
Università degli Studi di Padova

FACOLTÀ DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di laurea magistrale

Color and depth based image segmentation
using a game-theoretic approach

Candidato:

Martina Favaro
Matricola 681484

Relatore:

Prof. Pietro Zanuttigh

Correlatore:

Prof. Andrea Albarelli

Anno Accademico 2011–2012

Contents

1 Introduction 1

2 Image segmentation 5
2.1 Detection of Discontinuities . 6
2.2 Region-Based Segmentation . 9

2.2.1 Thresholding . 9
2.2.2 Region-Growing . 10
2.2.3 Split-and-Merge . 11
2.2.4 Clustering . 12
2.2.5 Graph Based . 15

3 Proposed algorithm 19
3.1 First phase: oversegmentation . 19
3.2 Second phase: compatibility computation 22
3.3 Third phase: clustering . 24

4 Experimental results 29
4.1 Image dataset . 29
4.2 Evaluation metrics . 31

4.2.1 Hamming distance . 31
4.2.2 Consistency Error: GCE and LCE 31
4.2.3 Clustering indexes: Rand, Fowlkes and Jaccard 32

4.3 Parameter tuning . 33
4.4 Segmentation in association with stereo algorithms 38
4.5 Comparison with other segmentation algorithms 40

5 Conclusions 43

A Implementation details 45

Bibliography 55

iii

List of Tables

4.1 Best configuration . 37

4.2 Comparison of different segmentation algorithms 41

List of Figures

1.1 Color vs depth segmentation . 2

2.1 Examples of detection mask . 6

2.2 Derivative-based operators . 7

2.3 Examples of laplacian mask . 7

2.4 Threshold function . 10

2.5 Gray-level histogram . 10

2.6 Example of region growing . 11

2.7 Example of region spltting and merging 11

2.8 Quadtree corresponding to 2.7c . 11

2.9 Example of k-means clustering . 13

2.10 Mean shitf procedure . 15

2.11 A case where minimum cut gives bad partitioning 16

3.1 Pipeline of the proposed algorithm 20

iv

LIST OF FIGURES v

3.2 Oversegmentation detail . 21
3.3 Output of first phase . 21
3.4 Smallest maximum drop paths . 23
3.5 Bivariate gaussian model of compatibility measure 24
3.6 Evolutionary Game . 26
3.7 Segments produced by evolutionary game 27
3.8 Segmented image . 27

4.1 Image dataset . 30
4.2 Exploration of parameter space σz (x-axis) and σc (y-axis) 35
4.3 Qualitative effects of σz and σc . 36
4.4 Comparison of best results for each distance type 36
4.5 Comparison of 3D data sources . 38
4.6 Three disparity maps and their corresponding segmentation - Baby2 39
4.7 Three disparity maps and their corresponding segmentation - Midd2 39
4.8 Comparison of different segmentation algorithms 40
4.9 Comparison of qualitative results of different segmentation algorithms 41

Abstract

In this thesis a new game theoretic approach to image segmentation is proposed.
It is an attempt to give a contribution to a new interesting research area in image
processing, which tries to boost image segmentation combining information about
appareance (e.g. color) and information about spatial arrangement.

The proposed algorithm firstly partition the image into small subsets of pixels,
in order to reduce computational complexity of the subsequent phases. Two dif-
ferent distance measures between each pair of pixels subsets are then computed,
one regarding color information and one based on spatial-geometric information.
A similarity measure between each pair of pixel subset is then computed, ex-
ploiting both color and spatial data. Finally, pixels subsets are modeled into an
evolutionary game in order to group similar pixels into meaningful segments.

After a brief review of image segmentation approaches, the proposed algo-
rithm is described and different experimental tests are carried up to evaluate its
segmentation performance.

vii

Chapter 1

Introduction

In computer vision, segmentation refers to the process of partitioning a digital
image into its constituent regions or objects. That is, it partitions an image into
distinct regions that are meant to correlate strongly with objects or features of
interest in the image. Image segmentation usually serves as the pre-processing
before image pattern recognition, image feature extraction and image compression,
or more generally, it is the first stage in any attempt to analyze or interpret an
image automatically. The success or failure of subsequent image processing task
is often a direct consequence of the success or failure of segmentation.

The relevance of segmentation task is precisely the reason why, since its
formulation in the ’70, hundread of different techniques have been proposed,
mainly focusing on intensity-based and color image segmentation.

Nevertheless, if the goal is to separate objects in the image with respect to
a semantic meaning, image segmentation based only on color information can
fail to distinguish physical distinct object. For example, Figure 1.1 shows that
information provided by the color image is not sufficient to discern the baby doll
from the background.

The advent of relatively cheap techniques capable of acquiring or computing
a 3D reconstruction of real world scenes may help to overcome this weakness,
providing useful information about depth and position of the objects in the view.
There are two many group of methods, passive methods or active methods.

Passive methods use only the information coming from two or more standard
cameras to estimate depth values. Among them stereo vision systems (for example
[3] and [4]), that exploit the localization of corresponding locations in the different
images, are perhaps the most widely used. Stereo vision systems have been
greatly improved in the last years but they can not work on untextured regions
and the most effective methods are also very computational time consuming.

1

2 CHAPTER 1. INTRODUCTION

(a) original color image (b) depth map

(c) segmentation based on color
information

(d) segmentation based on
depth information

Figure 1.1: Color vs depth segmentation of Baby2 image of Middlebury Stereo Dataset [2]

Active methods, eg. structured light and Time of Flight (ToF) sensors, interfere
radiometrically with the reconstructed object. In ToF sensors a laser is used to
emit a pulse of light and the amount of time before the reflected light is seen
by a detector is timed; since the speed of light is known, the round-trip time
determines the travel distance of the light. Structured-light scanners (such as
Microsoft Kinect) project a pattern on the subject, then look at the deformation
of the pattern on the subject and uses a technique similar to triangulation to
calculate the distance of every point in the pattern. Such methods can obtain
better results than passive stereo vision systems, but they are also usually more
expensive.

Depth based segmentation is usally more robust and can lead to better segmen-
tation performance. In fact, abrupt changes in depth values usually correspond
to object boundaries, while this is not always true in color images, for example in
a textured region. On the other hand, image segmentation based only on depth
information sometimes fails due to depth image noise, and discard much useful
appearance information. For example, despite its advantages, depth data produced
by typical real-time stereo implementations is much noisier than the gray-scale or
color imagery from which it is computed, and contains many pixels whose values
have low confidence due to stereo matching ambiguity at textureless regions or

3

depth discontinuities.
Considering this, in the last few years a new approach to image segmentation

has risen, which uses information about depth and geometric structure of the
scene to enhance color image segmentation.

Harville and Robinson [5] use stereo data to augment local appearance fea-
tures extracted from the images. In [6] and [7] the authors introduce a parallel
segmentation of depth map and color image and then combine the two produced
segmentations by merging color region that are related to the same depth region.
In [8], Bleiweiss and Werman use Mean Shift over a 6D vector that fuses color
and depth data obtained with a ZCam, while in [9] a similar approach is proposed
using k-means clustering algorithm instead of mean-shift. Using such different
sources of information makes unavoidable to deal with their different nature from
both a physical and a semantic point of view. In [8] color and depth data are
weighted with respect to their estimated reliability and in [9] a weighting costant
for 3D position components is used.

The offline algorithm proposed in this thesis uses a different approach, where
pairwise non linear similarities between macropixels are computed taking into
account both color and depth information; a game theoretic approach is then em-
ployed to make them play in an evolutionary game [10] until stable segmentation
emerges.

The thesis is structured as follows: chapter 2 will describe the most common
general purpose approaches to image segmentation; in chapter 3 the principles
of the proposed algorithm will be desribed while Appendix A will delve into
implementation details; finally, results of experimental test will be shown in
chapter 4.

Chapter 2

Image segmentation

Image segmentation is a task of fundamental importance in digital image
analysis and it is a first step in many computer vision methods. It is the process
that partitions a digital image into disjoint, nonoverlapping regions, each of which
normally corresponds to something that humans can easily separate and view
as an individual object. Unlike human vision, where image segmentation takes
place without effort, computers have no means of intelligently recognising objects,
therefore digital processing requires that we laboriously isolate the objects by
breaking up the image into regions, one for each object [11, 12, 13]. The main goal
of image segmentation is domain independent partitioning of an image into a set
of disjoint regions that are visually different one from the other but internally
homogeneous and meaningful with respect to some characteristics or computed
properties, such as grey level, colour, texture, depth, motion, etc. aiming at
simplify and/or change the representation of an image into something that is more
meaningful with respect to a particular application and easier to analyze.

Commonly considered applications of segmentation include region-based image
and video description, indexing and retrieval, video summarization, interactive
region-based annotation schemes, detection of objects that can serve as cues for
event recognition, region-based coding, etc.[14]

The idea of segmentation has its roots in work by the Gestalt psychologists, who
studied the preferencies exhibited by human beings in grouping or organizing sets
of shapes arranged in the visual field. Gestalt principles dictate certain grouping
preferences based on features such as proximity, similarity, and continuity. [12]

Image segmentation is usually approached from one of two different but com-
plementary perspectives: discontinuity and similarity. In the first category, the
approach is to partition an image based on abrupt changes in intensity, such as
edges in an image. The principal approches in the second category are based on

5

6 CHAPTER 2. IMAGE SEGMENTATION

partitioning an image into regions that are similar according to a set of prede-
fined criteria. Thresholding, region growing and region splitting and merging are
examples of methods in this category. [15]

2.1 Detection of Discontinuities

Techniques belonging to this category are usually applied to grayscale digital
image and try to segment it detecting discontinuities such as points, lines or, more
frequently, edges. In general, discontinuities correspond to those points in an
image where gray level changes sharply: such sharp changes usually occur at
object boundaries. The most common way to look for discontinuities is to run a
mask through the image; this procedure involves computing the of products of the
coefficients with the gray levels contained in the region encompassed by the mask.
Figure 2.1 presents some detection masks used to detect points (a), horizontal
lines (b) or vertical lines (c).

-1 -1 -1
-1 8 -1
-1 -1 -1

(a) Point

-1 -1 -1
2 2 2
-1 -1 -1

(b) Horizontal line

-1 2 -1
-1 2 -1
-1 2 -1

(c) Vertical line

Figure 2.1: Examples of detection mask

Although point and line detection certinly are important in any discussion on
segmentation, edge detection is by far the most common approach for detecting
meaningful discontinuities in gray level.

There are many derivative operators designed for 2-D edge detection, most
of which can be categorized as gradient-based or Laplacian-based methods. The
gradient-based methods detect the edges by looking for the maximum in the first
derivative of the image. The Laplacian-based methods search for zero-crossings in
the second derivative of the image to find edges.

Gradient

First-order derivatives of a digital image are based on various approximations
of the 2-D gradient. The gradient of an image f(x, y) at location (x, y) is defined as
the vector

∇f =

[
Gx

Gy

]
=

[
∂f
∂x
∂f
∂y

]

2.1. DETECTION OF DISCONTINUITIES 7

Most operators perform a 2-D spatial gradient measurement using convolution
with a pair of horizontal and vertical derivative kernels, i.e. each pixel in the
image is convolved with two kernels, one estimating the gradient in the x direction
and the other in th y direction. The most widely used derivative-based kernels
for edge detection are the Roberts operators (Figure 2.2a), the Sobel opertors
(Figure 2.2b) and the Prewitt operators (Figure 2.2c).

-1 0
0 1

0 -1
1 0

(a) Roberts

-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

(b) Sobel

-1 -1 -1
0 0 0
1 1 1

-1 0 1
-1 0 1
-1 0 1

(c) Prewitt

Figure 2.2: Derivative-based operators

Laplacian

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined as

∇2f =
∂2f

∂x2
+
∂2f

∂y2

and can be implemented by any of the convolution kernels in Figure 2.3.

0 -1 0
-1 4 -1
0 -1 0

-1 -1 -1
-1 8 -1
-1 -1 -1

1 -2 1
-2 4 -2
1 -2 1

Figure 2.3: Examples of laplacian mask

The Laplacian has the advantage that it is an isotropic measure of the second
derivative. The edge magnitude is independent of the orientation and can be

8 CHAPTER 2. IMAGE SEGMENTATION

obtained by convolving the image with only one kernel. The presence of noise,
however, imposes a requirement for a smoothing operation prior to using the
Laplacian. Usually, a Gaussian filter is chosen for this purpose. Since convolution
is associative, we can combine the Gaussian and Laplacian into a single Laplacian
of Gaussian (LoG) kernel.

Canny Edge Detector

Generally, edge detection based on the aforementioned derivative-based op-
erators is sensitive to noise. This is because computing the derivatives in the
spatial domain corresponds to high-pass filtering in the frequency domain, thereby
accentuating the noise. Furthermore, edge points determined by a simple thresh-
olding of the edge map (e.g., the gradient magnitude image) is error-prone, since
it assumes all the pixels above the threshold are on edges. When the threshold
is low, more edge points will be detected, and the results become increasingly
susceptible to noise. On the other hand, when the threshold is high, subtle edge
points may be missed. These problems are addressed by the Canny edge detector,
which uses an alternative way to look for and track local maxima in the edge
map. The Canny operator is a multistage edge-detection algorithm. The image
is first smoothed by convolving with a Gaussian kernel. Then a first-derivative
operator (usually the Sobel operator) is applied to the smoothed image to obtain
the spatial gradient measurements, and the pixels with gradient magnitudes
that form local maxima in the gradient direction are determined. Because local
gradient maxima produce ridges in the edge map, the algorithm then performs the
so-called nonmaximum suppression by tracking along the top of these ridges and
setting to zero all pixels that are not on the ridge top. The tracking process uses a
dual-threshold mechanism, known as thresholding with hysteresis, to determine
valid edge points and eliminate noise. The process starts at a point on a ridge
higher than the upper threshold. Tracking then proceeds in both directions out
from that point until the point on the ridge falls below the lower threshold. The
underlying assumption is that important edges are along continuous paths in the
image. The dual-threshold mechanism allows one to follow a faint section of a
given edge and to discard those noisy pixels that do not form paths but nonetheless
produce large gradient magnitudes. The result is a binary image where each pixel
is labeled as either an edge point or a nonedge point. [16]

2.2. REGION-BASED SEGMENTATION 9

2.2 Region-Based Segmentation

Region segmentation methods partition an image by grouping similar pixels
together into identified regions. Image content within a region should be uniform
and homogeneous with respect to certain attributes, such as intensity, rate of
change in intensity, color, and texture. Regions are important in interpreting an
image because they typically correspond to objects or parts of objects in a scene.
Most of the segmentation techniques belong to this category: region-growing,
split-and-merge, clustering approach, threshold, etc... just to name a few.

Basic Formulation

Let R represent the entire image region; segmentation process partitions R
into n subregions R1, R2, ..., Rn such that

(a)
⋃n

i=1Ri = R

(b) Ri is a connected region, i = 1, 2, ..., n

(c) Ri ∩Rj = ∅ for all i and j, i 6= j

(d) P (Ri) = TRUE for i = 1, 2, ..., n

(e) P (Ri ∪Rj) = FALSE for i 6= j

where P (Ri) is a logical predicate defined over the points in the set Ri. Condition
(a) indicates that the segmentation must be complete; that is every pixel must
be in a region. Condition (b) requires that points in a region must be connected,
even though this condition is not considered by every segmentation algorithm.
Condition (c) indicates that the regions must be disjoint. Condition (d) deals with
the properties that must be satisfied by the pixel in a segmented region. Finally
condition (e) indicates that regions Ri and Rj are different in the sense of predicate
P . Item 5 of this definition can be modified to apply only to adjacent regions, as
non-bordering regions may well have the same properties.

2.2.1 Thresholding

The simplest method of image segmentation is called thresholding method;
this method is based on a threshold value to turn a gray-scale image into a binary
image, labeling each pixel as background or foreground and it is particularly
useful for scenes containing solid objects resting on a contrasting background.
Thresholding can also be generalized to multivariate classification operations, in

10 CHAPTER 2. IMAGE SEGMENTATION

which the threshold becomes a multidimensional discriminant function classifying
pixels based on several image properties.

In the simplest implementation of thresholding, the value of the threshold
gray level is held constant throughout the image (Figure 2.4). If the background
gray level is reasonably constant over the image and if the objects all have ap-
proximately equal contrast above the background, then the gray-level histogram
is bimodal, and a fixed global threshold usually works well, provided that the
threshold, T, is properly selected, usually analyzing the gray-level histogram of
the image (Figure 2.5).

Figure 2.4: Threshold function Figure 2.5: Gray-level histogram

Often, due to uneven illumination and other factors, the background gray
level and the contrast between the objects and the background often vary within
the image. In such cases, global thresholding is unlikely to produce satisfactory
results, since a threshold that works well in one area of the image might work
poorly in other areas. To cope with this variation, one can use an adaptive, or
variable, threshold that is a slowly varying function of position in the image, i.e. it
depends also on the spatial coordinates x and y. This type of threshold function
is usually defined dynamic threshold or adaptive threshold. One approach to
adaptive thresholding is to partition an N ×N image into nonoverlapping blocks
of n×n pixels each (n < N), analyze gray-level histograms of each block, and then
form a thresholding surface for the entire image by interpolating the resulting
threshold values determined from the blocks.

2.2.2 Region-Growing

The fundamental limitation of histogram-based region segmentation methods,
such as thresholding, is that the histograms describe only the distribution of gray
levels without providing any spatial information. Region growing is an approach
that exploits spatial context by grouping adjacent pixels or small regions together
into larger regions. The basic approach is to start with with a set of “seed” points

2.2. REGION-BASED SEGMENTATION 11

Figure 2.6: Example of region growing

and from these grow regions by appending to each seed those neighboring pixels
that have properties similar to the seed, such as specific ranges of gray level, color
or depth (see Figure 2.6). These criteria are local in nature and do not take into
account the “history” of region growth. Therefore many region-growing alorithms
uses additional criteria that increase their power such as the concept of size,
likeness between a candidate pixel and the pixels grown so far, and the shape of
the region being growing. The use of these types of descriptors is based on the
assumption that a model of expected results is at least partially available.

2.2.3 Split-and-Merge

Opposite to the “bottom-up” approach of region growing, region splitting is a
“top-down” operation. The basic idea of region splitting is to break the image into
disjoint regions within which the pixels have similar properties.

(a) (b)

(c) (d)

Figure 2.7: Example of region splt-
ting and merging Figure 2.8: Quadtree corresponding to 2.7c

Region splitting usually starts with the whole image as a single initial region
(Figure 2.7a). It first examines the region to decide if all pixels contained in it
satisfy certain homogeneity criteria of image properties; if the criterion is met,
then the region is considered homogeneous and hence left unmodified in the image.

12 CHAPTER 2. IMAGE SEGMENTATION

Otherwise the region is split into subregions, and each of the subregions, in turn,
is considered for further splitting (Figure 2.7b and Figure 2.7c). This recursive
process continues until no further splitting occurs. This splitting technique has a
convenient representation in the form of a so-called quadtree (Figure 2.8), a tree in
which nodes have exactly four descendants, whose root corresponds to the entire
image. After region splitting, the resulting segmentation may contain neighboring
regions that have identical or similar image properties. Hence a merging process
is used after each split to compare adjacent regions and merge them if necessary
(Figure 2.7d)[17].

2.2.4 Clustering

Data clustering or cluster analysis is the organization of a collection of un-
labeled data (usually represented as a vector of measurements, or a point in a
multidimensional space) into clusters based on similarity. Intuitively, data within
a valid cluster are more similar to each other than they are to a pattern belong-
ing to a different cluster [18]. By considering pixels and their related features
as unlabeled data points, it is possible to apply clustering alghoritms to image
segmentation, thus exploiting the wide research in this field.

Besides the clustering algorithm itself, various image segmentation techniques
based on clustering differ primarily on how the feature space is modeled. Color
image segmentation often use a 3-dimensional space, corresponding to a color
space, such RGB, CIELab or HSL, thus segmenting pixels depending only on color
information. As thresholding, this approach may lead to unconnected components,
breaking the rule (b) (see section 2.2), because it does not consider the continuity
law. To avoid this, spatial information may be added to pixel description, leading
to a 5-dimensional feature space (RGBXY) or even more if also motion or texture
information are included. A drawback of this kind of feature spaces is the definition
of the distance metric used by the clustering algorithms, that must take into
account the different nature of this information.

Once feature space and distance metric have been fixed, a general purpose
clustering algorithm may be applyed; the most frequent ones are k-means and
mean shift [19].

K-means clustering

K-means clustering [20, 21] is a method of cluster analysis which aims to
partition n observations into k clusters in which each observation belongs to the
cluster with the nearest mean.

The algorithm is composed of the following steps:

2.2. REGION-BASED SEGMENTATION 13

1. Place K points into the space represented by the objects that are being
clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K
centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a
separation of the objects into groups from which the metric to be minimized
can be calculated.

Figure 2.9: Example of k-means clustering

Figure 2.9 shows an example of k-means clustering with two clusters and five
items. In the first frame, the two centroids (shown as dark circles) are placed
randomly. Frame 2 shows that each of the items is assigned to the nearest centroid;
in this case, A and B are assigned to the top centroid and C, D, and E are assigned
to the bottom centroid. In the third frame, each centroid has been moved to the
average location of the items that were assigned to it. When the assignments are
calculated again, it turns out that C is now closer to the top centroid, while D and
E remain closest to the bottom one. Thus, the final result is reached with A, B,
and C in one cluster, and D and E in the other.

Although it can be proved that the procedure will always terminate, the k-
means algorithm does not necessarily find the most optimal configuration. The

14 CHAPTER 2. IMAGE SEGMENTATION

algorithm is also significantly sensitive to the initial randomly selected cluster
centres. The k-means algorithm can be run multiple times to reduce this effect.

Mean shift

Mean shift was first proposed by Fukunaga and Hostetler [22], later adapted
by Cheng [23] for the purpose of image analysis and extended by Comaniciu and
Meer to low-level vision problems, including segmentation [24].

Mean shift clustering algorithm is a simple, nonparametric technique for
estimation of the density gradient and it is based upon determining local modes in
the joint spatio-feature space of an image, and clustering nearby pixels to these
modes.

Mean shift uses a kernel function K(xi − x) to determine the weight of nearby
points for re-estimation of the mean. Typically the Gaussian kernel on the distance
to the current estimate is used, i.e. K(x−xi) = e‖xi−x‖

2

. Assuming g(x) = −K ′(x),
the mean shift is calculated as

m(x) =

∑n
i=1 g

(
x−xi
h

)
xi∑n

i=1 g
(
x−xi
h

) − x
where h is the bandwith parameter. Using a gaussian kernel, the mean shift is

m(x) =

∑n
i=1 exp

(
− 1

2

∥∥x−xi
h

∥∥2)xi∑n
i=1 exp

(
− 1

2

∥∥x−xi
h

∥∥2) − x

The segmentation algorithm proceeds as follows:

1. Associate a feature vector xi to each pixel pi of the image.

2. For each feature vector xi, perform the mean-shift procedure:

• Set y1 = xi.

• Repeat yi+1 = yi + m(yi) until convergence, i.e. while |yi+1 − yi| > τ1.
See Figure 2.10 as an example

• Set xi to the converged value of y.

3. Identify clusters of feature vectors by grouping all converged points that are
closer than a prescribed threshold τ2.

4. Assign labels to clusters.

Typically the spatial domain and the range domain are different in nature,
so it is often desirable to employ separate bandwidth parameters for different

2.2. REGION-BASED SEGMENTATION 15

Figure 2.10: Mean shift procedure. Starting at data point x0i run the mean shift procedure
to find the stationary points of the density function. Superscripts denote the mean shift
iteration while the dotted circles denote the density estimation windows.

components of the feature vector; usually a bandwith hs for spatial components
and hc for color components.

One of the most important difference is that K-means makes two broad as-
sumptions - the number of clusters is already known and the clusters are shaped
spherically (or elliptically). Mean shift , being a non parametric algorithm, does
not assume anything about number of clusters, because the number of modes gives
the number of clusters. Also, since it is based on density estimation, it can handle
arbitrarily shaped clusters. On the other hand K-means is fast and has a time
complexity O(knT) where k is the number of clusters, n is the number of points
and T is the number of iterations, while classic mean shift is computationally
expensive with a time complexity O(Tn2).

2.2.5 Graph Based

In graph based image segmentation methods, the image is modeled as a
weighted, undirected graph G = (V,E), where each node in V is associated with
a pixel or a group of pixels of the image and edges in E connect certain pairs
of neighbooring pixels. The weight w(u, v) associated with the edge (u, v) ∈ E

describes the affinity (or the dissimilarity) between the two vertices u and v. The
segmentation problem is then solved by partitioning the corresponding graph G,
using efficient tools from graph theory, such that each partition is considered as
an object segment in the image.

Among graph based algorithms, Normalized Cut by Shi and Malik [25] and

16 CHAPTER 2. IMAGE SEGMENTATION

Efficient Graph-Based Image Segmentation by Felzenszwalb and Huttenlocher
[26] are worth to be mentioned due to their effectiveness and low computational
complexity.

Normalized Cut

The Normalized Cut algorithm was presented as an improvement of a previous
graph based groupin algorithm, min cut [27]. A graph G = (V,E) whose edge
weights represent the similarity between linked vertices can be partitioned into
two disjoint sets by removing edges connecting the two parts. Min cut algorithm
computes the degree of dissimilarity between sets A and B as the total weigth of
the edges that have been removed, which is called cut:

cut(A,B) =
∑

u∈A, v∈B
w(u, v) (2.1)

The optimal bipartitioning of a graph is the one that minimizes the cut value
and it can be efficiently found using min-cut/max-flow algorithms. The minumum
criteria favors cutting small sets of isolated nodes in the graph, as shown in
Figure 2.11. This is a result from the definition of the cut cost in (2.1), which
increases with the number of edges going across the two partitioned parts.

Figure 2.11: A case where minimum cut gives bad partitioning

To avoid this bias, normalized cut algorithms uses a different measure of
dissimilarity between two groups by calculating the cut cost as a fraction of the
total edge connections to all the nodes in the graph:

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)

where assoc(A, V) =
∑

u∈A, t∈V w(u, t) is the total connection from nodes in A to
all nodes in the graph.

Altought minimizing normalized cut exactly is NP-complete, it can be shown
that find an approximation of the min cut is equivalent to solve the generalized

2.2. REGION-BASED SEGMENTATION 17

eigenvalue system (D−W)x = λDx with the second smallest eigenvalue ([] section
2). In this formula, x is an N = |V | dimensional indicator vector, xi = 1 if node i is
in A and −1 otherwise; D is an N ×N diagonal matrix with d(i) =

∑
j w(i, j); W

is an N ×N symmetrical matrix with W (i, j) = w(i, j).
The grouping stage consists therefore of 4 steps:

1. Measuring the similarity of points pair-wisely

2. Applying eigendecomposition to get the eigenvector with the second smallest
eigenvalue

3. Using the eigenvector to bipartition the graph

4. Deciding if further partition is necessary.

Effiecient Graph-Based Image Segmentation

The Efficient Graph-Based algorithm is based on minimum spanning tree
(MST) and adaptively adjusts the segmentation criterion, therefore it can preserve
detail in low-variability image regions while ignoring detail in high-variability
regions.

Starting considering each vector as a component, it merges similar components
using a predicate which is based on measuring the dissimilarity between elements
along the boundary of the two components relative to a measure of the dissimilarity
among neighboring elements within each of the two components. The internal
difference of a component C ⊆ V is defined as the largest weight in the minimum
spanning tree of the component, MST (C,E). That is,

Int(C) = max
e∈MST (C,E)

w(e)

The differerence between two components C1, C2 ⊆ V is defined as the minimum
weight edge connetting the two components. That is,

Dif(C1, C2) = min
v1∈C1, vj∈C2, (vi,vj)∈E

w((vi, wj))

The region comparison predicate evaluates if there is evidence for a boundary
between a pair or components by checking if the difference between the compo-
nents, Dif(C1, C2), is large relative to the internal difference within at least one
of the components, Int(C1) and Int(C2). The pairwise comparison predicate is
then defined as

D(C1, C2) =

{
true if Dif(C1, C2) > MInt(C1, C2)

false otherwise

18 CHAPTER 2. IMAGE SEGMENTATION

where the minimum internal difference MInt is defined as

MInt(C1, C2) = min(Int(C1 + τ(C1), Int(C2) + τ(C2))

τ is a threshold function based on the size of the component, τ(C) = k/|C|
where |C| denotes the size of C and k is a constant parameter. Using this threshold
function makes harder to create small components because for small components
a stronger evidence for a boundary is required.

The algorithm can be summarized as follows:

1. Sort E into π = (o1, . . . , om), by non-decreasing edge weight.

2. Start with a segmentation S0 where each vertex vi is in its own component.

3. Repeat step 3 for q = 1, . . . ,m.

4. Construct Sq given Sq−1 as follows. Let vi and vj denoting the vertices
connected by the q-th edge in the ordering, i.e. oq = (vi, vj). If vi and
vj are in disjoint components of Sq−1 and w(oq) is small compared to the
internal difference of both those components, then merge the two components
otherwise do nothing. More formally, let Cq−1

i be the component of Sq−1

containg vi and Sq−1
j the component containing vj . If Cq−1

i 6= Cq−1
j and

w(oq) ≤ MInt(Cq−1
i , Cq−1

j) then Sq is obtained from Sq−1 by merging Cq−1
i

and Cq−1
j . Otherwise Sq = Sq−1.

5. Return S = Sm.

Chapter 3

Proposed algorithm

The proposed algorithm uses information about geometry provided by range
images to enhance color images segmentation. It can be mainly partitioned in
three steps according to the pipeline shown in Figure 3.1:

1. The first step consist of a preprocessing stage which groups pixel into “su-
perpixels” or “macropixels”, local subsets of pixels with similar color and
position. This is necessary to limit the computational complexity in the sub-
sequent phase because the high number of pixels in images even at moderate
resolutions would make later steps intractable.

2. The second step produces a compatibility matrix between each pair of
macropixels using both photochromatic information provided by a color
image and geometric information provided by the range image.

3. The last step groups macropixels into segments based on the compatibility
matrix computed in the previous step. It uses game-theoretic evolutionary
games provided by the DIAS - Dipartimento di scienze ambientali, informat-
ica e statistica - of Università Ca’ Foscari of Venice, which suggest which
macropixels must be merged to create the segments of the image.

3.1 First phase: oversegmentation

Macropixels are created by using already implemented and well-known segmen-
tation algorithms tuning the relative parameters to obtain an oversegmentation.
The Efficient Graph Based (EG) technique proposed by Felzenszwalb and Hutten-
locker in [26] and presented in section 2.2.5 on page 17 has been chosen due to the
good results and the low complexity.

19

20 CHAPTER 3. PROPOSED ALGORITHM

Figure 3.1: Pipeline of the proposed algorithm

3.1. FIRST PHASE: OVERSEGMENTATION 21

However, this procedure has shown to be insufficient: as shown in Figure 3.2a,
some produced macropixels contained pixels of different objects whenever close
objects share similar color. This forced to include an additional image process by
implementing a hierical photochromic-geometric oversegmentation: the procedure
performs first a color-based segmentation using EG algorithm, subsequently for
each produced macropixel, sample mean and standard deviation are calculated
with respect to the depth of the pixels. If standard deviation exceeds a threshold
σt the macropixel is further subdivided applying k-means with k = 2. The sub-
segments are recursively examined and splitted until standard deviation meets
threshold (Figure 3.2b). This splitting procedure does not ensure region conti-
nuity, therefore 8-connettivity is finally forced by grouping neighbouring pixels
(Figure 3.2c).

(a) (b) (c)

Figure 3.2: Oversegmentation detail at different stages: (a) wrong macropixel produced
by color-based segmentation, (b) subsegments after splitting using kmeans with k = 2,
(c) final correct macropixels

Figure 3.3: Output of first phase

The result of first phase is shown in Figure 3.3.

22 CHAPTER 3. PROPOSED ALGORITHM

3.2 Second phase: compatibility computation

In order to calculate the compatibility between two macropixels, color distance
and geometric/spatial distance are indipendently computed. The compatibility
measure is then obtained by combining the two distances.

The color distance is simple defined as the distance between the average colors
of macropixels on the UV plane of the Y UV color space. The luminance component
is not considered to make the measure insensitive to illumination variations. The
average color of each macropixel is computed averaging the chroma components of
the pixels that belong to it. Given two macropixels mi and mj respectively with
chroma coordinates [ui vi] and [uj vj], the color distance is then computed as

dc(mi,mj) =
√

(ui − uj)2 + (vi − vj)2

The definition of the geometric distance is instead more elaborate. It is related
to the path between macropixels in a 4-conntected graph representing the image
where each node corresponds to a pixel and is connected to the 4 adjacent pixels,
while the weigth of the edges is related to the distance between the corresponding
point of the range image. If two macropixels belong to the same uninterrupted
surface, it can be expexted that there is a path connecting the macropixels that
contains only small jumps, because it rings around abrupt discontinuities. In
order to find such a path, a modified version of the Dijkstra algorithm has been
implemented where the most convinient step is not the one that shortens the total
trip to the destination, but the one that perfoms the smallest drop over depth
values. The path obtained through this algorithm is therefore one of the paths
with the “smallest maximum drop” and it is generally different from the shortest
path, as shown in Figure 3.4. In particular, in Figure 3.4b it can be observed how
the route between the two macropixels goes through the baby to minimize the
maximum jump.

The algorithm is performed once for each macropixel, finding a path from its
centroid to all other pixels. For every other macropixel, the path p to its centroid
is selected and the geometric distance between them is set to the maximum jump
of the path, i.e.

dz(mi,mj) =

{
minp∈Pmi→mj

max(k,l)∈p w(k, l)

∞ if Pmi→mj
= ∅

where Pmi→mj represents the set of all the paths from mi to mj . The distance is
automatically set to infinity if there is no path connecting the macropixels. The
meaning of this defition of dz is that there is no way to get from the centroid of mi

to the centroid of mj without a drop of at least dz.

3.2. SECOND PHASE: COMPATIBILITY COMPUTATION 23

(a) (b)

Figure 3.4: Smallest maximum drop paths

Four different measures of distance between pixels have been implemented:
given two adjenct pixels A and B with 3D coordinates respectively (xA, yA, zA) and
(xB , yB , zB) their distance (which corresponds to the weigth of the edge connecting
the corresponding nodes) can be computed as

1. 3D euclidean distance deuclid(A,B) =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

2. displacement over z-coordinates ddelta−z(A,B) = |za − zb|

3. ratio between z-component of the distance and the overall distance

dnorm(A,B) =
|za − zb|√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

4. angle between the direction of the jump and the plane of the image

dangle(A,B) =
arcsin(dnorm(A,B))

π/2

dangle = 1 means that the jump is orthogonal plane of the image, while
dangle = 0 means that the jump is parallel to the plane.

Measures 1 and 2 have thus the same unit of measurement of the range image,
while 3 and 4 are dimensioneless and limited in the interval [0, 1]. In addiction,
measure 3 and 4 can be considered normalized measure, as they are not affected
by the distance from the image plane and are thus expected to avoid bias toward
foreground objects.

Once both distances have been computed, the compatibility matrix is calculated
by mixing them. Each distance is modeled as a gaussian indipendent event with
zero mean and standard deviation σz and σc respectively. The compatibility

24 CHAPTER 3. PROPOSED ALGORITHM

measure results therefore in a bivariate gaussian function as shown in Figure 3.5
and the elements of the compatibility matrix Π are computed as

πi,j = π(mi,mj) = e
− 1

2

(
dz(mi,mj)

2

σ2z
+
dc(mi,mj)

2

σ2c

)
(3.1)

The parameters σz and σc are used to set the selectivity of compatibility measure.

(a)

(b)

Figure 3.5: (a) Bivariate gaussian model of compatibility measure with σ2
z = 1 and σ2

c = 5.
(b) Bivariate gaussian for non-negative distance values. Red plane represent σ2

z = 1, green
plane represents σ2

c = 5

3.3 Third phase: clustering

The task of third phase is to group macropixels into segments which hopefully
correspond to image objects. It uses a C++ library developed and provided by the
Department of Computer Science of Università Ca’ Foscari of Venice, which has

3.3. THIRD PHASE: CLUSTERING 25

already been applied to different fields of computer vision, especially matching and
grouping [28, 29, 30]. It provides an Evolutionary Game-Theory framework [10],
an application of Game-Theory to evolving population. Originated in the early 40’s,
Game Theory was an attempt to formalize a system characterized by the actions of
entities with competing objectives, which is thus hard to characterized with a sin-
gle objective function. According to this view, the emphasis shifts from the search
of a local optimum to the definition of equilibria between opposing forces, providing
an abstract theoretically-founded framework to model complex interactions. In
this setting multiple player have at their disposal a set of strategies and their
goal is to maximize a payoff that depends on the strategies adopted by the other
players. Evolutionay Game-Theory differs from standard Game-Theory in that
each player is not supposed to behave rationally or have a complete knowledge of
the details of the game, but he acts according to a pre-programmed pure strategy.

Specifically, the library provides a simmetric two player game, i.e. game
between two players that have the same set of available strategies and that
receive the same payoff when playing against the same strategy. More formally,
let O = {1, . . . , n} be a set of available strategies (pure strategies in the language of
Game-Theory) and C = (cij) be a matrix specifying the payoffs, then an individual
playing strategy i against someone playing strategy j will receive a payoff cij .

The amount of population that plays each strategy at a given time is expressed
through the probability distribution x = (x1, . . . , xn)T called mixed strategy with
x ∈ ∆n = {x ∈ Rn : ∀i xi ≥ 0,

∑n
i=1 xi = 1}.

The support σ(x) of a mixed strategy x is defined as the set of elements chosen
with non-zero probability: σ(x) = {i ∈ O|xi > 0}. The expected payoff received
by a player choosing element i when playing against a player adopting a mixed
strategy x is (Cx)i =

∑
j cijxj , hence the expected payoff received by adopting the

mixed strategy y against x is yTCx. The best replies against mixed strategy x is
the set of mixed strategies

β(x) =
{

y ∈ ∆|xTCx = max
z

(zTCx)
}

A mixed strategy x is said to be a Nash equilibrium if it is the best reply to itself,
i.e. ∀y ∈ ∆,xTCx ≥ yTCx. This implies that ∀i ∈ σ(x) (Cx)i = xTCx, that is, the
payoff of every strategy in the support of x is constant. The idea underpenning
the concept of Nash equilibrium is that a rational player will consider a strategy
viable only if no player has an incentive to deviate from it.

Finally, x is called an evolutionary stable strategy (ESS) if it is a Nash equilib-
rium and ∀y ∈ ∆, xTCx = yTCx⇒ xTCy > yCy. This condition guarantees that
any deviation from the stable strategies does not pay, i.e. ESS’s are strategies such
that any small deviation from them will lead to an inferior payoff. The search for a

26 CHAPTER 3. PROPOSED ALGORITHM

stable state is performed by simulating the evolution of a natural selection process.
Specifically, the dynamics choosen are the replicator dynamics [31], a well-known
formalization of the selection process governed by the following equation

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)TCx(t)

where xi is the i-th element of the population and C the payoff matrix.

Π

m1 m2 m3 m4 m5 m6
m1 0 1 0.1 0.1 0.7 0.9
m2 1 0 0 0.1 0.7 0.9
m3 0.1 0 0 0 0.6 0.4
m4 0.1 0.1 0 0 0 0.1
m5 0.7 0.7 0.6 0 0 0
m6 0.9 0.9 0.4 0.1 0 0

T = 0

m1 m2 m3 m4 m5 m6
0

0.1

0.2

0.3

0.4

T = 1

m1 m2 m3 m4 m5 m6
0

0.1

0.2

0.3

0.4

T = 2

m1 m2 m3 m4 m5 m6
0

0.1

0.2

0.3

0.4

Figure 3.6: Example of evolution: given a payoff matrix Π , the population is initially (T =
0) set to the barycenter of the simplex; as expected, after just one iteration of the replicator
dynamics (T = 1) the most consistent strategies (m1 and m2) obtain a clear advantage.
Finally, after ten iteration (T = 10) strategies m1, m2 and m6 have prevailed and other
strategies have no more support.

In the contest of the proposed algorithm, each pure strategy represents a
macropixel and the payoff of strategies i and j corresponds to the compability be-
tween macropixel mi and macropixel mj , i.e. the compatibility matrix Π = (π(i, j))

computed during the previous phase is used as payoff matrix. The evolutionary
game is then started and when the population reaches an equilibrium, all the
non-extincted pure strategies (i.e. σ(x)) are considered selected by the game and
thus the associated macropixels are merged into a single segment. After each
game the selected macropixel are removed from the population and the selection
process is iterated until all the segments have been merged.

This procedure does not ensure connectivity of the generated segments; in fact,
the produced segments are sometimes made up of several unconnected components
(as in Figure 3.7f) especially at later iterations, when best segments have already

3.3. THIRD PHASE: CLUSTERING 27

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Sequence of segments produced by each iteration of evolutionary game

been created. The last step of proposed algorithm has then the task to check the
connettivity of segments and eventually split unconnected components, as done at
the end of first phase (section 3.1).

An example of final segmented image is shown in Figure 3.8.

Figure 3.8: Example of segmented image produced by the proposed algorithm

Chapter 4

Experimental results

According to taxonomy proposed in [32], the evaluation method used can be
classified as groundtruth based, i.e. it attemps to measure the difference between
the machine segmentation result and an expected ideal segmentation, specified
manually.

Three batches of tests have been carried out: the first one performs a research
in the parameters space in order to find the best configuration; the second one
compares the resulting segmentation when the groundtruth depth map is replaced
with depth maps obtained through stereo algorithms; the last one compares the
results of the proposed algorithm with other segmentation algorithms.

4.1 Image dataset

All the test have been performed using images part of Middlebury’s 2006 Stereo
dataset [2], a large set of stereo pairs associated with a ground truth disparity
map, obtained through structured light technique [33]. The reasons why these
images have been preferred is the high quality and accurate disparity maps and
the limited number of objects in the scenes, which limits the number of segments
to be generated. A subset of 7 scenes has been selected to be used in tests, and
for each subject a manual segmentation was performed and used as groundtruth.
The scenes selected are shown in Figure 4.1; following Middlebury naming, they
are: Baby1, Baby2, Bowling1, Bowling2, Lampshade2, Midd1, Midd2.

Disparity maps contain occluded points, i.e. points whose disparity is un-
known, which are labeled as black pixels both in second and third column images
in Figure 4.1; due to this lack of information, they are not considered by the
segmentation alghoritm.

29

30 CHAPTER 4. EXPERIMENTAL RESULTS

Baby2

Figure 4.1: Image dataset: first column contains left color image; second column contains
left disparity map provided as ground-truth by Middlebury; third column contains manual
segmentation

4.2. EVALUATION METRICS 31

4.2 Evaluation metrics

Following [34] and [35] six different evaluation measures have been imple-
mented and computed for each automatic segmentation. All indexes express
a measure of dissimilarity between the automatic segmentation and the man-
ual ground-truth and can be easily computed using a contingency table, also
called confusion matrix or association matrix. Considering two segmentation
S1 = {R1

1, R
2
1, . . . , R

k
1} and S2 = {R1

2, R
2
2, . . . , R

l
2} of the same image of n pixels,

contingency table is a k × l matrix whose ijth element mij represents the number
of points in the intersection of R1

i of S1 and R2
j of S2, that is mij = |R1

i ∩R2
j |.

4.2.1 Hamming distance

The first metric uses Hamming Distance to measure the overall region-based
difference between segmentation results and groundtruth [36]. Given the segmen-
tations S1 and S2 the Directional Hamming Distance is defined as

DH(S1 ⇒ S2) =
∑
i

|Ri
2\R

it
1 |

where \ is the set difference operator, |x| is the number of pixel in set x and
it = maxk |Ri

2 ∩Rk
1 |, that is Rit

1 is the best corresponding segment in S1 of segment
Ri

2 ∈ S2.
Directional Hamming Distance can be used to define the missing rate Rm and

the false alarm rate Rf as

Rm(S1, S2) =
DH(S1 ⇒ S2

n
) Rf (S1, S2) =

DH(S2 ⇒ S1)

n

The Hamming Distance is then defined as the average of missing rate and false
alarm rate:

HD(S1, S2) =
1

2
(Rm(S1, S2) +Rf (S1, S2)) =

1

2n
(DH(S1 ⇒ S2) +DH(S2 ⇒ S1))

4.2.2 Consistency Error: GCE and LCE

The second metric, Consistency Error, tries to account for nested, hierarchical
similarities and differences in segmentations [37]. Based on the theory that
human’s perceptual organization imposes a hierarchical tree structure on objects,
consistency error metric does not penalize differences in hierarchical granularity,
i.e. it is tolerant to refinement.

Let R(S, pi) be the set of pixels corresponding to the region in segmentation S

that contains the pixel pi. Then, the local refinement error associated with pi is

E(S1, S2) =
|R(S1, pi\R(S2, pi)|

|R(S1, pi|

32 CHAPTER 4. EXPERIMENTAL RESULTS

Given the refinement error for each pixel, two metrics are defined for the entire
image, Global Consistency Error (GCE) and Local Consistency Error (LCE), as
follows:

GCE(S1, S2) =
1

n
min

 ∑
all pixels pi

E(S1, S2, pi),
∑

all pixels pi

E(S2, S1, pi)}

LCE(S1, S2) =

1

n

∑
all pixels pi

min {{E(S1, S2, pi), E(S2, S1, pi)}}

The difference between them is that GCE forces all local refinement to be in the
same direction, while LCE allows refinement in different directions in different
regions of the image. Both measures are tolerant to refinement: in the extreme
case, a segmentation containing a single region or a segmentation consisting of
regions of a single pixels, GCE = LCE = 0.

4.2.3 Clustering indexes: Rand, Fowlkes and Jaccard

As stated in subsection 2.2.4, image segmentation problem can be modeled as
a clustering problem by considering the pixels of the image as the set of objects to
be grouped and then considering each cluster produced as a segment. In the same
way, the difference between two segmentation can be quantified using metrics
proper of clustering evaluation: the last three metrics implemented are borrowed
from cluster analysis.

Given two clusterings C1 and C2 and a set O = o1, . . . , on of objects, all pairs of
objects (oi, oj) ∈ O × O, i 6= j are considered. A pair (oi, oJ) falls into one of the
four categories:

N11: in the same cluster under both C1 and C2

N00: in different clusters under both C1 and C2

N10: in the same cluster under C1 but not C2

N01: in the same cluster under C2 but not C1

The number of pairs in each category can be efficiently calculated using the
contingency table:

N11 =
1

2

∑
i

∑
j

m2
ij − n

 ,
N00 =

1

2

n2 − ∑
ci∈C1

|ci|2 −
∑

cj∈C2

|cj |2 +
∑
i

∑
j

m2
ij

 ,

4.3. PARAMETER TUNING 33

N10 =
1

2

 ∑
ci∈C1

|ci|2
∑
i

∑
j

m2
ij

 ,
N01 =

1

2

 ∑
cj∈C2

|cj |2 −
∑
i

∑
j

m2
ij

 .
The proposed metrics are:

Rand [38]
R(C1, C2) = 1− N11 +N00

n(n− 1)/2

Fowlkes [39]
F(C1, C2) = 1−

√
W1(C1, C2),W2(C1, C2)

where W1(C1, C2) =
N11∑

ci∈C1
|ci|(|ci| − 1)/2

and W1(C1, C2) =
N11∑

cj∈C2
|cj |(|cj | − 1)/2

Jaccard
J (C1, C2) = 1− N11

N11 +N10 +N01

It is easy to see that these three indices are all distance measures with a value
domain [0, 1]. The value is zero if and only if the two clusterings are the same
except for possibly assigning different names to the individual clusters, or listing
the clusters in different order.

4.3 Parameter tuning

The proposed algorithm exposes seven parameters, four in the oversegmen-
tation phase (section 3.1) and three in the compatibility computation phase (sec-
tion 3.2):

• σEG : width of the gaussian filter used in the preprocess of EG algorithm to
smooth the image and remove noise;

• k : parameter of EG algorithm which controls how coarsely or finely an image
is segmented (see threshold function τ on page 17);

• min : minimum area of macropixel, forced in postprocess step of EG;

• σt : threshold of standard deviation of depth values inside a macropixel;

• distance type : the formula used to compute the distance between adjacent
pixels (euclid, delta, norm or angle);

34 CHAPTER 4. EXPERIMENTAL RESULTS

• σz : standard deviation of geometric distance (see Equation 3.1 on page 24);

• σc : standard deviation of color distance;

Parameters of first phase have been empirical set to σEG = 0.5, k = 500, min =

20 and σt = 3. These values showed to provide a good quality oversegmented
image, whose macropixels do not overlap between different objects/belong to
only one object, without producing too many macropixels (by way of comparison,
segmentation presented in Figure 1.1c used k = 3000 and min = 200). The average
number of macropixels is 1316, which has been considered a good tradeoff between
accuracy and computational complexity. Distance type, σz and σc have been used
as variable parameters instead.

For each of the four distances, many couples of σz and σc values have been
tested in order to find the configuration which minimizes the evaluation metrics
presented in section 4.2; in particular, segmentation quality has been assesed
depending firstly on Hamming Distance and Jaccard Index.

Each configuration has been tested on the 7 scenes of the image dataset; the
resulting segmentations have been evaluated and the average over the 7 scenes
has been calculated. Figure 4.2 summarizes average results of Hamming Distance
(first column) and Jaccard Index (second column).

All plots present similar structure, a large blue (i.e. good) area for mid values
of σz and high values of σc, surrounded by a yellow/red (i.e. less good) area. This
means that all distances have similar reaction to variation of parameters: if σz
falls into the optimal interval, which varies slightly among different distances,
and σc is greater than a threshold, segmentation quality remains almost stable.
Specifically, in this image dataset, information about depth is more relevant than
color information; in fact, even the extreme case σC = ∞ (which corresponds to
not consider color information) leads to good quality segmentations, provided that
σz is in the optimal interval. In Figure 4.3 the qualitative effects of σz and σc are
shown. When the two parameters are both too low (case e) the grouping phase
becomes too selective and a lot of erroneous clusters are produced, providing an
oversegmentation; on the other hand, if they are both too high (case c) the process
is unable to separate each region, producing an undersegmentation. If σc is low
and σz is high (case d), the image is oversegemented with respect to color values
(see, for example, the map details on the background); on the other hand, if σc is
high but σz is low (case a), the oversegmentation depends on depth values (such
as the foreground book). Finally, when parameters are choosen from the optimal
blue region (case b), the resulting segmentation is really close to the ground truth.

Table 4.1 contains the three best configuration for each distance type with
respect to Hamming Distance (a) and/or Jaccard Index (b). The best result for

4.3. PARAMETER TUNING 35

(a) Hamming euclid

10−1 100 101 102

101

102

103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Jaccard euclid

10−1 100 101 102

101

102

103

0

0.2

0.4

0.6

0.8

1

(c) Hamming delta

10−1 100 101 102

101

102

103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) Jaccard delta

10−1 100 101 102

101

102

103

0

0.2

0.4

0.6

0.8

1

(e) Hamming norm

10−1 100 101 102

101

102

103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(f) Jaccard norm

10−1 100 101 102

101

102

103

0

0.2

0.4

0.6

0.8

1

(g) Hamming angle

10−1 100 101 102

101

102

103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(h) Jaccard angle

10−1 100 101 102

101

102

103

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Exploration of parameter space σz (x-axis) and σc (y-axis)

36 CHAPTER 4. EXPERIMENTAL RESULTS

each distance is represented also in Figure 4.4 (average best result).

Figure 4.3: Qualitative effects of σz and σc

Hamming GCE Rand Fowlkes Jaccard
0

0.1

0.2

0.3

0.4

0.5

euclid
delta
norm
angle

(a) according to Hamming Distance

Hamming GCE Rand Fowlkes Jaccard
0

0.1

0.2

0.3

0.4

0.5

euclid
delta
norm
angle

(b) according to Jaccard Index

Figure 4.4: Comparison of best results for each distance type

Contrary to expectations, non-normalized measures - euclid and delta - achieve
better results than the promising angle distance. This is probably due to the fact
that the choosen images have similar structure (objects of different scenes are at

4.3. PARAMETER TUNING 37

(a) Hamming Distance

distance type σz σc Hamming GCE LCE Rand Fowlkes Jaccard
euclid 4 inf 0.10991 0.03512 0 0.05958 0.13123 0.21222
euclid 4 200 0.10997 0.03540 0 0.05961 0.13135 0.21240
euclid 4 300 0.10997 0.03540 0 0.05960 0.13135 0.21240

delta 12 inf 0.11481 0.00662 0 0.07603 0.14354 0.22900
delta 6 200 0.11531 0.00831 0 0.07400 0.14170 0.22701
delta 6 150 0.11545 0.00943 0 0.07322 0.14138 0.22637

norm 3 50 0.24336 0.15026 0 0.13888 0.30689 0.47670
norm 3 150 0.25682 0.09227 0 0.30538 0.38622 0.57282
norm 3 100 0.26824 0.11125 0 0.26364 0.38875 0.58022

angle 3.5 50 0.13824 0.06693 0 0.09334 0.16830 0.27086
angle 3.5 150 0.14102 0.04002 0 0.08306 0.16942 0.27865
angle 3 100 0.14215 0.05278 0 0.07824 0.17233 0.28585

(b) Jaccard Index

distance type σz σc Hamming GCE LCE Rand Fowlkes Jaccard
euclid 6 50 0.11949 0.03631 0 0.05341 0.12111 0.19383
euclid 8 50 0.12443 0.04593 0 0.05688 0.12561 0.19870
euclid 7 50 0.12510 0.04577 0 0.05685 0.12561 0.19879

delta 9 50 0.12430 0.04597 0 0.05857 0.12978 0.20590
delta 7 50 0.12649 0.04609 0 0.05952 0.131720 0.21000
delta 8 50 0.12674 0.04584 0 0.05967 0.13184 0.21019

norm 3 50 0.24336 0.15026 0 0.13888 0.30689 0.47670
norm 8 10 0.27503 0.15027 0 0.13888 0.30690 0.47669
norm 5 10 0.27529 0.03966 0 0.12886 0.36710 0.56609

angle 3.5 50 0.13824 0.06693 0 0.09334 0.16830 0.27086
angle 3.5 150 0.14102 0.04002 0 0.08306 0.16942 0.27865
angle 3.5 200 0.14250 0.04325 0 0.08476 0.17250 0.28254

Table 4.1: Best configuration with respect to Hamming Distance (a) and/or Jaccard Index
(b)

38 CHAPTER 4. EXPERIMENTAL RESULTS

the same distance from camera), therefore the normalization introduced by the
angle measure is unnecessary, while, at the same time, parameters of euclid and
delta measures are probably overfitted to the image dataset.

4.4 Segmentation in association with stereo algo-
rithms

The aim of the second batch of experiments is to examine the effect of re-
placing the ground-truth disparity map associated with each scene of the image
dataset with a disparity map generated through a dense stereo algorithm. For
each scene Graph Cut and Semi-Global Block Matching stereo algorithm have
been performed and the disparity maps obtained have been used as inputs of
segmentation algorithms.

In order to properly evaluate the resulting segmentations, both stereo algo-
rithms output and evaluation process have been slightly modified. Firstly, every
pixel labeled as occluded point in the ground truth (see third column of Figure 4.1)
has been set occluded also in the disparity maps produced by stereo algorithm.
This means that the resulting set of occluded points is the union of occluded points
in groundtruth and occluded points in stereo output. If the stereo algorithm
produced erroneous occluded points, these have been treated as occluded points
by segmentation algorithm, while in the evaluation process occluded points of
groundtruth are not considered and erroneous occluded points are treated as an
additional cluster by evaluation process, resulting therefore in a penalty.

Baby1 Baby2 Bowling1 Bowling2 Lampshade2 Midd1 Midd2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

H
am

m
in

g
di

st
an

ce

Structured Light − angle
Structured Light − euclid
Graph Cut − angle
Graph Cut − euclid
SGBM − angle
SGBM − euclid

Figure 4.5: Comparison of 3D data sources

4.4. SEGMENTATION IN ASSOCIATION WITH STEREO ALGORITHMS 39

Figure 4.5 shows the segmentation quality obtained using angle or euclid
distance with optimal values of σz and σc (σz = 3.5, σc = 50 and σz = 4, σc = inf

respectively) and three different 3D data sources: structured ligth (ground-truth),
Graph-Cut Stereo and SGBM Stereo. Figures 4.6 and 4.7 show qualitative effects
of different 3D data source in case of Baby2 and Midd2 scenes.

Structured light Graph Cut SGBM

Figure 4.6: Three disparity maps and their corresponding segmentation - Baby2

Structured light Graph Cut SGBM

Figure 4.7: Three disparity maps and their corresponding segmentation - Midd2

It can be seen that neither Graph Cut nor SGBM prevails on the other: in fact,
there are almost half cases in which SGBM lead to a better segmentation (such as

40 CHAPTER 4. EXPERIMENTAL RESULTS

Baby2), and the residual in which Graph-Cut is better (such as Midd2). This is
due to fact that, in scenes containing large untextured areas, a global method like
GC is able to better discriminate depth regions. On the other hand, in scenes with
lots of textures, the depth map produced may be smoother than local methods,
hence hendering the segmentation.

4.5 Comparison with other segmentation algorithms

In the third batch of tests, results of the proposed algorithm are compared with
other image segmentation algorithms. Specifically, the considered algorithms are:

RGB Kmeans on color data

RGBXY Kmeans on union of color and 2D spatial data

XYZ Kmeans on 3D spatial data

DalMutto Kmeans on 6D feature space LABXYZ combining color and 3D data
proposed in [9]

Werman Mean shift on a 6D feature space XYRGBD proposed in [8].

Algorithms which combine color and spatial data use a weighting constant
to tune the contribution and the relevance of color and geometric information.
Figure 4.8 summarizes the results achieved by each algorithm on different images
of the dataset, while Table 4.2 shows the average results of each segmentation
algorithm.

Baby1 Baby2 Bowling1 Bowling2 Lampshade2 Midd1 Midd2
0

0.1

0.2

0.3

0.4

0.5

0.6

H
am

m
in

g
di

st
an

ce

RGB
RGBXY
XYZ
DalMutto
Werman
angle
euclid

Figure 4.8: Comparison of different segmentation algorithms

4.5. COMPARISON WITH OTHER SEGMENTATION ALGORITHMS 41

The three basic kmeans algorithms (RGB, RGBXY and XYZ) have been been
tested with many different values of k and only the best result has been considered
in the statistic. Nevertheless, they all tend to performs badly with respect to other
methods, as expected. Overall, the proposed algorithm obtains very good results
in most situations. Finally in Figure 4.9 some qualitative results are shown.

algorithm Hamming Rand Fowlkes Jaccard
RGB 0.36319 0.19043 0.43195 0.59879
RGBXY 0.33061 0.15499 0.40427 0.58648
XYZ 0.18635 0.07415 0.18506 0.30276
DalMutto 0.22136 0.13409 0.32237 0.46917
Werman 0.14784 0.09600 0.19057 0.46917
angle 0.13824 0.09334 0.16830 0.27086
euclid 0.10991 0.05958 0.13123 0.21221

Table 4.2: Comparison of different segmentation algorithms

(a) Ground truth (b) RGB (c) XYZ

(d) DalMutto (e) Werman (f) Proposed

Figure 4.9: Comparison of qualitative results of different segmentation algorithms

Chapter 5

Conclusions

In this thesis a new offline segmentation algorithm based on evolutionary game
has been proposed. Experimental tests that have been carried out showed that
the proposed approach achieves overall good results and that it performs at same
level of other recent methods reaching in some cases even a higher quantitative
quality. Considering that it is a first implementation and that it has quite wide
margin for improvement, it can be considered a promising approach. On the other
hand, experiments on segmentation in association with a stereo algorithm showed
that the proposed algorithm is quite sensible to depth map quality: as the depth
map gets more inaccurate, the poorer are the segmentation results, especially in
the presence of many occluded points.

The main amendable aspects and the directions for future development that
have been identified are:

• The segmentation algorithm should be tested against other image dataset,
in order to confirm or controvert consideration of section 4.3 on parameters
configuration. It is necessary to verify if euclid parameters are overfitted and,
at the same time, check if the normalization introduced by angle distance
make it possible to use the same parameters over different image dataset.

• It could be interesting to implement and test other distance measures, con-
sidering that the proposed color distance is not sufficient to encapsulate the
whole photocromic information.

• It is necessary to implement a technique to treat also occluded points, at least
small areas that can be included in neighbouring regions. This is particularly
relevant when the segmentation algorithm is used in association with stereo
algorithms, which produce noisy depth data and a considerable number of
occluded points.

43

44 CHAPTER 5. CONCLUSIONS

• Code can be optimezid, as computational speed was not the main target,
even though some measures for reducing time complexity have already been
implemented. Nevertheless, average execution time of the segmentation
algorithm is about 30-40 seconds on a high performance server and about
4-5 minutes on a user-level system. For example, the whole second phase
presents a high grade of parallelization, considering that the computation of
distance and similarity regarding each pair of macropixels is indipendent
from other couples. In the current implementation, each iteration of the
modiefied Dijkstra process is performed by a different thread, thus exploiting
the computational potential of multi-process systems, but it could be further
improved using GPU parallelization.

Appendix A

Implementation details

The program has been developed in C# language using Visual Studio 2010
Professional. Besides standard libraries, Emgu libraries [40], a C# wrapper to
OpenCV functions [41] have been extensively used too.

The program is made up of one principal class - SegmentImage - which contains
most of the code and four auxiliar classes: Vertex, Macropixel, Priority Queue and
CalculateScore. An auxiliary structure has been defined too, Point3D: it represents
a range point and stores the three coordinates x, y, z as double values.

Vertex.cs

Instances of Vertex class represent the nodes of a 4-connected graph corre-
sponding to the image. Fields of each Vertex object are:

• idRow and idColumn: values that identify the vertex using the row and
column coordinates of the corresponding pixel in the image

• id: value that identifies the vertex as if the image were a row-vector instead
of a matrix; id = idRow * offset + idColumn

• AdjacentVertices: list of connected vertices and corresponding distances,
stored as Dictionary<Vertex, double>.

In addiction, Vertex class has a static property offset, which corresponds
to the image width and it is used to transform idRow and idColumn into id and
vice-versa.

Macropixel.cs

Instances of Macropixel class represent the subsets of pixels introduced in
section 3.1. Fields of each Macropixel object are:

45

46 APPENDIX A. IMPLEMENTATION DETAILS

• id: identification number of the macropixel; it can be provided as external
parameter of constructor, or determined using an incremental counter

• Pixels: set of pixels belonging to the macropixel, stored as List<Point>

• Centroid: a Point3D which stores the 3D coordinates of the centroid of
the macropixel, calculated as the average of 3D coordinates of range points
corresponding to pixels of the instance

• iCentroid and jCentroid: values that store the coordinates of the pixel
belonging to the macropixel whose corresponding range point is the closest
one to Centroid

• uColor and vColor: U and V components of the average color of the
macropixel.

In addiction, Macropixel class has a static property, nextIndex, which is
used as internal counter to generate next index values, and a static method
resetIndex, which set counter back to 0 without making it accessible.

Macropixel instances are used also to represent final segments produced by
segmentation algorithm; in this case, only id and Pixels variables are initialized.

CalculateScore.cs

CalculateScore class encapsulate the evaluation process section 4.2; it stores
two lists of segments, one produced by the segmentation algorithm and one
provided as ground-truth (manual segmentation).

Fields of each CalculateScore object are:

• automatic: set of segments produced by segmentation algorithm; it is
stored as a List<Macropixel>

• manual: segmentation provided as ground-truth; it is stored as List<Macropixel>

• intersectionCountMatrix: contingency table, which stores the cardinal-
ity of the intersection between each pair of automatic-segment and manual-
segment

• numberOfPixels: number of pixels of the image to be considered, i.e. width

* height - occludedPixels

Public methods are:

• loadManual(string path): it loads an image corresponding to manual
segmentation, then it turns the image into a List<Macropixel> and stores
the list in manual field

47

• setAutomatic(string path): it loads an image representing automatic
segmentation, then it turns the image it into a List<Macropixel> and it
stores it in automatic field

• setAutomatic(List<Macropixel> segments): it copies the list pro-
vided in parameter segments in automatic field

• calculateIntersectionCountMatrix: it computes the contingency ta-
ble. Two different implementation have been created:

– naive sequential implementation:

1 for (int i = 0; i < manual.Count; i++)

2 for (int j = 0; j < automatic.Count; j++)

3 intersectionCountMatrix[i, j] = manual[i].Pixels.Intersect

(automatic[j].Pixels).Count();

– parallel implementation: each thread deal with a manual-segment

1 Parallel.For(0, manual.Count - 1, i =>

2 {for (int j = 0; j < automatic.Count; j++)

3 intersectionCountMatrix[i, j] = manual[i].Pixels.

Intersect(automatic[j].Pixels).Count();});

• calculateHamming: it calculates Hamming Distance presented in subsec-
tion 4.2.1

• calculateCE: it calcualtes GCE and LCE indexes presented in subsec-
tion 4.2.2

• calculateMetrics: it calculates Rand Index, Fowlkes Index and Jaccard
Index presented in subsection 4.2.3

PriorityQueue.cs

PriorityQueue class implements a priority queue using a min-binary heap data
structure and it used to perform the modiefied Dijkstra algorithm.

A priority queue is an abstract data type similar to a queue data structure,
but, additionaly, each element is associated with a priority. Priority queue are
specifically designed to quickly:

• add an element to the queue with an associated priority

• remove the element from the queue that has the highest (or lowest) priority,
and return it

48 APPENDIX A. IMPLEMENTATION DETAILS

A binary heap is a binary tree with two additional constraints:

• The shape property: the tree is a complete binary tree; that is, all levels of
the tree, except possibly the last one (deepest) are fully filled, and, if the last
level of the tree is not complete, the nodes of that level are filled from left to
right.

• The heap property: each node priority is lower than or equal to each of its
children priority.

Because binary heap is a complete binary tree, it can be stored compactly in a
linear array, without using pointers considering that the parent and children of
each node can be found by arithmetic on array indices: if the tree root is at index 1,
then element at index i has children at [2i] and [2i+ 1], and parent at [floor(i/2)].

Specifically, the items contained in the priority queue are Vertex object and
their priority is the distance of the Vertex from its predecessor in the path gener-
ated by Dijkstra algorithm.

The operations supported by PriorityQueue class are:

• Add(item, priority): item is inserted as last item of heap structure,
according to shape property; in order to restore heap property heapify-up
procedure is called:

1 Compare the added element with its parent; if they are in the

correct order, stop.

2 If not, swap the element with its parent and return to the

previous step.

• RemoveMin: the element with the smallest priority, which corresponds to
root element, is removed. The root element is swapped with the last item
of heap structure and then it is removed; in order to restore heap property
heapify-down procedure is called:

1 Compare the new root with its children; if they are in the

correct order, stop.

2 If not, swap the element with its smaller children and return to

the previous step.

• DecreaseKey(item, newPriority): if item is in the heap structure
and its current priority is greater than newPriority, its priority is set
to newPriority and heapify-up procedure is called.

49

SegmentImage.cs

SegmentImage is the project principal class and it encapsulate almost the
entire segmentation algorithm. Its main fields are:

• colorImage: it stores the input color image

• disparityMap: it stores the input disparity map

• rangeImage: matrix of Point3D objects which represent the range image
computed from the disparity map; element at (i, j) contains the 3D coordi-
nates corresponding to pixel at row i and column j

• segments: it stores the result of oversegmentation phase as a List<Macropixel>

• graph: matrix of Vertex object, which represents the 4-connected graph cor-
responding to the image; element at (i, j) represents the node corresponding
to pixel at row i and column j

• geometricMatrix: matrix whose element at (i, j) corresponds to the geo-
metric distance between Macropixel i and Macropixel j

• colorMatrix: matrix whose element at (i, j) represents the color distance
between Macropixel i and Macropixel j

• compatibilityMatrix: matrix whose element at (i, j) represents the com-
patibility between Macropixel i and Macropixel j as defined in section 3.2

• components: result of segmentation algorithm as List<Macropixel>

Methods of SegmentImage class can be split into three main categories, accord-
ing to the phase of segmentation algorithm they pertain to.

Oversegmentation phase

• oversegment(σ, k ,min, σt): this method controls the whole overseg-
mentation phase; it constists of following steps

– convert color image to .ppm format

– invoke external procedure to perform Efficient Graph segmentation via
a System.Diagnostic.Process object. Its input arguments are σ, k, min,
path of .ppm input image, path of output image; it produces as output
a .ppm image corresponding to oversegmented image, in which each
segment is distinguished by a different random color.

50 APPENDIX A. IMPLEMENTATION DETAILS

– trasnform oversegmented image in a temporary list of macropixel, re-
moving at the same time occluded pixels

1 Dictionary<Rgb, Macropixel> dict = new Dictionary<Rgb,

Macropixel>();

2 Macropixel occludedPoints = new Macropixel(-1);

3 for (int i = 0; i < overSegmentedImage.Height; i++)

4 for (int j = 0; j < overSegmentedImage.Width; j++){

5 if (disparityMap.Data[i, j, 0] == 0)

6 occludedPoints.Add(new Point(i, j));

7 else {

8 Macropixel mp;

9 Rgb color = overSegmentedImage[i, j];

10 if (!dict.TryGetValue(color, out mp))

11 {

12 mp = new Macropixel();

13 dict.Add(color, mp);

14 }

15 mp.Pixels.Add(new System.Drawing.Point(i, j));

16 }

17 }

18 tempSegments = dict.Values.ToList<Macropixel>();

– check depth homogeneity of each temporary segment, invoking CheckDepth
method

– check connectivity of each temporary segment, using CheckConnectivity
method

1 foreach tempSegment

2 List<Point> newList;

3 bool done = false;

4 while (!done){

5 done = checkConnectivity(tempSegment.Pixels,out newList);

6 Macropixel newMacroPixel = new Macropixel();

7 newMacroPixel.Pixels = newList;

8 segments.Add(newMacroPixel);

9 }

• CheckDepth(macropixel): this method checks depth homogeneity of macropixel

1 deviation ← standard deviation of disparity values

2 if (deviation > σt)

3 split macropixel into two subsegments using k-means with k = 2

4 add subsegments to temporary segments

51

5 end if

• CheckConnectivity(pixelsIn, out pixelsOut): given a set of pixels
as inputs, it returns true if and only if pixels in pixelsIn form a single connect
component. Starting from a pixel p, it tries to expand the region through
8-connected neighbooring pixels until there are no more reachable pixels.
At the end of the procedure, pixelsOut will contain the pixels that form a
connected component, while pixelsIn will eventually contain pixels that are
not connected to p. CheckConnectivity method is used also in the last step of
third phase

1 pick a pixel p ∈ pixelsIn

2 Queue Q ← ∅
3 Enqueue(Q, p)

4 while (Q 6= ∅){
5 x ← dequeue(Q)

6 add(pixelsOut, x)

7 foreach pixel ∈ neighboor(x)

8 if pixel ∈ pixelsIn

9 enqueue(Q, pixel)

10 remove(pixelsIn, pixel)

11 end if

12 end while

Compatibility computation phase

• CalculateColorMatrix: it computes the pairwise color distance.

1 foreach (Macropixel mp in segments)

2 calculateAverageColor(mp);

3 colorDistanceMatrix = new float[segments.Count, segments.Count];

4 for (int i = 0; i < segments.Count; i++)

5 for (int j = i + 1; j < segments.Count; j++)

6 {

7 double distance = 0;

8 distance += Math.Pow(segments[j].UComponent - segments[i].

UComponent, 2);

9 distance += Math.Pow(segments[j].VComponent - segments[i].

VComponent, 2);

10 colorDistanceMatrix[i, j] = colorDistanceMatrix[j, i] = (float)

Math.Sqrt(distance);

11 }

52 APPENDIX A. IMPLEMENTATION DETAILS

• buildRangeImage: given a disparity map, it computes the corresponding
range image, using following formulae

· X = [column - (width/2)] * baseline / disparity

· Y = [row - (height/2)] * baseline / disparity

· Z = focalLength * baseline / disparity

• InitializeGraph: it initializes graph variable, creating a Vertex object
for each non-occluded pixel.

• CreateEdges(distance type): it completes the graph, computing the
weigth of edges connecing neighbooring pixels. It uses the formula corre-
sponding to the distance type as defined in section 3.2.

• FindCentroid(macropixel): it computes the 3D coordinates of the cen-
troid of macropixel as the average of 3D coordinates of every range point
whose correspoinding pixel belongs to macropixel. Then it searches the
pixel whose corresponding range point closer to centroid.

• CalculateGeometricMatrix: it computes the pairwise geometric distance
between macropixels.

1 Parallel.For(0, segments.Count - 1, i =>

2 {

3 double[] saltoMax = modifiedDijkstra(segments[i].iCentroid,

segments[i].jCentroid);

4 for (int j = i + 1; j < segments.Count; j++)

5 {

6 float value = 0;

7 int id = segments[j].iCentroid * Vertex.offset + segments[j

].jCentroid;

8 if (saltoMax[id] != -1)

9 value = (float)saltoMax[id];

10 else

11 value = float.PositiveInfinity;

12 spatialDistanceMatrix[i, j] = spatialDistanceMatrix[j, i] =

value;

13 }

14 spatialDistanceMatrix[i, i] = 0;

15 });

• ModifiedDijkstra(row,column): it implements the modified Dijkstra
algorithm introduced in section 3.2 to compute the “smallest maximum drop”

53

path from (row, column) pixel to every other pixel. Let S represents the
set of already processed pixels, frontier the set of pixels that are not in S

but that are connected to a pixel in S, T the set of the rest of image pixels
and maxDrop the vector whose i-th element is the maximum drop of the
path connecting (row,column) and i-th pixel. Frontier is implemented as a
PriorityQueue.

1 maxDrop(p) ←∞ for each pixel 6= (row,column)

2 S ← ∅
3 frontier ← {(row,column)}

4 while frontier 6= ∅
5 x ← removeMin(frontier)

6 foreach p ∈ neighboor(x)

7 if p ∈ T

8 remove(T,p)

9 maxDrop(p) ← max{w(x,p),maxDrop(x)}

10 insert(frontier,p,maxDrop(p))

11 end if

12 else if p ∈ frontier

13 if max{w(x,p), maxDrop(x)} < maxDrop(p)

14 decreaseKey(p, max{w(x,p), maxDrop(x)})

15 end if

16 end if

17 end foreach

18 end while

• CalculateCompatibility(σz, σc) computes the pairwise compatibility
between macropixels using the bivariate gaussian function expressed in
Equation 3.1

Clustering phase

• segment: this method controls the third phase of segmentation algorithm. It
keeps track of the macropixels that have not already been grouped by storing
their indexes in a List called segmentsLeftToCluster. It starts a new evolu-
tionary game as described in section 3.3 until all macropixels are grouped.
At each iteration, it builds up a payoff matrix using the compatibility values
of unprocessed macropixels and it provides the matrix as input parameter
of evolutionary game library, which returns as output a population vector
whose ith element corresponds to the likelyhood of ith macropixel to belong
to the cluster at equilibrium situation. Macropixels whose population is at
least 10% of the maximum likelyhood are selected, merged and removed from

54 APPENDIX A. IMPLEMENTATION DETAILS

the list of unprocessed macropixels. Then, the connectivity of the produced
segment is checked using the checkConnectivity method previously de-
scribed. The segment (or the segments) produced is then inserted into the
components list.

Bibliography

[1] F. Bergamasco, A. Albarelli, A. Torsello, M. Favaro, and P. Zanuttigh, “Pair-
wise similarities for scene segmentation combining color and depth data,” in
21st International Conference on Pattern Recognition (ICPR 2012), November
11-15, 2012. (submitted).

[2] “Middlebury stereo dataset.” http://vision.middlebury.edu/stereo/
data/scenes2006/.

[3] V. Kolmogorov and R. Zabih, “Computing visual correspondence with occlu-
sions via graph cuts,” in IEEE International Conference on Computer Vision
(ICCV), pp. 508–515, 2001.

[4] H. Hirschmüller, “Stereo processing by semiglobal matching and mutual in-
formation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 2, pp. 328–341, 2008.

[5] F. Tang, M. Harville, H. Tao, and I. Robinson, “Fusion of local appearance with
stereo depth for object tracking,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference on, pp. 1
–8, june 2008.

[6] K. Ntalianis, A. Doulamis, N. Doulamis, and S. Kollias, “Unsupervised seg-
mentation of stereoscopic video objects: investigation of two depth-based
approaches,” in Digital Signal Processing, 2002. DSP 2002. 2002 14th Inter-
national Conference on, vol. 2, pp. 693 – 696 vol.2, 2002.

[7] P. An, C. Lu, and Z. Zhang, “Object segmentation using stereo images,” in
Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 Interna-
tional Conference on, vol. 1, pp. 534 – 538 Vol.1, june 2004.

[8] A. Bleiweiss and M. Werman, “Fusing time-of-flight depth and color for
real-time segmentation and tracking,” in Dyn3D, pp. 58–69, 2009.

55

http://vision.middlebury.edu/stereo/data/scenes2006/
http://vision.middlebury.edu/stereo/data/scenes2006/

56 BIBLIOGRAPHY

[9] C. D. Mutto, P. Zanuttigh, G. M. Cortelazzo, and S. Mattoccia, “Scene segmen-
tation assisted by stereo vision,” in 3DIMPVT, pp. 57–64, 2011.

[10] J. W. Weibull, Evolutionary Game Theory, vol. 1 of MIT Press Books. The MIT
Press, June 1997.

[11] Q. Wu and C. K. R., “Chapter 9 - image segmentation,” in Microscope Image
Processing, pp. 159 – 194, Burlington: Academic Press, 2008.

[12] D. H. Ballard and C. M. Brown, Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

[13] A. Blasiak, “A comparison of image segmentation methods,” Master’s thesis,
Middlebury College, 2007.

[14] “Segmentation of images and video.” http://encyclopedia.jrank.org/
articles/pages/6890/Segmentation-of-Images-and-Video.html.

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing, ch. 10. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2nd ed., 2001.

[16] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 8, pp. 679–698, June 1986.

[17] S. L. Horowitz and T. Pavlidis, “Picture Segmentation by a directed split-and-
merge procedure,” Proceedings of the 2nd International Joint Conference on
Pattern Recognition, Copenhagen, Denmark, pp. 424–433, 1974.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM
Comput. Surv., vol. 31, pp. 264–323, Sept. 1999.

[19] D. Comaniciu, “Image segmentation using clustering with saddle point detec-
tion,” in Image Processing. 2002. Proceedings. 2002 International Conference
on, vol. 3, pp. III–297 – III–300 vol.3, 2002.

[20] J. B. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of 5th Berkeley Symposium on Mathematical
Statistics and Probability (Berkeley, California, 1965/66), pp. 281–297, Berke-
ley, California: Univiversity of California Press, 1967.

[21] W. D. Fisher, “On grouping for maximum homogeneity,” Journal of the Ameri-
can Statistical Association, vol. 53, no. 284, pp. 789–798, 1958.

[22] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density
function, with applications in pattern recognition,” IEEE Transactions on
Information Theory, vol. 21, no. 1, pp. 32–40, 1975.

http://encyclopedia.jrank.org/articles/pages/6890/Segmentation-of-Images-and-Video.html
http://encyclopedia.jrank.org/articles/pages/6890/Segmentation-of-Images-and-Video.html

BIBLIOGRAPHY 57

[23] Y. Cheng, “Mean shift, mode seeking, and clustering,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 17, pp. 790 –799, aug 1995.

[24] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature
space analysis,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 24, pp. 603 –619, may 2002.

[25] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in Computer
Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer
Society Conference on, pp. 731 –737, jun 1997.

[26] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, pp. 167–
181, Sept. 2004.

[27] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 15, pp. 1101 –1113, nov
1993.

[28] A. Albarelli, S. Rota Bulo, A. Torsello, and M. Pelillo, “Matching as a non-
cooperative game,” in Computer Vision, 2009 IEEE 12th International Con-
ference on, pp. 1319 –1326, 29 2009-oct. 2 2009.

[29] A. Albarelli, E. Rodolà, and A. Torsello, “Imposing semi-local geometric
constraints for accurate correspondences selection in structure from motion:
A game-theoretic perspective,” International Journal of Computer Vision,
vol. 97, no. 1, pp. 36–53, 2012.

[30] A. Torsello, S. Bulo, and M. Pelillo, “Grouping with asymmetric affinities:
A game-theoretic perspective,” in Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, vol. 1, pp. 292 – 299, june 2006.

[31] P. D. Taylor and L. B. Jonker, “Evolutionary stable strategies and game
dynamics,” Mathematical Biosciences, vol. 40, no. 1 - 2, pp. 145 – 156, 1978.

[32] X. Jiang, “Performance evaluation of image segmentation algorithms,” in
Handbook of Pattern Recognition and Computer Vision (C. H. Chen and P. S. P.
Wang, eds.), pp. 525–542, World Scientific, 2005.

[33] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using struc-
tured light,” in IEEE computer society conference on Computer vision and
Pattern Recognition, CVPR 2003, (Madison, Wisconsin), pp. 195–202, 2003.

58 BIBLIOGRAPHY

[34] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3D mesh
segmentation,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28,
Aug. 2009.

[35] X. Jiang, C. Marti, C. Irniger, and H. Bunke, “Distance measures for image
segmentation evaluation,” EURASIP Journal on Applied Signal Processing,
vol. 2006, pp. 1–10, 2006.

[36] Q. Huang and B. Dom, “Quantitative methods of evaluating image segmenta-
tion,” in Proceedings of the 1995 International Conference on Image Processing
(Vol. 3)-Volume 3 - Volume 3, ICIP ’95, (Washington, DC, USA), pp. 3053–,
IEEE Computer Society, 1995.

[37] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented
natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics,” in Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on, vol. 2, pp. 416 –423
vol.2, 2001.

[38] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, vol. 66, no. 336, pp. pp.
846–850, 1971.

[39] E. B. Fowlkes and C. L. Mallows, “A method for comparing two hierarchical
clusterings,” Journal of the American Statistical Association, vol. 78, no. 383,
pp. pp. 553–569, 1983.

[40] “EmguCV: cross platform .Net wrapper to OpenCV.” http://www.emgu.
com/wiki.

[41] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

http://www.emgu.com/wiki
http://www.emgu.com/wiki

	Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Image segmentation
	2.1 Detection of Discontinuities
	2.2 Region-Based Segmentation
	2.2.1 Thresholding
	2.2.2 Region-Growing
	2.2.3 Split-and-Merge
	2.2.4 Clustering
	2.2.5 Graph Based

	3 Proposed algorithm
	3.1 First phase: oversegmentation
	3.2 Second phase: compatibility computation
	3.3 Third phase: clustering

	4 Experimental results
	4.1 Image dataset
	4.2 Evaluation metrics
	4.2.1 Hamming distance
	4.2.2 Consistency Error: GCE and LCE
	4.2.3 Clustering indexes: Rand, Fowlkes and Jaccard

	4.3 Parameter tuning
	4.4 Segmentation in association with stereo algorithms
	4.5 Comparison with other segmentation algorithms

	5 Conclusions
	A Implementation details
	Bibliography

