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ABSTRACT 

 

In equine practice, lameness due to musculoskeletal disease is the most common diagnosis, with 

ligament and tendon injuries resulting as the most frequent lesions. These kinds of injuries have a 

significant impact on the horse’s athletic performance as well as their quality of life; furthermore, the 

economic cost for the required treatments is very high. 

Currently, the most common therapy is surgery, that is usually associated to stall rest and 

pharmacological management of the inflammatory stage that follows the lesion. These therapies aim 

to repair the lesion, but the newformed cellular material does not have the same biological and 

biomechanical properties of the native tissue. In fact, tendons and ligaments are poorly vascularized 

tissues consisting of few cells lying in abundant extracellular matrix, the healing process is slow and 

leads to the formation of scar tissue, and often, to high reinjury rates that can reach over the 80% of 

the cases. 

The aim of regenerative medicine is not only to provide wound healing, but to repair damaged tissues 

too, leading to the restoration of the normal function of the injured tissue. In the case of tendon and 

ligament lesions, regenerative medicine aims to restore both the structure of collagen fibers and their 

biomechanical proprieties, so that after the lesion has healed, tendon’s structure and function is the 

most possible like the original tissue; this achievement should allow the horse to get back to the same 

activities it was used to and, moreover, to the same performance level with minimum risks of reinjury. 

In this study, a double-injection of adipose derived mesenchymal stem cells associated to platelet rich 

plasma was performed on two horses affected of tendonitis of the superficial digital flexor tendon of 

one forelimb. Clinical assessments were performed every 2 weeks starting from the day of the first 

injection; general condition, pain, heat and swelling at the site of the injury, grade of lameness and 

the horse keeper’s evaluation were the considered parameters. Ultrasonographic evaluations of the 

metacarpal region of both forelimbs were performed by means of longitudinal and transverse scans. 

The obtained images were evaluated and scored for i) the lesion echogenicity and ii) the lesion 

longitudinal fiber alignment; the contralateral healthy limb was used as comparison. Horse plasma 

was also analyzed in both horses at baseline, one week and two weeks post-injection, and in subject 

n°2 also one week prior to treatment and one month after treatment, in order to assess different 

oxidative stress molecules’ levels: total protein, advanced oxidation protein products, carbonyl group 

and malondialdehyde. Two interleukins important in the inflammatory process were also estimated: 

interleukin 1 and interleukin 10. Platelet derived growth factor, insulin-like growth factor 1 and 

transforming growth factor β1 values were also determined. 
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The results of this study suggest a beneficial effect of the performed combined treatment that 

demonstrated to be safe and effective; importantly, no adverse reactions were observed, as confirmed 

my biochemical parameters, and the horses were able to get back to competition. These evidences 

might therefore encourage the combined application of mesenchymal stem cells and platelet rich 

plasma for the treatment of tendon injuries in equine clinical practice. 
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RIASSUNTO 

 

Nella medicina equina, la zoppia conseguente a patologia muscoloscheletrica rappresenta la diagnosi 

più comune, di cui il 50% è dato da lesioni tendinee o legamentose che risultano quindi le patologie 

più comuni. Queste lesioni hanno un impatto significativo sulle performance atletiche dei cavalli ma 

anche sulla loro qualità di vita, e la spesa economica per i trattamenti necessari è molto alta. 

Al momento la terapia più comune è la chirurgia, che viene generalmente associata a riposo 

scuderizzato e ad un trattamento farmacologico per la gestione dello stato infiammatorio che segue 

la lesione. Queste terapie mirano a riparare la lesione, ma il tessuto neoformato non ha le stesse 

caratteristiche biologiche e biomeccaniche del tessuto originale. Infatti, tendini e legamenti sono 

tessuti scarsamente vascolarizzati costituiti da poche cellule sparse in abbondante matrice 

extracellulare, per cui il precesso di guarigione è lento e porta alla formazione di tessuto cicatriziale, 

che determina alti tassi di recidiva che possono raggiungere l’80% dei casi. 

Lo scopo della medicina rigenerativa non è solo di portare alla guarigione della ferita, ma anche di 

riparare i tessuti danneggiati portando alla rigenerazione delle normali funzioni del tessuto lesionato. 

Nel caso delle lesioni tendinee e legamentose, la medicina rigenerativa mira al recupero sia della 

struttura delle fibre di collagene che delle loro proprietà biomeccaniche in modo che, una volta guarita 

le lesione, la struttura e la funzionalità del tendine siano il più possibile simile a quella del tessuto 

originale; questo permette al cavallo di tornare alle attività precedenti ed allo stesso livello di 

performance con il minimo rischio di recidiva. 

In questo studio, una doppia iniezione di cellule staminali derivate da tessuto adiposo associate a 

concentrato piastrinico è stata eseguita su due cavalli affetti da tendinite del tendine flessore 

superficiale di un arto anteriore. Valutazioni cliniche sono state eseguite ogni due settimane a partire 

dal giorno della prima iniezione; i parametri valutati sono stati condizione generale del soggetto, 

dolore, calore ed edema a livello della lesione, il grado di zoppia e la valutazione del proprietario. 

Valutazioni ecografiche della regione del metacarpo di entrambi gli arti anteriori sono state eseguite 

in scansione longitudinale e trasversale. Le immagini ottenute sono state valutate e vi è stato 

assegnato un punteggio in base all’ecogenicità ed all’allineamento longitudinale delle fibre; l’arto 

controlaterale sano è stato utilizzato come paragone. È stato inoltre analizzato il plasma dei cavalli al 

momento della prima terapia ed una e due settimane dopo l’iniezione e, nel soggetto n°2, anche una 

settimana prima del trattamento ed un mese dopo, in modo da stimare i livelli di diverse molecole 

implicate nello stress ossidativo: proteine totali, prodotti dell’ossidazione avanzata delle proteine, 

gruppi carbonili e malonaldeide. Sono stati determinati anche i valori di due interleuchine importanti 

nei processi infiammatori: l’interleuchina 1 e l’interleuchina 10. Sono stati determinati anche i valori 
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del fattore di crescita derivato dalle piastrine, del fattore di crescita insulino simile e del fattore di 

crescita tumorale β1. 

I risultati di questo studio suggeriscono un effetto benefico del trattamento combinato eseguito che si 

è dimostrato essere sicuro ed efficace dato che nessuna reazione collaterale è stata riscontrata; inoltre, 

i cavalli sono stati in grado di tornare a gareggiare. Questi risultati potrebbero quindi incoraggiare 

l’applicazione delle cellule mesenchimali staminali e del concentrato piastrinico per il trattamento 

delle lesioni tendinee nella pratica ippiatrica. 
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CHAPTER 1: TENDON AND LIGAMENTS ANATOMY 

 
 
1.1 Macroscopical and microscopical anatomy 

 

Tendons are those structures that connect muscles to bone via myotendinous (MTJ) and 

osteotendinous (OTJ) junction, while ligaments connect bone to bone, allowing the transmission of 

mechanical forces induced by muscle contraction in order to achieve movement (1, 2). As they have 

an elastic component, some tendons also have the ability to store and release energy (3, 4, 5). 

When healthy they appear brilliant white and have a smooth surface, but in largest tendons a 

longitudinally striated aspect can be seen due to the thickness of the fasciculi (6, 7). As ligaments 

have a higher elastic component, they appear more yellowish (8). 

Usually, tendons are shaped as cords or straps of round or oval cross-section, or they can be flattened 

ribbons (6, 9). Tendon’s macroscopical shape is strictly related to its function: the more precise and 

subtle a movement must be, the more the tendon will be long and thin, while tendons that are required 

to be strong and resistant are thick and short. 

Adjacent tendon’s fibers, of the same tendon or of near ones, can form cords or bridges. 
 
 
Microscopically, tendons are a poorly cellularized tissue composed of tenoblasts and tenocytes lying 

within a network of extracellular matrix (ECM) (6, 7). 

Tendons can be defined as a dense regular connective tissue as they are mainly composed by thick 

collagenous fibers aligned in a parallel arrangement (8); fibers that run transversely and horizontally 

can also be found, forming spirals and plaits (6, 10). Collagen fibers’ parallel arrangement allows 

tendons to resist tension so that the energy produced by muscle contraction doesn’t get lost during 

load transmission (11, 12). Tendons and ligaments are primarily composed of parallel collagen fibers 

surrounded by a net of few elastic fibers; collagen fibers work in opposite way respect to the traction 

force (8). 

Tenoblasts are immature spindle-shaped tendon cells; they are characterized by shape and the high 

presence of cytoplasmic organelles that reflect their high metabolic activity. As they age, tenoblasts 

become elongated, reduce their nucleus/cytoplasm ratio and differentiate into tenocytes; the 

metabolic activity also decreases (6, 7). 

Based on their nuclear morphology, three different types of tenocytes have been identified: type 1 

tenocytes are characterized by a spindle-shaped nucleus, type 2 tenocytes have a more cigar-shaped 

nucleus, and type 3 tenocytes are found in wraparound regions showing a more chondrogenic 
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phenotype. Three dimensionally, nuclei of type 1 and 2 tenocytes appear as slightly flattened ovoids, 

with type 2 cells showing a greater range of nuclear width (13, 14, 15). 

As the horse ages, an increase in the proportion of type 1 tenocytes and in nuclear lengths can be 

measured, along with the reduction of type 2 tenocytes and overall cellularity (13). 

 
Together, tenoblasts and tenocytes account for 90-95% of tendons’ cellular elements; the remaining 

5-10% consists of chondrocytes at the bone attachment and insertion sites, synovial cells of the tendon 

sheath and vascular cells, including capillary endothelial cells and smooth muscle cells of arterioles 

(6, 7, 16, 17). The dry mass of human tendons is approximately 30% of the total mass, with the 

remaining 70% consisting of water (18, 19, 20). 

Tenocytes synthesize both collagen and all the components of the ECM. 
 
 
Collagen fibers represent the most common connective tissue fiber type; they are flexible and 

characterized by a high tensile strength (21). 

Collagen is arranged in hierarchical levels of increasing complexity, starting with tropocollagen, the 

structural unit of a collagen fiber. Tropocollagen is made up of three polypeptide chains that are 

twisted together into a right-handed triple-helix called alpha chain. Except for the ends of the chain, 

every third amino acid is a glycine, generally preceded by a hydroxyproline and followed by a proline. 

Sugar groups are associated to the triple helix, therefore collagen should be properly called a 

glycoprotein (21). 

As there are differences between the alpha chains that form a helix, sixteen different types of collagen 

have been identified; they are classified by Roman numbers on the basis of the chronology of 

discovery. The most common fiber is type I collagen, which constitutes about 90% of total body 

collagen as it can be found in the dermis of the skin, bone, organ capsules, and tendons; type II 

collagen can be found in cartilage and is composed of finer fibers in comparison to type I; type IV 

collagen is found in the basal lamina (21). 

Collagen type I is the most important protein of tendons (95%) (5, 13), as it defines their high tensile 

strength and structure; type III collagen can be found in small amounts between fascicles and in the 

endotenon, whereas type II collagen can be seen in fibrocartilaginous tendon regions subjected to 

compressive forces as the wrap around bony prominences (13). 

In collagen I fibers, tropocollagen molecules consist of a triple helix made of two alpha-1 chains and 

one alpha-2 chain that spontaneously assemble after secretion into collagen micro fibrils; each fibril 

is made up of collagen molecules that are aligned, head to tail, in overlapping rows. Within each row 
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there is a gap between the tail of one molecule and the head of the next. Covalent bonds are present 

between collagen molecules and these bonds are the ones that confer fibrils their strength (21). 

A graphical representation of this structure can be seen in Figure 1.1 

Tendon’s hierarchical structure has microfibrils unite into fibrils that arrange themselves into larger 

units called fibers; the collagen fiber is considered to be the smallest tendon unit visible on light 

microscopy and mechanically testable. Fibers gather then into primary fiber bundles, also called 

subfascicles; fiber bundles form fascicles, also called secondary bundles, then tertiary bundles and, 

in the end, the tendon itself (22). 

 
While the collagen fiber is considered to be the smallest tendon unit, fascicles are the largest ones, 

with a diameter of approximately 1 mm and a variable cross-sectional polygonal shape; an age-related 

reduction in the cross-sectional area can be seen (13, 23). Fascicles are divided by a small amount of 

loose connective tissue, named endotenon, which contains blood, lymphatic vessels and nerves; blood 

vessels do note penetrate into the fascicle under normal circumstances. Fascicles appear to move 

independently (13, 24, 25). 

The endotenon is continuous with the epitenon that covers the whole tendon. 

In addition, the epitenon is surrounded by the paratenon, a loose connective tissue that allows 

movements within the surrounding tissue. Type I and type III collagen fibrils and some elastic fibrils 

form the paratenon, and in areas subjected to increased mechanical stress, where efficient lubrification 

is required, synovial cells can be found (26). Epitenon and paratenon together constitute the peritenon 

(27). 

A schematic view of tendon’s hierarchical structure and its connective tissue is shown in Figure 1.2 

 
 

The extracellular matrix is composed of fibers and the ground substance; in the connective tissue the 

ECM component predominates over the cellular elements. 

The ground substance is called that way as, in specially prepared sections, it has an amorphous gel- 

like appearance; it fills the space between cells and fibers of the connective tissue. The ground 

substance has a high-water content and allows the diffusion of gases and metabolites; its composition 

influences tissues’ characteristics. 

Ground substance is primarily composed of proteoglycans and hyaluronic acid. 

Proteoglycans are large organic macromolecules in which many glycosaminoglycan (GAG) 

molecules are covalently attached to a core protein. GAGs are formed by the association of long- 

chained polysaccharides made up of repeating disaccharide units, in which one of the sugars is a 
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glycosamine (or hexosamine), thus the name GAG; the disaccharide units are generally composed by 

derivatives of glucose and galactose. 

In these molecules there is a variable content of sulfate and carboxyl groups, that give them a high 

negative charge. The high density of negative charges attracts water forming a hydrated gel that 

allows a fast diffusion of water-soluble molecules but inhibits the movement of macromolecules and 

bacteria. 

The most common GAGs are chondroitin sulfate, dermatosulfate and keratosulfate. 

Hyaluronic acid (HA) is a GAG but has unique characteristics as it is non-sulfated and extremely 

long: it consists of a chain of several thousand sugars (about 20.000 disaccharide unit with an average 

of 7 million Da per molecule), while the other GAGs are composed of several hundreds sugars (3-4 

million Da). 

Another difference is the absence of the core protein: proteoglycans indirectly bind to HA via special 

linker proteins forming giant macromolecules (8, 21). 

 
Tendons connect muscle to bone via MTJ and OTJ; these are tendon’s weakest points. 

At the MTJ, myocytes form deep recesses in which collagen fibrils are inserted in order to transmit 

to the collagen fibers the tension generated by the muscle fibers. This complex structural architecture 

allows a reduction of the tensile stress exerted on the tendon during muscle contraction (28). 

The OTJ too has a specialized structure to prevent collagen fibers from bending, fraying, and failure 

(29). Four different zones can be identified: bone, mineralized fibrocartilage, fibrocartilage and a 

dense tendon zone (30). 

 
Connective tissue cells can also secrete reticular fibers, made of type III collagen fibrils that provide 

a supporting framework for the cellular elements of different tissues and organs, and elastic fibers. 

Elastic fibers are interwoven with collagen fibers in order to give tissues the ability to cope with 

stretch and distension preventing excessive distensibility and tearing. 

These fibers are thinner than the collagen ones and are arranged in a branching pattern to form a 3D 

network. Elastic fibers are composed of elastin and microfibrils. 

Elastin is a collagen related protein composed of many molecules of tropoelastin connected together; 

these molecules are characterized by a particular polypeptide backbone that causes a random coiling; 

therefore, the configuration of one molecule’s coiling is not permanent but oscillates from one shape 

to another. 

The peculiarity of this fiber is that the coiled elastin can be stretched, but when the force causing the 

elongation is withdrawn, the molecule recoils back to its former state. 



13  

Certain ligaments contain elastin molecules and are therefore named elastic ligaments (21). 
 
 
Histological images of a longitudinal and a transverse section of a collagen fibre bundle can be seen 

in Figure 1.3 
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Figure 1.1: Schematic of a multi-unit hierarchical structure of the tendon. 
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Figure 1.2: Tendon’s fascicles, fibres and fibrils, made of tropocollagen molecules of dense regular 

connective tissue (tendon) and relative surrounding connective tissue. 

The tendon has a multi-unit hierarchical structure composed of collagen molecules, fibrils, fibre bundles, 

fascicles and tendon units that run parallel to the tendon's long axis. This hierarchical structure contributes to 

the mechanical competence of the tendon. 
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Figure 1.3: Histological longitudinal and transverse section of a collagen fiber bundle (Istologia e anatomia 

microscopica dei mammiferi domestici e degli uccelli, Hans-Georg Liebich, 2012). 

Coloured with hematoxylin and eosin stain. 

Magnification respectively 480 × and 300 ×. 
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1.2 Blood supply 

 

Tendons’ blood supply is granted by an intrinsic and an extrinsic system, with differences in the ratio 

of blood supplied by the two between tendons (31, 32). 

The intrinsic system sees perimyseal vessels from the muscle continuing between the fascicles of the 

tendon through the MTJ; blood vessels coming from the muscle are however unlikely to continue 

beyond the proximal third of the tendon (31). 

The blood supply from the OTJ is limited to the insertion zone, even though some periosteal vessels 

communicate with the extrinsic system (31). 

The extrinsic system provides blood via the paratenon or the synovial sheath (31). 

In friction subjected areas, tendons are enveloped by sheaths; in those tendons, branches from the 

major vessels pass through the mesotenon and reach the synovial visceral sheath forming a plexus 

that supplies blood to the superficial part of the tendon (22). Some vessels penetrate the epitenon and 

enter the endotenon septae forming a connection between the two different vascular networks. 

In those tendons where the synovial sheath is not present, vessels enter the paratenon transversely 

and branch repeatedly forming a vascular network (33): arterial branches penetrate the epitenon and 

then course in the endotenon septae forming an intratendinous vascular network by many 

anastomoses (7, 34). 

 
1.3 Innervation 

 

Tendons’ innervation is essential for sensing tension, pressure and pain in the tissue. 

The innervation of tendons originates from cutaneous, muscular and peritendinous nerves, with both 

sympathetic and parasympathetic fibers being present (35). 

At the MTJ, nerve fibers cross entering the endotenon septa, forming rich plexuses in the paratenon 

from which some branches penetrate into the epitenon. Most of the fibers though do not enter the 

main body of the tendon but terminate on its surface as nerve endings. 

The nerve endings of myelinated fibers function as mechanoreceptors that can detect changes in 

tendon’s pressure or tension; those receptors are known as Golgi tendon organs. 

The Golgi tendon organs consist of a thin layer of connective tissue that surrounds a group of branches 

of large, myelinated nerve fibers that terminate with a spray of fiber endings between tendon’s 

collagen fibers (36). These organs are more numerous at the MTJ (37). 

Unmyelinated nerve endings on the other hand, are responsible for sensing and transmitting pain: 

they are nociceptors. 
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1.4 Biomechanics 

 
 

Tendons transfer tensile loads generated by muscles to the bone, in order to enable joint motion and 

to stabilize joints; they also act as a buffer that absorbs external forces in order to limit muscle damage 

(38). Therefore, two types of tendons can be recognized: tendons that function to transmit loads and 

tendons that mainly transmit motion. 

Tendons are viscoelastic tissues with a high mechanical strength, good flexibility and elasticity; they 

can display a state of stress, relaxation and creep (39, 40). The viscoelastic response is related to the 

presence of water, proteoglycans and GAGs in the tissue (1, 41-46). Viscoelasticity makes tendons 

more deformable at low strain rates rather than at high strain rates; therefore, at low strain rates more 

mechanical energy is absorbed but the tendons are less effective in carrying loads, while at high strain 

rates, tendons become stiffer and the transmission of large muscular loads to bone is more efficient 

(46). 

Tendon’s tensile strength is related to its thickness and collagen content: a tendon with a cross 

sectional area of 1cm2 can bear 500-1.000kg (6, 47); tendon is stronger than muscle per unit area as 

its tensile strength in approximately equal to that of bone, even though tendons have a much higher 

flexibility, elasticity and extensibility than bone itself (11, 12). 

The mechanical behaviour of tendon’s collagen fibers can be better understood with a stress-strain 

curve; four different regions can be distinguished, as shown in Figure 1.4. 

1. Toe region: at rest, collagen fibers display a crimped configuration (6, 48); in this region the 

stretching-out of the crimp-pattern can be seen, when the tendon is lengthened by low tensile 

loads, up to 2% of its resisting length, after release quickly resumes its initial length. This is 

the initial concave portion of the curve; with this tensile stress, tendon’s fibrils respond with 

a flattening of the crimp pattern in which the angle and length of the pattern depend on the 

type of tendon and affects tendon’s mechanical properties: fibers with a small crimp angle fail 

before those with a large one (6, 46, 49, 50). 

2. Linear region: beyond the previous point, the tendon deforms due to the intramolecular sliding 

of collagen triple helices; fibers become more parallel (6, 51). If the strain remains below 4%, 

when unloaded the tendon returns to its original length (6, 52); from 4% to 8% microscopic 

failure occurs, a tearing of tendon’s fibers can be seen and a pathological irreversible tensile 

elongation begins to take place (6, 46, 53). 

3. Macroscopic failure: beyond 8-10% strain, depending on age, type and organization of the 

tendon fiber bundle, macroscopic failure with intrafibril damage by molecular slippage (6, 46, 

53, 54). 



19  

4. Tendon rupture: further stretch causes tendon rupture (6, 53, 54, 55). At this point, fibers 

recoil into a tangled bud at the ruptured end (6, 38). 

The higher risk of rupture occurs when tension is applied quickly and obliquely. The highest 

forces can be seen during eccentric muscle contraction as the ones generated by quick 

eccentric movements where a limb must rapidly be decelerated (6, 11, 56, 57). 

 
Training and mobilization determine changes in tendon’s structure: ultimate load and energy 

absorbed at failure gets higher in exercised animals (46, 58, 59), and running increases strength at the 

insertion (46, 60); number and size of collagenous fibrils and tendon’s cross-sectional area also 

increases in exercised animals (46, 61, 62). 

Biochemical changes are also induced by training. Training stimulates the production of insulin-like 

growth factor-I (IGF-I) by tenocytes, a stimulus of collagen synthesis and cell proliferation (46, 63, 

64). IGF-I can therefore be used as protein marker for tendon’s remodelling activities. 

Furthermore, exercise increases collagen turnover but decreases its maturation. 
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Figure 1.4: Tendon’s stress-strain curve showing its viscoelastic properties. 

The toe region is associated with elimination of “crimp” while in the linear region the tendon is operating in 

an elastic way. At the end of the linear region the yield point is reached, and irreversible damage starts to 

occur before complete tendon rupture. 
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CHAPTER 2: TENDON INJURY 

 

Tendon injuries can follow acute or chronic events and may be caused by intrinsic or extrinsic factors 

that can occur either alone or in combination. Generally, extrinsic factors lead to acute traumas 

whereas, in chronic cases, intrinsic factors are also involved (6). 

 
2.1 Tendinopathy, overuse injury 

 

Although tendinopathies are defined as a form of degeneration (tendinosis) and not inflammation 

(tendonitis) their aetiology is still unclear (1). Tendinopathies describe the pain induced by the 

overuse of a tendon which results in impaired function of the associated limb (65, 66). 

Many causes have been considered throughout the years: hypoxia and ischaemic damage, oxidative 

stress, inflammatory mediators, hyperthermia, impaired apoptosis, fluoroquinolones and an 

imbalance in the matrix metalloproteinase. 

As tendinopathies represent a chronic disorder, the interaction between extrinsic and intrinsic factors, 

as alignment and biomechanical faults, is commonly seen (6, 46, 67, 68, 69). 

During training, excessive loading of the tendons frequently occurs and is considered the main 

pathological stimulus for degeneration (6, 70); furthermore, in presence of intrinsic risk factors, the 

risk of inducing tendinopathy is higher. Some of the intrinsic factors that have been identified are 

patient gender, age, body mass and genetic constitution or anatomical variations that may effect the 

development of tendinopathy (1, 71, 72, 73). 

Repetitive overload over the physiological threshold can induce inflammation of tendon’s sheaths, 

degeneration of their body or a combination of both (6, 74); it also leads to the inability of the tendon 

to endure further tensile stress (46, 75). 

Tendon damage might even occur from frequent cumulative microtraumas within physiological 

limits, as these can cause tendon microinjuries that lead to inflammation and do not allow enough 

time for tendon repair (6, 11, 46, 76). Cumulative microtraumas can be defined as “fatigue”, since 

they cause a progressive localized structural damage to tendons subjected to cyclic loading (11). 

Microtraumas may also result from non-uniform distribution of forces within tendons that leads to 

abnormal load concentration and frictional forces between the fibrils that result in localised fiber 

damage (6, 76). 
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The OTJ is also subjected to tendon overuse injury. In case of enthesopathy, tendons are metabolically 

active ate the insertion site; collagen bundles loosen, the composition of the extracellular matrix gets 

altered, lipids accumulate and microcalcifications might occur (46, 77, 78, 79). 

 
Patatenonitis (or peritendinits) can follow either after trauma or excessive loading of the paratenon. 

In such cases, edema and swelling can be observed; there can be hyperthermia of the tenosynovium, 

infiltration of lymphocytes and proliferation of blood vessels (46, 77). The inflammation and 

metabolic activity of the paratenon reflects those of the tendon. 

 
The macroscopical aspect of the affected tendon’s portions sees the normal white brilliant appearance 

turn into a grey-brown amorphous appearance. Tendon’s thickening also occurs, and it can be diffuse, 

fusiform or nodular (6, 80). 

Histologically, affected tendons show a scenario characterised by a disordered random healing in 

absence of inflammatory cells (6, 11). The healing response is poor and non-inflammatory 

intratendinous collagen degeneration, fiber thinning and disorientation, increased interfibrillar GAGs, 

hypercellularity and scattered vascular ingrowth can also be observed (6, 22). Instead of continuous 

crimped well-aligned collagen fibers, the tissue appears fragmented with a disordered collagen matrix 

often associated with the absence of clear fiber structure within the tendon (65, 81, 82). Tendon 

deterioration can also show mucoid degeneration, fat infiltration and calcification (1). Tendon’s 

mechanical proprieties can be normal even if its fibril morphology is altered (11). 

As it has been suggested, by histological evidence, that cellular changes precede alteration of collagen 

in the development of tendinopathy (65, 83), tendon’s nanostructural level should also be considered. 

Indeed, in the initial stages of tendon suffering induced by mechanical fatigue, collagen fibril kink 

bands can be observed whereas this damage could not be visible microscopically; kink banding is a 

mode of disruption that occurs in anisotropic layered or fibrous material in response to compressive 

forces (65, 84, 85). With continuous loading, kink bands may extend laterally and grow into 

microscale fiber ridges, leading to an extension of the wound (65, 83, 86). 

 
Nano kinkbands can be seen in Figure 2.1. 



Figure 2.1 (Tyler W., 2017) 

Normal tendon appearance 

at the microscale does not 

indicate the absence of 

mechanically damaged 

collagen. (A) 1,800 ×. The 

collagen fibre in boxed 

region “b” appears normal at 

the microscale. (C) At 

30,000 ×, it is apparent that 

the collagen fibrils making 

up the normal looking fibre 

in A are actually highly 

damaged, having undergone 

discrete plasticity (repeating 

kinks along each fibril, such 

as those marked by yellow 

arrows).52 (B) intermediate 

image taken at 7,000 ×. 

The boxed regions b and c 

show the locations of images 

(B and C), respectively. 
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2.2 Disuse and immobilization 

 

The knowledge on the effects of tendon disuse and immobilization are limited, as there their effect is 

much slower than on muscles and because there only have been few studies on this topic (46, 87). 

In general, immobilization causes a decrease in tendon’s tensile strength, stiffness and total weight 

(46, 88, 89, 90). Stress deprivation caused by tendon’s disuse is considered to be responsible for the 

degenerative changes (46, 91). Microscopically, collagen fibers appear irregular and uneven, and 

dilated veins and capillaries can be found (46, 92). 

 
2.3 Rupture 

 

Tendon rupture is an acute injury which aetiology is still unclear (6, 93). 

Even though extrinsic factors predominate in this kind of injury, intrinsic factors are also important; 

intrinsic abnormalities can increase tendon’s injury risk. Degenerative tendinopathy is frequently 

observed in spontaneous tendon ruptures as it leads to a reduction in tendon’s tensile strength and 

therefore a predisposition to rupture (6). A malfunction in the physiological protective inhibitory 

pathway of the musculotendinous unit might also cause tendon injury (6, 94). 

 
2.4 Healing process 

 

Acute tendon injury rapidly causes the initiation of the healing process that is generally subdivided 

into three stages: inflammation, proliferation (or reparation) and remodelling (46, 95-101). Each one 

of these stages chronologically overlaps with the following one but possesses a different cytokine and 

cellular profile; generally, in the early stages, pro-inflammatory cytokines predominate, while anti- 

inflammatory cytokines are mainly expressed in the late phases of the healing process (95, 102). 

The first stage of the healing process is the inflammatory stage, which begins immediately after 

tendon injury. A clot is formed in the damaged vessels, and the activation of inflammatory cells leads 

to fibroblast recruitment (95, 96); in this phase, the clot acts as a scaffold for the migration and 

adhesion of the recruited inflammatory cells (95, 103). 

In this stage, the main soluble factors, released by platelets, cells in the clot, and the cells surrounding 

the wound area, are: transforming growth factor-β1 (TGF-β1), IGF-I, and platelet-derived growth 

factor (PDGF) (1, 95, 97-102, 104, 105, 106). The elaboration of these growth factors causes the 

recruit of neutrophils, that then leads to the activation of macrophages; these cells clean the wound 
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site of necrotic tissue and bacteria by phagocytosis (46, 95, 98, 103); PDGF also stimulates mitogenic 

responses in the tendons in a dose-dependent manner (46, 107, 108). 

The proliferative stage begins approximately 48 hours after the injury, when the cytokines released 

by intrinsic cells of endotenon and epitenon, and by macrophages, recruit fibroblasts (95, 97, 98, 

109); it is characterized by the expansion of the ECM, increased cellularity, deposition of 

fibrovascular scar (95, 96, 103) and other components as proteoglycans (46). In fact, PDGF causes 

the expression of other growth factors by stimulating DNA and protein synthesis (95, 97), while IGF- 

I and TGF-β1 expression remains high throughout the second phase of the healing process, causing 

the continue recruitment of fibroblast at the lesion site and subsequently the increase in ECM 

production (46, 95, 108, 110-113). An over-expression of TGF- β1 though, causes tissue fibrosis (46, 

114). The expression of TGF-β1 receptors is upregulated after the injury, reaching their peak at 14 

days post-injury, and gradually decreasing after day 56 post-injury; the highest receptor expression 

is located at the tendon sheath and epitenon of injured tendons (46, 115). 

During the repairing stage, water and glycosaminoglycan levels remains high (46). 

Other growth factors are also expressed during this phase. Basic fibroblast growth factor (bFGF) is 

expressed by tenocytes, fibroblasts and inflammatory cells and promotes angiogenesis, regulating 

cellular migration and proliferation (1, 46, 95, 97, 98, 116, 117, 118), as well as the vascular 

endothelial growth factor (VEGF) which also promotes angiogenesis and increases capillary 

permeability (1, 95, 97, 119, 120, 121); VEGF peak expression is reached 10 days post-injury (46). 

As collagen synthesis is a high oxygen consuming process, these growth factors are very important 

in this time of healing (95, 96, 122). 

During tendon healing, nitric oxide synthases (NOS) are also expressed, as they mediate VEGF- 

induced vasodilation in endothelial cells (46, 123); their inhibition causes a decrease in ultimate 

tendon’s cross-sectional area and tensile strength (46, 124). 

The remodelling phase overlaps with the proliferative one and begins about 14 days – 6 weeks post- 

injury (95, 46). During this stage, the newly deposited collagen fibers are reorganized, leading to the 

alignment of collagen fibers and tenocytes in the direction of stress. This process causes an increase 

of fibrous matrix, a gradual decrease in cellularity, type III collagen, vascularity, cellularity, and water 

content (95, 97, 103); also, tenocytes’ metabolism and tendon’s vascularity declines (46). Type III 

collagen fibers are replaced with type I fibers that have a higher tensile strength (95, 96, 125). Within 

the remodelling stage, two different phases can be recognized: consolidation and maturation (6, 126). 

The consolidation phase begins approximately 6 weeks post-injury and continues until week 10; 

during this period tenocyte metabolism is still high and the repair tissue changes into fibrous tissue, 

with collagen fibers and tenocytes aligning in the direction of stress (6, 46, 127). After this changes, 
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the maturation phase occurs, with the fibrous tissue gradually changing into scar-like tendon tissue 

(6, 46, 127). This change can take up to one year and, during the latter half of this period, a decline 

in tenocyte metabolism and tendon vascularity occurs (6, 128). 

Even though the remodelling process continues for years after the injury, the newly formed tissue 

never reaches the native biochemical, ultrastructural and biomechanical properties of a normal 

physiological tendon (46, 95, 99, 129, 130), and healing generally results in scar tissue formation 

(46). During the healing process, fibroblasts generate a force on the ECM (referred to as fibroblast 

contraction) in order to close the wound (46, 131); when excessive, the contraction may cause wound 

scarring, whereas its inhibition leads to impaired wound healing (46, 132, 133). 

 
When present, lesions to the OTJ should also be considered, as they cause bone loss and impaired 

function at first (46, 134), and then require a long time to heal, resulting anyway in a tissue with 

inferior biomechanical proprieties (46, 78, 135, 136). 

 
Tendon’s mechanical loading should be strictly controlled during wound healing, as it effects the 

quality of the newformed tissue. During the inflammatory phase, tendon’s stretching should be 

avoided to minimize interferences with the healing process. About 1-week post-injury, controlled 

tendon mobilization should be introduced, as it enhances the quality of the healing process: tendon’s 

ultimate tensile strength is enhanced, gliding surfaces are restored with a reduction of tissue adhesion, 

and the excursion proprieties are improved (46, 75, 88, 137, 138); scar formation is also reduced (1, 

139). When applied on a chronic tendinopathy, mechanical loading seems to relieve symptoms (46, 

140). 

These beneficial effects of mechanical loading are due to its stimulation of fibroblast proliferation 

and activity, and of collagen realignment (46, 141, 142). 
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CHAPTER 3: TREATMENTS FOR TENDINOPHATIES 

 

Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary 

medicine, with ligament and tendon injuries accounting for 50% of them and resulting though as the 

most common lesions (95, 143). These injuries can affect both athletic and sedentary horses and have 

a significant impact on their athletic performance but also on their quality of life (95, 144). 

Even though both tendons and ligaments have the ability to repair themselves, the repaired tissue 

never reaches the native tissue biomechanical proprieties: tendons and ligaments are poorly 

vascularized tissues consisting of few cells lying in abundant extracellular matrix, so the healing 

process is slow and leads to the formation of scar tissue, that does not have the same biomechanical 

characteristics of the native tissue. For these reasons, there has been a great interest in treatments for 

these injuries. Moreover, the economic cost of the treatments required is very high and reinjury rates 

can reach 80% (144, 145, 146), therefore regenerative medicine by the application of innovative 

treatment has now been taken into consideration. 

 
3.1 Conventional treatments 

 

Acute tendon and ligament injuries require prompt treatment to reduce inflammation rapidly, as these 

injuries can be considered clinical emergencies and persistent inflammation can cause further 

damage. 

 
3.1.1 Physical therapies 

 
 

Physical therapy is used mainly in the early stages of tendonitis to reduce inflammation and, therefore, 

the degeneration of the ECM caused by the action of proteolytic enzymes released during 

inflammation, such as collagenases and matrix metalloproteinases (MMPs), especially MMP-1 (146). 

 
 Cold therapy 

Cold therapy can be particularly useful after an acute injury, during the inflammatory stage, as it 

has both an anti-inflammatory and analgesic action. Indeed, the cold causes an increase in blood 

vessels constriction, decreases enzymatic activity, thus reducing the generation of inflammatory 

mediators, and slows down the nerve conduction (147, 148). The vasoconstriction also leads to a 

decrease of tissue swelling. 
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The optimal duration and frequency of cold treatments has not been defined yet. The application 

of a 20 minutes treatment up to three times a day is the most commonly used protocol for acute 

tendon injuries. It is recommended not to apply cold therapy for periods longer than 30 minutes 

as it could cause tissue damage: excessive cold causes vasoconstriction that leads to a decrease in 

the blood supply resulting in tissue necrosis. 

There are many available possibilities to provide cold therapy; the most common ones are ice 

packages, cold hydrotherapy, spas, and underwater treadmills. 

Hydrotherapy is superior to ice packages as it increases the contact surface and evaporation, and 

is less likely to cause adverse reactions, as superficial tissue damage or cold induced nerve palsy 

(147, 149). 

Spas are even more efficient in providing cold hydrotherapy as, using hypertonic saline, they 

provide both cold and compression (147, 150). 

During the rehabilitation program, also underwater treadmills can be used, as they allow the horse 

to regain its musculoskeletal normal condition without bearing to much weight on the affected 

limb. 

Cold therapy can be used both after injury and surgery, being more effective in the first 24-48h 

in the latter case. 

 
 Heat therapy 

Heat causes vasodilation, increasing therefore local circulation; it also induces muscle relaxation 

and, consequently, increases extensibility along with reducing muscle spasms and associated pain 

(151). 

The increased blood flow increases tissue oxygenation and two or three times the cellular 

metabolic rate (for a tissue temperature increase of 10°C) (151). 

Heat should be applied after the inflammatory stage in order to enhance wound healing. 
 
 
 Compression and coaptation 

Following injury, during the acute phase, compression applied to the affected limb can reduce the 

swelling (edema) as it increases the interstitial hydrostatic pressure. In most cases, a suitable 

pressure level can be achieved through a modified Robert Jones bandage. 

In particular cases, a splint or a cast may be necessary, especially in case of severe injuries where 

there is hyperextension of the metacarpophalangeal joint (MCP joint). Specially designed support 

boots can also be used. 
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When collateral ligament injury is associated, the joint becomes instable and external coaptation 

is necessary. If the joint is not significantly destabilized, corrective farriery might be sufficient: a 

shoe with increased width on the side of the affected collateral ligament, can reduce the strain on 

the injured ligament by impending downward vertical movement while the horse is exercised on 

a soft ground (147). 

 
 Controlled exercise 

Controlled exercise is a very important part of tendon and ligament injury rehabilitation; it should 

be strictly controlled as, if excessive, it can cause further damage. 

Controlled tendon mobilization helps to resolve residual inflammation, enhances tendon’s 

ultimate tensile strength, restores gliding surfaces with a reduction of tissue adhesion, and 

improves the excursion proprieties (46, 75, 88, 137, 138, 147); scar formation is also reduced (1, 

139). 

Mechanical loading also promotes optimal collagen remodelling: it stimulates fibroblast 

proliferation and activity along with collagen fibers realignment (46, 141, 142, 147, 152). 

The rehabilitation program should provide a controlled and ascending exercise program in order 

to optimize the newly formed tissue without causing further damage; therefore, the program 

should be studied from the ultrasonographic appearance of the lesion and adapted over time on 

the basis of serial ultrasonographic monitoring and clinical signs (such as lameness, swelling, 

heat, and pain). There is an individual variability between different subjects, and the rehabilitation 

protocol should take it into consideration. 

Most tendon injuries require at least 8 months of rehabilitation before complete resumption of 

function, reaching up to 18 months in severe cases. 

 
 Counter-irritation 

Counter-irritation is a method that has been used for several years for the treatment of tendon and 

ligament injuries, but recent studies have concluded that it is not an effective treatment, and it 

might also cause further damage. 

Chemical or thermal cauterization, also known as “firing”, involves the use of topical iodine or 

mercury-based products, or of heated bars or pins that are applied on the skin over the injured 

tendon; sometimes heated pins are also used to penetrate the tendon. These techniques are 

performed under general or local anesthesia, as they can be very painful for the horse. 

No histological differences have been found between the collagen arrangement in cases of 

tendinopathies treated with firing over control cases, whereas it has been demonstrated that this 
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practice causes the skin of the region that has been cauterized to become thinner and weaker (147, 

153). 

It has been postulated that any benefit resulted from counter-irritation techniques is the result of 

the enforced rest and protective bandage that this practice requires. Therefore, this treatment 

method should no longer be used. 

 
3.1.2 Pharmacologic management 

 
 

Physical therapy can improve and accelerate the healing process, but in the first stage of the healing 

process, pharmacotherapy may help to contain the pathological process. The first 24-48 hours post- 

injury can be considered the critical period on which drugs can help the most. 

The first stage of the healing process is inflammation: inflammation leads to the recruitment of 

inflammatory cells, in particular neutrophils and macrophages, that clean the wound site from necrotic 

tissue, stimulates the recruitment and activation of fibroblasts, and promotes the release of 

inflammatory cytokines that provide further cell recruitment but also causes pain, limiting therefore 

the animal range of motion (ROM) preventing further damage (1,46, 95-106). 

On the other hand, excessive inflammation can lead to further tissue damage; for this reason, anti- 

inflammatory drugs are generally used in case of tendon or ligament injuries. 

Both systemic corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) can be used for 

inflammation management during the acute stage. 

The main drugs that are commonly used are: 

- Phenylbutazone: NSAID administered at a dose of 2.2mg/kg twice daily (BID); it seems to have 

more an analgesic than anti-inflammatory effect (147, 154). 

The main side effect that can follow the use of NSAIDs in the horse is the formation of 

gastrointestinal ulcers. 

- Dexamethasone: systemic corticosteroid administered at a dose of 0.1mg/kg at a single dose 

(SID); as systemic corticosteroids inhibit fibroplasia, hence tendon regeneration, they should be 

used only within the first 24-48 hours. The risk of laminitis induction should also be taken into 

consideration when using these drugs; another side effect of corticosteroids is the 

immunodepression induction. 

- Topical or intravenous dimethyl sulfoxide (DMSO) can also be used to reduce inflammation, but 

recent studies has shown that high concentrations of topical DMSO may weaken the normal 

tendon tissue (147, 155). 
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3.1.3 Surgical therapies 

 
 

When tendon or ligament injuries cannot be treated with drugs or physical therapy, a surgical 

approach can be useful. Different techniques have been described over the years. 

 
 Tendon splitting 

Tendon splitting technique was introduced in the 1940s to treat chronic tendinopathies, as it was 

thought that it could increase the blood flow to the damaged tendon. Subsequent research 

demonstrated that tendon splitting in chronic lesions causes a massive granulation tissue 

formation and induces further damage to the tendon itself, resulting in persistent lameness after 

treatment (147, 156, 157). Tendon splitting is therefore no longer suggested as treatment for 

chronic tendinopathies. 

Nowadays, this surgical treatment is used in acute lesions where an anechoic core lesion is seen 

on ultrasonographic examination; this image indicates the presence of a seroma or hematoma 

within the tendon fibers. It is thought that a core lesion of this nature within the tendon causes a 

compartment syndrome, with consequent decreased tendon perfusion and ischemia of the injured 

region (147, 158); the presence of fluid also induces a proximo-distal propagation of the lesion. 

For this reason, tendon splitting in acute cases is used to decompress the core lesion by evacuating 

the fluid and facilitating vascular ingrowth (147, 158). 

Tendon splitting can be performed under general anaesthesia or standing sedation with the use of 

a 11-scalpel blade or a 23G needle: the knife is inserted into the tendon and then fanned 

proximally and distally, while the needle is inserted multiple times, probably resulting in lower 

damage of the remaining intact tissue. Needle splitting can also be associated to intralesional 

injections. 

The procedure can be done blindly or with ultrasonographical guidance; in the first case, the blade 

or needle is inserted in the point of lower resistance, while with ultrasound guidance the insertion 

can be made in the point where the lesion is closest to the skin, in order to minimize damage to 

normal tendon tissue. 

After the surgery has been performed, a modified Robert Jones bandage should be applied, and 

the horse should be put in stall rest for at least 10-14 days; after this period, a controlled exercise 

program should be initiated (147). 

The procedure is shown in Figure 3.1. 
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 Desmotomy of the accessory ligament of the SDFT 

The desmotomy of the accessory ligament of the SDFT (DALSDFT) was designed as treatment 

for SDFT tendinopathy; the production of a functionally longer musculotendinous unit should 

reduce the strain on the SDFT (147, 159). However, studies in horse cadaver models have shown 

that this surgery actually increases the strain on the SDFT during loading as it increases the 

extension of the MCP joint (147, 160); in vivo studies have also demonstrated that a higher risk 

of injury of the suspensory ligament is associated to this procedure (147, 161). 

This procedure can be performed by making a 10cm skin incision in the medial aspect of the limb, 

between the cephalic vein and the caudal radius, with the horse in lateral or dorsal recumbency 

(147, 162). Recently, the DALSDFT has also been performed tenoscopically, through the carpal 

sheath (147, 163). 

After surgery, the horse should be put to stall rest for 14 days, after that a controlled exercise 

program should be started. 

 
 Anular ligament desmotomy 

The anular ligament desmotomy is a surgical technique indicated in serious inflammation, 

tendinopathies, or diffuse adherences of the SDFT and DDFT in the region of the MCP and 

metatarsophalangeal (MTP) joint; the procedure is therefore indicated when the normal gliding 

function of the flexor tendons is impeded. 

This surgery is performed under general anaesthesia; the tenoscopic approach is preferred to other 

closed or open techniques as it ensures an accurate transection of only the palmar/plantar anular 

ligament and allows tendons evaluation in order to identify possible primary causes. This 

approach is also less traumatic as it requires only small entry wounds with less trauma to the 

surrounding tissues and subsequently a better wound healing with less risk of dehiscence resulting 

in an earlier postoperative exercise (147). 

 
 Fasciotomy and neurectomy of the deep branch of the lateral plantar nerve 

In cases of chronical proximal suspensory ligament desmopathy (PSLD) of the hindlimb that are 

not responsive to conservative treatment, tibial neurectomy has been reported to be a successful 

treatment (147, 164). It has later been described a more specific neurectomy that sees the 

transection of the deep branch of the palmar nerve only (147, 165). 

When this surgery is needed, it is associated with the fasciotomy of the connective tissue adjacent 

to the lateral splint bone that covers the suspensory ligament, as hindlimb PSLD is thought to be 

related to a compressive compartment syndrome that involves the plantar metatarsal nerves. 
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The surgery is done under general anaesthesia. The horse is the put to stall rest for 14 days, to 

allow tissues healing; then a controlled gradual exercise program can be started. 

This surgery is reported to allow horses to return to full work in high-level competitions with 

minimal risk of exacerbating the desmopathy (147, 164). 

 
 Desmotomy or desmectomy of the accessory ligament of the DDFT 

In those rare cases where desmopathy of the accessory ligament of the DDFT (ALDDFT) recurs 

after conservative treatment or causes adhesions between the ALDDFT and the SDFT or a 

flexural deformity, desmotomy of the ALDDFT can be a valid approach. 

For this surgery general anaesthesia is required, and after the procedure, a modified Robert 

Johnson bandage should be applied to the distal limb for 3-4 days. 
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Figure 3.1: Tendon splitting performed with a blade (A) or a needle (B). (Equine surgery, Auer & Stick, 

2012) 
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3.2 Regenerative medicine 

 

The aim of regenerative medicine is not only to provide wound healing, but to regrow, repair or 

replace damaged cells, tissues or even organs, leading to restore the normal function of the injured 

tissue. 

In the case of tendon and ligament lesions, regenerative medicine aims to restore both the structure 

of collagen fibers and their biomechanical proprieties, so that after the lesion as healed, tendon’s 

structure and function is the most possible similar to the one of the original tissue; this allows the 

horse to get back to the same activities he was used to and, moreover, to the same performance level 

with minimum risk of reinjury. 

 
3.2.1 Physical therapies 

 
 

With the introduction of new technologies and a higher comprehension of the mechanisms that lead 

to tissue damage, new physical therapies have been introduced in the equine practice. 

 
 Extracorporeal shock wave therapy 

Extracorporeal shock wave therapy (ECSWT) consists of shock or pressure waves transmitted 

into the tissues where a specific probe is applied; this kind of therapy is primarily used in the 

horse for chronic desmopathies. 

The exact mechanism of action of ECSWT is still unclear, but it is likely related to an effect on 

sensory nerves that induces analgesia (147, 166). Even though the use of ECSWT on normal 

tendons or ligaments can induce injuries, resulting in ECM disorganization, it was acknowledged 

that this initial disorganization functions as a stimulus for tissue repair in case of chronic injuries 

(147, 167). 

 
 Therapeutic ultrasound, laser, and magnetic fields 

Even though there still is a paucity of scientific studies that prove their efficiency, and their effect 

on tissues is poorly understood, in the last decade these techniques have gained relevance in 

equine practice. 

Therapeutic ultrasound is thought to influence tissue regeneration due to the conversion of 

ultrasound energy into thermal energy, resulting in increased vascularization and fibroblastic 

proliferation (147, 168). 
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Therapeutic ultrasound works by alternating compression and rarefaction of sound waves with a 

frequency of 0.7 to 3.3 MHz As the intensity decreases as the sound waves penetrate deeper, the 

soft tissue maximum energy absorption occurs from 2cm to 5cm. 

Low-level laser works through light amplification by stimulated emission of radiation; low-pawer 

lasers are applied to the patient’s skin. This technology stimulates cellular metabolism, fibroblast 

proliferation and collagen synthesis (147, 169). 

Although magnetic therapy is widely used by horse owners, its efficacy on enhancing tissue 

regeneration has not been proved. It involves a weak static magnetic field generated by a 

permanent magnet (147). 

 
3.2.2 Intralesional medication 

 
 

Many intralesional medications have been advocated for tendinopathy treatment. 

These medications can be performed under general anaesthesia or standing sedation; it seems that 

weight-bearing medication is a better option as it keeps the tendon tense, potentially assisting 

injection. 

These medications are mainly executed blindly, simply injecting the medication when lower tendon 

resistance is detected with the needle. The use of an ultrasound machine can provide a more accurate 

medication, allowing to reach the core of the lesion, and minimizes tissue damage as the needle can 

be inserted from the point of lower skin-lesion distance. 

It is very important to wait at least 3 days post-injury before performing any intralesional injection, 

as in the first days (in the inflammatory stage) there is a higher haemorrhage risk. 

The volume of the injection should vary between different cases, as the lesion extension must be 

considered; indeed, large volumes can damage the healing tissue (147, 170). 

 
 PSGAGs 

Polysulfated glycosaminoglycans (PSGAGs) are used as soft tissue anti-inflammatory agents in 

the treatment of tendinopathies and desmopathies, either intralesionally or intramuscularly (147). 

PSGAGs are used for their anti-inflammatory effect as they have no effect on fibroblasts but 

inhibit collagenases, metalloproteinases and also macrophage activation, leading to a decrease in 

the inflammatory response (147, 171, 172). 

While the influence of this treatment on tissue healing is still debated, some studies have shown 

an improvement in tendon echogenicity after injury, with faster resolution of the core lesion and 

a higher rate of animals returning to their previous activities (147, 173, 174). 
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 Hyaluronan 

Hyaluronan (HA) is a component of the ECM that consists of repeated units of D-glucuronic acid 

and N-acetyl-D-glucosamine. Over the years HA has been administrated intralesionally, 

peritendinously, intratechally, and systemically with the attempt to treat tendinopathies. 

Many studies have been conducted to understand the potentiality of HA, and it seems that it does 

not decrease reinjury rate, and has no effect on ultrasonographic or histologic appearance, and 

biomechanical properties (147, 175); on the other hand, intrathecally administered HA have been 

shown to decrease the extent of adhesion within the digital sheath (147, 176). Moreover, horses 

treated with intrathecal HA showed less intratendinous haemorrhage and less infiltrated 

inflammatory cells (147, 176). 

 
3.2.3 Novel therapies 

 
 

The research of new therapies that allow a better healing process, resulting in regeneration rather than 

reparation, is still ongoing. Some of the most promising therapies will be briefly described in this 

paragraph. 

 
 Growth factors 

Growth factors are natural substances, generally secreted proteins or steroid hormones that act as 

signalling molecules intervening in the regulation of cellular processes, such as cellular 

proliferation, wound healing and, sometimes, cellular differentiation. Each growth factor has its 

own target and action. 

- IGF-I is a potent mitogen that stimulates the tendon EMC synthesis (147, 177) as well as 

inducing tenocytes proliferation (178). Studies both in vitro and in collagenase-induced 

lesions have been done, but long-term follow-up data are still missing. 

- TGF-β1 is a cytokine produced by white blood cells lineages; it is considered to be a potential 

beneficial growth factor, but clinical experience is still limited. After binding to its receptor, 

TGF-β1 activates a signalling cascade, ultimately leading to the induction of the transcription 

of genes that function on differentiation, proliferation, chemotaxis, and activation of many 

immune cells. After treatment with TGF-β1, horses showed tendon enlargement; even though 

the reinjury rates were similar to the ones of conservatively managed horses, the reinjuries 

were all on the contralateral untreated limb (147, 179). 
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 Platelet-rich plasma 

Platelet-rich plasma (PRP), is defined as plasma containing at least twice the concentration of 

normal platelets; it is derived from whole blood centrifuged to remove red blood cells, or by 

gravity filtration. 

PRP is a reach source of growth factors, in particular: PDGF, TGF-β1, and VEGF. These growth 

factors enhance tissue healing, stimulating cellular proliferation and matrix synthesis. 

PRP has also been proved to reduce pain and improve function in cases of chronic tendonitis. 
 
 
 Bone marrow 

Bone marrow has a high growth factor concentration; for this reason, it can be used for the 

promotion of tissue healing. Bone marrow is primally used in tendinous and ligamentous lesions 

to promote tissue regeneration rather than scar tissue formation (147, 180, 181). 

Bone marrow also contains mesenchymal stem cells, but their concentration is very low (1 in 104 

nucleated cells), so treatment whit bone marrow resembles more a growth factor treatment rather 

than a stem cell therapy. 

 
 Mesenchymal-stem cells 

Intralesional injection of MSCs is used to achieve regeneration rather than repair. 

MSCs are multipotent cells that have therefore the ability to differentiate into tenocytes and to 

generate tendon ECM, creating a healing tissue with biomechanical proprieties that are far 

superior to the ones of the normal scar tissue. It is also reported that the reinjury rate in horses 

treated with MSCs for tendinous or ligamentous injuries is lower than in horses that have followed 

a conventional therapeutic protocol (147, 182, 183, 184). 

 
Stem cells’ biology and therapeutical proprieties will be furtherly described in the following 

chapter. 
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CHAPTER 4: MESENCHYMAL STEM CELLS 

 

The ability of stem cells to replicate and differentiate into different cellular types has gained great 

interest in regenerative medicine. Clinicians, researchers, and industry members are therefore 

studying the possibility to harvest stem cells form horses and use them for regenerative purposes. 

Moreover, their use is particularly of interest because of their low immunogenic characteristics, which 

allow the use of allogeneic MSCs without risks of immunoreaction. 

 
4.1 Mesenchymal stem cells’ biology 

 

Stem cells therapy is widely spread in veterinary medicine, but the comprehension of the biology 

underlying their therapeutic effect is still to be investigated. 

Stem cells are able to replicate through a process of self-renewal and have the ability to differentiate 

into different cellular types of the body. These peculiar characteristics are particularly important 

during embryonic development, as they intervene in organogenesis, but also in adult’s life, for the 

maintenance of tissue physiological turnover, and in tissue regeneration after injury (147, 157). 

MSCs are also capable of a peculiar replication mechanism called asymmetric cell division; this 

process sees some daughter cells develop into a somatic cellular type, while the others retain their 

stem cell identity within the niche tissue (147, 185). 

Different cells have a different ability to differentiate into other cellular types, which is defined as 

cell potency: the more cellular types a stem cell can differentiate into, the greater its potency is. The 

cells with the highest differentiation potential are defined totipotent; following a decreasing order in 

the number of cellular types that a cell can turn into, there are pluripotent, multipotent, oligopotent, 

and finally unipotent cells. For this reason, stem cells are usually divided into embryonic and adult 

stem cells. 

Embryonic stem cells derive from the inner cell mass of the blastocyst mammalian embryo stage and 

can differentiate into cells belonging to all three germinal tissues (ectoderm, mesoderm, and 

endoderm); they are therefore defined pluripotent cells (147, 186, 187). Embryonic stem cells are 

capable of unlimited, undifferentiated proliferation in vitro, but there is still lack of evidence of the 

presence of these characteristics in vivo (147, 188, 189). 

After birth, adult stem cells, can be found in many tissues in particular microenvironments called 

niches; their characteristics vary on the base of the tissue where they are located (147, 190, 191). The 

stem cells that are involved in the musculo-skeletal regeneration process are mesenchymal cells; even 

though neither mesenchymal nor stromal are terms that appropriately describe the characteristics of 
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these adult stem cells, these terms have been used interchangeably, and the term MSCs will therefore 

be used from this point forward. 

Many biological characteristics of adult stem cells are still to be understood: while injuries can 

activate quiescent MSCs stimulating self-renewal, aging and diseases cannot (147, 191, 192); the 

signalling pathways that preserve MSCs within the niches in an undifferentiated state and those 

regulating their activation are also still to be understood (147, 193, 194, 195). 

MSCs are described as adherent, clonogenic, non-phagocytic, fibroblastic cells that are capable to 

differentiate, both in vitro and in vivo, into a variety of somatic mesenchymal phenotypes (196): bone 

(147, 197, 198), cartilage (147, 199), tendon (147, 200, 201), muscle (147, 202), and adipose tissue 

(147, 202). It has also been described the ability of MSCs to differentiate into other mature somatic 

cells, by a process called transdifferentiation (or lineage reprogramming); this process allows MSCs 

to tourn also into hematopoietic-supporting stroma (147, 203, 204), cardiomyocytes (147, 205), 

pneumocytes (147, 206) and neural cells (147, 207), even though the functional ability of MSCs- 

derived neural cells is still debated. 

 
4.2 MSCs’ role in inflammation and immune response modulation 

 

Regenerative medicine is particularly focusing on MSCs as, in addition to their ability to differentiate 

into different tissues enhancing tissue regeneration rather than repair, they also have an 

immunomodulatory effect. In fact, MSCs inhibit B-cells function, T-cells activation, and dendritic 

cell maturation, and have a high protective effect against allograft rejection and experimentally 

induced autoimmunity (147, 208-211). 

As cellular culture requires some time to be performed in order to have a sufficient amount of stem 

cells for a treatment, studies have been conducted on the use of allogenic cells; this would allow to 

store cells so that, when a treatment is necessary, there is availability of ready-to-use cells. It has been 

shown that allogenic cells are as efficient as autologous cells, suggesting that the immunosuppressive 

action of MSCs is not restricted by class I major histocompatibility complex (MHC) (147, 212-215). 

Some studies also focused on the detection of histological lesions following treatment with allogenic 

MSCs, concluding that, as lesions could not be found after 8 weeks, these treatments potentially do 

not trigger an immunologic response, allowing the use of stocked cells for equine treatments (147, 

216, 217). These low immunogenic reactions of the host are probably due to the absence of the MHC- 

II, normally involved in the immune system antigen recognition process (218). 

New studies are now focusing on the potential anti-inflammatory effect of co-culture of MSCs and 

lymphocytes; it has been shown that these MSCs secrete IL-10, a growth factor that mediates T-cells 
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response and can antagonize the effects of IL-12 during inflammation (147, 219, 220). They also 

secrete TGF-β1, a T-cell suppressor that can be used in acellular treatments to modulate inflammation 

(147, 221, 222). 

 
4.3 MSCs in the treatment of tendonitis 

 

Tendon healed tissue generally lacks normal tendons’ biomechanical characteristics: fibrous scar 

tissue takes the place of normal tenocytes, collagen fibers are not as well-aligned as they used to be, 

therefore tendon elasticity decreases and the risk of reinjury gets higher (147, 223). 

MSCs have been considered in the treatment of tendon injuries as they provide the area with growth 

factors that may improve the healing response and can differentiate into tenocytes following the in 

vivo transfer (147, 224-229). 

Many studies have been conducted on the efficacy of MSCs treatments for tendinopathies; it can be 

concluded that treatment with stem cells improves tendon repair by improving fiber organization and 

alignment, allowing horses to return to precious levels of work with a lower reinjury rate (147, 225, 

230-233). 



42  

CHAPTER 5: AIMS OF THE STUDY 

 

In equine practice, lameness due to ligament and tendon injury is the most common diagnosis, 

affecting both athletic and sedentary horses with a severe impact on their quality of life (95, 144). 

As tendon and ligaments are poorly vascularized and have a poor cellularity, natural healing occurs 

very slowly and the replaced tissue does not have the same biomechanical characteristics; moreover, 

reinjury rate reach the 80% (144, 145, 146). 

Regenerative medicine allows though the repairment of the tissue, with the restoration of the normal 

function allowing the return to the same performance level with a minimum risk of reinjury. 

 
The aim of this thesis was to evaluate the clinical response to a repeated intralesional tendon injection 

of autologous adipose-derived mesenchymal stem cells (AD-MSCs) combined with autologous 

platelet rich plasma in two horses chronically affected by tendonitis. 

The follow-up period after treatment included clinical evaluation of lameness and pain, along with 

ultrasound examinations: size of the lesion, fiber pattern and alignment plus new tissue echogenicity 

were evaluated. 

Different plasma molecules values were also estimated, in order to assess the inflammatory state of 

the animals: total protein level (PT), advanced oxidises protein products (AOPP), total carbonyl 

groups (CT), thiols, IL-1β, IL-10, PDGF, TGF-β1 and IGF-1. 
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CHAPTER 6: MATERIAL AND METHODS 

 

This thesis was conducted on two sport horses affected by tendinopathy of the forelimb; they were 

treated with autologous AD-MSCs and PRP administered by ultrasound guided intralesional 

injection. 

AD-MSCs were isolated and cultivated in our laboratory and cryopreserved for further injections. 

Several clinical evaluations followed the treatment to evaluate lameness, pain, ultrasound appearance 

of the lesion site and different inflammatory plasma molecules. 

 
6.1 Animals 

 

Subject n° 1 was a 10-year-old Sella Italiano gelding, competing in show jumping, presented with a 

lesion in the of the SDFT of the left forelimb in the middle third of the metacarpal region. The lesion 

was a reoccurrence, which had developed from a previous healed injury in the same area of the SDFT. 

At diagnosis, the horse showed a lameness grade 2.5/5 based on the American Association of Equine 

Practioners (AAEP) scale, briefly described in Table 6.1. Pain and local heat were noted at palpation 

along with severe swelling. An ultrasound evaluation of the lesion was also done, showing complete 

loss of tendon’s structure in the lesion site. 

When the lesion was first diagnosed six months before this study, the horse stopped competing and 

was treated with NSAIDs. A controlled rehabilitation exercise program was then started after two 

weeks of stall rest. However, the horse did not show any improvement at the clinical or 

ultrasonographic level. 

The followed rehabilitation protocol is shown in Table 6.2. 
 
 
Subject n° 2 was a 7-year-old trotter, racing at high level events that was presented with a lesion of 

the SDFT of the right forelimb in the distal third of the metacarpal region. The lesion was acute, as it 

occurred during racing activity on the day before the clinical evaluation. 

At diagnosis, the horse showed a lameness grade 4/5 based on the AAEP scale. Pain and local heat 

were noted at palpation along with severe swelling of the whole metacarpal region and MCP joint. 

An ultrasound evaluation of the lesion was also done, showing complete loss of tendon’s structure in 

the lesion site that was particularly extended on the proximo-distal axis. 

When the lesion was diagnosed, the horse was put at stall rest and treated with NSAIDs for seven 

days. 
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Score AAEP degree of lameness 

0 Lameness not perceptible under any circumstances 
1 Lameness is difficult to observe and is not consistently apparent, regardless of 

circumstances 
2 Lameness is difficult to observe at a walk or when trotting in a straight line but 

consistently apparent under certain circumstances 

3 Lameness is consistently observable at a trot under all circumstances 
4 Lameness is obvious at a walk 

5 Lameness produces minimal weight bearing in motion and/or at rest or a 
complete inability to move 

 

Table 6.1 Clinical AAEP scores to assess lameness. 
 
 
 
 
 

 

Table 6.2 Typical rehabilitation protocol. 

(Equine surgery, Auer & Stick, 2012) 

The program can be shortened or 

lengthened depending on the severity of 

the lesion and the progress of the patient. 
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6.2 AD-MSCs 

 

The treatment was performed with autologous stem cell s after expanding them in vitro, in order to 

obtain a proper number to perform the treatment. 

 
6.2.1 Isolation 

 
 

The adipose tissue was collected from the region above the dorsal gluteal muscle, at the base of the 

tail, because of the ease of access and absence of large veins. 

The horse was intravenously sedated with 0,01mg/kg detomidine (Domodesan®, Orion Pharma, 

Italy); then the area was shaved, aseptically prepared, and locally anesthetized with 2% lidocaine 

(Lidor®, Richter Pharma AG, Italy). 

An incision of approximately 5-6 cm in length was made parallel 15 cm lateral to the spinal column, 

in order to allow visualization of adipose tissue between the skin and the musculature. Afterwards, 

approximately 4 g of subcutaneous adipose tissue was collected and stored in proper medium for 

transport, consisting of phosphate buffer saline (PBS) supplemented with penicillin-streptomycin 

(10%). 

The incision site was then sutured with absorbable stitches on two different levels: subcutaneously 

and on the skin. 

Pictures of the tissue collection can be seen in Figure 6.1. 

The adipose sample was stored in a controlled temperature box, at a temperature of about 4°C, for 

the whole transport to the laboratory. 

Upon the arrival to the laboratory, the sample was immediately processed under a laminar flow hood 

in order to guarantee sterility. 

The sample was washed three times with PBS: the sample was submerged consecutively in three 

Falcon tubes, each containing 20 ml of PBS, util the fluid in the last tube remained completely 

encolour. 

The adipose sample was then placed in a Petri dish containing 10 ml of PBS and then cleaned from 

blood vessels and connective tissue, in order not to contaminate the cellular culture with fibroblasts, 

that have a microscopical aspect similar to the one of AD-MSC and are for this reason difficult to 

distinguish. 

After the cleaning process, the adipose tissue was moved in a clean Petri dish containing 5ml of PBS 

and cut into small pieces, that were put in a 50 ml Falcon tube with a PBS solution containing 0.01% 

collagenase type IA (Sigma-Aldrich, Italy) solution and kept for 1 hour at 37°C with continuous 
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shaking in a thermostat agitator. The small diameter of the adipose tissue pieces enhances the surface 

that can be digested by the collagenase, with a better result; collagenases are enzymes that can break 

collagen’s peptide bonds, so that the cells contained in the ECM (stem cells included) are set free. 

After digestion, the solution was filtered using a 100 μm cell strainer, put in a 20 ml Falcon tube and 

centrifuged at 800g for 10 minutes, in order to allow the sedimentation of the pellet consisting in the 

stromal vascular fraction (SVF); the triglycerides remain on the top of the tube, in the supernatant 

that was removed leaving only 5 ml on top of the pellet. 5 ml of PBS were then added, the pellet 

suspended, and then the tube was centrifuged again at 300g for 5 minutes. 

After removing the supernatant, the pellet was suspended in the culture medium, that is composed of: 

89% Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, Italy), 10% bovine foetal serum 

(FBS; Sigma-Aldrich, Italy), 1% antibiotics (penicillin/streptomycin; Aurogene, Italy). 

The cells (and the culture medium) were seeded in a cell culture flask, spreading them as well as 

possible to have a uniform distribution that covers the whole surface of the flask. The flask was then 

put in culture in an incubator that was set at 37°C with 5% CO2 levels. 

 
6.2.2 Maintenance 

 
 

AD-MSCs when seeded in culture into flasks, adhere to the bottom of the flask; after adhesion, that 

usually occurs in 48 hours from the isolation, the cells start the replication process. 

It is important to check the cellular culture every day in order to evaluate the confluency. Cell 

confluence is the percentage of the surface area (in a two-dimensional culture) that is covered with 

cells; confluence assessment is used to determine when cells need to be passaged, as proper timing is 

essential to maintaining the cell phenotype and a high culture quality. In fact, the growth of some 

cells, including MSCs, is limited by contact inhibition: when cells contact each other, their growth 

eventually stops, in a cell-density dependent manner, regulating in vivo tissue growth and 

development. Cell contact might also induce the differentiation of MSCs into fibroblasts, so it should 

be avoided when expanding stem cells population. 

Stem cells are usually detached from the bottom of the flask and split into more flasks, in order to 

have a lower cellularity, before maximum confluence is reached. 

The detachment process requires the use of an enzyme named trypsin, a proteolytic enzyme; the 

process is therefore named trypsinization. 

The trypsinization of a cellular culture requires a series of different steps. First of all, as the FBS 

contains protease inhibitors enzymes, such as α1-antitrypsin, the culture medium has to be removed 

from the flask, paying attention not to touch the bottom of the flask where the cells are attached. The 
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flask is then gently washed with PBS from one to three times, in order to remove all of the culture 

medium and the dead cells that could be present. Trypsin can then be added as trypsin-EDTA 

0,0025%, then the flask is put in the incubator at 37°C for 4 minutes, and cells are detached from the 

bottom of the flask. To be sure that the detachment process is ultimate, the flask is observed with a 

light microscope: detached cells are round shaped, while adherent cells are spindle shaped. Culture 

medium is then added to inhibit the trypsin, blocking the process so that the cells do not get damaged; 

PBS is also added to reach a higher volume. 

The whole content of the flask is subsequently put in a Falcon tube and centrifuged at 300g for 5 

minutes. The supernatant was removed, and the pellet diluted in culture medium; the content of the 

tube is then spread into different flasks to achieve the desired cellularity in each flask. 
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Figure 6.1: AD-MSCs in culture 

(A) trypsinized cells that can be recognized by their round appearance 

(B), (C) attached cells at confluence 

(D) attached cells 

(E) , (F) attached cells at higher magnification 

(G) cellular pellet at the bottom of a Falcon tube 

B A 
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6.2.3 Cryopreservation 

 
 

MSCs can be easily stocked in a -80°C refrigerator or in liquid nitrogen if suspended in an appropriate 

medium. Cellular cryopreservation is very useful as it allows to keep a wanted number of flasks in 

culture, but mainly as it allows to store ready-to-use amounts of cells, that only need to be unfrozen 

before usage. 

The process that allows the cryopreservation of cells is similar to the one previously described to 

expand the cell culture: cells need to be trypsinized, centrifuged and resuspended in an appropriate 

frosting medium that is made of 10% FBS and 90% dimethyl sulfoxide (DMSO). Generally, the cells 

are suspended in 1 ml of frosting medium and put in an Eppendorf tube; the presence of air bubbles 

should be avoided as they do not allow the direct contact between cells and frosting medium so the 

cells that lay next to the bubbles do not survive the frosting process. 

Once the Eppendorf tube is properly closed, it can be stocked in a -80°C refrigerator or in liquid 

nitrogen. When stocking the cells at -80°C, the Eppendorf tube is put in a specific box, named Mr 

Frosty, that contains isopropanol (isopropyl alcohol) which allows a gradual decrease of the 

Eppendorf tube temperature and keeps it at a more uniform temperature. If stocking in liquid nitrogen 

is necessary, the Eppendorf tube is kept at -20°C for two to three hours, then moved overnight in the 

-80°C refrigerator and finally stored in liquid nitrogen. 
 
 

6.3 PRP preparation 

 

The treatment was performed with AD-MSCs suspended in autologous PRP. 

PRP was obtained by following a double centrifugation tube method in sterile conditions as described 

by (234). 

16 ml of whole blood were taken from each subject from the jugular vein and collected into two 

citrate tubes that were centrifuged for 20 minutes at 2800 rpm. In this way the blood was divided into 

three layers: red blood cells, PRP in the form of a gel-like plug, and platelet poor plasma (PPP) as 

supernatant. 80% of the PPP (approximately 4-5 ml from each tube) was discarded, and the buffy 

coat of each tube (containing platelets and mononuclear cells) was suspended in the remaining PPP. 

The final solution was centrifuged for 15 minutes at 1300 rpm, determining the sedimentation of the 

platelets on the bottom of the Falcon tube. 

The final PRP is obtained after removing the excessive PPP on the top and resuspending the pellet 

with a vortex mixer in the remaining volume of plasma. 
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6.4 Treatment 

 

The treatment of both horses was performed with ultrasound-guided injections of AD-MSCs 

suspended in autologous PRP, that were isolated and prepared for the treatment as previously 

described. 

The cells used for the treatment were at passage 3 and 5 and were characterized by flow cytometry 

and in vitro trilineage differentiation. 

On the day of treatment, about 1x106 AD-MSCs were diluted in 4 mL of autologous PRP. Cell 

viability was assessed by trypan blue staining and more than 90% of cells were viable. Before 

injection, the horse was sedated with 0,01 mg/Kg detomidine (Domodesan®, Orion Pharma, Italy) 

and 0,1 mg/Kg butorphanol (Nargesic®, Acme Srl, Italy), and the injection area was aseptically 

prepared. The treatment was inoculated in the lesion site using a sterile 14G needle via ultrasonic 

guidance. 

Afterwards, protective sterile bandages were applied to the limb and the horse followed the 

rehabilitation protocol that was previously described and that is summarized in Table 6.2. 

Pictures of the treatment procedure can be seen in Figure 6.2. 

A second injection was performed 4 weeks later in order to continue the stimulation of the healing 

process. The applied protocol was the same as that used for the first treatment. 
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Figure 6.2: Clinical illustration of collection of adipose tissue and injection of MSC and PRP in the SDFT. 

(A) 10 cm linear incision over the superficial gluteus muscle parallel to spinal column. 

(B) adipose tissue retrieval from subcutaneous region superior to superficial gluteus muscle. 

(C) Suturing of the surgery site using non absorbable monofilament nylon suture. 

(D) Aspiration of AD-MSCs and PRP using a 14 G needle. 

(E) swollen and inflamed forelimb due to acute tendonitis 

(F). Guiding the injection direction using ultrasonography. 

(G) intralesional injection of AD-MSCs and PRP using a 14 G needle in the SDFT. 

(H) Securing of the treated forelimb with a two-layer bandage. 
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6.5 Clinical evaluation and follow up 

 

Before treatment, the horses presented pain at palpation along with local heat and severe swelling in 

the mid-metacarpal region of the left forelimb in the first subject while in the second one the affected 

area was the distal metacarpal region of the right forearm, that presented a more severe swelling 

which included the MCP joint. In addition, on the AAEP scoring system the first horse showed a 

grade 2.5/5 of lameness while the second 4/5. 

Clinical assessments were performed every 2 weeks starting from the day of the first injection. The 

clinical outcomes are reported on the day of injection (T0), at 4 weeks (T1) and 52 weeks (T2) after 

injection. The most important parameters that were considered during the follow-up evaluations were: 

general condition, pain, heat and swelling at the site of the injury, grade of lameness, horse keeper’s 

evaluation. 

 
6.6 Ultrasound examination and follow up 

 

Ultrasonographic evaluations of the metacarpal region of both forelimbs were performed using a 7.5- 

MHz linear transductor probe. For each assessment, a complete examination of the SDFT was 

conducted by means of longitudinal and transverse scans. The obtained images were evaluated and 

scored (from 0 to 3) at each examination for two parameters (235, 236, 237): lesion echogenicity and 

lesion longitudinal fiber alignment (FA). Criteria for scoring are listed in Table 6.3. The contralateral 

healthy limb was used as comparison. 

The affected SDFT presented a focal hypo-echogenic area together with an irregular fiber 

alignment/pattern at the level of the injury site (mid metacarpal region in the first subject and distal 

metacarpal region in the second subject). At T0, the tendons presented a focal hypoechoic area (Grade 

2.5/3) with a low FA (Grade 3/3). 

Follow-up ultrasound evaluation were performed one month and one year post treatment. 



53  

Table 6.3 Clinical and ultrasonographic scores to assess lameness, echogenicity and fiber alignment. 
 

Score AAEP degree of lameness Echogenicity Fiber alignment (FA) 

0 Lameness not perceptible under 
any circumstances 

Normal echogenicity ≥75% parallel fiber 
bundles in the lesion 

1 Lameness is difficult to observe 
and is not consistently apparent, 
regardless of circumstances 

Mildly hypoechoic 50-74% parallel fiber 
bundles in the lesion 

2 Lameness is difficult to observe 
at a walk or when trotting in a 
straight line but consistently 
apparent under certain 
circumstances 

Moderate 
hypoechoicity 

25-49% parallel fiber 
bundles in the lesion 

3 Lameness is consistently 
observable at a trot under all 
circumstances 

Severe hypoechoicity ≤25% parallel fiber 
bundles in the lesion 

4 Lameness is obvious at a walk - - 

5 Lameness produces minimal 
weight bearing in motion and/or 
at rest or a complete inability to 
move 

- - 
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6.7 Plasma molecules analysis 

 

Horse plasma was analyzed in both horses at baseline, one week and two weeks post-injection, and 

in subject n°2 also one week prior to treatment and one month after treatment, in order to assess 

different oxidative stress molecules’ levels: total protein, advanced oxidation protein products, 

carbonyl group and malondialdehyde. Two interleukins important in the inflammatory process were 

also estimated: IL-1 and IL-10. PDGF, IGF-1, TGF-β1 values were also determined. 

 
6.7.1 Oxidative plasma products 

 
 

The plasma concentration of AOPP was estimated according to (238). Briefly, AOPP were measured 

by spectrophotometry on a microplate reader (2023 Multilabel Reader VictorX4, Perkin Elmer, 

Waltham, MA, USA) at 340nm. 200µL of plasma diluted 1:5 in PBS (v/v, 5mM, pH 7.2) was placed 

into a microtiter plate with 96 flat-bottom wells (Perkin Elmer) and 20µL glacial acetic acid (Fluka, 

St. Louis, MO, USA) was added. A chloramine-T solution (Sigma-Aldrich Co., St. Louis, MO, USA) 

was used to perform a standard curve ranging from 0-200µmol/L. In standard wells, 10µL of 1.16M 

potassium iodide (Reagent Plus; Sigma-Aldrich St. Louis, MO, USA) was added to200 µL of the 

chloramine-T solution followed by 20µL of acetic acid. The absorbance of the reaction mixture was 

read after 5 minutes against a blank containing 200µL PBS, 10µL potassium iodide and 20µL acetic 

acid. AOPP concentrations were expressed as micromoles per liter of chloramine-T equivalents. 

Carbonyl residues were measured as previously described by (239) using dinitrophenylhydrazine 

(Sigma-Aldrich St. Louis, MO, USA). Briefly, samples were submitted to 10mM 

dinitrophenylhydrazine in 2.5M HCl for 1h, followed by deproteinization with 20% TCA. The 

proteins were washed three times in ethanol/ethyl acetate and solubilized in potassium phosphate 

20mM pH 2.3 (Sigma-Aldrich St. Louis, MO, USA). The carbonyl concentration was measured by 

spectrophotometry at an OD of 370nm with ε370 = 22mM-1cm-1 and expressed as nmol/mg total 

protein. 

 
The lipid peroxidase assay described by (240, 241) was followed to estimate the plasma concentration 

of MDA. In summary, the reaction was carried out by mixing 25µL sodium dodecyl sulfate solution 

(8.1% w/v; Sigma-Aldrich, Milan, Italy), 187.5µL acetic acid buffer (20% v/v, pH 3.5; Sigma- 

Aldrich, Milan, Italy), 187.5µL thiobarbituric acid (1% v/v; Sigma-Aldrich, Milan, Italy), 100µL 

plasma. The reaction mixture was incubated at 100°C for 10min and then cooled in ice. 100µL of 

water and 625µL of N-butyl alcohol and pyridine (Fluka, Milan, Italy) were added (15:1 v/v). The 
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mixture was centrifuged (2000g, 4°C, 10min), and the supernatant was measured 

spectrophotometrically on a microplate reader at 535nm (2023 Multilabel Reader VictorX4, Perkin 

Elmer, Waltham, MA, USA). MDA (tetramethoxypropane; Sigma-Aldrich, Milan, Italy) was used to 

perform a standard curve ranging from 0.154 -5mM. The MDA value was calculated from the MDA 

standard graph and expressed as nmol/mg total protein. 

 
6.7.2 Antioxidant product assessment 

 
 

Following the evaluation of the oxidative product, thiol group's level was measured according to 

thiol/disulfide reaction of thiol and Ellman’s reagent (5.5’-dithiobisnitrobenzoic acid) (242). 

Succinctly, twenty µl microliters of plasma were mixed with 180µl PBS 0.1M, EDTA 1mM pH 8 

and 3.5µl DTNB (Sigma-Aldrich, Milan, Italy). Sulfhydryl groups are estimated in a sample by 

comparison to a standard curve composed of known concentrations of a sulfhydryl-containing 

compound such as cysteine (0.25-1.5mM). The THIOL concentration was measured by 

spectrophotometry at an OD of 412nm (2023 Multilabel Reader VictorX4, Perkin Elmer, Waltham, 

MA, USA) and expressed as nmol/mg total protein. 

 
6.7.3 Inflammatory markers and growth factors 

 
 

Inflammatory mediators, such as IL-1β, IL-10, PDGF, IGF-1 and TGF-1β, were estimated using 

commercial kits specific for the equine species (MyBiosource, California, USA) at the same time 

intervals of the previously mentioned factors. All of the previous analysis were done following the 

manufactured product protocol. 
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CHAPTER 7: RESULTS 

 

7.1 Clinical evaluation 

 

Before treatment, the horses presented pain at palpation along with local heat and severe swelling; 

moreover, on the AAEP scoring system the first horse showed a grade 2.5/5 of lameness while the 

second 4/5. 

At T1, clinical assessment revealed a decrease in the inflammatory signs and symptoms: swelling and 

pain of the injured region were decreased, and a reduction of lameness (Grade 1.5/5 in subject n°1 

and 2.5/5 in subject n°2) was observed; a partial restoration of function was observed as both horses 

were able to load more weight on the affected limb. A second injection of the combined treatment 

was performed on the same day. 

After one year (T2), no signs of swelling, pain at palpation and lameness of the affected limb were 

observed. Subject n°1 presented with a Grade 0/5 lameness as it was able to trot fine under all tested 

circumstances and showed a complete restoration of function with the return to sport activity; 

currently, the horse is still competing. Subject n°2 presented with a Grade 0.5/5 lameness as it was 

able to trot fine under almost all tested circumstances, with a very light lameness under circumstances 

after a particularly stressful training. The horse was able to return to sport activity and is currently 

still competing. 

 
7.2 Ultrasound evaluation 

 

Follow-up ultrasound evaluation was performed one month post treatment, at the moment of the 

second injection, and one year post treatment. 

Progressive reduction of the defect area in the SDFT was recorded ultrasonographically; tendon 

echogenicity showed an increase across time, whereas the overall tendon injury and LFP gradually 

decreased across time, reaching the lowest values at one-year post-treatment. An improvement of 

tendon’s fibre alignment could also be noted. 

At T0, the tendons presented a focal hypoechoic area (Grade 2.5/3) with a low FA (Grade 3/3). At 

T1, a slight increase in FA (Grade 2/3) was observed along with a small increase of echogenicity in 

the wounded area (Grade 2/3). Progressive reduction of the defect area in the SDFT was also recorded. 
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At T2, one year after the first injection, echogenicity and fibres alignment were similar to the 

contralateral sound tendon (Grade 0/3). All these markers suggest restoration of tendon’s structure, 

function and natural features. 

 
Ultrasound images of subject n°1 and n°2 can be seen respectively in Figure 7.1 and Figure 7.2 
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Figure 7.1 
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Figure 7.2 

 
 

Figure 7.1, 7.2: Transverse and longitudinal ultrasonographic images of the SDFT of right and left 

forelimb of the horse. (A) Healthy right SDFT subject n°1. (B) Lesioned SDFT at T0 (before 

injection) showing focal hyperechoic defect subject n°1 and n°2. (C), (D) Tendon injected with PRP 

+ (AD-MSC) at different time points (1month, subject n°1 and n°2, and 1year subject n°1, 

respectively) showing gradual decrease in the lesion size and restoration of the tendon echogenicity. 
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7.3 Plasma molecules evaluation 

 

The concentration level of inflammatory molecules and growth factors present in blood plasma was 

assessed on the day of injection, and after 1 and 2 weeks to evaluate markers involved in the tendon 

healing process in subject n°1, while the same parameters were evaluated also 1 week prior to 

treatment and one month after treatment in subject n°2 (Table 6.4). 

Plasma oxidative stress products, as AOPP and T-BARS , decreased over time, reaching the lowest 

value 14 days post-treatment; CT and thiol group showed a little fluctuation and then reached their 

lowest values at 14 days, as the other oxidative stress products. 

Growth factors, such as PDGF and IGF-1, documented an increase in their concentration at 7days 

post-treatment compared to the baseline values, but again a decline of their values after 14 days, with 

the PDGF still recorded at higher concentration than the baseline value. In contrast, TGF-β1 showed 

steady concentration across the whole-time intervals. Inflammatory markers as the pro-inflammatory 

cytokine IL-1β accounted for a detectable decrease at 14 days while IL-10, an anti-inflammatory 

interleukin, recorded an increase in its concentration at the previously mentioned time interval. 

All of the levels are listed in Table 7.1. 
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Table 7.1: Plasma molecule’s assessment 
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CHAPTER 8: DISCUSSION 

 

 

Superficial digital flexor tendon (SDFT) injuries are a severe problem that affect a large percentage 

of athletic and pleasure horses; often they develop recidivisms and, in the worst scenario, have to 

retire from competition early (235, 243, 244). In a One Health perspective, the equine could play an 

important role as model for human musculoskeletal disorders because of their similarities (235, 245, 

246, 247), especially for investigating the regenerative efficacies of innovative treatments such as 

PRP, bone marrow aspirate (BMA), or MSCs. However, in human medicine there is a limited 

knowledge about the combinatory application of these therapies, which is restricted to the treatment 

of knee osteoarthritis (235, 248, 249) and rotator cuff rupture (235, 250). 

In the present study, repeated ultrasound-guided intralesional injections of autologous AD-MSCs 

combined with autologous PRP were applied for the treatment of SDFT lesions, that had naturally 

occurred in the left forelimb of a show jumping horse and in the right forelimb of a trotter. The first 

subject presented with a chronic tendonitis of the SDFT of the left forelimb occurred during sporting 

activity, which developed from a previous injury six months before the treatment herein described; 

the horse was unresponsive to conventional treatments such as NSAIDs and a controlled rehabilitation 

program. The second subject presented with an acute tendonitis of the right forelimb naturally 

occurred during racing activity. 

Therefore, the double application of AD-MSCs with PRP for the treatment of a naturally occurring 

lesion in the SDFT was the novel approach chosen. 

Application of regenerative therapy in a naturally existing tendon lesion gives a more precise idea 

regarding its effects and is considered one of the privileges of this study. Even though mechanically 

or enzymatically induced tendon lesions can simulate tendinopathy to a large extend, some 

differences related to aetiology and physiopathology should be investigated (251). 

Results were beneficial for the horses as the repeated injections of AD-MSCs and PRP resulted in a 

positive development of SDFT tendonitis over a one-year follow-up. In addition, during this period 

the horses did not suffer any re-injury. The combined treatment might be accountable for the decrease 

of inflammatory markers (i.e. plasma protein levels) as observed during the first 2 weeks, which might 

have eventually led to the slight reduction of clinical symptoms observed at T1. 

The ultrasonographic evaluation showed restoration in structure, echogenicity, and fibre organization 

of the affected tendon after one year. This could also suggest that the biomechanical properties of the 

tendon were restored to an adequate level for allowing the horses to go back to the same performance 

status as before the injury. 
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Similar results were reported by (252), where the ultrasonographic evaluation of collagenase induced 

SDFT defects treated with AD-MSC reported constant CSA% in the first 4 weeks post-treatment and 

then a gradual decrease, whereas the control group showed an increase in the CSA% at weeks 2, 4 

and 6 followed by a decrease. 

The addition of PRP to MSCs for the treatment of different disorders as skin wounds (235, 253) or 

bone defects (235, 254), has demonstrated to boost the regenerative effects of MSCs, both 

morphologically and functionally. The same effect was also observed for treating degenerative joint 

disorders in equine specie (235, 255). In all models, the observed results were achieved principally 

by extracellular matrix remodelling, mainly dictated by the structural action of MSCs, which is a 

fundamental component in tendon healing. The underlying reason may be ascribed to the soluble 

molecules (e.g., growth factors) present in the PRP that might stimulate MSCs proliferation and 

release of bioactive factors (235, 256). Indeed, MSCs themselves are able to release a plethora of 

soluble bioactive molecules that possess beneficial effects (235, 257). 

During the first 2 weeks after treatment, blood plasma analysis showed a reduced concentration of 

inflammatory markers (AOPP, TBARS, CT, and IL-1β) along with an increase of thiols at day 7 and 

a reduction at day 14. The substantial increase in the concentration of thiols after 1 week may be 

related to their function as antioxidants (235, 258), while reducing at day 14 as the inflammatory 

process started to subside. Concomitantly, the concentration of IL-10, an anti-inflammatory cytokine, 

increased after 2 weeks. IL-10 is known to have a pro-mitotic effect on tenocytes and tendon-derived 

stem cells, stimulating cell proliferation and migration (235, 259). In addition, the growth factors 

IGF-1 and PDGF showed an increase one-week post-treatment. Both growth factors have positive 

effects on tendon cells, inducing proliferation plus attracting them to the wound area and stimulating 

ECM deposition (235, 260, 261). 

These observations were reflected 4 weeks after treatment (T1) by a reduction of pain and swelling 

of the affected forelimb area along with a partially reduced lameness. However, at the same time 

point, ultrasound images still presented with a hypoechoic area in the SDFT, corresponding to the 

diagnosed lesion. For this reason, the same treatment was applied a second time. The double 

application of AD-MSCs and PRP in a 30-day interval might have provided a prolonged activation 

of tendon regeneration due to a more protracted exposure, at the injury site, to both constituents in 

comparison to a single injection. This is highly related to the mean platelet half-life that in horses 

ranges from 4 to 6 days (262, 263). Moreover, a recession of topically applied AD-MSCs population 

in SDFT induced lesions throughout the study period was reported by (264). As a result, the absence 

of a significant difference between the treated and the control group was reported. In another study 
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conducted by (265), only about 5 % of BM-MSCs survived more than 10 days and just 0.02% 

persisted over 90 days following implantation in an equine surgical model of tendinitis. 

Moreover, the use of autologous sources for the therapy did not provoke any immune reactions to the 

horse after application, confirming the safety of MSCs (235, 266). 

To conclude, a repeated injection of autologous AD-MSCs coupled with PRP over a 52-week period 

supported a positive progression of a chronic SDFT lesion, which developed from a previous healed 

injury in a show jumping horse, allowing the animal to go back to competition. Probably, the 

measurement of inflammatory and oxidative stress markers in blood plasma can play a pivotal role in 

monitoring the healing process. However, these outcomes should be confirmed in the future by large 

placebo-controlled studies with animals affected by SDFT acute and chronic tendonitis. 
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CHAPTER 9: CONCLUSION 

 

To our knowledge the horse n°1 was the first included in a case report of a successful treatment of a 

naturally occurring chronic SDFT tendonitis developed from a re-injury in a show jumping horse by 

a repeated and combined application of AD-MSCs with PRP. The therapy demonstrated to be safe 

and effective as no adverse reactions were observed; moreover, the horse was able to go back to 

competition. The same results could also be noted on subject n°2 that was affected by a naturally 

occurring acute tendonitis. Our results might therefore encourage the combined application of MSCs 

and PRP for the treatment of tendon injuries in equine clinical practice. 
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In the present case report a show jumping 10-year-old Sella Italiano gelding, presented 

with severe lameness, swelling and pain at palpation of the mid-metacarpal region of the 

left forelimb. Clinical and ultrasound examination diagnosed a chronic tendonitis of the 

central region of the superficial digital flexor tendon (SDFT). The lesion was a reoccurrence 

since it developed from a previously healed injury. The horse had to stop competing 

and was unresponsive to gold-standard treatments as Non-steroidal anti-inflammatory 

drugs (NSAIDs) and conservative management after 6 months of therapy. The animal 

was subjected to repeated intralesional injections of autologous adipose-derived 

mesenchymal stem cells (AD-MSCs) combined with autologous platelet-rich plasma 

(PRP). The combined treatment was administered twice in a 1-month interval. The 

healing process was assessed through clinical examination, ultrasound imaging and 

quantification of oxidative stress products and inflammatory mediators in blood plasma. 

After 2 weeks from first injection, a reduction of concentration of oxidative-derived 

products was observed, together with an increase of anti-inflammatory cytokines and 

pro-mitotic growth factors. These results were reflected clinically as the horse showed a 

reduction of lameness along with swelling and pain after 4 weeks. At the 1-year follow-up, 

the horse showed no signs of lameness and swelling. The ultrasonographic examination 

highlighted a compact fiber alignment with a normal echogenic tendon as observed in 

the sound contralateral limb. Moreover, the horse went back to the previous level of 

competition. Our results suggest the positive effects of a repeated intralesional injection 

of AD-MSCs and PRP for the treatment of a chronic tendonitis with long-term effects 

and an improvement for both equine quality of life and athletic performance. 
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TABLE 1 | Clinical and ultrasonographic scores to assess lameness, echogenicity 

and fiber alignment. 
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173 

174 
 

118 disorders in equine and human athletes, leading to lameness and 
Score AAEP degree of 

lameness 
Echogenicity Fiber alignment (FA)  

175 

119 pain (1–5). Tendon injuries are responsible for approximately    176 

120 

121 
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123 

124 

125 

126 

127 

128 

129 

130 

131 

one third of traumas that occur during the sporting career of 
horses (6, 7), forcing a significant number of individuals to      
an early retirement from competition (8, 9). The superficial 
digital flexor tendon (SDFT) is frequently injured in show 
jumping discipline due to the repeated and excessive loading 
forces that the tendon has to sustain after jumping and landing 
(10, 11). Tendonitis affecting the SDFT have an incidence up  
to 43%, and most of them occur in the central tendon region   
(6, 12). 

Tendons possess a limited regenerative capacity and usually 
heal by forming a fibrotic scar, but the repaired tissue possesses 
inferior biomechanical characteristics compared to its normal 

0 Lameness not perceptible 

under any circumstances 

1 Lameness is difficult to 

observe is not consistently 

apparent regardless of 

circumstances 

2 Lameness is difficult to 

observe at a walk or when 

trotting in a straight line but 

consistently apparent under 

certain circumstances 

3 Lameness is consistently 

observable at a trot under all 

circumstances 

Normal 

echogenicity 

Mildly 

hypoechoic 

 
 

Moderate 

hypoechoicity 

 
 
 
 

Severe 

hypoechoicity 

≥75% parallel fiber 

bundles in the lesion 

50–74% parallel fiber 

bundles in the lesion 

 
 

25–49% parallel fiber 

bundles in the lesion 

 
 
 

≤25% parallel fiber 

bundles in the lesion 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

132 

133 

134 

135 

136 

physiological counterpart (13–15). Consequently, horses that 
have previously sustained a tendon injury are more prone to re-
injury (up to 80%) or to chronicity (9, 16). 

The gold-standard treatments  for  tendon  injuries  consist  
of conservative therapies including administration of Non- 

4 Lameness is obvious at a – – 

walk 

5 Lameness produces – – 

minimal weight bearing in 

motion and/or at rest or a 

189 

190 

191 

192 

193 

137 steroidal anti-inflammatory drugs (NSAIDs) and rehabilitation complete inability to move 
194 

138 aiming to attenuate symptoms and to recover tendon function.  195 

139 Although clinical improvements might be observed (i.e., relief  196 

140 of symptoms), most of these options lack long-term therapeutic  197 

141 success (17, 18). Over the last two decades, regenerative therapies In this case report, we describe the repeated application of 198 

142 have been gaining interest because of their beneficial effects in autologous adipose-derived MSCs and autologous PRP for the 199 

143 supporting and stimulating the healing process, leading to a treatment of a chronic recurrent SDFT tendonitis developed 200 

144 healed tissue that resembles healthy tendon in structure and from a previous injury in a show jumping horse. 201 

145 function (19, 20).  202 

146 Mesenchymal  stem  cells  (MSCs)  derived  from  multiple 
147 sources,  as  bone  marrow  (BM-MSCs),  adipose  tissue  (AD- 
148 MSCs),  or  peripheral  blood  (PB-MSCs),  have  proved  their 

 
CASE DESCRIPTION 

203 

204 

205 

149 efficacy in improving tendon healing in horses thus reducing the Clinical History 206 

150 reoccurrence rate of injury, mainly because of their paracrine A 10-year-old Sella Italiano gelding, competing in show jumping, 207 

151 activity (21–24). Different route of administration of MSCs, presented with a lesion in the of the SDFT of the left forelimb 208 

152 including intralesional injection, have demonstrated to be a safe in the middle third of the metacarpal region. The lesion was a 209 

153 and effective practice to treat tendon injury in equine medicine reoccurrence, which had developed from a previous healed injury 210 

154 (25, 26). Another product of interest in equine regenerative in the same area of the SDFT. At diagnosis, the horse showed 211 

155 practice is platelet-rich plasma (PRP), a blood-derived product a lameness grade 2.5/5 based on the American Association of 212 

156 rich in growth factors and cytokines that can sustain and boost Equine Practioners (AAEP) scale (as reported in Table 1). Pain 213 

157 the tissue healing process (20, 27, 28). When combined, these two and local heat were noted at palpation along with severe swelling. 214 

158 treatments possess a higher regenerative potential in comparison Six months ago, when diagnosed, the horse stopped 215 

159 to their application alone as it has been demonstrated for treating competing and was treated with NSAIDs. Furthermore, a 216 

160 different tissue (e.g., skin, bone, joint) in human and horses controlled rehabilitation exercise program was followed, adapted 217 

161 (9, 29–33). Nevertheless, only one study describes the repeated and based on the type of injury. The program started with a 218 

162 application of MSCs and PRP for the treatment of naturally complete stall rest for the first 2 weeks. Then it was followed by a 219 

163 occurring chronic tendonitis, which was not a re-injury, in the gradual increase of walking and trotting exercises, starting with 220 

164 equine in a 16-weeks time interval (34). 5 min walking a day with an increase of 5 min every 2 weeks, 221 

165 In terms of risk factors (e.g., age and over-exercise) and up to 40 min. After 20 weeks, the horse began to trot for 2 min 222 

166 etiology, human and horses share a similar pathophysiology each day with a progressive increase of trotting time, alternated 223 

167 of tendinopathies. For this reason, studies to test regenerative with walking, every 2 weeks (up to 20 min of trot with 20 min of 224 

168 therapies in the horse including cell and cell-free treatments, walking). However, the animal did not show any improvement at 225 

169 or their combination, for tendon healing might be useful the clinical or ultrasonographic level. 226 

170 as preclinical data for translation purposes to human In Figure 1 it is showed a schematic timeline of the 227 

171 medicine (35–38). clinical case. 228 
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Q10 Q11 115 INTRODUCTION  
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117 Tendinopathies are one of the most common orthopedic 
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Q7 242  299 

Q10 243 FIGURE 1 | Schematic timeline of the clinical case reporting clinical examinations, ultrasonographic evaluations and therapy protocol. 300 
 
 

244   

245   

246 Diagnostic Imaging: Ultrasound Evaluation ice at 300 xg for 10 min. Isolated cells were seeded in a culture  
 

247 Ultrasonographic evaluations of the central metacarpal region sk in complete cell growth medium consisting of DMEM high  

248 of both forelimbs were performed using a 7.5-MHz linear ucose (Sigma-Aldrich, Italy), FBS 10% (Sigma-Aldrich, Italy),  

249 transductor probe. For each assessment, a complete examination and 1% antibiotics (penicillin/streptomycin; Aurogene, Italy),  

250 of the SDFT was conducted by means of longitudinal and aintained in culture, and expanded. Cells used for application  

251 transverse scans. The obtained images were evaluated and scored re at passage 3 and 5. Isolated cells were characterized by  

252 (from 0 to 3) at each examination for two parameters as w cytometry and in vitro trilineage differentiation as previously  

253 previously described (24, 39): lesion echogenicity and lesion cribed by (40) and stated by (41).  

254 longitudinal fiber alignment (FA). Criteria for scoring are listed in The PRP was obtained by following a double centrifugation  

255 Table 1. The contralateral healthy limb was used as comparison. be method in sterile conditions (first centrifuge at 1300 xg for  

256 The SDFT, in the middle third of the metacarpal region,  min and then at 300 xg for 15 min) as described by (42).  

257 presented with a focal hypo-echogenic area together with an On the day of treatment, 107 AD-MSCs were diluted  

258 irregular fiber alignment/pattern, which corresponded to ∼ 30% in 4 mL of autologous PRP. Cell viability was assessed by  

259 of the cross-sectional area of the tendon. The lesion presented pan blue staining and more than 90% of cells were viable.  

260 with a proximo-distal size of 36.4 mm. Before injection, the horse was sedated with 0.01 mg/Kg  

261 etomidine (DomodesanⓍR , Orion Pharma, Italy) and 0.1 mg/Kg  

262 Treatment and Follow-Up utorphanol (NargesicⓍR , Acme Srl, Italy), and the injection area  

263 Treatment protocol consisted of ultrasound-guided intralesional s aseptically prepared. The treatment was inoculated in the  

264 injection with autologous adipose-derived MSCs (AD-MSCs) ion site using a sterile 14G needle via ultrasonic guidance.  

265 combined with PRP. AD-MSCs and PRP isolated, characterized, terwards, protective sterile bandages were applied to the limb  

266 and prepared for treatment as previously described (22, 40). d the horse followed a rehabilitation protocol.  

267 The adipose tissue was collected from the region above the A second injection was performed 4 weeks later in order to  

268 dorsal gluteal muscle, at the base of the tail, because of the ease of continue the stimulation of the healing process. The applied  

269 access and absence of large veins. The horse was intravenously tocol was the same as that used for the first treatment.  

270 sedated  with  0.01  mg/kg  detomidine  (DomodesanⓍR ,  Orion   

271 Pharma, Italy); then the area was shaved, aseptically prepared, ood Plasma Analysis  

272 and  locally  anesthetized  with  2%  lidocaine  (LidorⓍR ,  Richter ood plasma was obtained after collection of peripheral blood  

273 Pharma AG, Italy). An incision of ∼ 5–6 cm in length was m the jugular vein of the horse using a lithium-heparin sterile  

274 made parallel 15 cm lateral to the spinal column, in order be (BD VacutainerⓍR , BD, Italy) on the day of injection, and  

275 to allow visualization of adipose tissue between the skin and er 1 and 2 weeks Post-treatment.  

276 the musculature. Afterwards, ∼ 4 g of subcutaneous adipose The blood plasma was analyzed for assessing levels of protein  

277 tissue was collected and stored in proper medium for transport, ated to inflammation and the relative oxidative stress such  

278 consisting of phosphate buffer saline (PBS) supplemented with  advance oxidation protein products (AOPP), carbonyl group  

279 penicillin-streptomycin (10%). Upon arrival to the laboratory, (CT), malondialdehyde (lipid peroxidation via thiobarbituric  

280 the sample was washed with PBS three times, minced and placed acid reactive substance, TBARS), and the presence of thiols  

281 in a 0.01% collagenase type IA (Sigma-Aldrich, Italy) solution for hiol/disulfide reaction of thiol); all parameters were measured  

282 1 h at 37◦C with continuous shaking. After digestion, the solution  following published protocols (43–46).  

283 was filtered using a 100 µm cell strainer and diluted in DMEM In addition, the concentration of proteins involved in the  

284 high glucose (Sigma-Aldrich, Italy) supplemented with 10% FBS inflammatory process (IL-1β, MBS2020285, MyBioSource,  

285 (Sigma-Aldrich, Italy). Afterwards, the solution was centrifuged S; IL-10, ab155466, Abcam, UK) or tendon wound healing  
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(PDGF, MBS907132, MyBioSource, US; IGF-1, MBS7606417, 
MyBioSource, US) was estimated using enzyme-linked 
immunosorbent assay (ELISA) commercial kits specific  for  
the equine specie. The analyses were performed following the 
manufacturer’s protocol. 

All samples were analyzed in triplicate in a 96-well plate and 
absorbance was obtained by using a VICTOR multilabel plate 
reader (Perkin Elmer, US). 

 
OUTCOMES 

Clinical Evaluation 
Clinical assessments were performed every 2 weeks starting from 
the day of the first injection. In this study we report clinical 
outcomes on the day of injection (T0), at 4 weeks (T1) and 52 
weeks (T2) after injection. Before treatment, the horse presented 
pain at palpation along with local heat and severe swelling in the 
mid-metacarpal region of the left forelimb. In addition, on the 
AAEP scoring system the horse showed a Grade 2.5/5 lameness. 

At T1, swelling and pain of the injured region of the left 
forelimb were decreased; moreover, a reduction of lameness 
(Grade 1.5/5) was observed. The horse was able to load more 
weight on the affected limb. A second injection of the combined 
treatment was performed on the same day. After 1 year (T2), no 
signs of swelling, pain at palpation and lameness of the affected 
limb were observed. The horse presented with a Grade 0/5 
lameness as it was able to trot fine under all tested circumstances. 
The horse showed a complete restoration of function and 
returned to sport activity; currently, the horse is still competing. 

 

Ultrasound Evaluation 
Ultrasound examinations were assessed using the scoring system 
previously described (Figure 2). At T0, the tendon presented 
with a focal hypoechoic area (Grade 2.5/3) with a low FA (Grade 
3/3). At T1, a slight increase in FA (Grade 2/3) was observed 
along with a small increase of echogenicity in the wounded area 
(Grade 2/3). At T2, 1 year after the first injection, echogenicity 
and fibers alignment were similar to the contralateral sound 
tendon (Grade 0/3). 

 

Blood Plasma Analysis 
The concentration level of inflammatory and growth factors 
present in blood plasma was assessed on the day of injection, and 
after 1 and 2 weeks to evaluate markers involved in the tendon 
healing process (Table 2). 

The quantity of plasma oxidative stress products, as AOPP and 
TBARS, decreased gradually over time, with the lowest value at 14 
days after the first treatment; CT and thiol groups showed a little 
increase at day 7, and then decreased at 14 days. 
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FIGURE 2 | SDFT is characterized by a hypoechoic area (c) along with an 

abnormal fiber alignment (d). After 4 weeks (T1), the same area resulted less 

hypoechoic (e) and the fiber pattern was more aligned (f) while at T2 the area 

showed a normal echogenicity (g) and fiber disposition (h) as in the sound 

contralateral limb (a,b). White circle, corresponding injury area in transverse 

images; black arrow-head, injury area in longitudinal images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 | Transversal and longitudinal images of the central area of the 

superficial digital flexor tendon in the mid-metacarpal region performed at day 

0 (T0, day of therapy injection), T1 (4 weeks), and T2 (52 weeks). At T0 the 

(Continued) 



Frontiers in Veterinary Science | www.frontiersin.org 5 xx 2022 | Volume 9 | Article 843131  

Melotti et al. Regenerative Therapies for Chronic Tendonitis 

 
 

457 

458 

459 

460 

TABLE 2 | Obtained data from analysis of blood plasma markers related to 

inflammation and tendon healing process. 

 

Days 0 7 14 Unit 

Test 

inflammatory markers (i.e., plasma protein levels) as observed 
during the first 2 weeks, which might have eventually led to   
the slight reduction of clinical symptoms observed at T1. The 
ultrasonographic evaluation showed restoration in structure, 
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echogenicity, and fiber organization of the affected tendon after 1 
year. This could also suggest that the biomechanical properties 
of the tendon were restored to an adequate level for allowing  
the horse to go back to the same performance status as before 
the injury. The addition of PRP to MSCs for the treatment of 
different disorders as skin wounds (54) or bone defects (55),  
has demonstrated to boost the regenerative effects of MSCs, 
both morphologically and functionally. The same effect was 
also observed for treating degenerative joint disorders in equine 
specie (56). In all models, the observed results were achieved 
principally by extracellular matrix remodeling, mainly dictated 
by the structural action of MSCs, which is a fundamental 
component in tendon healing. The underlying reason may be 
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The pro-inflammatory cytokine IL-1β showed a decrease at 14 
days while IL-10, an anti-inflammatory interleukin, showed an 
increase in its concentration on the same day. 

The plasma concentration of growth factors, PDGF and IGF- 
1, showed an increase in their concentration at 7 days Post- 
treatment compared to the baseline values. After 14 days, a 
decrease of concentration of both factors was observed. 

 
DISCUSSION 

Superficial digital flexor tendon (SDFT) injuries are a severe 
problem that affect a large percentage of athletic and pleasure 
horses; often they develop recidivisms and, in the worst scenario, 
have to retire from competition early (9, 47). In a One Health 
perspective, the equine could play an important role as model 
for human musculoskeletal disorders because of their similarities 
(48–50), especially for investigating the regenerative efficacies 
of innovative treatments such as PRP, bone marrow aspirate 
(BMA), or MSCs. However, in human medicine there is a limited 
knowledge about the combinatory application of these therapies, 
which is restricted to the treatment of knee osteoarthritis (51, 52) 
and rotator cuff rupture (53). 

In the present case report, repeated ultrasound-guided 
intralesional injections of autologous AD-MSCs  combined  
with autologous PRP were applied for the treatment of a 
recurrent SDFT lesion, that had naturally occurred in the left 
forelimb of a show jumping horse. The horse presented with     
a chronic tendonitis of the SDFT of the left forelimb occurred 
during sporting activity, which developed from a previous 
injury 6 months before the treatment herein described. The 
horse was unresponsive to conventional treatments such as 
NSAIDs and a controlled rehabilitation program. Therefore, the 
double application of AD-MSCs with PRP for the treatment     
of a naturally occurring lesion in the SDFT was the novel 
approach chosen. 

Results were beneficial for the horse as the repeated injections 
of AD-MSCs and PRP resulted in a positive development of a 
SDFT chronic tendonitis over a 1-year follow-up. In addition, 
during this period the horse did not suffer any re-injury. The 
combined treatment might be accountable for the decrease of 

ascribed to the soluble molecules (e.g., growth factors) present 
in the PRP that might stimulate MSCs proliferation and release of 
bioactive factors (57). Indeed, MSCs themselves are able to release 
a plethora of soluble bioactive molecules that possess beneficial 
effects (58). 

During the first 2 weeks after treatment, blood plasma analysis 
showed a reduced concentration of inflammatory markers 
(AOPP, TBARS, CT, and IL-1β) along with an increase of thiols 
at day 7 and a reduction at day 14. The substantial increase      
in the concentration of thiols after 1 week may be related to 
their function as antioxidants (59), while reducing at day 14     
as the inflammatory process started to subside. Concomitantly, 
the concentration of IL-10, an anti-inflammatory cytokine, 
increased after 2 weeks. IL-10 is known to have a pro-mitotic 
effect on tenocytes and tendon-derived stem cells, stimulating 
cell proliferation and migration (60). In addition, the growth 
factors IGF-1 and PDGF showed an increase 1 week Post- 
treatment. Both growth factors have positive effects on tendon 
cells, inducing proliferation plus attracting them to the wound 
area and stimulating ECM deposition (61, 62). 

These observations were reflected 4 weeks after treatment (T1) 
by a reduction of pain and swelling of the affected forelimb area 
along with a partially reduced lameness. However, at the same 
time point, ultrasound images still presented with a hypoechoic 
area in the SDFT, corresponding to the diagnosed lesion. For 
this reason, the same treatment was applied  a  second  time. 
The double application of AD-MSCs and PRP in a 30-day 
interval might have provided a prolonged activation of tendon 
regeneration due to a more protracted exposure, at the injury site, 
to both constituents. Moreover, the use of autologous sources for 
the therapy did not provoke any immune reactions to the horse 
after application, confirming the safety of MSCs (63). 

To conclude, a repeated injection of autologous AD-MSCs 
coupled with PRP over a 52-week period supported a positive 
progression of a chronic SDFT lesion, which developed from a 
previous healed injury in a show jumping horse, allowing the 
animal to go back to competition. Probably, the measurement  
of inflammatory and oxidative stress markers in blood plasma 
can play a pivotal role in monitoring the healing process. 
However, these outcomes should be confirmed in the future by 
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AOPP 0,77 0,70 0,43 nmol/mg 

TBARS 

(MDA) 

0,013 0,011 0,007 nmol/mg 

CT 0,16 0,18 0,08 nmol/mg 

Thiols 6,24 6,96 5,04 nmol/mg 

IL-1β 0,084 0,085 0,069 ng/mL 

IL-10 1,23 1,23 1,37 ng/mL 

IGF-1 56,24 61,55 51,36 ng/mL 

PDGF 3,12 14,50 6,43 ng/mL 
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large placebo-controlled studies with animals affected by SDFT 
chronic tendonitis. 

 
CONCLUSION 

To our knowledge this is the first case report of a successful 
treatment of a naturally occurring chronic SDFT tendonitis 
developed from a re-injury in a show jumping horse by a 
repeated and combined application of AD-MSCs with PRP. The 
therapy demonstrated to be safe and effective as no adverse 
reactions were observed; moreover, the horse was able to go 
back to competition. Our result might encourage the combined 
application of MSCs and PRP for the treatment of tendon injuries 
in equine clinical practice. 
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