

Università degli Studi di Padova

Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Controllo della stabilità statica e dinamica di un motoaliante

Anno Accademico 2017/2018

Indice

EI	enco	dei simboli	xiii
1	Intr	roduzione	1
	1.1	La scelta dell'argomento.	1
	1.2	Stabilità del Motoaliante	2
		1.2.1 Stabilità Statica	4
		1.2.2 Stabilità Dinamica Longitudinale	4
		1.2.3 Stabilità Dinamica Laterale	6
	1.3	Requisiti di Manovrabilità	10
	1.4	Svolgimento	11
2	Εαυ	azioni del Moto	15
	2.1	Equazioni del moto piccole perturbazioni	$15^{$
	2.2	Adimensionalizzazione	18
	2.3	Stima del Momento d'inerzia	20
3	Car	atteristiche Geometriche e aerodinamiche di base	23
3	Car 3.1	caratteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche	23 23
3	Car 3.1 3.2	atteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche Profilo Alare	23 23 24
3	Car 3.1 3.2	Caratteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche	 23 23 24 26
3	Car 3.1 3.2	catteristiche Geometriche e aerodinamiche di baseCaratteristiche GeometricheProfilo Alare3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala	 23 23 24 26 28
3	Car 3.1 3.2	catteristiche Geometriche e aerodinamiche di baseCaratteristiche GeometricheProfilo Alare3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala3.2.3Contributo della Fusoliera	 23 23 24 26 28 34
3	Car 3.1 3.2 3.3	Caratteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche Profilo Alare 3.2.1 Centro Aerodinamico 3.2.2 Determinazione delle caratteristiche dell'ala 3.2.3 Contributo della Fusoliera Downwash e Pressione Dinamica sulla coda	 23 23 24 26 28 34 36
3	Car 3.1 3.2 3.3 3.4	catteristiche Geometriche e aerodinamiche di baseCaratteristiche GeometricheProfilo Alare3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala3.2.3Contributo della FusolieraDownwash e Pressione Dinamica sulla codaCoda Orizzontale	23 23 24 26 28 34 36 41
3	Car 3.1 3.2 3.3 3.4 3.5	catteristiche Geometriche e aerodinamiche di baseCaratteristiche GeometricheProfilo Alare3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala3.2.3Contributo della FusolieraDownwash e Pressione Dinamica sulla codaCoda OrizzontaleCoda verticale	 23 23 24 26 28 34 36 41 41
3	Car 3.1 3.2 3.3 3.4 3.5 3.6	catteristiche Geometriche e aerodinamiche di baseCaratteristiche GeometricheProfilo Alare3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala3.2.3Contributo della FusolieraDownwash e Pressione Dinamica sulla codaCoda VerticaleCoda verticaleCoda verticale	 23 23 24 26 28 34 36 41 41 42
3	Car 3.1 3.2 3.3 3.4 3.5 3.6 3.7	catteristiche Geometriche e aerodinamiche di baseCaratteristiche Geometriche.Profilo Alare.3.2.1Centro Aerodinamico3.2.2Determinazione delle caratteristiche dell'ala3.2.3Contributo della FusolieraDownwash e Pressione Dinamica sulla codaCoda OrizzontaleCoda verticaleFlap	 23 23 24 26 28 34 36 41 41 42 43
3	Car 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Coe	catteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche Profilo Alare 3.2.1 Centro Aerodinamico 3.2.2 Determinazione delle caratteristiche dell'ala 3.2.3 Contributo della Fusoliera Downwash e Pressione Dinamica sulla coda Coda Orizzontale Coda verticale Flap Pressione	 23 23 24 26 28 34 36 41 41 42 43 49
3	Car 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Coe 4.1	catteristiche Geometriche e aerodinamiche di base Caratteristiche Geometriche Profilo Alare 3.2.1 Centro Aerodinamico 3.2.2 Determinazione delle caratteristiche dell'ala 3.2.3 Contributo della Fusoliera Downwash e Pressione Dinamica sulla coda Coda Orizzontale Coda verticale Flap Flap Coefficienti Derivativi Longitudinali	 23 23 24 26 28 34 36 41 41 42 43 49 49

		4.1.2	Coefficiente di Portanza	. 50			
		4.1.3	Coefficiente derivativo di beccheggio	. 51			
		4.1.4	Coefficienti perturbativi	. 53			
	4.2	Coeffic	cienti Derivativi Laterali	. 56			
		4.2.1	Coefficienti derivativi rispetto a β	. 56			
		4.2.2	Coefficienti del momento di rollio	. 61			
		4.2.3	Coefficiente del momento di imbardata	. 68			
		4.2.4	Coefficienti laterali perturbativi	. 72			
5	Stat	oilità		73			
	5.1	Stabili	tà Statica	. 73			
		5.1.1	Equilibratore	. 74			
	5.2	Stabili	tà Dinamica Longitudinale-Equilibratore	. 75			
		5.2.1	Criterio di Routh	. 81			
		5.2.2	Funzione di trasferimento equilibratore	. 82			
	5.3	Stabili	tà Dinamica Longitudinale-Raffica di vento	. 85			
	5.4	Stabili	tà Dinamica Laterale	. 90			
		5.4.1	Funzioni di trasferimento Alettone-Timone	. 97			
	5.5	Stabil	lità Dinamica Laterale -Raffica di vento	. 100			
6	Con	clusio	ni	105			
	6.1	Svilup	pi Futuri	. 107			
\mathbf{A}	Mat	lab Sc	ript	109			
в	Dat	$\operatorname{com}+$	FILE IN	119			
С	Dat	$\mathbf{com} +$	FILE OUT	121			
Bi	bliog	oliografia 143					

Elenco delle figure

1.1	Stabilità meccanica [2]	2
1.2	Differenza tra stabilità statica e dinamica nel piano di bec-	
	cheggio [22]	3
1.3	Oscillazione di beccheggio stabilie di breve periodo [15]	5
1.4	L'andomento di fugoide stabile [15]	6
1.5	Roll Mode [15]	7
1.6	Sviluppo del modo spirale [15]	8
1.7	Evoluzione del modo dutch roll [15]	9
1.8	Sistema MIMO di un aereo [15].	11
1.9	L'opione dei piloti sullo smorzamento longitudinale di corto	
	periodo e la relativa pulsazione [15]	12
2.1	Sistema di riferimento solidale all'aereo e quello della stabilità	
	(Wind Frame) [15]. \ldots	15
2.2	Forze e Momenti agenti sull'aereo [15]	16
2.3	Velocità angolari nella terna solidale al velivolo [18]	18
3.1	Misure geometriche del motoaliante	24
3.2	Dimensioni geometriche del Flap e Alettone	25
3.3	Portanza e centro di pressione [5]	26
3.4	Relazioni tra $C_P \in C_L$ [5]	27
3.5	Diagramma per determinare f [8]	29
3.6	Diagramma per determinare il fattore J della resistenza indot-	
	ta [8]	30
3.7	Diagramma per determinare il fattore u della resistenza indot-	
	ta [8]	30
3.8	Diagramma per determinare il fattore v della resistenza indot-	
	ta [8]	31
3.9	Diagramma per determinare il fattore w della resistenza in-	
	dotta [8]	31
3.10	Diagramma per la determinazione della posizione di $x_{a.c.}$ in	
	funzione di λ ed AR [8].	32

3.11	Diagramma per la determinazione di G [8]	33
3.12	Valori caratterizzanti l'ala.	34
3.13	Suddivisione della fusoliera secondo il metodo di Multhopp [19].	34
3.14	Downwash ed upwash lungo la fusoliera [1]	35
3.15	Elenco di tutti i valori della suddivisione della fusoliera	35
3.16	L'effetto dei vortici di scia e quelli di avvolgimento sul down-	
	wash e upwash $[10]$	37
3.17	Distribuzione del carico , dello spostamento di scia e dell'an-	
	golo di downwash per AR=12 e λ =0,33 [8]	38
3.18	Incremento di C_L dovuta alla deflessione dei flap [9]	38
3.19	Calcolo del downwash e lo spessore della scia in prossimità	
	della coda	40
3.20	Diverse tipologie di flaps [11].	44
3.21	Variazione del fattore d'estensione K_b in base all'estensione	
	del flap [13]	45
3.22	Incremento della portanza dovuto al Split Flap	46
3.23	Incremento della portanza dell'aliante dovuto alla deflessione	
0.04	dei flap DIGITDATCOM+	46
3.24	Incremento del drag indotto alla variazione dell'angolo di de-	10
	flessione e dell'angolo d'attacco	46
4.1	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$	50
$4.1 \\ 4.2$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{18}$ [18].	50 51
4.1 4.2	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18]	50 51
4.14.24.3	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c_H}}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'an-	50 51
4.14.24.3	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52
 4.1 4.2 4.3 4.4 4.5 	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53
 4.1 4.2 4.3 4.4 4.5 4.6 	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53 54
$ \begin{array}{r} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ \end{array} $	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53 54 55 56
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18]. coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E} Andamento $c_{L_{\dot{\alpha}}}$ in funzione di α . Andamento di $c_{m_{\dot{\alpha}}}$ in funzione dell'angolo d'attacco α . K_{q} fattore di correzione[17]. Forze e Momenti Laterali, stato stazionario. Angolo d'imbardata β [18]	50 51 52 53 54 55 56 57
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18]. coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E} Andamento $c_{L_{\alpha}}$ in funzione di α . Andamento di $c_{m_{\alpha}}$ in funzione dell'angolo d'attacco α . K _q fattore di correzione[17]. Forze e Momenti Laterali, stato stazionario. Angolo d'imbardata β [18]. Parametri geometri fusoliera-ala per calcolare il fattore di in-	50 51 52 53 54 55 56 57
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E}	50 51 52 53 54 55 56 57 58
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_{E}	50 51 52 53 54 55 56 57 58 58
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18]. coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E} Andamento $c_{L_{\dot{\alpha}}}$ in funzione di α Andamento di $c_{m_{\dot{\alpha}}}$ in funzione dell'angolo d'attacco α Forze e Momenti Laterali, stato stazionario Angolo d'imbardata β [18] Parametri geometri fusoliera-ala per calcolare il fattore di in- terferenza Fusoliera-Ala [18] Parametri geometrici della coda	50 51 52 53 54 55 56 57 58 58 58 58
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18]. coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E} Andamento $c_{L_{\dot{\alpha}}}$ in funzione di α Andamento di $c_{m_{\dot{\alpha}}}$ in funzione dell'angolo d'attacco α Forze e Momenti Laterali, stato stazionario Angolo d'imbardata β [18] Parametri geometri fusoliera-ala per calcolare il fattore di in- terferenza Interferenza Fusoliera-Ala [18] Fattore empirico $k_{Y_{\alpha}}$, forza laterale della coda verticale dovuto	50 51 52 53 54 55 56 57 58 58 58 58
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18]. coefficiente di portanza dell'equilibratore in funzione dell'an- golo di deflessione δ_{E} Andamento $c_{L_{\dot{\alpha}}}$ in funzione di α . Andamento di $c_{m_{\dot{\alpha}}}$ in funzione dell'angolo d'attacco α . Andamento di correzione[17] Forze e Momenti Laterali, stato stazionario Parametri geometri fusoliera-ala per calcolare il fattore di in- terferenza Interferenza Fusoliera-Ala [18] Parametri geometrici della coda Fattore empirico k_{Y_V} , forza laterale della coda verticale dovuto a β [18]	50 51 52 53 54 55 56 57 58 58 58 59 60
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{c_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53 54 55 56 57 58 58 59 60 61
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^{6}$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_{E}}{\overline{c}_{H}}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_{E}	50 51 52 53 54 55 56 57 58 58 58 59 60 61 63
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53 54 55 56 57 58 58 59 60 61 63 63 63
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \\ 4.16 \end{array}$	Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$ Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18] coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E	50 51 52 53 54 55 56 57 58 58 59 60 61 63 63 64

4.17	Contributo dovuto a Γ_W su $c_{l_{\beta_{WB}}}$ [17]	64
4.18	Coordinate del centro aerodinamico dell'ala verticale rispetto	
	a $x_{CG} X_V = 3,44$ e $Z_V = 0,34$.	65
4.19	Andamento $c_{l_{\beta}}$ in funzione di α calcolato con Datcom +	66
4.20	Momento di rollio associato con la deflessione degli alettoni [18].	67
4.21	Efficacia dell'alettone in funzione della sua collocazione sull'ala.	67
4.22	Efficacia del alettone τ_A in funzione di $\frac{c_A}{\bar{c}}$	67
4.23	Confronto tra i valori c_{l_A} calcolati con Datcom + e con il	
	metodo empirico.	68
4.24	Parametri geometrici della fusoliera	69
4.25	Fattore empirico K_N dell'interferenza fusoliera-ala [18]	70
4.26	Andamento di $c_{n_{\delta_A}}$ al variare di α .	71
4.27	Confronto per $\alpha = 0$ tra il valore di $c_{n_{\delta_A}}$ empirico e Datcom +.	71
5.1	Margine statico equilibratore fisso	73
5.2	Coefficiente del momento di beccheggio generato dalla defles-	
	sione dei flap	75
5.3	Coefficiente del momento di beccheggio generato dalla defles-	
	sione dell'equilibratore.	76
5.4	Andamento del coefficiente di beccheggio c_m del motoaliante	
	alla variazione dell'angolo d'attacco α .	76
5.5	Diagramma di bode della funzione $\frac{u(s)}{\delta_E(s)}$	84
5.6	Diagramma di bode della funzione $\frac{\alpha(s)}{\delta_E(s)}$	84
57	Diagramma di hada della funciona $\vec{\theta}(s)$	01
Э. <i>(</i>	Diagramma di bode della funzione $\frac{1}{\delta_E(s)}$	84
5.8	$\alpha(t)$ in funzione della deflessione di 1° dell'equilibratore	85
5.9	Diagramma di Bode della funzione $\frac{u(s)}{w_h(s)}$	88
5.10	Diagramma di Bode della funzione $\frac{\alpha(s)}{w_h(s)}$	89
5.11	Diagramma di Bode della funzione $\frac{\theta(s)}{w_b(s)}$	89
5.12	Risposta $\alpha(t)$ ad un input $v_g = 4, 8m/s$ di durata 1s	90
5.13	Tracciameno del diagramma di Bode della funzione $\frac{\beta(s)}{\delta_A(s)}$	97
5.14	Tracciamento del diagramma di Bode $\frac{\phi(s)}{\delta_A(s)}$	98
5.15	Tracciamento del diagramma di Bode $\frac{\psi(s)}{\delta_A(s)}$	98

5.16	Tracciamento del diagramma di Bode $\frac{\beta(s)}{\delta_R(s)}$
5.17	Tracciamento del diagramma di Bode $\frac{\phi(s)}{\delta_R(s)}$
5.18	Tracciamento del diagramma di Bode $\frac{\psi(s)}{\delta_R(s)}$
5.19	Risposta di $\psi(t)$ ad un gradino 1°, 2s del timone di coda 101
5.20	Risposta di $\phi(t)$ ad un gradino 1°, 2s degli alettoni 101
5.21	Andamento di ψ in risposta ad una perturbazione $v_g = 4, 8m/s$
	per un tempo t=1 s. $\dots \dots \dots$
5.22	Andamento di ϕ in risposta ad una perturbazione $v_g = 4, 8m/s$
	per un tempo t=1 s. $\dots \dots \dots$

Elenco delle tabelle

1.1	Requisiti per una ottima esperienza di volo [15]	11
3.1	Riassunto dei valori principali dell'aliante.	24
3.2	Dati Downwash $Re = 10^6$ calcolati con Datcom+	39
3.3	Dimensioni geometriche della coda orizzontale	41
3.4	Dimensioni geometriche della coda verticale e del timone \ldots	42
4.1	Confronto tra Datcom + e dati approssimati	60
4.2	Valori geometrici per ricavare K_N	69
5.1	Coefficienti derivativi dimensionali del moto longitudinale	78
5.2	Condizioni di volo di crociera.	82
5.3	Parametri dinamici del moto longitudinale	83
5.4	Coefficienti dimensionali derivativi per il moto laterale	92
5.5	Variazione T_S al variare di Γ_W .	96
6.1	Confronto tra i requisiti ed i dati finali del motoaliante	107

Elenco dei simboli

a.c.	coordinata o	del centro	$\operatorname{aerodinamico}$	espresso
	come frazion	ne di corda		

- $(\alpha_{\delta})_{C_l}$ parametro dell'efficienza bidimensionale del flap a portanza costante
- $(\alpha_{\delta})_{c_L}$ parametro dell'efficienza tridimensionale del flap a portanza costante
- AR aspect ratio
- c_f corda del flap
- c_l coefficiente di portanza del profilo
- c_L coefficiente di portanza dell'ala
- c_{l_a} coefficiente di portanza "aggiuntivo"
- $c_{l_{\alpha}}$ pendenza della curva del coefficiente di portanza di tutto il motoaliante
- c_{l_b} coefficiente di portanza "di base"
- $c_{L_{\delta_E}}$ coefficiente di stabilità della portanza rispetto alla deflessione dell'equilibratore
- $c_{L_{i_H}}$ coefficiente di stabilità della portanza rispetto alla deflessione dello stabilizzatore
- $c_{m_{ac}}$ coefficiente del momento di beccheggio rispetto al centro aerodinamico del profilo
- $C_{m_{l_a}}$ coefficiente di beccheggio dovuto al coefficiente di portanza "aggiuntivo"
- $C_{m_{l_b}}$ coefficiente di beccheggio dovuto al coefficiente di portanza "di base "

$\overline{D}_1(s)$	Equazione caratteristica del moto longitudina- le
$\overline{D}_2(s)$	Equazione caratteristica del moto laterale
δ_f	angolo di deflessione del flap
δ_E	angolo di deflessione dell'equilibratore
δ_R	angolo di deflessione dell'equilibratore
f_{A_X}	Forza aerodinamica perturbativa lungo l'asse X
F_{A_X}	Forza aerodinamica lungo l'asse X
f_{A_Y}	Forza aerodinamica perturbativa lungo l'asse Y
F_{A_Y}	Forza aerodinamica lungo l'asse Y
f_{A_Z}	Forza aerodinamica perturbativa lungo l'asse Z
F_{A_Z}	Forza aerodinamica lungo l'asse Z
b_f	apertura del flap lungo l'apertura alare
i_H	angolo di incidenza, coda orizzontale
K_b	fattore d'estensione in funzione dell'estensione del flap b_f
K_c	fattore flap-corda (rapporto tra l'effeto tridi- mensionale e quello bidimensionale $\frac{(\alpha_{\delta})_{c_L}}{(\alpha_{\delta})_{C_l}}$)
l_A	Momento aerodinamico perturbativo di rollio
L_A	Momento aerodinamico di rollio
Λ	angolo di freccia
m_A	Momento aerodinamico perturbativo di bec- cheggio
M_A	Momento aerodinamico di beccheggio
\overline{c}	corda media aerodinamica- $m.a.c$
n_A	Momento aerodinamico perturbativo di imbardata
N_A	Momento aerodinamico di imbardata

ω_{dr}	pulsazione	di	dutch	roll
<i>cci</i>	1			

- ω_p pulsazione di fugoide
- ω_s pulsazione di breve periodo
- p velocità angolare di rollio
- ϕ Angolo di rollio
- ψ Angolo di imbardata
- q pressione dinamica
- q velocità angolare di beccheggio
- r velocità angolare di imbardata
- θ Angolo di beccheggio
- T_R Tempo di rollio
- T_S Tempo di spirale
- ϵ_t angolo di svergolamento dell'ala
- V_{P_1} Velocità dell'aereo
- x_{AC} coordinata del centro aerodinamico dell'ala espresso come frazione di \overline{c}
- x_{cp} coordinata del centro di pressione espresso come frazione di corda
- ζ_{dr} smorzamento di dutch roll
- ζ_{sp} smorzamento di fugoide
- ζ_s smorzamento di breve periodo

Sommario

Questa testi è una continuazione del lavoro iniziato dal mio collega Marco Marzari all'interno del progetto *Merlo* dell'Università di Padova che si è prefissato come scopo la costruzione di un motoaliante a propulsione elettrica alimentato tramite i pannelli solari posizionati sulle ali.

La tesi è concentrata sullo studio della stabilità statica e dinamica del progetto preliminare e sulle modifiche necessarie a rendere tale prototipo facilmente governabile durante le varie fasi di volo in accordo con le normative europee [14] ed italiane [24]. Pertanto, tali modifiche sono orientate a dimensionare le superfici di controllo come timone, alettoni, ed equilibratore di coda che possono assicurare con un sufficiente margine durante le varie fasi di volo la governabilità del motoaliante. Oltre a questo è stato dimensionato il flap dell'ala come dispositivo ad alta portanza per fornire l'incremento di portanza durante la fase di atterraggio in accordo con la normativa [14]. $\dot{\mathbf{E}}$ stato aggiunto un angolo diedro sulle ali tali da poter conferire stabilità dinamica in "spiral mode" e diminuito il volume della coda verticale. Nello svolgere la tesi si è partito dalle equazioni del moto di un aereo/aliante per un corpo rigido e il calcolo delle derivate della stabilità sia di natura statica che dinamica, per fare questo si è utilizzato sul programma **DIGIT**-DATCOM + della USAF e successivamente si sono implementate tutte le equazioni in Matlab e si sono calcolate le riposte alle raffiche di vento ed alla azione delle superficie di controllo in Simulink

xviii

Capitolo 1

Introduzione

1.1 La scelta dell'argomento.

La scelta di questo argomento è una conseguenza al fascino e alla complessità che esso rappresenta. In quanto riuscire a capire e descrivere il fenomeno che sta alla base della progettazione di tutta la famiglia degli oggetti volanti partendo dagli alianti sino ai caccia militari affascina l'uomo da sempre. Nell'ottica del progetto seguito dal prof. Ugo Galvanetto sulla costruzione di un motoaliante a propulsione elettrica dotato di pannelli solari, come un seguito del lavoro svolto da Marco Marzari [7].

A conclusione del mio percorso di studi in *Ingegneria Aerospaziale* all'Università di Padova nello studio e la progettazione aerea mancava da riempire un tassello per completare tutte le parti che comprendono la progettazione aerea. Per tale motivo la scelta della mia tesi è orientata su questo argomento. La ricerca nel mondo dell'aeronautica sull'impiego dei pannelli solari sta prendendo sempre più spazio, dovuto alla sensibilizzazione da parte della comunità scientifica e politica al cambiamento climatico.

La tesi è composta dai capitoli , che comprendono le equazioni del moto e il calcolo dei momenti di inerzia in base alla massa estimata, dopo di ché si trova il capitolo che va ad affrontare i parametri aerodinamici dove saranno calcolati i parametri dell'ala. Il quarto capitolo mostra come ricavare i coefficienti derivativi della stabilità e in fine il capitolo affronta il problema della stabilità e il comportamento dinamico del motoaliante. Nell'analisi di tutto questo ci si baserà sulle varie fasi di volo nell'ipotesi di veleggiamento.

	Instabile 😕	
	2	
> Stabile ©		
	"ITT	
	117.	

Figura 1.1: Stabilità meccanica [2].

1.2 Stabilità del Motoaliante

Prima di immergerci nella soluzione finale della stabilità con tutta la sua trattazione matematica, si cercherà di dare una spiegazione concettuale in cosa consiste. Per fornire un esempio reale, con riferimento alla Figura 1.1, si può notare come la pallina 1 corrispondente alla configurazione stabile ritorna nella sua posizione iniziale, allo stesso tempo se dovessimo fornire una piccola perturbazione alla pallina 2 essa si sposterà dalla sua posizione iniziale senza la possibilità di ritornarci, eccetto il caso in cui si fornisca una forza esterna tale da costringerla a rimanere nella posizione desiderata. Tale esempio è applicabile a qualsiasi modello fisico, dall'altra parte vediamo in cosa consiste quando è applicata al concetto di stabilità di un velivolo, nello specifico al motoaliante.

- 1. Stabilità Statica. Essa è collegata al comportamento istantaneo del motoaliante quando subisce una perturbazione esterna, durante la fase di moto stazionario. In tal caso un motoaliante staticamente stabile ha la tendenza di ritornare nella condizione di volo antecedente alla perturbazione, tuttavia essa non ci fornisce una descrizione nel dominio del tempo di come tutto questo avvenga. Il moto di ritorno del motoaliante, al punto di moto stazionario, a causa di una perturbazione significativa potrebbe andare oltre l'intervallo di funzionamento e cui entra in gioco la stabilità dinamica.
- 2. *Stabilità Dinamica*. In questo caso, ci fornisce la risposta del motoaliante soggetto ad una perturbazione. Con la stabilità dinamica si ottiene il moto oscillatorio indotto da un disturbo esterno e possiamo descrivere al meglio il comportamento del motoaliante ed analizzare l'entità dei disturbi esterni sul motoaliante senza uscire dall'intervallo di funzionamento.

Figura 1.2: Differenza tra stabilità statica e dinamica nel piano di beccheggio [22].

Il flusso logico che si segue nella progettazione di un velivolo è quello di analizzare prima la stabilità statica e dopo la stabilità dinamica. Pertanto in accordo con la descrizione concettuale un motoaliante dinamicamente stabile è anche staticamente stabile, ma non viceversa.

Dalla Figura 1.2 si evidenzia come la stabilità statica consiste nel controbilanciare il disturbo esterno, mentre la stabilità dinamica consiste che il moto oscillatorio generatosi durante il disturbo si smorzi nel tempo.

Nell'analisi della stabilità dinamica ci sono cinque moti di particolare interesse di cui si andrà in seguito a fornire una spiegazione più dettagliata, questi moti sono:

- *Short Period* -moto oscillatorio di breve periodo associato al moto longitudinale Figura 1.3.
- *Phugoid* moto oscillatorio di fugoide o di lungo periodo associato al moto longitudinale Figura 1.4.
- Spiral mode- associato al moto laterale Figura 1.6.
- Rolling mode-associato al moto laterale Figura 1.5.

• *Dutch roll*- moto oscillatorio originato dall'accoppiamento tra il moto di rollio e di imbardata associato al moto laterale Figura 1.7.

1.2.1 Stabilità Statica

Avendo data la definizione che una stabilità statica implica che un velivolo sottoposto a disturbi esterni abbia la tendenza di ritornare al suo stato iniziale di equilibrio, si analizza in dettaglio in cosa consiste precisamente. Considerando una condizione in volo d'equilibrio questo implica che $c_m = 0$, se il motoaliante subisce una perturbazione che aumenta l'angolo d'attacco e quindi la sua portanza, questo implica per essere staticamente stabile si deve avere un momento di beccheggio che va a riportare il velivolo in condizioni di equilibrio, tale condizione di stabilità si traduce tramite l'espressione:

$$\frac{dc_m}{d\alpha} < 0 \tag{1.1}$$

Mentre per il moto laterale le condizioni di stabilità statica sono espresse da:

$$\frac{dc_l}{d\phi} < 0 \tag{1.2}$$

$$\frac{dc_n}{d\beta} > 0 \tag{1.3}$$

Dove $\frac{dc_l}{d\phi}$ dove c_l è il coefficiente di rollio e ϕ l'angolo di rollio misurato dalla condizione di equilibrio. $\frac{dc_n}{d\beta} = c_{n\beta}, c_{n\beta}$ è il coefficiente di imbardata e β l'angolo d'attacco laterale.

1.2.2 Stabilità Dinamica Longitudinale

La stabilità longitudinale comprende due modi uno di breve periodo altamente smorzato e uno di lungo periodo che si può vedere nella Figura 1.2, tali moti sono generati da un aumento improvviso dell'angolo d'attacco α che può essere una conseguenza di una velocità di perturbazione verticale woppure dalla deflessione dell'equilibratore.

Oscillazioni di beccheggio di breve periodo

Le oscillazioni di breve periodo sono tipicamente molto smorzate e si originano intorno all'asse Y quando il motoaliante subisce un perturbazione rispetto al punto di equilibrio longitudinale.

Figura 1.3: Oscillazione di beccheggio stabilie di breve periodo [15].

Tale oscillazione è una oscillazione del secondo ordine dove le principali variabili sono l'angolo d'attacco α , velocità angolare di beccheggio q e l'angolo di beccheggio θ .

Il suo comportamento osservando la Figura 1.3 è simile ad un sistema massa molla smorzatore, ovviamente l'effetto della molla e smorzatore sono tutte di natura aerodinamica e non meccanica. La coda orizzontale è quella che ha l'effetto dominante in questo caso e la rigidezza della molla è generata dalla tendenza naturale della coda orizzontale nell'allinearsi con il flusso incidente, mentre lo smorzamento deriva dall'oscillazione della coda durante il moto che tende ad allinearsi.

Fugoide

Il modo di fugoide è un moto oscillatorio leggermente smorzato a bassa frequenza nella velocità u ed accoppiato col angolo di beccheggio θ . Una particolarità di tale modo è quello di avere l'angolo d'attacco α pressoché costante durante il suo moto. Per spiegare come si svolge nel tempo il modo di fugoide, facendo riferimento alla Figura 1.4, partendo dalla condizione di volo livellato nel punto (a) il velivolo subisce una perturbazione che fa ridurre la velocità di una quantità u, data la riduzione nella velocità d'avanzamento il velivolo subisce una diminuzione nella portanza, questo fa perdere quota al velivolo, durante la discesa esso accelera fino ad una velocità superiore a quella di volo livellato quindi recupera portanza ed inizia una fase di salita, durante la fase di salita la velocità diminuisce ed inizia a perdere di nuovo quota, questo moto si propaga fino a che non si smorza del tutto oppure fino a che non interviene il pilota.

Figura 1.4: L'andomento di fugoide stabile [15].

1.2.3 Stabilità Dinamica Laterale

Allo stesso modo come per i modi della stabilità longitudinale, quando il motoaliante è disturbato dalla sua condizione di equilibrio, si originano i modi della stabilità laterale.

Di nuovo i modi possono essere originati dall'azionamento delle superficie di controllo oppure da turbolenze atmosferiche.

Roll Mode

Il *Roll mode* è un modo laterale non oscillatorio ed è disaccoppiato dal modo di spirale e dal dutch roll. Data la sua natura non oscillatoria esso rappresenta il tempo di latenza intercorso da quando il motoaliante subisce una perturbazione e si instaura il momento di rollio per compensare tale disturbo, oppure una volta effettuata la manovra il tempo necessario affinché entri in gioco il momento di rollio per stabilizzare il motoaliante, avvolte tale modo è anche chiamato modo di smorzamento di rollio.

Il momento di rollio compensatore si origina a causa di differenza di portanza tra le ali. Nella Figura 1.5 viene schematizzato come incide un disturbo nel momento di rollio, esso causa inizialmente una inclinazione del motoaliante, tale inclinazione genera sull'ala in basso un aumento dell'angolo d'attacco e quindi un aumento di portanza, mentre sull'ala rivolta verso l'alto genera una diminuzione dell'angolo d'attacco e quindi una diminuzione della portanza, questo squilibrio di portanza tra le due ali genera un momento di rollio di ripristino. Questo disturbo della velocità angolare di rollio cresce esponenzialmente finché inizia ad agire il momento di ripristino.

Spiral Mode

Il modo spirale è l'altro modo laterale non oscillatorio e quando tale modo è eccitato è solitamente molto lento e potrebbe essere leggermente stabile o instabile la sua radice si trova solitamente attorno all'origine nel piano

Figura 1.5: Roll Mode [15].

immaginario. Quando si sviluppa questo modo è molto complesso in quanto vengono accoppiati i moti intorno all'asse di rollio ed intorno all'asse di imbardata

Per riuscire a dare un idea migliore di come evolve tale modo facciamo riferimento alla Figura 1.6, abitualmente tale modo è eccitato da una perturbazione di velocità laterale v, essa inizialmente innesca un aumento nell'angolo di roll ϕ , nel frattempo v crea un angolo di incidenza sulla coda verticale pari a β che crea portanza e tende a far girare il motoaliante nella direzione dell'angolo β , tale manovra intorno all'asse di imbardata causa una diminuzione della portanza sull'ala in basso e un aumento sull'ala alta tale contributo potrebbe essere controbilanciato dall'aumento di portanza dovuto al moto di rollio ed originare un moto convergente, oppure essere maggiore di tale contributo e portare ad un moto divergente. Il periodo del modo spirale è tipicamente molto grande sia nel caso che esso sia stabile che instabile, questo permette al pilota di avere tempo per poter intervenire specialmente nel caso instabile.

Nel caso instabile, se il periodo è molto grande, questo implica maggiore di 100s non crea preoccupazioni, il problema sorge quando tale periodo è molto piccolo, in quanto l'andamento instabile è accompagnato anche da una perdita di altitudine, in particolare per i motoalianti che volano a bassa quota questo può essere catastrofico.

Il contributo maggiore per la stabilità di questo modo è dovuto all'angolo diedro delle ali, mentre il contributo divergente è attribuibile alla coda verti-

Figura 1.6: Sviluppo del modo spirale [15].

cale, infatti la scelta dei due parametri tende a far si che il modo spirale sia o leggermente stabile o leggermente instabile.

Dutch Roll

Il dutch roll è il modo oscillatorio associato al moto laterale, esso è rappresentato dal moto oscillatorio smorzato intorno all'asse di imbardata in accoppiamento con il moto intorno all'asse di rollio. Fondamentalmente il dutch roll è l'equivalente del periodo breve associato al moto longitudinale. In questo caso però la rigidezza del moto è di tipo torsionale intorno all'asse Z ed è fornita maggiormente dalla coda verticale, quindi quando tale modo è eccitato muovendo il motoaliante dalla sua posizione di equilibrio, la rigidezza torsionale provoca un moto oscillatorio intorno all'asse Z. Quando tale moto è cominciato queste oscillazioni provocano variazioni sulle ali sia di portanza che di drag provocando un moto oscillatorio intorno all'asse di rollio ché è sfasato approssimativamente di 90° rispetto al moto intorno all'asse Z.

L'ampiezza del moto oscillatorio ed il relativo smorzamento è dovuto alla coda verticale questo si traduce in requisiti di superficie della coda verticale il più grande possibile, per avere un moto il più smorzato possibile, ma questo requisito è in contrasto con i requisiti del modo spirale quindi si deve trovare un compromesso tra i due modi.

Figura 1.7: Evoluzione del modo dutch roll [15].

1.3 Requisiti di Manovrabilità

Il problema della stabilità e della manovrabilità di un aereo, ha preso piede dopo il primo volo del 1903 ad opera dei fratelli Wright. Questo ha posto il problema dello sviluppò di un modello matematico che descriva il moto, un contributo importante è stato fornito da Bryan(1911) e Lancaster(1908). In particolare Bryan sviluppo il modello a 6 gradi di libertà che si basano sulla conservazione del momento lineare ed angolare. Tale modello è oggi alla base del modello matematico usato per indagare il comportamento dinamico e statico di un aereo.

Partendo da queste equazioni che comprendono le forze aerodinamiche agenti sul motoaliante, si va a modellare il motoaliante come un sistema *MIMO(Multi-input Multi-output)* disaccoppiando il moto longitudinale da quello laterale.

Osservando la Figura 1.8 si può notare che anche i disturbi atmosferici si possono considerare come un input nel nostro sistema, mentre nell'output avremmo la risposta. Qui entra in gioco la stabilità statica e dinamica, in quanto il motoaliante potrebbe avere un comportamento convergente, neutrale o divergente, il comportamento divergente genera instabilità e difficoltà di controllo. Un sistema dinamicamente stabile è anche staticamente stabile, ma non viceversa.

Il comportamento statico e dinamico del motoaliante va a determinare la qualità di manovrabilità dell'aereo, al riguardo sono state fatte molte ricerche specialmente all'inizi degli anni '60. La qualità di manovrabilità in prima approssimazione si basa sulle radici della funzione di trasferimento sia del moto longitudinale che laterale, oltre a questo [24] ci fornisce le varie fasi di volo e le manovre che il motoaliante deve essere in grado di eseguire. Come riferimento per la qualità di manovrabilità sono stati presi i valori per la miglior qualità di volo, questo implica che il motoaliante è facilmente controllabile, ha un comportamento docile durante il volo anche se è sottoposto a disturbi esterni, o durante le varie fasi di manovra.

I requisiti più stringenti sono quelli legati alla risposta del modo di corto periodo in quanto rende il pilotaggio del motoaliante molto nervoso, mentre i modi di lungo periodo anche se fossero leggermente instabili danno la possibilità al pilota di controllare il motoaliante. Tuttavia le pulsazioni di corto periodo e di fugoide (lungo periodo) devono essere sufficientemente lontane per non incorrere nel problema di risonanza che comprometterebbe la governabilità dell'aereo. Di seguito nella Tabella 1.1 sono i valori minimi e massimi per potere soddisfare i requisiti legati ad un comportamento docile da parte del motoaliante. Tali valori si basano su dei dati statistici tra il giudizio espresso dai piloti e le caratteristiche dei velivoli. Essendo che il giudizio dei

Moto Longitu	ıdinale	Moto Laterale		
corto periodo	fugoide	dutch roll	roll	
$0, 5 < \zeta_s < 0, 8$	$\zeta_{sp} > 0$	$\zeta_{dr} > 0,08$	$T_R < 1$	
$2, 5 < \omega_s < 3, 5$	$\frac{\omega_p}{\omega_p} < 0, 1$	$\zeta_{dr}\omega_{dr} > 0,15$	$T_S > 28, 8$	

Tabella 1.1: Requisiti per una ottima esperienza di volo [15].

Figura 1.8: Sistema MIMO di un aereo [15].

piloti è soggettivo si è cercato di esprimerli tramite dei valori direttamente correlati al comportamento del velivolo, per le varie classi di velivoli.

1.4 Svolgimento

Nella progettazione di un velivolo la parte legata alla stabilità è molto importante, dato che in tale processo entra in gioco non solo le forze aerodinamiche agenti su di esso ma anche la distribuzione delle masse e i relativi momenti d'inerzia. Oltre a questo i coefficienti aerodinamici su cui si basa il calcolo delle forze e momenti agenti è molto complesso e si basa su tantissime variabili, per questo inizialmente si è proceduto all'implementazione su un foglio **Excel** di tutti i coefficienti basandosi sul modello preliminare. Ovviamente questo non è un metodo consigliato per la progettazione finale in quanto è un metodo molto laborioso basato oltre sui vari modelli matematici anche su estrapolazione dai grafici per certi coefficienti. In seguito è stato utilizzato il programma **DIGITDATCOM**+ che non è altro che una versione rivista

Figura 1.9: L'opione dei piloti sullo smorzamento longitudinale di corto periodo e la relativa pulsazione [15]-

del **DIGITAL DATCOM** uscito nel 1976 ad opera della USAF [17]. Tale programma è basato su linguaggio fortran, nonostante l'implementazione di nuovi programmi come **AAA DarCorp** più user-friendly, in ambito accademico **DATCOM** è quello prevalentemente utilizzato. Una volta ricavato i coefficienti derivativi sono stati importati in **Matlab**, dove tramite la stesura di uno script si è arrivato alle funzioni di trasferimento nel dominio di *Laplace* e svolto le simulazioni con *Simulink* fino ad arrivare a rispettare i requisiti di manovrabilità preimposti inizialmente.

Il flusso logico del lavoro svolto si riassume in:

- 1. Calcolo delle variabili che definiscono la geometria.
- 2. Calcolo della massa dei componenti del motoaliante e inerzia totale.
- 3. Calcolo delle superficie di controllo.
- 4. Calcolo dei coefficienti derivativi.
- 5. Calcolo delle funzioni di trasferimento e delle variabili che definiscono la manovrabilità. Confronto di tali dati con quelli della Tabella 1.1 per soddisfare le condizioni.
- 6. Nel caso in cui tali condizioni non sono rispettate si va a modificare la geometria del velivolo:
 - Angolo diedro delle ali Γ_W .
 - Posizione delle ali X_{LE} .
 - Angolo di freccia delle ali Λ .
 - Volume della coda verticale V_v .
 - Volume della coda orizzontale V_t .
- 7. Verifica dell'efficacia delle superfici di controllo.
- 8. Ottenimento della configurazione finale.

Capitolo 2

Equazioni del Moto

2.1 Equazioni del moto piccole perturbazioni

Nella trattazione del moto di un aereo vengono utilizzate 3 sistemi di riferimento, quello fisso terrestre, di stabilità o detto anche del vento e infine quella solidale all'aereo.

Le equazioni che governano tale moto si basano sulla "Conservazione del momento angolare" e sulla "Conservazione del momento lineare". Definiamo la terna solidale al corpo come X, Y, Z e quella inerziale-terrestre X', Y'Z'. Le velocità angolari nella terna solidale al corpo P, Q, R illustrati nella Figura 2.3. Per arrivare alle equazioni finali che governano la dinamica del velivolo in condizioni di crociera si introducono gli angoli di eulero seguendo una rotazione del tipo 3,2,1 a tale proposito si faccia riferimento alla referenza [18].

Figura 2.1: Sistema di riferimento solidale all'aereo e quello della stabilità (Wind Frame) [15].

Figura 2.2: Forze e Momenti agenti sull'aereo [15].

Quindi le equazioni della dinamica espresse nella terna X, Y, Z diventano:

$$m(\dot{U} + QW - RV) = -mg\sin(\Theta) + (F_{A_X} + F_{T_X})$$

$$m(\dot{V} + UR - PW) = mg\cos(\Theta)\sin(\Phi) + (F_{A_Y} + F_{T_Y})$$

$$m(W + PV - QU) = mg\cos(\Theta)\cos(\Phi) + (F_{A_Z} + F_{T_Z})$$

$$\dot{P}I_{XX} - \dot{R}I_{XZ} - PQI_{XZ} + RQ(I_{ZZ} - I_{YY}) = L_A + L_T$$

$$\dot{Q}I_{YY} + PR(I_{XX} - I_{ZZ}) + (P^2 - R^2)I_{XZ} = M_A + M_T$$

$$\dot{R}I_{ZZ} - \dot{P}I_{XZ} + PQ(I_{YY} - I_{XX}) + QRI_{XZ} = N_A + N_T$$

(2.1)

Dove U,V,W sono le componenti della velocità nella terna solidale al corpo e Ψ, Θ, Φ gli angoli di eulero secondo la rotazione tra le terne menzionate sopra. $F_{A_X}, F_{A_Y}, F_{A_Z}$ sono le componenti della forza aerodinamica secondo gli assi X, Y, Z della terna solidale al velivolo. L_A, M_A, N_A sono in ordine il momento di rollio rispetto all'asse X, il momento di beccheggio rispetto all'asse Y ed il momento di imbardata rispetto all'asse Z. Per ottenere le equazioni della dinamica che descrivono il comportamento del velivolo soggetto a perturbazioni si introducono per prima le equazioni per il volo di crociera. Durante il volo di crociera si ha che le velocità angolari rispetto alla terna solidale sono nulle così come le accelerazioni, da queste ipotesi passando dal riferimento solidale a quello inerziale (U_1, V_1, W_1) e (P_1, Q_1, R_1) tramite la matrice di rotazione, e avendo $P_1 = Q_1 = R_1 = 0$ e considerando la fase di volo del motoaliante in fase di planaggio allora le equazioni del moto diventano, come in seguito riportate:

$$0 = -mg \cos(\Theta_{1}) + F_{A_{X_{1}}}$$

$$0 = mg \cos(\Theta_{1}) \sin(\Phi_{1}) + F_{A_{Y_{1}}}$$

$$0 = mg \cos(\Theta_{1}) \cos(\Phi_{1}) + F_{A_{Z_{1}}}$$

$$0 = L_{A_{1}}$$

$$0 = M_{A_{1}}$$

$$0 = N_{A_{1}}$$

(2.2)

Introducendo la notazione per le piccole perturbazioni

$$U = U_{1} + u V = V_{1} + v W = W_{1} + w$$

$$P = P_{1} + p Q = Q_{1} + q R = R_{1} + r$$

$$\Phi = \Phi_{1} + \phi \Theta = \Theta_{1} + \theta \Psi = \Psi_{1} + \psi (2.3)$$

$$F_{A_{X}} = F_{A_{X1}} + f_{A_{X}} F_{A_{Y}} = F_{A_{Y1}} + f_{A_{Y}} F_{A_{Z}} = F_{A_{Z1}} + f_{A_{Z}}$$

$$L_{T} = L_{T_{1}} + l_{T} M_{T} = M_{T_{1}} + m_{T} N_{T} = N_{T_{1}} + n_{T}$$

Ipotesi:

- 1. le variabili legate alla perturbazione (u, v, w, p, q, r) sono considerate piccole quindi il loro prodotto è trascurabile .
- 2. Angoli di eulero constanti $\Phi_1 \Theta_1 e \Psi_1$.
- 3. Velocità laterale $V_1 = 0$.
- 4. Angolo di rollio $\Phi_1 = 0$.

Avendo fatte tutte queste assunzioni considerando di subire una perturbazione che può essere dovuta agli eventi atmosferici oppure ad una manovra da parte del pilota l'aereo risponde seguendo le seguenti equazioni.

$$m[\dot{u} + qW_{1}] = -mg\theta\cos(\Theta_{1}) + f_{A_{X}}$$

$$m[\dot{v} + U_{1}r - pW_{1}] = mg\phi\cos(\Theta_{1}) + f_{A_{Y}}$$

$$m[\dot{w} - U_{1}q] = -mg\theta\sin(\Theta_{1}) + f_{A_{Z}}$$

$$\dot{p}I_{XX} - \dot{r}I_{XZ} = l_{A}$$

$$\dot{q}I_{YY} = m_{A}$$

$$\dot{r}I_{ZZ} - \dot{p}I_{XZ} = n_{A}$$

$$p = \dot{\phi} - \dot{\psi}\sin(\Theta_{1})$$

$$q = \dot{\theta}$$

$$r = \dot{\psi}\cos(\Theta_{1})$$

$$(2.4)$$

Figura 2.3: Velocità angolari nella terna solidale al velivolo [18].

2.2 Adimensionalizzazione

Una volta ricavato le equazioni del moto per piccole perturbazioni, il passo successivo è quello di esprimere le forze e momenti perturbativi tramite coefficienti derivativi di stabilità adimensionali.

I coefficienti derivativi di stabilità e di controllo misurano come cambiano le forze ed i momenti agenti sul velivolo al variare delle condizioni di volo (es:velocità dell'aria, angolo d'attacco, angolo d'attacco laterale o d'imbardata, deflessione delle superfici di controllo). Tali coefficienti si ricavano adimensionalizzando le forze perturbative generate da un cambio nelle variabili di stato del velivolo. La nomenclatura dei coefficienti derivativi è composta dalla lettera "c" che sta per coefficiente, seguito da un primo pedice che esprime la forza o il momento che caratterizza ed un secondo pedice che indica quale la variabile di stato che lo genera. Prima di tutto andiamo ad analizzare le componenti che governano il moto longitudinale. Le componenti perturbative agenti sul moto longitudinale sono $\dot{\alpha}$, u, q, dove una variazione dell'angolo d'attacco può essere intesa anche come una variazione nella componente verticale di velocità tramite la relazione $\tan \alpha = \frac{w}{V_{P_1}}$, assumendo come condizione per moto costante $V_{P_1} = U_1$. L'angolo di deflessione dell'equilibratore- δ_e è espresso in radianti quindi è già adimensionale, così anche per l'angolo della coda orizzontale i_H . Si faccia riferimento [18] [17]
per un approfondimento di tutti i passaggi.

$$\begin{split} f_{A_X} &= \frac{\partial F_{A_X}}{\partial \left(\frac{u}{V_{P_1}}\right)} \left(\frac{u}{V_{P_1}}\right) + \frac{\partial F_{A_X}}{\partial \alpha} \alpha + \frac{\partial F_{A_X}}{\partial \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right)} \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right) + \frac{\partial F_{A_X}}{\partial \left(\frac{q \bar{c}}{2V_{P_1}}\right)} \left(\frac{q \bar{c}}{2V_{P_1}}\right) \\ &+ \frac{\partial F_{A_X}}{\partial \delta_E} \delta_E + \frac{\partial F_{A_X}}{\partial i_H} i_H \\ f_{A_Z} &= \frac{\partial F_{A_Z}}{\partial \left(\frac{u}{V_{P_1}}\right)} \left(\frac{u}{V_{P_1}}\right) + \frac{\partial F_{A_Z}}{\partial \alpha} \alpha + \frac{\partial F_{A_Z}}{\partial \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right)} \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right) + \frac{\partial F_{A_Z}}{\partial \left(\frac{q \bar{c}}{2V_{P_1}}\right)} \left(\frac{q \bar{c}}{2V_{P_1}}\right) \\ &+ \frac{\partial F_{A_Z}}{\partial \delta_E} \delta_E + \frac{\partial F_{A_Z}}{\partial i_H} i_H \\ m_A &= \frac{\partial M_A}{\partial \left(\frac{u}{V_{P_1}}\right)} \left(\frac{u}{V_{P_1}}\right) + \frac{\partial M_A}{\partial \alpha} \alpha + \frac{\partial M_A}{\partial \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right)} \left(\frac{\dot{\alpha} \bar{c}}{2V_{P_1}}\right) + \frac{\partial M_A}{\partial \left(\frac{q \bar{c}}{2V_{P_1}}\right)} \left(\frac{q \bar{c}}{2V_{P_1}}\right) \\ &+ \frac{\partial M_A}{\partial \delta_E} \delta_E + \frac{\partial M_A}{\partial i_H} i_H \end{split}$$

$$\tag{2.5}$$

$$\begin{split} f_{A_X} &= qS\left\{-\left[c_{D_u}+2c_{D_1}\right]\left(\frac{u}{V_{P_1}}\right)+\left[-c_{D_\alpha}+c_{L_1}\right]\alpha-c_{D_{\dot{\alpha}}}\left(\frac{\dot{\alpha}\bar{c}}{2V_{P_1}}\right)-c_{D_q}\left(\frac{q\bar{c}}{2V_{P_1}}\right)-c_{D_{\delta_E}}\delta_E-c_{D_{i_H}}i_H\right)\right\}\\ f_{A_Z} &= qS\left\{-\left[c_{L_u}+2c_{L_1}\right]\left(\frac{u}{V_{P_1}}\right)-\left[-c_{L_\alpha}+c_{D_1}\right]\alpha-c_{L_{\dot{\alpha}}}\left(\frac{\dot{\alpha}\bar{c}}{2V_{P_1}}\right)-c_{L_q}\left(\frac{q\bar{c}}{2V_{P_1}}\right)-c_{L_{\delta_E}}\delta_E-c_{L_{i_H}}i_H\right\}\right\}\\ m_A &= qS\bar{c}\left\{\left[c_{m_u}+2c_{m_1}\right]\left(\frac{u}{V_{P_1}}\right)+c_{m_\alpha}\alpha+c_{m_{\dot{\alpha}}}\left(\frac{\dot{\alpha}\bar{c}}{2V_{P_1}}\right)+c_{m_q}\left(\frac{q\bar{c}}{2V_{P_1}}\right)+c_{m_{\delta_E}}\delta_E+c_{m_{i_H}}i_H\right\} \end{split}$$

$$(2.6)$$

Per le altre tre equazioni che descrivono il moto laterale e i disturbi indotti sul momento di rollio ed imbardata, si segue lo stesso procedimento come per le equazioni longitudinali, in questo caso una perturbazione atmosferica laterale che porti ad una velocità perturbativa v può essere intesa come un aumento nell'angolo di deriva β , tramite la relazione tan $\beta = \frac{v}{V_{P_1}}$. L'adimensionalizzazione delle tre componenti principali $\dot{\beta}$, p ed r assume la seguente forma:

$$\dot{\beta} \left[\frac{rad}{sec} \right] \longrightarrow \frac{\dot{\beta}b}{2V_{P_1}} \qquad p \left[\frac{rad}{sec} \right] \longrightarrow \frac{pb}{2V_{P_1}} \qquad r \left[\frac{rad}{sec} \right] \longrightarrow \frac{rb}{2V_{P_1}}$$
(2.7)

$$f_{AY} = \frac{\partial F_{AY}}{\partial \beta} \beta + \frac{\partial F_{AY}}{\partial \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right)} \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right) + \frac{\partial F_{AY}}{\partial \left(\frac{pb}{2V_{P_{1}}}\right)} \left(\frac{pb}{2V_{P_{1}}}\right) + \frac{\partial F_{AY}}{\partial \left(\frac{rb}{2V_{P_{1}}}\right)} \left(\frac{rb}{2V_{P_{1}}}\right) \\ + \frac{\partial F_{AY}}{\partial \delta_{E}} \delta_{E} + \frac{\partial F_{AY}}{\partial \delta_{R}} \delta_{R} \\ l_{A} = \frac{\partial L_{A}}{\partial \beta} \beta + \frac{\partial L_{A}}{\partial \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right)} \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right) + \frac{\partial L_{A}}{\partial \left(\frac{pb}{2V_{P_{1}}}\right)} \left(\frac{pb}{2V_{P_{1}}}\right) + \frac{\partial L_{A}}{\partial \left(\frac{rb}{2V_{P_{1}}}\right)} \left(\frac{rb}{2V_{P_{1}}}\right) \\ + \frac{\partial L_{A}}{\partial \delta_{E}} \delta_{E} + \frac{\partial L_{A}}{\partial \delta_{R}} \delta_{R} \\ n_{A} = \frac{\partial N_{A}}{\partial \beta} \beta + \frac{\partial N_{A}}{\partial \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right)} \left(\frac{\dot{\beta}b}{2V_{P_{1}}}\right) + \frac{\partial N_{A}}{\partial \left(\frac{pb}{2V_{P_{1}}}\right)} \left(\frac{pb}{2V_{P_{1}}}\right) + \frac{\partial N_{A}}{\partial \left(\frac{rb}{2V_{P_{1}}}\right)} \left(\frac{rb}{2V_{P_{1}}}\right) \\ + \frac{\partial N_{A}}{\partial \delta_{E}} \delta_{E} + \frac{\partial N_{A}}{\partial \delta_{R}} \delta_{R}$$

$$(2.8)$$

$$f_{A_{Y}} = qS \left\{ c_{Y_{\beta}}\beta + c_{Y_{\dot{\beta}}} \left(\frac{\beta b}{2V_{P_{1}}} \right) + c_{Y_{p}} \left(\frac{pb}{2V_{P_{1}}} \right) + c_{Y_{r}} \left(\frac{rb}{2V_{P_{1}}} \right) + c_{Y_{\delta_{E}}}\delta_{E} + c_{Y_{\delta_{R}}}\delta_{R} \right\}$$

$$l_{A} = qS \left\{ c_{l_{\beta}}\beta + c_{l_{\dot{\beta}}} \left(\frac{\dot{\beta} b}{2V_{P_{1}}} \right) + c_{l_{p}} \left(\frac{pb}{2V_{P_{1}}} \right) + c_{l_{r}} \left(\frac{rb}{2V_{P_{1}}} \right) + c_{l_{\delta_{E}}}\delta_{E} + c_{l_{\delta_{R}}}\delta_{R} \right\}$$

$$n_{A} = qS \left\{ c_{n_{\beta}}\beta + c_{n_{\dot{\beta}}} \left(\frac{\dot{\beta} b}{2V_{P_{1}}} \right) + c_{n_{p}} \left(\frac{pb}{2V_{P_{1}}} \right) + c_{n_{r}} \left(\frac{rb}{2V_{P_{1}}} \right) + c_{n_{\delta_{E}}}\delta_{E} + c_{n_{\delta_{R}}}\delta_{R} \right\}$$

$$(2.9)$$

Nei capitolo successivi verrà fatta un analisi approfondita sul calcolo dei coefficienti derivativi e sulla loro importanza sull'analisi di stabilità.

2.3 Stima del Momento d'inerzia

Partendo dalla estimazione della massa basando sul lavoro svolto antecedente [7], quello che è stato fatto è ripartire tale peso sui componenti principali del motoaliante in accordo con riferimento [20] dove spiega come ripartire la massa totale sui principali componenti che la compongono. In seguito è stato ripartito così la massa:

1. Ali-85kg.

- 2. Fusoliera -50kg.
- 3. Elica, Motore, Batterie-32kg.
- 4. Coda Verticale+ coda orizzontale 10kg.
- 5. Pilota-85kg.
- 6. Massa Totale = 272 kg, Massa a vuoto = 177 kg.

In seguito utilizzando **SolidWorks** è stato trovato il baricentro del motoaliante avendo le seguenti coordinate $x_{CG} = 1,81 \ z_{CG} = 0,29$, mentre il momento d'inerzia

$$I = \begin{bmatrix} 722 & 0 & -8,89\\ 0 & 285 & 0\\ -8,89 & 0 & 995 \end{bmatrix}$$

Per la determinazione delle caratteristiche dinamiche si è optato per la soluzione che comprende il pilota da 85kg in quanto, per opzioni dove la massa del pilota sia minore si possono utilizzare zavorre di acqua per mantenere il punto ottimale di crociera studiato in questa testi, questa soluzione è spesso impiegata specialmente sui motoalianti/alianti ad altissime prestazioni.

Capitolo 3

Caratteristiche Geometriche e aerodinamiche di base

3.1 Caratteristiche Geometriche

Come enunciato nel capitolo precedente un ruolo importante nel definire i parametri geometrici del motoaliante l'ha avuto la determinazione dei momenti d'inerzia e il baricentro, in quanto tutti i valori sono espressi in base alla posizione del baricentro. Di seguito nella Figura 3.1 ci sono i valori di base, da menzionare che tali valori sono quelli definitivi e non quelli di partenza, in quanto durante il processo della determinazione della stabilità dinamica sono state fatte molte modifiche al fine di arrivare alla stabilità dinamica laterale del modo a spirale a tal proposito è stato introdotto anche un angolo di diedro- $\Gamma_W=8^\circ$. Rispetto al lavoro preliminare è stato conservato solo la geometria della fusoliera mentre sono stati modificati tutti gli altri parametri come verrà visualizzato di seguito. Le notazioni principali che caratterizzano il motoaliante e nello specifico l'ala sono:

1. Il rapporto di rastremazione $\lambda = \frac{c_R}{c_T}$ dove, c_R è la corda alla radice, dove l'ala è attaccata alla fusoliera, e c_T è la corda all'estremità, nel nostro caso essendo a doppia rastremazione si calcolano i due rapporti di rastremazione λ_1 e λ_2 delle singoli sezioni di ala, dopo di che si utilizza la seguente espressione:

$$\lambda = \frac{\lambda_1 \cdot S_1 + \lambda_2 \cdot S_2}{S} = 0,3 \tag{3.1}$$

2. $\Lambda_{\overline{c}/4}$ l'angolo di freccia dell'ala al quarto di corda della corda media aerodinamica.

Figura 3.1: Misure geometriche del motoaliante.

	Dat	ti Ala	
AR	19,5	$S[m^2]$	7,26
b[m]	12	$\Lambda_{\overline{c}/4}^{\circ}$	-1,441
$b_V[m]$	$0,\!5$	λ	$0,\!3$
b_H	2,4	m.a.c	0,662
$c_R[m]$	0,8	$c_{T_1}[m]$	0,696
$c_{T_2}[m]$	0,24	X_{CG}	1,81

Tabella 3.1: Riassunto dei valori principali dell'aliante.

3. $m.a.c = \overline{c}$ corda media aerodinamica, definita dall'espressione:

$$\overline{c} = \frac{2}{3}c_R \cdot \frac{1+\lambda+\lambda^2}{1+\lambda} \tag{3.2}$$

4. AR=Aspect ratio definito da:

$$AR = b^2/S \tag{3.3}$$

- 5. *b* apertura alare del motoaliante.
- 6. S-superficie alare del motoaliante.

3.2 Profilo Alare

Nella descrizione delle caratteristiche di un profilo alare sono di fondamentale importanza sono i coefficienti adimensionali che sono ricavati usando il teorema di Buckingham. Essi sono dipendenti dal numero di Reynolds. Essendo

Figura 3.2: Dimensioni geometriche del Flap e Alettone.

questa tesi un proseguimento del lavoro iniziato dal mio collega [7] tralascerò la descrizione dei coefficienti di portanza e resistenza dei profili alari dell'ala e mi concentrerò sulla descrizione dei coefficienti derivativi della stabilità.

3.2.1 Centro Aerodinamico

Il centro aerodinamico viene espresso come una frazione di lunghezza \bar{c} . Secondo la definizione [5] "Il centro aerodinamico è il punto dove il coefficiente del momento di beccheggio è costante indipendentemente dalla variazione del coefficiente di portanza, il coefficiente di beccheggio rispetto al centro aerodinamico si indica come $c_{m_{ac}}$. Il $c_{m_{ac}}$ è molto importante nell'analisi di stabilità, per un determinato profilo, dipende dal centro di pressione- c.p e dal coefficiente di portanza c_l . Il x_{cp} è la distanza dal L.E lungo la corda dove viene assunto che la risultante di tutte le forze di pressione lungo il profilo agisca.

Figura 3.3: Portanza e centro di pressione [5].

Per trovare il centro aerodinamico si crea un grafico come nella figura 3.4 dove la pendenza della curva non è altro che il coefficiente di beccheggio $c_{m_{ac}}$, e l'intersezione della retta con l'asse delle ordinate mi fornisce il valore di $x_{a.c}$

Nei software come **Xfoil** o negli articoli scientifici contenenti dati sperimentali per convenienza si esprime il momento di beccheggio rispetto al 0.25*c*. Con riferimento alla figura 3.3 possiamo ricavare il x_{cp} in funzione di $c_{m_{0.25c}}$. Dove $x_{cp} = \frac{c.p}{c}$ ed $n = 0.25c = \frac{n'}{c}$

$$x_{cp} = 0.25c - \frac{c_{m_{0.25c}}}{C_l} \tag{3.4}$$

$$a.c. = 0.25c - \frac{\mathrm{d}c_{m_{0.25c}}}{\mathrm{d}C_l} \tag{3.5}$$

Figura 3.4: Relazioni tra $C_P \in C_L$ [5].

Il centro aerodinamico dell'ala finita è il punto di riferimento rispetto al quale si fa tutta la trattazione della stabilità del motoaliante. Per procedere al calcolo del centro aerodinamico e le caratteristiche dell'ala, si considera [8] l'ala rastremata come formata di una serie di profili che possono variare lungo l'apertura alare per quanto riguarda la corda l'angolo d'attacco, quindi si introduce lo svergolamento dell'ala detto anche *twist*.

Ogni profilo considerato avrà il suo corrispettivo $x_{a.c}$ dove agiscono le forze di portanza, di resistenza e dove il coefficiente di beccheggio rimane costante al variare dell'angolo d'attacco. In questa trattazione che si applica al trovare x_{AC} , il coefficiente di portanza sarà dato dalla somma di due coefficienti uno detto "di base"- c_{l_b} , che dipende principalmente dallo svergolamento dell'ala e si trova quando la portanza è nulla e non cambia con l'angolo di attacco dell'ala, il secondo detto "aggiuntivo"- c_{l_a} è il coefficiente di portanza che cambia con la variazione dell'angolo di attacco ed è indipendente dallo svergolamento ϵ_t dell'ala. Definiamo un sistema di coordinate nel centro aerodinamico del profilo alla radice con l'asse x parallelo alla corda e l'asse y perpendicolare ad essa lungo la semi-apertura alare. In una sezione generica dell'ala avremmo che il centro aerodinamico di tale profilo si trova ad una distanza x dall'asse y, che produce un momento di beccheggio rispetto all'asse y eq 3.6 dovuto alla forza di portanza, mentre si trascura il momento generato dalla forza di resistenza essendo di piccola entità rispetto a C_{m_la} .

Considerando che la forza di portanza *aggiuntiva* agisce nel centro aerodinamico dell'ala definito come x_{AC} e $C_{m_{l_a}}$ può essere espresso tramite la seguente equazione:

$$M_{l_a} = -2q\cos(\alpha_s) \int_0^{\frac{b}{2}} c_{l_a} cxdy \tag{3.6}$$

$$C_{m_{l_a}} = -\frac{M_{l_a}b}{qS^2} \tag{3.7}$$

$$C_{m_{l_a}} = -(x_{a.c.}\cos(\alpha_s))\frac{b}{S}C_L$$
(3.8)

Dal confronto delle eq. 3.6 e 3.8 possiamo ricavare il $x_{a.c.}$.

$$x_{a.c.} = \frac{2}{SC_L} \int_0^{\frac{b}{2}} c_{l_a} cx dy$$
 (3.9)

Il momento di beccheggio dovuto alla forza di portanza di base è indipendente dall'asse preso come riferimento per il calcolo, quindi si preferisce prendere un asse parallelo all'asse y passante per $x_{a.c.}$ allora esso diventa:

$$C_{m_{l_b}} = \pm \frac{2b}{S^2} \int_0^{\frac{b}{2}} c_{l_b} cx dy \tag{3.10}$$

Al $C_{m_{l_b}}$ si deve aggiungere il $c_{m_{ac}}$ di ogni profilo lungo l'apertura alare.

$$C_{m_s} = \frac{2b}{S} \int_0^{\frac{b}{2}} c_{m_{ac}} c^2 dy$$
 (3.11)

$$C_{m_{a.c.}} = C_{m_{l_b}} + C_{m_s} \tag{3.12}$$

3.2.2 Determinazione delle caratteristiche dell'ala

Con riferimento [7] dove è stato fatta una scelta preliminare per quanto riguarda i profili da utilizzare nell'ala a doppia rastremazione e utilizzando il metodo fornito nel riferimento [8] andremmo a ricavare le caratteristiche elementari di un ala. Per il calcolo della pendenza della curva di portanza che non è altro che $\frac{dC_L}{d\alpha_s}$ dove α_s è l'angolo d'attacco assoluto dell'ala, si usa la l'eq 3.13 dove il valore di f una volta ricavato il rapporto di rastremazione $\frac{c_t}{c_r}$ e l'AR si trova dalla Figura 3.5. Nel nostro caso avendo un $\frac{c_t}{c_r} = 0.3$ e AR=20 otteniamo f = 0,996.

$$a = f \frac{a_0}{1 + \frac{57,3a_0}{\pi AR}} \tag{3.13}$$

$$c_{l_{\alpha}} = \frac{a_0 A R}{\frac{a_0}{\pi} + \sqrt{\left(\frac{a_0}{\pi}\right)^2 + \left(\frac{A R}{\cos(\Lambda_{c/2})}\right)^2}} \frac{1}{57.3}$$
(3.14)

Figura 3.5: Diagramma per determinare f [8].

Per la determinazione di c_{l_b} e c_{l_a} per ogni profilo lungo l'apertura alare si introducono due variabili L_b e L_a [8] che variano lungo l'apertura alare e i corrispettivi valori dipendono da AR e $\frac{c_t}{c_r}$ [8].

$$c_{l_b} = \frac{\epsilon a_0 S}{cb} L_b \tag{3.15}$$

$$c_{l_a} = \frac{S}{cb} L_a \tag{3.16}$$

L'angolo d'attacco assoluto α_s misurato al profilo alla radice, una volta fissato il coefficiente di portanza necessario dipende dallo svergolamento dell'ala, dall'angolo per cui i profili hanno portanza nulla e dalla variabile J secondo l'eq 3.17. Imponendo la condizione $C_L = 0$ nell'eq 3.17 possiamo ricavare $\alpha_{s_{(L=0)}}$ angolo d'attacco assoluto a portanza nulla.

$$\alpha_s = \frac{C_L}{a} + \alpha_{l_{0_s}} + J\epsilon \tag{3.17}$$

Dove la variabile J si ricava dalla Figura 3.6.

Per ricavare il coefficiente di resistenza indotta C_{D_i} , introduciamo 3 nuovi variabili u, v, w. Osservando la Figura 3.7 si osserva che a parità di ARil rapporto di rastremazione consigliato rimane tra 0,3-0,4 per avvicinarsi il più possibile ad una distribuzione ellittica della portanza. Dalla Figura 3.8 e 3.9 possiamo ricavare gli altri fattori della resistenza indotta tramite interpolazione tra il λ pari a 0,2 e 0,4 sempre in funzione dell'aspect ratio.

$$C_{D_i} = \frac{C_L^2}{\pi A R u} + C_L \epsilon a_0 v + (\epsilon a_0)^2 w$$
(3.18)

Figura 3.6: Diagramma per determinare il fattore J della resistenza indotta [8].

Figura 3.7: Diagramma per determinare il fattore u della resistenza indotta [8].

Figura 3.8: Diagramma per determinare il fattore v della resistenza indotta [8].

Figura 3.9: Diagramma per determinare il fattore w della resistenza indotta [8].

Figura 3.10: Diagramma per la determinazione della posizione di $x_{a.c.}$ in funzione di λ ed AR [8].

Per ricavare $x_{a.c.}$ in prima approssimazione possiamo considerare come se avesse una rastremazione lineare lungo l'apertura alare con un angolo di freccia $\Lambda_{\bar{c}/4}$ in questo modo possiamo sfruttare l'eq 3.19 dove il fattore H si ricava dalla Figura 3.10: Interpolando tra le due curve di λ si ottiene un valore di H=0,204.

$$x_{a.c.} = \frac{S}{b} HAR \tan(\Lambda_{c/4}) \tag{3.19}$$

Utilizzando le stesse ipotesi fatte per $x_{a.c.}$ possiamo andare a ricavare il coefficiente del momento di imbardata intorno al centro aerodinamico dell'ala dove:

$$C_{m_s} = Ec_{m_{a.c.}} \tag{3.20}$$

Figura 3.11: Diagramma per la determinazione di G [8].

Mentre la forma esatta del fattore E:

$$E = \frac{2b}{S^2} \int_0^{\frac{b}{2}} c^2 dy$$
 (3.21)

Per quanto riguarda il momento di imbardata dovuto alla distribuzione della portanza di base lo possiamo esprimere usando la formula empirica fornita da **Raymond F. Anderson**:

$$C_{m_{l_b}} = -G\epsilon a_0 A R \tan(\Lambda_{c/4}) \tag{3.22}$$

Il fattore G si ricava dalla Figura 3.11 che per $\lambda=0,3$ assume un valore di $G\approx 0,0305.$

Nella Figura 3.12 vengono riportati i valori dei vari coefficienti che hanno portato al calcolo del centro aerodinamico dell'ala essendo questo un valore importantissimo per la determinazione della stabilità. Ci si è concentrati sul calcolo a $\text{Re}<10^6$ per poter analizzare meglio le condizioni per cui l'aliante potrebbe andare in stallo a basse velocità. Per le altre condizioni di volo compreso il volo di crociera è stato utilizzato il valore di portanza calcolato tramite **Digital Datcom**.

	Dati Ala					
Re=100 000	Re=200 000	Re=400 000	Re=750 000			
Cla	Cla	Cla	Cia			
1,0819	0,9038	0,8509	0,9241			
α _{s(L=0)} [°]	α _{s(L=0)} [°]	α _{s(L=0)} [°]	α _{s(L=0)} [°]			
-5,26	-7,76	-8,26	-8,26			
C _{mlb}	C _{mlb}	C _{mlb}	C _{mlb}			
0,0452	0,0376	0,0354	0,0385			
C _{ms}	C _{ms}	C _{ms}	C _{ms}			
-0,1485	-0,1909	-0,2063	-0,2134			
C _{m.a.c}	C _{m.a.c}	C _{m.a.c}	C _{m.a.c}			
-0,1033	-0,1532	-0,1709	-0,1749			
X _{a.c.r}	X _{a.c,r}	X _{a.c,r}	X _{a.c,r}			
-0,081056966	-0,081056966	-0,081056966	-0,081056966			
x _{a.c} (%c _r)						
16,79%	16,29%	16,22%	16,10%			
X _{a.c}	Xa.c	X _{a.c.}	Xa.c			
0,202952307	0,196910011	0,19606409	0,194613939			

Figura 3.12: Valori caratterizzanti l'ala.

Figura 3.13: Suddivisione della fusoliera secondo il metodo di Multhopp [19].

3.2.3 Contributo della Fusoliera

Una volta calcolato il centro aerodinamico dell'ala, il passo successivo è calcolare il contributo fornito dalla fusoliera, al riguardo si è preso come riferimento il lavoro svolto da Multhopp [19] dove si divide la fusoliera come nella Figura 3.13.

Allora il contributo dovuto alla fusoliera diventa:

$$\Delta \overline{x}_{AC_B} = -\frac{1}{2.92S\overline{c}} \sum_{i=1}^{N} w_{B_i}^2 \left(\frac{d\epsilon}{d\alpha}\right) \Delta x_i \tag{3.23}$$

Dove w_{B_i} è lo spessore della fusoliera corrispondente al Δx_i , secondo Multhopp per una fusoliera classica bastano 13 suddivisioni lungo l'asse x, tuttavia data la particolare geometria si è optato per una suddivisione pari a 40,

Figura 3.14: Downwash ed upwash lungo la fusoliera [1].

in modo tale da rendere il risultato il più esatto possibile. Per il valore $\frac{d\epsilon}{d\alpha}$ si sono presi i valori dalla Figura 3.14.

In definitiva si ottiene, considerando che x_{ac} nella Figura 3.12 è espresso in funzione della corda alla radice dell'ala, mentre è molto più importante esprimerlo in funzione della corda media, esso diventa $\overline{x}_{AC} = 0,323$.

$$\Delta \overline{x}_{AC_B} = -0,02744$$

$$\overline{x}_{AC_{WB}} = x_{AC} + \Delta \overline{x}_{AC_B} = 0,2958$$
(3.24)

					Fusolie	ra -∆x _{AC}				
X _i		ΔX _i	ω _B	(X _i /c _R)	(dε _m /dα)	Xi	ΔX _i	ω	(X _i /c _R)	$(d\epsilon_m/d\alpha)$
	1,622	0,1	0,08	2,0275	1,1	0,074	0,148	0,46	0,0925	4
	1,522	0,1	0,14	1,9025	1,1	3,4	0,0775	0,155	0,27	0,096875
	1,422	0,1	0,19	1,7775	1,1	0,255	0,2	0,228	0,31875	0,068983
	1,322	0,1	0,23	1,6525	1,1	0,455	0,2	0,185	0,56875	0,123088
	1,222	0,1	0,26	1,5275	1,1	0,655	0,2	0,153	0,81875	0,177192
	1,122	0,1	0,29	1,4025	1,1	0,855	0,2	0,134	1,06875	0,231297
	1,022	0,1	0,32	1,2775	1,15	1,055	0,2	0,129	1,31875	0,285401
	0,922	0,1	0,34	1,1525	1,2	1,255	0,3	0,131	1,56875	0,339506
	0,822	0,1	0,36	1,0275	1,2	1,555	0,2	0,131	1,94375	0,420662
	0,722	0,1	0,38	0,9025	1,25	1,755	0,2	0,131	2,19375	0,474767
	0,622	0,1	0,4	0,7775	1,27	1,955	0,2	0,131	2,44375	0,528871
	0,522	0,1	0,42	0,6525	1,3	2,155	0,2	0,121	2,69375	0,582976
	0,422	0,1	0,43	0,5275	1,4	2,355	0,2	0,116	2,94375	0,63708
	0,322	0,1	0,44	0,4025	1,5	2,555	0,2	0,112	3,19375	0,691185
	0,222	0,1	0,45	0,2775	1,7	2,755	0,19	0,11	3,44375	0,745289

Figura 3.15: Elenco di tutti i valori della suddivisione della fusoliera.

3.3 Downwash e Pressione Dinamica sulla coda

Essendo l'angolo d'attacco un elemento molto importante nella variazione delle caratteristiche del profilo, ci ritroviamo che l'angolo d'attacco dovuto al vento relativo che investe la coda è influenzato in modo rilevante dal downwash prodotto dall'ala. Il downwash dell'ala piana nell'ipotesi di trascurare lo svergolamento dell'ala stessa, è in gran parte generato dai vortici di estremità. Per calcolare il downwash si fa l'ipotesi che il vortice non si deformi a vale e che lo spostamento del vortice vicino al centro di coda sia pari allo spostamento dell'intero vortice. Uno spostamento verticale del vortice di scia comporterà anche un spostamento verticale del downwash. L'intensità dei vortici di scia, dell'angolo di downwash ϵ e dello spostamento a vale dei vortici sono direttamente proporzionali al c_L . Ad alti valori del coefficiente di portanza ci sono 3 effetti che entrano in gioco e fanno aumentare notevolmente ϵ , e sono:

- 1. La forte intensità dei vortici di scia dovuta alla curvatura che arriva fino al centro dell'ala.
- 2. L'effetto dei vortici di avvolgimento con un effetto marcato ad alti valori di c_L .
- 3. Il flusso dell'aria dentro alla scia che coincide con i vortici d'estremità.

Nel caso di flap attivi, l'effetto del downwash è la somma tra l'effetto dovuto all'ala e al movimento del flap, dove il contributo dovuto al flap è proporzionale all'incremento di c_L

Il flusso d'aria è caratterizzata da una perdita di pressione totale, essendo massima nel centro della scia che allo stesso tempo coincide con il centro dei vortici d'estremità e decresce fino ad un valore nullo ai suoi bordi, che non sono ben definiti.

Per il calcolo del downwash ci baseremo su un procedimento empirico di derivazione sperimentale [9]. Le prime assunzioni che dobbiamo fare è il rapporto $\frac{b_f}{b/2}$ dove b_f è la lunghezza dei flap. In base ai valori di C_L [7]. Come conseguenza in base alle varie considerazioni [10] [5] scegliamo un rapporto $\frac{b_f}{b/2} = 0, 4$ e $\frac{c_f}{c} = 0, 2$. In base ai diagrammi [10] andando a osservare l'andamento dell'angolo di downwash. Si osserva che nelle ipotesi in cui l'unica variabile che cambia passando da un aspect ratio pari a 9 ad una pari a 12 non si hanno variazioni significative, mentre rispetto ad un aspect ratio pari a 6 si hanno variazioni significative. In base a queste costatazioni in prima approssimazione useremo i diagrammi ricavati per un aspect ratio pari a 12 per dedurre i valori del downwash nel nostro progetto. Per riuscire a ricavare

Figura 3.16: L'effetto dei vortici di scia e quelli di avvolgimento sul downwash e upwash [10].

l'ampiezza del vortice d'estremità nella prossimità della cosa e dell'angolo di downwash dovremmo definire le seguenti variabili:

1. Pressione dinamica q definita da:

$$q = \frac{1}{2}\rho U^2 \tag{3.25}$$

- 2. m: Distanza verticale tra l'asse di cerniera dell'equilibratore e il punto d'origine della scia d'estremità misurata perpendicolarmente al vento relativo.
- 3. ξ : Distanza Longitudinale tra l'asse di cerniera dell'equilibratore e il punto d'origine della scia d'estremità misurata perpendicolarmente al vento relativo.
- 4. $x_{c_{r_h}}$: Distanza tra il quarto di corda alla radice dell'ala e l'asse di cerniera dell'equilibratore.
- 5. ζ : Raggio della scia d'estremità vicino all'asse di cerniera.
- 6. η : Perdita di pressione dinamica.

$$\zeta = 0,68c_{d_0}^{0,5}(\xi + 0, 15)^{0,5} \tag{3.26}$$

Figura 3.17: Distribuzione del carico , dello spostamento di scia e dell'angolo di downwash per AR=12 e λ =0,33 [8].

Figura 3.18: Incremento di C_L dovuta alla deflessione dei flap [9].

α	$\frac{q_H}{q}$	ϵ	$rac{d\epsilon}{dlpha}$
0	1	1,759	0,239
1	1	1,999	0,239
2	1	$2,\!237$	0,230
3	1	$2,\!459$	0,223
4	1	2,684	0,229
5	1	2,916	0,204
6	1	3,092	0,202
7	1	3.321	0,229

Tabella 3.2: Dati Downwash $Re = 10^6$ calcolati con Datcom+.

$$\eta = \frac{2,42c_{d_0}^{0,5}}{\xi + 0,3} \tag{3.27}$$

Valuteremo inizialmente il downwash e l'ampiezza della scia d'estremità nella prossimità della coda utilizzando il metodo di **A.Silverstein** [9], estrapolando per un aspect ratio pari a 20. Definiamo $\xi_0 = \xi(\alpha = 0)$ allora ξ in funzione dell'angolo d'attacco diventa:

$$\xi = \frac{\xi_0}{\cos(\alpha)} \tag{3.28}$$

Allo stesso modo definiamo $m_0 = m(\alpha = 0)$:

$$m = m_0 - \xi_0 \tan(\alpha) \tag{3.29}$$

Facendo un confronto tra il metodo [10] per cui ho estrapolato l'andamento ad AR=20, partendo sui dati ad AR=6 AR=9 ed AR=12 e i dati della Figura 3.2 si ha una differenza quasi nulla per $\alpha = 0$ mentre per $\alpha = 8.0$ si ha una differenza di circa 0,6° mentre il rapporto di $\frac{q_H}{q}$ in entrambi casi è pari a 1, questo dato è molto importante in quanto determina l'autorità delle superficie di controllo nella coda. Per quanto riguarda l'angolo di incidenza alla coda ϵ dato la difficoltà nel calcolo di tale valore ottenendo questi due valori calcolati con due metodi differenti molto vicini ci aiuta a definire meglio l'angolo con cui verrà montata la coda orizzontale rispetto al piano dell'ala, per ottimizzare l'efficienza durante il volo di crociera.

alpha	\xi	/m	x_crh h	з	ᆂ	AR6	AR9	AR12 AF	20	\e=1e5 ε[°] R	e=4e5 ε[°] f	\e=7,5e5	Re=1e6 ɛ[°]	dynamic pressure V	vidth wake
	3,8	-0,11667	0,64	0,05	0,066666667	8,2	5,6	4,5	2,9	1,73362	1,73362	1,7438738	1,8723096	0,098766696	0,226144732
—	3,799421	-0,10782	0,639903	0,05	0,057822767	8 ,3	5,6	4,5	2,9	0,79053072	2,0109992	2,020329	2,1496888	0,09878064	0,226128164
2	3,797685	-0,09897	0,63961	0,05	0,048973477	-83	5,7	4,5	2,9	1,06790992	2,2883784	2,2967842	2,427068	0,098822491	0,226078458
	3,794792	-0,09011	0,639123	0,05	0,040113392	.89	5,7	4,5	2,9	1,34528912	2,5657576	2,5732395	2,7044472	0,098892308	0,225995606
4	3,790743	-0,08124	0,638441	0,05	0,031237082	<u>چ</u>	5,7	4,6	2,9	1,62266832	2,8431368	2,8496947	2,9818264	0,098990187	0,225879598
5	3,78554	-0,07234	0,637565	0,05	0,022339077	8,4	5 8	4,7		1,9655664	3,22812	3,2339482	3,371592	0,099116266	0,225730418
5	3,779183	-0,06341	0,636494	0,05	0,013413854	<u>%</u>	5 8	4,7		2,2525104	3,515064	3,5199364	3,658536	0,09927072	0,225548045
	3,771675	-0,05446	0,63523	0,05	0,004455822	8,6	Ş	4,75		2,5394544	3,802008	3,8059245	3,94548	0,099453767	0,225332455
	3,763019	-0,04546	0,633772	0,05	0,00454069	8,6	Ş	4,75		2,8263984	4,088952	4,0919127	4,232424	0,099665664	0,225083618
9	3,753216	-0,03642	0,632121	,05	0,01358145	,80 5	5 <u>8</u>	4,7		3,1133424	4,375896	4,3779009	4,519368	0,099906712	0,2248015
5	3,742269	-0,02733	0,630277	,05	0,022672337	8,4	5,8	4,7	2,9	3,28694352	4,507412	4,5084261	4,6461016	0,100177254	0,22448606
E	3,730183	-0,01818	0,628241	,05	0,031819357	,83 3	5,7	4,6	2,9	3,56432272	4,7847912	4,7848813	4,9234808	0,100477676	0,224137255
12	3,716961	-0,00897	0,626014	,05	0,041028658	,83 3	5,7	4,6	2,9	3,84170192	5,0621704	5,0613365	5,20086	0,100808413	0,223755036
8	3,702606	0,000307	0,623597	0,05	0,05030655	<u>چ</u>	5,6	4,5	2,9	4,11908112	5,3395496	5,3377918	5,4782392	0,101169945	0,223339346
14	3,687124	0,00966	0,620989	0,05	0,059659521	8,2	5,6	4,5	2,9	4,39646032	5,6169288	5,614247	5,7556184	0,1015628	0,222890127
15	3,670518	0,019094	0,618193	0,05	0,069094257	8,2	5,6	4,5	2,9	4,67383952	5,894308	5,8907022	6,0329976	0,101987559	0,222407312

Figura 3.19: Calcolo del downwash e lo spessore della scia in prossimità della coda 40

coda	orizzontale	equi	libratore
c_r	0,425	c_r	$0,\!15$
c_t	0,325	c_t	$0,\!15$
b_H	$2,\!4$	b_E	2,4
\overline{c}_H	0,386	$\frac{c_E}{\overline{c}_H}$	0,389
λ_H	0,736	$\frac{b_E}{b_H}$	1

Tabella 3.3: Dimensioni geometriche della coda orizzontale.

3.4 Coda Orizzontale

Per la scelta della coda orizzontale il requisito principale è quello di controbilanciare il momento di beccheggio generato dalle ali. In più la coda orizzontale tramite l'equilibratore è quella che governa il moto longitudinale del motoaliante quindi la sua dimensione è molto importante per prevenire situazioni che possono portarci in fase di stallo o viceversa ci fornisce il momento di beccheggio necessario ad uscire da situazioni critiche. Per la scelta ottimale si è tenuto conto delle indicazioni fornite da Pajno [21], mantenendo il profilo prescelto nel progetto preliminare HQ-1,0-8 e si è optato per un *stabilizzatore* con una leggera rastremazione mentre per l'*equilibratore* si è optato per la tipologia *plain flap* con una corda costante in modo da essere facilmente realizzabile dal punto di vista costruttivo. In più è stato studiato che la deflessione dell'equilibratore sia sufficiente a fornire il momento di beccheggio per controbilanciare la deflessione dei flap in fase di atterraggio e decollo. I valori finali della coda e dell'equilibratore sono contenuti nella Tabella 3.3.

3.5 Coda verticale

Mentre la coda orizzontale è quella che governa il moto longitudinale, il moto laterale specialmente quello d'imbardata è governato dalla coda verticale. Il dimensionamento finale della coda verticale è una conseguenza dell'analisi della stabilità dinamica. Dato la distribuzione ipotizzata delle masse nel motoaliante e la superficie laterale della fusoliera molto contenuta, la coda verticale compresa del timone ha una autorevolezza significativa come si vedrà in seguito.

coda ve	erticale	timone(ru	dder)
$c_r[m]$	$0,\!325$	$c_{R}\left[m ight]$	$0,\!12$
$c_t[m]$	$0,\!225$	$Z_{AC_R}\left[m\right]$	$0,\!25$
$b_V[m]$	0,5	$X_{AC_R}[m]$	3,52
$\overline{c}_{V}[m]$	0,278	$b_R[m]$	$0,\!5$
λ_V	0,692	λ_r	1

Tabella 3.4: Dimensioni geometriche della coda verticale e del timone

Per la coda verticale è stato mantenuto lo stesso profilo della coda orizzontale ed il timone di coda, per il dimensionamento del timone sono state seguite le indicazioni di Pajno [23] e si è scelto un rapporto $\frac{c_R}{\overline{c}_V} = 0, 4.$

Rispetto al progetto preliminare la superficie totale della coda è stata diminuita in quanto generava instabilità nel modo spirale. Essendo che il dutch roll è accoppiato con il modo spirale e l'aumentare la stabilità di uno va a diminuire la stabilità dell'altro modo, alla fine si è ottenuto un punto di ottimo tra un leggero aumento dell'angolo diedro delle ali e la diminuzione della superficie della coda verticale. Di seguito nella Tabella 3.4 tutti i dati finali del dimensionamento della coda verticale e del timone.

3.6 Alettoni

Gli alettoni sono quelli che governano le manovre di rollio e sono utilizzati deflettendoli in modo asimmetrico tale che non provochi variazioni nel momento di beccheggio, a differenza dei flap,. Il moto generato dalla deflessione degli alettoni è accoppiato con il momento di imbardata quindi durante le manovre spesso si utilizzano insieme al timone di coda. Seguendo il trend nella progettazione dei motoalianti si è optato per dei plain flap posizionati sulla seconda parte dell'ala, il requisito del dimensionamento del flap è collegato alla normativa PAR 157 [24] che impone alla velocità di $1,2V_S$ sia in grado nell'arco di 4s che passi da -30° a $+30^{\circ}$ durante una manovra di rollio, se la condizione è soddisfatta per tale velocità per velocità più alte la condizione sarà soddisfatta automaticamente in quanto la pressione dinamica aumenta e quindi anche l'autorità di manovra aumenta . Per determinare quindi le dimensioni sono state eseguite delle simulazioni in *Simulink* per determinare il tempo di manovra. I valori finali scelti per l'alettone sono una lunghezza totale pari a $b_A = 6m$ posizionati a 3 metri dalla radice dell'ala con una corda pari 0.15m.

3.7 Flap

Per migliorare le caratteristiche di portanza in fase di decollo e di atterraggio tipicamente su ogni tipo di velivolo vengono usati dispositivi ad alta portanza. Questi dispositivi possono essere collocati al trailing edge ed al leading edge dell'ala, tutta via per semplicità costruttive e di manovrabilità, la scelta è caduta sul *flap* al trailing edge.

Il fowler flap è stato scartato in partenza, dovuto alla complessità d'ingombro del meccanismo di dispiego che non trova collocazione su un ala di spessore sottile come nel motoaliante.

In seguito sono stati analizzati i 3 tipi di *flap*. Dal punto di vista dell'incremento di $C_{l_{max}}$ lo *slotted flaps* ha le prestazioni migliori, mentre il *plain flaps* ha dalla sua la semplicità costruttiva tuttavia essendo un progetto universitario non si possono usare tolleranze di lavorazione molto spinte, questo minerebbe la continuità di superficie sulla parte superiore dell'ala, potendo essere fonte di generazioni dello stacco dello strato limite localmente, e aumenterebbe il drag che è in contrasto con le nostre esigenze. In definitiva si è optato per lo *split flaps* dovuta alla semplicità costruttiva che si avvicina al plain flaps, in aggiunta però mi permette di preservare l'efficienza aerodinamica durante il volo di crociera. In seguito nella Figura 3.20 si vedono le 4 tipologie di flaps più comuni.

Una breve descrizione delle caratteristiche dei vari flap [12]:

- 1. Plain Flaps
 - i Il rapporto flap corda ottimale è circa 0,25.
 - ii Angolo di deflessione ottimale 60°.
 - iii Perdite dovute alla non continuità di superficie tra il flap è l'ala potrebbe portare a un valore di $C_{L_{max}}$ minore di 0,4 rispetto al valore teorico massimo.
 - iv Il massimo incremento di $C_{L_{max}}$ raggiungibile è approssimativamente 0,9.
- 2. Split Flaps
 - i Il rapporto flap corda ottimale è circa 0,3 per un profilo con spessore massimo 12%, il rapporto ottimale flap corda aumenta all'aumentare dello spessore massimo del profilo.

Figura 3.20: Diverse tipologie di flaps [11].

- ii Angolo di deflessione ottimale è all'incirca 70° .
- iii Il massimo incremento di $C_{L_{max}}$ raggiungibile è approssimativamente 0,9.
- iv $\ C_{L_{max}}$ cresce linearmente col $\log(Re)$ per $0,7\cdot 10^6 < Re < 6\cdot 10^6$.
- v lo spessore massimo ottimale è approssimativamente 18%.

3. Slotted Flaps

- i Il rapporto ottimale flap corda è circa 0,3
- ii L'angolo di deflessione ottimale è 40°, mentre è circa 70° per il double-slotted flaps
- iii Lo spessore massimo ottimale del profilo è circa 16
- iv $C_{L_{max}}$ è sensibile al collocamento e dispiegamento, potrebbe arrivare a un incremento di $C_{L_{max}}$ pari a 1,5 e 1,9 per il double-slotted flaps

Per il calcolo dell'effetto dovuto al flap sull'incremento massimo di c_L ci si affida al metodo del riferimento [13] essendo stato convalidato con dati sperimentali. L'incremento del c_l del profilo è dato da :

$$\Delta C_l = C_{l_\alpha}(\alpha_\delta)_{C_l}\delta\tag{3.30}$$

Mentre quello dell'ala è dato da :

$$\Delta C_L = C_{L_\alpha}(\alpha_\delta)_{c_I} \delta_f \tag{3.31}$$

Figura 3.21: Variazione del fattore d'estensione K_b in base all'estensione del flap [13].

$$K_{b} = \frac{2}{\pi} \left[\frac{b_{f}}{b/2} \sqrt{1 - \left(\frac{b_{f}}{b/2}\right)^{2}} + \sin^{-1} \left(\frac{b_{f}}{b/2}\right) \right]$$
(3.32)

$$(\alpha_{\delta})_{c_L} = K_c(\alpha_{\delta})_{C_l} \tag{3.33}$$

Per il calcolo dell'incremento di portanza si parte decidendo c_f da cui si ricava $(\alpha_{\delta})_{C_l}$ dalla Figura 3.21, dopo di ché si entra nel diagramma per trovare K_c .

$$\Delta C_D = 1, 7 \left(\frac{c_f}{c}\right)^{1,38} \left(\frac{S_f}{S}\right) \sin^2(\delta_f)$$
(3.34)

Andando a fare il confronto tra la tabella della Figura 3.22 e la Figura 3.23. Osserviamo che l'incremento della portanza calcolato basandosi sul metodo di *Polhamus* [13] mi da un incremento 2 volte maggiore considerando il primo caso con $c_f = 0.2\overline{c}$ rispetto alla figura con i stessi dati geometrici. Questo discrepanza cosi marcata è dovuta al fatto che il metodo di *Polhamus* è valido nell'ipotesi che il moto sia laminare e non avvenga il distacco dello

		Cont	tributo de	el Flap			
c _f	b _f	K _b	<mark>(α</mark> _δ) _{ci}	Kc	<mark>(α</mark> δ) _{οι}	(ΔC _L) _δ	(∆CL)max
0,2	2	0,416417	0,54	1,04	0,5616	1,240891	0,866305
0,25	2,5	0,514739	0,62	1,03	0,6386	2,014111	1,406115
0,3	3	0,608998	0,66	1,03	0,6798	2,536672	1,770931

Figura 3.22: Incremento della portanza dovuto al Split Flap.

Figura 3.23: Incremento della portanza dell'aliante dovuto alla deflessione dei flap **DIGITDATCOM**+.

Figura 3.24: Incremento del drag indotto alla variazione dell'angolo di deflessione e dell'angolo d'attacco.

strato limite, ma questo specialmente ad alte deflessioni non è più vero. Il metodo implementato in **DIGITATCOM**+ invece tenendo conto di questa possibilità mi fornisce un valore più basso. Tenendo conto dei margini di sicurezza per la velocità di stallo si è optato di utilizzare i valori calcolati tramite **DIGITDATCOM**+ per le future considerazioni.

Capitolo 4

Coefficienti Derivativi

Nella sezione 2.2 sono stati introdotti i coefficienti derivativi come una conseguenza della adimensionalizzazione delle equazioni del moto soggette a piccole perturbazioni. In questo capitolo si andrà ad analizzare e calcolare i coefficienti derivativi per un caso specifico riguardante V=24m/s e h=1000m che è la velocità di crociera, per poter fare un confronto con il **DATCOM**+, mentre si dovrà fare un analisi più approfondita del timone di coda in quanto non è previsto il suo calcolo nel **DATCOM**+.

4.1 Coefficienti Derivativi Longitudinali

A differenza delle equazioni del moto espresse nella terna solidale al velivolo, per la determinazione dei coefficienti derivativi si utilizza la terna di stabilità, definita con X_S allineato con la direzione della velocità costante tale che $V_{P_1} = U_{1_S}$, la componente della velocità verticale è $W_{1_S} = 0$ angolo tra X_{1S} e X è l'angolo d'attacco α_1 .

4.1.1 Coefficiente di Drag

Il coefficiente di drag dipende dall'angolo di attacco delle tre componenti che governano il moto longitudinale, in prima approssimazione data la difficoltà di implementare tutti i contributi si considera l'equazione di drag indotto eq: 3.18 data da:

$$c_{D_1} = f\left(\alpha, \delta_E, i_H\right) \tag{4.1}$$

$$c_D = c_{D_0} + c_{D_\alpha} \alpha \tag{4.2}$$

Considerando il c_{D_0} calcolato in precedenza e introducendo il drag indotto, si nota che tramite Datcom+ si ottiene un valore pari a 0,33 quindi si ha una buona correlazione tra i due valori.

a[*]	C ₁₁	Cos
-5	0,17227	0,035789
-4	0,275331	0,057199
-3	0,378392	0,07861
-2	0,481453	0,10002
-1	0,584514	0,121431
0	0,687574	0,142842
1	0,790635	0,164252
2	0,893696	0,185663
3	0,996757	0,207073
4	1,099817	0,228484
5	1,202878	0,249894
6	1,305939	0,271305
7	1,409	0,292716
8	1,512061	0,314126
9	1,615121	0,335537
10	1,718182	0,356947

Figura 4.1: Andamento $c_{D_{\alpha}}$ a vari angoli d'attacco $Re = 10^6$.

Per il coefficiente derivativo $c_{D_{\alpha}}$ si parte dalla formula di Prandtl [1] per il drag indotto e derivandola rispetto ad α otteniamo:

$$c_{D_{\alpha}} = \frac{2c_{L_1}}{\pi A R e} c_{L_{\alpha}} \tag{4.3}$$

4.1.2 Coefficiente di Portanza

Considerando c_{L_1} il coefficiente di portanza per tutto il motoaliante allora esso può essere espresso in funzione di:

$$c_{L_1} = c_{L_0} + c_{L_{\alpha}}\alpha + c_{L_{\delta_f}}\delta_f + c_{L_{\delta_E}}\delta_E + c_{L_{i_H}}i_H$$
(4.4)

- c_{L_0} coefficiente di portanza valutato per condizioni iniziali tutte nulle $\alpha = \delta_E = \delta_f = i_H = 0.$
- $c_{L_{\delta_E}}$ è il coefficiente derivativo della portanza dovuto alla deflessione dell'equilibratore.
- $c_{L_{i_H}}$ è il coefficiente derivativo della portanza dovuto all'inclinazione dello stabilizzatore.

Per l'equilibratore facendo riferimento alla Tabella 3.3 abbiamo un rapporto $\frac{c_E}{\overline{c}_H} = 0, 4$, andando con questo valore nella Figura 4.2 si trova che ad esso corrisponde un valore di efficienza $\tau_E = 0,6$.

Figura 4.2: Efficienza dell'equilibratore in funzione del rapporto $\frac{c_E}{\overline{c}_H}$ [18].

$$c_{L_{\alpha}} = c_{L_{\alpha_{W}}} + c_{L_{\alpha_{H}}} \eta_{H} \frac{S_{H}}{S} \left(1 - \frac{d\epsilon}{d\alpha} \right) = 6,367 \left[\frac{1}{rad} \right]$$

$$c_{L_{i_{H}}} = \eta_{H} \frac{S_{H}}{S} c_{L_{\alpha_{H}}} = 0,507 \left[\frac{1}{rad} \right]$$

$$c_{L_{\delta_{E}}} = c_{L_{i_{H}}} \tau_{E} = 0,0776 \left[\frac{1}{rad} \right]$$

$$(4.5)$$

Il rapporto tra la pressione dinamica alla coda e quello dell'ala è espresso da $\eta_H = \frac{q_H}{q}$ calcolato in precedenza nella Tabella 3.3.

4.1.3 Coefficiente derivativo di beccheggio

Seguendo il metodo utilizzato per il coefficiente di drag e portanza allo stesso modo si esprime il coefficiente di beccheggio in funzione di:

$$c_{m_1} = f\left(\alpha, \delta_E, i_H\right) \tag{4.6}$$

$$c_{m_1} = c_{m_0} + c_{m_\alpha} \alpha + c_{\delta_E} \delta_E + c_{m_{i_H}} i_H \tag{4.7}$$

Figura 4.3: coefficiente di portanza dell'equilibratore in funzione dell'angolo di deflessione δ_E .

Facendo riferimento al procedimento di Roskam [6] possiamo esprimere come:

$$c_{m_{0}} = c_{m_{AC_{WB}}} + c_{L_{1alpha_{W}}}(\overline{x}_{CG} - \overline{x}_{AC_{WB}}) = -0, 28(\frac{1}{rad})$$

$$c_{m_{\alpha}} = c_{L_{\alpha W}}(\overline{x}_{CG} - \overline{x}_{AC_{WB}}) - c_{L_{\alpha H}}\eta_{H}\frac{S_{H}}{S}\left(1 - \frac{d\epsilon}{d\alpha}\right)(\overline{x}_{AC_{H}} - \overline{x}_{CG}) = -2, 98(\frac{1}{rad})$$

$$c_{m_{i_{H}}} = -c_{L_{\alpha H}}\eta_{H}\frac{S_{H}}{S}\left(1 - \frac{d\epsilon}{d\alpha}\right)(\overline{x}_{AC_{H}} - \overline{x}_{CG}) = -2, 27(\frac{1}{rad})$$

$$c_{m_{\delta_{E}}} = -c_{L_{\alpha_{H}}}\eta_{H}\frac{S_{H}}{S}\left(1 - \frac{d\epsilon}{d\alpha}\right)(\overline{x}_{AC_{H}} - \overline{x}_{CG})\tau_{E} = -1, 39(\frac{1}{rad})$$

$$(4.8)$$

Cosi come si è andato a trovare il centro aerodinamico della fusoliera più l'ala, si trova il centro aerodinamico di tutto il motoaliante, ed è definito come il punto rispetto al quale il motoaliante non cambia il momento di beccheggio al variare dell'angolo d'attacco, questo implica che in quella posizione si ha $c_{m_{\alpha}} = 0$ dalla quale diventa:

$$\overline{x}_{AC} = \frac{\overline{x}_{AC_{WB}} + \frac{c_{L_{\alpha_H}}}{c_{L_{\alpha_W}}} \eta_H \frac{S_H}{S} \left(1 - \frac{d\epsilon}{d\alpha}\right) \overline{x}_{AC_H}}{1 + \frac{c_{L_{\alpha_H}}}{c_{L_{\alpha_W}}} \eta_H \frac{S_H}{S} \left(1 - \frac{d\epsilon}{d\alpha}\right)} = 0,513$$
(4.9)

Avendo calcolato il $c_{m_{\alpha}} \in \overline{x}_{AC}$ ora possiamo calcolare il margine statico SM che è fondamentale per la stabilità longitudinale esso è espresso come:

$$SM = \overline{x}_{CG} - \overline{x}_{AC} = 0,21 \tag{4.10}$$

Figura 4.4: Andamento $c_{L_{\dot{\alpha}}}$ in funzione di α .

4.1.4 Coefficienti perturbativi

Nei coefficienti perturbativi rientrano la variazione dei coefficienti di drag, portanza e beccheggio dovuto ad un incremento di velocità u essi sono: c_{L_u} c_{D_u} c_{m_u} , questi coefficienti per moto subsonico sono trascurabili, diventano importanti nel regime transonico. Quindi nella risoluzione delle equazioni del moto avremmo $c_{L_u} = c_{D_u} = c_{m_u} = 0$. Mentre i coefficienti dovuti ad una variazione nella velocità verticale w che può essere approssimato ad una accelerazione dell'angolo di attacco $\dot{\alpha}$ sono quelli collegati al parametro della coda orizzontale in quanto una variazione dei coefficienti è direttamente correlata con la variazione del downwash- $\frac{d\epsilon}{d\alpha}$ quindi si ottiene:

$$c_{L_{\dot{\alpha}}} = c_{L_{\dot{\alpha}_{H}}} = 2c_{L_{\alpha_{H}}}\eta_{H}\frac{S_{H}}{S}\left(\frac{d\epsilon}{d\alpha}\right)\left(\overline{x}_{AC_{H}} - \overline{x}_{CG}\right) = 1,313\left(\frac{1}{rad}\right)$$
(4.11)

Confrontando il risultato ottenuto per $\alpha = 0$ e con il grafico della Figura 4.4 vediamo che abbiamo ottenuto i risultati con una buona approssimazione, mentre si osserva all'aumentare dell'angolo d'attacco l'influenza dovuto al downwash.

Anche per la variazione del momento di beccheggio seguendo le indicazioni di Napolitano [18] si fa la stessa approssimazione quindi diventa:

$$c_{m_{\dot{\alpha}}} = c_{m_{\alpha_{H}}} = -2c_{L_{\alpha_{H}}}\eta_{H}\frac{S_{H}}{S}\left(\frac{d\epsilon}{d\alpha}\right)\left(\overline{x}_{AC_{H}} - \overline{x}_{CG}\right)^{2} = -6,62 \qquad (4.12)$$

Andando ad analizzare la Figura 4.5 e confrontando col risultato ottenuto nell'equazione 4.12 osserviamo che è leggermente più grande in valore assoluto, tuttavia il grafico ottenuto coi valori di **Datcom**+ tiene in considerazione tutto il motoaliante, data anche la natura difficilmente prevedibile dei coefficienti derivativi della stabilità è una buona approssimazione.

Figura 4.5: Andamento di $c_{m_{\dot{\alpha}}}$ in funzione dell'angolo d'attacco α .

Il coefficiente $c_{D_{\dot{\alpha}}}$ è trascurabile cosi come c_{D_q} . La variazione di portanza C_{L_q} è una conseguenza della variazione della velocità angolare di beccheggio q è dovuta principalmente al contributo dell'ala e della coda orizzontale, prendendo la soluzione fornita da Hoak [17] e semplificandola per per Mach=0, in quanto in condizioni di crociera operiamo ad un mach pari a 0,07 quindi questa semplificazione è ammissibile in accordo con Anderson [1] dove si può considerare un moto incomprimibile fino a Mach = 0, 3.

$$c_{L_q} = \left(\frac{1}{2} + 2|\overline{x}_{AC_W} - \overline{x}_{CG}|\right) c_{L_{\alpha_W}} + 2c_{L_{\alpha_H}} \eta_H \frac{S_H}{S} \left(\overline{x}_{AC_H} - \overline{x}_{CG}\right) = 8,42$$

$$(4.13)$$

Mentre il valore calcolato con Datcom+ è pari a 8,012

L'ultimo coefficiente rimasto da calcolare è c_{m_q} che insieme $c_{m_{\dot{\alpha}}}$ sono molto importanti per la qualità di volo in quanto essi sono direttamente legati al ζ_s .

Per quanto riguarda il coefficiente c_{m_q} il contributo principale è fornito dall'ala e dalla coda orizzontale mentre è trascurabile il contributo fornito dalla fusoliera. Quindi esso diventa:

$$c_{m_q} = c_{m_{q_W}} + c_{m_{q_H}} \tag{4.14}$$

Ora in accordo con la soluzione fornita da Hoak [17] semplificando [1] per Mach < 0, 3 abbiamo che:

$$c_{m_{q_W}} = -K_q c_{L_{\alpha_W}} \cos(\Lambda_{c/4}) C \tag{4.15}$$

Dove il fattore di correzione K_q è in funzione di AR, avendo un andamento lineare per AR<6 e per AR>10. Dalla Figura 4.6 seguendo l'andamento lineare si ricava $K_q = 0,9$ L'altro fattore C si ricava con l'equazione:

Figura 4.6: K_q fattore di correzione[17]

$$C = \left\{ \frac{AR\left(0, 5 \left| \overline{x}_{AC_W} - \overline{x}_{CG} \right| + 2 \left| \overline{x}_{AC_W} - \overline{x}_{CG} \right|^2 \right)}{AR + 2\cos(\Lambda_{c/4})} + \frac{1}{8} \right\}$$
(4.16)

$$c_{m_{q_W}} = 0,77$$
 (4.17)

Quindi il contributo fornito dall'ala è del tipo destabilizzante, in quanto c_{m_q} deve essere negativo affinché dia un contributo al ζ_s positivo. Tutta via come nel caso di $c_{m_{\dot{\alpha}}}$ anche per c_{m_q} il contributo principale a *Mach* subsonico è fornito dalla coda orizzontale, ed è la sua dimensione e collocamento che va ad incidere sullo smorzamento di corto periodo, e sulla qualità di pilotaggio e più in generale su tutta la capacità del motoaliante di mantenersi in volo di crociera anche se sottoposto a disturbi esterni. Dall'equazione:

$$c_{m_{q_H}} = -2c_{L_{\alpha_H}}\eta_H \frac{S_H}{S} \left(\overline{x}_{AC_H} - \overline{x}_{CG}\right)^2 = -30,67$$
(4.18)

Troviamo che in accordo con quello che ci si aspettava il valore di $c_{m_{q_H}} \gg c_{m_{q_W}}$, quindi il valore finale diventa:

$$c_{m_q} = c_{m_{q_H}} + c_{m_{q_W}} = -29,9 \tag{4.19}$$

Mentre dal **Datcom**+ troviamo $c_{m_q} = -31, 61$ che è un ottimo compromesso data la difficoltà predittiva di questi coefficienti.

Figura 4.7: Forze e Momenti Laterali, stato stazionario [18].

4.2 Coefficienti Derivativi Laterali

Nei coefficienti derivativi laterali , rientrano i coefficienti dovuti alla forza laterale F_{A_Y} , momento di rollio L_A e momento di imbardata N_A .

I disturbi rispetto al volo di crociera possono essere innescati da una perturbazione laterale v che diventa un disturbo nell'angolo di imbardata β l'angolo di imbardata β può essere pensato come un angolo d'attacco laterale, esso per convenzione è assunto positivo quando la componente laterale della velocità è in direzione opposto all'asse di stabilità Y_s .

Mentre gli altri disturbi sono generati dall'azionamento dei controlli laterali come gli alettoni per il momento di rollio e il timone di code per il momento di imbardata. Essi comunque devono essere azionati insieme per controbilanciare l'accoppiamento dei due momenti.

4.2.1 Coefficienti derivativi rispetto a β

Il coefficiente c_{Y_1} legato alla forza laterale tramite la relazione:

$$F_{A_{Y_1}} = c_{Y_1} q S (4.20)$$

Dove c_{Y_1} espresso tramite un approssimazione usando lo sviluppo in serie di Taylor diventa:

$$c_{Y_1} = c_{Y_0} + c_{Y_\beta}\beta + c_{Y_{\delta_A}}\delta_A + c_{Y_{\delta_R}}\delta_R \tag{4.21}$$

 $c_{Y_0}|_{\beta=\delta_A=\delta_R=0^\circ}=0$ dovuto alla simmetria rispetto al piano XZ del motoaliante.

Figura 4.8: Angolo d'imbardata β [18].

Il contributo fornito dal campo di velocità laterale è dato principalmente dalla coda verticale $c_{Y_{\beta_V}}$ e dall'angolo di diedro Γ_W , mentre è trascurabile il contributo dovuto alla coda orizzontale, quindi $c_{Y_{\beta}}$ diventa:

$$c_{Y_{\beta}} = c_{Y_{\beta_{WB}}} + c_{Y_{\beta_V}} \tag{4.22}$$

Dove:

$$c_{Y_{\beta_{WB}}} = c_{Y_{\beta_W}} + c_{Y_{\beta_B}} = -0,0497(\frac{1}{rad})$$
(4.23)

$$c_{Y_{\beta_W}} = -0,0001 |\Gamma_W| \cdot 57.3 = -0,046(\frac{1}{rad})$$
(4.24)

$$c_{Y_{\beta_B}} = -2K_{int}\frac{S_{PV}}{S} = -0,0039(\frac{1}{rad})$$
(4.25)

 S_{PV} è l'area della sezione della fusoliera dove il campo fluido cessa di essere potenziale è si trova nella posizione X_0 che a sua volta dipende dalla posizione X_1 tale posizione corrisponde al punto nel quale $\frac{\partial S(x)}{\partial S}|_{MAXNEG}$, valutando la geometria con **SolidWorks**, si ottiene $X_1 = 1,62m$ ad esso corrisponde un valore di $X_0 = 2,93m$ dove $S_{PV} = \pi \frac{d^2}{4} = 0,042m^2$ assumendo che la sezione della fusoliera sia circolare, anche se è leggermente ellittica l'errore che si commette non va ad incidere sul risultato finale:

$$X_0 = l_B \left(0,378 + \frac{X_1}{l_B} \right) = 2,93m \tag{4.26}$$

Figura 4.9: Parametri geometri fusoliera-ala per calcolare il fattore di interferenza.

Figura 4.10: Interferenza Fusoliera-Ala [18].

Figura 4.11: Parametri geometrici della coda.

Per quanto riguarda il K_{int} facendo riferimento alla Figura 4.10 e alla Figura 4.9 otteniamo $\frac{Z_W}{d/2} = -0, 5$ a cui corrisponde un valore $K_{int} \approx 0, 9$.

In fine il contributo $c_{Y_{\beta_V}}$ fornito dalla coda verticale è modellato tramite l'equazione [1]:

$$c_{Y_{\beta_V}} = -k_{Y_V} |c_{L_{\alpha_V}}| \eta_V \left(1 + \frac{d\sigma}{d\beta}\right) \frac{S_V}{S}$$
(4.27)

$$\eta_V \left(1 + \frac{d\sigma}{d\beta} \right) = 0,724 + 3,06 \frac{S_V/S}{1 + \cos(\Lambda_{c/d})} + 0,4 \frac{Z_W}{d} + 0,009 \cdot AR = 0,82$$
(4.28)

Il fattore di interferenza $k_{Y_V} \approx 0,76$ si ricava dalla Figura 4.12 per $b_V/2r_1 = 1,67$. Tramite questo metodo si riescono a ricavare i singoli valori con una buona approssimazione confrontando coi risultati ottenuti tramite **Datcom**+ tuttavia calcolando il valore $c_{Y_{BW}}$ quindi fusoliera e le ali accoppiate otteniamo un valore molto più alto, osservando la Tabella 4.1 si nota che che c'è una discrepanza tra i valori pari al 300%. Essendo che i metodi empirici specialmente per l'accoppiamento fusoliera-ala sono stati ricavati per geometrie della fusoliera con sezioni il più possibile costanti, mentre la nostra ha una geometria molto particolare è di difficile predizione l'interferenza tra di essi.

Il coefficiente $c_{Y_{\delta_A}}$ dovuto alla deflessione asimmetrica degli alettoni è trascurabile quindi abbiamo:

$$c_{Y_{\delta_A}} \approx 0 \tag{4.29}$$

Figura 4.12: Fattore empirico $k_{Y_V},$ forza laterale della coda verticale dovuto a β [18].

coefficienti	Approssimati	DATCOM+	
$c_{Y_{\beta_B}}$	-0,0458	-0,0413	
$c_{Y_{eta_W}}$	-0,00397	-0,04593	
$c_{Y\beta_V}$	-0,05693	-0,04856	
$c_{Y_{\beta}}$	-0,11	-0,316	

Tabella 4.1: Confronto tra $\mathbf{Datcom}+$ e dati approssimati.

Figura 4.13: Efficacia del timone τ_R in funzione del rapporto $\frac{c_R}{\overline{c}_V}$ [18].

Di importante interesse è il contributo fornito dal coefficiente $c_{Y_{\delta_R}}$ dovuto all'azionamento del timone di coda, in quanto esso deve avere sufficiente autorità per poter controllare l'angolo di imbardata del motoaliante quando è sottoposto a disturbi laterali secondo le normative vigenti [14] [24]. Con riferimento alla Tabella 3.4 abbiamo $\frac{c_R}{\bar{c}_V} = 0,4$ e facendo riferimento alla Figura 4.13 a cui corrisponde un valore $\tau_R = 0,6$ ed avendo l'apertura del timone lungo tutta la coda verticale $\Delta(K_R) = 1$, in quanto questo coefficiente mette in relazione il rapporto tra l'apertura del timone e della coda verticale.

$$c_{Y_{\delta_R}} = c_{L_{\alpha_V}} \eta_V \frac{S_V}{S} \Delta(K_R) \tau_R = 0,0402(\frac{1}{rad})$$
(4.30)

4.2.2 Coefficienti del momento di rollio

La modellazione del coefficiente di rollio parte dallo stato di moto costante dove si ha la relazione:

$$L_{A_1} = L_A = c_{l_1} qSb (4.31)$$

Tale coefficiente è in funzione di β , δ_R , δ_E , seguendo lo stesso approccio di c_Y , esprimiamo c_{l_1} tramite l'approssimazione al primo ordine dell'espansione di Taylor.

$$c_{l_1} = c_{l_0} + c_{l_\beta}\beta + c_{l_{\delta_A}}\delta_A + c_{l_{\delta_R}}\delta_R \tag{4.32}$$

Dove $c_{l_0}|_{\beta=\delta_A=\delta_R} = 0$ dovuto alla simmetria del motoaliante rispetto al piano XZ Il coefficiente c_{l_β} è molto importante dal punto di vista della stabilità dinamica laterale, in quanto esso è direttamente collegato alla stabilità del modo spirale. Un contributo importante è dovuto all'angolo diedro delle ali, infatti partendo col progetto preliminare con un angolo di diedro nullo, si è dovuto aumentare l'angolo di diedro Γ_W fino a 8° per poter ottenere la stabilità di questo modo. Utilizzando l'espressione fornita da Hoak [17], c_{l_β} diventa:

$$c_{l_{\beta_{WB}}} = 57, 3 \cdot c_{L_{1}} \left[\left(\frac{c_{l_{\beta}}}{c_{L_{1}}} \right) K_{M_{\Lambda}} K_{f} + \left(\frac{c_{l_{\beta}}}{c_{L_{1}}} \right)_{AR} \right] + 57, 3 \left\{ \Gamma_{W} \left[\frac{c_{l_{\beta}}}{\Gamma_{W}} K_{M_{\Gamma}} + \frac{\Delta c_{l_{\beta}}}{\Gamma_{W}} \right] + \left(\Delta c_{l_{\beta}} \right)_{Z_{W}} + \epsilon_{W} \tan\left(\Lambda_{c/4} \right) \left(\frac{\Delta c_{l_{\beta}}}{\epsilon_{W} \tan\left(\Lambda_{c/4} \right)} \right) \right\} \left(\frac{1}{rad} \left(\frac{4.33}{c_{W}} \right) \right)$$

Andando in ordine si analizza ogni rapporto, partendo da $\frac{c_{l_{\beta}}}{c_{L_1}}$ e andando nella Figura 4.15 vediamo che il suo valore è circa $-0.5 \cdot 10^{-3}$.

 $K_{M_{\Lambda}}$ è un fattore collegato alla variazione della comprimibilità del campo fluido, essendo che il motoaliante andrà ad operare in regime incomprimibile è pari a 1.

 K_f è il fattore di correzione dovuto alla presenza della fusoliera si ricava dalla Figura 4.16, e si assume che $K_f = 1$.

 $\left(\frac{c_{l_{\beta}}}{c_{L_{1}}}\right)_{AR}$ è il contributo associato con AR, andando a leggere il valore corrispondente nella Figura 4.14, si osserva che per alti valori di AR si può trascurare, quindi si prende $\left(\frac{c_{l_{\beta}}}{c_{L_{1}}}\right)_{AR} \approx 0$. Per quanto riguarda il fattore $\frac{c_{l_{\beta}}}{\Gamma_{W}}$ andando ad analizzare la Figura 4.17

Per quanto riguarda il fattore $\frac{c_{l_{\beta}}}{\Gamma_W}$ andando ad analizzare la Figura 4.17 vediamo che tende ad un asintoto per AR=8, non essendoci i valori per AR>8 si prende questo valore come riferimento essendo che per $\lambda = 0$ il limite è -0,0002 [17] e noi abbiamo $\lambda = 0, 3$ questo è un buon compromesso in assenza di dati.

$$\frac{c_{l_{\beta}}}{\Gamma_W} = -0,00025(\frac{1}{deg}) \tag{4.34}$$

Ora da **SolidWorks** si è ricavato $S_f = 5,0844m^2$, per il calcolo del diametro medio d_B della fusoliera si assume che l'area totale della fusoliera sia l'area laterale di un cilindro di lunghezza l_B e si ottiene:

$$\frac{\Delta c_{l_{\beta}}}{\Gamma_W} = -0,0005 \cdot AR \cdot \left(\frac{d_B}{b}\right)^2 = -5,9 \cdot 10^{-6} \left(\frac{1}{deg^2}\right) \tag{4.35}$$

Figura 4.14: Contributo dovuto ad AR per $c_{l_{\beta_{WB}}}$ [18].

Figura 4.15: Variazione di $c_{l_{\beta_{WB}}}$ dovuto all'angolo di freccia [18].

Figura 4.16: Fattore di correzione per $c_{l_{\beta_{WB}}}$ dovuto alla fusoliera [1].

Figura 4.17: Contributo dovuto
a Γ_W su $c_{l_{\beta_{WB}}}$ [17]

Figura 4.18: Coordinate del centro aerodinamico dell'ala verticale rispetto a $x_{CG} X_V = 3,44$ e $Z_V = 0,34$.

$$d_B = \frac{S_f/l_B}{\pi} = 0,294m \tag{4.36}$$

Il contributo dovuto allo svergolamento dell'ala è trascurabile. Mentre il fattore dovuto al posizionamento delle ali è dato da:

$$\left(\Delta c_{l_{\beta}}\right)_{Z_{W}} = \frac{1, 2\sqrt{AR}}{57, 3} \cdot \frac{Z_{W}}{b} \cdot \frac{2d_{B}}{b} = -5, 67 \cdot 10^{-5} \left(\frac{1}{deg}\right)$$
(4.37)

In definitiva il valore finale che si ottiene è:

$$c_{l_{\beta_{WB}}} = -0,1173(\frac{1}{rad}) \tag{4.38}$$

Il coefficiente $c_{l_{\beta_H}}$ collegato alla coda orizzontale essendo senza angolo diedro è trascurabile, $c_{l_{\beta_H}} \approx 0$ L'ultimo coefficiente rimasto è quello relativo alla coda verticale $c_{l_{\beta_V}}$ esso è generato dal coefficiente della forza $c_{Y_{\beta_V}}$ che produce un momento rispetto al centro di gravità del motoaliante tramite i parametri Z_V, X_V .

$$c_{l_{\beta_{V}}} = c_{Y_{\beta_{V}}} \cdot \frac{Z_{V} cos(\alpha_{1}) - X_{V} sin(\alpha_{1})}{b} = -0,0016 \left(\frac{1}{rad}\right)$$
(4.39)

Sommando il contributo fornito dalla fusoliera-ala e coda verticale otteniamo:

$$c_{l_{\beta}} = c_{l_{\beta_{WB}}} + c_{l_{\beta_{V}}} = -0,1189 \tag{4.40}$$

Confrontando la Figura 4.19 col valore ottenuto notiamo una forte discrepanza, questo è dovuto in gran parte al fatto ché per calcolare $c_{l_{\beta_{WB}}}$ si è fatto uso di tanti valori ricavati dai grafici, introducendo in questo modo errori di lettura, che si ripercuotono sui valori finali.

Figura 4.19: Andamento $c_{l_{\beta}}$ in funzione di α calcolato con **Datcom**+.

Modellazione $c_{l_{\delta_A}}$

Per la modellazione di $c_{l_{\delta_A}}$ si segue il metodo fornito da Napolitano [18]. Una deflessione positiva dell'alettone corrisponde ad una deflessione dell'alettone sinistro verso il basso e quello destro di una deflessione- verso l'alto come nella Figura 4.20.

Facendo riferimento alla sezione 3.6 dove sono stati descritti i parametri geometrici dell'alettone, ed andando nella Figura 4.22 otteniamo un valore di $\tau_A = 0, 4$ mentre il valore di $\Delta(RME) = 0, 41$ una volta ricavati questi due valori si introducono nella seguente equazione:

$$c_{l_{\delta_A}} = \tau_A \Delta(RME) = 0,164(\frac{1}{rad}) \tag{4.41}$$

Nella Figura 4.23 abbiamo messo a confronto i valori ottenuti tramite dati empirici e calcolati con **Datcom**+ osserviamo che fino ad una deflessione del singolo alettone pari a $\delta = \pm 20^{\circ}$, si è nell'andamento lineare del contributo dovuto alla deflessione, i due metodi sono equivalenti, tuttavia per $\delta > 20^{\circ}$ si entra nel range non lineare e col metodo empirico si sovrastima l'autorità dell'alettone.

Modellazione $c_{l_{\delta_R}}$

La modellazione di $c_{l_{\delta_R}}$ è identica a quella di $c_{l_{\beta_V}}$, esso è il risultato del momento generato rispetto al baricentro del motoaliante dal coefficiente $c_{Y_{\delta_R}}$, il braccio del momento è $Z_R = Z_V$ e $X_R = 3,56$

Figura 4.20: Momento di rollio associato con la deflessione degli alettoni [18].

Figura 4.21: Efficacia dell'alettone in funzione della sua collocazione sull'ala.

Figura 4.22: Efficacia del alettone τ_A in funzione di $\frac{\overline{c}_A}{\overline{c}}$.

Figura 4.23: Confronto tra i valori c_{l_A} calcolati con **Datcom**+ e con il metodo empirico.

$$c_{l_{\delta_R}} = c_{Y_{\delta_R}} \frac{Z_R cos(\alpha_1) - X_R sin(\alpha_1))}{b} = 0,001122$$
(4.42)

4.2.3 Coefficiente del momento di imbardata

Seguendo lo stesso approccio per la modellazione del coefficiente di rollio si ottiene :

$$c_{n_1} = \frac{N_{A_1}}{qSb} \tag{4.43}$$

Ed espandendo usando il teorema di Taylor, si ricava la seguente espressione:

$$c_{n_1} = c_{n_0} + c_{n_\beta}\beta + c_{n_{\delta_A}}\delta_A + c_{n_{\delta_R}}\delta_R \tag{4.44}$$

Data la simmetria rispetto al piano XZ del motoaliante si ha $c_{n_0}|_{\delta_A = \delta_R = \beta = 0^\circ} \approx 0$. Il contributo maggiore fornito a c_{n_β} è fornito dalla coda verticale e dalla superficie laterale della fusoliera, mentre è trascurabile il contributo fornito dalla coda orizzontale e dalle ali.

Quindi l'espressione diventa:

$$c_{n_{\beta}} = c_{n_{\beta_R}} + c_{n_{\beta_V}} \tag{4.45}$$

Usando l'approccio fornito da Napolitano [18] basato sul lavoro di Hoak [17] possiamo esprimere $c_{n_{\beta_B}}$ come:

$$c_{n_{\beta_B}} = -57, 3 \cdot K_N \cdot K_R \cdot \frac{S_{B_S}}{S} \frac{l_B}{b}$$

$$(4.46)$$

Per estimare il fattore K_N si fa riferimento alla Figura 4.24 per calcolare i parametri geometrici, essi sono contenuti nella Tabella 4.2.

Per ricavare il valore di K_N in fine si segue il percorso in rosso nella Figura 4.25, e si ottiene $K_N \approx 0,0014$.

$Z_{MAX}[m]$	0,577	$\frac{l_b^2}{S_{B_S}}$	18,67
$Z_1[m]$	0,565	$\sqrt{\frac{Z_1}{Z_2}}$	1,89
$Z_2 \ [m]$	0,158	$\frac{Z_{MAX}}{w_{MAX}}$	1,25
S_{B_S} $[m^2]$	1,62	$\frac{l_{CG}}{l_B}$	0,327

Tabella 4.2: Valori geometrici per ricavare K_N .

Figura 4.24: Parametri geometrici della fusoliera.

Il valore di K_R è in funzione del numero di reynolds, essendo che il motoaliante andrà ad operare nell'intervallo di $Re \approx 1 \cdot 10^6$ si assume pari a 1 seguendo le indicazioni riportate nell'USAF Control Datcom [17]. Sostituendo tutti i valori nell'espressione di $c_{n_{\beta_R}}$ si ottiene:

$$c_{n_{\beta_B}} = -0,00878 \left[\frac{1}{rad}\right] \tag{4.47}$$

 $c_{n_{\beta_V}}$ come per $c_{l_{\beta_V}}$ è generato da $c_{Y_{\beta_V}}$ che crea un momento rispetto al centro di massa del motoaliante, e si ha la seguente espressione:

$$c_{n_{\beta_V}} = -c_{Y_{\beta_V}} \cdot \frac{X_V \cos(\alpha_1) + Z_V \sin(\alpha_1)}{b} = 0,01663 \left(\frac{1}{rad}\right)$$
(4.48)

Mentre il valore totale di c_{n_β} si trova essere:

$$c_{n_{\beta}} = c_{n_{\beta_V}} + c_{n_{\beta_B}} = 0,00785(\frac{1}{rad})$$
(4.49)

Figura 4.25: Fattore empirico K_N dell'interferenza fusoliera-ala [18].

Figura 4.26: Andamento di $c_{n_{\delta_A}}$ al variare di $\alpha.$

Figura 4.27: Confronto per $\alpha = 0$ tra il valore di $c_{n_{\delta_A}}$ empirico e **Datcom**+.

Se si confronta questo valore con quello ricavato tramite **Datcom**+, quale ha un valore pari a 0,00794, si deduce che i due approcci per questa configurazione di velivolo è ottimale.

Il contributo fornito da $c_{n_{\delta_A}}$ è il risultato del incremento del drag dovuto alla deflessione degli alettoni, esso esprime l'accoppiamento tra il momento di rollio ed il momento di imbardata, in particolare ad alti valori dell'angolo d'attacco il suo contributo diventa molto importante come si può constatare dalla Figura 4.26. Il coefficiente è espresso come:

$$c_{n_{\delta_A}} = -\Delta(K_{n_A})c_{L_1}c_{l_{\delta_A}} = -0.0198(\frac{1}{rad})$$
(4.50)

Dove il valore di $K_{n_A} = 0,025$ si ricava da USAF[17] Si osserva nella Figura 4.27 che il valore di natura empirica seguendo il metodo di Napolitano [18] a confronto col valore ricavato da **Datcom**+ per $\alpha = 0$ coincidono nell'intervallo di linearità compreso tra $-40^{\circ} < \delta_A < 40^{\circ}$, mentre per valori superiori il metodo empirico sovrastima il coefficiente.

Modellazione di $c_{n_{\delta_R}}$

La modellazione di $c_{n_{\delta_R}}$ assume molta importanza per il moto di imbardata, in quanto il timone è la superficie di controllo che governa il bilanciamento del momento di beccheggio durante una perturbazione, oppure fornisce il momento necessario per cambiare l'angolo di imbardata β . Il valore di $c_{n_{\delta_R}}$ dipende dal valore $c_{Y_{\delta_R}}$ e dalla posizione del centro aerodinamico del timone rispetto al baricentro, quindi tale valore si esprime tramite la seguente espressione:

$$c_{n_{\delta_R}} = -c_{Y_{\delta_R}} \frac{X_R \cos(\alpha_1) + Z_R \cos(\alpha_1)}{b} = -0,144(\frac{1}{rad})$$
(4.51)

4.2.4 Coefficienti laterali perturbativi

I coefficienti laterali perturbativi sono originati dalla raffica di vento laterale, in particolare la sua accelerazione espressa tramite $\cdot\beta$, nonostante possa sembrare complessa trovare i valori relativi essi sono trascurabili, quelli che assumono rilevanza sono generati dalle velocità angolari di rollio e di imbardata rispettivamente p ed r.

Modellazione c_{Y_p}

Il coefficiente c_{Y_p} è il contributo fornito alla forza laterale f_{A_Y} causato dal moto di rollio, tale coefficiente si ricava dalla seguente relazione:

$$c_{Y_p} \approx c_{Y_{p_V}} \approx 2c_{y_{\beta_V}} \frac{Z_V \cos(\alpha_1) - X_V \sin(\alpha_1)}{b} = 0,0359(\frac{1}{rad})$$
 (4.52)

Capitolo 5

Stabilità

5.1 Stabilità Statica

Avendo espresso concettualmente in cosa consiste la stabilità statica, tale analisi si può eseguire solo una volta che si è determinato il centro di massa del motoaliante.

L'analisi della stabilità statica si riduce alla trattazione del moto longitudinale dove di particolare interesse rappresenta calcolare i valori del margine statico con l'equilibratore libero e fisso. Il margine statico è direttamente proporzionale a quanto sia stabile il motoaliante, più alto è il valore tanto più alta è la stabilità longitudinale, tuttavia un valore troppo elevato potrebbe rendere difficoltoso assumere una nuova posizione di crociera. Esso si differenzia tra il margine statico a controllo fisso, questo implica che durante il volo l'equilibratore rimane in una posizione prefissata Il margine statico a controllo fisso- H_N si calcola con la seguente espressione [15]:

$$H_N = \frac{dc_m}{dc_L} = \overline{x}_{CG} - \overline{x}_{AC} \tag{5.1}$$

Il margine statico a controllo fisso ci da anche l'indicazione di quanto può essere spostato il centro gravità prima di rendere instabile il motoaliante. Tuttavia nei motoalianti il margine statico a controllo libero $-H_{NF}$ è quello a

Figura 5.1: Margine statico equilibratore fisso

cui si pone maggiore attenzione per esempio le normative BCAR imponevano la condizione che tale $H_{NF} > 0,05$.

Prima di procedere al calcolo di H_{NF} dobbiamo definire il momento di cerniera -HM dell'equilibratore, è a causa di esso che si ha la differenza tra il margine statico a controllo fisso e libero.

HM è dovuto alla distribuzione della pressione sull'equilibratore, esso dipende oltre dalla pressione dinamica anche dall'angolo d'attacco e dall'angolo di deflessione, quindi lo definiamo come:

$$HM = \left(\frac{\partial HM}{\partial \alpha}\right)_{\delta_E} \alpha + \left(\frac{\partial HM}{\partial \delta_E}\right)_{\alpha} \delta_E = 0,28 \tag{5.2}$$

Adimensionalizzando questa espressione diventa:

$$c_h = \frac{HM}{qS\overline{c}} \tag{5.3}$$

$$c_h = c_{h_\alpha} \alpha + c_{h_{\delta_E}} \delta_E \tag{5.4}$$

I due coefficienti $c_{h_{\alpha}} \in c_{h_{\delta_E}}$ dipendono anche da τ_E , tali coefficienti sono stati ricavati con **Datcom**+:

- $c_{h_{\alpha}} = -0,008$
- $c_{h_{\delta_{F}}} = -0,0144$

Utilizzando la soluzione fornita da Hage [5].:

$$H_{NF} = H_N + \frac{c_{L_{\alpha_H}}}{c_{L_{\alpha_W}}} \frac{S_H}{S} \frac{c_{h_\alpha}}{c_{h_{\delta_E}}} \left(1 - \frac{d\epsilon}{d\alpha}\right) = 0,19$$
(5.5)

La soluzione ottenuta è ampiamente sopra al valore minimo richiesto dalle norme BCAR per il motoaliante, è stato fatto riferimento a tale normativa in quanto sulla normativa CS-22 della ESA non viene specificato un valore di riferimento.

5.1.1 Equilibratore

Il compito dell'equilibratore è quello di garantire in ogni fase di volo l'autorità necessaria a garantire il bilanciamento del momento di beccheggio. La fase di volo più critica è l'atterraggio dove si ha il massimo momento di beccheggio generato dalla deflessione dei flap in aggiunta e all'alto angolo d'attacco. La verifica dell'autorità è eseguita per le condizioni:

•
$$h = 0m, U_1 = 17m/s$$
.

Figura 5.2: Coefficiente del momento di beccheggio generato dalla deflessione dei flap.

- Angolo d'attacco $\alpha_1 = 8^{\circ}$ a cui corrisponde $c_{m_1} = -0,3219.$
- Deflessione flap $\delta_f = 40^\circ$ genera $c_{m_f} = -0, 1199.$
- Deflessione equilibratore $c_{m_{\delta_E}} = -0,0294 \ (\frac{1}{deg}).$

$$\delta_E = \frac{c_{m_1} + c_{m_f}}{c_{m_{\delta_E}}} = 15,03^{\circ} \tag{5.6}$$

Un angolo di deflessione $\delta_E = 15,03^{\circ}$ per garantire l'equilibrio longitudinale durante l'atterraggio ci consente di avere anche un margine di sicurezza, in quanto si è assunto una deflessione massima dell'equilibratore pari a $\delta_E = \pm 20^{\circ}$.

Di seguito sono stati riportati nelle Figure 5.3, 5.2 e 5.4 l'andamento dei coefficienti del beccheggio.

5.2 Stabilità Dinamica Longitudinale-Equilibratore

Per riuscire a descrivere il comportamento dinamico del motoaliante, si parte dalle eq.2.1 per il moto perturbato disaccoppiando da quelle del moto laterale:

$$m[\dot{u} + qW_1] = -mg\theta\cos(\Theta_1) + f_{A_X}$$

$$m[\dot{w} - U_1q] = -mg\theta\sin(\Theta_1) + f_{A_Z}$$

$$\dot{q}I_{YY} = m_A$$

$$q = \dot{\theta}$$
(5.7)

Figura 5.3: Coefficiente del momento di beccheggio generato dalla deflessione dell'equilibratore.

Figura 5.4: Andamento del coefficiente di beccheggio c_m del motoaliante alla variazione dell'angolo d'attacco α .

Una volta espresse le equazioni che governano il moto si introduco le forze aerodinamiche espresse nella eq. 2.6, le forze aerodinamiche sono espresse nella terna di stabilità X_S, Y_S, Z_S tale terna ha la particolarità che l'unica componente di velocità è lungo l'asse X_S , con $U_{1_S} = V_{P_1}, W_{1_S} = 0$, quindi le equazioni definite nella terna solidale al motoaliante si ridefiniscono nella terna di stabilità secondo le equazioni:

$$\begin{split} m\dot{u} &= -mg\theta\cos(\Theta_{1}) + q_{1}S\left\{-\left[c_{D_{u}} + 2c_{D_{1}}\right]\left(\frac{u}{V_{P_{1}}}\right) + \left[-c_{D_{\alpha}} + c_{L_{1}}\right]\alpha - c_{D_{\delta_{E}}}\delta_{E}\right\}\\ m[\dot{w} - V_{P_{1}}q] &= -mg\theta\sin(\Theta_{1}) + q_{1}S\left\{-\left[c_{L_{u}} + 2c_{L_{1}}\right]\left(\frac{u}{V_{P_{1}}}\right) - \left[-c_{L_{\alpha}} + c_{D_{1}}\right]\alpha - c_{L_{\dot{\alpha}}}\left(\frac{\dot{\alpha}\bar{c}}{2V_{P_{1}}}\right) - c_{L_{q}}\left(\frac{q\bar{c}}{2V_{P_{1}}}\right) - c_{L_{\delta_{E}}}\delta_{E}\right\}\\ \dot{q}I_{YY} &= q_{1}S\bar{c}\left\{\left[c_{m_{u}} + 2c_{m_{1}}\right]\left(\frac{u}{V_{P_{1}}}\right) + c_{m_{\alpha}}\alpha + c_{m_{\dot{\alpha}}}\left(\frac{\dot{\alpha}\bar{c}}{2V_{P_{1}}}\right) + c_{m_{q}}\left(\frac{q\bar{c}}{2V_{P_{1}}}\right) + c_{m_{\delta_{E}}}\delta_{E}\right\} \end{split}$$

$$(5.8)$$

Per arrivare alla soluzione di queste equazioni, si nota che nella seconda equazione lungo l'asse Z_S è espressa in funzione della velocità perturbativa w, essendo i coefficienti derivativi di stabilità sono espressi in funzione di α , dobbiamo introdurre la trasformazione che traduce una perturbazione w in una perturbazione di α :

$$\tan(\alpha) = \frac{w}{V_{P_1}} \approx \alpha \qquad w \approx V_{P_1} \alpha \qquad \dot{w} \approx V_{P_1} \dot{\alpha}$$
$$q = \dot{\theta} \qquad \dot{q} = \ddot{\theta} \qquad (5.9)$$

Introducendo il cambio di variabili nelle eq:5.8, si ottengono le nuove equazioni:

$$\dot{u} = -g\theta\cos(\Theta_{1}) + \frac{q_{1}S}{m} \left\{ -\left[c_{D_{u}} + 2c_{D_{1}}\right] \left(\frac{u}{V_{P_{1}}}\right) + \left[-c_{D_{\alpha}} + c_{L_{1}}\right] \alpha - c_{D_{\delta_{E}}} \delta_{E} \right\}$$

$$\left(V_{P_{1}}\dot{\alpha} - V_{P_{1}}q\right) = -g\theta\sin(\Theta_{1}) + \frac{q_{1}S}{m}n \left\{ -\left[c_{L_{u}} + 2c_{L_{1}}\right] \left(\frac{u}{V_{P_{1}}}\right) - \left[-c_{L_{\alpha}} + c_{D_{1}}\right] \alpha - c_{L_{\dot{\alpha}}} \left(\frac{\dot{\alpha}\bar{c}}{2V_{P_{1}}}\right) - c_{L_{q}} \left(\frac{q\bar{c}}{2V_{P_{1}}}\right) - c_{L_{\delta_{E}}} \delta_{E} \right\}$$

$$\ddot{\theta}I_{YY} = q_{1}S\bar{c} \left\{ \left[c_{m_{u}} + 2c_{m_{1}}\right] \left(\frac{u}{V_{P_{1}}}\right) + c_{m_{\alpha}}\alpha + c_{m_{\dot{\alpha}}} \left(\frac{\dot{\alpha}\bar{c}}{2V_{P_{1}}}\right) + c_{m_{q}} \left(\frac{q\bar{c}}{2V_{P_{1}}}\right) + c_{m_{\delta_{E}}} \delta_{E} \right\}$$

$$(5.10)$$

Osservando le eq: 5.10, nella parte destra ci sono vari termini che modellano l'influenza aerodinamica, per arrivare ad una soluzione più compatta si introducono le componenti derivative di stabilità dimensionali che combinano la geometria, e le caratteristiche inerziali con i coefficienti aerodinamici. Tali coefficienti sono riassunti nella Tabella 5.1

Inserendo i coefficienti della Tabella 5.1 nelle equazioni del moto si ottengono le equazioni del moto associate all'azionamento della superficie di controllo, che per il moto longitudinale è l'equilibratore, le equazioni sono:

$$\dot{u} = -g\cos(\Theta_1)\theta + X_u u + X_\alpha \alpha + X_{\delta_E} \delta_E$$

$$V_{P_1}\dot{\alpha} = -g\sin(\Theta_1)\theta + Z_u u + Z_\alpha \alpha + Z_{\dot{\alpha}}\dot{\alpha} + (Z_q + V_{P_1})\dot{\theta} + Z_{\delta_E} \delta_E \qquad (5.11)$$

$$\ddot{\theta} = M_u u + M_\alpha \alpha + M_{\dot{\alpha}}\dot{\alpha} + M_q \dot{\theta} + M_{\delta_E} \delta_E$$

Coefficienti derivativi dimensionali

$X_u = -\frac{q_1 S \cdot 2c_{D_1}}{mU_1} \ (s^{-1})$	$X_{\alpha} = -\frac{q_1 S(c_{D_{\alpha}} - c_{L_1})}{m} \ (ms^{-2})$
$X_{\delta_E} = -\frac{q_1 S c_{D_{\delta_E}}}{m} \ (ms^{-2})$	$Z_u = -\frac{q_1 S \cdot 2c_{L_1}}{mU_1} \ (s^{-1})$
$Z_{\alpha} = -\frac{q_1 S(c_{L_{\alpha}+c_{D_1}})}{m} m s^{-2}$	$Z_{\dot{\alpha}} = -\frac{q_1 S \overline{c} c_{L_{\dot{\alpha}}}}{2mU_1} \ (ms^{-1})$
$Z_q = -\frac{q_1 S \overline{c} c_{L_q}}{2m U_1} \ (ms^{-1})$	$Z_{\delta_E} = -\frac{q_1 S c_{L_{\delta_E}}}{m} \ (ms^{-2})$
$M_u = \frac{q_1 S \overline{c} \cdot 2c_{m_1}}{U_1 I_{YY}} \ (m_{-1} s^{-1})$	$M_{\alpha} = \frac{q_1 S \overline{c} c_{m_{\alpha}}}{I_{YY}} \cdot \frac{\overline{c}}{2U_1} (s^{-1})$
$M_{\dot{\alpha}} = \frac{q_1 S \bar{c} c_{m_{\dot{\alpha}}}}{I_{YY}} \cdot \frac{\bar{c}}{2U_1} (s^{-1})$	$M_q = \frac{q_1 S \overline{c} c_{m_q}}{I_{YY}} \cdot \frac{\overline{c}}{2U_1} \ (s^{-1})$
$M_{\delta_E} = \frac{q_1 S \bar{c} c_{m_{\delta_E}}}{I_{YY}} \ (s^{-2})$	

Tabella 5.1: Coefficienti derivativi dimensionali del moto longitudinale

Una volta ricavate le equazioni del moto in questa forma, si passa dal dominio del tempo nel dominio di Laplace, considerando che le equazioni sono espresse rispetto allo stato di volo livellato, le condizioni iniziali sono nulle.

Introduciamo le trasformazioni di Laplace per equazioni differenziali a coefficienti costanti:

$$L(\delta_E) = \delta_E(s)$$

$$L(u) = u(s), \quad L(\dot{u}) = su(s)$$

$$L(\alpha) = \alpha(s), \quad L(\dot{\alpha}) = s\alpha(s)$$

$$L(\theta) = \theta(s), \quad L(\dot{\theta}) = s\theta(s), \quad L(\ddot{\theta}) = s^2\theta(s)$$
(5.12)

Le equazioni del moto nel dominio di Laplace assumono la seguente forma:

$$(s - X_u)u(s) - X_\alpha\alpha(s) + g\cos(\Theta_1)\theta(s) = X_{\delta_E}\delta_E(s)$$

$$-Z_uu(s) + (s(V_{P_1} - Z_{\dot{\alpha}}) - Z_\alpha)\alpha(s) - (s(Z_q + V_{P_1})) + g\sin(\Theta_1)\theta(s) = Z_{\delta_E}\delta_E(s)$$

$$-M_uu(s) - (M_{\dot{\alpha}}s + M_\alpha)\alpha(s) + s(s - M_q)\theta(s) = M_{\delta_E}\delta_E(s)$$

(5.13)

Per il calcolo delle funzioni di trasferimento si considera l'input la deflessione dell'equilibratore $\delta_E(t)$, mentre l'output è rappresentato dalle variabili di piccole perturbazioni $(u(t), \alpha(t), \theta(t))$. A tale scopo si introducono le funzioni di trasferimento $\left\{ \frac{u(s)}{\delta_E(s)}, \frac{\alpha(s)}{\delta_E(s)}, \frac{\theta(s)}{\delta_E(s)} \right\}$.

$$\begin{bmatrix} s - X_u & -X_\alpha & g\cos(\Theta_1) \\ -Z_u & s(V_{P_1} - Z_{\dot{\alpha}}) - Z_\alpha & -s(Z_q + V_{P_1}) + g\sin(\Theta_1) \\ -M_u & -(M_{\dot{\alpha}}s + M_\alpha) & s(s - M_q) \end{bmatrix} \begin{bmatrix} \frac{u(s)}{\delta_E(s)} \\ \frac{\alpha(s)}{\delta_E(s)} \\ \frac{\theta(s)}{\delta_E(s)} \end{bmatrix} = \begin{cases} X_{\delta_E} \\ M_{\delta_E} \end{cases}$$

Applicando al regola di Cramer troviamo le soluzioni espresso come:

$$\frac{u(s)}{\delta_{E}(s)} = \frac{\begin{vmatrix} X_{\delta_{E}} & -X_{\alpha} & g\cos(\Theta_{1}) \\ Z_{\delta_{E}} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ M_{\delta_{E}} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = \frac{Num_{u}(s)}{\overline{D}_{1}(s)}$$
(5.14)

$$\frac{\alpha(s)}{\delta_{E}(s)} = \frac{\begin{vmatrix} s - X_{u} & X_{\delta_{E}} & g\cos(\Theta_{1}) \\ -Z_{u} & Z_{\delta_{E}} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & M_{\delta_{E}} & s(s - M_{q}) \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = \frac{Num_{\alpha}(s)}{\overline{D}_{1}(s)}$$
(5.15)

$$\frac{\theta(s)}{\delta_{E}(s)} = \frac{\begin{vmatrix} s - X_{u} & -X_{\alpha} & X_{\delta_{E}} \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & Z_{\delta_{E}} \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & M_{\delta_{E}} \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = \frac{Num_{\theta}(s)}{\overline{D}_{1}(s)}$$
(5.16)

Per riuscire a interpretare al meglio le funzioni di trasferimento, si devono calcolare i numeratori $Num_u(s)$, $Num_\alpha(s)$, $Num_\theta(s)$. Tutte le funzioni di trasferimento presentano un denominatore comune $\overline{D}_1(s)$, tale denominatore

rappresenta la caratteristica longitudinale del motoaliante.

$$\overline{D}_{1}(s) = A_{1}s^{4} + B_{1}s^{3} + C_{1}s^{2} + D_{1}s + E_{1}$$

$$A_{1} = V_{P_{1}} - Z_{\dot{\alpha}}$$

$$B_{1} = -(V_{P_{1}} - Z_{\dot{\alpha}})(X_{u} + M_{q}) - Z_{\alpha} - M_{\dot{\alpha}}(Z_{q} + V_{P_{1}})$$

$$C_{1} = X_{u} [M_{q}(V_{P_{1}} - Z_{\dot{\alpha}}) + Z_{\alpha} + M_{\dot{\alpha}}(V_{P_{1}} + Z_{q})]$$

$$+ M_{q}Z_{\alpha} - Z_{u}X_{\alpha} + M_{\dot{\alpha}}g\sin(\Theta_{1}) - M_{\alpha}(Z_{q} + V_{P_{1}})$$

$$D_{1} = g\sin(\Theta_{1}) [M_{\alpha} - M_{\dot{\alpha}}X_{u}] + g\cos(\Theta_{1}) [M_{\dot{\alpha}}Z_{u} + M_{u}(V_{P_{1}} - Z_{\dot{\alpha}})]$$

$$- X_{\alpha}M_{u}(Z_{q} + V_{P_{1}}) + Z_{u}X_{\alpha}M_{q} + X_{u} [M_{\alpha}(Z_{q} + V_{P_{1}}) - M_{q}Z_{\alpha}]$$

$$E_{1} = g\cos(\Theta_{1})(Z_{u}M_{\alpha} - Z_{\alpha}M_{u})) + g\sin(\Theta_{1})(M_{u}X_{\alpha} - M_{\alpha}X_{u})$$
(5.17)

Mentre l'espressione dei numeratori sono :

$$Num_{u}(s) = A_{u}s^{3} + B_{u}s^{2} + C_{u}s + D_{u}$$

$$A_{u} = X_{\delta_{E}}(V_{P_{1}-Z_{\dot{\alpha}}})$$

$$B_{u} = -X_{\delta_{E}}\left[(V_{P_{1}} - Z_{\dot{\alpha}})M_{q} + Z_{\alpha} + M_{\dot{\alpha}}(V_{P_{1}} + Z_{q})\right] + Z_{\delta_{E}}X_{\alpha}$$

$$C_{u} = X_{\delta_{E}}\left[M_{q}Z_{\alpha} + M_{\dot{\alpha}}g\sin(\Theta_{1}) - M_{\alpha}(V_{P_{1}} + Z_{q})\right]$$

$$D_{u} = g\sin(\Theta_{1})X_{\delta_{E}}M_{\alpha} - g\cos(\Theta_{1})Z_{\delta_{E}}M_{\alpha} + M_{\delta_{E}}(g\cos(\operatorname{Tr})Z_{\alpha} - g\sin(\Theta_{1})X_{\alpha})$$
(5.18)

$$Num_{\alpha}(s) = A_{\alpha}s^{3} + B_{\alpha}s^{2} + C_{\alpha}s + D_{\alpha}$$

$$A_{\alpha} = Z_{\delta_{E}}$$

$$B_{\alpha} = X_{\delta_{E}}Z_{u} - Z_{\delta_{E}}(X_{u} + M_{q}) + M_{\delta_{E}}(Z_{\delta_{E}+V_{P_{1}}})$$

$$C_{\alpha} = X_{\delta_{E}}\left[M_{u}(Z_{q} + V_{P_{1}}) - M_{q}Z_{u}\right] + Z_{\delta_{E}}M_{q}X_{u} - M_{\delta_{E}}\left[g\sin(\Theta_{1}) + X_{u}(Z_{q} + V_{P_{1}})\right]$$

$$D_{\alpha} = -g\sin(\Theta_{1})X_{\delta_{E}}M_{u} + g\cos(\Theta_{1})Z_{\delta_{E}}M_{u} + M_{\delta_{E}}(g\sin(\Theta_{1})X_{u} - g\cos(\Theta_{1})Z_{u})$$

$$(5.19)$$

$$Num_{\theta}(s) = A_{\theta}s^{2} + B_{\theta}s + C_{\theta}$$

$$A_{\theta} = Z_{\delta_{E}}M_{\dot{\alpha}} + M_{\delta_{E}}(V_{P_{1}} - Z_{\dot{\alpha}})$$

$$B_{\theta} = X_{\delta_{E}}[Z_{u}M_{\dot{\alpha}} + M_{u}(V_{P_{1}} - Z_{\dot{\alpha}})] + Z_{\delta_{E}}(M_{\alpha} - M_{\dot{\alpha}}X_{u}) - M_{\delta_{E}}[X_{u}(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha}]$$

$$C_{\theta} = X_{\delta_{E}}(M_{\alpha}Z_{u} - M_{u}Z_{\alpha}) - Z_{\delta_{E}}(M_{\alpha}X_{u} + X_{\alpha}M_{u}) + M_{\delta_{E}}(X_{u}Z_{\alpha} - X_{\alpha}Z_{u})$$
(5.20)

5.2.1 Criterio di Routh

Per trovare la stabilità delle funzioni di trasferimento si va ad utilizzare il criterio di Routh [25], per analizzare la stabilità di $\overline{D}_1(s)$. Utilizzando tale

m[kg]	272	h[m]	1000
$I_{XX}[kgm^2]$	722	$U_{1s}][m/s]$	24
$I_{YY}[kgm^2]$	285	T[K]	288
$I_{ZZ}[kgm^2]$	995	Mach	0,07
$I_{XZ}[kgm^2]$	9	Re	$1,62\cdot 10^6$
$\alpha_1[^\circ]$	0	$\Theta_1[^\circ]$	0

Tabella 5.2: Condizioni di volo di crociera.

criterio la condizione di stabilità si riduce al rispettare le seguenti condizioni:

$$A_1 > 0, \qquad B_1 > 0, \qquad E >_1 > 0$$

$$(B_1C_1 - A_1D_1) > 0, \qquad D_1(B_1C_1 - A_1D_1) - B_1^2E_1 > 0$$

(5.21)

Tale condizioni sono state implementate nel script di matlab Appendice A.

5.2.2 Funzione di trasferimento equilibratore

A questo punto sono state implementate in un script matlab, Appendice A, per ricavare le funzioni di trasferimento utilizzando i coefficienti calcolati con Datcom+, Appendice C.

Per quanto riguarda i momenti d'inerzia, essendo che il volo livellato, si assume in prima approssimazione che i due sistemi di riferimento solidale al motoaliante e quello solidale alla terna di stabilità coincidano. Nella Tabella 5.2 troviamo il riassunto delle condizioni di volo. Eseguendo le simulazioni per questa tipologia di volo, troviamo le seguenti funzioni di trasferimento:

$$\frac{u(s)}{\delta_E(s)} = \frac{-1.659s^3 - 26.39s^2 - 29.9s + 5830}{24.17s^4 + 138.5s^3 + 442.2s^2 + 28.69s + 71.3}$$
$$\frac{\alpha(s)}{\delta_E(s)} = \frac{-3.004s^3 - 233.6s^2 - 5.219s - 58.67}{24.17s^4 + 138.5s^3 + 442.2s^2 + 28.69s + 71.3}$$
$$\frac{\theta(s)}{\delta_E(s)} = \frac{235.8s^2 + 660.9s + 35.35}{24.17s^4 + 138.5s^3 + 442.2s^2 + 28.69s + 71.3}$$
(5.22)

L'analisi delle funzioni di trasferimento si divide in tre parti:

- 1. Calcolo dei poli della funzione e analisi di stabilità $\overline{D}_1(s)$.
- 2. Tracciare il digramma di Bode e la sua analisi.
- 3. Tracciare la risposta nel dominio del tempo.

pulsazio	smorzamento		
$\omega_p[rad/s]$	0,404	ζ_p	0,0173
$\omega_{sp}[rad/s]$	4,249	ζ_{sp}	0,6728

Tabella 5.3: Parametri dinamici del moto longitudinale.

Calcolo dei poli

Per il calcolo dei poli, si è utilizzato la funzione di matlab *roots*, a $\overline{D}_1(s)$ corrispondo quattro poli, corrispondenti a due poli coniugati del modo fugoide e due poli coniugati corrispondenti al modo di breve periodo:

$$p_{1_{P}} = -0.0070 + 0.4042i$$

$$p_{2_{p}} = -0.0070 - 0.4042i$$

$$p_{3_{sp}} = -2.8588 + 3.1435i$$

$$p_{4_{sp}} = -2.8588 - 3.1435i$$
(5.23)

Una volta chi si è stabilito la stabilità di $D_1(s)$ si passa all'analisi dei poli.

Esprimendo un polo generico come $p_i = a + bs$ si ricava la pulsazione e lo smorzamento dei modi con le seguenti espressioni:

$$\omega_i = \sqrt{a^2 + b^2}$$

$$\zeta_i = -\frac{a}{\omega_i}$$
(5.24)

Dall'analisi dei dati della Tabella 5.3 e confrontando con i requisiti espressi nella Tabella 1.1 si nota che l'unico requisiti non accettabile è quello legato a ω_{sp} tuttavia se andiamo ad analizzare la Figura 1.9 si nota che tale valore è accettabile, essendo comunque rispettato il criterio che ω_p e ω_{sp} distino almeno una decade l'una rispetto all'altra come si vedrà meglio dopo nel diagramma di Bode.

Diagramma di Bode

Per il tracciamento dei diagrammi di Bode si utilizzato la funzione di matlab bode Osservando le Figure 5.6, 5.5 e 5.7 si nota che si ha picco nel diagramma di guadagno in corrispondenza di ω_p dovuto al valore molto basso di ζ_p , dopo di che i diagrammi iniziano a comportarsi come dei filtri passa basso in corrispondenza di ω_{sp} . I cambiamenti di fase corrispondenti alle due pulsazioni sono il ritardo di fase tra l'azionamento dell'equilibratore e l'insorgenza delle oscillazioni.

Figura 5.8: $\alpha(t)$ in funzione della deflessione di 1° dell'equilibratore.

Il parametro più importante è ω_{sp} [15] in quanto l'azionamento dell'equilibrate da parte del pilota rappresentano le pulsazioni tipiche, intorno a questo valore, quindi è molto importante che sia altamente smorzato per non incorrere in fenomeni di risonanza. In generale vediamo che il motoaliante ha un comportamento attenuatore all'azionamento dell'equilibratore, questo riduce l'ampiezza delle oscillazioni per il moto longitudinale rendendo piacevole l'esperienza di volo senza un requisito costante di controllo, dall'altro canto questo comporta che non reagisce ad azionamenti di controllo ad alta frequenza in quanto non sarebbe in grado di seguire l'andamento essendo fuori dalla sua banda passante. In seguito si utilizzano le funzioni di trasferimento per ricavare la risposta nel tempo del motoaliante alla deflessione dell'equilibratore. Nella Figura 5.8 si osserva la convergenza di α dopo una deflessione di 1° dell'equilibratore. Si ha lo smorzamento iniziale del periodo breve e la continuazione del modo di fugoide con l'angolo d'attacco che tende verso il valore di -0,85°.

5.3 Stabilità Dinamica Longitudinale-Raffica di vento

Una volta ricavato il comportamento dinamico del motoaliante all'azionamento dell'equilibratore, si deve analizzare il suo andamento soggetto alle raffiche di vento. Per il moto longitudinale è molto analizzare le raffiche di vento verticali lungo l'asse Z'. Tale perturbazione è data dalla variabile w_h , dove la velocità della raffica di vento w_h è una funzione arbitraria dipendente dal tempo. Per ricavare le equazioni del moto, soggette a tale disturbo si introducono le condizioni iniziali della raffica, come segue:

$$W_1 = 0$$
 $\dot{W}_1 = 0$
 $w_h = 0, \quad \dot{w}_h \neq 0$
(5.25)

Introducendo nelle equazioni del moto tale perturbazione, e assumendo che l'equilibratore sia in posizione fissa, si ottiene:

$$\dot{u} = -g\cos(\Theta_1)\theta + X_u u + X_\alpha \alpha - \dot{w}_h \sin(\Theta_1)$$

$$V_{P_1}\dot{\alpha} = -g\sin(\Theta_1)\theta + Z_u u + Z_\alpha \alpha + Z_{\dot{\alpha}}\dot{\alpha} + (Z_q + V_{P_1})\dot{\theta} + \dot{w}_h\cos(\Theta_1)$$

$$\ddot{\theta} = M_u u + M_\alpha \alpha + M_{\dot{\alpha}}\dot{\alpha} + M_q\dot{\theta}$$
(5.26)

A differenza del caso quando come input viene considerato la deflessione dell'equilibratore in questo caso, l'input per le funzioni di trasferimento sarà fornito dall'accelerazione perturbativa \dot{w}_h . La sua trasformata di Laplace pone:

$$L[\dot{w_h}] = sw_h(s) \tag{5.27}$$

Seguendo lo stesso procedimento utilizzato per l'equilibratore si arriva alle seguenti funzioni di trasferimento:

$$\frac{\theta(s)}{w_{h}(s)} = s \frac{\begin{vmatrix} s - X_{u} & -X_{\alpha} & -\sin(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & \cos(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & 0 \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = s \frac{Num_{\theta_{w}}(s)}{\overline{D}_{1}(s)}$$
(5.28)

$$\frac{u(s)}{w_{h}(s)} = s \frac{\begin{vmatrix} -\sin(\Theta_{1}) & -X_{\alpha} & g\cos(\Theta_{1}) \\ \cos(\Theta_{1}) & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ 0 & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = s \frac{Num_{uw}(s)}{\overline{D}_{1}(s)}$$
(5.29)

$$\frac{\alpha(s)}{w_{h}} = s \frac{\begin{vmatrix} s - X_{u} & -\sin(\Theta_{1}) & g\cos(\Theta_{1}) \\ -Z_{u} & \cos(\Theta_{1}) & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & 0 & s(s - M_{q}) \end{vmatrix}}{\begin{vmatrix} s - X_{u} & -X_{\alpha} & g\cos(\Theta_{1}) \\ -Z_{u} & s(V_{P_{1}} - Z_{\dot{\alpha}}) - Z_{\alpha} & -s(Z_{q} + V_{P_{1}}) + g\sin(\Theta_{1}) \\ -M_{u} & -(M_{\dot{\alpha}}s + M_{\alpha}) & s(s - M_{q}) \end{vmatrix}} = s \frac{Num_{\alpha_{w}}(s)}{\overline{D}_{1}(s)}$$
(5.30)

Le funzioni di trasferimento presentano lo stesso denominatore, delle funzioni di trasferimento per l'equilibratore, in quanto essa rappresenta l'equazione caratteristica del modo longitudinale.

Come conseguenza si hanno i stessi poli, le stesse pulsazioni e smorzamenti, tuttavia quello che cambia sono i numeratori di tali funzioni.

Implementando in matlab Appendice A si ottengono le seguenti funzioni di trasferimento:

$$\frac{u(s)}{w_h(s)} = \frac{5,634s^3 + 117,1s}{24,17s^4 + 138,5s^3 + 442,2s^2 + 28,69s + 71,3}$$
$$\frac{\alpha(s)}{w_h(s)} = \frac{s^4 + 2,534s^3 + 0,05725s^2 + 0,0004708s}{24,17s^4 + 138,5s^3 + 442,2s^2 + 28,69s + 71,3}$$
$$\frac{\theta(s)}{w_h(s)} = \frac{-0,5715s^3 - 11,95s^2 - 0,2725s}{24,17s^4 + 138,5s^3 + 442,2s^2 + 28,69s + 71,3}$$
(5.31)

Si Tracciano i digrammi di Bode di tale funzioni per riuscire ad interpretare al meglio la risposta del motoaliante, quello che si osserva dall'analisi delle Figure 5.9, 5.10 e 5.11. Si nota che tutte presentano un picco massimo

Figura 5.9: Diagramma di Bode della funzione $\frac{u(s)}{w_h(s)}$.

Figura 5.10: Diagramma di Bode della funzione $\frac{\alpha(s)}{w_h(s)}$.

Figura 5.11: Diagramma di Bode della funzione $\frac{\theta(s)}{w_h(s)}$.

Figura 5.12: Risposta $\alpha(t)$ ad un input $v_q = 4, 8m/s$ di durata 1s.

in presenza della ω_p . $\frac{\alpha(s)}{w_h(s)}$ si comporta come un filtro passa alto, comunque attenuando sempre le raffiche.

A tal proposito seguendo le indicazioni fornite da CS-22[14] è stato studiato la risposta nel dominio del tempo di una raffica di vento verticale pari a $4, 8ms^{-1}$ di durata t=1s, data la natura molto stabile del motoaliante si ottengono valori massimo molto contenuti delle variabili u, θ, α . Solitamente la risposta che ci interessa maggiormente è la variabile dell'angolo d'attacco α , ciò è dovuto al fatto che una perturbazione verticale tende ad aumentare l'angolo d'attacco del motoaliante, per un volo sicuro la risposta del motoaliante deve essere tale da rimanere dalla condizione di stallo, che per il nostro profilo FX 63-137 siamo sui 11°.

Si osserva nella Figura 5.12 la risposta dell'angolo d'attacco per $v_h = 4, 8ms^{-1}$, di poco superiore ai 2° grazie al valore di ζ_{sp} elevato, quindi si osserva dopo lo smorzamento del periodo breve del moto si sviluppa il modo fugoide leggermente smorzato.

5.4 Stabilità Dinamica Laterale

Nella trattazione della stabilità dinamica laterale si parte dalle equazioni del moto, espresse nella condizione di volo livellato soggetto a piccoli disturbi.

I principali artefici dell'insorgenza delle oscillazioni del moto laterale sono dovute a:

- 1. Deflessione degli alettoni.
- 2. Deflessione del timone di coda.
- 3. Perturbazione dovuta alla raffica di vento laterale.
Richiamiamo le equazioni del moto del Capitolo ??.

$$m [\dot{v} + U_1 r - pW_1] = mg\phi \cos(\Theta_1) + f_{A_Y}$$

$$\dot{p}I_{XX} - \dot{r}I_{XZ} = l_A$$

$$\dot{r}I_{ZZ} - \dot{p}I_{XZ} = n_A$$

$$p = \dot{\phi} - \dot{\psi}\sin(\Theta_1)$$

$$r = \dot{\psi}\cos(\Theta_1)$$

(5.32)

Le forze ed i momenti aerodinamici espressi in funzione dei coefficienti derivativi adimensionali diventano.

$$f_{A_{Y}} = q_{1}S\left\{c_{Y_{\beta}}\beta + c_{Y_{p}}\frac{pb}{2V_{P_{1}}} + c_{Y_{r}}\frac{rb}{2V_{P_{1}}} + c_{Y_{\delta_{A}}}\delta_{A} + c_{Y_{\delta_{R}}}\delta_{R}\right\}$$

$$l_{A} = q_{1}Sb\left\{c_{l_{\beta}}\beta + c_{l_{p}}\frac{pb}{2V_{P_{1}}} + c_{l_{r}}\frac{rb}{2V_{P_{1}}} + c_{l_{\delta_{A}}}\delta_{A} + + c_{l_{\delta_{R}}}\delta_{R}\right\}$$

$$n_{A} = q_{1}Sb\left\{c_{n_{\beta}}\beta + c_{n_{p}}\frac{pb}{2V_{P_{1}}} + c_{n_{r}}\frac{rb}{2V_{P_{1}}} + c_{n_{\delta_{A}}}\delta_{A} + c_{n_{\delta_{R}}}\delta_{R}\right\}$$
(5.33)

I momenti di inerzia sono stati calcolati nella terna solidale al corpo X, Y, Z, essendo che le forze perturbative sono espressa nella terna di stabilità (X_S, Y_S, Z_S) , si deve utilizzare la matrice di rotazione per esprimere i momenti di inerzia nella terna di stabilità.

I momenti di inerzia sono stati calcolati in X, Y, Z in quanto sono sempre costanti in questo riferimento. Il cambiamento di riferimento si esegue tramite la seguente relazione:

$$\begin{cases} I_{XX} \\ I_{ZZ} \\ I_{XZ} \end{cases}_{X_S, Y_S, Z_S} = \begin{bmatrix} \cos^2 \alpha_1 & \sin^2 \alpha_1 & -\sin(2\alpha_1) \\ \sin^2 \alpha_1 & \cos^2 \alpha_1 & \sin(2\alpha_1) \\ 0, 5\sin(2\alpha_1) & -0, 5\sin(2\alpha_1) & \cos(2\alpha_1) \end{bmatrix} \begin{cases} I_{XX} \\ I_{ZZ} \\ I_{XZ} \end{cases}_{X, Y, Z}_{(5.34)}$$

Si introduce le semplificazioni che l'unica componente di velocità sia lungo l'asse di stabilità X_S tale che $U_{1_S} = V_{P_1}$, e $V_{1_S} = W_{1_S} = 0$. Nelle ipotesi di volo livello rettilineo si ha $sin(\Theta_1) \approx 0$, $cos(\Theta_1) \approx 0$.

Si introduce una trasformazione di variabili per esprimere per esprimere \dot{v} in funzione di $\dot{\beta}$.

$$v \approx V_{P_1}\beta \longrightarrow \beta \approx \frac{v}{V_{P_1}}, \quad \dot{v} \approx V_{P_1}\dot{\beta} \longrightarrow \dot{\beta} = \frac{\dot{v}}{V_{P_1}}$$
 (5.35)

$$p \approx \dot{\phi}, \quad \dot{p} \approx \ddot{\phi}, \quad r \approx \dot{\psi}, \quad \dot{r} \approx \ddot{\psi}$$
 (5.36)

Coefficienti derivativi dimensionali

$Y_{\beta} = \frac{q1Sc_{Y_{\beta}}}{m}(ms^{-1})$	$Y_p = \frac{q_1 S c_{Y_p}}{m} \cdot \frac{b}{2U_1} (ms^{-2})$
$Y_r = \frac{q_1 S c_{Y_r}}{m} \cdot \frac{b}{2U_1} (ms^{-1})$	$Y_{\delta_A} = \frac{q_1 S c_{Y_{\delta_A}}}{m} (ms^{-2})$
$Y_{\delta_R} = \frac{q_1 S c_{Y_{\delta_R}}}{m} (ms^{-2})$	$L_{\beta} = \frac{q_1 S c_{l_{\beta}} b}{I_{xx}} (s^{-2})$
$L_p = \frac{q_1 S b c_{l_p}}{I_{XX}} \cdot \frac{b}{2U_1} (s^{-1})$	$L_r = \frac{q_1 S b c_{l_r}}{I_{XX}} \cdot \frac{b}{2U_1} (s^{-1})$
$L_{\delta_A} = \frac{q_1 S c_{l_{\delta_A}} b}{I_{XX}} (s^{-2})$	$L_{\delta_R} = \frac{q_1 S c_{l_{\delta_R}} b}{I_{XX}} (s^{-2})$
$N_p = \frac{q_1 S b c_{n_p}}{I_{ZZ}} \cdot \frac{b}{2U_1} (s^{-1})$	$N_{\beta} = \frac{q_1 S c_{n_{\beta}} b}{I_{ZZ}} (s^{-2})$
$N_r = \frac{q_1 S b c_{n_r}}{I_{ZZ}} \cdot \frac{b}{2U_1} (s^{-1})$	$N_{\delta_A} = \frac{q_1 S c_{\delta_A} b}{I_{ZZ}} (s^{-2})$
$N_{\delta_R} = \frac{q_1 S c_{\delta_R} b}{I_{ZZ}} (s^{-2})$	

Tabella 5.4: Coefficienti dimensionali derivativi per il moto laterale.

Per i coefficienti derivativi dimensionali si procede come per la stabilità dinamica longitudinale, nella Tabella 5.4.

Si introducono nelle equazioni del moto le forze e i momenti aerodinamici espresse in funzione di coefficienti dimensionali derivativi, il cambio di variabile $\dot{v} \longrightarrow \dot{\beta}$ e le semplificazioni dovute all'angolo Θ_1 . Dalla eq. 5.36 si avrà anche l'uguaglianza delle derivate dimensionali:

$$Y_{\dot{\phi}} = Y_P, \quad Y_{\dot{\psi}} = Y_r, \quad L_{\dot{\phi}} = L_p, \\ L_{\dot{\psi}} = L_r \quad N_{\dot{\phi}} = N_p, \quad N_{\dot{\psi}} = N_r \quad (5.37)$$

Il passaggio seguente è passare dal dominio del tempo nel dominio di Laplace, considerando che il punto di partenza è il volo livellato non perturbato, le condizioni iniziali sono tutte nulle. Le trasformate di Laplace delle variabili in gioco sono le seguenti:

$$L(\delta_A) = \delta_A(s), \quad L(\delta_R) = \delta_R(s)$$

$$L(\beta) = \beta(s), \quad L(\dot{\beta}) = s\beta(s)$$

$$L(\phi) = \phi(s), \quad L(\dot{\phi}) = s\phi(s), \qquad L(\ddot{\phi}) = s^2\phi(s)$$

$$L(\psi) = \psi(s), \quad L(\dot{\psi}) = s\psi(s), \qquad L(\ddot{\psi}) = s^2\psi(s)$$
(5.38)

Si introducono i rapporti: $I_1 = \frac{I_{XZ}}{I_{XX}}, I_2 = \frac{I_{XZ}}{I_ZZ}.$ Le equazioni del moto nel dominio di Laplace diventano:

$$(sV_{P_{1}} - Y_{\beta})\beta(s) - (sY_{p} + gcos(\Theta_{1}))\phi(s) + s(V_{P_{1}} - Y_{r})\psi(s) = Y_{\delta_{i}}\delta_{i}(s) -L_{\beta}\beta(s) + s(s - L_{p})\phi(s) - s(sI_{1} + L_{r})\psi(s) = L_{\delta_{i}}\delta_{i}(s) -N_{\beta}\beta(s) - s(sI_{2} + N_{p})\phi(s) + s(s - N_{r})\psi(s) = N_{\delta_{i}}\delta_{i}(s) (5.39)$$

Dove il pedice i di δ_i indica la deflessione di una generica superficie di controllo che può essere il timone di coda oppure gli alettoni. Combinando la deflessione degli alettoni e quella del timone si ottengono sei funzioni di trasferimento:

$$\left\{\frac{\beta(s)}{\delta_A(s)}, \frac{\phi(s)}{\delta_A(s)}, \frac{\psi(s)}{\delta_A(s)}\right\} \quad \left\{\frac{\beta(s)}{\delta_R(s)}, \frac{\phi(s)}{\delta_R(s)}, \frac{\psi(s)}{\delta_R(s)}\right\} \tag{5.40}$$

$$\frac{\beta(s)}{\delta_{i}(s)} = \frac{\begin{vmatrix} Y_{\delta_{i}} & -(sY_{p} + gcos(\Theta_{1})) & s(V_{P_{1}} - Y_{r}) \\ L_{\delta_{I}} & s(s - L_{p}) & -s(sI_{1} + L_{r}) \\ N_{\delta_{i}} & -s(sI_{2} + N_{p}) & s(s - N_{r}) \end{vmatrix}}{\begin{vmatrix} (sV_{P_{1}} - Y_{\beta}) & -(sY_{p} + gcos(\Theta_{1})) & s(V_{P_{1}} - Y_{r}) \\ -L_{\beta} & s(s - L_{p}) & -s(sI_{1} + L_{r}) \\ -N_{\beta} & -s(sI_{2} + N_{p}) & s(s - N_{r}) \end{vmatrix}} = \frac{Num_{\beta_{i}}(s)}{\overline{D}_{2}(s)}$$
(5.41)

$$\frac{\phi(s)}{\delta_{i}(s)} = \frac{\begin{vmatrix} (sV_{P_{1}} - Y_{\beta}) & Y_{\delta_{i}} & s(V_{P_{1}} - Y_{r}) \\ -L_{\beta} & L_{\delta_{I}} & -s(sI_{1} + L_{r}) \\ -N_{\beta} & N_{\delta_{i}} & s(s - N_{r}) \end{vmatrix}}{\begin{vmatrix} (sV_{P_{1}} - Y_{\beta}) & -(sY_{p} + gcos(\Theta_{1})) & s(V_{P_{1}} - Y_{r}) \\ -L_{\beta} & s(s - L_{p}) & -s(sI_{1} + L_{r}) \\ -N_{\beta} & -s(sI_{2} + N_{p}) & s(s - N_{r}) \end{vmatrix}} = \frac{Num_{\phi_{i}}(s)}{\overline{D}_{2}(s)}$$
(5.42)

$$\frac{\psi(s)}{\delta_{i}(s)} = \frac{\begin{vmatrix} (sV_{P_{1}} - Y_{\beta}) & -(sY_{p} + gcos(\Theta_{1})) & Y_{\delta_{i}} \\ -L_{\beta} & s(s - L_{p}) & L_{\delta_{I}} \\ -N_{\beta} & -s(sI_{2} + N_{p}) & N_{\delta_{i}} \end{vmatrix}}{\begin{vmatrix} (sV_{P_{1}} - Y_{\beta}) & -(sY_{p} + gcos(\Theta_{1})) & s(V_{P_{1}} - Y_{r}) \\ -L_{\beta} & s(s - L_{p}) & -s(sI_{1} + L_{r}) \\ -N_{\beta} & -s(sI_{2} + N_{p}) & s(s - N_{r}) \end{vmatrix}} = \frac{Num_{\psi_{i}}(s)}{\overline{D}_{2}(s)}$$
(5.43)

Da queste espressioni si ricavano le funzioni di trasferimento, di particolare interesse è l'espressione di $\overline{D}_2(s)$ in quanto rappresenta l'equazione caratteristica del moto laterale. A questo scopo si va ad esprimere come per il caso longitudinale in funzione dei coefficienti dimensionali secondo la forma:

$$\overline{D}_{2}(s) = s(A_{2}s^{4} + B_{2}s^{3} + C_{2}s^{2} + D_{2}s + E_{2})$$

$$A_{2} = V_{P-1}(1 - I_{1}I_{2})$$

$$B_{2} = -Y_{\beta}(1 - I_{1}I_{2}) - V_{P_{1}}(L_{p} + N_{r} + I_{1}N_{p} + I_{2}L_{r})$$

$$C_{2} = V_{P_{1}}(L_{p}N_{r} - N_{p}L_{r}) + Y_{\beta}(L_{p} + N_{r} + I_{1}N_{p} + I_{2}L_{r}) - Y_{p}(L_{\beta} + I_{1}N_{\beta})$$

$$+ V_{P_{1}}(L_{\beta}I_{2} + N_{\beta}) - Y_{r}(L_{\beta}I_{2} + N_{\beta})$$

$$D_{2} = -Y_{\beta}(L_{p}N_{r} - N_{p}L_{r}) + Y_{p}(L_{\beta}N_{r} - L_{r}N_{\beta}) - g(L_{\beta} + I_{1}N_{\beta})$$

$$+ V_{P_{1}}(L_{\beta}N_{p} - L_{p}N_{\beta}) - Y_{r}(L_{\beta}N_{p} - L_{p}N_{\beta})$$

$$E_{2} = g(L_{\beta}N_{r} - L_{r}N_{\beta})$$
(5.44)

Per la verifica della stabilità dinamica del $\overline{D}_2(s)$ si utilizza la regola di Routh [25], durante l'analisi preliminare mantenendo la configurazione iniziale data da Marco [7] si è avuto dei problemi legati all'instabilità del modo spirale che verrà analizzata più avanti.

Nella configurazione finale calcolando i poli di \overline{D}_2 si ottiene:

$$p_{R} = -5.9302 + 0.0000i$$

$$p_{dr_{1}} = -0.2502 + 0.8772i$$

$$p_{dr_{2}} = -0.2502 - 0.8772i$$

$$p_{S} = -0.0104 + 0.0000i$$
(5.45)

Dove p_R tramite l'eq: 5.46 ci fornisce il tempo di rollio T_R quale corrisponde al tempo impiegato dalla velocità angolare di raggiungere il 63% del suo stato finale.

$$T_R = \frac{1}{-p_r} = 0,168(s) \tag{5.46}$$

Allo stesso modo si procede col modo spirale, una perturbazione laterale provoca un'aumento dell'angolo d'attacco di imbardata e tale tempo T_S corrisponde al raggiungimento del 63% della velocità angolare d'imbardata dello stato finale, provocato dalla velocità angolare di rollio.

$$T_S = -\frac{1}{p_S} = 95,77(s) \tag{5.47}$$

In fine si trova che la pulsazione e lo smorzamento del dutch roll sono pari a:

$$\omega_{dr} = 0,912(rad/s), \qquad \zeta_{dr} = 0,274$$
(5.48)

Confrontando con la Tabella 1.1 si vede che sono stati rispettati tutti i requisiti.

$\Gamma_W[^\circ]$	$T_S[s]$
8	95,77
7	171,5
6	3432
5	-154
4	-67,4
0	-12,5

Tabella 5.5: Variazione T_S al variare di Γ_W .

Modo Spirale

Si vuole approfondire la stabilità del modo spirale, tale modo solitamente può essere leggermente instabile o stabile, tuttavia ci si è prefissato il requisito iniziale di rendere il motoaliante stabile anche per il modo spirale. L'instabilità del modo spirale è legato in particolare ad E_2 la componente di $\overline{D}_2(s)$. Tale componente si riduce alla condizione che $(L_\beta N_r - L_r N_\beta) > 0$. Per arrivare alla stabilità dinamica è stato aumentato l'angolo diedro delle ali Γ_W fino a 8° e allo stesso tempo diminuito la superficie totale dell'ala verticale analizzando il modo di dutch roll, in quanto una diminuzione della coda verticale abbassa lo smorzamento del dutch roll, allo stesso tempo un aumento dell'angolo diedro diminuisce anche esso lo smorzamento di roll. In seguito nella Tabella 5.5 si ha la variazione del T_S al variare dell'angolo diedro.

Sempre per ottenere la stabilità dinamica del modo spirale è stato cambiata l'orientazione della rastremazione dell'ala considerando $\Lambda_{LE} = 0^{\circ}$, mentre inizialmente era stato assunto $\Lambda_{TE} = 0^{\circ}$. Per dare un idea di come cambia tale geometria il modo spirale è stato fatta una simulazione con $\Gamma_W = 8^{\circ}$ e $\Lambda_{TE} = 0^{\circ}$, ottenendo un $T_S = -94$, 4. Da questo si intuisce che un angolo di freccia negativo va a incidere sulla stabilità del modo spirale.

Figura 5.13: Tracciameno del diagramma di Bode della funzione $\frac{\beta(s)}{\delta_A(s)}$.

5.4.1 Funzioni di trasferimento Alettone-Timone

Di seguito vengono riportate le funzioni di trasferimento:

$$\frac{\beta(s)}{\delta_A(s)} = \frac{6,07s^3 + 51,29s^2 + 1,889s}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}
\frac{\phi(s)}{\delta_A(s)} = \frac{125,9s^3 - 6,722s^2 - 0,8552s}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}
\frac{\psi(s)}{\delta_A(s)} = \frac{-10,38s^3 - 161,8s^2 - 27,5s - 0,677}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}
\frac{\beta(s)}{\delta_R(s)} = \frac{0,4232s^4 + 103,5s^3 + 623,4s^2 - 79,36s}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}
\frac{\phi(s)}{\delta_R(s)} = \frac{2,372s^3 - 206,7s^2 - 309,9s}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}
\frac{\psi(s)}{\delta_R(s)} = \frac{-101,2s^3 - 633,9s^2 - 95,33s - 113,3}{24s^4 + 154,6s^3 + 92.77s^2 + 119,4s + 1,236}$$
(5.50)

Per interpretare al meglio le funzioni di trasferimento sono state tracciate i diagrammi di Bode

Dall'analisi dei diagrammi di Bode delle funzioni di trasferimento si osserva che ha un andamento attenuante alle basse frequenze con un picco nella prossimità della pulsazione di duth roll, dove si ha un picco dovuto al valore basso dello smorzamento.

Figura 5.14: Tracciamento del diagramma di Bode $\frac{\phi(s)}{\delta_A(s)}$.

Figura 5.15: Tracciamento del diagramma di Bode $\frac{\psi(s)}{\delta_A(s)}$.

Figura 5.17: Tracciamento del diagramma di Bode $\frac{\phi(s)}{\delta_R(s)}$.

Per analizzare l'autorità delle superficie di controllo è stato utilizzato come input un gradino di 1° sia per l'alettone che per il timone di coda. La risposta del motoaliante all'input pari a 1° di una durata di 2s degli alettoni si osserva nella Figura 5.20. Il requisito delle normative [24] impongono che in un arco di 4s il motoaliante sia in grado di effettuare una manovra pari a $\Delta \phi = 60^{\circ}$. La deflessione dell'alettone si misura come $\delta_A = \delta_L - \delta_R$ avendo ipotizzato una deflessione per singolo alettoni pari a $\pm 30^{\circ}$, la deflessione totale assimetrica sarà pari a $\delta_A = \pm 60^{\circ}$. Rapportando la risposta per 1° di deflessione da parte del motoaliante, si ottiene per una deflessione totale degli alettoni pari a 60° un $\Delta \phi = 60^{\circ}$ in 2s, quindi il requisito è ampiamente soddisfatto.

Nelle stesse condizioni per la simulazione della deflessione dell'alettone si è fatta anche l'analisi della risposta ad 1 gradino pari a 1° di una durata di 2s del timone ottenendo il risultato nella Figura 5.19, osservando che ha una autorità molto alta pari 5,8°· δ_R . Nella fase di progettazione del timone si è supposto una deflessione massima di $\delta_R \pm 20^\circ$ ne consegue che l'autorità del timone consente al motoaliante di ruotare $\Delta \psi = 116^\circ$ nell'arco di 2 secondi.

5.5 Stabilità Dinamica Laterale -Raffica di vento

L'ultima parte dell'analisi della stabilità dinamica, si concentra sullo studio delle funzioni di trasferimento rispetto ad un input generato da una velocità perturbativa laterale v_g . Si parte dalle equazioni del moto laterale, solo che

Figura 5.19: Risposta di $\psi(t)$ ad un gradino 1°, 2
s del timone di coda.

Figura 5.20: Risposta di $\phi(t)$ ad un gradino 1°, 2
s degli alettoni.

come input si avrà la velocità perturbativa anziché le superficie di controllo. Le condizioni iniziali della perturbazione si pongono :

$$V_{1_S} = v = 0, \quad v_g(0) = 0, \quad \dot{v}_g(t) \neq 0$$
 (5.51)

Nel dominio di Laplace diventa:

$$L(\dot{v}_g) = sv_g(s) \tag{5.52}$$

Tale equazioni assumono la seguente forma nel dominio di Laplace:

$$(sV_{P_{1}} - Y_{\beta})\beta(s) - (sY_{p} + gcos(\Theta_{1}))\phi(s) + s(V_{P_{1}} - Y_{r})\psi(s) = sv_{g}(s) -L_{\beta}\beta(s) + s(s - L_{p})\phi(s) - s(sI_{1} + L_{r})\psi(s) = 0$$
(5.53)
$$-N_{\beta}\beta(s) - s(sI_{2} + N_{p})\phi(s) + s(s - N_{r})\psi(s) = 0$$

Avendo imposto le equazioni del moto nel dominio di Laplace, ed eseguendo lo stesso procedimento utilizzato per le superficie di controllo si arriva alle funzioni di trasferimento in funzione di $v_g(s)$ tale funzioni sono:

$$\frac{\beta(s)}{v_g(s)} = \frac{s^4 + 6,268s^3 + 2,667s^2}{24s^4 + 154,6s^3 + 92,77s^2 + 119,4s + 1,236}$$

$$\frac{\phi(s)}{v_g(s)} = \frac{-14,09s^2 - 0,1261s}{24s^4 + 154,6s^3 + 92,77s^2 + 119,4s + 1,236}$$

$$\frac{\phi(s)}{v_g(s)} = \frac{0,2146s^3 + 3,418s^2}{24s^4 + 154,6s^3 + 92,85s^2 + 119,6s + 1,21}$$
(5.54)

Nella Figura 5.21 e Figura 5.22 si osserva la tendenza del velivolo a smorzare la perturbazione esterna che va a generare una oscillazione di tipo dutch roll sfasata di 90° .

Figura 5.21: Andamento di ψ in risposta ad una perturbazione $v_g=4,8m/s$ per un tempo t=1 s.

Figura 5.22: Andamento di ϕ in risposta ad una perturbazione $v_g=4,8m/s$ per un tempo t=1 s.

Capitolo 6 Conclusioni

Questa tesi è partita dall'analisi della stabilità statica e dinamica di un modello di velivolo preliminare del quale si conosceva l'involucro esterno e la massa totale. La tesi non si è concentrata solamente sul progettare (tramite le opportune modifiche rispetto al progetto preliminare) il velivolo in modo tale da renderlo stabile dinamicamente, si è concentrata sul rendere tale velivolo piacevole da pilotare per piloti principianti, senza particolari abilità. Le caratteristiche di volo sono state espresse in funzione delle variabili che caratterizzano il moto del velivolo analizzate nel Capitolo 5.

Dalle informazioni di massa e di geometria esterna è stata ripartita la massa totale del velivolo assegnando a ciascun componente la massa corrispettiva e tenendo conto anche della massa del pilota al fine di ricavare il baricentro ed il tensore d'inerzia del velivolo, fondamentale per l'analisi dinamica. Il passo successivo è stato quello di calcolare i coefficienti derivativi e l'angolo d'attacco della coda orizzontale, tuttavia con la configurazione iniziale veniva un angolo pari a $i_H = -19,65^\circ$ per la configurazione di volo livellato utilizzato nella progettazione. Tale angolo sarebbe stato inammissibile per l'efficienza aerodinamica del motoaliante, quindi le scelte sono state due:

- 1. Aumentare la superficie della coda orizzontale
- 2. Modificare la configurazione geometrica del velivolo, in particolare la posizione del centro aerodinamico dell'ala rispetto al centro di massa del velivolo.

Aumentare la superficie della coda orizzontale avrebbe comportato un aumento della sua massa e della struttura della fusoliera dovuto ad un aumento del momento di beccheggio generato dalla coda orizzontale. Quindi si è modificata la posizione alare rispetto al baricentro, tramite un processo iterativo tra il calcolo delle proprietà geometriche e di massa in **SolidWorks** e successivamente il calcolo dell'angolo i_H con **Datcom**+.

Una volta determinata la posizione delle ali ed il baricentro sono stati calcolati i coefficienti derivativi, seguendo due approcci uno approssimato tramite il metodo di Napolitano [18] e l'altro basato sul software Datcom+. Il metodo di Napolitano è stato molto utile, oltre a fornirci uno strumento di verifica dei dati ottenuti da Datcom+, ci ha fornito una correlazione diretta tra la geometria del motoaliante e la sua influenza sui coefficienti derivativi.

In seguito i coefficienti derivativi adimensionali sono stati trasformati in coefficienti derivativi dimensionali dipendenti da pressione dinamica, massa, tensore d'inerzia e dalle lunghezze di riferimento $b \in \overline{c}$ e introdotti in seguito nelle equazioni del moto, disaccoppiate tra il moto longitudinale e laterale. Dalle equazioni del moto espresse nel dominio del tempo si è passati alle equazioni nel dominio di Laplace, ricavando in questo modo le funzioni di trasferimento tramite la regola di Cramer. Il criterio di Routh [25] applicato a $\overline{D}_1(s) \in \overline{D}_2(s)$ ha determinato se il moto era stabile o instabile.

In prima analisi il velivolo mostrava una instabilità del modo spirale, risolta aumentando l'angolo diedro Γ_W delle ali fino a 8° e cambiando l'orientazione della rastremazione dell'ala tale che $\Lambda_{LE} = 0^\circ$ mentre il progetto preliminare aveva $\Lambda_{TE} = 0^\circ$. Allo stesso tempo è stato diminuito il volume di coda per migliorare sempre la stabilità del modo spirale, rispettando la condizione sullo smorzamento del modo di dutch roll prefissata inizialmente, in quanto ζ_{dr} è dipendente da V_v .

Dopo aver ottenuto la stabilità dinamica, sono stati confrontati i valori caratterizzanti i vari modi del motoaliante con quelli prefissati inizialmente, di seguito nella Tabella 6.1 viene fatto il confronto.

Si nota che sono stati rispettati tutti i requisiti tranne ω_{sp} essendo in ogni caso dentro il range accettabile di volo.

Dopo la convalida della stabilità dinamica del motoaliante si è passati alla convalida delle superfici di controllo, ottenendo per gli alettoni alla massima deflessione un $\Delta \phi = 60^{\circ}$ in un tempo di 2 secondi. La massima deflessione asimmetrica degli alettoni corrisponde ad un $\delta_A = 60^{\circ}$. Per il timone di coda invece alla massima deflessione $\delta_R = 20^{\circ}$ si ottiene una rotazione $\Delta \psi =$ -116° , in quanto ad una deflessione positiva del timone di coda corrisponde un rotazione negativa del motoaliante rispetto alla terna di stabilità.

Si è verificato che l'autorità dell'equilibratore sia necessaria a garantire il bilanciamento del momento di beccheggio durante la fase di atterraggio con $\alpha = 8^{\circ}$ e $\delta_f = 40^{\circ}$ ottenendo $\delta_E = 15,03^{\circ}$ per avere il bilanciamento del momento di beccheggio, con un margine di 5° rispetto alla massima deflessione ipotizzata dell'equilibratore.

N	Aoto Longi	tudinale		Moto Laterale				
	requisiti	motoaliante			requisiti	motoaliante		
	brev	e periodo			dutch roll			
ζ_{sp}	0,5-0,8	$0,\!6728$	\checkmark	ζ_{dr}	$\geq 0,08$ 0,274		\checkmark	
$\omega_{sp}[rad/s]$	2,5-3,5	4,249	×	$\omega_{dr}\zeta_{dr}$	$\geq 0, 15$	0,25	\checkmark	
	Fugoide(1	periodo lungo)			Tempo di roll e spirale			
ζ_p	>0	0,0173	\checkmark	$T_R(s)$	<1	0,168	\checkmark	
$\frac{\omega_p}{\omega_{sp}}$	$\leq 0, 1$	0,095	\checkmark	$T_S(s)$	>28,8	95,77	\checkmark	

Tabella 6.1: Confronto tra i requisiti ed i dati finali del motoaliante.

Nel complesso il motoaliante presenta buone capacità di reiezione dei disturbi esterni del moto longitudinale, dove si ha un alto smorzamento di breve periodo e solo il modo di fuogoide si smorza più lentamente. Mentre la reiezione dei disturbi del moto laterale rispetto alla maggior parte degli ultraleggeri [15] ha un comportamento molto stabile avendo un $\zeta_{dr} \gg 0,08$ richiesto per buone qualità di stabilità dinamica laterale.

6.1 Sviluppi Futuri

Nell'ambito del progetto *Merlo* per arrivare alla costruzione del motoaliante serve completare la trattazione dell'analisi dinamica utilizzando i momenti d'inerzia reali del motoaliante. A tale scopo una futura continuazione della tesi comprenderebbe un dimensionamento strutturale del motoaliante finale comprendente anche gli strumenti di bordo i meccanismi delle superficie di controllo il montaggio dei pannelli solari per aggiornare i valori di massa ed i momenti d'inerzia e rifare l'analisi della stabilità. Come ultimo punto si dovrebbe fare un'analisi nella galleria del vento per verificare i coefficienti derivativi ottenuti per via numerica con quelli ottenuti per via sperimentale.

Appendice A

Matlab Script

```
clc
1
   clear all
2
  aero=datcomimport('provaHT.out',true,0)
3
  aero a=datcomimport ('prova ail1.out', true, 0)
\mathbf{4}
  stat a=aero a\{1\}
\mathbf{5}
  stat=aero{1}
6
  \overline{7}
  %Inertia Body Axes
8
  m=272% mass of sailplane+pilot
9
  1yy = 285
10
  I \times x = 722
11
  1zz = 995
12
  ||xz=9|
13
  |1=|xz/|xx
14
  |2=|xz/|zz
15
  U1=24% trim velocity [m/s]
16
   i=4 %dal datcom l'i-esimo
                               valore di alpha
17
  xlewing=1.6 %Distance between leading edge of wing and fuselage
18
       nose
  theta1=0%flight path angle between stability axes and interial
19
  g=9.8065% gravity acceleration
20
  h=((stat.xcg_b-xlewing)/stat.mac_w_tt) %distance from leading
^{21}
      edge of mac,
  %express as like a ratio of mac
22
  Dh0_mac=-(stat.cma(i)/stat.cla(i)) % margin static stability in
23
      mac
  %fraction, distance between
24
  hn mac fix=h+Dh0 mac% Neutral Point stick fixed
25
  %CG and Xac of whole sailplane
26
  Vt=(stat.area_ht_tt/stat.area_w_te)*(stat.qcmac_ht_te-stat.xcg_b)
27
  % aerodynamic volume tail from Etkin
28
  %volume della coda
29
30 | tau_e=0.6 % effectivness of elevator, calculated from ce/ct ratio
```

```
dCm_dCL_el=(stat.cha_sym(1)/stat.chd_sym(i))*0.8*Vt...
31
       *(1-stat.depsdalp(i))*tau_e %c_m_delta_e
32
  hn mac free=hn mac fix-dCm dCL el -h
33
  ih=stat.cla(i)*(-stat.cm(i))
34
  35
  %longitudinal Dynamic stability
36
   stat.delta=deg2rad(stat.delta)
37
  % massa aereo
38
  % trim velocity body axes
39
40
  Vp1=U1% at trim condition
  rho=1.17% densità in seguito la definirò meglio
41
  q1 = 0.5 * (U1^2) * rho
42
  %%/%rudder coefficient%%%
43
  cyr=0.0333 %coefficient of lateral force due to rudder
44
   cydr=0.046418762%/coefficient coupling between
45
  %lateral force and roll momento due to rudder
46
   cldr=0.001122193%coefficient of roll momento due to rudder
47
   cndr = -0.141 % coefficient of coup
48
49
  %%% Dimensional Coefficient Longitudinal Motion%%%%
50
  cda=2*stat.cl(i)*stat.cla(i)/(pi*stat.aspectratio w tt)
51
  X_u=-q1*stat.sref*(2*stat.cd(i))/(m*U1)
52
  X alpha=-q1*stat.sref*(cda-stat.cl(i))/(m)
53
  Z u=-q1*stat.sref*(2*stat.cl(i))/(m*U1)
54
  Z alpha d=-(q1*stat.sref*stat.cbar*stat.clad(i))/(2*m*U1)
55
  cl delta e = (stat.dcl sym(1) - stat.dcl sym(9))/(stat.delta(1) - stat.
56
      delta(9))
  Z delta e=(-q1*stat.sref*cl delta e/m)
57
  M u=(q1*stat.sref*stat.cbar*2*stat.cm(i))/(U1*lyy)
58
  M alpha=(q1*stat.sref*stat.cbar*stat.cma(i))/(lyy)
59
  cm_delta_e=(stat.dcm_sym(1)-stat.dcm_sym(9))/(stat.delta(1)-stat.
60
      delta(9))
  M_delta_e=(q1*stat.sref*stat.cbar*cm_delta_e)/(lyy)
61
  M alpha d = (((q1*stat.sref*stat.cbar*stat.cmad(i))/(lyy)))...
62
       *(stat.mac w tt/(2*U1))
63
  a dcdi=stat.dcdi sym(i,1:9) % estrapolazione del drag indotto
64
  %dovuto alla deflessione
65
  % dei flap all 'i—esimo angolo d'attacco
66
  cd_delta_e = (a_dcdi(1) - a_dcdi(9)) / (stat.delta(1) - stat.delta(9))
67
  X_delta_e=-q1*stat.sref*cd_delta_e/m
68
  Z alpha=-q1*stat.sref*(stat.cla(i)+stat.cd(i))/m
69
  Z q=-q1*stat.sref*stat.clq(1)*stat.cbar/(2*m*U1)
70
  M_q=q1*stat.sref*stat.cmq(1)*stat.cbar*stat.cbar/(2*lyy*U1)
71
  %express of Num u, deflection elevator control
72
  Au = X_delta_e * (Vp1 - Z_alpha_d)
73
  Bu=-X delta e*((Vp1-Z alpha d)*M q+Z alpha+M alpha d*(Vp1+Z q))
74
      +Z delta e*X alpha
75
```

```
Cu=X_delta_e*(M_q*Z_alpha+M_alpha_d*g*sin(theta1)-(M_alpha)*(Vp1+)
76
       Z q))
   Du=g*sin(theta1)*X delta e*M alpha=g*cos(theta1)*Z delta e*(
77
       M alpha)...
       +M delta e*(g*cos(theta1)*Z alpha-g*sin(theta1)*X alpha)
78
   Num u = [Au Bu Cu Du]
79
   %expresso of Num alpha, deflection elevator control
80
   A_alpha=Z_delta_e
81
   B_alpha=X_delta_e*Z_u-Z_delta_e*(X_u+M_q)+M_delta_e*(Z_q+Vp1)
82
   C alpha=X delta e*((Z q+Vp1)*M u-M q*Z u)+Z delta e*M q*X u...
83
       -M_delta_e*(g*sin(theta1)+(Z_q+Vp1)*X_u)
84
   D_alpha=-g*sin(theta1)*X_delta_e*M_u+g*cos(theta1)*Z_delta_e*M_u
85
       + ...
       M delta e*(g*sin(theta1)*X u-g*cos(theta1)*Z u)
86
   Num alpha=[A alpha B alpha C alpha D alpha]
87
   %expression of Num_theta deflection elevator control
88
   A theta=Z delta e*M alpha d+M delta e*(Vp1-Z alpha d)
89
   B theta=X delta e*(Z u*M alpha d+(Vp1-Z alpha d)*(M u))+...
90
        Z delta e*(M alpha-M alpha d*(X u))...
91
       -M_delta_e*((Vp1-Z_alpha_d)*(X_u)-Z_alpha)
92
   C_theta = X_delta_e * (M_alpha * Z_u - M_u * Z_alpha) - Z_delta_e \dots
93
        *(M alpha*X u+X alpha*M u)+M delta e*(X u*Z alpha-X alpha-Z u
94
   Num theta=[A theta B theta C theta]
95
   %Express D_1(s) characteristic of the longitudinal Stability
96
   A1 = (Vp1 - Z alpha d)
97
   B1=-(Vp1-Z alpha d)*(X u+M q)-Z alpha-M alpha d*(Z q+Vp1)
98
   C1=(X u)*(M q*(Vp1-Z alpha d)+Z alpha+M alpha d*(Vp1+Z q))+M q*
99
       Z_alpha...
       -Z u*X alpha+M alpha d*g*sin(theta1)-(M alpha*(Vp1+Z q))
100
   D1=g*sin(theta1)*(M_alpha-M_alpha_d*X_u)+g+cos(theta1)...
101
        *(M \text{ alpha } d*Z u+M u*(Vp1-Z alpha d))...
102
   -X_alpha*M_u*(Z_q+Vp1)+Z_u*X_alpha*M_q+X_u*(M_alpha*(Z_q+Vp1)-M_q
103
       ∗Z alpha)
   E1=g*cos(theta1)*(Z u*M alpha-Z alpha*M u)+g*sin(theta1)...
104
        *(M u X alpha X u M alpha)
105
   Dbar1=[A1 B1 C1 D1 E1]
106
   %%%%Implementation Routh Criteria for stability%%%%%%%%%%%%%%%
107
   Routh=D1*((B1*C1)-A1*D1)-((B1^2)*E1)
108
   if A1 <= 0
109
        printf('Longitudinal Stability NON satisfied')
110
   elseif B1<=0
111
    printf('Longitudinal Stability NON satisfied')
112
   elseif C1<=0
113
        printf('Longitudinal Stability NON satisfied')
114
   elseif D1<=0</pre>
115
     printf('Longitudinal Stability NON satisfied')
116
   elseif E1<=0
117
    printf('Longitudinal Stability NON satisfied')
118
```

```
elseif Routh<=0</pre>
119
        printf('Longitudinal Stability NON satisfied')
120
121
   end
   %%%%% Implementation roots find %%%%%%%%
122
    poles=roots(Dbar1)
123
    figure
124
    plot ( poles , '*')
125
   grid on
126
    title('Longitudinal poles in the s-domain');
127
    xlabel('Real Axis')
128
    ylabel('Immaginary Axis');
129
   omega_sp=sqrt(abs(poles(1,1)^2)) %pulse of short period
130
   omega ph=sqrt(abs(poles(3,1)^2)) % pulse of phugoid period
131
   damp sp=abs(real(poles(1,1)))/omega sp % dump short period
132
   damp ph=abs(real(poles(3,1)))/omega ph % dump phugoid period
133
   %%%%% transfer function longitudinal control deflection
134
      %%%%%%%%%%%
   sys 1=tf(Num u, Dbar1) %% transfer function u(s)/delta e(s)
135
   sys 2=tf(Num alpha, Dbar1)% alpha(s)/delta e(s)
136
   sys_3=tf(Num_theta, Dbar1)%theta(s)/delta_e(s)
137
    grid on
138
   bode(sys 1)
139
   bode(sys_2)
140
   bode(sys 3)
141
   142
143
   %%%%%Num due to vertical gust perturbation %%%%%%%%%%%%%
144
   Au w=-\sin(\text{theta1})*(Vp1-Z \text{ alpha } d)
145
   Bu w=sin(theta1)*((Vp1-Z alpha d)*M q+Z alpha...
146
       +M_alpha_d*(Vp1+Z_q))+1*X_alpha
147
   Cu_w = -\sin(theta1)*(M_q*Z_alpha+M_alpha_d*g*sin(theta1)-(M_alpha)
148
       *(Vp1+Z q))
   Du_w=g*sin(theta1)*(-sin(theta1))*M_alpha-g*cos(theta1)*(M_alpha)
149
   Num u w=[Au w Bu w Cu w Du w 0]
150
151
   %Num alpha_w
152
   A alpha w=1
153
   B alpha w=-\sin(\text{theta1}) * Z u - (X u+M q)
154
   C_alpha_w=-sin(theta1)*((Z_q+Vp1)*M_u-M_q*Z_u)+M_q*X_u
155
   D_alpha_w=-g*sin(theta1)*(-sin(theta1))*M_u+g*cos(theta1)*M_u
156
   Num alpha w=[A alpha w B alpha w C alpha w D alpha w 0]
157
   %expression of Num theta w
158
   A_theta_w=M_alpha_d
159
   B theta w=-\sin(\text{theta1})*(Z u*M \text{ alpha } d+(Vp1-Z \text{ alpha } d)*(M u))...
160
        +(M alpha-M alpha d*(X u))
161
   C theta w=-sin(theta1)*(M alpha*Z u-M u*Z alpha)-(M alpha*X u+
162
       163
   Num theta w = [A \text{ theta } w B \text{ theta } w C \text{ theta } w 0]
164
```

```
1%%% transfer function between vertical gust perturbation —w and
165
       variable
   %%% perturbation u,alpha,theta
166
   sys 1 w=tf(Num u w, Dbar1) %u(s)/w(s)
167
   sys 2 w=tf(Num alpha w, Dbar1)%alpha(s)/w(s)
168
   sys 3 w=tf(Num theta w, Dbar1)%theta(s)/w(s)
169
   grid on
170
   bode(sys_1_w)
171
   bode(sys_2_w)
172
173
   bode(sys 3 w)
   omega u w=bandwidth(sys 1 w)
174
   % omega bandwith of gust perturbation on u response
175
   omega alpha w=bandwidth(sys 2 w)
176
   ‰mega bandwith of gust perturbation on alpha response
177
   omega theta w=bandwidth(sys 3 w)%
178
179
   %Lateral Dynamic
180
   a cn=stat a.cn asy(i,1:9)
181
   cnda = (a cn(1) - a cn(9)) / ((deg2rad(stat a.deltal(1))...
182
       -deg2rad(stat_a.deltar(1)))-(deg2rad(stat_a.deltal(9))...
183
       -deg2rad(stat a.deltar(9)))
184
   ‱ Dimensional derivative coefficient of lateral motion‱‰‰
185
   Y beta=q1*stat.sref*stat.cyb(1)/m
186
   Y_r=q1*stat.sref*cyr*stat.blref/(2*U1*m)
187
   Y delta r=q1*stat.sref*cydr/m
188
   L beta=q1*stat.sref*stat.clb(i)*stat.blref/lxx
189
   L r=q1*stat.sref*stat.blref*stat.clr(i)*stat.blref/(lxx*2*U1)
190
     delta r=q1*stat.sref*stat.blref*cldr/lxx
191
   N_beta=q1*stat.sref*stat.cnb(1)*stat.blref/lzz
192
   N p=q1*stat.sref*stat.blref*stat.cnp(i)*stat.blref/(lzz*2*U1)
193
   N delta a=q1*stat.sref*stat.blref*cnda/lzz
194
   Y p=q1*stat.sref*stat.blref*stat.cyp(i)/(m*2*U1)
195
   Y delta a=0
196
   L p=q1*stat.sref*stat.blref*stat.clp(i)/(2*U1*lxx)
197
   L_delta_a=q1*stat.sref*stat a.clroll(1)*stat.blref/lxx
198
   N r=q1*stat.sref*stat.blref*stat.cnr(i)*stat.blref/(lzz*2*U1)
199
   N_delta_r=q1*stat.sref*stat.blref*cndr/lzz
200
   %longitudinal denom Dbar2, charachteristic of lateral motion
201
   A2 = Vp1 * (1 - 11 * 12)
202
   B2=-Y_beta*(1-11*12)-Vp1*(L_p+N_r+11*N_p+12*L_r)
203
   C2=Vp1*(L p*N r-N p*L r)+Y beta*(L p+N r+I1*N p+I2*L r)...
204
       -Y_p*(L_beta+11*N_beta)+Vp1*(L_beta*12+N_beta)-Y_r*(L_beta*12
205
           +N beta)
   D2=-Y\_beta*(L\_p*N\_r-N\_p*L\_r)+Y\_p*(L\_beta*N\_r-L\_r*N\_beta)...
206
       -g*(L beta+I1*N beta)+Vp1*(L beta*N p-L p*N beta)...
207
       -Y_r*(L_beta*N_p-L_p*N_beta)
208
   E2=g*(L_beta*N_r-L_r*N_beta)
209
   Dbar2=[A2 B2 C2 D2 E2]
210
211
```

```
%lateral Num beta due to aileron deflection
212
       A beta a=Y delta a*(1-11*12)
213
       B beta a=-Y delta a*(L p+N r+I1*N p+I2*L r)+Y p*(L delta a+I1*)
214
              N delta a)...
               +Y r*(L delta a*I2+N delta a)-Vp1*(L delta a*I2+N delta a)
215
       C beta a=Y delta a*(L p*N r-N p*L r)+Y p*(L r*N delta a-N r*
216
              L delta a)+...
                g*(L delta a+l1*N delta a)
217
                +Y_r*(L_delta_a*N_p-N_delta_a*L_p)-Vp1*(L_delta_a*N_p-
218
                       N delta a*L p)
       D beta a=g*(L r*N delta a-N r*L delta a)
219
       Num_beta_a=[A_beta_a B_beta_a C_beta_a D_beta_a 0]
220
221
       %Lateral Num_phi due to aileron deflection
222
       A phi a=Vp1*(L delta a+I1*N delta a)
223
       B_phi_a=Vp1*(L_r*N_delta_a-N_r*L_delta_a)-Y_beta*(L_beta+I1*
224
              N_beta)...
               +Y delta a * (L beta+I1 * N beta)
225
       C_phi_a=-Y_beta*(L_r*N_delta_a-N_r*L_delta_a)...
226
               +Y_delta_a*(L_r*N_beta-L_beta*N_r)+Vp1*(L_delta_a*N_beta...
227
                -L beta * N_delta_a)-Y_r*(L_delta_a * N_beta-L_beta * N_delta_a)
228
       Num_phi_a=[A_phi_a B_phi_a C_phi_a 0]
229
230
       %Lateral Num psi due to aileron ,
231
       A psi a=Vp1*(N_delta_a+I2*L_delta_a)
232
       B psi a=Vp1*(L delta a*N p-N delta a*L p)-Y beta*(N delta a+I2*
233
              L delta a)..
               +Y delta a*(L beta*I2+N beta)
234
       C psi a=-Y beta*(L delta a*N p-N delta a*L p)+Y p*(L delta a*
235
              N beta...
                -L_beta*N_delta_a)+Y_delta_a*(L_beta*N_p-L_p*N_beta)
236
       D_psi_a=g*(L_delta_a*N_beta-L_beta*N_delta_a)
237
       Num_psi_a=[A_psi_a B_psi_a C_psi_a D_psi_a]
238
239
       %%%%%%%%%%%
                               lateral Num due to rudder%%%%%%%
240
241
       %lateral Num beta due to aileron
242
       A_beta_r=Y_delta_r*(1-11*12)
243
       B_beta_r=-Y_delta_r*(L_p+N_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_p+12*L_r)+Y_p*(L_delta_r+11*N_
244
              N delta_r)...
               +Y r*(L delta r*I2+N delta r)-Vp1*(L delta r*I2+N delta r)
245
       C_beta_r=Y_delta_r*(L_p*N_r-N_p*L_r)+Y_p*(L_r*N_delta_r-N_r*
246
              L delta r)...
               +g*(L delta r+l1*N delta r)...
247
                +Y r*(L delta r*N p–N delta r*L p)–Vp1*(L delta r*N p–
248
                       N delta r*L p)
       D_beta_r=g*(L_r*N_delta_r-N_r*L_delta_r)
249
       Num beta r=[A beta r B beta r C beta r D beta r 0]
250
251
```

```
114
```

```
%Lateral Num_phi due to rudder , while phi
252
   A_phi_r=Vp1*(L_delta_r+l1*N_delta_r)
253
   B phi r=Vp1*(L r*N delta r-N r*L delta r)-Y beta*(L beta+11*
254
       N beta)...
        +Y delta r*(L beta+I1*N beta)
255
    C phi r=-Y beta*(L r*N delta r-N r*L delta r)...
256
        +Y delta r*(L r*N beta-L beta*N r)+Vp1*(L delta r*N beta...
257
        -L_beta*N_delta_r)-Y_r*(L_delta_r*N_beta-L_beta*N_delta_r)
258
   Num phi r=[A phi r B phi r C phi r 0]
259
260
   %Lateral Num psi due to rudder deflection
261
   A_psi_r=Vp1*(N_delta_r+l2*L_delta_r)
262
    \begin{array}{l} B\_psi\_r=Vp1*(L\_delta\_r*N\_p-N\_delta\_r*L\_p)-Y\_beta*(N\_delta\_r...\\ +l2*L\_delta\_r)+Y\_delta\_r*(L\_beta*l2+N\_beta) \end{array} 
263
264
   C psi r=-Y_beta*(L_delta_r*N_p-N_delta_r*L_p)...
265
        +Y_p*(L_delta_r*N_beta-L_beta*N_delta_r)...
266
        +Y_delta_r*(L_beta*N_p-L_p*N_beta)
267
   D psi r=g*(L delta r*N beta-L beta*N delta r)
268
   Num_psi_r=[A_psi_r B_psi_r C_psi_r D_psi_r]
269
270
   %% Check dynamic stability , Routh stability criteria
271
   Routh2=D2*((B2*C2)-A2*D2)-((B2^2)*E2)
272
    if A2<=0
273
        printf('Lateral-directional dynamic stability NON satisfied')
274
    elseif B2<=0
275
        printf('Lateral-directional dynamic stability NON satisfied')
276
    elseif C2 <= 0
277
        printf('Lateral-directional dynamic stability NON satisfied')
278
    elseif D2<=0
279
        printf('Lateral-directional dynamic stability NON satisfied')
280
    elseif E2<=0
281
        printf('Lateral-directional dynamic stability NON satisfied')
282
    elseif Routh2<=0</pre>
283
        printf('Lateral-directional dynamic stability NON satisfied')
284
   end
285
   %%%%% check roots of characterisic equation lateral motion
286
       %%%%%%%%%
    poles=roots(Dbar2)
287
    figure
288
    plot ( poles , '*')
289
   grid on
290
    title ('Lateral poles in the s-domain');
291
   xlabel('Real Axis')
292
    ylabel('Immaginary Axis');
293
   omega dr=sqrt(abs(poles(2,1)^2))%% dutch roll pulse
294
   damp_dr=abs(real(poles(2,1)))/omega_dr%% dutch roll dump
295
   t rolling=-1/(poles(1,1)) % time of roll
296
   t_spiral = -1/(poles(4,1)) % time of spiral
297
  %%%% Transfer function
                               298
```

```
sys_beta_a=tf(Num_beta_a, Dbar2)
299
   % transfer function between aileron deflection
300
   % and sideslip angle beta
301
   sys_phi_a=tf(Num_phi_a, Dbar2)%transfer function between aileron
302
       deflection
   % and roll angle phi
303
   sys psi a=tf(Num psi a, Dbar2)%transfer function between aileron
304
   %deflection and yaw angle psi
305
306
307
   sys beta r=tf(Num beta r, Dbar2)
   % transfer function between rudder deflection
308
   % and sideslip angle beta
309
   sys phi r=tf(Num phi r, Dbar2)%transfer function between rudder
310
       deflection
   % and roll angle phi
311
   sys_psi_r=tf(Num_psi_r, Dbar2)% transfer function between rudder
312
   %deflection and yaw angle psi
313
314
315
   316
   %lateral Gust perturbation
317
   Y_delta r=1
318
   L_delta_r=0
319
   N delta r=0
320
   %lateral Num beta due to lateral gust v%%%%%%
321
   A beta v=Y delta r*(1-|1*|2)
322
   B beta v=-Y delta r*(L p+N r+11*N p+12*L r)+Y p*(L delta r+11*)
323
       N delta_r)...
       +Y r*(L delta r*I2+N delta r)-Vp1*(L delta r*I2+N delta r)
324
   C_beta_v=Y_delta_r*(L_p*N_r-N_p*L_r)+Y_p*(L_r*N_delta_r-N_r*
325
       L_delta_r)...
       +g*(L_delta_r+l1*N_delta_r)+Y_r*(L_delta_r*N_p-N_delta_r*L_p)
326
        -Vp1*(L delta r*N p-N delta r*L p)
327
   D_beta_v=g*(L_r*N delta r-N r*L delta r)
328
   Num beta v = [A \text{ beta } v B \text{ beta } v C \text{ beta } v D \text{ beta } v 0]
329
330
   %Lateral Num phi due to lateral gust v %%%%%%
331
   A_phi_v=Vp1*(L_delta_r+l1*N_delta_r)
332
   B_phi_v=Vp1*(L_r*N_delta_r-N_r*L_delta_r)-Y_beta*(L_beta+I1*)
333
       N beta)...
       +Y delta r*(L beta+I1*N beta)
334
   C_phi_v=-Y_beta*(L_r*N_delta_r-N_r*L_delta_r)+Y_delta_r...
335
        *(L_r*N_beta-L_beta*N_r)+Vp1*(L_delta_r*N_beta-L_beta*
336
           N delta r)...
        -Y_r*(L_delta_r*N_beta-L_beta*N_delta_r)
337
   Num phi v=[A phi v B phi v C phi v 0]
338
339
  |%Lateral Num psi due to aileron , psi it 's bank angle
340
```

```
341 A_psi_v=Vp1*(N_delta_r+l2*L_delta_r)
   B_psi_v=Vp1*(L_delta_r*N_p-N_delta_r*L_p)-Y_beta*(N_delta_r+I2*
342
       L delta r)...
        +Y_delta_r*(L_beta*12+N_beta)
343
   C_psi_v=-Y_beta (L_delta_r*N_p-N_delta_r*L_p)+Y_p*(L_delta_r*L_p)
344
       N_beta...
        -\bar{L}\_beta*N\_delta\_r)+Y\_delta\_r*(L\_beta*N\_p-L\_p*N\_beta)
345
   D_psi_v = g * (L_delta_r * N_beta - L_beta * N_delta_r)
346
   Num_psi_v=[A_psi_v B_psi_v C_psi_v D_psi_v]
347
   °/8/8/8/8/8/8/8/8/
348
   sys_beta_v=tf(Num_beta_v, Dbar2)
349
   sys_phi_v=tf(Num_phi_v, Dbar2)
350
   sys psi v=tf(Num psi v, Dbar2)
351
```

Appendice B

Datcom+ FILE IN

```
CASEID Solar Sailplane
      1
                       DIM M
DAMP
      2
   3
      4
                          DERIV RAD
    5
                        PART
                           *TRIM
                                 $FLTCON NMACH=1.0,MACH=0.07,
NALT=1.0,ALT(1)=1.,
   8
9
                                     \begin{array}{l} \text{NALPHA}=8.0, \text{ALSCHD}(1)=-8.,\\ -5.0, -1.0, 0.0, 3.0, 6.0, 8.0, 10.,\\ \text{GAMMA}=0.8 \end{array}
 10
11
12
                               \begin{array}{l} \label{eq:GAMMA=0.8} \\ \text{SSYNTHS XCG=1.8, ZCG=0.29, XW=1.6, ZW=0.43, XH=5.2, ZH=.89, XV=5.125, } \\ \text{ZV=0.39, ALIH=-2.545\$} \\ \text{SOPTINS BLREF=12.0, SREF=7.36, CBARR=0.662\$} \\ \text{SBODY NX=19.0, BNOSE=1.0, BTAIL=2.0, } \\ \text{X}(1)=0.00, 0.012, 0.058, 0.169, 0.495, 0.0665, 0.953, 1.252, \\ 1.495, 1.624, 1.766, 1.923, 2.099, 2.325, 2.831, 3.211, 3.798, 4.301, 5.5, \\ \text{ZU}(1)=0.01, 0.034, 0.082, 0.151, 0.276, 0.323, 0.383, 0.429, \\ 0.455, 0.464, 0.472, 0.477, 0.479, 0.475, 0.455, 0.44, 0.417, 0.399, 0.399, \\ \text{ZL}(1)=0.01, -0.035, -0.065, -0.092, -0.124, -0.131, -0.138, -0.139, -0.121, \\ -0.095, -0.058, -0.011, 0.04, 0.109, 0.234, 0.254, 0.25, 0.245, 0.245, \\ \text{R}(1)=0.01, 0.017, 0.041, 0.074, 0.134, 0.162, 0.188, 0.213, \\ 0.224, 0.23, 0.236, 0.223, 0.209, 0.179, 0.094, 0.067, 0.063, 0.063\$ \\ \text{SWCPLNF CHRDR=0.8, CHRDBP=0.71, CHRDTP=0.24, \\ \text{SSPN=6.0, SSPNOP=3.0, } \end{array}
13
14
15

    16
    17

18
19
\frac{20}{21}
22
23
24
25
                                                            SPN=6.0, SPNOP=3.0,
DHDADI=7., DHDADO=7., TWISTA=-2.0, SSPNE=5.95, TYPE=1.0$
26
27
28
                              \begin{split} & \textbf{SCHR TYPEIN}{=}1.0, \ \ \textbf{NPTS}{=}49.0, \\ & \textbf{XCORD}{=}0.00\,, 0.00\,107\,, 0.00\,428\,, 0.00\,961\,, 0.01704\,, 0.02653\,, 0.03806\,, \\ & 0.05\,156\,, 0.06699\,, 0.08\,427\,, 0.10332\,, 0.12\,408\,, 0.14645\,, 0.17033\,, \\ & 0.19562\,, 0.22221\,, 0.25000\,, 0.27886\,, 0.30866\,, 0.33928\,, 0.37059\,, \\ & 0.40245\,, 0.43474\,, 0.46730\,, 0.50000\,, 0.53270\,, 0.56526\,, 0.59755\,, \\ & 0.62941\,, 0.66072\,, 0.69134\,, 0.72114\,, 0.75000\,, 0.77779\,, 0.80438\,, \\ & 0.829\,, 0.853\,, 0.875\,, 0.896\,, 0.915\,, 0.933\,, 0.948\,, \\ & .96194\,, 0.97347\,, 0.98296\,, 0.99039\,, 0.99572\,, 0.99893\,, 1\,, \end{split}
29
30
31
32
33
34
35
\frac{36}{37}
                                                       YUPPER = 0.000000.0.009000.0.017500.0.027400.0.036250.0.044800
38
                                                                      \begin{array}{l} PPER=0.0000000, 0.009000, 0.017500, 0.027400, 0.036250, 0.044800, \\ 0.052480, 0.060050, 0.068360, 0.075550, 0.083130, 0.089610, 0.0966220, \\ 0.101650, 0.107040, 0.111220, 0.115220, 0.117920, 0.120240, 0.121280, \\ 0.121910, 0.121370, 0.120420, 0.118330, 0.115780, 0.112210, 0.108230, \\ 0.103310, 0.098040, 0.092040, 0.085900, 0.079270, 0.072730, 0.066050, \\ 0.059620, 0.053230, 0.047110, 0.041140, 0.035530, 0.030180, 0.025160, \\ 0.020430, 0.016010, 0.011890, 0.008180, 0.005010, 0.002490, 0.000820, \\ 0.000000 \end{array} 
39
40
\frac{41}{42}
43
44
45
                                                                       0.000000.
46
                                                      \begin{array}{l} \textbf{YLOWER} = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370, \\ -0.016980, -0.018870, -0.019920, -0.021220, -0.021800, -0.022560, -0.022630, \\ -0.022770, -0.022200, -0.021610, -0.020340, -0.018950, -0.016880, -0.014600, \\ -0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, \\ \end{array} 
\frac{47}{48}
\frac{49}{50}
                                                                            \begin{array}{c} 0.014750\,, 0.018130\,, 0.020980\,, 0.023450\,, 0.025300\,, 0.026680\,, 0.027450\,, \\ 0.027680\,, 0.027290\,, 0.026310\,, 0.024790\,, 0.022840\,, 0.020520\,, 0.017940\,, \end{array}
\frac{51}{52}
\frac{53}{54}
                                                                               0.015140\,, 0.012190\,, 0.009210\,, 0.006300\,, 0.003730\,, 0.001690\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.000400\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.00040\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0004\,, 0.0
                                 0.000000,$
$SYMFLP FTYPE=1.
55
                                                             \begin{aligned} &\text{MDEITA}=9.0, \quad \text{DEITA}(1)=-40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, \\ &\text{CHRDFI}=0.15, \quad \text{CHRDFO}=0.15, \end{aligned}
56
57
```

```
\begin{array}{c} {\rm SPANFI} \!=\! 0.\,,\\ {\rm NTYPE} \!=\! 1.0\,\$ \end{array}
                                                                                                                         SPANFO = 2...
    58
    59
    60
                        SAVE
                        NEXT CASE
    61
    62
                               $ASYFLP STYPE=4.0, NDELTA=9.0.
                                               \begin{array}{l} \text{DELTAR}(1) = -30.0, \ -10.0, -5.0, 0.0, 5.0, 10.0, 20.0, 30.0, \\ \text{DELTAL}(1) = -30.0, 20.0, -10.0, -5.0, 0.0, -5.0, -10.0, -20.0, -30.0, \\ \text{DELTAL}(1) = 30.0, 20.0, 10.0, 5.0, 0.0, -5.0, -10.0, -20.0, -30.0, \\ \text{SPANFI} = 3.0, \text{SPANFO} = 6., \text{CHRDFI} = .15, \text{CHRDFO} = .15 \\ \end{array} 
    63
    64
    65
    66
                        SAVE
    67
                         NEXT CASE
                              $HTPLNF CHRDR=0.425,CHRDTP=0.325,SAVSI=8.0,SSPN=1.2,SSPNE=1.2,TYPE=1.0$
$HTSCHR TYPEIN=1.0, NPTS=39.0,
    68
    69
   70
71
72
                             XCORD = 0.000.0.0025000.0.0050000.0.0087500.0.0125000.0.0187500.0.0250000.
                               \begin{array}{l} \textbf{XCORD} = 0\,.000\,, 0\,.0025000\,, 0.0050000\,, 0.0087500\,, 0.0125000\,, 0.0187500\,, 0.025000\,, \\ 0.0375000\,, 0.050000\,, 0.0750000\,, 0.1000000\,, 0.1250000\,, 0.1500000\,, 0.1750000\,, \\ 0.2000000\,, 0.250000\,, 0.250000\,, 0.2750000\,, 0.300000\,, 0.3250000\,, \\ 0.3500000\,, 0.3750000\,, 0.4000000\,, 0.4500000\,, 0.5000000\,, 0.5500000\,, \\ 0.6000000\,, 0.6500000\,, 0.7000000\,, 0.7500000\,, 0.8000000\,, 0.8250000\,, \\ 0.8500000\,, 0.8750000\,, 0.9000000\,, 0.9250000\,, 0.9500000\,, 0.9750000\,, \\ 1\,000000\,, 0.8750000\,, 0.9000000\,, 0.9250000\,, 0.9500000\,, 0.9750000\,, \\ \end{array}
   73
74
   75
76
77
                               1.0000000.
                              \begin{array}{l} 1.0000000, \\ \text{YUPPER}=0.0000000, 0.0046700, 0.0070200, 0.0096800, 0.0118800, \\ 0.0149600, 0.0175300, 0.0217800, 0.0252300, 0.0307700, 0.0350700, \\ 0.0385000, 0.0412100, 0.0433000, 0.0449200, 0.0462100, 0.0472700, 0.0481700, \\ 0.0488600, 0.0492900, 0.0494500, 0.0493800, 0.0491100, 0.0480300, \\ 0.0461700, 0.0435000, 0.0400400, 0.0359000, 0.0312600, 0.0261800, \\ 0.0208300, 0.0180900, 0.0153700, 0.0127200, 0.0100900, 0.0075500, \\ 0.00000000, 0.000000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.0000, 0.00000, 0.00000, 0.0000, 0.00000, 0.0000, 0.00000, 0.0000, 0.0000, 0.00000, 0.00000, 0.00000, 0.0000, 0.0000, 0.00000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00000, 0.00000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
    78
    79
    80
    81
    82
                              \begin{array}{l} 0.0249100\,, 0.0123400\,, 0.00000000\,, \\ \textbf{YLOWER} = 0.0000000\,, -.0035800\,, -.0052700\,, -.0072400\,, -.0088400\,, -.0110000\,, \\ -.0126800\,, -.0153600\,, -.0174400\,, -.0206400\,, -.0230500\,, -.0249600\,, -.0264700\,, \\ -.0276200\,, -.0284900\,, -.0291500\,, -.0296500\,, -.0300300\,, -.0302800\,, -.0303700\,, \\ -.0302700\,, -.0299800\,, -.0295200\,, -.0281500\,, -.0262000\,, -.0236700\,, -.0206300\,, \\ -.0172100\,, -.0136800\,, -.0101600\,, -.0069200\,, -.0054800\,, -.0042000\,, -.0031400\,, \\ \end{array}
    83
    84
    85
    86
    87
    88
   89
90
                                 -.0022200, -.0015400, -.0008300, -.0003000, 0.00000000 $
                               $SYMFL
                                                  \begin{split} & \text{DELTA} = 0, \quad \text{DELTA} (1) = -20.0, \\ & -15.0, -10.0, -5.0, 0.0, 5.0, 10.0, 13.0, 16.0, \\ & \text{CHRDFI} = 0.15, \quad \text{CHRDFO} = 0.15, \\ & \text{SPANFI} = 0, \quad \text{SPANFO} = 1.2, \end{split}
   91
92
                                                  SPANFI=0.,
NTYPE=1.0$
    93
    94
                            N1YPE=1.05

$VTPLNF CHRDR=0.325,CHRDTP=0.225,SSPN=0.5,SAVSI=10.,SSPNE=0.5,TYPE=1.0$

$VTSCHR TYPEIN=1.0, NPTS=39.0,

XCORD= 0.000,0.0025000,0.0050000,0.0087500,0.0125000,0.0187500,0.0250000,

0.0375000,0.0500000,0.0750000,0.1000000,0.1250000,0.1500000,0.1750000,

0.0000000,0.0500000,0.0750000,0.1000000,0.1250000,0.1500000,0.1750000,
    95
    96
    97
    98
                               \begin{array}{c} 0.2000000, 0.2250000, 0.2500000, 0.2750000, 0.3000000, 0.32500000, \\ 0.3500000, 0.3750000, 0.4000000, 0.4500000, 0.5000000, 0.5500000, \\ 0.6000000, 0.6500000, 0.7000000, 0.7500000, 0.8000000, 0.8250000, \\ \end{array}
   99
100
101
102
                                0.8500000, 0.8750000, 0.9000000, 0.9250000, 0.9500000, 0.9750000,
                           \begin{split} 1.0000000, \\ YUPPER = 0.0000000, 0.0046700, 0.0070200, 0.0096800, 0.0118800, \\ 0.0149600, 0.0175300, 0.0217800, 0.0252300, 0.0307700, 0.0350700, \\ 0.0385000, 0.0412100, 0.0433000, 0.0449200, 0.0462100, 0.0472700, 0.0481700, \\ 0.0488600, 0.0492900, 0.0494500, 0.0493800, 0.0491100, 0.0480300, \\ 0.0461700, 0.0435000, 0.0400400, 0.0359000, 0.0312600, 0.0261800, \\ 0.0208300, 0.0180900, 0.0153700, 0.0127200, 0.0100900, 0.0075500, \\ 0.0049100, 0.0023400, 0.0000000, \\ YLOWER = 0.0000000, -.0035800, -.0052700, -.0072400, -.0088400, -.0110000, \\ -.0126800, -.0153600, -.0174400, -.0296500, -.0303300, -.0302800, -.0303700, \\ -.0302700, -.0284900, -.0295200, -.0281500, -.0262000, -.0236700, -.0206300, \\ -.0172100, -.0136800, -.0101600, -.0069200, -.0054800, -.0031400, \\ -.0022200, -.0015400, -.0015400, -.0033000, -.0000008 \end{split}
103
                                1.0000000
104
105
106
107
108
109
110
111
112
113
114
115
                                  -.0022200, -.0015400, -.0008300, -.0003000, 0.0000000
116
                        CASEID SOLAR SAILPLANE
```

Appendice C Datcom +FILE OUT

1	THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION						
2	IS RELEASED "AS IS ". THE U.S. GOVERNMENT MAKES NO						
3	WARRANTY OF ANY KIND, EAFRESS OR IMPLIED, CONCERNING THIS SOFTWARE AND ANY ACCOMBANYING DOCIMENTATION						
5	INCLUDING WITHOUT LIMITATION ANY WARBANTIES OF						
6	MERCHANTARI ITV OR FITNESS FOR A DARTICILI AR DIRDOSE						
7	IN NO EVENT WILL THE ILS GOVERNMENT BE LIABLE FOR ANY						
8	DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OF OTHER						
9	INCIDENTAL OB CONSEQUENTIAL DAMAGES ABISING OUT OF THE						
10	USE, OR INABILITY TO USE. THIS SOFTWARE OR ANY						
11	ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE						
12	OF THE POSSIBILITY OF SUCH DAMAGES.						
13							
14							
15							
16							
17							
18							
19							
20							
21	**************************************						
22	* USAF STABILITT AND CONTROL DIGITAL DATOM						
23	* PROGRAM REV. JAN 96 DIRECT INQUIRIES TO:						
	*						
24	* WRIGHT LABORATORY (WL/FIGC) ATTN: W. BLAKE						
	*						
25	* WRIGHT PATTERSON AFB, OHIO 45433						
26	* PHONE (513) 255_6764 FAX (513) 258_4054						
20	* 11012 (010) 200 0104, 1111 (010) 200 4004						
27	· ************************************						
28	1 CONERR – INPUT ERROR CHECKING						
29	0 ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR						
30	0 A - UNKNOWN VARIABLE NAME						
31	0 B – MISSING EQUAL SIGN FOLLOWING VARIABLE NAME						
32	0 C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N)						
33	0 D – NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED						
34	0 E – ASSIGNED VALUES EXCEED ARRAY DIMENSION						
35	0 F – SYNTAX ERROR						
36							
37	0*************************************						
38							
39							
40							
41							
42	SELTCON NMACH-1 0 MACH-0 07						
44	$NALT=1 \cap ALT(1)=1$						
45	NALPHA= 8.0 , ALSCHD(1) = -8.1						
46	-5.01.0.0.0.3.0.6.0.8.0.10.						
47	GAMMA=0.\$						
48	\$SYNTHS XCG=1.8, ZCG=0.29,XW=1.6,ZW=0.43,XH=5.2,ZH=.89, XV=5.125,						
49	$ZV{=}0.39$, $ALIH{=}{-}2.545$						
50	OPTINS BLREF = 12.0, SREF = 7.36, CBARR = 0.662						
51	BODY NX=19.0, $BNOSE=1.0$, $BTAIL=2.0$,						
52	$\mathrm{X}(1){=}0.00,0.012,0.058,0.169,0.495,0.665,0.953,1.252,$						

 $\begin{array}{l} 1.495\,,1.624\,,1.766\,,1.923\,,2.099\,,2.325\,,2.831\,,3.211\,,3.798\,,4.301\,,5.5\,,\\ \mathrm{ZU}(1)=\,\,0.01\,,0.034\,,0.082\,,0.151\,,\,\,0.276\,,0.323\,,0.383\,,\,\,0.429\,,\\ 0.455\,,\,\,0.464\,,\,0.472\,,\,0.477\,,\,0.479\,,\,0.475\,,\,0.455\,,\,0.44\,,\,0.417\,,0.399\,,0.399\,,\\ \mathrm{ZL}(1)=0.01\,,-0.035\,,\,-0.065\,,\,-0.092\,,\,-0.124\,,\,-0.131\,,\,-0.138\,,-0.139\,,-0.121\,,\\ -0.095\,,-0.058\,,-0.011\,,\,0.04\,,\,0.109\,,0.234\,,0.254\,,0.25\,,0.245\,,0.245\,,\\ \mathrm{R}(1)=0.01\,,0.017\,,0.041\,,0.074\,,0.134\,,0.162\,,0.188\,,0.213\,,\\ \end{array}$ 58 0.224,0.23,0.236,0.223,0.209,0.179,0.094,0.067,0.063,0.063 \$ \$WGPLNF CHRDR=0.8,CHRDBP=0.71,CHRDTP=0.24, $\frac{61}{62}$ SSPN = 6.0, SSPNOP = 3.0DHDADI=7.,DHDADO=7., TWISTA=-2.0,SSPNE=5.95,TYPE=1.0\$ VCSCHR TYPEIN=1.0, NPTS=49.0. \$WGSCHR TYPEIN=1.0 71 72 73 74 75 77 79 0.000000 YLOWER = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370
$$\begin{split} & \text{MVER} = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370, \\ & -0.016980, -0.018870, -0.019920, -0.021220, -0.021800, -0.022560, -0.022630, \\ & -0.022770, -0.022200, -0.021610, -0.020340, -0.018950, -0.016880, -0.014600, \\ & -0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, \\ & 0.014750, 0.018130, 0.020980, 0.023450, 0.025300, 0.02680, 0.027450, \\ & 0.027680, 0.027290, 0.026310, 0.024790, 0.022840, 0.020520, 0.017940, \\ & 0.015140, 0.012190, 0.009210, 0.006300, 0.003730, 0.001690, 0.000400, \\ & 0.000000 \end{split}$$
83 85 87 0.000000,\$ \$SYMFLP FTYPE=1.0
$$\begin{split} & \text{NDELTA}=9.0, \quad \text{DELTA}(1)=-40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, \\ & \text{CHRDFI}=0.15, \quad \text{CHRDFO}=0.15, \\ & \text{SPANFI}=0., \quad \text{SPANFO}=2., \end{split}$$
SPANFI=0., NTYPE=1.0\$ CASEID Solar Sailplane NEXT CASE DIM M DAMP DEBIV BAD PART \$FLTCON NMACH = 1.0, MACH = 0.07NALT=1.0, ALT(1)=1., NALPHA=8.0, ALSCHD(1)=-8. -5.0, -1.0, 0.0, 3.0, 6.0, 8.0, 10.,GAMMA=0.\$ \$WGPLNF CHRDR=0.8, CHRDBP=0.7 SSPN=6.0, SSPNOP=3.0, 116 DHDADI=7., DHDADO=7., TWISTA=-2.0, SSPNE=5.95, TYPE=1.0 \$ \$WGSCHR TYPEIN=1.0, NPTS=49.0, 0.020430,0.016010,0.011890,0.008180,0.005010,0.002490,0.000820 0.000000 $\begin{array}{l} \text{VLOWER} = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370, \\ -0.016980, -0.018870, -0.019920, -0.021220, -0.021800, -0.022560, -0.022630, \\ \end{array}$

-0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, $\begin{array}{c} 0.014750\,, 0.018130\,, 0.020980\,, 0.023450\,, 0.025300\,, 0.026680\,, 0.027450\,, \\ 0.027680\,, 0.027290\,, 0.026310\,, 0.024790\,, 0.022840\,, 0.020520\,, 0.017940\,, \end{array}$ $0.015140\,, 0.012190\,, 0.009210\,, 0.006300\,, 0.003730\,, 0.001690\,, 0.000400$ 0.000000,\$ 0.000000, \$ SASYFLP STYPE=4.0, NDELTA=9.0, DELTAR(1) = -30.0, -20.0, -10.0, -5.0, 0.0, 5.0, 10.0, 20.0, 30.0, DELTAL(1) = 30.0, 20.0, 10.0, 5.0, 0.0, -5.0, -10.0, -20.0, -30.0, SPANFI=3.0, SPANFO=6., CHRDFI=.15, CHRDFO=.15\$ CASEID Solar Sailplane NEXT CASE DIM M DAMP DERIV RAD PART FLTCON NMACH=1.0.MACH=0.07. NALT = 1.0, ALT (1) = 1., NALPHA = 8.0, ALSCHD(1) = -8., 5.0, -1.0, 0.0, 3.0, 6.0, 8.0, 10., GAMMA=0.\$ $169 \\ 170$ $\begin{array}{l} \text{SSPN} = 6.0\,, \text{SSPNOP} = 3.0\,, \\ \text{SSPN} = 6.0\,, \text{SSPNOP} = 3.0\,, \\ \text{DHDADI} = 7\,, \text{DHDADO} = 7\,, \, \text{TWISTA} = -2.0\,, \text{SSPNE} = 5.95\,, \text{TYPE} = 1.0\,\$ \\ \text{WCSCHR} \ \text{TYPEIN} = 1.0\,, \ \text{NPTS} = 49.0\,, \\ \text{XCORD} = 0.00\,, 0.00107\,, 0.00428\,, 0.00961\,, 0.01704\,, 0.02653\,, 0.03806\,, \\ 0.05156\,, 0.06699\,, 0.08427\,, 0.10332\,, 0.12408\,, 0.14645\,, 0.17033\,, \\ 0.19562\,, 0.22221\,, 0.25000\,, 0.27886\,, 0.30866\,, 0.33928\,, 0.37059\,, \\ 0.40245\,, 0.43474\,, 0.46730\,, 0.50000\,, 0.53270\,, 0.56526\,, 0.59755\,, \\ 0.62941\,, 0.66072\,, 0.69134\,, 0.72114\,, 0.75000\,, 0.77779\,, 0.80438\,, \\ 0.829\,, 0.853\,, 0.875\,, 0.896\,, 0.915\,, 0.933\,, 0.948\,, \\ \text{96194}\,, 0.97347\,, 0.98296\,, 0.99039\,, 0.99572\,, 0.99893\,, 1.\,, \\ \text{YUPPER} = 0.000000\,, 0.009000\,, 0.017500\,, 0.027400\,, 0.036250\,, 0.044800\,, \\ 0.052480\,, 0.060050\,, 0.068360\,, 0.075550\,, 0.083130\,, 0.089610\,, 0.096220\,, \\ 0.101650\,, 0.107040\,, 0.111220\,, 0.115220\,, 0.117920\,, 0.120240\,, 0.121280\,, \\ 0.121910\,, 0.121370\,, 0.120420\,, 0.118330\,, 0.17780\,, 0.112210\,, 0.108230\,, \\ 0.103310\,, 0.098040\,, 0.092040\,, 0.085900\,, 0.072770\,, 0.072730\,, 0.066050\,, \\ 0.059620\,, 0.53230\,, 0.047110\,, 0.041140\,, 0.035530\,, 0.03180\,, 0.025160\,, \\ 0.020430\,, 0.016010\,, 0.011890\,, 0.008180\,, 0.005010\,, 0.002490\,, 0.00820\,, \\ \end{array}$ 0.000000 $\begin{array}{l} 0.000000\,,\\ 0.000000\,,\\ 0.000000\,, -0.002320\,, -0.005660\,, -0.009950\,, -0.012540\,, -0.015370\,,\\ -0.016980\,, -0.018870\,, -0.019920\,, -0.021220\,, -0.021800\,, -0.022560\,, -0.022630\,,\\ -0.022770\,, -0.022200\,, -0.021610\,, -0.020340\,, -0.018950\,, -0.016880\,, -0.014600\,,\\ -0.011670\,, -0.008480\,, -0.004860\,, -0.001030\,, 0.003070\,, 0.007160\,, 0.011120\,,\\ \end{array}$ YLOWER=0.000000, $\begin{array}{c} 0.014750\,, 0.018130\,, 0.020980\,, 0.023450\,, 0.025300\,, 0.026680\,, 0.027450\,, \\ 0.027680\,, 0.027290\,, 0.026310\,, 0.024790\,, 0.022840\,, 0.020520\,, 0.017940\,, \end{array}$ 0.000000.8\$HTPLNF CHRDR = 0.425, CHRDTP=0.325, SAVSI=8.0, SSPN=1.2, SSPNE=1.2, TYPE=1.0\$HTSCHR TYPEIN=1.0, NPTS=39.0 $\begin{array}{l} \$H1SCHR \ TYPEIN=1.0\,, \ NP1S=39.0\,, \\ XCORD=0.000\,, 0.0025000\,, 0.0050000\,, 0.0087500\,, 0.0125000\,, 0.0187500\,, 0.0250000\,, \\ 0.0375000\,, 0.0500000\,, 0.0750000\,, 0.1000000\,, 0.1250000\,, 0.1500000\,, 0.1750000\,, \\ 0.2000000\,, 0.2250000\,, 0.2500000\,, 0.2750000\,, 0.3000000\,, 0.3250000\,, \\ 0.3500000\,, 0.3750000\,, 0.4000000\,, 0.4500000\,, 0.5500000\,, \\ 0.5500000\,, 0.5500000\,, 0.5000000\,, \\ 0.5500000\,, 0.5500000\,, 0.5000000\,, \\ 0.5500000\,, 0.5500000\,, \\ 0.5500000\,, 0.5500000\,, \\ 0.5500000\,, 0.5500000\,, \\ 0.55000000\,, \\ 0.5500000$ $\begin{matrix} 0.6000000, 0.6500000, 0.7000000, 0.7500000, 0.8000000, 0.8250000, \\ 0.8500000, 0.8750000, 0.9000000, 0.9250000, 0.9500000, 0.9750000, \end{matrix}$ 1.0000000 YUPPER=0.0000000,0.0046700,0.0070200,0.0096800,0.0118800 $\begin{array}{c} 0.0149600\,, 0.0175300\,, 0.0217800\,, 0.0252300\,, 0.0307700\,, 0.0350700\,, \\ 0.0385000\,, 0.0412100\,, 0.0433000\,, 0.0449200\,, 0.0462100\,, 0.0472700\,, 0.0481700\,, \\ 0.0488600\,, 0.0492900\,, 0.0494500\,, 0.0493800\,, 0.0491100\,, 0.0480300\,, \\ 0.0461700\,, 0.0435000\,, 0.0400400\,, 0.0359000\,, 0.0312600\,, 0.0261800\,, \\ \end{array}$ $\begin{array}{c} 0.0208300\,, 0.0180900\,, 0.0153700\,, 0.0127200\,, 0.0100900\,, 0.0075500\,, 0.0049100\,, 0.0023400\,, 0.0000000\,, \end{array}$ $\begin{array}{l} 0.0049100\,, 0.0023400\,, 0.0000000\,, \\ \mbox{YLOWER}{=}0.0000000\,, -.0035800\,, -.0052700\,, -.0072400\,, -.0088400\,, -.0110000\,, \\ -.0126800\,, -.0153600\,, -.0174400\,, -.0206400\,, -.0230500\,, -.0249600\,, -.0264700\,, \\ -.0276200\,, -.0284900\,, -.0291500\,, -.0296500\,, -.0300300\,, -.0302800\,, -.0303700\,, \\ -.0302700\,, -.0299800\,, -.0295200\,, -.0281500\,, -.026200\,, -.0236700\,, -.0206300\,, \\ -.0172100\,, -.0136800\,, -.0101600\,, -.0069200\,, -.0054800\,, -.0042000\,, -.0031400\,, \\ -.0022200\,, -.0015400\,, -.0008300\,, -.0003000\,, 0.0000000\, \\ \mbox{$$SYMFLP FTYPE=1.0\,, $} \end{array}$

-0.022770, -0.022200, -0.021610, -0.020340, -0.018950, -0.016880, -0.014600,

```
219
220
221
222
                                                     NTYPE = 1.0

        NTFLE
        1.0%

        $VTPLNF CHROR=0.325,CHRDTP=0.225,SSPN=0.5,SAVSI=10.,SSPNE=0.5,TYPE=1.0$

        $VTSCHR TYPEIN=1.0, NPTS=39.0,

        XCORD=
        0.000,0.0025000,0.0050000,0.0087500,0.0125000,0.0187500,0.0250000,

223
224
225
                                \begin{array}{l} \textbf{XCORD} = & 0.000\,, 0.0025000\,, 0.0050000\,, 0.0087500\,, 0.0125000\,, 0.0187500\,, 0.025000\,, 0.025000\,, 0.0250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.01250000\,, 0.0125000\,, 0.0125000\,, 0.0125000\,, 0.0125000\,, 0.0125000\,, 0.01250000\,, 0.01250000\,, 0.012500\,, 0.012500\,, 0.012500\,, 0.012500\,,
226
227
 228
229
230
                            \begin{split} 1.0000000, \\ YUPPER = 0.0000000, 0.0046700, 0.0070200, 0.0096800, 0.0118800, \\ 0.0149600, 0.0175300, 0.0217800, 0.0252300, 0.0307700, 0.0350700, \\ 0.0385000, 0.0412100, 0.0433000, 0.0449200, 0.0462100, 0.0472700, 0.0481700, \\ 0.0488600, 0.0492900, 0.0494500, 0.0493800, 0.0491100, 0.0480300, \\ 0.0461700, 0.0435000, 0.040400, 0.0359000, 0.0312600, 0.0261800, \\ 0.0208300, 0.0180900, 0.0153700, 0.0127200, 0.0100900, 0.0075500, \\ 0.0049100, 0.0023400, 0.0000000, \\ YLOWER = 0.0000000, -.0035800, -.0052700, -.0072400, -.0088400, -.01110000, \\ -.0126800, -.0153600, -.0174400, -.02266400, -.0230500, -.02249600, -.0264700, \\ -.0302700, -.0284900, -.0295200, -.0281500, -.0300300, -.0302800, -.0303700, \\ -.0302700, -.0136800, -.0101600, -.0069200, -.0054800, -.0042000, -.0031400, \\ -.0022200, -.0015400, -.0008300, -.0003000, 0.0000008 \end{split}
231
                                1.0000000
232
233
 234
235
236
237
238
239
240
241
242 \\ 243
                                    -.0022200, -.0015400, -.0008300, -.0003200, -.00542000, -.0042000, -.0054
.0022200, -.0015400, -.0008300, -.0003000, 0.00000000
.SEID TOTAL: Solar Sailplane
THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.
244
                          CASEID TOTAL:
245
246
                       1
247
                     0
                         DIM M
248
249
                         DAMP
250
                           DERIV RAD
251
                         PART
252
                                253
                              \begin{array}{l} \text{NALPHA}=8.0\,, \text{ALSCHD}(1)=-8.\,,\\ -5.0\,, -1.0\,, 0.0\,, 3.0\,, 6.0\,, 8.0\,, 10.\,,\\ \text{GAMMA}=0.\,\$ \end{array}
254
255
                               \begin{array}{l} \text{GANMA=0.\$} \\ & \text{SSYNTHS XCG=1.8, ZCG=0.29, XW=1.6, ZW=0.43, XH=5.2, ZH=.89, XV=5.125, } \\ & \text{SVPOINS BLREF=12.0, SREF=7.36, CBARR=0.662\$} \\ & \text{SOPTINS BLREF=12.0, SREF=7.36, CBARR=0.662\$} \\ & \text{SBODY NX=19.0, BNOSE=1.0, BTAIL=2.0, } \\ & \text{X}(1)=0.00, 0.012, 0.058, 0.169, 0.495, 0.665, 0.953, 1.252, \\ & 1.495, 1.624, 1.766, 1.923, 2.099, 2.325, 2.831, 3.211, 3.798, 4.301, 5.5, \\ & \text{ZU}(1)=0.01, 0.034, 0.082, 0.151, 0.276, 0.323, 0.383, 0.429, \\ & 0.455, 0.464, 0.472, 0.477, 0.479, 0.475, 0.455, 0.44, 0.417, 0.399, 0.399, \\ & \text{ZL}(1)=0.01, -0.035, -0.065, -0.092, -0.124, -0.131, -0.138, -0.139, -0.121, \\ & -0.095, -0.058, -0.011, 0.04, 0.109, 0.234, 0.254, 0.25, 0.245, 0.245, \\ & \text{R}(1)=0.01, 0.017, 0.041, 0.074, 0.134, 0.162, 0.188, 0.213, \\ & 0.224, 0.23, 0.236, 0.223, 0.209, 0.179, 0.094, 0.067, 0.063, 0.063\$ \\ & \text{SWGPLMF CHRRR=0.8, CHRDBP=0.71, CHRDTP=0.24, \\ & \text{SSPN=6.0, SSPNOP=3.0, } \end{array} 
256
257
258
 259
260
 261
262
263
264
265
266
 267
268
269
270
                                DHDADI=7.,DHDADO=7., TWISTA=-2.0,SSPNE=5.95,TYPE=1.0$
$WGSCHR TYPEIN=1.0, NPTS=49.0,
271
                                        272
273
274
275
276
277
278
279
280
281
282
283
284
                                                       \begin{matrix} 0.059620 \\ 0.053230 \\ 0.047110 \\ 0.041140 \\ 0.035530 \\ 0.030180 \\ 0.030180 \\ 0.0225160 \\ 0.020430 \\ 0.016010 \\ 0.011890 \\ 0.008180 \\ 0.005010 \\ 0.002490 \\ 0.000820 \end{matrix}
285
286
287
                                                       0.000000
288
                                             \text{YLOWER} = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370
289
                                                         \begin{array}{c} -0.016980\,, -0.018870\,, -0.019920\,, -0.021220\,, -0.021800\,, -0.022560\,, -0.022630\,, \\ -0.022770\,, -0.022200\,, -0.021610\,, -0.020340\,, -0.018950\,, -0.016880\,, -0.014600\,, \end{array}
290
                                                        \begin{array}{c} -0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, \\ 0.014750, 0.018130, 0.020980, 0.023450, 0.025300, 0.026680, 0.027450, \end{array}
291
292
                                                            \begin{array}{c} 0.027680\,, 0.027290\,, 0.026310\,, 0.024790\,, 0.022840\,, 0.020520\,, 0.017940\,, \\ 0.015140\,, 0.012190\,, 0.009210\,, 0.006300\,, 0.003730\,, 0.001690\,, 0.000400\,, \end{array}
293
 294
                                                           0.000000,$
P FTYPE=1
295
                                $SYMFLP
                                                 \begin{array}{l} \text{MFLP FIVPE=1.0,} \\ \text{NDELTA=9.0, DELTA(1)=-40.0,-30.0,-20.0,-10.0,0.0,10.0,20.0,30.0,40.0,} \\ \text{CHRDFI=0.15, CHRDFO=0.15,} \\ \end{array} 
296
297
 298
                                                                                                            SPANFO=2.,
299
                                                 SPANFI=0..
                        NTYPE=1.0$
CASEID Solar Sailplane
300
301
```

302	NEXT CASE				
$303 \\ 304$	0ERROR ** FLAP INBOARD SPANI IS RED	SPAN, SPANI = .00 EFINED, $SPANI = SSP$	000E+00, IT IS INS: N-SSPNE = .50000E	IDE THE BODY AS DEFI -01	NED BY SSPN AND SSPNE
$305 \\ 306 \\ 207$	0 INPUT DIMENSIONS ARE	IN M , SCALE FACTO	PR IS 1.0000		
307 308	1	AUTOMATED S	TABILITY AND CONTR	OL METHODS PER APRIL	1976 VERSION OF DATCOM
$309 \\ 310$	UPPER ABSCISSA MEAN LINE THICKNESS	UPPER ORDINATE	LOWER ABSCISSA	LOWER ORDINATE	X-FRACTION CHORD
311	.00000	.00000	.00000	.00000	.00000
312	00420	.00541	.00634	.00127	.00107
313		.01541	.01092	00357	.00428
314	.00592 .02316 .00150	.02555	.01772	00810	.00961
315	.00873 .03735 .00860	.03474	.02548	01103	.01704
316	.01185 .04879 .01831	.04365	.03475	01422	.02653
317	.01471 .06017 .02999	.05153	.04613	01603	.03806
318	.01775 .06946 .04301	.05911	.06011	01793	.05156
319	.02059 .07892 .05814	.06746	.07584	01902	.06699
320	.02422 .08828 .07585	.07481	.09269	02048	.08427
321	.02716 .09677 .09494	.08246	.11170	02113	.10332
322	.03067 $.10493$ $.11621$.08905	.13195	02200	.12408
323	.03353 $.11217.13884$.09573	.15406	02214	.14645
324	.03680 .11885 .16327	.10125	.17739	02237	.17033
325	.03944 .12442 .18893	.10669	.20231	02185	.19562
326	.04242 .12924 .21611	.11094	.22831	02133	.22221
327	.04481 .13283 .24439	11499	25561	- 02011	25000
328	.04744 .13556	11774	28379	- 01877	27886
320	.04948 .13687	12010	31304	- 01674	30866
320	.05168 .13712	12118	34305	- 01450	33028
221	.05334 .13588	12110	27200	01450	27050
222	.05512 .13358	12103	40514	01139	.31033
222	.05645 .12985	12028	40514	00342	40240
222	.05778 .12528	.12038	.43087	00482	.43474
334	.05865 .11936	.11831	.46880	00101	.46730
335	.05943 .11271	.11577	.50089	.00308	.50000
336	.05968 .10505	.11221	.53290	.00716	.53270
337	.05968 .09711	.10823	.56477	.01112	.56526
338	.59865 .05903 $.08856$.10330	.59645	.01476	.59755
339	.63101 .05809 $.07991$.09801	.62781	.01816	.62941
340	.66268 .05651 .07106	.09199	.65876	.02103	.66072
341	.69353 .05468 $.06245$.08582	.68915	.02353	.69134
342	.72342 .05229 .05397	.07917	.71886	.02540	.72114
343	.75225 .04970 $.04605$.07262	.74775	.02679	.75000
344	.77993 .04675 $.03860$.06593	.77565	.02757	.77779
345	.80640	.05949	.80236	.02781	.80438
346	.83083	.05310	.82717	.02742	.82900
347	.85464	.04698	.85136	.02644	.85300

	.03671	.0208	0							
348	02207	.87641	F	.04102		.87359		.02491	.875	0 0
349	.03297	.89719	5	.03542		.89481		.02295	.896	0 0
250	.02919	.0126	9	02008		01402		0.206.2	015	0.0
330	.02535	.91598	6	.03008		.91402		.02002	.915	00
351	00155	.93382	0	.02507		.93218		.01803	.933	00
352	.02155	.94866	2	.02035		.94734		.01522	.948	00
050	.01778	.0052	9	01504		0.61.41		01000	0.61	0.4
303	.01410	.96247	2	.01594		.96141		.01226	.961	94
354	01055	.97389	0	.01182		.97305		.00928	.973	47
355	.01055	.98329	8	.00812		.98263		.00636	.982	96
050	.00724	.0018	8	00400		00015		00050	0.0.0	
356	.00437	.99063	8	.00496		.99015		.00378	.990	3.9
357		.99588	-	.00245		.99556		.00173	.995	72
358	.00209	.0008	0	.00079		.99883		.00043	.998	93
	.00061	.0004	2							
359	.00000	1.00000	0	.00000		1.00000		.00000	1.000	00
360	1			AUTOMA	TED STAI	BILITY AND O	ONTROL M	THODS PER A	PRIL 1976 VERSIO	ON OF DATCOM
$361 \\ 362$	0			IDI	EAL ANG	E OF ATTACK	WING SE	CTION DEFINIT	TION	
363	°			101			2.0	2011 2201		
$364 \\ 365$				ZERO L	IFT ANGI	LE OF ATTACK	= -8.3	33017 DEG.		
366				IDE	AL LIFT	COEFFICIENT	= 1.2	9114		
367		7	FRO LIFT F	PITCHING	MOMENT	COFFFICIENT		25013		
369		2		11 Onited	NONLANI	COEFFICIENT		20010		
$370 \\ 371$				MACH ZEI	RO LIFT-	-CURVE-SLOPE	= .1	1587 /DEG.		
372				1	LEADING	EDGE RADIUS	= .0	1550 FRACTION	N CHORD	
$373 \\ 374$				MAXIMIN		II. THICKNESS	- 1	3712 FRACTION	I CHORD	
375				WEARING	Antroi		1	5712 FILACIIO	V CHOID	
376						DELTA-Y	= 3.5	5669 PERCENT	CHORD	
378										
379		DODY AL	MAC	3H= .070	0 LIFT-	CURVE-SLOPE	= .1	1586 /DEG.	XAC = .2	4087
$380 \\ 381$	WAILING*	TAIL EF	FECTS IGNO	RED]	ATTVE ME	SHIOD VALID	-on nosi	E CILINDER ON	_1	
382	1			AUTO	MATED ST	ABILITY AND	CONTROI	METHODS PER	APRIL 1976 VER	SION OF DATCOM
$383 \\ 384$					CIII	ARACTERISTIC	WING-BOL	OY CONFIGURATI	ION	
385							Solar	Sailplane		
$380 \\ 387$			FLI	GHT CON	DITIONS					
200	REFERENCE	DIMENSION	IS	 7 DDF	SCUDE		г рг		DEE	
300	REFERENCE	LENGTH	MOMENT REF	F. CENTE	R	TEMPERATOR		INOLDS	TULI [*] .	
389	NUMBER	T A T	UODIZ	VEDT			N	UMBER	AREA	
390	LONG.	M	M/SEC	N/	M**2	DEG K	1	/ M	M**2	
201	M 0.070	M	M	M		000 149	1 60	215.00	7 260	
391	.662 1	2.000	1.800	.290	31E+05	288.143	1.02	31E+06	7.300	
392	0	CD	CI	CM	CIN		VCD		DERIVAT	IVE (PER RADIAN)-
393	0 ALPHA CYB	CD CNB	CL	CM 3	CN	CA	XCP	CLA	CMA	
394	0									
395	-8.0 -4.069E-0	1 -5.438	052 E-03 -6	2314 .259E -02	054	.008	4.316	5.987 E + 00	6.170E-01	
396	-5.0	.017	.268	2017	.266	.040	759	$6.247 \mathrm{E}{+00}$	5.180E - 01	
397	-6.063E-0	2.025	.717	1701	.716	.038	238	6.528E+00	3.789E - 01	
	-5 789E-0	2								
00-	011001	0.5.5			~ ~ ~				a	
398	.0 -5.720E-0	.029	.831	1638	.831	.029	197	6.556E+00	3.406 E - 01	
398 399	.0 -5.720E-0 3.0	.029 2 .043	.831 1.175	1638 1491	.831 1.175	.029 019	197 127	6.556E+00 5.891E+00	3.406E-01 1.799E-01	
398 399 400	0 - 5.720E - 0.0 3.0 - 5.510E - 0.0	.029 2 .043 2 058	.831 1.175 1.448	1638 1491	.831 1.175 1.446	.029 019 - 094	197 127 - 100	6.556E+00 5.891E+00 4.533E+00	3.406E-01 1.799E-01 -1.039E-02	
398 399 400	0 -5.720E-03 3.0 -5.510E-03 6.0 -5.343E-03	029 2 043 2 058 2	.831 1.175 1.448	1638 1491 1450	.831 1.175 1.446	.029 019 094	197 127 100	6.556E+00 5.891E+00 4.533E+00	3.406E-01 1.799E-01 -1.039E-02	
398 399 400 401	$\begin{array}{c} .0 \\ -5.720 \text{E} - 0.0 \\ 3.0 \\ -5.510 \text{E} - 0.0 \\ 6.0 \\ -5.343 \text{E} - 0.0 \\ 8.0 \\ -5.256 \text{E} - 0.0 \\ \end{array}$	029 043 058 067	.831 1.175 1.448 1.590	1638 1491 1450 1474	.831 1.175 1.446 1.584	.029 019 094 155	197 127 100 093	6.556E+00 5.891E+00 4.533E+00 2.836E+00	3.406E-01 1.799E-01 -1.039E-02 -1.298E-01	
 398 399 400 401 402 	$\begin{array}{c} .0\\ -5.720 \text{E}{-}0\\ 3.0\\ -5.510 \text{E}{-}0\\ 6.0\\ -5.343 \text{E}{-}0\\ 8.0\\ -5.256 \text{E}{-}0\\ 10.0 \end{array}$	029 043 058 067 072	.831 1.175 1.448 1.590 1.646	1638 1491 1450 1474 NA	.831 1.175 1.446 1.584 1.633	.029 019 094 155 215	197 127 100 093 NA	6.556E+00 5.891E+00 4.533E+00 2.836E+00 3.579E-01	3.406E-01 1.799E-01 -1.039E-02 -1.298E-01 NA	

403 0*** NA PRINTED WHEN METHOD NOT APPLICABLE
$404 \\ 405 \\ 406 \\ 407$	1 AUTOMATE	D STABILITY AND CO I WI	ONTROL METHODS PER DYNAMIC DERIVATIVES NG-BODY CONFIGURATIO Solar Sailplane	APRIL 1976 VERSION OF DATCOM
$\frac{408}{409}$	FLIGHT CONDITIO	DNS		
410	REFERENCE DIMENSIONS MACH ALTITUDE VELOCITY PRESSURI	E TEMPERATURE	REYNOLDS	REF.
411	REFERENCE LENGTH MOMENT REF. CENTER NUMBER		NUMBER	AREA
412	LONG. LAT. HORIZ VERT $M = M/SEC N/M**$	2 DEG K	1/ M	M**2
413	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05 288.143	$1.6231\mathrm{E}{+}06$	7.360
414	.662 12.000 1.800 .290	DYNAM	IC DERIVATIVES (PER	RADIAN)
415	0PITCHING	ACCELERATION	·	ROLLING
416 417	0 ALPHA CLQ CMQ CNP CNR CLR 0	CLAD CN	MAD CLP	CYP
418	-8.00 2.256E+00 $-4.988E-012.735E-03 -3.354E-03 -1.828E-02$	NDM NDM	M -5.322E-01	-1.876E - 01
419	-5.00 -3.824E-02 $-4.799E-03$ $5.569E-02$		$-5.561 \mathrm{E}{-01}$	-2.394E-01
420	-1.00 -9.567E-02 -1.367E-02 1.592E-01		-5.854E-01	-3.120E-01
421	.00 -1.103E-01 $-1.722E-02$ $1.857E-01$		$-5.897 \mathrm{E}{-01}$	-3.305 E - 01
422	-1.554E-01 $-3.100E-02$ $2.651E-01$		$-5.356E{-01}$	$-3.867 \mathrm{E}{-01}$
423	6.00 -1.024E-01 $-4.520E-02$ $3.277E-01$		$-4.176E{-01}$	$-4.319E{-}01$
424	-1.924E-01 $-4.520E-02$ $5.277E-018.002.124E 01 5.261E 02 2.500E 01$		-2.673E-01	$-4.565 \mathrm{E}{-01}$
425	-2.134E-01 $-3.301E-02$ $3.333E-0110.002025E 01 5 680E 02 2 716E 01$		$-4.475 \mathrm{E}{-02}$	$-4.666 \mathrm{E}{-01}$
426 427 428 429 430 431	0*** NDM PRINTED WHEN NO DATCOM METHODS I 1 AUTOMATED S	2XIST STABILITY AND CON CONFIGURATION WI	TROL METHODS PER AP N AUXILIARY AND PAR NG-BODY CONFIGURATIO Solar Sailplane	RIL 1976 VERSION OF DATCOM TIAL OUTPUT DN
432	REFERENCE DIMENSIONS MACH ALITIUDE VELOCITY PRESSURI DECEMENCE LENCTL MOMENT DEEL CONTERP.	E TEMPERATURE	REYNOLDS	REF.
433	NUMBER		NUMBER	AREA
434	M M/SEC N/ M**	2 DEG K	1/ M	M**2
435	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05 288.143	1.6231E+06	7.360
$430 \\ 437 \\ 438$		ΒA	SIC BODY PROPERTIES	
438	METTER ADEA VCC 7CC	DACE ADEA	ZEBO LIET DRAG	ASE DRACE EDICTION DRAC
440	PRESSURE DRAG	DASE AILEA	2120E 02	ADDRE 02
441	.1706E-02 NA .29	.0525	.2129E-02	4229E-03
$\frac{443}{444}$		XCG RELATIVE TO 7	THEORETICAL LEADING	EDGE MAC=
445	.20			
$\frac{446}{447}$		ВА	SIC PLANFORM PROPER	TIES
$\frac{448}{449}$	TAPE	R ASPECT QUA	ARTER CHORD	QUARTER CHORD
450	ZERO LIFT FRICTION AREA RATIO	D RATIO	SWEEP MAC	X (MAC)
451	Y(MAC) DRAG COEFFICIENT 0 WING			· · ·
$\frac{452}{453}$	TOTAL THEORITICAL + .7380E+01 .300	0.1951E+02	1.441 .662E+	00 .177E+01
454	.254 E+01 TOTAL EXPOSED			
455	$\begin{array}{cccc} + & & .7300 \pm +01 & .301 \\ .257 \pm +01 & .112 \pm -01 & .439 \pm -02 \end{array}$.1940E+02	1.441 .661E+	00 .177E+01
$456 \\ 457$	0*** NA PRINTED WHEN METHOD NOT APPLICABL 1 AUTOMATED S	LE STABILITY AND CON	FROL METHODS PER AP	RIL 1976 VERSION OF DATCOM
$458 \\ 459$		CONFIGURATION WI	N AUXILIARY AND PAR NG-BODY CONFIGURATIO	TIAL OUTPUT DN

			FLICUT	CONDITIONS		Solar Sailplane	
REFERENCI	E DIMENS ALTITUI	IONS – DE VE	LOCITY	PRESSURE	TEMPERATURE	REYNOLDS	REF.
REFERENCI NUMBER	E LENGTH	MOME	INT REF. CE	ENTER		NUMBER	AREA
LONG.	LAT. M	HORI	Z VEF M/SEC	RT N/ M**2	DEG K	1/ M	M**2
M 0 070	M	M	M	1 01211105	288 142	1 6221E+06	7 260
.662	12.000	1.80	0.29	$0 \qquad \qquad$	200.143	1.0231E+00	
0 XAC/C-B(V	N = 3.058	(W) = 1. 3E-01	115E-03	CLA–W(B)=	= 1.037E-01	К-В(W)= 1.083В	E-02 K-W(B) = 1.007E+00
C'ANMAA /	1	ALPHA	IV-	-B(W)	IV-W(H)	IV-B(H)	GAMMA/
		T.					$2*{\rm PI}*{\rm ALPHA}*{\rm V}*{\rm R}$
(2*P1*AL	PHA*V*R)	-8.000	.00	$0.0\mathrm{E}{+00}$	NA	NA	NDM
NA		-5.000	.00	$0.0{ m E}{+}00$	NA	NA	.0000E+00
NA		-1.000	.00	0.0 E + 00	NA	NA	0000E+00
NA		000		00E+00	NA	NI A	0000E+00
NA			.00		11/4	INA	.0000E+00
NA		3.000	.00	000E+00	NA	NA	.0000E+00
NA		6.000	.00	000E+00	NA	NA	NDM
NA		8.000	.00	$0.0\mathrm{E}{+}00$	NA	NA	NDM
NA		10.000	.00	$0.0\mathrm{E}{+}00$	NA	NA	NDM
INA							
0*** NDM 0*** NA 1	PRINTED	WHEN N WHEN ME	O DATCOM N	METHODS EXIS	$\begin{array}{c} \text{CLB/GAMMA} \\1456\text{E}{-03} \\ \text{T} \end{array}$	(CMO/THETA) 1213E-0	W (CMO/THETA)H D2 NA
1			AUTC	MATED STABI	ILITY AND CONTR ARACTERISTICS (WING PLAIN TR.	ROL METHODS PER DF HIGH LIFT ANI AILING-EDGE FLAF Solar Sailplane	APRIL 1976 VERSION OF DATCOM O CONTROL DEVICES O CONFIGURATION
REFERENCI MACH	E DIMENS ALTITUI	IONS –	– FLIGHT ––––––––––––––––––––––––––––––––––––	CONDITIONS 	TEMPERATURE	BEYNOLDS	
REFERENCI NUMBER	E LENGTH	MOME	ENT REF. CE	ENTER		NUMBER	AREA
LONG.	LAT.	HORI	Z VEF M/SEC	RT N/ M**2	DEC K	1 / M	M**2
M 0.070	M	M	M	1 410212101	022 505	1 5070E+05	7 260
.662	12.000	1.80	23.82 4	4.4193E+01 00	933.585	1.90/9E+05	(.300
0 0 DEI (CH)D	LTA I	If D(CL)	D(CM)	DUE TO DEFI D(CL MAX)	D(CD MIN)		DERIVATIVES (PER DEGREE) (CLA)D (CH)A
-4	0.0	448	.1185	.322	.03608		NDM -7.395E-03
-1.464E- -3	02 0.0	380	.1098	.281	.02282		NDM
-1.461E-	02	327	.0873	211	.01226		NDM
-1.453E-	02	_ 199	0466	100	00202		NDM
-1.448E-	02	168	.0406	.122	.00303		
-1.448E-	.0 02	.000	.0000	.000	.00000		NDM
$^{-1.448E-}$	0.0 02	.188	0466	.122	.00303		NDM
2 -1.453E-	0.0 02	.327	0873	.211	.01226		NDM
1 461E	0.0	.380	1098	.281	.02282		NDM
-1.401E-	04			0.00	0.0.000		NTN

```
-1.464E-02
                         *** NOTE * HINGE MOMENT DERIVATIVES ARE BASED ON TWICE THE AREA-MOMENT OF THE CONTROL ABOUT ITS HINGE LINE
513
514
                                                                                               - INDUCED DRAG COEFFICIENT INCREMENT , D(CDI) , DUE TO DEFLECTION
-30.0 -20.0 -10.0 .0 10.0 20.0
515
                                            DELTA = -40.0
                                                                                                                                                                                                                                         . 0
516
                0
                                                                                                                                                                                                                                                                                                                                               30 0
                40.0
                          ALPHA
517
                0
518
519
                                -8.0
                                                                          1.20E-02 9.18E-03 7.23E-03 3.13E-03 -1.76E-06 -3.92E-04 1.09E-03 2.05E-03
                3.60E-03
                 -5.0
7.80E-03
520
                                                                           7 81E-03 5 62E-03 4 16E-03 1 37E-03 6 59E-10 1 37E-03 4 16E-03
                                                                                                                                                                                                                                                                                                                                         5.61E - 03
                                                                          2.20E-03 8.64E-04 7.01E-05 -9.77E-04 2.35E-06 3.71E-03
521
                               -1.0
                                                                                                                                                                                                                                                                                                      8.25 E - 03
                                                                                                                                                                                                                                                                                                                                          1.04 E - 02
                  1.34E - 02
                                                                          8.02E-04 -3.25E-04 -9.53E-04 -1.56E-03 2.93E-06 4.30E-03
                                                                                                                                                                                                                                                                                                      9.27 E - 03
522
                                       .0
                                                                                                                                                                                                                                                                                                                                         1.16E - 02
                 1.48E - 02
                                                                        -3.40E-03 -3.89E-03 -4.02E-03 -3.32E-03 4.69E-06
523
                                  3.0
                                                                                                                                                                                                                                                                 6.06E-03 1.23E-02 1.51E-02
                 1.90E - 02
                                                                        -7.60E-03 -7.46E-03 -7.09E-03 -5.08E-03 6.46E-06 7.82E-03 1.54E-02 1.87E-02
524
                                  6.0
                 2.32E - 02
525
                                 8.0
                                                                        -1.04E-02 -9.83E-03 -9.14E-03 -6.26E-03 7.63E-06 8.99E-03 1.75E-02 2.11E-02
                 2.60 E - 02
526
                                                                        -1.32 \pm -02 - 1.22 \pm -02 - 1.12 \pm -02 - 7.43 \pm -03 \\ 8.81 \pm -06 \\ 1.02 \pm -02 \\ 1.95 \pm -02 \\ 2.34 \pm -02 \\ 2.
                              10.0
                 2.88E - 02
                0***NDM PRINTED WHEN NO DATCOM METHODS EXIST
527
                                                        THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.
528
529
                0
530
                   DIM M
531
                   DAMP
                    DERIV RAD
532
                    PART
533
                       FLTCON NMACH=1.0, MACH=0.07, NALT=1.0, ALT(1)=1.,
534
535
                              NALPHA=8.0, ALSCHD(1) = -8.,
5.0, -1.0, 0.0, 3.0, 6.0, 8.0, 10.,
536 \\ 537
                      GAMMA=0.$
$SYNTHS XCG=1.8, ZCG=0.29,XW=1.6,ZW=0.43,XH=5.2,ZH=.89, XV=5.125,
538
539
                        ZV=0.39, ALH=-2.545$
$OPTINS BLREF=12.0, SREF=7.36, CBARR=0.662$
$BODY NX=19.0, BNOSE=1.0, BTAIL=2.0,
540
541
542
543
                       X(1) = 0.00, 0.012, 0.058, 0.169, 0.495, 0.665, 0.953, 1.252,
544
545
546
547
548
549
550
551
552
                        DHDADI=7., DHDADO=7., TWISTA=-2.0, SSPNE=5.95, TYPE=1.0 $
$WGSCHR TYPEIN=1.0, NPTS=49.0,
553
554
                              555
556
557
558
559
560
561
562
                                         \begin{array}{c} \mathsf{PPER}=0.0000000, 0.009000, 0.017500, 0.027400, 0.03250, 0.044800, \\ 0.052480, 0.060050, 0.068360, 0.075550, 0.083130, 0.089610, 0.096220, \\ 0.101650, 0.107040, 0.111220, 0.115220, 0.117920, 0.120240, 0.121280, \\ 0.121910, 0.121370, 0.120420, 0.118330, 0.115780, 0.112210, 0.108230, \\ 0.103310, 0.098040, 0.092040, 0.085900, 0.079270, 0.072730, 0.066050, \end{array}
563
564
565
566
                                          \begin{array}{c} 0.059620\,, 0.053230\,, 0.047110\,, 0.041140\,, 0.035530\,, 0.030180\,, 0.025160\,, \\ 0.020430\,, 0.016010\,, 0.011890\,, 0.008180\,, 0.005010\,, 0.002490\,, 0.000820\,, \end{array}
567
568
569 \\ 570
                                           0.000000
                                   \label{eq:VLOWER} = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370, -0.012540, -0.015370, -0.012540, -0.015370, -0.012540, -0.015370, -0.012540, -0.015370, -0.012540, -0.015370, -0.012540, -0.015370, -0.005660, -0.009950, -0.012540, -0.015370, -0.015370, -0.012540, -0.015370, -0.015370, -0.012540, -0.015370, -0.005660, -0.009950, -0.012540, -0.0015370, -0.005660, -0.009950, -0.0012540, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015560, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0015370, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.0000, -0.00000, -0.00000, -0.00000, -0.00000, -0.0000, -0
                                            \begin{array}{l} 0.016980, -0.018870, -0.01920, -0.021220, -0.021800, -0.012340, -0.013370, \\ -0.016980, -0.018870, -0.019920, -0.021220, -0.021800, -0.022600, -0.022630, \\ -0.022770, -0.022200, -0.021610, -0.020340, -0.018950, -0.016880, -0.014600, \\ -0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, \\ 0.014750, 0.018130, 0.020980, 0.023450, 0.0225300, 0.026680, 0.027450, \\ 0.027680, 0.027290, 0.026310, 0.024790, 0.022840, 0.020520, 0.017940, \\ \end{array}
571
572
573
574
575
                                              0.015140, 0.012190, 0.009210, 0.006300, 0.003730, 0.001690, 0.000400,
576
                                 0.015140,0.012130,0.02217,0.000000,

0.000000,$

SYFLP STYPE=4.0, NDELTA=9.0,

DELTAR(1) = -30.0, -20.0, -10.0, -5.0, 0.0, 5.0, 10.0, 20.0, 30.0,

DELTAL(1) = 30.0, 20.0, 10.0, 5.0, 0.0, -5.0, -10.0, -20.0, -30.0,

SPANFI = 3.0, SPANFO=6., CHRDFI=.15, CHRDFO=.15$
577
578
                        $ASYFI
579
580
581
                     CASEID Solar Sailplane
582
583
                    NEXT CASE
                0 INPUT DIMENSIONS ARE IN M , SCALE FACTOR IS 1.0000
584
585
```

586	1	AUTOMATED	STABILITY AND CONTROL	L METHODS PER APRIL 1	976 VERSION OF DATCOM
$\frac{587}{588}$	UPPER ABSCISSA MEAN LINE THICKNESS	UPPER ORDINATE	USER LOWER ABSCISSA	LOWER ORDINATE	X–FRACTION CHORD
589	.00000	.00000	.00000	.00000	.00000
590	00420 00334 01132	.00541	.00634	.00127	.00107
591	00236	.01541	.01092	00357	.00428
592	.00150	.02555	.01772	00810	.00961
593	.00860	.03474	.02548	01103	.01704
594	.01831	.04365	.03475	01422	.02653
595	.02999	.05153	.04613	01603	.03806
596	.04301	.05911	.06011	01793	.05156
597	.05814	.06746	.07584	01902	.06699
598	.02422 .08828 .07585	.07481	.09269	02048	.08427
599	.02716 .09677 .09494	.08246	.11170	02113	.10332
600	.03067 .10493 .11621	.08905	.13195	02200	.12408
601	.03353 .11217 .13884	.09573	.15406	02214	.14645
602	.03680 .11885 .16327	.10125	.17739	02237	.17033
603	.03944 $.12442$ $.18893$.10669	.20231	02185	.19562
604	.04242 $.12924$ $.21611$.11094	.22831	02133	.22221
605	.04481 .13283 .24439	.11499	.25561	02011	.25000
606	.04744 .13556 .27393	.11774	.28379	01877	.27886
607	.04948 .13687 .30428	.12010	.31304	01674	.30866
608	.05168 .13712 .33551	.12118	.34305	01450	.33928
609	.05334 .13588 .36730	.12183	.37388	01159	.37059
610	.05512 .13358 .39976	.12131	.40514	00842	.40245
611	.05645 .12985 .43261	.12038	.43687	00482	.43474
612	.05778 .12528 .46580	.11831	.46880	00101	.46730
613	.05865 .11936 .49911	.11577	.50089	.00308	.50000
614	.05943 .11271 .53250	.11221	.53290	.00716	.53270
615	.05968 $.10505.56575$.10823	.56477	.01112	.56526
616	.05968 .09711 .59865	.10330	.59645	.01476	.59755
617	.05903 .08856 .63101	.09801	.62781	.01816	.62941
618	.05809 .07991 .66268	.09199	.65876	.02103	.66072
619	.05651 .07106 .69353	.08582	.68915	.02353	.69134
620	.05468 $.06245$ $.72342$.07917	.71886	.02540	.72114
621	.05229 $.05397.75225$.07262	.74775	.02679	.75000
622	.04970 .04605	.06593	.77565	.02757	77779
623	.04675 .03860	.05949	.80236	.02781	.80438
624	.04365 .03194	05310	82717	02742	82900
625	.04026 .02594	04698	85136	02644	85300
626	.03671 .02080	04102	87350	02491	87500
627	.03297 .01635	03549	89/81	02295	89600
629	.02919 .01269	02000	01409	02233	.03000
040	.91090	.03008	. 31402	.02002	.31300

	.02535	.0096	6							
629	00155	.93382		.02507		.93218		.01803	.93300	
630	.02155	.94866	2.2	.02035		.94734		.01522	.94800	
631	.01778	.0052	29	01504		96141		01226	96194	
031	.01410	.0038	32	.01394		.90141		.01220	.90194	
632	01055	.97389	38	.01182		.97305		.00928	.97347	
633		.98329		.00812		.98263		.00636	.98296	
634	.00724	.0018	38	.00496		.99015		.00378	.99039	
00F	.00437	.0012	28	00045		00550		00150	0.05 50	
635	.00209	.99588 .0008	30	.00245		.99556		.00173	.99572	
636	00061	.99903	1.9	.00079		.99883		.00043	.99893	
637	.00001	1.00000	12	.00000		1.00000		.00000	1.00000	
638	.00000 1	.0000	00	AUTOMA	TED STAF	BILITY AND CO	NTROL N	TETHODS PER. AI	PRIL 1976 VERSION	OF DATCOM
639							WING SE	CTION DEFINIT	TION	
$640 \\ 641$	0			IDI	EAL ANGL	E OF ATTACK	= 2.3	2577 DEG.		
642				ZERO L	IFT ANGL	E OF ATTACK	= -8.3	3017 DEG.		
$643 \\ 644$				IDE.	AL LIFT	COEFFICIENT	= 1.2	9114		
$645 \\ 646$		5	ZEBO LIET P	TCHING	MOMENT	COFFFICIENT	2	5013		
647		-								
$648 \\ 649$				MACH ZEI	RO LIFT-	CURVE-SLOPE	= .1	1587 /DEG.		
650				1	LEADING	EDGE RADIUS	= .0	1550 FRACTION	I CHORD	
652				MAXIMUI	M AIRFOI	L THICKNESS	= .1	3712 FRACTION	I CHORD	
$653 \\ 654$						DELTA_V	- 35	5660 PERCENT	CHORD	
655						DELIA	- 0.0	5005 TERCENT	Chord	
$656 \\ 657$	0		MAC	¶⊟ 0.70	00 LIFT-	CURVE-SLOPE	= 1	1586 /DEG	XAC = 2408	7
658	WARNING	** BODY AI	ONE DYNAM	C DERIV	ATIVE ME	THOD VALID F	OR NOSE	CYLINDER ONI	X IIIC - IIIC	
$659 \\ 660$	1	TAIL EI	FECTS IGNO	RED J AUTO	MATED ST	ABILITY AND	CONTROL	METHODS PER	APRIL 1976 VERSIO	N OF DATCOM
661					CHA	ARACTERISTICS	S AT ANG	LE OF ATTACK	AND IN SIDESLIP	
662 663						v	ving-BOD Solar	Sailplane	ION	
664 665			ET 10	TUT CON	DITIONS					
005	REFERENCE	E DIMENSION	vs		DITIONS					
666	MACH REFERENCI	ALTITUDE E LENGTH	VELOCITY MOMENT REF	PRE CENTE	SSURE R	TEMPERATURI	E RE	YNOLDS	REF.	
667	NUMBER			1 TED T			Ν	UMBER	AREA	
668	LONG.	LAT. M	HORIZ M/SEC	VERT N/	M**2	DEG K	1	/ M	M**2	
660	M 0.070	M 1.00	M	M 1.01	21112105	000 140	1 6 9	21E+06	7 260	
669	.662	1.00	23.82 1.800	.290	31E+05	288.143	1.02	31E+06	7.300	
670 671	0 0 ALPHA	CD	CL	CM	CN	CA	XCP	CLA	DERIVATIVE	E (PER RADIAN)
011	CYB	CNB	CLB		011	011		0111	0.011	
$672 \\ 673$	0 -8.0	.016	052	2314	054	.008	4.316	5.987E+00	6.170E-01	
674	-4.069E-	01 -5.438	BE-03 - 6	259E-02	066	0.4.0	750	6.2475100	5 190 5 01	
074	-5.0 -6.063E-0	.017	.208	2017	.200	.040	139	0.24/E+00	0.100E-01	
675	-1.0 -5.789E-0	.025	.717	1701	.716	.038	238	6.528E+00	3.789E - 01	
676	-0.109E-0	.029	.831	1638	.831	.029	197	6.556E+00	3.406E - 01	
677	-5.720E-0 3.0	.043	1.175	1491	1.175	019	127	5.891E+00	1.799 E - 01	
070	-5.510E-0	02	1 4 4 0	1450		001	100	4 5007-00	1.0205 00	
678	6.0 -5.343E-0	.058 02	1.448	1450	1.446	094	100	4.533E+00	-1.039E-02	
679	8.0 -5.256E	.067	1.590	1474	1.584	155	093	2.836E+00	$-1.298 \mathrm{E}{-01}$	
680	-5.250E- 10.0	.072	1.646	NA	1.633	215	NA	3.579E - 01	NA	
681	-5.222E-0)2 PRINTED WH	EN METHOD N	OT APPL	ICABLE					
682	1	TOTAL TOP AND		AUTO	MATED ST	ABILITY AND	CONTROL	METHODS PER	APRIL 1976 VERSIO	N OF DATCOM
683							DVNAM	C DEDIVATIVES	3	
684						I.	VING-BOD	Y CONFIGURATI	ION	
684 685						V	VING-BOD Solar	Y CONFIGURATI Sailplane	ION	

688	REFERENCE DIMENSIONS ———— MACH ALTITUDE VELOCITY PRESSURE	TEMPERATURE	REYNOLDS		REF.
689	REFERENCE LENGTH MOMENT REF. CENTER NUMBER		NUMBER		AREA
690	LONG. LAT. HORIZ VERT M M/SEC N/ M**2	DEG K	1/ M		M**2
691	M M M M 0.070 1.00 23.82 1.0131E+05	288.143	1.6231E+06		7.360
692	.662 12.000 1.800 .290	DVNA	MIC DEBIVATIVE	S (PEB BADI	AN)
693	0PITCHINGA	CCELERATION-		RC	DLLING
694	0 ALPHA CLQ CMQ C CNP CNR CLR	LAD C	CMAD CI	LP	СҮР
$\begin{array}{c} 695 \\ 696 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M NI	DM -5.322	2E-01 -1	876E-01
697	-5.00 -3.824E-02 $-4.799E-03$ $5.569E-02$		-5.56	1E-01 -2	394E-01
698	-1.00 -9.567E-02 $-1.367E-02$ $1.592E-01$		-5.85	4E-01 -3	120E-01
699	.00 - 1.103E - 01 - 1.722E - 02 1.857E - 01		-5.89	7E-01 -3	305E-01
700	3.00 -1554E-01 -3100E-02 2.651E-01		-5.35	6E-01 -3	867E - 01
701	6.00		-4.170	6E-01 -4	319E-01
702	-1.924E-01 $-4.520E-02$ $3.277E-018.00$		-2.673	3E-01 -4	565E - 01
703	$\begin{array}{ccc} -2.134\text{E}{-}01 & -5.361\text{E}{-}02 & 3.599\text{E}{-}01 \\ 10.00 \end{array}$		-4.473	5E-02 -4	666E-01
704	-2.226E-01 -5.689E-02 3.716E-01 0*** NDM PRINTED WHEN NO DATCOM METHODS EXIS'	Т			
$705 \\ 706$	1 AUTOMATED STAE	SILITY AND COL CONFIGURATIO	NTROL METHODS I ON AUXILIARY AN	PER APRIL 1 ND PARTIAL	976 VERSION OF DATCOM OUTPUT
$707 \\ 708$		W	ING-BODY CONFIC	GURATION	
709	FLIGHT CONDITIONS				
710	MACH ALTITUDE VELOCITY PRESSURE	TEMPERATURE	REYNOLDS		REF.
711	REFERENCE LENGTH MOMENT REF. CENTER NUMBER		NUMBER		AREA
712	LONG. LAT. HORIZ VERT M M/SEC N/ M**2	DEG K	1/ M		M**2
713	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	288.143	1.6231E+06		7.360
714	.662 12.000 1.800 .290				
715		В	ASIC BODY PROP	FRTIFS	
717		DACE ADEA	ZEDO LIET D		
718	PRESSURE DRAG	BASE AREA	ZERO LIFT DI	RAG BASE	DRAG FRICTION DRAG
719	.3856E+01 1.80 .29 .1706E-02 NA .29	.0525	.2129E-0	2.4229	E - 03
$720 \\ 721$					
722	.20 XCG	RELATIVE TO	THEORETICAL LI	EADING EDGE	MAC=
$723 \\ 724$					
725		B.	ASIC PLANFORM I	PROPERTIES	
$726 \\ 727$	TAPER	ASPECT Q	JARTER CHORD		QUARTER CHORD
728	ZERO LIFT FRICTION AREA RATIO	RATIO	SWEEP	MAC	X(MAC)
729	Y (MAC) DRAG COEFFICIENT 0 WING				
730	TOTAL THEORITICAL	10511202	1 4 4 1	662100	17712 01
731		.1931E+02	1.44	.002E+00	.17711-01
$\frac{732}{733}$	+ .7300E+01 .301	.1940E+02	1.441	.661E+00	$.177E{+}01$
734	.257E+01 $.112E-01$ $.439E-020*** NA PRINTED WHEN METHOD NOT APPLICABLE$				
$735 \\ 736$	1 AUTOMATED STAE	BILITY AND CON CONFIGURATION	NTROL METHODS I	PER APRIL 1 ND PARTIAL	976 VERSION OF DATCOM OUTPUT
737 738		W	ING-BODY CONFIC	GURATION	
739	FLIGHT CONDITIONS				
740	REFERENCE DIMENSIONS MACH ALTITUDE VELOCITY PRESSURE	TEMPERATURE	REYNOLDS		REF.

749	LONG.	LAT.	HORIZ M/SE(VERT	M**9	DEC K	,	L / M	Мжа	.9	
742	M	M	M	M	1 1 1 1 0 5	DEG K			111+ 4	.2	
743	0 .070.662	12.000	0 23.8 1.800	.290	1E+05	288.143	1.62	231E+06	7.3	60	
744	0 XAC/C–B(CLA-B(V) = 3.058	W)= 1.115E E-01	-03 CL	A - W(B) = 1	.037E-01	K–B	(W)= 1.083E	-02 K-W(B = 1.007E + 00)
$745 \\ 746$											
747 748		A	LPHA	IV-B(W)		IV-W(H)		IV-B(H)	GAMI	ſA/	
749	GAMMA/								2*PI*AI	PHA*V*R	
750	(2*PI*AL	PHA*V*R)T	-8.000	0000E4	-00	NA		NA	N	M	
751	NA		5 000	0000E	00	NA		NA	000	0.5.1.00	
751	NA	_	1 000	.0000E	-00	NA		NA	.000	0E+00	
752	NA	_	-1.000	.0000E+	-00	IN/A		NA	.000	0E+00	
753	NA		.000	.0000E+	-00	NA		NA	.000	0E+00	
754	NA		3.000	.0000E+	-00	NA		NA	.000	0 E + 00	
755	NA		6.000	.0000E+	-00	NA		NA	NE	M	
756	NA		8.000	.0000E+	-00	NA		NA	NE	M	
757	NA	1	0.000	.0000E+	-00	NA		NA	NE	M	
758 759 760 761 762		CLP (GAM	MA=CL=0) =	-5.3584E-0 CYP/GAM	D1 CLF $MA = -1.94$	DYNAMI (GAMMA)/CLI 179E-01	C DERIV P (GAM	/ATIVE INCRI /A=0) = 9.9 C	EMENTALS 434E-01 YP/CL (CL=0)	CNP/THETA = = -1.7098E-01	1.6797E-03
$763 \\ 764$					C	CLB/GAMMA	((CMO/THETA)	W (CMO/T	HETA)H	
$765 \\ 766$	0*** NDN	I PRINTED	WHEN NO DAT	ICOM METHO	DS EXIST	1456E-03		1213E-0	02	NA	
$767 \\ 768$	0*** NA 1	PRINTED W	HEN METHOD	NOT APPLI	CABLE						
$769 \\ 770$	1			AUTOMATE	D STABILI CHAR	TY AND CON ACTERISTICS	FROL MI OF HIG	ETHODS PER H LIFT AND	APRIL 1976 V CONTROL DEV	'ERSION OF DAT /ICES	COM
771 772					WI	NG PLAIN T	RAILING	-EDGE FLAP Sailplane	CONFIGURATI	ON	
773		TE DIMENCI	FI	LIGHT CONI	DITIONS –						
774	MACH	ALTITUD	E VELOCI MOMENT B	ΓΥ PRES EF CENTEB	SURE T	EMPERATURE	RI	EYNOLDS	REF	r.	
775	NUMBER LONG	LAT	HORIZ	VEBT			Ν	JUMBER	ARE	2A	
776	м	M	M/SEC	C N/	M**2	DEG K	1	l/ M	M**	2	
777	0.070	1.00	0 23.8	82 4.419	$_{3E+01}$	933.585	1.50	$0.79\mathrm{E}{+}05$	7.3	60	
778	.002	12.000	1.800	.290	-YAWING M	IOMENT COEF	FICIENT	r, cn, due to	CONTROL DEP	LECTION	
779 780	0 (DELTAI - 20.0 0ALPHA	-DELTAR = -40.0	60.0 -60	40.0	20.0	10	.0	. 0	-10.0		
781 782	0 - 8.0	4.0	681E-04	4.076E-04	2.369E-	-04 1.1851	E - 04	0.000E+00	-1.185E-04	-2.369E-04	
783	-4.076E - 5.0	-04 - 4.68 - 2.	1E-04 667E-03 -	2.322E-03	-1.350E-	-03 -6.7501	E - 04	0.000E+00	6.750E-04	1.350E - 03	
784	2.322E-0 -1.0	03 2.667 -7	E-03 057E-03 -	6 143E-03	-3 571E-	-03 -1 7861	E-03	0.000E+00	1 786E-03	3.571E - 03	
785	6.143E-0)3 7.057 -8	E = 03 177E = 03 =	7 110E_03	_4 138E_	-03 -2.0601	E-03	0.000E+00	2 069E_03	4 138E-03	
796	7.119E-0	03 8.177	E-03	1.005E 02	= 4.130E-	02 2.0031	2-03	0.000E+00	2.0091E 02	4.138E-03	
780	1.005E-0	-1.02 1.154	E = 02	-1.003E-02	-5.841E-	-03 -2.9211	2-03	0.000E+00	2.921E-03	5.841E-03	
187	6.0 1.236E-0	-1.	420E-02 - E-02	-1.236E-02	-7.186E-	-03 -3.5931	±−03	0.000E+00	3.593E-03	7.186E-03	
788	8.0 1.355E-0	-1. 1.556	556E-02 - E-02	-1.355E-02	-7.875E-	-03 -3.9381	±-03	0.000E+00	3.938E-03	7.875E-03	
789	10.0 1.398E-0	-1. 02 1.606	606E-02 - E-02	1.398E-02	-8.128E-	-03 -4.0641	E-03	0.000E+00	4.064E - 03	8.128E-03	
$790 \\ 791$	0 0				E	DELTAL	DI	ELTAR	(CL)ROLI		
$792 \\ 793$	0					30.0	_	30.0	8.8580E	2-02	
794 795						20.0	-	20.0 10.0	7.7116E	2-02	
796						5.0		-5.0	2.2415E	2-02	

0.0000E+00-5.05.0-2.2415E-02-10.010.0 -4.4830E-02 7.7116E-02 -20.020.0 -30.0 -8.8580E - 0230 0 THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE. DIM M DAMP DERIV RAD PART AAAA \$FLTCON NMACH=1.0,MACH=0.07, NALT=1.0,ALT(1)=1., NALPHA=8.0,ALSCHD(1)=-8., 5.0, -1.0, 0.0, 3.0, 6.0, 8.0, 10.GAMMA=0.\$ GAMMA=0.8 \$SYNTHS XCG=1.8, ZCG=0.29,XW=1.6,ZW=0.43,XH=5.2,ZH=.89, XV=5.125, ZV=0.39, ALH=-2.5458 \$OPTINS BLREF=12.0,SREF=7.36,CBARR=0.662\$ \$BODY NX=19.0, BNOSE=1.0,BTAIL=2.0, V(1) = 0.02,0.010,0.0102,0.0405,0.0455,0.052,1.252
$$\begin{split} & \$ \text{BODY } NX\!=\!19.0\,, \ BNOSE\!=\!1.0\,, BTAIL\!=\!2.0\,, \\ & X(1)\!=\!0.00\,, 0.012\,, 0.058\,, 0.169\,, 0.495\,, 0.665\,, 0.953\,, 1.252\,, \\ & 1.495\,, 1.624\,, 1.766\,, 1.923\,, 2.099\,, 2.325\,, 2.831\,, 3.211\,, 3.798\,, 4.301\,, 5.5\,, \\ & ZU(1)\!=\, 0.01\,, 0.034\,, 0.082\,, 0.151\,, \ 0.276\,, 0.323\,, 0.383\,, \ 0.429\,, \\ & 0.455\,, \ 0.464\,, \ 0.472\,, \ 0.477\,, \ 0.479\,, \ 0.475\,, \ 0.455\,, \ 0.44\,, \ 0.417\,, 0.399\,, 0.399\,, \\ & ZL(1)\!=\!0.01\,, -0.035\,, \ -0.065\,, \ -0.092\,, \ -0.124\,, \ -0.131\,, \ -0.138\,, \ -0.139\,, \ -0.121\,, \\ & -0.095\,, -0.058\,, -0.011\,, \ 0.04\,, \ 0.109\,, 0.234\,, 0.254\,, 0.224\,, 0.245\,, 0.245\,, \\ & R(1)\!=\!0.01\,, 0.017\,, 0.041\,, 0.074\,, 0.134\,, 0.162\,, 0.188\,, 0.213\,, \\ & 0.224\,, 0.23\,, 0.236\,, 0.223\,, 0.209\,, 0.179\,, 0.094\,, 0.067\,, 0.063\,, 0.063\,\$ \\ \\ & \$ \text{WCPINF } CHRDR\!=\!0.8\,, CHRDP\!=\!0.71\,, CHRDIP\!=\!0.24\,, \\ & SSPN\!=\!0.6\,, SSPNOP\!=\!3.0\,. \end{split}$$
821 $\mathrm{SSPN}\!=\!6.0\,, \mathrm{SSPNOP}\!=\!3.0$ DHDADI=7.,DHDADO=7.,TWISTA=-2.0,SSPNE=5.95,TYPE=1.0 VCSCHR TYPEIN=1.0,NPTS=49.0, 829 \$WGSCHR TYPEIN=1 XCORD = 0.00, 0.00107, 0.00428, 0.00961, 0.01704, 0.02653, 0.03806, $\begin{array}{c} 0.052480\,, 0.060050\,, 0.068360\,, 0.075550\,, 0.083130\,, 0.089610\,, 0.096220\,, \\ 0.101650\,, 0.107040\,, 0.111220\,, 0.115220\,, 0.117920\,, 0.120240\,, 0.121280\,, \\ 0.121910\,, 0.121370\,, 0.120420\,, 0.118330\,, 0.115780\,, 0.112210\,, 0.108230\,, \\ 0.103310\,, 0.098040\,, 0.092040\,, 0.085900\,, 0.079270\,, 0.072730\,, 0.066050\,, \\ 0.059622\,, 0.053230\,, 0.047110\,, 0.041140\,, 0.035530\,, 0.030180\,, 0.025160\,, \\ \end{array}$ $0.020430\,, 0.016010\,, 0.011890\,, 0.008180\,, 0.005010\,, 0.002490\,, 0.000820\,, 0.0000\,, 0.000820\,, 0.000820\,,$ 0.000000 YLOWER = 0.000000, -0.002320, -0.005660, -0.009950, -0.012540, -0.015370 $\begin{array}{c} -0.022770, -0.022200, -0.021610, -0.020340, -0.016395, -0.016880, -0.01460, \\ -0.011670, -0.008480, -0.004860, -0.001030, 0.003070, 0.007160, 0.011120, \\ 0.014750, 0.018130, 0.020980, 0.023450, 0.025300, 0.026680, 0.027450, \\ 0.027680, 0.027290, 0.026310, 0.024790, 0.022840, 0.020520, 0.017940, \\ 0.015140, 0.012190, 0.009210, 0.006300, 0.003730, 0.001690, 0.000400, \\ 0.0020000 \end{array}$ 0.000000.\$ \$HTPLNF CHRDR=0.425, CHRDTP=0.325, SAVSI=8.0, SSPN=1.2, SSPNE=1.2, TYPE=1.0\$ SHTSCHR TYPEIN 39.0 $\begin{array}{l} \text{XCORD} = 0.000\,, 0.0025000\,, 0.0050000\,, 0.0087500\,, 0.0125000\,, 0.0187500\,, 0.0250000\,, \end{array}$ $\begin{array}{l} \textbf{XCMD} = 0.000\,, 0.0025000\,, 0.0050000\,, 0.0087500\,, 0.0187500\,, 0.0187500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.02500\,, 0.025000\,, 0.02500\,,$ 1.0000000, $\begin{aligned} & 1.0000000, \\ & YUPPER=0.0000000, 0.0046700, 0.0070200, 0.0096800, 0.0118800, \\ & 0.0149600, 0.0175300, 0.0217800, 0.0252300, 0.0307700, 0.0350700, \\ & 0.0385000, 0.0412100, 0.0433000, 0.0449200, 0.0462100, 0.0472700, 0.0481700, \\ & 0.0488600, 0.0492900, 0.0494500, 0.0493800, 0.0491100, 0.0480300, \\ & 0.0461700, 0.0435000, 0.0400400, 0.0359000, 0.0312600, 0.0261800, \\ & 0.0208300, 0.0180900, 0.0153700, 0.0127200, 0.0100900, 0.0075500, \\ & 0.0040100, 0.00234000, 0.0000000. \end{aligned}$ NTYPE=1.0\$ \$VTPLNF_CHRDB=0.325.CHRDTP=0.225.SSPN=0.5.SAVSI=10.SSPNE=0.5.TYPE=1.0\$

880 \$VTSCHB_TYPEIN=1_0 NPTS = 39.0XCORD= 0.000,0.0025000,0.0050000,0.0087500,0.0125000,0.0187500,0.0250000, 881 $\begin{array}{l} (0.0375000\,, 0.050000\,, 0.075000\,, 0.0000\,, 0.0000\,, 0.0125000\,, 0.0181300\,, 0.02500\,, 0.$ 882 883 884 885 886 0.8500000,0.8750000,0.9000000,0.9250000,0.9500000,0.9750000 1.0000000 887 $\begin{array}{l} 1.0000000\,,\\ YUPPER=0.00000000\,, 0.0046700\,, 0.0070200\,, 0.0096800\,, 0.0118800\,,\\ 0.0149600\,, 0.0175300\,, 0.0217800\,, 0.0252300\,, 0.0307700\,, 0.0350700\,,\\ 0.0385000\,, 0.0412100\,, 0.0433000\,, 0.0449200\,, 0.0462100\,, 0.0472700\,, 0.0481700\,,\\ 0.0488600\,, 0.0492900\,, 0.0494500\,, 0.0493800\,, 0.0491100\,, 0.0480300\,,\\ 0.0461700\,, 0.0435000\,, 0.0400400\,, 0.0359000\,, 0.0312600\,, 0.0261800\,,\\ 0.0208300\,, 0.0180900\,, 0.0153700\,, 0.0127200\,, 0.0109900\,, 0.0075500\,,\\ 0.0049100\,, 0.0023400\,, 0.0000000\,,\\ YLOWER=0.0000000\,, -.0035800\,, -.0052700\,, -.0072400\,, -.0088400\,, -.01110000\,,\\ -.0126800\,, -.0153600\,, -.0174400\,, -.0206400\,, -.0230500\,, -.02264700\,,\\ -.0276200\,, -.0284900\,, -.0291500\,, -.0286500\,, -.0300300\,, -.0302800\,, -.0303700\,,\\ -.0302700\,, -.0298800\,, -.0295200\,, -.0281500\,, -.0262000\,, -.0236700\,, -.0206300\,,\\ -.0172100\,, -.0136800\,, -.0101600\,, -.0069200\,, -.0054800\,, -.0031200\,, -.0031400\,,\\ -.002220\,, -.0015400\,, -.0008300\,, -.000300\,, 0.000000\,\$ \end{array}$ 888 889 890 891 892 893 894 895 896 897 898 899 900 .0022200, -.0015400, -.0008300, -.0003000, 0.0000000CASED TOTAL: Solar Sailplane 0 INPUT DIMENSIONS ARE IN M , SCALE FACTOR IS 1.0000 901 902 903 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM 1 904 USER DEFINED WING SECTION A LOWER ORDINATE 905 UPPER ABSCISSA UPPER ORDINATE LOWER ABSCISSA X-FRACTION CHORD 906 MEAN LINE THICKNESS 907 .00000 .00000 .00000 .00000 .00000 .00000 .00000 -.00420 .00541 .00127 908 .00634 .00107 .01132 -.00236 .00334 .01541 .01092 -.00357 .00428 909 .02316 .00150 .00592 910 .02555 .01772-.00810.00961 .03735 00873 .00860 .03474 -.01103 .01704 911 .02548 .04879 .01185 .01831 912 .03475 -.01422 .02653 .04365 .06017 .01471 913 .02999 .05153 .04613 -.01603 .03806 .06946 .01775 .04301 914 .05911.06011-.01793.05156.07892 02059 .05814915 .06746 .07584 -.01902 .06699 .08828 02422 .07585 916 .07481 .09269 -.02048.08427 .09677 .02716 .09494 .10493 917 .08246 .11170 -.02113.10332 .03067 .11621 -.02200 918 .08905 .13195 .12408 .11217 03353 .13884 .09573 .15406 -.02214 .14645 919 .03680 .11885 920 .16327 .10125 .17739 -.02237.17033 .12442 .03944 .18893 .12924 921 .10669 .20231 -.02185.19562 .04242 .21611 922 .11094 .22831 -.02133 .22221 .13283 .04481 923 .24439 .11499 .25561 -.02011.25000 .04744 .13556 .27393 924 .11774.28379 -.01877.27886 .13687 .04948 925 .30428 .13712 .12010 .31304 -.01674.30866 .05168 .33551 .13588 926 .12118 .34305 -.01450.33928 .05334 .36730 .13358 927 .12183 .37388 -.01159.37059 .05512 928 .39976 .12131 .40514-.00842.40245.12985 .05645 929 .43261.12038 .43687 -.00482.43474 .12528 .05778 .46580 930 .11831 .46880 -.00101.46730 .11936 .05865 931 .49911.11577 .50089 .00308 .50000 .05943 .11271 .53250 932 .11221 .53290.00716 .53270.10505 .05968 .56575 933 .10823 .56477.01112 .56526.09711 .05968 934 .10330 .59645 .01476 .59755

	.05903	.08856				
935	05000	.63101	.09801	.62781	.01816	.62941
936	.05809	.07991 66268	09199	65876	02103	66072
000	.05651	.07106	100100	100010	102100	
937	05468	.69353	.08582	.68915	.02353	.69134
938	.05408	.72342	.07917	.71886	.02540	.72114
000	.05229	.05397	0 - 0 0 0		00050	
939	.04970	.75225	.07262	.74775	.02679	.75000
940		.77993	.06593	.77565	.02757	.7779
0/1	.04675	.03860	05949	80236	02781	80438
341	.04365	.03194	.03343	.80230	.02701	.00430
942	0.40.00	.83083	.05310	.82717	.02742	.82900
943	.04026	.02594	.04698	.85136	.02644	.85300
	.03671	.02080				
944	03297	.87641 01635	.04102	.87359	.02491	.87500
945	100201	.89719	.03542	.89481	.02295	.89600
046	.02919	.01269	02008	01402	02062	01500
940	.02535	.00966	.03008	.91402	.02002	.91300
947	00155	.93382	.02507	.93218	.01803	.93300
948	.02155	.00722	.02035	.94734	.01522	.94800
	.01778	.00529				
949	01410	.96247	.01594	.96141	.01226	.96194
950	.01410	.97389	.01182	.97305	.00928	.97347
051	.01055	.00268	00010	00000	00000	00000
951	.00724	.98329 .00188	.00812	.98203	.00636	.98296
952		.99063	.00496	.99015	.00378	.99039
953	.00437	.00128	.00245	.99556	.00173	.99572
000	.00209	.00080	100110	100000	100110	
954	00061	.99903	.00079	.99883	.00043	.99893
955	.00001	.00000	.00000	1.00000	.00000	1.00000
050	.00000	.00000				1050 VEDGION OF DATION
956 957	1		AUTOMATED S	WIN	G SECTION DEFINITION	1976 VERSION OF DATCOM
958	0		IDEAL A	NGLE OF ATTACK =	2.32577 DEG.	
959 960			ZEBO LIFT A	NGLE OF ATTACK =	-8.33017 DEG	
961						
962 963			IDEAL LI	FT COEFFICIENT =	1.29114	
964		ZERO	LIFT PITCHING MOME	NT COEFFICIENT =	25013	
965			MACH ZEDO LI		11505 (DEC	
960 967			MACH ZERO LI.	FI-CURVE-SLOPE =	.11387 /DEG.	
968			LEADI	NG EDGE RADIUS =	.01550 FRACTION CH	ORD
969 970			MAXIMUM AIB	FOIL THICKNESS =	.13712 FRACTION CH	ORD
971						
972 973				DELTA-Y =	3.55669 PERCENT CHO	RD
974						
975 076	0		MACH .0700 LI	FT-CURVE-SLOPE =	.11586 /DEG.	XAC = .24087
970 977	1		AUTOMATED 5	USER DEF	INED HORIZONTAL TAIL	SECTION
978	UPPER	ABSCISSA	UPPER ORDINATE	LOWER ABSCISSA	LOWER ORDINATE	X–FRACTION CHORD
979	MEAN LINE	.00000	.00000	.00000	.00000	.00000
	.00000	.00000				
980	00055	.00179 00825	.00461	.00321	00352	.00250
981	.00000	.00429	.00698	.00571	00523	.00500
080	.00087	.01229	00065	00047	- 00721	00875
302	.00122	.01692	.00900	.00947	00721	.00073
983	00150	.01170	.01185	.01330	00881	.01250
984	.00152	.02072	.01493	.01969	01097	.01875
	.00198	.02596				
985	.00243	.02397 .03021	.01749	.02603	01264	.02500
986		.03641	.02175	.03859	01533	.03750
	.00321	.03714				

987	00280	.04889	.02520	.05111	01741	.05000
988	.00389	.07391	.03075	.07609	02062	.07500
989	.00506	.05141 .09901	.03505	.10099	02303	.10000
990	.00601	.05812 $.12414$.03849	.12586	02495	.12500
991	.00677	.06346 .14928	.04120	.15072	02646	.15000
992	.00737	.06768 .17440	.04329	.17560	02761	.17500
993	.00784	.07092 .19949	.04492	.20051	02849	.20000
994	.00822	$\begin{smallmatrix}&&&0&7&3&4&1\\&&&2&2&4&5&5\end{smallmatrix}$.04621	.22545	02915	.22500
995	.00853	$.07536 \\ .24958$.04727	.25042	02965	.25000
996	.00881	.07692 .27462	.04817	.27538	03003	.27500
997	.00907	.07820	04886	30031	- 03028	30000
008	.00929	.07914	04929	32524	- 03037	32500
000	.00946	.07966	04045	25010	03037	25000
1000	.00959	.07972	.04945	.33019	03027	.33000
1000	.00970	.37484 .07936	.04938	.37516	02998	.37500
1001	.00979	$.39986 \\ .07863$.04911	.40014	02952	.40000
1002	.00994	$.44993 \\ .07618$.04803	.45007	02815	.45000
1003	.00998	.50001 .07237	.04617	.49999	02620	.50000
1004	.00991	.55009 .06717	.04350	.54991	02367	.55000
1005	.00971	$.60017 \\ .06067$.04004	.59983	02063	.60000
1006	.00935	$.65024 \\ .05311$.03590	.64976	01721	.65000
1007	00879	.70030	.03126	.69970	01368	.70000
1008	00801	.75033	.02618	.74967	01016	.75000
1009	00605	.80034	.02083	.79966	00692	.80000
1010	.00095	.82532	.01809	.82468	00548	.82500
1011	.00031	.85030	.01537	.84970	00420	.85000
1012	.00558	.87526	.01272	.87474	00314	.87500
1013	.00479	.01586	.01009	.89978	00222	.90000
1014	.00393	.01231 .92517	.00755	.92483	00154	.92500
1015	.00301	.00909 .95011	.00491	.94989	00083	.95000
1016	.00204	.00574 .97505	.00234	.97495	00030	.97500
1017	.00102	$\begin{array}{c} .00264 \\ 1.00000 \end{array}$.00000	1.00000	.00000	1.00000
1018	$\begin{array}{c} .00000\\ 1 \end{array}$.00000	AUTOMATED S	TABILITY AND CONT	ROL METHODS PER APRI	L 1976 VERSION OF DATCOM
$1019 \\ 1020$	0		IDEAL A	HORIZONT NGLE OF ATTACK =	TAL TAIL SECTION DEF .48843 DEG.	FINITION
1021 1022			ZEBO LIET A	NGLE OF ATTACK =	-1 18367 DEG	
1022			IDEAL LU	ET COFFEICIENT -	18036	
1024		ZED	LIFT DITCUING MOME	NE COEFFICIENT -	.18950	
1020		ZER	J LIFI FITCHING MOME	THE CURVE SLOPE	02999	
1028			MACH ZERO LII	F = -CURVE-SLOPE =	.10122 /DEG.	LODD
1030 1031			LEADI	NG EDGE RADIUS =	.00465 FRACTION C	
$1032 \\ 1033$			MAXIMUM AIR	FOIL THICKNESS =	.07972 FRACTION C	HORD
$1034 \\ 1035$				DELTA-Y =	2.06080 PERCENT CH	ORD
1036 1037 1038	$\begin{array}{c} 0 \\ 1 \end{array}$		MACH= .0700 LII AUTOMATED S	FT-CURVE-SLOPE = TABILITY AND CONTR	.10144 /DEG. ROL METHODS PER APRI	XAC = .25858 IL 1976 VERSION OF DATCOM

1039			USER	DEFINED VERTICAL TAIL	SECTION	
1040	UPPER ABSCISSA	UPPER ORDINATE	LOWER ABSCISS	A LOWER ORDINATE	X–FRACTION	CHORD
1041	.00000	.00000	.00000	.00000	.00000	
	.00000 .00000					
1042	.00179	.00461	.00321	00352	.00250	
1043	.00035 .00825	.00698	.00571	00523	.00500	
	.00087 .01229					
1044	.00803	.00965	.00947	00721	.00875	
1045	.01170	.01185	.01330	00881	.01250	
	.00152 .02072					
1046	.01781	.01493	.01969	01097	.01875	
1047	.02397	.01749	.02603	01264	.02500	
	.00243 .03021					
1048	.03641 00321 03714	.02175	.03859	01533	.03750	
1049	.04889	.02520	.05111	01741	.05000	
1050	.00389 .04267	00055	0 = 0 0 0	00000	0.5500	
1050	.00506 .05141	.03075	.07609	02062	.07500	
1051	.09901	.03505	.10099	02303	.10000	
1059	.00601 .05812	02840	10596	02405	19500	
1052	.00677 .06346	.03849	.12580	02495	.12500	
1053	.14928	.04120	.15072	02646	.15000	
1054	.00737 $.06768$ 17440	04329	17560	- 02761	17500	
1004	.00784 .07092	.04020	.11000	.02101	.11000	
1055	.19949	.04492	.20051	02849	.20000	
1056	.00822 .07341	04621	22545	-0.2915	22500	
1000	.00853 .07536	101021	.22010	.02010	.22000	
1057	.24958	.04727	.25042	02965	.25000	
1058	.00881 .07692	.04817	.27538	03003	.27500	
	.00907 .07820					
1059	.29969	.04886	.30031	03028	.30000	
1060	.32476	.04929	.32524	03037	.32500	
	.00946 .07966					
1061	.00959 .07972	.04945	.35019	03027	.35000	
1062	.37484	.04938	.37516	02998	.37500	
1062	.00970 .07936	04011	40014	02052	40000	
1005	.00979 .07863	.04911	.40014	02932	.40000	
1064	.44993	.04803	.45007	02815	.45000	
1065	.00994 .07618	04617	49999	- 02620	50000	
1000	.00998 .07237	101011		.02020		
1066	.55009	.04350	.54991	02367	.55000	
1067	.60017	.04004	.59983	02063	.60000	
	.00971 .06067					
1068	.65024	.03590	.64976	01721	.65000	
1069	.70030	.03126	.69970	01368	.70000	
1050	.00879 .04494	00010	F 40.0 F	01010	==000	
1070	.00801 .03634	.02618	.74967	01016	.75000	
1071	.80034	.02083	.79966	00692	.80000	
1072	.00695 .02775	01800	99469	00548	82500	
1072	.00631 .02357	.01809	.82408	00348	.82300	
1073	.85030	.01537	.84970	00420	.85000	
1074	.00558 .01957 87526	01272	87474	- 00314	87500	
1011	.00479 .01586	.01212	101111		.01000	
1075	.90022	.01009	.89978	00222	.90000	
1076	.92517	.00755	.92483	00154	.92500	
10	.00301 .00909	0.0.1.7.1				
1077	.95011	.00491	.94989	00083	.95000	
1078	.97505	.00234	.97495	00030	.97500	
1050	.00102 .00264	00000	1 00000	00000	1 00000	
1079	00000. 000000.	.00000	1.00000	.00000	1.00000	
1080	1	AUTOMATED S	TABILITY AND CC	NTROL METHODS PER APR	IL 1976 VERSION	OF DATCOM
1081			VERT	FICAL TAIL SECTION DEF	INITION	

1082	0				IDEAL AN	GLE OF ATTACK	= .48	843 DEG.		
1083				ZEL	O LIET AN	CLE OF ATTACK	1 10	267 DEC		
$1084 \\ 1085$				ZEF	O LIFI AN	GLE OF ATTACK	= -1.18	307 DEG.		
$1086 \\ 1087$					IDEAL LIF	I COEFFICIENT	= .18	936		
1088		Z	ZERO LIFT	PITCH	HING MOMEN	T COEFFICIENT	=02	999		
1089				MACI	H ZERO LIF	T-CURVE-SLOPE	= .10	122 /DEG.		
$1091 \\ 1092$					LEADIN	G EDGE RADIUS	= .00	465 FRACTION	CHORD	
$1093 \\ 1094$				MA	XIMUM AIRF	OIL THICKNESS	= .07	972 FRACTION	CHORD	
$1095 \\ 1096$						DELTA_V	- 2.06	080 PERCENT	CHORD	
1090						DELIAT	- 2.00	080 FERCENT	CHORD	
$1098 \\ 1099$	0		N	IACH=	.0700 LIF	T-CURVE-SLOPE	= .10	144 /DEG.	XAC = .258	358
$1100 \\ 1101$	WARNING***	BODY AI TAIL EF	ONE DYNA FFECTS IGI	MIC DI	ERIVATIVE I	METHOD VALID F	FOR NOSE	CYLINDER ONL	Y	
1102	1			Ā	UTOMATED	STABILITY AND	CONTROL	METHODS PER	APRIL 1976 VERS	ION OF DATCOM
1103					WI	NG-BODY-VERTIC	CAL TAIL	HORIZONTAL I	TAIL CONFIGURATION	ON
$1105 \\ 1106$						-10	JTAL: Sol	ar Sailplane		
1107	REFERENCE D	IMENSION	F NS	LIGHT	CONDITION	S				
1108	MACH A BEFEBENCE LI	LTITUDE ENGTH	VELOCI MOMENT B	TY EF CF	PRESSURE	TEMPERATURE	E REY	NOLDS	REF.	
1109	NUMBER	ATT.	HODIZ				NU	MBER	AREA	
1110	LONG. L	M	M/SE	C	N/ M**2	DEG K	1/	М	M**2	
1111	M M 0.070	1.00	M 23.	82 I	1.0131E+05	288.143	1.623	1E+06	7.360	
1112	.662 12.0	000	1.800	.29	0				DERIVATIN	VE (PER RADIAN)
1113	0 ALPHA	CD	CL	CM	$_{\rm CN}$	CA	XCP	CLA	CMA	- (
1114	0	0.00	140				1 000	0.000	1.0505.00	
1115	-8.0 -4.470E-01	6.299	146 0E-03 -	.27 -6.3681	14 E-02	8 .003 -	-1.829	6.396E+00	-1.352E+00	
1116	$-5.0 \\ -6.168 E - 02$.021	.198	.17	38 .19	6.038	.888	6.703E+00	-1.894E+00	
1117	-1.0 -5 883E-02	.027	.678	.03	.67	8.039	.054	6.979E+00	$-2.045 \text{E}{+00}$	
1118	.0	.030	.801	.00	.80	1.030	.001	7.004E+00	$-2.070 \pm +00$	
1119	-5.810E-02 3.0	.044	1.167	10	088 1.16	8017	093	6.326E+00	-2.184E+00	
1120	-5.588E-02 6.0	.060	1.463	25	283 1.46	1093	156	4.991E+00	-2.521E+00	
1121	-5.411E-02 8.0	.071	1.622	35	218 1.61	6155	199	3.310E+00	-2.839E+00	
1122	-5.320E-02	078	1 604	NA	1 6 9	0 017	NA	8 205E 01	NA	
1122	-5.282E-02	.010	1.034	INA	1.00	2 – .217	EDGLON	5.505E-01		
$1123 \\ 1124$	0				ALPHA	Q/QINF	EPSLON	D(EPSLON)/L	(ALPHA)	
$1125 \\ 1126$					-8.0 -5.0	1.000 1.000	103 .587	.230		
1127					-1.0	1.000	1.527	.234		
1128					.0	1.000	1.761	.232		
1129 1130					6.0	1.000	2.439	.179		
1131					8.0	1.000	3.375	.146		
1132					10.0	.990	3.632	.129		
1133	0*** NA PRI	NTED WH	EN METHOL	NOT A	APPLICABLE	OTADILITY AND	CONTROL	METHODS DED	ADDII 1076 VEDSI	ION OF DATCOM
1134	1			P	CIOMATED	STABILITI AND	DYNAMIC	DERIVATIVES	ATRIL 1970 VERS	ON OF DATCOM
1136					WI	NG-BODY-VERTIC	CAL TAIL-	HORIZONTAL T	TAIL CONFIGURATIO	ON
1137						тс	OTAL: Sol	ar Sailplane		
1138				. Later	CONFIRME	9				
1139	REFERENCE D	IMENSION	F VS	LIGHT	CONDITION	s				
1140	MACH A REFERENCE LI	LTITUDE ENGTH	VELOCI MOMENT B	TY EF. CF	PRESSURE ENTER	TEMPERATURI	E REY	NOLDS	REF.	
1141	NUMBER	 Ат	UOD17		 2T		NU	MBER	AREA	
1142	ылыя. Ш	М	M/SE	C	N/ M**2	DEG K	1/	М	M**2	
1143	м М 0.070	1.00	M 23.	82 I	1.0131E+05	288.143	1.623	$1\mathrm{E}{+}06$	7.360	
1144	.662 12.0	000	1.800	. 2 9	0	DYNA	AMIC DERI	VATIVES (PER	RADIAN)	
1145	0		-PITCHING			-ACCELERATION-			ROLLÍNG	

YAWIN	-	CMO	C	LAD				
0 ALPHA	CLQ	CIVIC2	C		CMAD	CLP	CYP	
CNP	CNR	CLR						
-8.00	8.012E+00	-3.161E+01	1 32	4E+00 -7	159E+00	-5.337E-01	-1.908E-0	1
3.623E-03 -	-9.628E-03	-1.677E-02	2 1.02	4 <u>1</u> 00 1.	10011-00	0.0011 01	1.5001 0.	L
-5.00			1.33	7E+00 - 7.	224E+00 ·	-5.574E-01	-2.414E-02	1
-3.767E-02	-1.121E-02	5.689 E - 6	02			*		
-1.00 -9.555E-02	_2 023E_02	1 600E-0	1.35	0 = +00 -7.	295E+00 -	-5.865E-01	-3.124E-0.	1
.00	-2.0236-02	1.000E-0	1.33	7E+00 -7.	225E+00 ·	-5.907E-01	-3.305E-0.02	1
-1.103E-01	$-2.380 \text{E}{-02}$	1.863E - 0	01					
3.00			1.23	4E+00 - 6.	672E+00 ·	-5.367E-01	-3.855E-0	1
-1.557E-01	-3.763E-02	2.654E - 0	01	212100 5	578E 00	1 1995 01	4 205 - 0	1
-1.931E-01	-5 183E-02	3 277E-0	1.03	2E+00 = 5.	578E+00 ·	-4.188E-01	-4.295E-0	L
8.00	0.1001 01	0.2112	8.40	7E-01 -4.	544E+00 ·	-2.685E-01	-4.533E-02	1
-2.144E-01	-6.024E-02	3.596E - 0	01					
10.00	C 240E 00	0 7110 (7.33	2E-01 - 3.	963E+00 ·	-4.606E - 02	-4.626E-03	1
1		– FLIGHT CO	MATED STAI WINC	BILITY AND CO CONFIGURAT BODY-VERTIC	ONTROL METH ION AUXILIA CAL TAIL-HO DTAL: Solar	HODS PER AF RY AND PAF DRIZONTAL T · Sailplane	PRIL 1976 VEI RTIAL OUTPUT CAIL CONFIGUE	RSION OF DAT RATION
REFERENCE DIM	IENSIONS		51121110115					
MACH ALT	TTUDE VE	LOCITY PF	RESSURE	TEMPERATUR	E REYNO	DLDS	REF.	
REFERENCE LEN	GTH MOME	NT REF. CENI	rer		NUD			
NUMBER LONG LAT	' HORI	Z VEBT			NUM	3ER	AREA	
	M 1	M/SEC N	J/ M**2	DEG K	1/ N	1	M * * 2	
M M	Μ	M						
0 .070 .662 12.00	1.00 1.80	23.82 1.0 0 .290	131E+05	288.143	1.62311	2+06	7.360	
				1	BASIC BODY	PROPERTIES	3	
				-	5.1510 2021	i itoi Eitiines		
W	VETTED AREA	XCG	ZCG	BASE AREA	ZERO LI	FT DRAG	BASE DRAG	FRICTION DR
W PRESSURE DRAC	VETTED AREA	XCG	ZCG	BASE AREA	ZERO LI	FT DRAG	BASE DRAG	FRICTION DF
W PRESSURE DRAG	VETTED AREA 3856E+01 NA	XCG 1.80	ZCG . 29	BASE AREA .0525	ZERO LI	FT DRAG 9E-02 CAL LEADING	BASE DRAG .4229E-03	FRICTION DR
W PRESSURE DRAG .1706E-02 .20	VETTED AREA G .3856E+01 NA	XCG 1.80	ZCG .29 XCC	BASE AREA .0525 RELATIVE TO	ZERO LI .212 D THEORETIC	FT DRAG 9E-02 CAL LEADING	BASE DRAG .4229E-03 EDGE MAC=	FRICTION DR
W PRESSURE DRAG .1706E-02 .20	VETTED AREA 3 .3856E+01 NA	XCG 1.80	ZCG .29 XCC	BASE AREA .0525 GRELATIVE TO	ZERO LI .212 D THEORETIC BASIC PLANF	FT DRAG 9E-02 CAL LEADING ORM PROPEI	BASE DRAG .4229E-03 EDGE MAC=	FRICTION DR
W PRESSURE DRAG .1706E-02 .20	VETTED AREA 3 .3856E+01 NA	XCG 1.80	ZCG .29 XCC	BASE AREA .0525 RELATIVE TO ASPECT 0	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC	FT DRAG 9E-02 CAL LEADING ORM PROPEI	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTE	FRICTION DR
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT	VETTED AREA 3 .3856E+01 NA FRICTION	XCG 1.80	ZCG .29 XCC TAPER	BASE AREA .0525 RELATIVE TO ASPECT (ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC	FT DRAG 9E-02 CAL LEADING ORM PROPEI IRD	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTEE	FRICTION DR
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT X(MAC)	FRICTION	XCG 1.80 AREA	ZCG .29 XCC TAPER RATIO	BASE AREA .0525 RELATIVE TO ASPECT O RATIO	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTEI X (MAG	FRICTION DR R CHORD
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING	FRICTION	XCG 1.80 AREA COEFFICIENT	ZCG .29 XCC TAPER RATIO	BASE AREA .0525 RELATIVE TO ASPECT O RATIO	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTER X (MAG	FRICTION DR R CHORD C)
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO	FRICTION DRAG DRATE	XCG 1.80 AREA COEFFICIENT	ZCG .29 XCC TAPER RATIO	BASE AREA .0525 RELATIVE TO ASPECT O RATIO	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTEF X (MAG	FRICTION DR R CHORD C)
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO +	FRICTION DRAG DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01	ZCG .29 XCC TAPER RATIO .300	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAG	FRICTION DR R CHORD C) E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL	FRICTION DRAG CRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01	ZCG .29 XCC TAPER RATIO .300	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAG	FRICTION DR R CHORD C) E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING 0 WING TOTAL THEO + .254E+01 TOTAL +	FRICTION DRAG EXPOSED	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01	ZCG .29 XCC TAPER RATIO .300 .301	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177F	FRICTION DR R CHORD C) 2+01 2+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL + .257E+01	FRICTION DRAG EXPOSED .112E-01	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02	ZCG .29 XCC TAPER RATIO .300 .301	BASE AREA .0525 GRELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441	FT DRAG 9 E-02 CAL LEADING ORM PROPEI DRD MAC .662E+ .661E+	BASE DRAG .4229E-03 FEDGE MAC= RTIES QUARTEF X (MAG -00 .177H	FRICTION DR R CHORD C) E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL + .257E+01 0 HORIZONTAL 0 HORIZONTAL	FRICTION DRAG CRITICAL EXPOSED .112E-01 TAIL	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02	ZCG .29 XCC TAPER RATIO .300 .301	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441	FT DRAG 9E-02 CAL LEADING ORM PROPEI 0RD MAC .662E+ .661E+	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTEI X (MAG -00 .177H -00 .177H	FRICTION DR R CHORD C) E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THE(+ .254E+01 TOTAL THE(+ .257E+01 0 HORIZONTAL TOTAL THE(FRICTION DRAG CRITICAL EXPOSED TAIL DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 9000E±00	ZCG .29 XCC TAPER RATIO .300 .301	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEN X (MAG -00 .177H -00 .177H	FRICTION DR R CHORD C) 2+01 2+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL + .257E+01 0 HORIZONTAL TOTAL THEO + .573E+00	FRICTION DRAG CRITICAL EXPOSED .112E-01 TAIL DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02 .9000E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD .662E4 .661E4 .377E4	BASE DRAG .4229E-03 ; EDGE MAC= RTIES QUARTEI X (MAG -00 .177H -00 .177H	FRICTION DR R CHORD C) E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y (MAC) 0 WING TOTAL THEO + .254E+01 .254E+01 0 HORIZONTAL TOTAL THEO + .573E+00 TOTAL	FRICTION DRAG .112E-01 .TAIL DRITICAL EXPOSED	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02 .9000E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTER X (MAC -00 .177H -00 .177H	FRICTION DR R CHORD C) E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 0 HORIZONTAL TOTAL THEO + .573E+00 TOTAL THEO + .573E+00	FRICTION DRAG DRITICAL EXPOSED .112E-01 TAIL DRITICAL EXPOSED	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02 .9000E+00 .9000E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826 6.826	FT DRAG 9E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177H -00 .537H -00 .537H	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 .257E+01 0 HORIZONTAL TOTAL THEO + .573E+00 0 VERTICAL	FRICTION DRAG DRITICAL EXPOSED .112E-01 TAIL EXPOSED .140E-02 TAIL	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02 .9000E+00 .487E-02	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826	FT DRAG 9 E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4 .377E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177F -00 .177F -00 .537F	FRICTION DR R CHORD C) 2+01 2+01 2+01 2+01 2+01 2+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .257E+01 0 HORIZONTAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO	FRICTION DRAG DRITICAL EXPOSED .112E-01 , TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01 .439E-02 .9000E+00 .487E-02	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826	FT DRAG 9 E-02 CAL LEADING ORM PROPEI 0RD MAC .662E4 .661E4 .377E4 .377E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEF X (MAC -00 .177H -00 .537H -00 .537H	FRICTION DR R CHORD C) 2+01 2+01 2+01 2+01 2+01 2+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEC + .254E+01 0 HORIZONTAL TOTAL THEC + .573E+00 0 VERTICAL TOTAL THEC +	FRICTION DRAG ORITICAL EXPOSED .112E-01 J TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826 6.826 7.200	FT DRAG :9 E-02 CAL LEADING ORM PROPEI RD MAC .662E4 .661E4 .377E4 .377E4 .278E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAG -00 .177H -00 .537H -00 .537H	FRICTION DR R CHORD C) 2+01 2+01 2+01 2+01 2+01 2+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL THEO + .257E+01 0 HORIZONTAL 573E+00 1 TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .625E+00	FRICTION DRAG ORITICAL EXPOSED .112E-01 , TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826 6.826 7.200	FT DRAG 9 E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4 .377E4 .278E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177H -00 .537H -00 .537H -00 .5324H	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL THEO + .573E+00 0 HORIZONTAL + .573E+00 0 VERTICAL TOTAL THEO + .625E+00 TOTAL	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 .TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 1375E+00	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826 6.826 7.200 7.200	FT DRAG 9 E-02 CAL LEADING ORM PROPEI 0RD MAC .662E4 .661E4 .377E4 .377E4 .278E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTER X (MAC -00 .177H -00 .537H -00 .537H -00 .534H	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 0 HORIZONTAL + .573E+00 0 VERTICAL + .573E+00 0 VERTICAL + .573E+00 0 VERTICAL + .625E+00 + .235E+00	FRICTION DRAG DRITICAL EXPOSED .112E-01 TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .1227E-03	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765 .765 .692 .692	BASE AREA .0525 RELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826 7.200 7.200	FT DRAG 9 E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4 .377E4 .278E4 .278E4	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177H -00 .537H -00 .537H -00 .524H	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 0 HORIZONTAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .625E+00 0 *** NA PRINT	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 .TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .227E-03 ED WHEN ME	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02 THOD NOT API	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .692 .692 PLICABLE	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826 7.200 7.200	FT DRAG 9 E-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4 .377E4 .278E4 .278E4	BASE DRAG .4229E-03 FEDGE MAC= RTIES QUARTEI X (MAG -00 .177H -00 .537H -00 .537H -00 .524H -00 .524H	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 0 HORIZONTAL * .573E+00 0 VERTICAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .625E+00 0*** NA PRINT 1	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 , TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .227E-03 ED WHEN ME	XCG 1.80 AREA COEFFICIENT .7380E+01 .7380E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02 HOD NOT API AUTON	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .692 .692 PLICABLE MATED STAN	BASE AREA .0525 RELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01 BILITY AND CO	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826 7.200 7.200 DNTROL MET	FT DRAG FT DRAG PE-02 CAL LEADING ORM PROPER MAC .662E4 .661E4 .377E4 .377E4 .278E4 .278E4 HODS PER AF	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEI X (MAC -00 .177H -00 .537H -00 .537H -00 .524H -00 .524H PRIL 1976 VE	FRICTION DR R CHORD C) 2+01 2+01 2+01 2+01 2+01 2+01 2+01 2+01 RSION OF DAT
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL THEO + .573E+00 0 HORIZONTAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .573E+00 0 VERTICAL TOTAL THEO + .625E+00 0**** NA PRINT 1	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 .TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .227E-03 ED WHEN ME	XCG 1.80 AREA COEFFICIENT .7380E+01 .7380E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02 HOD NOT API AUTOM	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .692 .692 PLICABLE IATED STAI	BASE AREA .0525 GRELATIVE TO ASPECT O RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01 SILITY AND CO CONFIGURAT	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826 6.826 7.200 7.200 7.200 DNTROL METH	FT DRAG FT DRAG PSE-02 CAL LEADING ORM PROPEI RD MAC .662E4 .661E4 .377E4 .377E4 .278E4 .278E4 HODS PER AF RY AND PAT	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEN X (MAC -00 .177H -00 .177H -00 .537H -00 .537H -00 .524H PRIL 1976 VEI RTIAL OUTPUT -01 CONFIGURE	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01 RSION OF DAT RATION
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL THEO + .257E+01 0 HORIZONTAL TOTAL THEO + .573E+00 0 VERTICAL 573E+00 0 VERTICAL TOTAL THEO + .625E+00 0 *** NA PRINT 1	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 .TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .227E-03 ED WHEN ME	XCG 1.80 AREA COEFFICIENT .7380E+01 .7380E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02 IHOD NOT API AUTON	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765 .692 .692 PLICABLE IATED STAI WINC	BASE AREA .0525 GRELATIVE TO ASPECT (0 RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01 SILITY AND CO CONFIGURAT CONFIGURAT	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHO SWEEP 1.441 1.441 6.826 6.826 6.826 7.200 7.200 7.200 DNTROL METH ION AUXILIA CAL TAIL-HO DTAL: Solar	FT DRAG FT DRAG PE-02 CAL LEADING ORM PROPEL DRD MAC .662E4 .661E4 .377E4 .377E4 .278E4 HODS PER AF RY AND PAF DRIZONTAL T Sailblane	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEN X (MAC -00 .177H -00 .177H -00 .537H -00 .537H -00 .524H PRIL 1976 VEI RTIAL OUTPUT CAIL CONFIGUE	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 E+01 RSION OF DAT RATION
W PRESSURE DRAG .1706E-02 .20 ZERO LIFT Y(MAC) 0 WING TOTAL THEO + .254E+01 TOTAL THEO + .573E+00 0 HORIZONTAL + .573E+00 0 VERTICAL TOTAL THEO + .625E+00 0 OVERTICAL TOTAL THEO + .235E+00 0 0*** NA PRINT 1	VETTED AREA .3856E+01 NA FRICTION DRAG DRITICAL EXPOSED .112E-01 .TAIL DRITICAL EXPOSED .140E-02 TAIL DRITICAL EXPOSED .227E-03 ED WHEN ME	XCG 1.80 AREA COEFFICIENT .7380E+01 .7300E+01 .439E-02 .9000E+00 .487E-02 .1375E+00 .516E-02 THOD NOT API AUTOM - FLIGHT CO	ZCG .29 XCC TAPER RATIO .300 .301 .765 .765 .765 .692 .692 PLICABLE MATED STAN WINC	BASE AREA .0525 GRELATIVE TO ASPECT (RATIO .1951E+02 .1940E+02 .6400E+01 .6400E+01 .1818E+01 .1818E+01 BILITY AND CONFIGURAT GONFIGURAT BODY-VERTIO	ZERO LI .212 D THEORETIC BASIC PLANF QUARTER CHC SWEEP 1.441 1.441 6.826 6.826 7.200 7.200 7.200 DNTROL METH ION AUXILIA CAL TAIL-HC DTAL: Solar	FT DRAG FT DRAG PE-02 CAL LEADING ORM PROPEI DRD MAC .662E4 .661E4 .377E4 .377E4 .278E4 .278E4 HODS PER AF RY AND PAF DRIZONTAL T 	BASE DRAG .4229E-03 EDGE MAC= RTIES QUARTEN X (MAC -00 .177H -00 .177H -00 .537H -00 .537H -00 .524H -00 .524H PRIL 1976 VEJ RTIAL CONFIGUE 	FRICTION DR R CHORD C) E+01 E+01 E+01 E+01 E+01 RSION OF DAT RATION

1202	REFERENCE LENGTH NUMBER	MOMENT REF	CENTER		NUMBER	AREA	
1203	LONG. LAT. M	HORIZ M/SEC	VERT N/ M**2	DEG K	1/ M	M**2	
1204	M M 0.070 1.0	M 23.82	M 1.0131E+05	288.143	1.6231E+06	7.360	
1205	.662 12.000 0 CLA-B(1.800	.290	1 037E-01	$K_{B}(W) = 1.083E_{0}2$	$K = W(B) = 1.007E \pm 00$	
1205	XAC/C-B(W) = 3.058	(W) = 1.115E = 0.000E + 0.00	CLA U(B) = CLA U(B) = 0	0.202E 02	K=B(W) = 1.003E=02	$K = W(B) = -1.000 E \pm 00$	
1200	XAC/C-B(H) = 1.605	5E-01	JU CLA-II(B)=	4 GU (1 + D/GIC	K=B(H) = 0.000E+00	$K=\Pi(B)=1.000E+00$	
1207	0		SIDEW	ASH, $(1 + D)$	$\frac{1}{2}$ $\frac{1}$	6.2950927E-01	
$1209 \\ 1210$							
1211	GAMMA/	ALPHA	IV-B(W)	IV-W(H)	IV-B(H)	GAMMA/	
1212	(2*PI*ALPHA*V*R)7	Г				2*PI*ALPHA*V*R	
1213	.5613E+00	-8.000	.0000E+00	NAN	1004E+00	NDM	
1214	.0000E+00	-5.000	.0000E+00	NAN	.0000E+00	.0000E+00	
1215	0000E+00	-1.000	.0000E+00	NAN	.0000E+00	.0000E+00	
1216	0000E+00	.000	.0000E+00	NAN	.0000E+00	.0000E+00	
1217	0000E+00	3.000	.0000E+00	NAN	.0000E+00	.0000E+00	
1218	.0000E+00	6.000	.0000E+00	NAN	$3937 E{-}01$	NDM	
1219	.4381E+00	8.000	.0000E+00	NAN	1004E+00	NDM	
1220	.5613E+00	10.000	.0000E+00	NAN	1612E+00	NDM	
1221	.7261E+00						
1222 1223 1224 1225	CLP (GAM	/MA=CL=0) =−	5.3584E-01 CYP/GAMMA = -1	DYNAMIC CLP (GAMMA) / CLP .9479E-01	DERIVATIVE INCREMENT (GAMMA=0) = 9.9434E- CYP/CL	CALS 01 CNP/THETA = 1.6797E-0 (CL=0) = -1.7098E-01	03
1226							
1226 1227 1228 1229 1230	0*** NDM PRINTED	WHEN NO DATC	OM METHODS EXIS	CLB/GAMMA 1456E-03 T	(CMO/THETA)W 1213E-02	(CMO/THETA)H NA	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236	0*** NDM PRINTED V 0*** NA PRINTED V 1 1	WHEN NO DATC WHEN METHOD N	OM METHODS EXIS IOT APPLICABLE AUTOMATED STABJ CH/ GHT CONDITIONS	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONE L: Solar Sailplane	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES FIGURATION	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237	0*** NDM PRINTED V 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTTUU	WHEN NO DATC WHEN METHOD N FLI IONS DE VELOCITY	OM METHODS EXIS IOT APPLICABLE AUTOMATED STAB CHA GHT CONDITIONS	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE	(CMO/THETA)W 1213E-02 OL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONF L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF.	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237	0*** NDM PRINTED V 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER	WHEN NO DATC WHEN METHOD N FLI IONS DE VELOCITY MOMENT REF	OM METHODS EXIS IOT APPLICABLE AUTOMATED STAB CH/ GHT CONDITIONS 	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TOTA TOTA	(CMO/THETA)W 1213E-02 OL METHODS PER APRIL OF HIGH LIFT AND CONT AILING-EDGE FLAP CONF L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. AREA	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239	0*** NDM PRINTED 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M	WHEN NO DATC WHEN METHOD N 	OM METHODS EXIS TOT APPLICABLE AUTOMATED STAB CH/ GHT CONDITIONS PRESSURE CENTER VERT N/ M**2	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONF L: Solar Sailplane REYNOLDS NUMBER 1/ M	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. REF. AREA M**2	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239	0*** NDM PRINTED 0*** NA PRINTED V 1 REFERENCE DIMENSI MACH ALTTUU REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 070 100	WHEN NO DATC WHEN METHOD N ONS FLIU DE VELOCITY MOMENT REF HORIZ M/SEC M 23,82	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH/ GHT CONDITIONS PRESSURE CENTER VERT N/ M**2 M 4 4193E+01	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TOTA TEMPERATURE DEG K 933.585	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONT L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES IGURATION REF. AREA M**2 7, 360	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240	0*** NDM PRINTED 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000	WHEN NO DATC WHEN METHOD N ONS FLI IONS DE VELOCITY MOMENT REF HORIZ M/SEC M 23.82 1.800	OM METHODS EXIS IOT APPLICABLE AUTOMATED STABL CH/ GHT CONDITIONS PRESSURE CENTER VERT N/ M**2 M 4.4193E+01 .290 NYS DUE TO DEEL	CLB/GAMMA 1456E-03 T HLITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TOTA TEMPERATURE DEG K 933.585 ECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONF L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. AREA M**2 7.360	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242	0*** NDM PRINTED 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000 0 DELTA I (CH)D	WHEN NO DATC WHEN METHOD N ONS FLIO IONS DE VELOCITY MOMENT REF HORIZ M/SEC M 23.82 1.800 INCREME D(CL) D(C	OM METHODS EXIS OT APPLICABLE AUTOMATED STABL CH/ GHT CONDITIONS PRESSURE C. CENTER VERT N/ M**2 M 4.4193E+01 .290 NTS DUE TO DEFI M) D(CL MAX)	CLB/GAMMA 1456E-03 T HLITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION D(CD MIN)	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT AILING-EDGE FLAP CONF L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05 DE (CLA)	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244	0*** NDM PRINTED 0*** NA PRINTED V 1 REFERENCE DIMENSI MACH ALTITUU REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000 0 DELTA I (CH)D	WHEN NO DATC WHEN METHOD N 	OM METHODS EXIS FOT APPLICABLE AUTOMATED STABL CH/ GHT CONDITIONS PRESSURE CENTER VERT VERT VERT VERT 4.4193E+01 .290 ENTS DUE TO DEFI M) D(CL MAX)	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 JECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONE L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05 DE (CLA)	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245	0*** NDM PRINTED 0*** NA PRINTED V 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000 0 DELTA I (CH)D -20.0 - -1.513E-02	WHEN NO DATC WHEN METHOD N DE VELOCITY MOMENT REF HORIZ M 23.82 1.800 	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH/ GHT CONDITIONS PRESSURE CENTER VERT VERT 4.4193E+01 .290 NTS DUE TO DEFI M) D(CL MAX) 392 .061	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION D(CD MIN) .00756 00401	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONI MILING-EDGE FLAP CONE L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF. AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A 7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246	0*** NDM PRINTED 0*** NA PRINTED V 1 1 REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000 0 DELTA I (CH)D -20.0 - -1.513E-02 -15.0 - -1.457E-02	WHEN NO DATC WHEN METHOD N ONS FLIO IONS DE VELOCITY MOMENT REF HORIZ M/SEC M 23.82 1.800 23.82 1.800 D(CL) D(C 104 .5 098 .5	OM METHODS EXIS OT APPLICABLE AUTOMATED STABL CH/ GHT CONDITIONS PRESSURE CENTER VERT N/ M**2 M 4.4193E+01 .290 NTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049	CLB/GAMMA 1456E-03 T HLITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONF L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05 DE (CLA) NDM NDM	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES TGURATION REF. AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247	$\begin{array}{c} 0*** \text{ NDM PRINTED} \\ 0*** \text{ NA PRINTED V} \\ 1 \\ 1 \\ \end{array}$ REFERENCE DIMENSI MACH ALTITUI REFERENCE LENGTH NUMBER LONG. LAT. M M M 0 .070 1.0 .662 12.000 0 DELTA I (CH)D \\ \end{array} $\begin{array}{c} -20.0 \\ -1.513E-02 \\ -15.0 \\ -1.447E-02 \\ -10.0 \\ -1.441E-02 \end{array}$	WHEN NO DATC WHEN METHOD N ONS — FLI IONS — VELOCITY MOMENT REF HORIZ M 23.82 1.800 — INCREME D(CL) D(C 104 .5 098 .5 069 .3	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH2 GHT CONDITIONS PRESSURE VERT VERT VERT 4.4193E+01 .290 ENTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049 595 .035	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 JECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONT MILING-EDGE FLAP CONE L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES FIGURATION REF . AREA M**2 7.360 ERIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1244 1245 1246 1247	$\begin{array}{c} 0*** \text{ NDM PRINTED} \\ 0*** \text{ NA PRINTED V} \\ 1 \\ 1 \\ \end{array} \\ \hline \\ \textbf{REFERENCE DIMENSI \\ MACH ALTITUI \\ \textbf{REFERENCE LENGTH } \\ \textbf{NUMBER } \\ \textbf{LONG. LAT. } \\ \textbf{M M M } \\ 0 & .070 & 1.0 \\ .662 & 12.000 \\ 0 \\ 0 & \textbf{DELTA I } \\ \textbf{(CH)D } \\ \hline \\ \hline \\ \begin{array}{c} -20.0 & - \\ 0 \\ \textbf{O} \\ \textbf{DELTA I } \\ \textbf{(CH)D } \\ \hline \\ \hline \\ -1.513E-02 \\ -15.0 \\ -1.457E-02 \\ -10.0 \\ \hline \\ -5.0 \\ -5.0 \\ -1.441E-02 \\ \hline \\ \end{array} $	WHEN NO DATC WHEN METHOD N ONS DE VELOCITY MOMENT REF HORIZ M/SEC M D0 23.82 1.800 —INCREME D(CL) D(C 104 .5 098 .5 069 .3 035 .1	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CHJ GHT CONDITIONS PRESSURE CENTER VERT 4.4193E+01 .290 NTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049 595 .035 797 .018	CLB/GAMMA 1456E-03 T ILITY AND CONTR RACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION D(CD MIN) .00756 .00491 .00265 .00132	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONI MILING-EDGE FLAP CONE L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF . AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249	$\begin{array}{c} 0*** \text{ NDM PRINTED} \\ 0*** \text{ NA PRINTED V} \\ 1 \\ 1 \\ \end{array} \\ \hline \\ REFERENCE DIMENSIMACH ALTITUL REFERENCE LENGTH NUMBER LONG. LAT. \\ M M M \\ 0 .070 1.0 \\ .662 12.000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.513E-02 \\ -15.0 \\ -1.457E-02 \\ -15.0 \\ -1.4457E-02 \\ -5.0 \\ 0 \\ -1.441E-02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	WHEN NO DATC WHEN METHOD N ONS JONS WOMENT REF HORIZ M/SEC 00 23.82 1.800 OCL) O(CL) 098 069 .3 035 .000	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH/ GHT CONDITIONS PRESSURE CENTER VERT M 4.4193E+01 .290 ENTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049 595 .035 797 .018	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION D(CD MIN) .00756 .00491 .00265 .00132 .00000	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONI MUNG-EDGE FLAP CONI L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05 DE (CLA) NDM NDM NDM NDM NDM	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF. AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250	$\begin{array}{c} 0*** \text{ NDM PRINTED} \\ 0*** \text{ NA PRINTED V} \\ 1 \\ 1 \\ \end{array} \\ \hline \\ \text{REFERENCE DIMENSIMACH ALTITUI \\ \text{REFERENCE LENGTH NUMBER} \\ \text{LONG. LAT. } \\ \text{MM M} \\ 0 & .070 & 1.0 \\ .662 & 12.000 \\ 0 \\ 0 \\ 0 \\ \text{DELTA I } \\ \text{MM M} \\ 0 \\ .662 & 12.000 \\ 0 \\ 0 \\ -1.513E-02 \\ -15.0 \\ -1.457E-02 \\ -15.0 \\ -1.441E-02 \\ .5.0 \\ -1.441E$	WHEN NO DATC WHEN METHOD N ONS	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH2 GHT CONDITIONS PRESSURE CENTER VERT VERT (1,290) ENTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049 595 .035 797 .018 0004 .000	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TEMPERATURE DEG K 933.585 JECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL OF HIGH LIFT AND CONT MILING-EDGE FLAP CONE L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES FIGURATION REF . AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250	$\begin{array}{c} 0*** \text{ NDM PRINTED} \\ 0*** \text{ NA PRINTED V} \\ 1 \\ 1 \\ \end{array} \\ \hline \\ \textbf{REFERENCE DIMENSI \\ MACH ALTITUI \\ \textbf{REFERENCE LENGTH} \\ \textbf{NUMBER} \\ \textbf{LONG. LAT.} \\ \textbf{M} \\ \textbf{M} \\ \textbf{M} \\ 0 \\ .070 \\ 1.0 \\ 0 \\ \textbf{DELTA} \\ \textbf{I} \\ \textbf{CH)D} \\ \hline \\ \hline \\ \begin{array}{c} -20.0 \\ 0 \\ 0 \\ \textbf{DELTA} \\ \textbf{I} \\ \textbf{CH)D} \\ \hline \\ \hline \\ \hline \\ -20.0 \\ 0 \\ \textbf{O} \\ \textbf{DELTA} \\ \textbf{I} \\ \textbf{O} \\ \textbf{O} \\ \textbf{O} \\ \textbf{D} \\ \textbf{D} \\ \hline \\ \textbf{O} \\ \textbf$	WHEN NO DATC WHEN METHOD N ONS	OM METHODS EXIS FOT APPLICABLE AUTOMATED STAB CH2 GHT CONDITIONS PRESSURE CENTER VERT N/ M**2 M 4.4193E+01 .290 ENTS DUE TO DEFI M) D(CL MAX) 392 .061 093 .049 595 .035 797 .018 0004 .000 1797 .018	CLB/GAMMA 1456E-03 T ILITY AND CONTR RRACTERISTICS O TAIL PLAIN TRA TOTA TEMPERATURE DEG K 933.585 .ECTION	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONT MILING-EDGE FLAP CONF L: Solar Sailplane 	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF . AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251	$\begin{array}{c} 0*** \text{ NDM PRINTED}\\ 0*** \text{ NA PRINTED V}\\ 1\\ 1\\ \end{array}\\ \hline \\ REFERENCE DIMENSIMACH ALITTUIREFERENCE LENGTHNUMBER\\ LONG. LAT. M M M 0 .070 1.0.662 12.000 00 DELTA I(CH)D1.513E-021.513E-021.441E-021.441E-0201.441E-021.44$	WHEN NO DATC WHEN METHOD N ODE VELOCITY MOMENT REF HORIZ M/SEC 00 23.82 1.800 OCL) D(C 104 .5 098 .5 069 .3 035 .1 .000 0 .035 1 .069 3 .069 3 .088 4	OM METHODS EXIS IOT APPLICABLE AUTOMATED STABLE AUTOMATED STABLE CHJ GHT CONDITIONS CHJ PRESSURE . CENTER VERT VERT N/ M**2 4.4193E+01 .290 290 ENTS DUE TO M) D(CL MAX) 392 .061 093 093 .049 595 595 .035 797 018 .0004 .000 .797 .018 .035 .0555 .035 .043	CLB/GAMMA 1456E-03 T ILITY AND CONTR ARACTERISTICS O TAIL PLAIN TRA TOTA DEG K 933.585 .ECTION .00756 .00491 .00265 .00132 .00000 .00132 .00265 .00401	(CMO/THETA)W 1213E-02 COL METHODS PER APRIL F HIGH LIFT AND CONT MILING-EDGE FLAP CONS L: Solar Sailplane REYNOLDS NUMBER 1/ M 1.5079E+05 DE (CLA) NDM NDM NDM NDM NDM NDM NDM NDM	(CMO/THETA)H NA 1976 VERSION OF DATCOM ROL DEVICES 'IGURATION REF . AREA M**2 7.360 CRIVATIVES (PER DEGREE) D (CH)A -7.979E-03	

1254	0 *** NOTE	* HINGE MOMEN	T DERIVAT	IVES ARE BA	SED ON TW	ICE THE ARE	EA-MOMENT O	F THE CONT	ROL ABOUT ITS	HINGE LIN
1255										
1256	0	IN	DUCED DRAC	G COEFFICIE	NT INCREME	ENT , D(CD)	I) , DUE TO	DEFLECTIO	N	
1257	0 DELT.	A = -20.0	-15.0	-10.0	-5.0	. 0	5.0	10.0	13.0	
	16.0									
1258	ALPHA									
1259	0									
1260	-8.0	6.30 E - 03	5.77E - 03	3.31E - 03	1.19E - 03	-1.46E - 06	-2.67E-04	3.91E - 04	1.14E - 03	
	1.87 E - 03									
1261	-5.0	4.57 E - 03	4.13E - 03	$2.14 \mathrm{E}{-03}$	6.10 E - 04	-2.94E-07	3.14 E - 04	1.55E - 03	2.62E - 03	
	3.58E - 03									
1262	-1.0	2.27 E - 03	1.95 E - 03	6.05 E - 04	-1.60E - 04	1.25 E - 06	1.08 E - 03	3.09 E - 03	4.58E - 03	
	5.85E - 03									
1263	. 0	1.69 E - 03	1.40E - 03	2.20E - 04	-3.52E-04	1.63E - 06	1.28 E - 03	3.48E - 03	5.07 E - 03	
	6.42E - 03									
1264	3.0	-5.20E-05	-2.53E-04	-9.48E - 04	-9.36E - 04	2.80E - 06	1.86E - 03	4.64E - 03	6.55E - 03	
	8.14 E - 03									
1265	6.0	-1.85E-03	-1.96E - 03	$-2.15 \mathrm{E}{-03}$	-1.54E-03	4.00 E - 06	2.46 E - 03	5.85E - 03	8.08 E - 03	
	9.91E - 03									
1266	8.0	-3.11E-03	-3.15E-03	-2.99E-03	-1.96E - 03	4.84E - 06	2.88E - 03	6.69 E - 03	9.16 E - 03	
	1.12E - 02									
1267	10.0	-4.42E-03	-4.39E - 03	-3.87E-03	$-2.40 \mathrm{E}{-03}$	5.72E - 06	3.32E - 03	7.56E - 03	1.03E - 02	
	1.24 E - 02									
1268	0***NDM PRINTED WHEN NO DATCOM METHODS EXIST									
1269	1 END OF JOB									

Bibliografia

- [1] John D.Anderson, Jr, *Fundamentals of Aerodynamics*, McGraw-Hill International Edition ISBN 007-125408-0.
- [2] XFLR5- Analisi di stabilità A. Deperrois Novembre 2010.
- [3] MichaelS. Selig, James J. Guglielmo, Andy P. Broeren and Philippe Giguere Summary of Low-Speed Airfoil Data.
- [4] F. Galè, A. Calza, *Scaling saiplanes* www.B2Streamlines.com.
- [5] Courtland D. Perkins & Robert E. Hage, Airplane Performance Stability and Control John Wiley & Sons Inc 978-0471680468.
- [6] J. Roskam, Airplane Flight Dynamics and Automatic Flight Control-Part I Design, Analysis and Research Corporation, Lawrence, KS, 1995.
- [7] Marco Marzari, Preliminary Dimensioning and Design of an Ultralight Acrobatic Motor-Glider Powered by a Self-Sufficient Electric Solution, Università degli Studi di Padova 2016/2017.
- [8] Raymond F.Anderson, Determination of the characteristics of tapered wings, NACA-TR-572.
- [9] A.Silversetin and S. Katzoff, Desing charts for predicting downwash angles and wake characteristics behind plain and flapped wings, NACA-TR-648.
- [10] http://www.aerospaceweb.org/question/nature/q0237.shtml.
- [11] http://www.flight-mechanic.com/flight-controls-flaps/.
- [12] Barnes W.McCormick, Aerodynamics, Aeronautics, And Flight Mechanics, John Wiley & Sons ISBN 0-471-03032-5.

- [13] John G. Lawry and Edward C. PoThamus, A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow, NACA-TN-3911.
- [14] Decision NO.2003/13/RM of the executive director of the agency, Certification Specifications for Saiplanes and Powered Sailpanes.
- [15] Michael V.COOK Flight Dynamics Principles II-Edition ,Elsevier ISBN:978-0-7506-6927-6.
- [16] Michael V.COOK Flight Dynamics Principles, III-Edition, Elsevier.
- [17] Hoak, D. E., et al.," The USAF Stability and Control DATCOM" Air Force Wright Aeronautical Laboratories, TR-83-3048, Oct. 1960 (Revised 1978).
- [18] Marcello R. Napolitano Aircraft Dynamics John Wiley & Sons, Inc ISBN 978-0-470-62667-2.
- [19] NACA, Techincal Memorandum NO. 1036 Aerodynamics of the Fuselage.
- [20] *Estimating Sailplane Mass Properties* Rein I. Hoff and Guy B. Gratton School of Engineering and Design, Brunel University.
- [21] Vittorio Pajno Sailplane Design IBN EDITORE.
- [22] A.K. Kundu Aircraft Design Cambridge Aerospace Series.
- [23] Vittorio Pajno Light Airplane and Glider Static and Dynamic Stability IBN EDITORE, ISBN 9788875652173.
- [24] Decreto del presidente della repubblica 9 luglio 2010, n. 133 Nuovo regolamento di attuazione della legge 25 marzo 1985, n. 106, concernente la Disciplina del volo da diporto o sportivo.
- [25] M.Bisiacco, M.E.Valcher Controlli Automatici II Edizione, Libreria Progetto Padova.
- [26] David G. Hull Fundamentals of Airplane Flight Mechanics Springer.