine, which all contain nitrogen atom in the side chain. SLC38A1 and SLC38A2

belong to the group of system A transporters whereas SLC38A3 and SLC38A5

belong to the group of system N transporters. Unfortunately detailed functional

studies are not available for SLC38A7 and SLC38A8 for definitive classification

into either system A group or system N group.

SLC38A1 and SLC38A2 are Na+-coupled transporters and belong to group

A, they also transport including glutamine. Both are expressed ubiquitously in

many mammalian tissues. They represent one of the major routes of glutamine

entry into cells under physiologic conditions. In the central nervous system,

SLC38A1 and SLC38A2 are expressed almost exclusively in neurons where they

function in glutamate/GABA-glutamine cycle that takes place between neurons

and astrocytes [78]. There is some evidence that SLC38A2 might be involved

in promoting tumour growth. Moreover the gene encoding this transporter is a

transcriptional target for the tumour suppressor p53; the expression of SLC38A2

is repressed by active p53 [79].

SLC38A3 and SLC38A5 are referred to as SN1 (system N1) and SN2 (system

N2) transporters. These are Na+-coupled and selective for glutamine, asparagine,

and histidine. SLC38A5 recognizes alanine and serine as additional substrates.

SLC38A3 is expressed abundantly in the liver, brain, retina, and pancreas [80]
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1. METABOLISM IN CANCER

whereas SLC38A5 is expressed primarily in the intestinal tract, kidney, retina,

lung, and cervix [81]. In the brain, both transporters are expressed in astro-

cytes where they function in the release of glutamine from the cells as a part

of the glutamate/GABA-glutamine cycle. In the liver, the transporters function

differentially in periportal hepatocytes versus perivenous hepatocytes. In the

periportal hepatocytes, which express both SLC38A3 and SLC38A5, the trans-

porters mediate the influx of Na+/glutamine into cells from the portal blood, for

subsequent conversion into urea in the liver. On the other hand, in the perivenous

hepatocytes, which express mostly SLC38A3, the transporter functions to release

Na+/glutamine from the cells into the venous circulation.

SLC38A7 and SLC38A8 are Na+-coupled glutamine transporters that are ex-

pressed in the central nervous system, almost exclusively in the neurons [82,

83]. Even though SLC38A7 has been classified as a system N transporter and

SLC38A8 as a system A transporter, additional studies might be necessary to

confirm this classification.

1.2.2 Glutamine metabolism

Glutamine is usually oxidized in the mitochondria and is used as a primary source

of energy. This requires its conversion to α-ketoglutarate, typically through a glu-

taminase (GLS) activity, followed by conversion of glutamate to α-ketoglutarate

by either transaminases or glutamate dehydrogenase. [32, 67]. GLS presents three

isoforms, namely GLS1, GLS2 and GLSC [84]. In particular GLS1 is required for

cell cycle progression through S phase to cell division [85].

We now present a summary of the main functions of glutamine in the cell,

see Fig.1.4. First, glutamine is involved in the synthesis nonessential aminoacids.

This happens more specifically through the activity of different transaminases,

particularly alanine aminotransferase and aspartate aminotransferase. Alanine is

then used in protein synthesis, but is also secreted by tumour cells. Aspartate,

in contrast, remains inside the cell and contributes to the synthesis of proteins

and nucleotides and to electron transfer reactions through the malate-aspartate

shuttle.

Alternatively, some tissues can reductively carboxylate α-KG to generate cit-

rate [86, 87] that can be used to synthesize acetyl-CoA for lipid synthesis. This

IDH1-dependent pathway is active in most cell lines under normal culture con-
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Figure 1.4: Different uses of glutamine in the cell. Gln: glutamine; Glu: gluta-

mate; α-KG: α-ketoglutarate; Asp: aspartate; Ala: alanine; Pro: proline; Cys:

cysteine; Gly: glycine; GSH: glutathione; GlcN-6-P: glucosamine-6-phosphate;

PRPP: 5-phosphoribosyl-1-pyrophosphate; PRA: 5-phosphoribosyl-1-amine. 1:

glutaminase; 2: glutamate dehydrogenase; 3: aspartate aminotransferase; 4: ala-

nine aminotransferase; 5: glutamate-5-kinase + glutamate-5-semialdehyde dehy-

drogenase + proline dehydrogenase, pyrroline-5-carboxylase reductase; 6: gluta-

mate cysteine ligase; 7: glutathione synthase; 8: glutamine-fructose-6-phosphate

amidotransferase; 9: glutamine phosphoribosylpyrophosphate amidotransferase.

ditions, but cells grown under hypoxia rely almost exclusively on it for de novo

lipogenesis.

Furthermore, the cyclization of glutamate produces proline, an amino acid

important for synthesis of collagen and connective tissue.

Glutamine can also be converted directly to glutathione (GSH) by glutamate

cysteine ligase (GCL, EC 6.3.2.2). The reduced GSH, one of the most abundant

anti-oxidants present in mammalian cells, is vital to controlling the redox state of

the subcellular compartments, thus protecting cells from oxidative stress-induced

apoptosis [88]. In particular GLS2 activity was found to be associated to an

increase of GSH levels. In this regard, GLS2 over-expression reduces tumour cell

colony formation abilities in human liver tumours. Furthermore, GLS2 expression

is reduced in liver tumours compared with normal tissues.

Also, there is evidence indicating that a fraction glutamine-derived carbon

can exit the TCA cycle as malate and serve as substrate of malic enzymes 1,
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1. METABOLISM IN CANCER

which produces NADPH [64].

Glutamine is also important for the production of nucleotides during cell

proliferation since it is required a nitrogen donor for the de novo synthesis of

both purines and pyrimidines [32]. Other nitrogens are supplied by glycine and

aspartate, but many of these are actually derived from glutamine. Moreover,

pyrimidine rings contain one nitrogen from glutamine amido group and one from

aspartate. However, the glutamine utilization rate exceeds nucleic acid synthesis

by more than an order of magnitude in proliferating cells, and accounts for only

a small fraction of total glutamine consumption.

Glutamine plays also an important role in hexosamine biosynthesis and gly-

colsylation reactions [32]. In fact the rate-limiting step in the formation of hex-

osamine is catalysed by glutamine-fructose-6-phosphate amidotransferase, which

forms glucosamine-6-phosphate, which is also a precursor for glycolsylation reac-

tions.

Finally, glutamine is an amino acid that plays a key role in many metabolic

and signalling pathways [61, 12]. In fact it has a regulatory role in several cell

processes that include metabolism, signal transduction, cell defence and repair.

Of interest, cultured tumour cells require at least 10 times as much glutamine as

any other amino acid [64].

It should be noted, however, that glutamine is not used to completion by cell

lines in vitro. Rather, a significant fraction of glutamines nitrogens are secreted

from cells as they proliferate.

1.2.3 Genes involved in glutamine metabolism

Regarding the expression of the glutaminases, we already saw that GLS1 expres-

sion is up-regulated by c-Myc [65, 66] and that GLS2 expression is up-regulated

by p53 [41, 42]. However, it is noteworthy to add that GLS1 and GLS2 seem to

have contrasting effects in tumorigenesis. In fact GLS1 downregulation inhibits

oncogenic transformation and cancer cell proliferation [90, 91] while overexpres-

sion of GLS2 is tumour suppressive [41, 42]. Notably, both enzymes have been

implicated in regulating glutathione production and redox homeostasis, which is

important for mediating cell survival in Myc-driven cells, as well as for protecting

against p53-dependent apoptosis [66, 41, 42].

Rho GTPases have also recently been reported to regulate glutamine metabolism
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[89]. Cancer cells dependent on Rho GTPase signaling display higher glutaminase

activity, regulated in an NF-κB-dependent manner, and glutaminase activity is

required for the transforming capability of at least three different Rho GTPases

(Cdc42, Rac1 and RhoC).

Glucose availability was recently shown in an IL-3-dependent hematopoietic

cell line to modulate the uptake of glutamine through the hexosamine biosynthetic

pathway [92].

Reciprocally, a mechanism has been described through which glutamine avail-

ability can modulate glucose uptake, it is based on the transcription factor Mon-

doA. More precisely, upon glucose uptake, the MondoA complex detects eleva-

tions in glucose-6-phosphate levels and transits into the nucleus. There, it stim-

ulates expression of thioredoxin interacting protein (TXNIP), which constrains

glucose uptake [93]. A recent study showed that glutamine availability inhibited

transcriptional activation of TXNIP expression [94]. Reduced TXNIP expression

led consequently to enhanced glucose uptake, as well as cell growth and pro-

liferation. Interestingly, supplementation of cells with α-ketoglutarate can also

promote transcriptional repression of TXNIP [94].

1.3 Serine

Serine is a small, neutral amino acid and, as such, can be transported by one of

three systems [98]. Two of the systems are sodium dependent: the alanine/ser-

ine/cysteine/threonine transporters ASCT1 and ASCT2 (encoded by SLC1A4

and SLC1A5, respectively) and the system A transporters SAT1 and SAT2 (en-

coded by SLC38A1 and SLC38A2, respectively). The third is a family of neutral

amino acid antiporters, the alanine/serine/cysteine transporter (ASC) system

[95]. Serine metabolism is frequently dysregulated in cancers; however, the bene-

fit that this confers to tumours remains controversial. In many cases, extracellular

serine alone is sufficient to support cancer cell proliferation, whereas some cancer

cells increase serine synthesis from glucose and require de novo serine synthesis

even in the presence of abundant extracellular serine. There is increasing evidence

that serine biosynthesis from glucose is important for many cancers [96, 97]. In

human colon cancer and lung cancer cell lines, proliferation in medium that con-

tains serine without glycine is indistinguishable from proliferation in medium
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1. METABOLISM IN CANCER

containing both amino acids, whereas withdrawal of serine alone affects prolif-

eration to the same degree as depletion of both amino acids [99]. Moreover,

providing increased concentrations of glycine in the absence of serine results in

even more severe suppression of proliferation than withdrawal of both serine and

glycine. In fact, the conversion of glycine to serine consumes a one-carbon unit,

so a high-glycine environment might limit the availability of one-carbon units for

nucleotide biosynthesis, potentially contributing to glycine toxicity. Conversely,

the conversion of serine to glycine donates a one-carbon unit to the folate pool, so

this might explain the preferential consumption of serine over glycine. Confirm-

ing this, the addition of one-carbon units by adding formate rescued nucleotide

synthesis and growth of glycine-fed cells [99].

1.3.1 Serine metabolism

The biosynthesis of serine starts with the oxidation of 3-phosphoglycerate (i.e. an

intermediate from glycolysis) to 3-phosphohydroxypyruvate and NADH by phos-

phoglycerate dehydrogenase (PHG DH). Then the reaction catalysed by phospho-

serine transaminase (PSAT) yields 3-phosphoserine which is finally hydrolyzed to

obtain serine by phosphoserine phosphatase (PSPH). Notably, PHG DH activity

appears to be increased in various types of cancer [99, 100, 103, 104].

Serine can be converted to glycine by the enzyme serine hydroxymethyl trans-

ferase (cytoplasmic, SHMT1; mitochondrial, SHMT2), a reaction that yields one

carbon units, which then enter the tetrahydrofolate (THF) cycle and are critical

for nucleotide synthesis. Glycine can also be cleaved by the mitochondrial glycine

cleavage system to yield one-carbon units that are transferred to the THF cycle

[102]. Amplification of the glycine cleavage system in cancers [101] suggests that

this pathway is an important source of one-carbon units. In addition, glycine can

also be converted into serine by SHMT1 and SHMT2. The activity of SHMT,

seems to be selectively retained in tumours [98].

In purine biosynthesis, conversion of the precursor glycineamide ribonucleotide

(GAR) to AMP or GMP requires the addition of two one-carbon units from the

folate pool. Cells supplied with glycine, but not serine, show an accumulation

of GAR and the depletion of both AMP and GMP, implying that they have

insufficient one-carbon units [99].

One-carbon units derived from serine can also be used to support s-adenosyl
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methionine (SAM) synthesis. The reactions by which folate metabolism donates

one-carbon units to the SAM pool appear to have a low level of activity in many

cancer cells, but recent work has found that serine availability is still needed to

maintain SAM levels [105].

1.4 Leptin

Obesity greatly influences risk, prognosis and progression of certain types of can-

cer [115, 121, 125]. In particular, various studies have shown that leptin promotes

breast cancer proliferation, metastasis and invasiveness [122, 124]. Leptin is a

peptide hormone principally secreted by adipocytes [117, 124] and a hyper active

leptin-signalling network leads to the activation of multiple pathways involved

in proliferation, resistance to apoptosis, cell adhesion, invasion and migration in

breast cancer cells [124, 118, 123].

More specifically leptin appears to reprogram the metabolic flux in breast

cancer enhancing fatty acid oxidation and thus enabling the use of glucose for

biosynthetic purposes. Accordingly, leptin was shown to increase the activity of

glucose-6-phosphate dehydrogenase (G6PDH), that is the rate limiting enzyme of

the pentose phosphate pathway. Moreover, the intake of glucose does not appear

to be depressed by leptin and the levels of the glycolytic enzyme glyceraldehyde 3-

phosphate dehydrogenase were quite similar to control cells. On the other hand,

the lactate dehydrogenase levels were decreased and the pyruvate carboxylase

activity was increased.

It is worth noting that the stromal cells in a breast tumour microenvironment

are mainly adipocytes and this can have two important implications. First, they

could potentially supply cancer cells with fatty acids and second they could secrete

leptin.

Regarding the upstream mechanism that triggers this metabolic shift, the

AMPK signalling pathway is a strong candidate. In fact previous studies in

muscle have demonstrated that leptin activates AMPK signalling pathway [116,

119, 120], which is known to control the transcriptional factor PPAR [116]. This

transcriptional factor regulates the expression of key proteins involved in fatty

acid metabolism, like FAT/CD36 and CPT1, which were found increased by

leptin.
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1.5 Causes and advantages of the Warburg ef-

fect

In this chapter we have given an overview on the main characteristics of cancer

metabolism. Surprisingly, despite the intense interest that this topic has received

in the past years, the function of the Warburg effect still remains unclear. There-

fore, it is worth to conclude this chapter analysing the main explanations that

have been proposed so far about the causes and advantages that the Warburg

effect yields.

1.5.1 Causes

It has been proposed that tumour metabolism is the results of an adaptation to

intermittent hypoxia in pre-malignant lesions [110]. Blood vessels are confined

to the stromal compartment and, therefore, early development of the malignant

phenotype occurs in an avascular environment. As a result, substrates, such as

oxygen and glucose, must diffuse from the vessels across the basement membrane

and through layers of tumour cells, where they are metabolized. Some exper-

imental studies have demonstrated that near-zero partial pressures of oxygen

(pO2) are observed at distances of only 100 µm from a vessel [142, 143]. There-

fore, pre-malignant lesions, provided their basement membranes remain intact,

will inevitably develop hypoxic regions near the oxygen diffusion limit. More-

over, oxic-hypoxic cycles in tumours have been measured to occur with different

periodicities [144, 145]. In summary, this theory suggests that the glycolytic phe-

notype initially arises as an adaptation to local hypoxia. Subsequently, persistent

or cyclical hypoxia would exert selection pressures that lead to constitutive up-

regulation of glycolysis, even in the presence of oxygen.

However, there are major objections to this theory [109]. Cancer cells appear

to use glycolytic metabolism before exposure to hypoxic conditions. For exam-

ple, leukemic cells are highly glycolytic [30, 146], yet these cells reside within the

bloodstream at higher oxygen tensions than cells in most normal tissues. Simi-

larly, lung tumours arising in the airways exhibit aerobic glycolysis even though

these tumour cells are exposed to oxygen during tumorigenesis [147, 148].

Recently an innovative idea, termed ”The Reverse Warburg effect”, has been

proposed [149]. It is based on the idea that cancer-associated cells (e.g. fi-
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broblasts) can actually help the adjacent cancer cells. More precisely, they un-

dergo aerobic glycolysis resulting in the production of high-energy metabolites

(such as lactate and pyruvate), which can then be transferred to adjacent epithe-

lial cancer cells that are instead undergoing oxidative mitochondrial metabolism

[149, 150, 151].

1.5.2 Advantages

Numerous theories have been developed to explain the advantages that the War-

burg effect gives to cancer cells. Notably, there still is not a complete consensus,

therefore in this paragraph we will summarise the most noteworthy theories de-

veloped so far [108].

Rapid ATP synthesis

Per unit of glucose, aerobic glycolysis is an inefficient means of generating

ATP compared with mitochondrial respiration. In fact the metabolism of glu-

cose to lactate generates only 2 ATPs per molecule of glucose, whereas oxidative

phosphorylation generates up to 36 ATPs upon complete oxidation of one glucose

molecule. However, the rate of glucose metabolism through aerobic glycolysis is

higher since the production of lactate from glucose occurs 10-100 times faster

than the complete oxidation of glucose in the mitochondria. Overall, the amount

of ATP synthesized over any given period of time is comparable between the two

types of glucose metabolism [127].

Moreover, theoretical calculations using evolutionary game theory support the

hypothesis that cells that use aerobic glycolysis may gain a selective advantage

when competing for shared and limited energy resources [126, 129]

Despite this attractive proposal, simple empirical calculations indicate that

the amount of ATP required for cell growth and division may be less than that

required for normal cellular maintenance [128, 130]. Thus, ATP demand may

never reach limiting values during tumour cell growth.

Warburg Effect and Biosynthesis

To produce two daughter cells, a proliferating cell must replicate all of its

cellular contents. This imposes a large requirement for nucleotides, amino acids,

and lipids. For instance the synthesis of palmitate, a major constituent of cellular
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membranes, requires 7 molecules of ATP, 16 carbons from 8 molecules of acetyl-

CoA, and 28 electrons from 14 molecules of NADPH. Likewise, synthesis of amino

acids and nucleotides also consumes more equivalents of carbon and NADPH

than of ATP. A glucose molecule can generate up to 36 ATPs, or 30 ATPs and 2

NADPHs (if diverted into the pentose phosphate shunt), or provide 6 carbons for

macromolecular synthesis. Thus, to make a 16-carbon fatty acyl chain, a single

glucose molecule can provide five times the ATP required, whereas 7 glucose

molecules are needed to generate the NADPH required. This 35-fold asymmetry

is only partially compensated by the consumption of 3 glucose molecules in acetyl-

CoA production to satisfy the carbon requirement of the acyl chain itself.

Consequently, it is hypothesised that the metabolic reprogramming promotes

the biosynthesis of cellular biomass. In accordance, under conditions of high

ratios of ATP/ADP and NADH/NAD+ (exhibited by most proliferating cells),

citrate is excreted back into the cytosol. In the cytosol, acetyl-CoA is reformed

from citrate through the enzyme ATP citrate lyase (ACL) and is used as the

carbon source for the growing acyl chains. It was reported that disruption of

ACL impairs tumour growth [131]. Also, glutamine uptake appears to facilitate

lipid synthesis in that it supplies carbon (in the form of mitochondrial oxaloac-

etate) to maintain citrate production [64]. In other words, the increased glucose

consumption is used as a carbon source for anabolic processes needed to support

cell proliferation [109, 50, 132]. This excess carbon is diverted into the multiple

branching pathways that emanate from glycolysis and is used for the generation

of nucleotides, lipids, and proteins. One example is the diversion of glycolytic

flux into de novo serine biosynthesis through the enzyme phosphoglycerate dehy-

drogenase (PHGDH) [128].

However, there are major limitations for this proposed function of the War-

burg Effect. First, during aerobic glycolysis, most of the carbon is not retained

and is instead excreted as lactate [130]. Moreover, recent estimates from quanti-

tative proteomics show that the cost of protein production for conducting aerobic

glycolysis is enormous. In fact, cells devote as much as 10% of their entire pro-

teome and half of all of their metabolic genes to produce proteins involved in

glycolysis [133]. Thus, the cost of producing proteins for aerobic glycolysis is as

large, if not larger, than the cost of producing proteins for biosynthesis.
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Multicellular environment

Separate from the cell-intrinsic functions, the Warburg Effect may present

an advantage for cell growth in a multicellular context. In this regard, elevated

glucose metabolism decreases the pH in the microenvironment due to lactate se-

cretion [137]. This in turn leads to an alteration of the tumour-stroma interface,

allowing for enhanced invasiveness [135, 137]. Also, the high rates of glycoly-

sis from cancer cells could limit the availability of glucose to tumour-infiltrating

lymphocytes (TILs), which require sufficient glucose for their effector functions

[134, 136].

Cell signalling

The status of chromatin structure is responsible for regulating different cellular

functions, including DNA repair and gene transcription. It has been established

that acetyl-CoA, the substrate for histone acetylation, can be regulated by glu-

cose flux [139]. The activity of ATP-citrate lyase, which converts citrate into

acetyl-coA, can influence histone acetylation levels as well [138]. Elevated levels

of acetyl-CoA may be enough to drive cells into the growth phase via histone

acetylation [141]. Removal of glucose or reduction of ATP-citrate lyase results

in loss of acetylation on several histones and causes decreased transcription of

genes involved in glucose metabolism. This indicates that there is some inter-

play between glucose metabolism and histone acetylation. In addition to histone

acetylation responding to glucose availability in cells, deacetylation can also be

influenced by nutrient availability [140]. However, difficulties also limit this pro-

posal from being the general mechanism that benefits cancer cells by undergoing

aerobic glycolysis. One such limitation is that it is hard to imagine how molecular

specificity arises through such a gross global signalling mechanism.
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Chapter 2

Mathematical Model

In the current chapter we describe the mathematical model that we constructed

in order to study mitochondrial metabolism observed in breast cancer cells. This

work starts from the model of β pancreatic cells already presented in [212]. From

this basis, we added some reactions and we modified the parameters of the model

to adjust it to breast cancer cells. Our model consists of 25 differential equations,

that correspond to as many fluxes in the cell, and 12 different chemical species.

The overall system is represented in Fig.2.1.

The fluxes are modelled in accordance to the methods described in [213, 214].

More precisely, each metabolite concentration is normalized according to Tab.2.1

and we denote with xi the normalized value of the i-th metabolite. The metabo-

lites are produced and consumed by reactions with rates denoted VE, where E

represents the catalyzing enzyme. The ODE system becomes:

ẋ1 = f1 (VCS − VIDH3 − VIDH2 − c VACS − c VIDH1)/SIDH3
1

ẋ2 = f2 (VIDH3 + VIDH2 − c VAAT2 − VAAT1 − VOGDH − VGDH1 − VGDH2 + c VIDH1)/SOGDH2

ẋ3 = f3 (−c VME1 − VME2 − VME3 − VMDH2 + VOGDH − c VMDH1)/SMDH2
3

ẋ4 = (VPC + VMDH2 + VAAT1 − VCS − VPEPCK2)/SCS4

ẋ5 = (c VAAT2 + c VMDH1 − c VPEPCK1 + c VACS)/PMDH1
5

ẋ6 = f6 (c VPK + c VME1 + VME2 + VME3 − c VLDH − VPDH − VPC)/SPDH6

ẋ7 = (VCS − VPDH)/[CoA]tot

ẋ8 = (−VRESP − VGDH1 + VME2 + VPDH + VIDH3 + VOGDH + VMDH1)/[NADm]tot

ẋ9 = c (VMDH1 + VGPDH − VG3DH − VLDH)/[NADc]tot
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Figure 2.1: Reactions considered in our model of mitochondrial metabolism.

ẋ10 = (−VME3 + VGDH2 − VIDH2)/[NADP ]tot

ẋ11 = (VGLS + VAAT1 + cVAAT2 + VGDH1 + VGDH2)/PGLS
11

ẋ12 = (c VGPDH + VPEPCK2 + c VPEPCK1 − c VPK)/SPK12

where the coefficients fi are computed in eq.2.1 and c is the ratio between cytosolic

and mitochondrial volume. Each flux is described in detail in Sec.2.1. Notice

that we have two inputs, namely the influx of PEP by GAPDH and the flux of

glutamate that enters through GLS.

In accordance to [212], to which we refer for a more in-depth explanation, we
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Variable Species Normalization constant Value [mM]

x1 Isocitrate (mitochondrial) SIDH3
1 0.6

x2 2-oxoglutarate (mitochondrial) SOGDH2 3

x3 Malate (mitochondrial) SMDH2
3 3

x4 Oxalacetate (mitochondrial) SCS4 0.009

x5 Oxalacetate (cytosolic) PMDH1
5 0.06

x6 Pyruvate (mitochondrial) SPDH6 0.1

x7 CoA (mitochondrial) [CoA]tot (mitochondrial) 0.1

x8 NADH (mitochondrial) [NADm]tot (mitochondrial) 0.3

x9 NADH (cytosolic) [NADc]tot (cytosolic) 0.05

x10 NADP (mitochondrial) [NADP ]tot (mitochondrial) 0.2

x11 Glutamate (mitochondrial) PGLS
11 5

x12 Phosphoenolpyruvate (cytosolic) SPK12 0.07

Table 2.1: Normalization constant corresponding to each variable of the model.

approximate the mitochondrial carriers as being in quasi equilibrium. In this way

we can compute the cytosolic concentrations of those metabolites for which we

consider only the mitochondrial fraction, see Tab.2.1.

First, pyruvate is transported across the mitochondrial inner membrane in

exchange for a hydroxide ion through an antiport. This process can be described

by the equation:
[pyruvate]mit
[pyruvate]cyt

=
[H+]cyt
[H+]mit

= Kpyr
anti ≈ 2.

Malate is exchanged electroneutrally with divalent phosphate by means of the

dicarboxylate carrier:

[malate]mit
[malate]cyt

=
[P 2−
i ]mit

[P 2−
i ]cyt

= Kmal
anti ≈ 4.

Malate and 2-oxoglutarate are carried across the mitochondrial membrane by

means of an electroneutral antiport, therefore we can also write:

[2-oxoglutarate]mit
[2-oxoglutarate]cyt

= Kmal
anti.

Furthermore, malate is electroneutrally exchanged for a trivalent (iso)citrate

molecule and a proton through the tricarboxylate carrier:

[citrate]mit
[citrate]cyt

=
[isocitrate]mit
[isocitrate]cyt

= Kmal
anti

[H+]cyt
[H+]mit

= Kcit
anti ≈ 8.
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Glutamate is transported with a proton or in exchange with a hydroxide

ion. Here, we assume that glutamate attains equilibrium according to the pH

difference:
[glutamate]mit
[glutamate]cyt

=
[H+]cyt
[H+]mit

= Kglu
port ≈ 2.

Aspartate is transported through an electrogenic antiport in exchange for

glutamate and a proton. We use the Nernst equation and write:

[aspartate]mit
[aspartate]cyt

= Kglu
port e

−∆µF
RT = Kasp

anti

where ∆µ is the proton motive force which is about 200 mV, F represents the

Faraday constant, R is the gas constant and T is the absolute temperature.

We assume that the aconitase reaction is in quasi-equilibrium:

[isocitrate]mit
[citrate]mit

= Kaco
eq .

Lastly, the coefficients fi can be computed as:

f1 = Kaco
eq K

cit
anti/(c (1 +Kaco

eq ) +Kcit
anti(1 +Kaco

eq )),

f2 = Kmal
anti/(c+Kmal

anti), f3 = Kmal
anti/(c+Kmal

anti), f6 = Kpyr
anti/(c+Kpyr

anti).

(2.1)

The entire mathematical model was implemented in MATLAB through the

package SimBiology.

2.1 Rate equations

To compact the rate equations we use the following notation. The terms si denote

the ratio between the i-th normalization parameter and the half-saturation point

of the corresponding metabolite. We use them when the i-th species plays the

role of a substrate in the reaction. Analogously, pi and mi are computed in the

same way but they indicate that the metabolite is, respectively, a product or an

effector in the reaction. The majority of the reactions in our model derive from

the following archetypes relative to irreversible Michaelis-Menten (MM) equations

V = Vf

k∏
skxk

k∏
(1 + skxk)
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and reversible MM rates

V =
Vf

k∏
skxk − Vr

k∏
pkxk

k∏
(1 + skxk + pkxk)

where Vf and Vr denote respectively the maximal flux rate in the forward and

reverse direction. In case there is a modifier xi that affects the maximal rate or

the half saturation point, it is sufficient to modify the rates in the following way:

V =
(1 +mifxi)Vf

k∏
skxk − (1 +mifxr)Vr

k∏
pkxk

k∏
((1 +mikxi) + skxk + pkxk)

.

For the rest of the chapter, we are going to consider each enzyme taken in-

dividually and we are going to indicate its different isoenzymes as well as their

expression in cancer. Then we are going to evaluate the rate equation that we

deemed more appropriate according to its kinetics.

Glyceraldehyde-3-phosphate dehydrogenase

In our model the GAPDH reaction represents the net flux of phosphoenolpyru-

vate into the system. The glycolytic flux is affected by NAD and is also subject

to product inhibition by NADH [209]. We do not consider the possible dynamics

of other glycolytic intermediates.

V = Vf
s9(1− x9)

1 + s9(1− x9) +m9x9

Glycerol-3-phosphate dehydrogenase

Reaction
G3P+NAD+ DHAP + NADH + H+

The dependence of cytosolic G3PDH on NADH is modelled as an irreversible

MM equation reaction where the irreversibility assumption stems from the cou-

pling of the reaction to that of the mitochondrial G3PDH isozyme, which is

coupled to the respiratory chain.

V = Vf
s9x9

1 + s9x9
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Pyruvate Kinase

Reaction
PEP+ADP PYR+ATP

Isoenzymes

• PKM1: expressed in tissues with high catabolic demands (e.g. muscle,

heart, brain).

• PKM2: embryonic isoform also expressed in cancer and normal proliferating

cells (e.g. lymphocytes and intestinal epithelium). It can be found in some

non proliferating tissues such as quiescent T cells, lung and white adipose

tissue.

• PKR: found exclusively in red blood cells.

• PKL: the major isoform in liver, also expressed to a lesser extent in kidney.

Expression in cancer

The presence of PKM2 activity is usually indicative of malignant tumours [154].

Furthermore, many human breast cancers express little to none pyruvate kinase

activity suggesting the prevalence of the dimeric form [158],[155].

On the other hand in [152] is reported that in different cell lines tumorigenic

cells have higher PK activity than non tumorigenic ones.

Kinetics of PKM1

Every isoform has a similar regulation with respect to ADP. The M1-type shows

hyperbolic kinetics and is not activated by fructose-1,6-bisphosphate (FB6).

Kinetics of PKM2

This isoform is very tightly regulated, the major allosteric effectors are FB6,

serine (activators) and alanine (inhibitor).

The list of inhibitors also includes amino acids like cysteine, methionine,

phenylalanine, valine, leucine and saturated or mono-unsaturated fatty acids.

The enzyme exists in two states: an activated form (tetrameric) and an inac-

tived one (dimeric). It seems to act as a metabolic sensor and determines whether

the glucose carbons are degraded to pyruvate and lactate with production of en-

ergy (highly active tetrameric form) or are channeled into synthetic processes

(nearly inactive dimeric form).
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FB6-activated PKM2 exhibits almost the same kinetics of PKM1 but shows

sigmoidal activation by PEP.

In our model we supposed PKM2 was in its activated form since we are inter-

ested in modelling mitochondrial metabolism when it has a significant effect. In

particular PKM2 exhibits sigmoidal kinetics with respect to FB6.

V = Vf
sADP (s12x12)

(1 + (s12 x12)) (1 + sADP )

where sADP = [ADPc]/KADP .

Phosphoenolpyruvate Carboxykinase

Rection
GTP+OAA GDP+PEP

Isoenzymes

• PEPCK1: cytosolic form, it is expressed in liver, kidney and adipose tissue.

• PEPCK2: mitochondrial form, it is expressed in a variety of non-gluconeogenic

tissues such as pancreas, brain, leukocytes, heart and neurons.

Transport out of mitochondria

After PEP is produced in the mitochondria by PEPCK2 it has been reported

an efflux of the same metabolite to the cytosol [163] suggesting the existence of a

specific transporter. At the moment ANT (adenine nucleotide transporter) and

CIC (citrate-isocitrate carrier), modelled in [167], have been identified as possible

candidates but it has been postulated that there are still unknown mechanisms

involved [164], [165], [166].

Given the absence of definitive information, we suppose that the totality of

PEP produced in the mitochondria goes directly in the cytosol leaving [PEPm]

constant.

Expression in cancer

Whereas in mice and rat PCK1 accounts for over 90% of total PEPCK activity,

in both pigs and humans each isoenzyme is responsible for about 50% of total

PCK activity[162]. In a wide variety of tumours, that includes breast cancer,

PEPCK2 is highly expressed whereas PEPCK1 is below the detection level [160],

[161].

33



2. MATHEMATICAL MODEL

Kinetics of PEPCK2

Its kinetics are very similar to the cytosolic form, the only notable difference is

that the MM constant for GDP is an order of magnitude lower than PCK1. The

enzyme follows MM kinetics regarding every substrate, furthermore it requires

Mn2+ ions to be active. Its specificity constant is 100 fold larger for oxaloacetate

than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is

the favoured reaction in vivo [162].

Mitochondrial PEP is not considered as a dynamic variable. We modelled both

the cytosolic and mitochondrial isoform as reversible MM reactions, respectively:

V =
Vf s5x5 − Vr p12x12
1 + s5x5 + p12x12

V =
Vf s4x4 − Vr sPEP
1 + s4x4 + sPEP

where sPEP = [PEPm]/KPEP .

Lactate Dehydrogenase

Reaction
PYR+NADH LAC+NAD+

Isoenzymes

• LDH1: expressed in the heart, the red blood cells as well as in the brain.

• LDH2: located in the reticuloendothelial system.

• LDH3: found in the lungs.

• LDH4: expressed in the kidney, placenta and pancreas.

• LDH5: located in the liver and striated muscle.

Expression in cancer

The isoenzyme LDH5 was found in the majority of cancer cell lines and its

expression seems to be directly correlated to the malignancy of the tumour. The

greater part of LDH activity appears to be from LDH1, LDH2, LDH3 [154].

Moreover LDH5 is usually overexpressed in breast cancer cells [153].
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Kinetics

In the forward reaction (i.e. formation of lactate) it shows sigmoidal kinetics

with respect to both NADH and pyruvate, on the other hand the reverse reaction

follows MM kinetics with both substrates [168].

For simplicity we modelled it as an irreversible reaction since in vivo it follows

the direction of lactate production.

V = Vf
(s6 x6)

h6 (s9(1− x9))h9

(1 + (s6 x6)h6)(1 + (s9(1− x9))h9)

Pyruvate Dehydrogenase Complex

Reaction
PYR+CoA−+SH+NAD+ AcCoA+NADH+CO2+H+

Expression in cancer

In normal tissues SIRT3 (NAD-dependent deacetylase sirtuin-3) increases

PDH activity through deacetylation, from the study of Ozden et al [169] it was

shown that at least one copy of SIRT3 was deleted in 40% of breast and ovarian

cancers. Cells lacking SIRT3 exhibit also abnormally high concentrations of ROS

and glucose consumption.

Moreover it was detected an overexpression of pyruvate dehydrogenase kinases

(PDK) that leads also to reduced PDH activity [170].

In [171] were detected two different types of metabolism in breast cancer

cells: the first was characterized by high glycolysis, low glutamine intake and

high PDK1; the second by higher oxphos and glutamine intake.

Kinetics

The PDH complex exhibits complex regulatory patterns involving activation

by Ca2+ as well as regulation through phosphorylation and dephosphorylation.

The enzyme is subject to competitive product inhibition by Ac-CoA with respect

to CoA and by NADH with respect to NAD.

V = Vf
s6x6 s7x7 s8(1− x8)

(1 + s6x6)(1 + s7x7 +m7(1− x7))(1 + s8(1− x8) +m8x8)
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Glutaminase

In our model GLS activity represents the net influx of glutamate in the system.

As described in Sec.1.2.2 it accounts for the algebraic sum of different fluxes.

Reaction
GLN+H2O GLU+NH3

Isoenzymes

Two genes, GLS1 and GLS2, encode for different phosphate-activated glu-

taminases (PAGs) [203]. More precisely:

• GLS1: kidney-type PAG (K-PAG) and glutaminase C (GAC). Expressed

mainly in kidney, brain, heart, placenta, lung and pancreas.

• GLS2: liver-type PAG (L-PGA) and glutaminase B (GAB), expressed mainly

in the liver.

Expression in cancer

Co-expression of both transcripts and higher amounts of L-type mRNA were

always found in various cancer cells [204].

Kinetics

The main kinetic differences consist in the dependence of the activator in-

organic phosphate (Pi), low for L-type and high for K-type, and the relative

affinity for glutamine, higher in K- than in L-types. Moreover glutamine has an

inhibitory effect only for the K-type isozymes [205, 206]. In our model we consider

the K-type isoenzyme, consequently the reaction is:

V = Vf
p11x11

1 + p11x11

Pyruvate Carboxylase

Reaction
PYR+ATP+HCO−3 OAA+ADPH+Pi

Expression in cancer

The involvement of PC in breast cancer cell lines was tested in [173], in partic-

ular they found abundance of both PC mRNA and protein in more invasive cell
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lines with respect to the others. They also observed a 50% reduction of cell pro-

liferation, migration, under both glutamine-dependent and glutamine-depleted

conditions, following siRNA-mediated knockdown. On the other hand an overex-

pression of PC in MCF-7 cells resulted in a 2-fold increase in their proliferation

rate, migration and invasion abilities.

Furthermore another study highlighted an increase in PC activity in lung

metastatic cells compared to the primary breast tumour, [174].

Kinetics

The reaction catalyzed by PC uses, in addition to pyruvate, both MgATP

and HCO−3 substrates, the two latter species not being included in the present

model and thus assumed to be constant. Ac-CoA acts as a strong activator of the

enzyme, both lowering the Km value of pyruvate and increasing Vf , [176], [175].

V = Vf
s6x6(1 + a7m7g7s7(1− x7))

(1 + a7m7s7(1− x7))
(
s6x6 + (1 +m4x4)

1 +m7s7(1− x7)
1 + a7m7s7(1− x7)

)

Citrate synthase

Reaction
AcCoA+OAA+H2O CIT+CoA-SH

Expression in cancer

Human cancer cell lines exhibit a wide spectrum of CS expression levels.

Very low CS expression was found in MCF7 cell line and it coincided with an

overexpression of glycolytic enzymes expression and a deficit in the respiratory

activity; moreover the inhibition of CS lead to an augmented malignancy [177].

On the other hand in ovarian tumours, higher CS activity was found to be linked

to higher malignancy [178].

Kinetics

CS is regulated by many metabolites, including inhibition by ATP and succinyl-

CoA which are not included in the present model. In addition, it is subject to

product inhibition by CoA, which is a competitive inhibitor for aC-CoA

V = Vf
s4x4s7(1− x7)

(1 + s7(1− x7) +m7x7)(1 + s4x4 +m1x1)
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Isocitrate Dehydrogenase

Reaction
ISOC+NAD+ 2-OXO+CO2+NADH+H+

ISOC+NADP+ 2-OXO+CO2+NADPH+H+

ISOC+NADP++Mg2+ α-KG+NADPH+CO2+H+

Isoenzymes

• IDH1: cytosolic, NADP+-dependent. It is highly expressed in mammalian

liver and moderately in other tissues.

• IDH2: mitochondrial, NADP+-dependent. It is highly expressed in mam-

malian heart, muscle, and activated lymphocytes and moderately elsewhere.

• IDH3: mitochondrial, NAD+-dependent.

Expression in cancer

Mutations in one of the IDH1 and IDH2 are associated with different sub-

types of cancer, in particular gliomas and leukemias. The IDH forward reaction,

isocitrate decarboxylation, is inactivated by the common mutations associated

with cancers. These mutations are particularly notable since they cause neomor-

phic activity, that is these mutant IDHs produce 2HG (2-hydroxyglutarate) from

NADPH and KG. This leads to the accumulation of 2HG that acts as an inhibitor

of αKG-dependent enzymes. Furthermore mutations of IDH1 appear to increase

its affinity for NADPH, which may promote reduction of αKG to 2HG under low

concentrations of NADPH [182], [183], [181].

Kinetics

NAD-dependent IDH is activated by Ca2+ and ADP, whereas it is inhibited

by ATP and NADH. Among these species, only NADH is included in our model.

More specifically, the inhibition exerted by NADH is competitive with respect to

NAD. Moreover, IDHm exhibits cooperativity with a Hill coefficient of almost 3.

V = Vf
s8(1− x8)(s1x1)h

(1 + (s1x1)h)(1 + s8(1− x8) +m8x8)
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NADP-dependent IDH (here abbreviated IDHPm) is not generally considered

to be allosterically regulated, but it exhibits competitive product inhibition of

NADPH with respect to NADP.

V = Vf
s1x1s10x10

(1 + s1x1)(1 + s10x10 +m10(1− x10))

Regarding cytosolic NADP-dependent IDH (IDHPc), we have neglected the

kinetic regulation by NADPc and therefore we modelled it with Michaelis-Menten

kinetics:

V = Vf
s1x1

1 + s1x1

2-Oxoglutarate Dehydrogenase

Reaction
α-KG+NAD++CoA Suc-CoA+CO2+NADH

Here, for simplicity, we have summed up the three reactions catalyzed by

OGDH (succinate-CoA ligase, succinate dehydrogenase and fumarate hydratase)

into a single, and physiologically irreversible, reaction controlled by the enzyme

OGDH.

Expression in cancer

OGDH is often considered to be switched off in tumours due to mutations of

isocitrate dehidrogenase, succinate dehydrogenase and fumarate hydratase [182,

189, 190]. However the flux through the mitochondrial TCA cycle in cancer

remains under debate [188].

Kinetics

The OGDH complex is allosterically regulated by Ca2+, however this property

that is not considered in our model. It is also subject to product inhibition by

succinyl-CoA and NADH, the former of which is not included here. Inhibition by

NADH is close to noncompetitive [185].

V = Vf
(1 +m8g8x8)s2x2 s8(1− x8) s7x7

(1 +m8x8)(1 + s2x2)(1 + s8(1− x8))(1 + s7x7)
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Malate Dehydrogenase

Reaction
MAL+NAD+ OAA+NADH+H+

Isoenzymes

• MHD1: cytoplasmic

• MDH2: mitochondrial

Expression in cancer

There is some indication that MDH activity is increased in breast cancer cells

[153].

Kinetics of MDH1

MDH1 is not allosterically regulated, consequently it is here modelled with a

reversible Michaelis-Menten equation. We have ignored inhibition by oxaloacetate

since it occurs only at unphysiological concentrations [193].

V =
Vf s3x3s9(1− x9)− Vr p5x5p9x9

(1 + s3x3 + p5x5)(1 + s9(1− x9) + p9x9)

Kinetics of MDH2

On the other hand, MDH2 is allosterically regulated in a peculiar manner

[191], in fact citrate may act as an inhibitor or an activator for the malate ox-

idation reaction, depending on the NAD concentration. More precisely, citrate

increases the effective limiting rate of MDH2 while at the same time also increases

the half-activation points for malate and NAD. In the reverse direction, citrate

increases the half-activation point for NADH while leaving the half-activation

point for oxaloacetate and the limiting rate unchanged.

V =
(1 +m1a13a18g1x1)(Vf s3x3s8(1− x8)− Vr p4x4p8x8)

(1 +m1a18x1)s8(1− x8) + (1 +m1a13x1)s3x3
+(1 +m1b18x1)p8x8 + (1 +m1b14x1)p4x4 +m1x1(a13s3x3 + b14p4x4)

(s8(1− x8)a18 + b18p8x8) + 1 +m1x1 + (s3x3 + p4x4)(s8(1− x8) + p8x8)
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Malic Enzyme

Reaction

MAL+NAD+ PYR+NADH+H++CO2

MAL+NAD(P)+ PYR+NAD(P)H+H++CO2

MAL+NADP+ PYR+NADPH+H++CO2

Isoenzymes

We have three distinct isoenzymes:

• ME1: cytosolic and uses NADP+. Found in liver and adipose tissue.

• ME2: mitochondrial and uses NAD+ or NADP+. Found in proliferating

cells, particularly in cancer cells.

• ME3: mitochondrial and uses NADP+. Found in tissues with low prolifer-

ating rates (e.g. heart, muscle and brain).

Expression in cancer

ME2 was found to be highly expressed in many solid tumours [195]. Moreover,

In the A549 non-small cell lung cancer cell line, ME2 depletion inhibited cell

proliferation and induced cell death.

In [194] was reported that cancer cells do not exhibit a noticeable ME3 activity.

Furthermore, different studies have observed an overexpression of ME3 in cancer

cells [158], [195].

Kinetics of ME1

ME1 is described using the reversible Michaelis-Menten equation. The enzyme

is inhibited by oxaloacetate, but only at very high concentrations [199], leading us

to ignore this property. Also, NADPc and NADPHc are not included as dynamic

variables in our model.

V =
Vf s3x3 − Vr p6x6

(1 + s3x3)(1 + p6x6)

Kinetics of ME2

This enzyme can use both NAD+ and NADP+ as cofactor for the oxidative de-

carboxylation of malate. ME2 is strongly activated by fumarate, ATP is instead
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a competitive inhibitor of NAD(P)+ [198, 196]. However we do not consider fu-

marate and ATP as dynamic variables, we consider irreversible MM with NADP+

and MAL as substrates.

V = Vf
s3x3s8(1− x8)

(1 + s3x3)(1 + s8(1− x8))

Kinetics of ME3

The ME3 isoenzyme presents the same allosteric effectors of ME2. However

it only accepts NAD+ as cofactor [200, 198].

V = Vf
s3x3s10(1− x10)

(1 + s3x3)(1 + s10(1− x10))

Glutamate Dehydrogenase

Reaction
GLU+H2O+NAD+ 2-OXO+NH3+NADH+H+

GLU+H2O+NADP+ 2-OXO+NH3+NADPH+H+

Expression in cancer

In [201] has been observed that breast cancer cells couple glutamine and nitro-

gen metabolism by suppressing glutamate dehydrogenase and synthesizing amino

acids via transaminases. In other words, highly proliferative breast tumours have

high transaminase and low GDH expression.

Kinetics

GDH can use either NAD or NADP as an electron acceptor, therefore we

model its activity as the sum of two separate fluxes. Moreover, with regard to

glutamate, NAD and NADP, the reciprocal plots of reaction velocity versus sub-

strate concentration are nonlinear, denoting a negative cooperativity behaviour.

The model is very insensitive to variations in the ammonia concentration

[212]. We could not use the reversible Hill equation in this case, since negative

cooperativity applies only to the oxidized pyridine species.

The form that uses NAD is modelled by:

V =
(Vfs2x2s8x8 − Vrp11x11p8(1− x8))(1 + a8m8(1− x8) + a10m10x10)

(1 + s2x2 + p11x11)(s8x8 + p8(1− x8) + (1 +m8(1− x8) +m10x10
+ 1 + a8m8(1− x8) +m10a10x10)(p10x10 + s10(1− x10)))
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Whereas the part corresponding to NADP is:

V =
(Vfs2x2s10(1− x10)− Vrp11x11p10x10)(1 + a10m10x10 + a8m8(1− x8))

(s10(1− x10) + p10x10 + (1 +m10x10 +m8(1− x8)
+ (1 + a10m10x10 + a8m8(1− x8))(p8(1− x8) + s8x8)))(1 + s2x2 + p11x11)

Aspartate aminotransferase

Reaction
2-OXO+GLU OAA+ASP

Isoenzymes

• AAT1: mitochondrial isoenzyme.

• AAT2: cytosolic isoenzyme.

Kinetics

AAT catalyzes the reversible reaction between glutamate and 2-oxoglutarate

versus oxalacetate and aspartate. Neither of the two isoenzymes is considered

allosterically regulated. The reactions are modelled as a Ping Pong Bi Bi mech-

anism [211].

More precisely, the reaction corresponding to the cytosolic form is:

V =
Vfs2x2sASP − Vrp5x5p11x11

sASP + s2x2 + sASP s2x2 + p5x5 + p11x11 + p5x5p11x11Kp2

+ sASPp5x5Kip2 + s2x2p11x11Kiq2

where sASP=[ASPc]/KASPc

Whereas, the reaction of the mitochondrial isoenzyme is:

V =
Vfs2x2sASP − Vrp4x4p11x11

sasp + s2x2 + sASP s2x2 + p4x4 + p11x11 + p4x4p11x11Kp

+ sASPp4x4Kip + s2x2p11x11Kiq

where sASP=[ASPm]/KASPm

ATP Citrate Synthase

Reaction
CIT+ATP+CoA OAA+ADP+Pi + AcCoA

Kinetics

The ratio between ac-CoA and CoA, ATP and ADP are not considered as

dynamic variables. Studies of the kinetics of the reaction [207, 208] motivate the

use of a reversible Michaelis-Menten equation for ACS.
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V =
Vf s1x1 − Vr p5x5

(1 + s1x1)(1 + p5x5)

Respiration

Through aerobic respiration cells use the electrons taken from NADH and

FADH2 to reduce oxygen to water and simultaneously produce ATP. Detailed

descriptions of all these processes are beyond the scope here, consequently we

model the dependence of the respiratory rate on NADH in the simplest possible

way [210].

V = Vf

√
x8

1− x8
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Enzyme Parameter References

GAPDH Vf=180 s9=0.25 m9=166 [209]

GLNase Vf=1800 p11=0.4 [203]

G3DH Vf=1800 s9=12.5 [212]

PK Vf=72000 s12=0.07 KADP=0.26 [ADPc] = 0.4 [157], [156], [159], [152], [154]

PEPCK1 Vf=360 Vr=14400 s5=6 p12=1.4 [162]

PEPCK2 Vf=360 Vr=0.16 s4=1 KPEP=0.6 [PEPm]= 0 [162]

LDH Vf=144000 s6=0.17 s9=0.17 h6=1.36 h9=2.8 [153] [168]

PDH Vf=2160 s6=1 s7=1 s8=6 m7=3.3 m8=7.5 [212]

PC Vf=7200 m4=0.09 s6=0.025 s7=1 m7=10 a7=8 g7=15 [174], [176], [175], [153]

CS Vf=14400 m1=0.37 s4=1 s7=25 m7=5 [179], [180], [153]

IDH3 Vf=1080 s1=1 s8=5 h=2 m8=15 [184], [185], [186], [153]

IDH2 Vf=1800 s1=30 s10=667 m10=667 [184], [185], [186], [153]

IDH1 Vf=1800 s1=7.5 [184], [185], [186], [153]

OGDH Vf=1440 s2=1 s7=50 s8=7.5 m8=60 g8=0.3 [187], [185]

MDH1 Vf=18000 Vr= 7 s3=0.8 p5=1 s9=0.12 107 p9=2.5 [192], [193], [191]

MDH2 Vf=180000 Vr = 4 107 m1=8.3 g1=3 a13=0.3

a18=0.1 b14=1 b18=0.1 s3=1 p4=0.45

s8=5 p8=10 [192], [193], [191]

ME1 Vf=360 Vr=6.7 s3=10 p6=0.01 [194] [194], [198]

ME2 Vf=360 s3=6 s8=3 [196], [197], [194]

ME3 Vf=360 s3=4.3 s10=2 [196], [197], [194]

GDHNAD Vf=1800 Vr= 5.7 s2=7.5 s8=10 p8=0.75

a8=0.3 m8=0.75 s10=6.7 p10=4 m10=6.7 a10=0.3 [212]

GDHNADP Vf=1800 Vr=5.7 s2=3/0.4 s10=6.7 p10=4

p8=0.75 s8=10 a8=0.3 m8=0.75 a10=0.3 m10=6.7 [212]

AAT2 Vf=720 Vr=788 s2=1.97 p5=1.1 KASPc=4.4

[ASPc]= 3 p11=0.18 Kp2=0.057 Kip2=1.1 Kiq2=0.52 [211]

AAT1 Vf=18000 Vr=1.8 104 s2=7 p4=0.16 KASPm=3.9

[ASPm] = 0.001 p11=0.39 Kp=0.63 Kip=1.1 Kiq=42.75 [211]

ACS Vf=360 Vr=0.02 s1=0.94 p5=0.3 [212]

Table 2.2: The flux values (namely Vf and Vr) are measured in mM/h per kg of

tissue. The concentrations of the metabolites not considered as dynamic variables

(ADPc,PEPm,ASPc,ASPm) are expressed in mM.
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Chapter 3

Simulations

In this chapter we describe new experimental data regarding mitochondrial metabolism

in breast cancer cells, consequently we use the mathematical model we developed

in the previous chapter to analyse these data and to provide further insights.

More specifically it was found that breast cancer cells can be divided into two

distinguishable groups, namely upper fork (UF) and lower fork (LF), based on

their genes expression (G. Szabadkai et al 2017, Unpublished Data),[215]. Every

cell appears to belong to one group or the other, in other words it seems that it

does not exist an in-between group. The aim of the present work is to character-

ize these two phenotypes, more specifically we are interested in knowing which

enzymes are ultimately fundamental for the manifestation of each phenotype. Al-

though we already have information about which enzymes are over-expressed at

mRNA-level, it is important to recall that the activity of an enzyme is regulated

across multiple checkpoints and therefore an increase in mRNA does not auto-

matically determine an increase in the activity of the protein. Thus, the need to

clarify which enzymes activity is ultimately responsible for the manifestation of

UF and LF phenotypes through a mathematical model.

3.1 Upper fork and lower fork phenotypes

First of all it is appropriate to illustrate more accurately the differences between

these two phenotypes in order extract which characteristics can be used to identify

them in our model. Experimentally, the most striking difference on the overall

behaviour is that LF cells depend heavily on external pyruvate. In fact, when the
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cultured cells are deprived of an external source of pyruvate, only the UF type is

able to survive. It is hypothesized that this is due to the fact that the glycolytic

flux in UF cells is higher than LF cells and this enables them to compensate for

the absence of external pyruvate.

However, it is important to notice that it is very problematic to express this

phenomenon mathematically since cell proliferation is a complex mechanism that

comprises multiple steps and involves numerous genes not considered in our model

[1, 2, 3]. Therefore it is not feasible to utilize the dependence of LF cells on

external pyruvate for proliferation to distinguish between the UF and LF math-

ematically. However it is reasonable to assume that

1. UF cells denote higher levels of pyruvate that LF.

Furthermore, additional observations that we utilised were derived from iso-

topic labelling. More precisely in each experiment the carbon atoms of glucose,

glutamine or pyruvate were substituted with 13C. In this way, after the con-

centration of the metabolites of the cell reached steady state, it was possible to

visualize how the 13C were distributed in the various metabolites. We observed

the following:

2. When glucose was labelled, the total concentration of labelled metabolites

was higher in UF.

3. When glutamine was labelled, the total concentration of labelled metabo-

lites was instead higher in LF.

4. The concentrations of citrate and malate appeared to be higher in UF, on

the other hand the opposite could be said about glutamate.

Regarding the first observation we also tested the quantity of extracellular

glucose that each cell line absorbed, the results indicated that this amount was

roughly the same both in UF and LF. Furthermore other experiments indicate:

5. UF cells show an increase in respiration with respect to LF, Fig.3.2.

To summarize, the benchmarks we considered in our model to distinguish

between the UF and LF phenotype are [CITm],[MALm],[PYRm], Vresp (higher

in UF) and Vglut (higher in LF).

48



3.2 RANGES OF OVER-EXPRESSION

Figure 3.1: Isotopic labelling.

Now, it is fundamental to verify if it is possible to reproduce the UF and LF

phenotype with our model of mitochondrial metabolism by modifying appropri-

ately the expression of the various enzymes. In its general form this problem is

a computationally prohibitive given that we have 25 enzymes (or equivalently 25

variables) in our model, therefore an exploration of the parameter space cannot

be, due to its dimensionality, exhaustive. Hence, we start from some experimen-

tal data that reveal which enzymes are more expressed, at mRNA level, in each

phenotype. These data are summarised in Fig.3.3: the colour red (blue) denotes

the enzymes that are over-expressed in UF (LF) cells.

3.2 Ranges of over-expression

As a first simulation, we tried to replicate UF and LF phenotypes changing the

expression of the enzymes randomly, accordingly to Fig.3.3. It is important to

add that the genes linked to Complex I and Complex II of the electron transport

chain appear to be over-expressed in UF. We represent them under the fictitious
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Figure 3.2: The membrane potential of mitochondria was measured using tetram-

ethylrhodamine methyl ester (TMRM) as fluorescent probes. Different combina-

tions of pyruvate,glucose and glutamine concentrations were tested. Notice that

in our model we do not treat the mitochondrial membrane potential as a variable

but we do consider the value of the respiration flux, which is strictly linked to it.

enzyme RESP.

Before commencing the simulations, notice that we already have information

regarding the activity of some enzymes. In fact we observe from Fig.3.1 that

UF phenotype is characterized by a value of GAPDH about 100% higher than

LF; on the other hand the activity of GLS1 appears to be approximatively 50 %

higher in LF. Although this does appear as a rough approximation it is important

to clarify that our aim is not to find the exact values of expression but rather

to give a qualitative analysis about the most relevant enzymes and possibly the

equilibria that have to exist between them to manifest UF or LF phenotype. This

is motivated by the fact that both the experimental data we are furnished with

and the parameters of our model are characterized by significant error variance.

Thus, currently a thorough quantitative analysis is out of reach. However this

kind of examination can still give valuable insights as a preliminary study of the

phenomena.

Regarding the other enzymes, we emulated UF by enhancing the maximum

activity of the red enzymes in Fig.3.3 randomly between 0 and 3 fold; simi-

larly we replicated LF by increasing the activity of the blue enzymes. Follow-
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Figure 3.3: Red arrows denote enzymes more expressed in UF cells and blue

arrows more expressed in LF cells.
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ing this procedure, we collected 2000 samples for both UF and LF type. We

recall that from our experimental data we expect UF cells to exhibit higher

[PYRm],[CITm],[MALm],Vresp and LF cells to show higher Vglut. In Fig.3.4 are

reported the values of these benchmarks by the use of box plots. We immedi-

ately observe that Vglut is always higher when the LF enzymes are over-expressed.

On the other hand, the situation is quite different regarding [CITm], [MALm],

[PYRm], Vresp. Although we expected values significantly higher in UF, we notice

that this is not always the case, especially if we observe the box plots depicting

[MAL] and [PYR].

The natural follow-up question is: ”What are the levels of enzymes expression

that determine UF and LF phenotype ?. More precisely, how can we maximize

the benchmarks in the UF case and how can we minimize them in the LF case?

To conduct this type of analysis we split the samples of each parameter into

two clusters through a K-means algorithm, as can be seen in Fig.3.5. Moreover

we notice that some of the samples are in accordance with the experimental data,

see Fig.3.6.

For each enzyme E, we then introduced a coefficient µE denoting its activation

(i.e. we multiplied the corresponding VM by µE). Notice that 0 < µE < 1 can

be seen as a repression of the activity of the enzyme E whereas µE > 1 as an

increase of it. Thus, in the following paragraphs, we will analyse the relations

between µE and the benchmarks values.

This is a complex problem since we have numerous variables (10 enzymes

in UF and 8 in LF) therefore a thorough exploration of the parameter space is

infeasible. However it may not even be necessary to attempt such an exploration

since, maybe, only a couple of enzymes play an important role in determining the

values of the benchmarks at steady state.

3.2.1 Gains of the enzymes involved

As a preliminary examination, it is quite intuitive to study the effect of each

enzyme taken singularly. Consequently we varied each µE from 1 to 5 and we

gathered the corresponding gains of the values of [CITm], [MALm], [PYRm], Vglut

(glutamate net production), Vresp at steady state, Tab.3.1.

Already from a superficial inspection of Tab.3.1 we can notice that inside the
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Figure 3.4: Boxplots of the parameters in UF and LF. The horizontal line in light

blue represent the value when no enzyme is over-expressed (i.e. µE = 1, for each

enzyme). The metabolites concentrations are measured in mM and the fluxes in
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h

per Kg of tissue.
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Figure 3.5: The samples of each parameter are split into two clusters through a K-

means algorithm. The left part of each figure depicts the values of each parameter

obtained in UF, the other half represents those corresponding regarding LF. The

points of UF that belong to the lower cluster are coloured in blue whereas those

who belong to the higher cluster are in red. Similarly the points of LF are coloured

in yellow or green depending on which cluster they belong.
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Figure 3.6: A subset of the samples that is in accordance with the experimental

data.

same group coexist enzymes with contrasting impacts. For example OGDH and

ME3, both over-expressed in LF cells, cause opposite effects regarding [MALm].

Therefore we expect that there has to be a balance between the expression of

different enzymes in order to obtain UF or LF phenotype.

In the next section we will analyse the UF and LF phenotype, taken singularly,

to identify the enzymes that are most significant to manifest each phenotype.

The procedure will be the following in both cases. First, we are going to

highlight the sets of µ for which every benchmark belongs to the upper (and lower)

cluster. In particular we will denote these sets upper UF/LF (lower UF/LF ).

Thereafter we are going to draw some observations from the distribution of each

µE in upper UF/LF and lower UF/LF and we are going to verify them graphically.

3.2.2 Lower fork analysis

The first noticeable difference in the distributions of µ is related to OGDH, in

fact out of the 132 sets in upper LF only 7 exhibit µOGDH < 2. On the other

hand, in lower LF about half of the sets denote values of µOGDH in the same
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∆[CITm]

[CITm]

∆[MALm]

[MALm]

∆[PYRm]

[PYRm]

∆Vresp

Vresp

∆Vglut

Vglut

GAPDH 0.6 1.8 0.9 0.21 -0.08

ME1 0.08 -0.61 0.12 -0.37 0.09

CS 0.68 -0.37 0.075 0.06 0.07

RESP 0.08 -0.37 0.088 0.95 <0.01

LDH -0.33 -0.33 -0.3 -0.2 0.04

IDH2 <0.01 <0.01 <0.01 <0.01 <0.01

MDH2 <0.01 <0.01 <0.01 <0.01 <0.01

AAT1 <0.01 <0.01 <0.01 0.16 0.015

AAT2 -0.08 0.09 -0.02 0.26 -0.14

ACS -0.09 -0.01 <0.01 <0.01 <0.01

PEPCK2 -0.19 0.48 <0.01 -0.13 <0.01

GLS1 <0.01 <0.01 <0.01 <0.01 4

OGDH -0.05 0.3 -0.08 0.48 -0.19

ME3 -0.14 -0.5 -0.13 -0.26 0.1

IDH1 -0.6 0.09 0.05 <0.01 <0.01

ME2 0.03 -0.16 0.026 0.15 0.03

PEPCK1 <0.01 -0.09 <0.01 -0.03 <0.01

GDH -0.01 <0.01 <0.01 <0.01 <0.01

PDH 0.3 -0.2 -0.5 0.27 0.07

MDH1 -0.08 0.06 -0.1 0.3 -0.19

PC 0.3 0.5 -0.13 -0.14 -0.1

PK 0.04 -0.44 0.05 -0.27 0.07

Table 3.1: This table reports the fraction changes of the outputs in response to

a variation of each activation coefficient µi from 1 to 5. Red enzymes are over-

expressed in UF phenotype whereas blue ones in the LF cells. Red gains denote

effects in accordance to UF phenotype and blue to LF phenotype.

interval, Fig.3.7.

Moreover from Fig.3.8, we notice that µME3 in lower LF has a minimum value

of 1.62 suggesting that high activity of ME3 is a necessary condition to have low

benchmarks, in particular regarding [MAL].
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Figure 3.7: Number of samples of upper/lower LF as function of µOGDH . The red

line denotes a kernel distribution fit. Upper (lower) LF indicates the set of µE

such that every parameter belongs to the upper (lower) cluster.
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Figure 3.9: Percentage of LF samples with [MAL],[PYR],Vresp in the lower cluster

as function of µOGDH and µME3.

Thereafter, we conducted the following experiment to test these observations.

We considered the enzymes OGDH,ME3 and IDH1 and we computed eleven

values of µE ranging from 1 to 3. Then, for each couple of these enzymes, we

ran our model 100 times for each combination of the two µE, assigning a random

value to the remaining LF enzymes. Finally, we computed the percentage of sets

for which each benchmark belonged to the lower cluster Fig.3.9,3.10,3.11.

We notice how IDH1 single-handedly determines the value of [CIT], in fact

such benchmark belongs to the lower cluster if and only if µIDH1 > 1.4. In

contrast, IDH does not appear to play a significant role in any other benchmark.

On the other hand, [MAL],[PYR] and Vresp heavily depend on the activation

of ME3 and OGDH. More precisely, both these enzymes influence negatively

[PYR] while they exhibit opposite effects on [MAL] and Vresp. As can be seen

in Fig. 3.9, the percentage of samples with [PYR] in the lower cluster raises as

the values of µOGDH and µME3 increase. Accordingly, the percentages regarding
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Figure 3.10: Percentage of LF samples with each benchmark in the lower cluster

as function of µME3 and µIDH1.

[MAL] and Vresp increase along the µME3-axis and diminish along the µOGDH-axis.

This suggest that there exist a balance between the activation of OGDH (positive

effect) and ME3 (negative effect) to appropriately regulate these benchmarks.

3.2.3 Upper fork analysis

Analogously to the LF case, we introduce a similar notation for the activation of

the UF enzymes. As previously said, RESP takes into account the over-expression

observed in Complex I and III of the electron transport chain.

Regarding the distribution of the different µE in the upper UF and lower

UF set, the only noticeable difference relates to µRESP since lower UF presents

diminished values, Fig.3.12.

The gains computed in Tab.3.1 point out the importance of LDH, ME1, RESP,

CS and PEPCK2 in the UF phenotype. As one would expect, µRESP is the main
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Figure 3.11: Percentage of LF samples with each benchmark in the lower cluster

as function of µOGDH and µIDH1.

responsible for Vresp, as can be seen in Fig.3.15,3.13. Interestingly enough, the

same can be said about LDH regarding [CIT] and [PYR], in fact high values

of µLDH always are associated with increased percentages of samples with these

benchmarks in the lower cluster, Fig.3.13, 3.14, 3.16. However the situation

regarding [MAL] is more complex, in particular these simulations suggest that

ME1, CS, RESP and LDH have a negative impact on it while PEPCK2 has a

positive effect, see Fig.3.13, 3.14, 3.15, 3.16, 3.17. Furthermore, none of these

enzymes seems to have a prevalent role.

3.2.4 Results

It is worthy to summarize what we accomplished in the present chapter. First

of all, we introduced two different phenotypes that have been recently identified

in breast cancer cells and we highlighted the variables that allow to distinguish
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Figure 3.12: Number of samples of upper/lower UF as function of µRESP . The

red line denotes a kernel distribution fit. Upper (lower) UF indicates the set of

µE such that every parameter belongs to the upper (lower) cluster.

between them. Namely the values of [CIT], [MAL], [PYR], Vresp appear to be

increased in the UF phenotype while Vglut seem to be enhanced in the LF case.

Consequently, following experimental data on the mRNA expression of the en-

zymes involved, we tried to replicate these two behaviours assigning a random

activation to each enzyme whose mRNA is over-expressed in UF or LF. Surpris-

ingly, the values of the benchmarks we obtained in this way were in contrast with

the experimental data. Thus, the need to explore in more detail the effect that

each enzyme plays on the benchmarks.

To lead our investigation we first collected the corresponding gains in Tab.3.1.

Then we split the values of each benchmark into two groups through a K-means

algorithm and we focused on the samples in which [CIT], [MAL], [PYR], Vresp

belonged to the upper cluster and those in which they all belonged to the lower set.

Thereafter we analysed the main differences between these two set of activations.

Following the observations we obtained up to this point, we narrowed our analysis

to few enzymes. Namely IDH1, ME3, OGDH for the LF case and RESP, LDH,

CS, ME1, PEPCK2 regarding the UF type.

Overall we can make a number of observations. In the LF phenotype the

simulations above suggest that:
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Figure 3.13: Percentage of UF samples with each benchmark in the lower cluster

as function of µRESP and µLDH .

• the value of [CIT] is single handedly determined by the activation of IDH1;

as can be seen in the upper-left plots of Fig.3.10 and 3.11 the percentage of

samples in the lower cluster depends only on the value of µIDH1;

• ME3 and OGDH have both a strong negative effect on [PYR], in the upper-

right plot of Fig.3.9 we notice that elevated percentages correspond to high

values of both µOGDH and µME3;

• ME3 and OGDH have opposite impacts on [MAL] and Vresp, in particular

OGDH has a positive effect and ME3 a negative one; in fact in Fig.3.9 we

observe that the percentage increases for high values of µME3 and low values

of µOGDH .

Similarly in the UF case we notice that:

• the value of [CIT] and [PYR] are single handedly determined by the acti-

vation of LDH, Fig.3.13, 3.14, 3.16;
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Figure 3.14: Percentage of UF samples with each benchmark in the lower cluster

as function of µME1 and µLDH .
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Figure 3.15: Percentage of UF samples with each benchmark in the lower cluster

as function of µRESP and µME1.
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Figure 3.16: Percentage of UF samples with each benchmark in the lower cluster

as function of µCS and µLDH .
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Figure 3.17: Percentage of UF samples with each benchmark in the lower cluster

as function of µRESP and µPEPCK2.
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3.2 RANGES OF OVER-EXPRESSION

• the value of Vresp is single handedly determined by the activation of RESP,

Fig.3.15, 3.13, 3.17;

• regarding [MAL], PEPCK2 plays a positive effect while ME1, CS, RESP

and LDH have a negative impact, see Fig.3.13, 3.14, 3.15, 3.16, 3.17.

To confirm these hypothesis, we set the ranges as indicated in Tab.3.2 for the

activation-coefficients. In particular to obtain low levels of [PYR] in the LF type,

we notice that the more µOGDH is increased the more we have to also enhance

µOGDH . In our case we considered µOGDH = 1 and µME3 ∈ (1.5, 3.5) but we can

achieve the same results setting µOGDH ∈ (1, 2) and µME3 ∈ (1.5, 4.5).

Regarding UF, first the activity of LDH has to be limited to satisfy the con-

ditions on [CIT] and [PYR]. Moreover it is important to adjust µOGDH , in fact

the activation of RESP has a strong positive effect on Vresp but also a negative

impact on [MAL].

UF range LF range

µGAPDH 2 µGLS1 1.5

µRESP (1, 2) µOGDH 1

µPEPCK2 (1, 2) µME3 (1.5, 3.5)

µME1 (1, 2) µGDH (1.5, 3.5)

µAAT1 (1, 1.5) µIDH1 (1.5, 3.5)

µLDH (1, 2) µME2 (1, 5)

µACS (1, 5) µPEPCK1 (1, 5)

µAAT2 (1, 5)

µMDH2 (1, 2)

µIDH2 (1, 5)

µCS (1, 5)

Table 3.2: Ranges of activation that satisfy the benchmarks.

Accordingly we obtained the values of benchmarks we hoped for, Fig.3.18.
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Figure 3.18: These box plots depict the values of the benchmarks obtained with

the activation-coefficients listed in Tab.3.2. As can be seen, they are now in

accordance to the experimental data discussed in Sec.3.1.
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Chapter 4

Conclusions

In this chapter, we summarise what we have accomplished in the current work

and we also give a brief review of the state of the art regarding metabolic networks

analysis. First, in Chapter 1, we described the main components of metabolism

as well as the most noticeable differences between healthy and breast cancer cells.

In particular, mitochondrial metabolism emerged as a focal point that connects

the principal pathways. Consequently, in Chapter 2, we built a mathematical

model of mitochondrial metabolism describing individually each reaction, both

in terms of kinetic characteristics and expression in cancer. In Section 3.1 we have

introduced two different metabolic phenotypes that have been recently identified

in breast cancer cells, denominated upper fork and lower fork phenotypes (G.

Szabadkai et al 2017, Unpublished Data), [215]. Then we highlighted how they

can be distinguished from one another in terms of metabolites concentrations

and fluxes activities, both quantities that are easily measured in a mathemati-

cal model. Overall, starting from data about which enzymes are over-expressed

in UF/LF cells at mRNA level, our goal was to investigate which enzymes are

necessary to manifest each phenotype.

In this regard, we ran different simulations, presented in Sec.3.2. In the first

simulation we supposed that the enzymes were over-expressed randomly, follow-

ing an uniform distribution. Although some samples were in accordance with the

experimental data (see Fig.3.6), the majority of them did not meet the experimen-

tal criteria, Fig.3.5. Thus, the need to highlight which enzymes influence each

benchmark the most, in order to consistently replicate the samples in Fig.3.6.

Tab.3.1 gives an overview of the gains of each enzyme taken singularly: we used
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these information to select a smaller set of enzymes to focus our attention on. To

conduct a general analysis, we split the samples of each parameter in two clusters

through a K-means algorithm. Thereafter, we considered two enzymes at a time

and the corresponding two-dimensional plane. We then computed, for numerous

points of the plane, the percentage of samples that belonged to the lower clus-

ter, see Fig.3.9-3.11 Fig.3.13-3.17. In this way we were able to identify, for each

parameter, the enzymes that have the major effects. Following these graphs, we

introduced a set of activation parameters (Tab.3.2) that should have satisfied our

criteria. Indeed these ranges of activation determined benchmarks in accordance

to the experimental data, Fig.3.18. In conclusion, Algorithm 1 summarises the

whole procedure.

Algorithm 1 Analysis of upper/lower fork metabolic phenotype

1: 1st Simulation: random over-expression → few samples satisfy the criteria

2: Computation of gains → highlights the effects of the enzymes taken singularly

3: 2nd Simulation: two-dimensional analysis through K-means algorithm

4: Draw possible ranges of expression

5: Test if these ranges satisfy the criteria

To give a wider prospective about how the present work fits into the current

knowledge about metabolism, it is worth to briefly describe the main methods

that have been developed so far to analyse metabolic networks. As discussed in

Chapter 1, several alterations in cancer cells metabolism are intricately linked

to the principal hallmarks of cancer. Consequently, the particular metabolism

displayed by cancer cells has been receiving increasing attention during the past

decades with the aim of finding novel therapies able to target specifically cancer

cells. However it is important to notice that the links between metabolism and

cancer can established in distinct scenarios. As a matter of fact, metabolic re-

programming may be only a consequence of non-metabolic oncogenic events and

not necessarily the cause of them. Overall, the preclinical and clinical evaluation

of metabolic inhibitors for cancer therapy is in its infancy. This is in part due

to the lack of enzymatic inhibitors acting at an acceptable degree of specificity

[4]. Over the years, different mathematical approaches have been developed to

analyse metabolic networks.

The most direct way to investigate the main properties of a certain metabolic
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pathway is to build a mathematical model that replicates the real phenomenon.

We refer to this as kinetic modelling and the present work constitutes one example

of such methodology. In practice, every chemical reaction is approximated by its

enzyme kinetics. Then, if the obtained system replicates with satisfying accuracy

the real metabolic network, the advantages are huge. In fact it becomes possi-

ble to recreate virtually every experiment simply by running the corresponding

simulations on the mathematical model. However, despite considerable advance

in the topological analysis of metabolic networks, kinetic modelling is still often

severely hampered by inadequate knowledge of the enzyme kinetic rate laws and

their associated parameter values. Therefore, the knowledge of the modeller on

the subject becomes crucial. First to decide which processes are actually impor-

tant and need to be included in the model. Next to evaluate if it is possible

to introduce some assumptions, in order to simplify the analysis phase. In any

case, there can still be certain physiological processes that are still unclear and

therefore very difficult to quantify.

Genome-scale metabolic models (GEMs) represent the collection of the exist-

ing knowledge regarding the metabolism of a specific organism and offer a valuable

tool to study metabolic networks [106, 225]. More precisely, GEMs employ a sto-

ichiometric matrix S to represent all the coefficients in the metabolic reactions.

The ij-th element in S indicates the stoichiometric coefficient of the i-th metabo-

lite in the j-th reaction in the GEM. If the coefficient is positive, the metabolite

is produced; otherwise, it is consumed. Moreover, GEMs are stoichiometric-

balanced networks, meaning that they consider mass, energy, as well as reduction

and proton, balances. Gene-protein-reaction (GPR) are also annotated in GEMs,

but the interactions are not quantitatively described. The GPR relationships in

GEMs are simplified into a two-dimensional binary matrix showing the associ-

ation between genes and reactions, in which the ij-th element is one if the i-th

reaction is associated with the j-th gene, and it is zero if they are not associated.

Even though GEMs describe the metabolism, concentrations of metabolites are

not directly included and flux balance analysis (FBA) is usually employed for flux

simulations [227]. FBA is often utilised to analyse how much each reaction in the

network contributes to a particular objective function (e.g. biomass production).

Furthermore, this method has found uses in gap-filling efforts and genome-scale

synthetic biology [226]. However it is important to mention that FBA has some
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limitations, in fact it is only suitable for determining fluxes at steady state and

it is not able to predict metabolite concentrations. Moreover, except in some

modified forms, FBA does not account for regulatory effects such as activation

of enzymes by protein kinases or regulation of gene expression, so its predictions

may not always be accurate.

Metabolic Control Analysis (MCA) has also received a lot of attention in re-

cent years. This approach aims to highlight the few enzymes that exert the major

effects inside a network through the study of the control coefficients. These de-

scribe how a variable the system V, typically a metabolic flux or the concentration

of a metabolite, will respond to variation of a parameter P, typically an enzyme

concentration. Mathematically, they are defined as the fractional change of V, in

response to a fractional change in P tending to zero:

CV
P = lim

δP→0

δV/V

δP/P
=
δV

δP

P

V
=
∂ln|V |
∂lnP

.

Moreover, coefficients denoted as elasticities also play an important role in this

framework. They indicate the effect of metabolite S on the velocity v of enzyme

E, with all other effectors of the enzyme held constant. Although they have the

same form as the control coefficients, they are not a property of the metabolic

system, but refer instead to an individual enzyme:

εES = lim
δE→0

δvE/vE
δS/S

=
δvE
δS

S

vE
=
∂ln|vE|
∂lnS

.

Notice that this kind of analysis can be conducted both on real experimental

data and on simulation-generated ones, obtained by a mathematical model of the

metabolic network under study. How this approach can be utilised in practice,

as well as some phenomena that have been analysed, are described in [217].

A valid critique about modelling of biological processes regards its limitation

with respect to the uncertainty of experimental data; consequently more robust

methods of investigation have been developed to overcome this obstacle. One

example that is worth mentioning is generalized modelling, [218]. Here, the pro-

cesses that are taken into account are not restricted to specific functional forms.

In this way, a single generalized model can describe a class of systems which

share a similar structure. More precisely, this approach is based on a normaliza-

tion procedure that is used to express the differential equation in terms of natural

parameters of the system, more easy to estimate. Then, the Jacobian in a steady

70



state is computed as a function of these parameters and the dynamical properties

of the model are studied in the framework of local bifurcation theory, see [219].

This approach has been utilised to study MAPK cascades [220].

Finally, it is important to mention the general framework of monotone sys-

tems as they comprise one of the most important classes of dynamical systems in

theoretical biology. The basic definitions and references about the mathematical

foundation of monotone systems can be found in [221, 222]. The main idea behind

this approach is to study the behaviour of complex networks as the interconnec-

tion of multiple monotone systems, see [223, 224]. This type of methodology

does not rely on the specific parameters values of a certain phenomenon but it is

instead aimed at highlighting general behaviours of a wide variety of biological

processes.
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Philipp Grünewald, Katrien De Bock, Sarah-Maria Fendt. Cell Reports 17, pp. 837848,

2016.

[175] Sheep kidney pyruvate carboxylase. Studies on its activation by acetyl coenzyme A and

characteristics of its acetyl coenzyme A independent reaction. Leonie K. Ashman, D. Bruce

Keech, John C. Wallace, Jan Nielsen. The Journal of Biological Chemistry, Vol. 247, n.

18, pp. 58185824, 1972.

[176] Pyruvate carboxylase from chicken liver. Steady state kinetic studies indicate a two-site

ping-pong mechanism. Roland E. Barden, Chien-Hung Fung, Merton F. Utter, Michael

C. Scrutton. The Journal of Biological Chemistry, Vol. 247, n. 4, pp. 1323-1333, 1972.

[177] Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor

malignancy. Chin-Chih Lin, Tsung-Lin Cheng, Wen-Hui Tsai, Hui-Ju Tsai, Keng-Hsun

Hu, Hao-Chun Chang, Chin-Wei Yeh, Ying-Chou Chen, Ching-Chun Liao, Wen-Tsan

Chang. Scientific Reports, 2 : 785, doi:10.1038/srep00785, 2012.

[178] Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian

carcinoma. Lilan Chen, Ting Liu, Jinhua Zhou, Yunfei Wang, Xinran Wang, Wen Di, Shu

Zhang. PLoS ONE 9(12): e115708, doi:10.1371/journal.pone.0115708, 2014.

[179] The kinetic properties of citrate synthase from rat liver mitochondria. D. Shepherd, P. B.

Garland. Biochem. Journal. Vol. 114, pp. 597-610.

[180] Kinetic studies of citrate synthase from rat kidney and rat brain. Yoichi Matsuoka, Paul

A. Srere. The Journal of Biological Chemistry, Vol. 248, n. 23, pp. 8022-8030, 1973.

[181] Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent re-

ductive carboxylation. Roberta Leonardi, Chitra Subramanian, Suzanne Jackowski,

Charles O. Rock. Journal of Biological Chemistry, Vol. 287, pp. 14615-14620, 2012.

[182] Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cel-

lular metabolism. Zachary J. Reitman, Hai Yan. Journal of the National Cancer Institute,

Vol. 102, n. 13, pp. 932-941 ,2010.

[183] Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma.

Daniel Krell, Mawuelikem Assoku, Malcolm Galloway, Paul Mulholland, Ian Tomlinson,

Chiara Bardella. PLoS ONE, Vol. 6, n. 5, 2011.

[184] The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells.
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