
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

TESI DI LAUREA MAGISTRALE

DEVELOPMENT OF THE COMMUNICATION
SYSTEM FOR A LOWER LIMB HUMAN

HEXOSKELETON USING THE ROS
MIDDLEWARE

Relatore: Monica Reggiani
Correlatore: Elena Ceseracciu

Laureando: Marco Matteo Bassa
1058764-IMC

ANNO ACCADEMICO: 2014-15





A B S T R A C T

Human exoskeletons are complex systems whose analysis and con-
trol requires the interaction of a large number of sensors, devices and
consequently the integration of heterogeneous programs. Being these
devices under development, and consequently often reconfigured, a
flexible, modular way of interfacing the software building the con-
trol architecture is required. In this text the problem is faced using
the Robot Operating System (ROS) middleware. In particular is pre-
sented the implementation of a communication system for a human
exoskeleton developed by the BioMot Project. This work does not in-
clude the full-development of the middleware based structure, but
describes the beginning of its implementation from both a software
and a hardware point of view. The created communication interface is
useful for data acquisition in the preliminary experiments and for the
future control of the system. The interface between the middleware
and the exoskeleton’s hardware is made trough a BeagleBone Black
board; the problematic of the set-up of this board and its interface
with the other elements of the system is also presented.
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S O M M A R I O

Gli esoscheletri per umani sono sistemi complessi, il loro controllo
richiede l’interazione di un grande numero di sensori, dispositivi e
conseguentemente l’integrazione di programmi eterogenei. Essendo
questi dispositivi in continuo sviluppo e quindi soggetti a continue
riconfigurazioni, è necessario utilizzare un modo flessibile e modula-
re per interfacciare i software che compongono l’architettura di con-
trollo. In questo testo il problema è affrontato utilizzando il Robot
Operating System (ROS) middleware. In particolare è presentata la
implementazione di un sistema di comunicazione per un esoschele-
tro umano sviluppato nel progetto BioMot. Questo lavoro non copre
l’intera realizzazione della struttura basata sul middleware, ma de-
scrive l’inizio della sua implementazione sia da un punto di vista
hardware che da un punto di vista software. L’interfaccia di comu-
nicazione creata è funzionale sia all’acquisizione di dati durante gli
esperimenti preliminari sul sistema, sia al futuro controllo del robot.
Per interfacciare l’hardware dell’esoscheletro con l’architettura midd-
leware è stata utilizzata una Beagle Bone Black board; anche la pro-
blematica dell’installazione di questa scheda sull’esoscheletro e il suo
interfacciamento con gli altri elementi del sistema sono presentati.
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Live as if you were to die tomorrow.
Learn as if you were to live forever.-Mahatma Ghandi

A C K N O W L E D G E M E N T S

I wish to thank my family, and particularly my parents, for all the
support and the motivation transmitted during this work.

I thank Monica Reggiani and Elena Ceseracciu for the supervision,
the numerous advices and the patient revision of my code and of this
text.

My gratitude also goes to all my coworkers from the Cajal institute,
in particular to Guillermo Asín Prieto and to Juan C. Moreno that
wisely supervised my work and to Andrea Órtiz, that continuously
provided me with Colombian coffee.

Finally, I want to thank all the people that made my period in
Madrid not only a great professional experience, but also a fantas-
tic life experience.

v





C O N T E N T S

1 introduction 1

1.1 Wearable robots and exoskeletons 1

1.2 The BioMot project 3

1.3 Role and structure of this work 4

2 h2 exoskeleton system 7

2.1 Introduction 7

2.2 The H2 exoskeleton 7

2.2.1 Mechanical description 7

2.2.2 Electronic description 8

2.2.3 Communication and user interface 10

2.3 The BeagleBoneBlack 15

2.3.1 Features of the board 16

2.3.2 Reasons for choice and comparison with other
boards 16

2.3.3 Set-up of the operative system 18

2.3.4 Set-up of ROS 19

2.3.5 Set-up of the CAN network 19

2.3.6 Set-up of the Wi-fi network 23

2.4 Other environment sensor 24

2.4.1 EMG sensors 24

2.4.2 IMU sensors 25

2.4.3 EEG sensors 25

3 the ros communication architechture 27

3.1 Introduction 27

3.2 Middleware software 27

3.3 Robot Operating System 29

3.3.1 Description and History 29

3.3.2 Objectives of the project 29

3.3.3 Releases and contributions 30

3.3.4 ROS concepts 30

3.4 ROS in Biomot 34

4 interfacing the h2 exoskeleton 39

4.1 Introduction 39

4.2 Reading data trough the CAN network 39

4.2.1 SocketCAN API 39

4.2.2 Creation of a structured communication library 40

4.3 ROS nodes for receiving data 43

4.3.1 Structure of the package 43

4.3.2 H2ros node 43

4.3.3 Receiving nodes 46

4.4 Nodes for sending data to the exoskeleton 49

4.4.1 Command sender UI 49

vii



viii contents

4.4.2 H2ros sender 49

4.4.3 Pattern sender UI and H2 pattern sender 49

4.5 Compiling the nodes 52

4.5.1 Cross-Compiling for the Beagle Bone Black 53

4.6 Launching the nodes 53

4.7 Repository for the code 55

5 acquisition experiments 57

5.1 Introduction 57

5.2 Hardware involved 57

5.3 Synchronization of devices 57

5.4 Acquired data 59

6 interfacing compliant actuators 65

6.1 introduction 65

6.2 Compliant actuators 65

6.3 Biomot’s actuators 66

6.3.1 Variable compliance 68

6.4 Interfacing the actuators 68

6.4.1 Data structurization 68

6.5 ROS nodes and GUI 70

6.5.1 Nodes for receiving data 70

6.5.2 Nodes for sending data 74

7 control interface 77

7.1 Introduction 77

7.2 Possible control-architectures 77

7.2.1 Using only a central controller 77

7.2.2 Send only set-points from the central controller 79

7.2.3 Select and modulate pre-memorized patterns 80

7.2.4 Conclusions 81

7.3 ROS-Control interface 81

7.3.1 ROS-Control in Biomot 82

7.3.2 ROS-Control workflow 82

7.3.3 Developing a standard hardware interface and
running standard controllers for Biomot 86

7.3.4 Writing customized interfaces and controllers 92

7.3.5 Adding services to communicate with the cus-
tom controllers 96

7.4 Real-time implementation on the BBB 97

7.4.1 Programmable Real-time Units 98

7.4.2 Preempt-RT patch 99

7.4.3 Xenomai 100

Conclusioni 103

Appendix 105

a developed packages 107

a.1 The h2Interface package 107

a.2 The h2r package 107



contents ix

a.3 The biomot_control package 107

bibliography 113



L I S T O F F I G U R E S

Figure 1 Examples of human exoskeletons 1

Figure 2 The XOS2 exoskeleton 2

Figure 3 The H2 exoskeleton from the front and the back
side 9

Figure 4 H2 ARM board description 9

Figure 5 H2 Joint-board description 10

Figure 6 Android user interface for bluetooth comuni-
cation with H2 11

Figure 7 CAN bus configuration scheme 12

Figure 8 CAN messages accepted by H2-arm 14

Figure 9 CAN messages sent by H2-arm 14

Figure 10 H2’s communication archiecture 15

Figure 11 The BeagleBoneBlack board 16

Figure 12 Features of the BBB 17

Figure 13 Comparison between embedded boards 18

Figure 14 Expansion Header P9 Pinout 21

Figure 15 Beagle Bone Black with a CAN-cape expan-
sion 22

Figure 16 Example of Cometa’s EMG application 24

Figure 17 Technaid’s IMU 25

Figure 18 Middleware layers 28

Figure 19 Point to point communication architecture 35

Figure 20 Middleware communication architecture 35

Figure 21 ROS communication architecture 36

Figure 22 UML graph for the CAN library and flow dia-
gram for the reading process 41

Figure 23 GUI provided by anglesReceiverUi 47

Figure 24 GUIs provided by torquesReceiverUi and switch-
esReceiverUi 48

Figure 25 Relations between the acquisition nodes 48

Figure 26 Windows created in commandSenderUi 50

Figure 27 Relation between commandSenderUi and H2rosSender 50

Figure 28 GUI provided by patternSenderUi 52

Figure 29 Relation between patternSenderUI and H2patternSender 52

Figure 30 Combined use of the H2 exoskeleton and of
the EMG sensors 58

Figure 31 Scheme for device connection during the ex-
periments 59

Figure 32 Sample of the acquired angles data 59

Figure 33 Sample of the acquired right hip angles 60

Figure 34 Sample of the acquired right knee angles 61

x



List of Figures xi

Figure 35 Sample of the acquired right ankle angles 61

Figure 36 Sample of the acquired left hip angles 62

Figure 37 Sample of the acquired left knee angles 62

Figure 38 Sample of the acquired left ankle angles 63

Figure 39 Sample of the acquired EMG data (Gracilis right
muscle) 63

Figure 40 Sample of the acquired EMG data (Lateral Gas-
trocnemius right muscle) 64

Figure 41 flat MACCEPA concept scheme 66

Figure 42 Picture of the prototype for ankle’s actuation 67

Figure 43 Embedded control board for the MACCEPA
actuators 69

Figure 44 Can messages sent (green) and received by the
actuators 70

Figure 45 GUIs for receiving data from the actuators 72

Figure 46 Example for real time positions plot 73

Figure 47 Receiving nodes relations 74

Figure 48 Windows created by commandSenderUi 75

Figure 49 Sending nodes relation 75

Figure 50 Unified control architecture 78

Figure 51 Decoupled control architecture 80

Figure 52 ROS-Control general scheme 83

Figure 53 Flow chart for controller interafce’s methods 84

Figure 54 Schematic of the Biomot’s URDF file 89

Figure 55 Schematic of the relations between controllers
and interfaces 94

Figure 56 Required steps to write a customized controller 96

Figure 57 Scheme of the BeagleBone Black’s TI chip 98

Figure 58 Interrupt response times for the BBB 100

Figure 59 Task switching times for the BBB 101

Figure 60 Tree diagrams for the h2 package 108

Figure 61 UML graph for the CAN library 109

Figure 62 Tree diagrams for the h2r package 110

Figure 63 Tree diagrams for the biomot_control package
111

Figure 64 UML graph for the application of ROS Control
to BioMot 112





1
I N T R O D U C T I O N

1.1 wearable robots and exoskeletons

Wearable robots (WR) are person-oriented devices, usually in the
form of exoskeletons. These devices are worn by human operators
to enhance or support a daily function, such as walking. WRs find
applications in the enhancement of intact operators or in clinical envi-
ronments, e.g. rehabilitation of gait function in neurologically injured
patients. Current WRs are extra body structures inducing fixed mo-
tion patterns on its user. Most advanced WRs for human locomotion
still fail to provide the real-time adaptability and flexibility presented
by humans when confronted with natural perturbations, due to vol-
untary control or environmental constraints. The driving motivation
behind the increasing funding to stimulate innovation in Wearable
robots for the medical field can be easily tracked to the need of in-
dustrialized countries to reduce the economic burden on the health
care system of an aging population and a low birth rate. Since this
work is focused on exoskeletons, the terms "Wearable robots" and
"Exoskeletons" will be considered equivalent from now on.

Some examples of already-existing (powered) exoskeletons are:

• HULC1(Human Universal Load Carrier), developed by Profes-
sor H. Kazerooni and his team at Ekso Bionics, is intended to
help soldiers in combat to carry a load of up to 200 pounds at a
top speed of 10 miles per hour for extended periods of time.

1 http://www.lockheedmartin.com/us/products/hulc.html]

Figure 1: Examples of human exoskeletons

1
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2 introduction

Figure 2: The XOS2 exoskeleton

• XOS 2
2(Figure 2), a suit developed by DARPA, allows the users

to lift heavy objects at an actual-to-perceived-weight ratio of
17:1.

• HAL exoskeleton [3], is a powered suit developed by Japan’s
Tsukuba University and the robotics company Cyberdyne. It has
been designed to support and expand the physical capabilities
of its users, particularly people with physical disabilities.

• X1
3 Robotic Exoskeleton, developed by NASA, should help as-

tronauts stay healthier in space maintaining their muscular tone
and at the same time can be used for assisting paraplegics walk-
ing.

A big number of the developed devices are aimed for enhancing
the performance of healthy users, mainly for military applications,
allowing to carry/lift an high amount of weight. A detailed analysis
of these devices is out of the scopes of this work, but a state of the
art for lower-limb exoskeletons intended both for assistance and re-
habilitation, can be found in [57]. This document makes a review of
the current known actuation techniques: Hydraulic or pneumatic ac-
tuators, electrical motors, SEA (Series Elastic Actuators), Pneumatic
Muscle Actuators. The possible control algorithms are then classified
according to the human-robot interaction mode: the signals collected
from the human body(EMG, EEG and muscle hardness), the interac-
tion force signals measured between the human and the exoskeleton,
and the signals that are only collected from the exoskeletons or ac-
tive orthoses. The possible performance assessment methods for com-

2 http://www.army-technology.com/projects/raytheon-xos-2-exoskeleton-us/

3 http://www.nasa.gov/offices/oct/home/feature_exoskeleton.html

http://www.army-technology.com/projects/raytheon-xos-2-exoskeleton-us/
http://www.nasa.gov/offices/oct/home/feature_exoskeleton.html
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paring different exoskeleton solutions are then described, in particu-
lar: Metabolic Cost, Gait Biomechanical Analysis and Muscle Activity
Analysis.

The review points out the limitations of current exoskeletons, in
particular the deviation between the wearers’ real motion intention
and that estimated by actual human-robot interfaces, still leads to an
increase in the wearers’ metabolic cost and, in conjunction with ac-
tual biomechanical solutions, introduces certain constraints on their
motion. Hence, the accuracy of current human-robot interfaces and
human biomechanics and mechanism designs needs to be further op-
timized.

1.2 the biomot project

The work presented in this thesis is part of the BioMot project, an in-
ternetional project that involves eight institutions from five countries
(Spain,Italy,Belgium,Iceland and Japan). The aim of BioMot is "to im-
prove the efficiency in the management of human-robot interaction
in overground gait exoskeletons by means of mixture of bioinspired
control, actuation and learning approaches" [39]. The objective is to
show how the embodiment of bioinspired and architectural mecha-
nisms can allow a user to conveniently alter the behaviour of WRs
for walking. The final goal of the project is to deliver novel ambula-
tory wearable exoskeleton technology that exploits neuronal control
and learning mechanisms and provides more energy efficient coop-
erative (human-robot) performance and adaptive assistance based on
the user’s residual and voluntary action. These systems will not be
designed and will not be applied for military applications.

BioMot’s exoskeletons will apply adaptive assistance as a function
of real-time estimation of human effort provided by a detailed neu-
romusculoskeletal model that computes neuromuscular activity (sur-
face electromyography, EMG) to predict joint moments and hence
prescribe the exoskeleton function. Gait detection algorithms based
on human performance (brain signals, EEG) and embedded sensors
(kinematic and kinetic) are developed for decision making, handling
transitions or volitional changes in the task (such as gait speed). Lo-
cal reflex-based joint controllers are designed to allow for automatic
adaptation when confronting changes in the interaction. At the phys-
ical level, intrinsically compliant actuators are developed to exploit
natural dynamics of movement, orchestrated by the control system
for economy and stability. A global learning scheme modules joint
compliance as a function of gait efficiency and semantic signals in-
fered from user demand.

These things together will form a cognitive system for the exoskele-
ton, which will be able to processes biomechanical and electrophysi-
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ological signals to adaptively assist the human movement exploiting
the natural dynamics of overground walking.

To reach these goals, a system composed by a potentially high num-
ber of sensors and devices needs to be created and consequently a
communication architecture allowing the interaction and the synchro-
nization of different programs has to be developed.

1.3 role and structure of this work

This work faces the problem of interfacing the large number of het-
erogeneous software that forms the exoskeleton’s environment with
a structured communication architecture. The problem is solved us-
ing the Robot Operating System (ROS) middleware. ROS is an open-
source, meta-operating system for robots. It provides services includ-
ing hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between processes,
and package management. It also provides tools and libraries for ob-
taining, building, writing, and running code across multiple comput-
ers [13]. This frame is becoming more and more popular in robotic
application and is already being employed by a large number of com-
plex robots [16].

The use of a middleware allows to avoid the definition of a large
amount of point to point communication channels (for example socket
connections), that would lead to a complex and not flexible communi-
cation structure. In ROS, such connections are handled automatically
and can be changed dynamically, making the connection of software
developed by different groups a lot easier and the general structure
more elegant.

This thesis presents the required steps for the application of the
ROS middleware to an already existing human exoskeleton: the H2

exoskeleton. The development is intended to be flexible in order to
make the middleware adaptable to a newer exoskeleton that is under
development by the BioMot’s group (BioMot exoskeleton); a part of
the code is also intended to be compatible with other robots, as the
H2R humanoid robot, developed by other groups collaborating with
BioMot. An insight of the integration of the newer actuation systems
(MACCEPA actuators) in the middleware architecture will also be
provided.

The text begins describing the hardware and software building the
H2 exoskeleton system and the adaptations required for the appli-
cation of the middleware architecture, in particular the set-up of a
Beagle Bone Black board (chapter 2) and its communication with the
already existing hardware. The features provided by the ROS middle-
ware to the communication architecture and the steps required for its
set-up are described in chapter 3. In chapter 4, the set-up of a CAN
communication library on the Beagle Bone Black, the ROS nodes de-
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signed to acquire data from the exoskeleton and those for sending
command messages, are described. The results of an acquisition ex-
periment, made with a walking exoskeleton, are reported in chapter
5. A preliminary interface between the newly designed MACCEPA
actuators and the ROS middleware is presented in chapter 6. Finally,
chapter 7 describes the problematic of interfacing the middleware
with the future hi-level controller of the system; it was in particular
investigated the possibility of applying the ROS-Control framework
to exoskeletons.





2
H 2 E X O S K E L E T O N S Y S T E M

2.1 introduction

The system in which the exoskeleton works is not only made by the
exoskeleton itself, but also by auxiliary sensors and computation sys-
tems. These are necessary for making experiments in order to bet-
ter understand the human-robot interaction, the human gait process
and to elaborate new high-level control strategies. Following is a de-
scription of the elements actually forming the system; newer elements
might be added in the future.

2.2 the h2 exoskeleton

In order to conduct experiments and gather information about the de-
velopment of symbiotic performance of subject-specific robotic units,
the H2 exoskeleton was selected by the BioMot group as a testing
device [41]. The H2 exoskeleton is a lower limb exoskeleton designed
for rehabilitation of adult people between 1.50 and 1.90 m in height,
with a maximum body weight of 100 kg, such as stroke or SCI (Spinal
Cord Injury) patients following neurological insults. It is conceived
for assist-as-needed over ground gait and balance training in a clini-
cal environment. It is also useful for maintaining the muscular tone
of the lower limbs and to activate the circulation in persons that have
lost mobility in the legs or suffer from muscle weakness. The hard-
ware was built by "Technaid S.L.", who has an exclusive license for
the design, manufacturing and commercial explotatioin of the sys-
tem, while CSIC is the proprietary of the Know-How rights.

2.2.1 Mechanical description

"The exoskeleton is a wearable device (about 10 kg) with six degrees
of freedom, in which hip, knee and ankle are powered joints. Front
and back pictures of the structure can be seen in figure 3. Aluminium
and stainless steel are primarily used in the mechanical structure in
consideration of mechanical resistance and lightweight. The exoskele-
ton frame has bilateral uprights for the thigh and the shank, hinged
hip, knee and ankles and articulated footplates (distally) and waist
area (proximally). The mechanical structure is designed to allow ac-
tive and passive movements in the sagittal plane. In the frontal plane,
small passive movements are possible in hip joint. The joints range
of motion is mechanically limited to avoid damages to patients. The

7



8 h2 exoskeleton system

maximum values are: 100 deg. flexion, 20 deg. extension for the hip;
100 deg. flexion and 0 deg. extension for the knee; and 20 deg. flex-
ion and 20 deg. extension for the ankle. For the ankle, plantar-flexion
is shown as extension and dorsi-flexion as flexion. The length of the
thigh and the shank can be adjusted by a mechanism of two tele-
scopic bars that are pushed one inside the other and are fixed in
different positions. The same mechanism is used to change the po-
sition of the foot relative to the exoskeleton’s ankle. The size and
positions of adjustable rounded carriers with Velcro straps allowed
for customization to individual requirements. Each joint is equipped
with a brush-less DC motor, coupled to a Harmonic Drive gearbox.
The design and selection of the actuators was based on typical iden-
tification of torque and power of each joint during normal gait at
normal speed. This motor has a rated voltage of 24 V (DC) and nom-
inal torque of 220 mNm. Furthermore, a gearbox is coupled to the
motor shaft in order to reduce speed and increase torque. Harmonic
Drive gearboxes are selected to reduce the weight and size of the fi-
nal actuators. A Harmonic Drive with gear ratio of 160:1 gives to each
joint a continuous net torque of 35 Nm. In H2 an average torque of 35

Nm for the hip actuator is presumed to be adequate enough for most
patients. Energy is provided by a Lithium-ion battery pack of 22.5
VDC nominal and 6.8 Ah to power the exoskeleton. The battery pack
weighs 960 grams and measures 180 x 70 x 40 mm. The H2 actuator
technology for wearable robotic gait exoskeletons will constitute the
reference standard to test the performance that is achieved with the
novel compliant actuators developed in BioMot’s WP2"[41].

2.2.2 Electronic description

The electronic part of the exoskeleton is constituted by an arm-based
H2-HAL board, 6 H2-Joint boards and a CAN-bus network connect-
ing the boards. The arm board (Figure 4) is in charge of executing a
real-time control of all the joints; it interacts with H2-Joint boards ac-
quiring sensors information and controlling the actuators. The small
size of this board (only 56 x 44 mm) and its very low power consump-
tion, allows it to be placed on the exoskeleton structure, reducing the
bulk, complexity and difficulty of wiring, in addition to minimize con-
nections. Moreover, it eliminates the need of a backpack been carried
by the user. The board can access two CAN-bus lines: one for reading
information and sending commands to the joints and the other for ex-
tern communication.The computational power of the board relies on
a STMicroelectronis ARM microcontroller STM32F405RG running at
168 MHz. The joint-boards (Figure 5) are in charge of data acquisition
from the different joint’s sensors: angular position, interaction torque,
joint speed and foot-ground contact. H2-Joint boards contain all the
circuitry of the analog filters for each joint sensor and also the ampli-
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Figure 3: The H2 exoskeleton from the front and the back side

Figure 4: H2 ARM board description
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Figure 5: H2 Joint-board description

fiers for the strain gauges. After filtering and amplifying processes,
the signals are digitalized by a DSP microcontroller (DsPIC30F4011).
A small data packet of six bytes aggregates the sensor’s information
on each joint and these data are sent to H2-ARM controller every one
millisecond. The boards also include a specifically designed driver for
the brushless motors.

These parts together form the so called HAL (Hardware Abstrac-
tion Layer). The main processor runs an algorithm that receives com-
mands to control each joint independently. Three types of control are
possible for each joint: position, stiffness and torque. The commands
are received either by Wi-Fi or CAN. Moreover, H2-ARM runs an
algorithm for walking, based on a pre-recorded gait pattern.

2.2.3 Communication and user interface

Three ways of communication are available for the H2-ARM board:
bluetooth, wi-fi and CAN-bus.
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Figure 6: Android user interface for bluetooth comunication with H2

2.2.3.1 Bluetooth communication

The gait can be controlled using Bluetooth commands; in particular
byte commands from 0 to 10 can stop or start the replication at differ-
ent speeds. The decimal value 11 disables all H2 joints. Values from
13 to 18 start or stop sending data via Bluetooth, Wi-Fi and/or CAN.
When sending data with bluetooth is activated, H2 will send 5 bytes
every 500 milliseconds regarding its internal data (gait speed value,
type of control, battery voltage).

Figure 6 shows the user interface of an app that can be installed on
a smartphone running Android OS. With 5 main buttons the user can
control the gait speed in 10 different levels. Other 3 secondary buttons
are used to start or stop the data stream sent by H2 via Bluetooth,
Wi-Fi or CAN. Before trying to command H2 by Bluetooth, the user
has to pair H2 Bluetooth interface with the smartphone (or laptop,
etc.). This interface can be used by the therapist in order to adjust the
exoskeleton performance to the user’s ability.

2.2.3.2 Wi-fi communication

H2 also has a wi-fi port for communication with other devices like
for example a laptop. When turned on, H2 creates an open Wi-Fi spot
named H2H (or H2M). Any computer connected to this network can
send/receive data via UDP to/from H2. Each motor can be specifying
a position, torque or stiffness control in a UDP message. The data
sent by H2 if wi-fi communication is activated are : Right hip angle,
Right knee angle, Right ankle angle, Left hip angle, Left knee angle,
Left ankle angle, Right hip torque, Right knee torque, Right ankle
torque, Left hip torque, Left knee torque, Left ankle torque, Right
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Figure 7: CAN bus configuration scheme

heel foot switch, Right toe foot switch, Left heel foot switch, Left toe
foot switch, Battery voltage.

The wi-fi module has proved to be unreliable for both reception
and sending of messages; consequently the CAN communication is
preferable for control-tasks.

2.2.3.3 CAN communication

Since CAN bus is the chosen communication interface between the
H2-arm board and the later described Beagle Bone Black, a brief de-
scription of its working principles is given.

CAN bus (for controller area network) is a vehicle bus standard de-
signed to allow micro-controllers and devices to communicate with
each other within a vehicle without a host computer. CAN bus is a
message-based protocol, designed specifically for automotive applica-
tions, but is now also used in many other applications, particularly in
automatic and robotic. "The CAN bus was developed by BOSCH as
a multi-master, message broadcast system that specifies a maximum
signaling rate of 1 megabit per second(bps). Unlike a traditional net-
work such as USB or Ethernet, CAN does not send large blocks of
data point-to-point from node A to node B under the supervision of a
central bus master. In a CAN network, many short messages like tem-
perature or RPM are broadcast to the entire network, which provides
for data consistency in every node of the system" [21]. The complexity
of the node can range from a simple I/O device up to an embedded
computer with a CAN interface and sophisticated software.

Each node requires a:

• Central processing unit, microprocessor, or host processor (de-
cides what the received messages mean and what messages it
wants to transmit).

• CAN controller, often an integral part of the microcontroller, it
stores the received serial bits from the bus until an entire mes-
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sage is available, which can then be fetched by the host proces-
sor; when sending it transmits the bits serially onto the bus if it
is free from other communications.

• CAN transceiver, it converts the data stream from CANbus lev-
els to levels that the CAN controller uses. It usually has protec-
tive circuitry to protect the CAN controller. When transmitting
it converts the data stream from the CAN controller to CANbus
levels.

The H2-arm board is equipped with all these elements.
"A message or Frame consists primarily of the ID (identifier), which

represents the priority of the message (but can also be used for other
purposes), and up to eight data bytes. A CRC, acknowledge slot
[ACK] and other overhead are also part of the message. The message
is transmitted serially onto the bus using a non-return-to-zero (NRZ)
format and may be received by all nodes. The network is flexible in
terms of configuration, is highly immune to electrical interference, au-
tomatically avoids data collision and corrects errors regarding to data
packets transmission."

"H2 CAN port is intended to communicate with external devices
in real time. The bus speed is set to 1Mbps and it accepts messages
in standard format with packets of 6 bytes. Figure 8 summarizes ac-
cepted commands and their functions. Byte values are in decimal
format.

The command Joint Control can be used to control each one of the
six joints independently. Motor ID values are: 1 = Right Hip; 2 = Right
Knee; 3 = Right Ankle; 4 = Left Hip; 5 = Left Knee; 6 = Left Ankle. For
type of control, it has the following values: 1 = Position control; 2 =
Stiffness control; 3 = Torque control; 4 = Motors disabled; 5 = Motors
stopped. When Position Control is used, byte 3 is the set point for
that joint and bytes 4, 5 and 6 are not used. For Torque Control, byte
3 is the set point for that joint and bytes 4, 5 and 6 are not used.
Stiffness Control uses byte 3 as the set point for position and byte 4

as the percentage of stiffness for that joint (where the value 0 means
no stiffness and the value 100 means the maximum possible stiffness).
The commands Min Angles Accepted and Max Angles Accepted can
be used to set the minimum and maximum angles accepted as set
point for Position Control. The command Start/Stop CAN Data is
used to start or stop sending data via CAN (byte 1 = 1 starts data;
byte 1 = 0 stops data). If CAN data has been started, H2 will send
every 10 milliseconds 3 messages with 6 bytes each, regarding its
internal data. Figure 9 summarizes the data sent by H2-arm.

The whole communication architecture (HAL) is described in fig-
ure 10. Each communication cycle in the network protocol involves
passing a message from the H2-ARM node to all H2-Joint nodes in
the network. As the message travels through the bus, each H2-Joint
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Figure 8: CAN messages accepted by H2-arm

Figure 9: CAN messages sent by H2-arm
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Figure 10: H2’s communication archiecture

reads its assigned actuator command data byte (by looking for its
own ID number and message byte sequence). Then, each H2-Joint re-
turns one message back to H2-ARM node with its locally collected
sensor’s data. Because the communication cycles occur at a fixed rate
(1 kHz) set by the control scheme, this protocol allows for determinis-
tic control. Also, it provides built-in network error detection because
at every message received, each H2-Joint has to return data informa-
tion to H2-ARM. In this way, H2-ARM has a strong way to determine
the integrity of the network and the correct operation of the joint’s
actuators"[41].

2.3 the beagleboneblack

BeagleBoneBlack (figure 11) is a low-cost (at time of writing about 50

euros), open source, community-supported development platform for
ARM Cortex-A8 processor developers and hobbyists. It runs a linux
arm-distribution which by default is a Debian OS, but can be changed
to an Ubuntu, Angstrom, Fedora distribution or with an Android OS.
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Figure 11: The BeagleBoneBlack board

2.3.1 Features of the board

The board is equipped with an AM335x 1Ghz ARM cortex-A8 pro-
cessor, 512MB of DDR3 RAM, 4 Gb 8-bit on-board flash storage, a 3D
graphic accelerator and two programmable real time units running at
200Mhz. The internal memory can be easily expanded with a micro-
sd card. The connectivity is guaranteed by a USB host, an Ethernet
host, a micro-HDMI port, a CAN controller and 2x46 headers for I-O,
expansion and cape connectivity. A resumen of the board’s features
is in figure 12.

2.3.2 Reasons for choice and comparison with other boards

One of the main goals for the chosen board is the integration between
all the devices forming the data acquisition system.

In order to achieve such objective, the device needs to support a
large amount of I-O ports; particularly critical is the availability of a
CAN interface since it’s the connection used by H2-arm for real-time
communication.

Another important requirement is the support for ROS (Robot Op-
erative System), since it is the chosen middleware for the integration
of the devices.
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Figure 12: Features of the BBB
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Figure 13: Comparison between embedded boards

Using a well-developed and open-source operative system as Linux,
allows for costs reduction and makes a large amount of software and
libraries available for development.

Since the board needs to be set-up onto the exoskeleton, low power
consumption is essential for achieving a long time duration of sys-
tem’s battery.

Finally, the possibility of finding the board on the market is, of
course, crucial.

Figure 13 shows a comparison between BBB and other similar boards
that were available on the market at the moment of the choice by the
BioMot group (the newly released Rashpberry Pi 2 could not yet be
taken into consideration) [41].

2.3.3 Set-up of the operative system

The BBB is shipped with a Linux-Debian OS (Operative System) al-
ready set-up in the internal eMMC (embedded Multi Media Card)
memory. However, in order to use a more widely known Linux distri-
bution and to make the set-up of the ROS environment and of other
libraries easier, it was chosen to set-up an Ubuntu distribution on
the board. Many pre-built images specifically designed for the BBB
can be found on-line, for example in the official distribution page [7].
An Ubuntu OS image could be found on the elinux site [34]. When
the OS was set-up, the kernel 3.8.13 with ubuntu 14.04 was available,
but new versions are continuously being released and updates might
solve eventual driver/software-incompatibility problems. Note that,
being the BBB based on an ARM processor, an ARM-distribution of
Linux must be used. Also, the newest versions of the Linux kernel
don’t support certain board functionality as pin muxing trough the
device-tree-overlay, so only tested kernel distributions should be used.
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The OS can be flashed on the eMMC, replacing the existing Debian
distribution, otherwise the system can be set-up onto a micro-sd card
and booted directly from there. Even if the micro-sd card can be eas-
ily ejected from the system, leading, of course, to a system crash if the
OS is located there, it allows for a bigger disk space (the eMMC has a
size of only 4 Gb, of which 2 are occupied by the OS) and, above all,
for an easy backup of the entire system: once all the drivers, scripts,
kernel modifications and the software are set-up on the memory, an
image of the entire system can be easily done by making an image
of the micro-sd card. If the hardware or the kernel fails to boot the
board, all saved data can be easily accessed through a simple card
reader, and a previous stable image can be written on the micro-sd.

2.3.4 Set-up of ROS

As will be described in chapter 3, ROS (Robot Operating System) is
the middleware software that needs to be set-up on the board in order
to interface the exoskeleton with the other devices in the system. Even
if, at the moment of writing, there isn’t yet an official release for the
selected ARM-distribution of Ubuntu, an experimental release could
be found on the ROS distribution page [18]. The last edition of ROS
(ROS Indigo) was chosen since it’s the only one compatible with the
selected OS. All the set-up instructions could be found in the cited
page; the download of the software, of course, requires an internet
connection that can be easily gained connecting the board via the eth-
ernet port to an internet-provided network.

Even if the selected one is an experimental ROS release, it is already
widely used and no bugs/problems could be detected during my
work.

2.3.5 Set-up of the CAN network

Even if the BeagelBoneBlack is natively equipped with a CAN con-
troller integrated in the microprocessor (as described in [4]), it is nei-
ther equipped with a CAN transceiver nor with a connector (a 9 pin
connector is the standard choice even if only 2 wires are needed). Still,
thanks to the BBB expansion headers, it is possible to use an expan-
sion cape in order to provide the missing elements. As previously
said, the BBB is equipped with 2 sets of 46 pins that can be set-up by
the user in order to provide I/O function or connectivity with addi-
tional devices. Each pin can provide up to 8 functions depending on
the mode set by the user (see figure 14 from [9]) and works with a
maximum tension level of 3,3V. In order to set the desired pin config-
uration, a proper device tree overlay needs to be loaded.
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The Device Tree is a data structure for describing hardware. Rather
than hard coding every detail of a device into an operating system,
many aspect of the hardware can be described in a data structure
that is passed to the operating system at boot time. For a peripheral
driver to work, the correct muxing configuration must be applied to
the affected pins; since there are many, and configuration is complex,
a special omap specific driver has been written and has been used on
the kernel provided by TI (Texas Instruments). It is usually possible
to find application-specific device-trees in the web; sometimes some
of them are already existing in the operative system and only need to
be loaded in order to make a specific device work.

As shown in figure 14, CAN1 network can be enabled by setting pins
P9-24 and P9-26 to mode 2; CAN0 network could be enabled by set-
ting pins P9-19 and P9-20 to mode 2, but such operation is known to
generate compatibility problems with other capes and therefore was
not tried.

A device tree-overlay was found on-line [58]. In order to compile
it on an Ubuntu system, the device tree compiler had to be patched
with a script provided by Robert C. Nelson [58] .

In newer ubuntu images released by TI, the device-tree related to
the CAN network is already available in the operative system and is
automatically loaded at boot time. Using this device tree, by the way,
it was not possible to make the device work.

The required expansion cape was built using a VP230 transceiver
from TI (Texas Instruments), as described in [53]. The BBB with the
CAN expansion cape can be seen in figure 15.

In order to understand if the device was working properly, a soft-
ware named can-utils was set-up on the system [35]. This utilities,
based on the socket-can libraries (that will be described in 4.2.1), al-
low the user to receive data from a selected can device (candump func-
tion) and print them on std::out, or to send a specified frame to a
chosen can-network (cansend function).

Testing the device showed that, in order to make the can transceivers
work, the BBB needs to be powered with an extern power supply
since the power/tension level provided by a usb cable is not high
enough. With such configuration the BBB was able to send/receive
data from other devices as the H2-ARM board; here is an example of
data from H2-ARM board:

can0 078 [6] FE FC FE 01 CD EF

can0 082 [6] 00 00 00 00 42 64

can0 06E [6] 4C 5E 00 4C 5D 0B

can0 078 [6] FE FC FE 01 CD EF

can0 082 [6] 00 00 00 00 42 64

can0 06E [6] 4C 5E 00 4C 5D 0B �
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Figure 14: Expansion Header P9 Pinout
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Figure 15: Beagle Bone Black with a CAN-cape expansion

The first value shows the name of the device receiving the data,
the second specifies frame’s identifier, the third shows the number
of information bytes available and finally the transmitted data (on a
hexadecimal base) are displayed.

To load the device-tree overlay and the required can-modules au-
tomatically at start-up, the following simple script was written (the
compiled device tree BB-DCAN1-00A0.dtbo needs to be previously
copied in /lib/firmware):

#launchCAN.sh

echo BB-DCAN1 > /sys/devices/bone_capemgr.*/slots

sudo modprobe can

sudo modprobe can-dev

sudo modprobe can-raw

sudo ip link set can0 up type can bitrate 1000000

sudo ifconfig can0 up

echo "Interface CAN0 on, bitrate 1000000, use candump to read

messages" �
And since the echo command needs to be executed as superuser,

the script was added in the /etc/init.d directory. The init.d directory
contains a number of start/stop scripts for various services on the
system, each script needs to be linked in the proper run-level direc-
tory (/etc/rcrunlevel.d/). When linking, the script’s name needs to
be preceded by an S or a K and a number; scripts starting with a K
have a higher execution priority than scripts starting with an S, and
scripts with a lower number have higher priority. Since it is not es-
sential to enable the CAN-network as soon as possible, the script was
linked to the init.d directory preceded by an S99 as follows:
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ln -s /etc/init.d/launchCAN.sh /etc/rc2.d/S99launchCAN.sh �
Note that, even if we enable the can1 device, linux shows it as the
can0 device since it is the first to be loaded. Also note that channel’s
bit-rate is set to the highest value possible (1Mbps) in order to get the
maximum performances from the system.

The development of a structured library for CAN communication
will be exposed in section 4.2.2.

2.3.6 Set-up of the Wi-fi network

As previously said, connection to the board’s control terminal is pos-
sible using an ssh key; the easiest way of doing it is with the provided
usb-cable since the board will automatically create an "ethernet-like"
connection, setting its IP to 192.168.7.2 and the PC’s IP to 192.168.7.1.
Alternatively the board can be connected using a longer ethernet ca-
ble. Once the board is installed onto the exoskeleton by the way, such
form of connection becomes problematic, of course, since wires might
interfere with its movements.

The board doesn’t have a built-in wi-fi interface, but it allows for the
installation of a wi-fi adapter through the USB host. Since the BBB’s
OS uses a quite old kernel (the used edition is 3.8.13), many wi-fi
adapters are not supported, so the device was chosen from a list of
tested devices ([36]). Considering the price, reliability and availability
of the products, a Belkin N150 adapter was chosen.

Such an adapter was used in combination with a TP-Link TL-WR841N
wireless Router. Since the communication between machines running
ROS is made by specifying the IP of the machine running the ros-
master (see 3.3.4.2), the IP of the machines connected to the network
needs to be uniquely associated to the MAC address of their network
cards. This objective can be easily achieved accessing the router con-
figuration and properly setting it’s DHCP service.

Since the ground and power planes of the BBB’s HDMI port are right
below the USB port, they can dampen the WiFi signals, leading to
poor performances of the adapter. This problem can be solved by an
extension cable that improves the distance between the adapter and
the board. Since the system needs to be as compact as possible and
the HDMI is never used, it was chosen to disable it trough the device
tree overlay. To do this, the file /boot/uEnv.txt on the BBB was modified
adding the following line:

cape_disable=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-

HDMIN �
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Figure 16: Example of Cometa’s EMG application

Finally, to make the connection to the created network automatic,
the file /etc/network/interfaces was modified adding the lines:

auto wlan0

iface wlan0 inet dhcp

wpa-ssid "Name_of_network"

wpa-psk "Password_of_the_network" �
2.4 other environment sensor

In order to better understand the gait-characteristics and the interac-
tions between the user and the device, other sensors are used during
the tests with the H2 exoskeleton.

2.4.1 EMG sensors

Electromyography (EMG) is an electrodiagnostic medicine technique
for recording and evaluating the electrical activity produced by skele-
tal muscles. EMG is performed using an instrument called an elec-
tromyograph, to produce a record called an electromyogram. An elec-
tromyograph detects the electrical potential generated by muscle cells
when these cells are electrically or neurologically activated.

To study muscle activity during the use of the H2-exoskeleton, a
"Cometa Wave Wireless EMG" system was used. This device allows for
readings from up to 32 EMG channels and 2 FootSwitch channels in
a completely wireless mode. Signals can be read with a frequency up
to 1MHz and recorded/forwarded thanks to a proprietary wireless
protocol direct connection between electrodes/receiving unit and a
dedicate software [20].

The device is equipped with a BNC trigger port that allows for
registration when a 3,3 V constant input is given as input.
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Figure 17: Technaid’s IMU

2.4.2 IMU sensors

An inertial measurement unit (IMU) is an electronic device that mea-
sures and reports a structure’s velocity, orientation, and gravitational
forces, using a combination of accelerometers and gyroscopes, some-
times also magnetometers. IMUs are typically used to maneuver air-
craft, but they also find application in mechanic and robotic.

To record and study the movements of a user wearing an exoskele-
ton, Technaid Tech IMUs are used. These sensors integrate three differ-
ent types of sensors, i.e. an accelerometer, a gyroscope and a magne-
tometer. A sophisticated and robust algorithm, calibrated also taking
into account changes in temperature, allows for a precise and robust
estimation of 3D orientation, even in changing environmental condi-
tions [55].

The device can connect to a PC or to the BBB through a USB cable
and allows a sampling frequency up to 200 Hz.

2.4.3 EEG sensors

Electroencephalography (EEG) is the recording of electrical activity
along the scalp. EEG measures voltage fluctuations resulting from
ionic current flows within the neurons of the brain [33].

EEG measurements usually require the combination of a pre-amplifier,
in the form of a helmet wore by the user, and of a second bio-signal
amplifier, usually in the form of a box.

EEG devices from g-tec were used by the group during experiments
with the H2 exoskeleton. No integration with the data coming from
the middleware was provided during this work. For more informa-
tion and technical specifications about the devices, see [40].
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It is not yet defined how and if these measures will interact with
the control of the exoskeletons.



3
T H E R O S C O M M U N I C AT I O N A R C H I T E C H T U R E

3.1 introduction

As described in the second chapter, an exoskeleton system is usually
composed of a large number of sensors, devices, and consequently,
many different programs that need to constantly interact with each
other for achieving the final control. This is true also for the BioMot
system, that, as was underlined in the introduction, is developed by
distinct groups forming an international team. Finding a standard-
ized way for interfacing all the different works done by each group
would considerably fasten de integration process. At the same time,
in order to make dissemination and knowledge transfer as easy as
possible, and in order to re-use already built software, programs’
structure should be as similar as possible to the current standards
used in Robotic.

A possible way to achieve this objectives is using a middleware
software. Following is a brief description of the ROS middleware and
of how its architecture can be applied to the BioMot exoskeleton.

3.2 middleware software

A middleware is a computer software that provides services to ap-
plications beyond those available from the operating system. A mid-
dleware can be considered as a layer bridging the gap between appli-
cations and low-level constructs, a novel approach to resolve many
of the open issues and drastically enhance application development.
A schematic representation of the operational level of a middleware
can be seen in figure 18: it adds a layer that glues together the net-
work hardware, operating systems, network stacks, and applications.
A complete middleware solution should contain a runtime environ-
ment that supports and coordinates multiple applications, and stan-
dardized system services such as data aggregation, control and man-
agement policies adapting to target applications, and mechanisms to
achieve adaptive and efficient system resources use [43].

Since Autonomous robots are complex systems that require the
interaction between numerous heterogeneous components (software
and hardware), the use of a middleware architecture is common and
particular types of middleware, known as robotic middleware, are
specifically designed for this applications. This middleware need to
manage the complexity and heterogeneity of the hardware and ap-
plications, promote the integration of new technologies, simplify soft-

27



28 the ros communication architechture

Figure 18: Middleware layers

ware design, hide the complexity of low-level communication and the
heterogeneity of the sensors, improve software quality, reuse robotic
software infrastructure across multiple research efforts to reduce de-
velopment cost [38].

A developer needs only to build the algorithm as a component,
after which the component can be combined and integrated with
other existing components. Furthermore, if he wants to modify and
improve his component, he needs only to replace the old one with the
new one and the rest of the application doesn’t need to be changed.
Therefore, development efficiency will improve due to the high mod-
ularity of the system. Also other instruments, like a simulation en-
vironment, are usually provided (or can be easily integrated) within
the middleware frame.

In [5] can be found a survey on twenty-one robotics middleware
frameworks, evaluated and compared from various points of view:
Player,CLARAty, ORCA, MIRO, UPNP, RT-Middleware, ASEBA,MARIE,
RSCA, OPRoS, ROS, MRDS, OROCOS, SmartSoft,ERSP, Skilligent,
Webots, Irobotaware, Pyro, Carmen, and RoboFrame. In particular
ROS(Robot Operating System), is becoming one of the most utilized
robotic middleware.
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3.3 robot operating system

3.3.1 Description and History

"The Robot operating System(ROS) is an open-source, meta-operating
system for robots. It provides the services expected from an operating
system, including hardware abstraction, low-level device control, im-
plementation of commonly-used functionality, message-passing be-
tween processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across
multiple computers." [13] ROS is similar in some respects to other
robot frameworks, such as the previously cited Player, YARP, Orocos,
CARMEN, Orca, MOOS, and Microsoft Robotics Studio.

ROS was originally developed in 2007 under the name Switchyard
by the Stanford Artificial Intelligence Laboratory in support of the
Stanford AI Robot STAIR (STanford AI Robot) project. From 2008 un-
til 2013, development was performed primarily at Willow Garage, a
robotics research institute/incubator. During that time, researchers at
more than twenty institutions collaborated with Willow Garage en-
gineers in a federated development model. In February 2013, ROS
stewardship transitioned to the Open Source Robotics Foundation.

3.3.2 Objectives of the project

The primary goal of ROS is to support code reuse in robotics re-
search and development. ROS is a distributed framework of processes
(also known as Nodes) that enables executables to be individually
designed and loosely coupled at runtime. These processes can be
grouped into Packages and Stacks, which can be easily shared and
distributed. ROS also supports a federated system of code Reposito-
ries that enable collaboration to be distributed as well. This design,
from the file system level to the community level, enables indepen-
dent decisions about development and implementation, but all can
be brought together with ROS infrastructure tools.

Other objectives include:

• Easy integration with other robot software frameworks.

• Light weight.

• Language independence(commonly used with C++ or Python).
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• Easy testing.

• Multy-platform (it’s actually available for UNIX and MAC sys-
tems, but efforts are being made to make it fully compatible
with Microsoft Windows OS).

• Scaling: ROS is appropriate for large runtime systems and for
large development processes.

3.3.3 Releases and contributions

All the code that builds ROS is completely open-source(BSD license),
contributions to its expansion are continuously made by a large com-
munity anyone can join (see 1.

A set of versioned ROS stacks forms a ROS Distribution. These
are structured as for example Linux distributions; much like them,
distributions make it much easier for developers to target a consistent
set of libraries to develop and test on. The released distributions up
to now are: ROS Indigo Igloo (July 22nd, 2014), ROS Hydro Medusa
(September 4th, 2013), ROS Groovy Galapagos (December 31, 2012),
ROS Fuerte Turtle (April 23, 2012), ROS Electric Emys (August 30,
2011), ROS Diamondback (March 2, 2011), ROS C Turtle (August 2,
2010), ROS Box Turtle (March 2, 2010). The details on the distributions
can be found in the project’s repository documentation. In this work
is used the last ROS edition (Indigo).

3.3.4 ROS concepts

ROS has three levels of concepts: the Filesystem level, the Computa-
tion Graph level, and the Community level [12].

3.3.4.1 Filesystem level

The filesystem level concepts mainly cover ROS resources that are
stored on disk, such as:

• Packages: Packages are the main unit for organizing software
in ROS. A package may contain ROS runtime processes (nodes),
a ROS-dependent library, datasets, configuration files, or any-
thing else that is usefully organized together. Packages are the
most atomic build item and release item in ROS.

• Metapackages: Metapackages are specialized Packages which
only serve to represent a group of other related packages.

• Package Manifests: Manifests (package.xml) provide metadata
about a package, including its name, version, description, li-

1 http://wiki.ros.org/Contributing)

http://wiki.ros.org/Contributing
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cense information, dependencies, and other meta information
like exported packages.

• Repositories: A collection of packages which share a common
VCS (Version Control Systems). Packages which share a VCS
share the same version and can be released together using the
catkin release automation tool bloom. Repositories can also con-
tain only one package.

• Message types: Message descriptions, stored in my_package/msg/
MyMessageType.msg, define the data structures for messages sent
in ROS.

• Service types: Service descriptions, stored in my_package/srv/
MyServiceType.srv, define the request and response data struc-
tures for services in ROS.

3.3.4.2 Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes
that are processing data together. The basic Computation Graph con-
cepts of ROS are described in the following:

• Nodes: Nodes are processes that perform computation. ROS is
designed to be modular at a fine-grained scale; a robot control
system usually comprises many nodes. For example, one node
controls a laser range-finder, one node controls the wheel mo-
tors, one node performs localization, one node performs path
planning, one node provides a graphical view of the system,
and so on. A ROS node is written with the use of a ROS client
library, such as roscpp(for C++) or rospy(for Python).

• Master: The ROS Master provides name registration and lookup
to the rest of the Computation Graph. Without the Master, nodes
would not be able to find each other, exchange messages, or in-
voke services.

• Parameter Server: The Parameter Server allows data to be stored
by key in a central location and is a part of the Master node.

• Messages: Nodes communicate with each other by passing mes-
sages. A message is simply a data structure, comprising typed
fields. Standard primitive types (integer, floating point, boolean,
etc.) are supported, as are arrays of primitive types. Messages
can include arbitrarily nested structures and arrays (much like
C structs).

• Topics: Messages are routed via a transport system with pub-
lish / subscribe semantics. A node sends out a message by pub-
lishing it to a given topic. The topic is a name that is used to
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identify the content of the message. A node that is interested
in a certain kind of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers
for a single topic, and a single node may publish and/or sub-
scribe to multiple topics. In general, publishers and subscribers
are not aware of each others’ existence. The idea is to decouple
the production of information from its consumption. Logically,
one can think of a topic as a strongly typed message bus. Each
bus has a name, and anyone can connect to the bus to send or
receive messages as long as they are the right type.

• Services: The publish / subscribe model is a very flexible com-
munication paradigm, but its many-to-many, one-way transport
is not appropriate for request / reply interactions, which are of-
ten required in a distributed system. Request / reply is done
via services, which are defined by a pair of message structures:
one for the request and one for the reply. A providing node
offers a service under a name and a client uses the service by
sending the request message and awaiting the reply. ROS client
libraries generally present this interaction to the programmer as
if it were a remote procedure call.

• Bags: they are a format for saving and playing back ROS mes-
sage data. Bags are an important mechanism for storing data,
such as sensor data, that can be difficult to collect but is neces-
sary for developing and testing algorithms.

The ROS Master acts as a nameservice in the ROS Computation
Graph. It stores topics and services registration information for ROS
nodes. Nodes communicate with the Master to report their regis-
tration information. As these nodes communicate with the Master,
they can receive information about other registered nodes and make
connections as appropriate. The Master will also make callbacks to
these nodes when this registration information changes, which allows
nodes to dynamically create connections as new nodes are run.

Nodes connect to other nodes directly; the Master only provides
lookup information, much like a DNS server. Nodes that subscribe to
a topic will request connections from nodes that publish that topic,
and will establish that connection over an agreed upon connection
protocol. The most common protocol used in a ROS is called TCPROS,
which uses standard TCP/IP sockets.

This architecture allows for decoupled operation, where the names
are the primary means by which larger and more complex systems
can be built. Names have a very important role in ROS: nodes, top-
ics, services, and parameters all have names. Every ROS client library
supports command-line remapping of names, which means a com-
piled program can be reconfigured at runtime to operate in a different
Computation Graph topology.
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3.3.4.3 Community Level

The ROS Community Level concepts are ROS resources that enable
separate communities to exchange software and knowledge. These
resources include:

• Distributions: ROS Distributions are collections of versioned
stacks that you can install. Distributions play a similar role to
Linux distributions: they make it easier to install a collection of
software, and they also maintain consistent versions across a set
of software.

• Repositories: ROS relies on a federated network of code reposi-
tories, where different institutions can develop and release their
own robot software components.

• ROS Wiki: The ROS community Wiki is the main forum for
documenting information about ROS. Anyone can sign up for
an account and contribute their own documentation, provide
corrections or updates, write tutorials, and more.

• Mailing Lists: The ros-users mailing list is the primary commu-
nication channel about new updates to ROS, as well as a forum
to ask questions about ROS software.

3.3.4.4 Higher level concepts

Some higher-level concepts are provided for helping the building of
larger systems on top of ROS:

• Tf package: provides a distributed, ROS-based framework for
calculating the positions of multiple coordinate frames2 over
time.

• Actionlib package: provides tools to create servers that execute
long-running goals that can be preempted. It also provides a
client interface in order to send requests to the server.

• Common msgs stack: even if the definition of messages can be
arbitrary, this stack provides a standard base message ontology
for robotic systems.

• Pluginlib package: provides tools for writing and dynamically
loading plugins using the ROS build infrastructure.

• Filters package: provides a C++ library for processing data us-
ing a sequence of filters.

• Urdf package: defines an XML format for representing a robot
model and provides a C++ parser.

2 http://wiki.ros.org/geometry/CoordinateFrameConventions

http://wiki.ros.org/geometry/CoordinateFrameConventions
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The biggest part of the reported informations derive from the ROS
documentation 3.

3.4 ros in biomot

As previously described, Biomot’s exoskeleton system is composed
of a large number of devices and programs that need to be integrated
in order to reach the final control objective. Since the number and
type of these devices is not yet completely defined and may change
with relation to the project evolution and with the case of application,
an architecture providing high modularity is required. The software
is also developed by different researchers from different countries, so
a widely-known standardized architecture that allows an easy inte-
gration is necessary.For the characteristics described in the previous
paragraphs, ROS stands as the ideal choice to achieve these objectives.

Figure 19 shows the diagram of a point to point communication
architecture (built for example using sockets) applied to the BioMot
system; it is clear how, in such a scenario, there is a very large number
of connections that need to be set-up. Furthermore, each node needs
to know the addresses and the available communication ports of all
the programs it wants to create a connection with. Adding and remov-
ing a node would require the modification of a consistent amount of
code in all the connected programs.

Figure 20 shows the diagram of a communication architecture based
on a generic middleware. The number of connections is drastically re-
duced, the point to point connections still exist, but their creation is
handled by the middleware.

Finally, figure 21 shows the diagram of a communication architec-
ture based on ROS. To interface itself with the middleware, each ele-
ment of the network needs to provide some interfacing nodes. Each
of this nodes only has to know the address of the ROS-Master node.
When starting, a node registers itself to the Master node, declaring
which kind of resources it will produce and/or which data it is ex-
pecting to receive from the middleware (Topics, Services,...). The ROS-
master node dynamically handles the point to point connections; it
also can store parameters that can be accessed my any member of the
middleware (parameter server).

The modularity of the ROS middleware leads to an architecture
that is elegant and easy to modify: the number of devices to connect
and the kinds of data to be exchanged can be easily changed. Further-
more, the node handling the high-level control can be easily moved
from one device to another or, depending on the project’s future ob-
jectives, be divided into more nodes implementing different activities.

3 http://wiki.ros.org/ROS/Concepts

http://wiki.ros.org/ROS/Concepts
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Figure 19: Point to point communication architecture

Figure 20: Middleware communication architecture
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Figure 21: ROS communication architecture

In particular, the following functionalities will be required:

• The nodes located onto the exoskeleton (whose execution is
set on the BBB(Beagle Bone Black) and whose implementation
will be described in section 4.3 and 4.4), provide an interface
between sensors, actuators and the BBB. Communicating with
these nodes, the system will be able to acquire information rela-
tive to the sensors embedded in the exoskeleton (positions, inter-
action torques, and pressures) and to send commands as posi-
tion/torque/stiffness set-points or alternatively as a selection/-
modulation of pre-memorized command-patterns. The frame
ROS-control will be investigated as a possible standardized way
of providing this interface (section 7.3).

• EMG node will acquire data trough the EMG sensors, trans-
mit them to a real-time neuromusculoskeletal model node that will
then communicate the estimated user-provided torques to the
high-level controller.

• IMU node will communicate data acquired from the Inertial
Measurement Unit to the control system.

• EEG node will collect data from the electroencephalography sys-
tem, elaborate them in order to estimate user’s intentions and
communicate its results to the control system.

• Tacit learning node will use the information provided by the
middleware in order to optimize the activity of the high-level
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control. The key goal of this component is to adapt the robot mo-
tions to the patients’ state through patients-robot interactions.
The interactions between patient and the robot imply not only
using the physical contacts (interaction torques) but also signal-
based interactions through biological signals (EMG and EEG).
Tacit learning is conceived to adapt the robot motions to the
patients’ intentions. Such controller is suitable for adapting an
initial generic walking pattern performed by the exoskeleton to
the changing specifics of the wearer.

• Data logging will be possible from any node connected to the
ROS master: thanks to the rosbag record function, any data being
published onto a topic can be recorded into a structure named
rosbag file. This structure also allows for data-playback and easy
data visualization. Data can still be easily recorded also in other
formats (as for example is explained in 4.3.3).

The high-level control strategy and its location in the system is not
yet fully defined; its development is out of the objectives of this work,
but for this reason the whole system’s communication architecture
must be as flexible and easy-to-change as possible.





4
I N T E R FA C I N G T H E H 2 E X O S K E L E T O N

4.1 introduction

As described in section 2.2.3, the HAL-board on the exoskeleton pro-
vides the lectures of the built-in exoskeleton’s sensors and 3 different
communication interfaces (CAN,Wireless and Bluetooth). This inte-
grated board, by the way, is not running an operative system and is
not suitable for interfacing the exoskeleton with a middleware archi-
tecture: it is ideal for handling the real-time low level control of the
exoskeleton joints, but lacks the complexity and computational-power
required for handling high-level interfaces. For this reason a second
board, the BeagleBone Black (described in section 2.3), is added to the
system. In the following sections the work made for interfacing this
board with the H2 exoskeleton will be described.

4.2 reading data trough the can network

Of the three communication interfaces described in 2.2.3, only one
provides the reliability required by a control messages flow: the CAN
network.

As was pointed out in section 2.2.3.3, CAN communication pro-
vides message integrity-control and is ideal for sending low length
messages in real-time.

In section 2.3.5, the steps required for setting-up the CAN connec-
tion on the BBB and the use of the candump utility for plotting the
acquired messages were described. Still, in order to forward the ac-
quired data trough the ROS middleware or to use them in other con-
trol contests, a proper CAN-reading library needed to be employed.
To achieve such objective SocketCAN’s API were used.

4.2.1 SocketCAN API

"The SocketCAN package is an implementation of the CAN proto-
cols for Linux. While there have been other CAN implementations
for Linux based on character devices, SocketCAN uses the Berkeley
socket API, the Linux network stack and implements the CAN device
drivers as network interfaces. The CAN socket API has been designed
as similar as possible to the TCP-IP protocols to allow programmers,
familiar with network programming, to easily learn how to use CAN
sockets" [31]. A device driver for CAN controller hardware registers
itself with the Linux network layer as a network device, so that CAN

39
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frames from the controller can be passed up to the network layer
and on to the CAN protocol family module and also vice-versa. Also,
the protocol family module provides an API for transport protocol
modules to register, so that any number of transport protocols can be
loaded or unloaded dynamically. This implementation allow many
processes to access the same device at the same time. The previously
cited candump and cansend functions were built using SocketCAN.

In order to start a communication with SocketCAN, a socket needs
to be initialized using the required protocol and bound−connected to
a specific CAN device. Frames of data can be sent−received using an
adequate frame type (struct canframe) and the read() and write()
functions. In particular the raw socket protocol was chosen for the
communication. All the code provided by SocketCAN’s api is written
using the C language.

4.2.2 Creation of a structured communication library

In order to get a better software-structure and to make CAN com-
munication simpler for high-level programs, a C++ can-reading class
was developed that allows an abstraction from the underlying Socket-
CAN implementation. To build these functions (and in general all the
functions that require threading), the standard threads defined in the
standard C++11 were used. This implies that, to compile the devel-
oped code, a compiler supporting the C++11 standard is required.

The files to reference for this implementation are (see appendix
A.1):

• CANbusInterface.cpp and header;

• CANbusReader.cpp and header;

• DataFromCANbus.cpp and header.

An UML scheme showing the relations between the created classes
and a flow diagram for the reading process are in figure 22.

In CANbusInterface is implemented the low level interface using
the SocketCAN API. A CANbusInterface class is built, wich provides
the functions: void read(can_frame currentData) and void canWrite(const
can_frame dataToWrite). The SocketCAN socket is initialized in the con-
structor of the class, so it doesn’t need to be open for every sent/received
message and only needs to be closed at the end of the communica-
tion, when the object is destroyed, reducing the number of operations
needed for sending/receiving data.
In CANbusReader, a dynamic object named CANbusReader is de-
fined. This object declares an object of type CANbusInterface, canbus-
Interface and uses it in its operator function for reading a single data
from the CAN bus.
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Figure 22: UML graph for the CAN library and flow diagram for the reading
process
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It then makes a time-stamp of the reception-time and uses a func-
tion named addData for pushing the acquired data into a communi-
cation queue. The communication queue is necessary since the thread
receiving the data (this thread), might be faster than the thread read-
ing them, if a queue is not implemented, data might be lost. Since
a custom queue of communication is used instead of the queues de-
fined in the standard library, before being published into the queue,
data need to be stored in a structure named QueueData, that makes
use of templates for keeping its data-type generic. This particular
type of queue allows for more than one thread to read from it by
subscribing to a reading list; in this particular case only one thread
needs to access the read data, but its utilization makes an eventual
code-expansion easier. Also, the access to the queue is automatically
done in mutual exclusion without the need of declaring other mutex
variables; this makes the utilization of the queue easier for a program-
mer.
in DataFromCANbus’ object, the cited queue is declared and its type
is set to be a can frame structure. This object only has a data-encapsulation
function.

All the functions implementing the queue’s structure were not writ-
ten by me and hence won’t be commented.

In order to use this code from another thread to read messages,
the DataFromCANbus.h and CANbusReader.h need to be included; a
static object of type DataFromCANbus needs to be declared as global
variable (so it can be shared with the created thread) and a CANbus-
Reader object needs to be declared passing the DataFromCANbus’ ob-
ject as parameter. The reading thread then needs to be executed load-
ing the dynamic object of type CANbusReader. The calling thread
must then subscribe to the reading queue, which is part of dataFrom-
CANbus and finally read CAN data using the pop() function of the
queue. Ex:

static DataFromCANbus dataFromCANbus;

...

int main(int argc, char** argv){

...

CANbusReader canbusReader(dataFromCANbus);

std::thread canbusReaderThread(std::ref(canbusReader));

dataFromCANbus.queue.subscribe();

while(programOk){

DataFromCANbus::FrameType newData = dataFromCANbus.queue.

pop();

... /* use newData */

}

} �
If no data is available, the pop() function will block the thread, but will
also make it release the use of the processor, avoiding busy-waiting
phenomenons.
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4.3 ros nodes for receiving data

4.3.1 Structure of the package

As described in 3.3.4, when using the ROS middleware, a program
has the logical function of a node. All the nodes that need to work
together to achieve an objective are grouped into the same package.
Tu build these nodes, the most common type of workspace was used:
the catkin workspace. When using this workspace, each package needs
to be described by a xml manifest and a CMakeLists.txt file. The first
contains general informations about the package: its name, its au-
thors, its license, the pre-required dependences for its compilation
etc. The second includes the required informations for compiling its
nodes, its customized messages, services, the external packages and
libraries to be included etc.

Both these files need to be included into a folder, which will also
include all the developed nodes related to that package. This package-
folder will then be located in the src folder of the catkin workspace.
The source file for the package’s nodes should be located in a sub-
directory named src. In order to separate the code related to the nodes
running on the BBB from that of the nodes running on another system
(generally a PC), two source folders were created: src and src_bbb. The
files to be included (header files) should be in a directory named
include, the customized messages in a msg folder, the services in a srv
folder and the launch files in a launch folder. The package including
the nodes related to the h2 exoskeleton was named h2Interface.

4.3.2 H2ros node

The first node to be created inside the h2Interface package was the
H2ros node. This node, running on the BBB, has the function of receiv-
ing data from the exoskeleton (from the HAL board) and to forward
them to the middleware. In order to do so, it makes use of the com-
munication library described in 4.2.2 for reading data from the CAN
network. The data sent by the HAL board are the ones described in
figure 9; the program can understand which kind of message is re-
ceived checking its identifier, it then puts the data in their related
ROS messages and publishes them on a ROS topic.

There are many possible ways for structuring data before they are
published on topics:

• The most efficient way, from a computational point of view,
would be to build a single customized message, including all
the informations to be forwarded (angles, torques and switches),
using variables as small as possible (8 bit integers can describe
all the received informations). Some simple tests, made publish-
ing faked data as fast as possible and measuring the required
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transmission time for a fixed number of them, confirmed this
is the fastest transmission technique. At the same time this is
also the less modular way for publishing data: if any of the
transmitted information is not of interest for the required op-
eration (experiment, control strategy etc.), its transmission on
the middleware can’t be avoided, leading to an inefficient com-
munication. Also, being the published message of a customized
type, its implementation (msg file) needs to be specified on all
the receiver nodes, making the code portability complicated.

• Another way for publishing the acquired information would be
defining three different customized messages: one for the an-
gles, one for the torques and one for the foot-switches. This
solution makes the transmission more modular: if no node re-
quires a particular information (ex foot-switches values), such
information is not transmitted on the middleware. On the other
hand, this solution is computationally more expensive than the
previous one when all the informations are being read and it
still makes use of customized messages.

• A third publishing technique consists of the definition of two
messages: a jointState message and a foot-Switches message.
JointState messages are standard messages commonly used in
ROS for describing the particular state of a joint; its implemen-
tation is as follows:

Header header

string[] name

float64[] position

float64[] velocity

float64[] effort �
Information related to the angles can be stored in the position
array, torques can be put in the effort’s one while no informa-
tion about joints’ velocity needs to be transmitted. This mes-
sages don’t need to be defined by their users (receiving nodes)
since they are a standard message usable including sensor_ ms-
gs/JointState.h. Being a standardized message, they can be easily
integrated with other ROS frameworks (they are also used by
the JointStateControllers defined in ROS-control) and their porta-
bility is easier. On the other hand, the modularity of the com-
munication is not as good as in the second case and, using a
float64 type instead of an int8, they are also less-efficient from a
computational point of view.

Since switching from a publishing mode to another doesn’t need
a deep modification of the code and since transmission times on the
ROS topics are actually not critical (each transmitted message has
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already got a time-stamp of the time of reception from the CAN net-
work in its header), the third option was chosen. If publishing times
should, in a second moment, become critical, one of the other two
options should be reconsidered.

Two publishers and two topics are then defined for publishing the
messages: jointsPublisher publishes the jointState messages onto the
jointsTopic, while switchesPublisher publishes the switchesMessages
onto the switchesTopic.

When a message is published to a topic, it is broadcasted to all the
nodes who subscribed to that topic; the rosmaster handles the low-
level connection (usually creating TCP-IP communication sockets), so
the user doesn’t need to specify any address.

4.3.2.1 Available options

The node can be launched specifying a frequency reduction factor: if
for example "-rf 2" is passed as parameter, only one message every
two will be published on the topics, getting a publishing frequency
of 50 Hz instead of 100 Hz.

4.3.2.2 Trigger signal-handling

Another important feature provided by this node is the capability of
handling a trigger signal: when the pin P9-42, whose related to the
BBB’s port GPIO7, detects a transition from 0V to 3,3V, an interrupt is
raised and the program handles it by resetting the acquisition time to
0. This functionality is essential for data synchronization with other
devices.

In order to achieve this objective, a dedicated thread, named trigger-
Waiter was created. When this thread is created, it starts the execution
of the function resettingId(). This function uses some functions from
the Glib2 library to monitor the file "/sys/class/gpio/gpio7/value". This
file is connected to the pin status if the following commands were
previously executed as superuser:

echo 7 > /sys/class/gpio/export

echo both > /sys/class/gpio/gpio7/edge �
This can be done automatically at boot-time by creating a script as

was explained in 2.3.5. In particular the file will contain the value "0"
when a low tension level is applied and the value "1" when a high
tension level is detected.

When the file changes the function onTriggerEvent is executed, it
checks the value in the file and if it is "1" (meaning that the tran-
sition was positive), it updates the shared variable startTime to the
current time of the system. Since startTime is made of 2 values (sec-
onds and nanoseconds) that aren’t read in a single instruction and is
shared between 2 threads, its access needs to be protected by a mutex
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variable, named time_mutex, in order to avoid interleaving problems.
Since the time of reception stored in the messages is calculated as the
difference between the absolute time of reception and the startTime,
updating startTime implies making it start back from 0. If a similar
operation is done on the other devices recording data from the ex-
oskeleton (ex EMG acquisition device), this time can be selected as
the start-time of the experiment and data-synchronization is easily
achieved.

The files related to the H2ros node are H2ros.cpp, interruptFunc-
tions.cpp and interruptFunctions.h (appendix A.1).

4.3.3 Receiving nodes

In order to visualize and eventually log the data transmitted by the
exoskeleton on another device connected to the middleware, other 3

nodes were created: anglesReceiverUi, torquesReceiverUi and switches-
ReceiverUi.

Each of these nodes provides a GUI (Graphic User Interface) to vi-
sualize the related data and eventually allow the user to log them in
a specified text file. To design these interfaces, the qt libraries and the
Qt-creator software were used.

Qt is a comprehensive C++ framework for developing cross-platform
GUI applications using a "write once, compile anywhere" approach.
Qt lets programmers use a single source tree for applications that can
run on Windows, Mac OS X, Linux, Solaris and other systems [47].
Qt uses standard C++ with extensions including signals and slots
that simplifies handling of events, and this helps in development of
GUI. Qt-creator provides an interface that helps programmers in the
development of a GUI, it can also be used as a program editor, allow-
ing for compilation and debugging, but in order to integrate its GUIs
in the ROS nodes, and build them with the catkin_make command,
Cmake was used for compilation. This could be achieved modifying
the CMakeLists files of the package as suggested in [56].

4.3.3.1 Angles receiver

The GUI created for receiving angles data can be seen in figure 23. To
read data from a ROS topic, a dedicated thread is created in order to
don’t block the execution of the GUI running in the main program.
A reader subscribes to the jointsTopic and invokes the function chat-
terCallback every time a message is read. This function updates the
values of a structure shared with the GUI thread with the newly read
values; if the log is enabled trough the GUI, it saves the acquired data
in a text-file whose location is also specified by the GUI. The values
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Figure 23: GUI provided by anglesReceiverUi

and their related time-stamps are separated by a white space. In or-
der to don’t open and close the file each time arrives, a log-object is
created that closes the file only when it’s destructor is invoked. This
form of data-storage is an alternative to the already described bag-
files, which is not as powerful but easier to use.

The GUI thread periodically updates the values of the LCD num-
bers with the values of the shared structure.

The files related to this node are anglesReceiverUi.cpp, anglesrwin-
dow.cpp, anglesrwindow.h and anglesrwindow.ui (appendix A.1).

4.3.3.2 Torques and switches receivers

The GUIs created for receiving torques and foot-switches data can be
seen in figure 24.

These nodes almost provide the same functions as anglesReceiverUi,
with the only difference that switchesReceiverUi reads the data from
switchesTopic.

The files related to these nodes are: torquesReceiverUi.cpp, torquesr-
window.cpp, torquesrwindow.h, torquesrwindow.ui, switchesReceiverUi.cpp,
switchesrwindow.cpp, switchesrwindow.h, switchesrwindow.ui (appendix
A.1).

A graph describing the relation between the nodes, obtained using
the rqt_graph function, can be seen in figure 25.
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Figure 24: GUIs provided by torquesReceiverUi and switchesReceiverUi

Figure 25: Relations between the acquisition nodes
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4.4 nodes for sending data to the exoskeleton

4.4.1 Command sender UI

In order to test the possibility of sending single commands to the
exoskeletons, a ROS node named commandSenderUi was developed.
This node allows the user to easily send all the messages accepted by
the exoskeleton (see figure 8 and the following explications) trough a
GUI. This GUI too is built using the Qt libraries as explained in the
previous section. A generic CAN-frame message is properly filled
with the settings provided by the user and when it’s ready, the mes-
sage is published on the senderTopic topic. In order to allow all the
possible options, more than a window is defined for this program.
The related code files are: commandSenderUi.cpp , senderwindow.cpp
with header and ui, controltype.cpp with header and ui, chooseMo-
tor.cpp with header and ui, selectStifness.cpp with header and ui ,read-
SetPoint.cpp with header and ui, anglesLimits.cpp with header and ui.
The windows forming the GUI are in figure 26.

4.4.2 H2ros sender

The H2rosSender node, running on the BBB, creates a listener for
the senderTopic topic and handles the reception of a genericFrame mes-
sage forwarding its content on the CAN network (to the exoskele-
ton). To transmit the frame it makes use of the send function of the
library described in section 4.2.2. All the code related to this node is
in H2rosSender.cpp.

A graph describing the relation between these nodes can be seen in
figure 27.

4.4.3 Pattern sender UI and H2 pattern sender

To test the possibility of continuously sending position set-points
from the BBB, instead of using the pre-memorized pattern located on
the H2-HAL board, the nodes H2patternSender, running on the BBB
and patternSenderUi, running on a remote PC, were developed. The
patternSenderUi node provides a user interface that allows the defini-
tion of the joints to be actuated, of the pattern’s velocity and joints’
disabling. The velocity can be changed dynamically, while to change
the joints to be actuated, message sending needs to be stopped. The
communication between the nodes is made with a customized mes-
sage, named patternCommand, that is published on a patternTopic topic.
This message doesn’t include the position set-points for the joints
since timings in publishing and reading on standard ROS topics are
not precise enough for a control task (a solution for timing precision
might be achieved using real-time ROS topics, but the physical com-
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Figure 26: Windows created in commandSenderUi

Figure 27: Relation between commandSenderUi and H2rosSender
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munication with the BBB trough wi-fi would still be unreliable). The
patternCommand message includes an array specifying the joints to
be actuated (a value of 1 means that message-sending for the corre-
sponding joint is activated, 0 means deactivated), an array specifying
the joints to be disabled (a value of 1 means that the corresponding
node needs to be disabled), a velocity value (that can vary between
1 and 10) and a reset value, that is set to 1 when message sending is
enabled or re-enabled, to let H2patternSender node know that it needs
to restart sending the pattern from the initial set-point.

The position set-point values are stored in a bi-dimensional array
(pattern) defined in H2patternSender. For each joint, 51 angular posi-
tions are used to define a single walking step. H2patternSender peri-
odically loads one of these values for each of the activated joints and
sends them to the exoskeleton trough the CAN network. The period
between a message and the other depends on the velocity setted. No
command is sent when all the joints are disabled.

When a patternCommand message is received, a dedicated thread
(commandThread) handles the reception. This thread shares with the
main thread the counter value, that specifies which value in the set-
point’s array has to be loaded, a selectedJoints array, specifying to
which joints message-sending is enabled, a timer, defining the period
for message-sending and a mutex variable (send_mutex) that needs to
be locked when the shared values are modified. The commandThread
checks if the reset value in the message is set to 1 and if so resets the
counter variable to 0. It then checks if any of the joints needs to be
disabled and eventually sends the proper can-disabling message to
the exoskeleton. Finally, it switches the velocity value setting the timer
value accordingly.

The GUI provided by patternSenderUi is showed in figure 28.

Even if H2patternSender is not running in real-time, starting it with
a high priority has demonstrated to allow for a correct timing in
message-publishing. In particular, at the highest velocity, a message
needs to be published every 20ms (corresponding to about one step
per-second). In order to understand if publishing timings are correct,
a reception program (H2patternReceiver) was created. This program,
running on a second BBB connected to the publishing one trough a
CAN network, records the times of message-reception and calculates
the time differences between one set-point and the other. A maxi-
mum deviation of 0,4ms from the scheduled time was recorded dur-
ing the tests. Since the dynamics of the process are relatively slow,
such worse-case deviation has no influence on the device’s behaviour.

If a real-time underlying kernel is available, (see section 7.4 for ex-
amples), the process can be easily modified to run in real-time mode,
reducing time-deviations.
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Figure 28: GUI provided by patternSenderUi

Figure 29: Relation between patternSenderUI and H2patternSender

These nodes are not yet providing a standard interface for sending
data to the exoskeleton from a high-level controller, but are created
to test the feasibility of correctly sending set-points from an external
device as the BBB.

A graph describing the relation between these nodes can be seen in
figure 29.

4.5 compiling the nodes

Thanks to the catkin workspace structure, all the nodes can be compiled
by simply running the command catkin_make in the catkin_ws folder.

To compile the GUI nodes running on the remote PC, the qt libraries
(freeware) must be set-up on the system.

To compile the H2ros node the glib2 library needs to be set-up on
the BBB, it can be done by running:

sudo apt-get install libgtk2.0-dev �
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4.5.1 Cross-Compiling for the Beagle Bone Black

Since the BBB uses an ARM architecture, programs compiled on a PC
(x86 architecture) can’t be executed on-board. Since the compilation
on a PC is faster (due to the use of a faster processor), it can be useful
to use a cross-compile technique. "To cross-compile is to build on one
platform a binary that will run on another platform. When speaking
of cross-compilation, it is important to distinguish between the build
platform on which the compilation is performed, and the host plat-
form on which the resulting executable is expected to run."[59]. In
this case the build platform is a generic x86 PC and the host platform
is the BBB.

A description of how to cross-compile for the BBB using Eclipse
IDE could be found in [48]. In particular the gcc-arm-linux-gnueabi
compilation tool-chain was set-up as follows:

• C++ compiler: arm-linux-gnueabihf-gcc-4.8

• C compiler: arm-linux-gnueabihf-g++-4.8

• C++ LINKER: arm-linux-gnueabihf-g++-4.8

• ASSEMBLER: arm-linux-gnueabihf-as

The cross-compilation of single programs could be achieved eas-
ily, but a way for cross-compile a full catkin-workspace could not be
found.

4.6 launching the nodes

To Launch multiple nodes, ROS provides the roslaunch function. This
tool takes as input a launchfile (a XML configuration file) and a pack-
age in which that file is defined. As described in [14], launchfiles have
multiple functions, in particular they can specify the nodes to be
started with the relative options and parameters.

Nodes can be launched in different ways, depending on where the
rosmaster execution is setted.

One option is to launch the rosmaster node on the BBB; in this case
the following script (LRosCore.sh) is executed:

#!/bin/bash

source /opt/ros/indigo/setup.bash

source /home/ubuntu/catkin_ws/devel/setup.bash

export ROS_IP=BBB_IP (192.168.0.102 if connected via usb,

192.168.0.102 via wireless)

export ROS_MASTER_URI=http://BBB_IP:11311

roslaunch h2Iterface BBBLauncher.launch �
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This script sources the required ROS files, sets the variable ROS-
MASTER-URI to its IP and finally launches the nodes trough the BB-
BLauncher.launch file wich is defined as:

<launch>

<node pkg="h2Interface" name="H2rosSender" type="H2rosSender"/>

<node pkg="h2Interface" name="H2ros" type="H2ros" args="-rf 1"/>

<node pkg="h2Interface" name="H2patternSender" type="H2

patternSender"/>

</launch> �
Roslaunch automatically starts the rosmaster if it can’t find one al-

ready running in the machine. The execution of the script can be done
manually trough SSH or automatically at start-up running "crontab-e"
and adding the line:

@reboot /path/to/script �
To run the nodes providing the user interfaces on a remote PC

using the master launched on the BBB, the following script (LGUI.sh)
can be used:

#!/bin/bash

source /opt/ros/indigo/setup.bash

source /home/portatile/catkin_ws/devel/setup.bash

export ROS_IP=PC_IP(192.168.7.1 if connected via USB)

export ROS_MASTER_URI=http://BBB_IP:11311

roslaunch h2Interface Gui.launch �
The script sources ROS files and specifies the address of the ROS mas-
ter node (this procedure allows ROS to run across multiple machines),
it then runs the launchfile Gui.launch:

<launch>

<node pkg="h2Interface" name="anglesReceiverUi" type="

anglesReceiverUi"/>

<node pkg="h2Interface" name="torquesReceiverUi" type="

torquesReceiverUi"/>

<node pkg="h2Interface" name="switchesReceiverUi" type="

switchesReceiverUi"/>

<node pkg="h2Interface" name="commandSenderUi" type="

commandSenderUi"/>

<node pkg="h2Interface" name="patternSenderUi" type="

patternSenderUi"/>

patternSenderUi

</launch> �
If the launch of some nodes is not required, they can simply be com-
mented in the corresponding launchfile.

If the rosmaster node wants to be set on another machine, the nodes
running on the BBB can still be launched manually trough SSH set-
ting the correct ROS-MASTER address in the LRosCore script. Other-
wise they can be launched trough roslaunch directly from the remote
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PC as explained in [15]. In such case an "environment-loader script"
needs to be available on the BBB to source the ROS files; the remote
launcher will automatically connect trough SSH to the BBB, run this
script and spawn the required nodes.

4.7 repository for the code

All the created code was uploaded to a git repository on BitBucket.
Using a repository allowed for easy code sharing between project
members, easy revision control and easy "roll-back" to previous code-
versions. Informations on how to use the repository structure can be
found on the Git tutorial-documentation site [23].





5
A C Q U I S I T I O N E X P E R I M E N T S

5.1 introduction

In order to get data useful for an application test of the RT-neuromusculo-
skeletal model, some experiments involving the combined use of the
exoskeleton and of the EMG sensors were realized. This chapter de-
scribes the experimental set up and reports a small sample of the
acquired data.

5.2 hardware involved

The experiments involved the use of a H2 exoskeleton, described in
2.2, that was connected trough a CAN network to a BBB board, de-
scribed in 2.3. A Wi-fi connection between the BBB and a notebook
running ROS was created as explained in 2.3.6. This PC was then con-
nected to the Cometa’s EMG acquisition system described in section
2.4.1. The application of the exoskeleton to the user allows enough
space for the collocation of the EMG sensors on the legs (see figure
30). Since all the EMG sensors can communicate to the acquisition
system via wi-fi, no communication cable needs to be used during
the experiment. Also, being both the exoskeleton and the BBB pow-
ered by a battery, no power cable had to be used. The users were
consequently able to move without any cable-interaction.

5.3 synchronization of devices

Since data relative to the exoskeleton joints and data from the EMG
signals are read by separated devices, a synchronization system had
to be used. As described in section 4.3.2.2, the BBB is configured for
receiving a trigger signal with a tension level of 3,3V on the port
GPIO7 (pin P9-42); when a hi-to-low transition is detected, the time-
stamp value included in the acquired messages is reset to 0. At the
same time, the Cometa acquisition device can be set to log data only
when a constant 3,3V signal is provided on its trigger port.

It is then possible to use an extern voltage source to generate the
trigger signal: a manual switch enables the output of the source for
both the BBB (trough two simple signal cables) and the Cometa (trough
a BNC connector). Alternatively, a second BBB can be used to rise the
trigger signal through a GPIO pin. Once the BBB (installed on the
exoskeleton) has registered the "time 0",it can be disconnected from
the trigger generator and the experiment can begin.
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Figure 30: Combined use of the H2 exoskeleton and of the EMG sensors

Also the PC acquiring the EMG data provides an interface with the
middleware. The Cometa receiving unit provides both analog and
digital (USB) outputs. The latter option was preferred, as it did not
require additional A/D conversion hardware; however, drivers and
API are only available for Windows operating system. Since the appli-
cation of ROS to such OS is still in an experimental stage, a different
middleware, YARP (Yet Another Robot Platform), was used to inter-
face the EMG acquisition software. Thanks to recent efforts for inter-
operability between the two middleware, this YARP-based Cometa
EMGreader module communicates with the roscore, and publishes
ROS-compatible messages to a /emgData ROS-topic.

A third notebook, running a Linux OS, hosts the ROS-master pro-
cess, runs CEINMS (Calibrated EMG-Informed Neuromusculoskeletal Mod-
elling Toolbox) and displays the acquired data trough the rqt_plot util-
ity.

Due to the modularity of the middleware, similar experiments could
be made with a different distribution of the running nodes; for exam-
ple both the ROS-core and the CEINMS model could be executed on
the BBB. Also different kind of EMG sensors could be used as long
as they provide an appropriate interface with the middleware.

Data-log can consequently be made on any PC connected to the
middleware (it can be for example the same one visualizing the data)
in a rosbag file or in a txt format using the GUI of the acquisition
nodes (only for the data from the exoskeleton).
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Figure 31: Scheme for device connection during the experiments

Figure 32: Sample of the acquired angles data

The information from the devices can be easily correlated since they
share the same starting-time.

A schematic structure of the implemented solution can be seen in
figure 31.

5.4 acquired data

The experiments were realized with four healthy subjects. A sample
of the data acquired trough the anglesReceiverUi node while the ex-
oskeleton is walking is in figure 32.

Each message has a time distance of 10 ms from the previous, so
the sending frequency of 100Hz is respected. Using a larger number
of messages confirms the correctness of the frequency and that no
"holes" are present in the can-communication.

Using bag files for data logging allows for later data-playback and
easy data visualisation. Using the rqt_plot or the rqt_bag tools, static
or dynamic graphs of the acquired data can be plotted.
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Figure 33: Sample of the acquired right hip angles

Some examples of acquired position data for a healthy user during
a walking period of 20 seconds are shown: in figure 33 are the right
hip angles, in figure 34 the right knee angles, in figure 35 right ankle
angles, in figure 36 left hip angles, in figure 37 left knee angles and
in figure 38 left ankle angles.

The figures show how acquired data are not affected by anomalies
as noise or "holes".

Twelve EMG sensors were applied to twelve different muscles dur-
ing the experiments, some examples of the acquired EMG data during
the same period of time are in figure 39 and 40.

Analysing these data and relating them with the acquired position
angles is not an objective of this work, but the periodicity of the signal
can be easily observed and related with the walking period.
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Figure 34: Sample of the acquired right knee angles

Figure 35: Sample of the acquired right ankle angles
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Figure 36: Sample of the acquired left hip angles

Figure 37: Sample of the acquired left knee angles
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Figure 38: Sample of the acquired left ankle angles

Figure 39: Sample of the acquired EMG data (Gracilis right muscle)
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Figure 40: Sample of the acquired EMG data (Lateral Gastrocnemius right
muscle)



6
I N T E R FA C I N G C O M P L I A N T A C T U AT O R S

6.1 introduction

As was pointed out in section 2.2, the H2 exoskeleton is only a testing
device used by Biomot to gather information on the gait process and
about the human-robot interaction.

A new exoskeleton, that should provide an improvement in both
energy efficiency and in the human-robot safe interaction, is being
developed by the consortium. One of the most important differences
between the H2 exoskeleton and the new developed one, that allows
for the achievement of such objectives, is the use of compliant actuators.

Following is a brief description of compliant actuators and of the
MACCEPA actuators used my BioMot. It is then presented the im-
plementation of the CAN-based communication protocol and of the
ROS nodes (with graphic user interfaces) used to communicate with
the actuators.

6.2 compliant actuators

"In classical robotic applications, actuators are preferred to be as stiff
as possible to make precise position movements or trajectory tracking
control easier (faster systems with high bandwidth). The biological
counterpart is the muscle that has superior functional performance
and a neuro-mechanical control system that is much more advanced
at adapting and tuning its parameters. The superior power-to-weight
ratio, force-to-weight ratio, compliance, and control of muscle, when
compared with traditional robotic actuators, are the main barriers
for the development of machines that can match the motion, safety,
and energy efficiency of human or other animals. One of the key
differences of these systems is the compliance or springlike behaviour
found in biological systems.

In the growing fields of wearable robotics, rehabilitation robotics,
prosthetics, and walking robots, variable stiffness actuators (VSAs) or
adjustable compliant actuators are being designed and implemented
because of their ability to minimize large forces due to shocks, to
safely interact with the user, and their ability to store and release en-
ergy in passive elastic elements. This new type of actuator is not pre-
ferred for classical position-controlled applications such as pick and
place operations but is preferred in novel robots where safe human-
robot interaction is required"[44].

65



66 interfacing compliant actuators

Figure 41: flat MACCEPA concept scheme

6.3 biomot’s actuators

"Two novel modular compliant actuators will be used for actuating
the ankle and the knee joint of the exoskeleton. The first actuator
is a flat version of the MACCEPA. The second actuator consists of
an actively controlled additional spring working in parallel with the
flat MACCEPA. Novelty of the proposed MACCEPA designs, when
compared to both previous and current designs, is the introduction
of a ball screw that drives the lever arm of the actuator. Introduction
of the spindle drive leads to better inertia distribution of the actuator,
which improves the mechanical and control efficiency of the actuator
and brings more comfort and safety for a wearable device" [54]. The
flat-MACCEPA concept scheme can be seen in figure 41.

As illustrated , the actuator consists of three bodies: Link 1, Link
2 and the lever arm. Its working principle is based on force compo-
nent, exerted by the spring, acting on the Link 2 (consider Link 1 to be
grounded), and thus trying to align Link 2 with the lever arm. If these
two are aligned, no force, and thus no torque, is exerted and actuator
is in its equilibrium position. Stiffness of the actuator can be changed
by changing pre-tension/compression of the spring (depending on
whether tension or compression spring is used), thus effectively alter-
ing MACCEPA’s characteristic.

Both the actuators were designed to give a peak torque of 25Nm
,chosen to guarantee about a 50% assistance to muscle weakness.

During this work only the ankle actuators were available for testing
(figure 42). The mass and inertia of this prototype actuators still needs
to be optimized.

In these actuators the angular positions of the lever-arm and of the
second link can be read through respectively a magnetic and an optic
encoder. In a second moment, a further sensor reading the length of
the spring or the force that it exerts might be added to the system.
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Figure 42: Picture of the prototype for ankle’s actuation
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6.3.1 Variable compliance

An option for the Biomot group, is to improve the capabilities of the
actuators making their physical stiffness dynamically variable (Vari-
able compliance actuators). "Variable compliance actuators are actuators
which are capable of passively regulating their physical compliance.
Obvious advantages that a variable stiffness implementation offers
when compared with the fixed passive compliance units are the abil-
ity to regulate both stiffness and position and the wide range of stiff-
ness and energy storage capability. The advantages gained by this ca-
pability are clearly shown in mammals: muscles and tendons change
their stiffness as a function of the motion/task they have to perform.
Arm muscles assume a stiff configuration when the arm has to per-
form an accurate task, while they are compliant when they are per-
forming the "loading" phase of a throw. "[49] To achieve this objective,
a second motor for the regulation of the compression of the actuator’s
spring needs to be added to the system (forming in this way a proper
MACCEPA actuator). This modification leads to an improvement in
the system’s complexity, weight and cost, so it’s application is not still
certain and needs to be carefully evaluated. Also since a lot of force is
required for stiffness changes on the spring, such modifications can’t
be instantaneous and might require more than a step-cycle.

6.4 interfacing the actuators

In order to gather information about the actuator’s behaviour and to
develop a low-level torque controller, an interface allowing the user
to easily visualize data coming from the sensors and to set the con-
trol parameters had to be developed. The same solution had do be
provided for the MACCEPA actuators used in the H2R (Integrative ap-
proach for the emergence of Human-like locomotion) project [42] to actuate
the lower limbs of a human-like robot. To save time and resources, a
generic interface able to handle both the solutions was designed.

The MACCEPA actuators interact with 2 embedded boards, one pro-
viding power-handling and the other providing signal-handling and
control trough a PIC microprocessor. On these boards the encoders
outputs are read and the low-level controller is run. The control board
can communicate with other devices trough a CAN network. A pic-
ture of the used control board is in figure.43

6.4.1 Data structurization

The firmware running on the boards was programmed to send data
as shown in figure 44. The data were structured in order to minimize
the number of CAN-messages to be sent and consequently reduce
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Figure 43: Embedded control board for the MACCEPA actuators

the risk of saturation on the CAN-bus once all the actuators will be
connected.

The sent data are:

• Current absorbed by the motor (mA);

• Temperature of the board (◦C);

• Velocity of the motor(rpm);

• Force sensed by the load-cell (N);

• Position of the fixed link (deg);

• Position of the lever arm (deg);

• Controller set-point (depending on the chosen controller);

• Controller actuation;

• Controller process variable.

While the data that can be sent to the embedded board are

• Kp control parameter (and type of control selection);

• Ki control parameter;

• Kd control parameter;

• Set-point;

• Duty cycle set-point;

• Control disable message.

Some extra-space is reserved for future utilization.
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Figure 44: Can messages sent (green) and received by the actuators

6.5 ros nodes and gui

To interface the embedded boards with the ROS middleware and the
user, a new catkin workspace was created, named h2r. As was done
for the H2 exoskeleton, some of the nodes are dedicated to the recep-
tion of messages from the actuators and some for message-sending.

6.5.1 Nodes for receiving data

6.5.1.1 H2Rros

The node reading incoming CAN data from the actuators is H2Rros.
As the name suggests, this node is very similar to the previously
developed H2ros node (4.3.2). The differences reside in the kinds of
data that are transmitted and consequently in the topics/messages to
be created. Also, parsing the CAN data is more complicated since a
single message is generally split on more than a byte as described in
figure 44.

The CAN data to be parsed are those with ID 50-59,60-69 and 70-79.
They are read trough the same CAN library previously developed,
described in section 4.2.2. Once each of these messages is properly
parsed, its values are stored in a corresponding ROS message and
sent on a ROS topic:

• Data with identifier 50-59 are stored in a mSensor.msg message
defined as:

Header header

int16 velocity

int16 current

int16 loadCell
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int16 temperature �
this message is published on the sensorsTopic topic.

• Data with identifier 60-69 are stored in a mPositions.msg mes-
sage defined as:

Header header

int16 external

int16 position2

int16 extraPosition

int16 extraSensor �
this message is published on the positionsTopic topic.

• Data with identifier 70-79 are stored in a mPID.msg message
defined as:

Header header

int16 error

int16 actuation

int16 process �
this message is published on the PIDTopic topic.

Even if trigger-handling on the reception node running on the BBB
is not yet necessary, its implementation is still present since it will
probably become useful in the future.

6.5.1.2 Data receiving nodes

The published messages can be received by 4 nodes: positionsReceiverUi,
sensorsReceiverUi, PIDReceiverUi and positionsGraph. The first 3 nodes
are very similar to the AnglesReceiverUi, TorquesReceiverUi and Switch-
esReceiverUi nodes previously described in 4.3.3.

A dedicated thread creates a ROS listener that waits for incoming
messages on the corresponding topic and handles the reception up-
dating a structure shared with the main thread, where the graphic
interface runs. If the corresponding option is enabled, data are saved
in a txt file whose pattern is specified by the user. The GUIs are built
using the qt libraries and periodically update the output of the LCD
numbers (setting a timer) with the values in the shared structure.

The developed GUIs are displayed in figure 45.

6.5.1.3 Drawing received data

During the setting of the PID controller running on the embedded
board, a graph displaying both the angular position of the link2 and
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Figure 45: GUIs for receiving data from the actuators
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Figure 46: Example for real time positions plot

of the lever-arm is useful. To plot these data in "real-time", an expan-
sion library for qt was used, named Qcustomplot. This plotting library
focuses on making good looking, publication quality 2D plots, graphs
and charts, as well as offering high performance for real-time visual-
ization applications [1].

To use the library, the files qcustomplot.cpp and qcustomplot.h need
to be added to the project; in particular qcustomplot.h needs to be in-
cluded in the UserInterface files that use its functions.

The node providing the graph interface is named positionsGraph; as
positionsRwindow, it subscribes to the positionsTopic and uses the in-
formation from the received messages to update the structure dataSt.
The GUI window periodically checks the values in the structure and
prints the position values on a graph in which the x axis displays
the time currently running on the machine. An example plotting two
sinusoids with a difference of phase is in figure 46.

An alternative to the use of this node, is the use of the rqt_plot
function. This function allows to plot on a graph data that is being
published on a specified ROS topic. This function requires the set-up
of other ROS components (graphic packages) and is less customizable
than the provided qt solution.

A graph showing the relation between the receiving nodes can be
seen in figure 47.

The code of the developed software is in the files H2Rros.cpp, posi-
tionsReceiverUi.cpp, PIDreceiverUi.cpp, sensorsReceiver.cpp, positionsGraph.cpp,
positonsrwindow.cpp with hearder an UI file, sensorsrwindow with header
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Figure 47: Receiving nodes relations

and UI file, PIDrwindow, with header and UI file, graphWindow.cpp
with header and UI file (appendix A.2).

6.5.2 Nodes for sending data

In order to easily set the parameters of the embedded controllers and
to make tests during the set-up of the actuators used both in Biomot
and in the H2R project, an interface for sending commands in the
form of can-messages was developed.

The GUI is provided by the commandSenderUi node.
Each of the control board running on the exoskeleton or on the H2R

robot will be identified by an integer ID. This ID won’t be included
in the message-information as was previously done with H2 when
sending a control message, but will be added to the CAN-identifier.
For example, to set the control set-point of the board which identifier
is 2, a can message with ID 42 needs to be sent (see figure 44).

To choose the board to be controlled, the first window asks the user to
specify its ID and if it’s in the correct range of values (0-9), it opens the
second window (senderWindow). Through the senderWindow the user
can specify which kind of control will be used, change the parameters
of the embedded PID controller and its-set point. Also a fixed duty-
cycle can be specified to run preliminary tests. The created windows
can be seen in figure 48.
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Figure 48: Windows created by commandSenderUi

Figure 49: Sending nodes relation

The user-provided informations are transmitted from the command-
SenderUi node to the H2RrosSender node running on the BBB through
the senderTopic topic that makes use of genericFrame messages defined
as:

int32 id

int32 type

float32 data �
The H2RrosSender node handles the reception of these messages on

a dedicated thread, it then converts the data in order to store them
as showed in figure 44 and sends them through the CAN network to
the embedded board using the library described in 4.2.2.

A graph describing the relation between the sending nodes can be
seen in figure 49.

The code of the developed software is in the files H2RrosSender.cpp,
commandSenderUiH2r.cpp, senderwindow.cpp with hearder and UI file,
typewindow.cpp with header and UI file (appendix A.2).

The nodes can be compiled through a CMakeLists.txt file as was
explained in section 4.5.

They than can be launched both remotely or automatically as was
described in section 4.6 for the H2 nodes.
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C O N T R O L I N T E R FA C E

7.1 introduction

Exoskeletons are complex systems that involve a large number of sen-
sors and actuators. Studying the possible ways to control their motion,
allowing for multiple functions and a comfortable, safe human-robot
interaction is one of the main goals of the Biomot project. Both the
high-level and low-level control techniques are under development,
but their direct implementation is not a problem faced in this work.
This chapter instead presents the problem of creating a flexible con-
trol architecture that will support the creation of such controllers. In
the following, the possible ways of interfacing the high level and low
level controllers of the system are described, pointing out the advan-
tages and disadvantages of each solution. The possibility of applying
an already defined high-level control structure (ROS-Control) to the
exoskeletons is then investigated. Finally, several ways to give real-
time capabilities to the Beagle Bone Black board are described; the
execution of the controllers in real-time mode is necessary to achieve
a deterministic behaviour of the system.

7.2 possible control-architectures

Both the H2 exoskeleton and the newly developed one make use of
six actuated joints to support the user movements. Each of these joints
requires a dedicated low-level controller, usually in the form of a
PID controller, that makes the actuators follow a desired position or
torque set-point using a fast feed-back loop. The high level controllers
elaborate the set-points for the low level controllers using all the infor-
mations coming from the middleware system. Three different options
for physically interfacing the high and low level controllers of the ex-
oskeleton were individuated and described in sections 7.2.1, 7.2.2 and
7.2.3.

7.2.1 Using only a central controller

In the first scenario, the whole control is administrated by a central
unit (for example the BBB or a similar board). This controller would
administrate on the same unit both the high-level and the low-level
control using the feedback provided by the joint-boards. Being the
high-level control also related to the data provided by other devices
using the middleware, the ROS interface needs to be set-up on the
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Figure 50: Unified control architecture

central unit too. A schematic representing this solution is in figure
50.

The positive aspects of this solution are:

• Using only one device allows for power and system-complexity
reduction;

• Running on the same controller, the high-level control and the
low-level control can communicate quickly (using shared mem-
ory) without the need of a communication channel.

The negative sides are:

• To provide the low-level control functionalities with correct tim-
ings, the controller needs to run in a hard real time mode. As is
pointed out in section 7.4, handling a hard real-time operative
system is not a simple task and a lot of efforts need to be done
to balance the system’s performance and get adequate timing
latencies.

• Putting high-level and low-level control on the same device re-
duces system’s reliability: it’s not possible to define safety-exit
functions that would handle the exoskeleton’s behaviour in the
case of a system-crash on the central controller.
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7.2.2 Send only set-points from the central controller

In this scenario the low level controller and the high level controller
run on different platforms:

• The low-level control runs in hard real-time and administrates
feedback signals coming from the exoskeleton’s sensors with re-
duced delays. This level doesn’t have a direct connection with
the middleware and shouldn’t require a great amount of com-
putational power. It can be centralized on a single controller as
was done for the H2 exoskeleton or decentralized on multiple
joint controllers.

• The high-level control runs in soft real-time and is interfaced
with both the middleware and the low-level control. It can pro-
vide position, torque, stiffness set-points for the low level con-
trol basing its choices on both the data coming from the ex-
oskeleton and the output of other devices in the system. To
achieve this objective it will run multiple algorithms that at
the moment of writing aren’t still fully developed (neuromuscu-
loskeletal model, tacit learning algorithms etc) but that in gen-
eral require a relatively long execution, an higher computational
power and also might be executed on other remote machines.

A schematic representing this solution is in figure 51.
In section 7.4 it is pointed out that reaching very low response

times on an embedded-linux system like the BBB is a problematic
task. On the other hand, the dynamic of the exoskeletons are very
slow and consequently set-point sending is done at a relatively low
frequency; for example on the H2 exoskeleton running at the fastest
velocity, position set-points are currently sent with a time period of
about 20ms. As was described in section 7.4.2 and tested with the ROS
nodes of section 4.4.3, the BBB can follow this task with a maximum
deviation of about 400 µs that doesn’t affect the system’s behaviour.
If needed, better performances can probably be achieved using the
PREEMPT-RT patch, Xenomai or changing the platform.

The positive aspects of this solution are:

• Decoupling high-level and low-level control allows for the def-
inition of low-level functions that can handle the system be-
haviour also in the case of a crash of the high-level control.

• Balancing system’s performances is easier since the time of ex-
ecution of the high-level algorithms doesn’t affect the response
time of the low level controllers.

• The programmers and control developers working in the group
are already familiar with the development of controllers run-
ning on embedded platforms like the H2-arm due to the expe-



80 control interface

Figure 51: Decoupled control architecture

rience acquired with the H2 exoskeleton; maintaining a simi-
lar structure for the low-level control allows for faster develop-
ment.

The negative aspects of this solution are:

• Using more platforms leads to a bigger system’s cost, complex-
ity and power consumption (the last aspect is very limited if
compared with the power absorbed for the motors actuation).

• Being the high-level control and low-level control logically and
physically separated, a communication channel between the two
needs to be created (trough the CAN network) leading to (lim-
ited) delays in their communication.

7.2.3 Select and modulate pre-memorized patterns

As in the previous scenario, the high-level control and the low-level
control are physically separated. The difference resides in the infor-
mation exchanged between the two: the high-level control doesn’t
provide position or torque set points, but these are previously mem-
orized on multiple patterns resident in the low-level controllers. The
high-level control only sends information regarding the required gait
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velocity, the modulation of the torque provided by each joint (from
very hi to very low assistance), the selection of different patterns with
relation of the estimated user intentions and eventually the regula-
tion of the actuators’ stiffness. The schematic representation of the
solution is still the one in figure 51.

The positive aspects of this solution are:

• All the aspects of the previous solution.

• Using only a set of pre-memorized patterns makes the control
of the device easier; also testing if its behaviour is safe for the
user is simpler.

• The high-level controller can work and communicate with hi de-
lays since the modulation or the change of the loaded patterns
is not a time-critical operation.

• A system-failure in the high-level controller always leaves the
user in a safe condition and can be easily handled.

The negative aspects of this solution are:

• All the aspects of the previous solution.

• Using only pre-memorized patterns reduces the system’s flex-
ibility since unforeseen user’s actions can’t be handled. This
leads to a lower quality human-robot interaction.

7.2.4 Conclusions

Among the exposed solutions, the second one is probably the more
promising since it combines the advantages deriving from the decou-
pling of the high-level and low-level control with a large system’s
flexibility. On the other hand, being the third option simpler to apply,
it might be a good solution for the initial tests on the system. For
example it could be used to verify the capability of the tacit learn-
ing module to regulate the gait velocity or the possibility of modu-
lating the torque provided by each joint on the base of the torques
provided by the user, estimated through the neuromusculoskeletal
model and/or interaction sensors.

7.3 ros-control interface

ROS-Control is a set of ROS packages that include controller interfaces,
a controller manager, transmissions, hardware interfaces and a con-
trol toolbox to provide a standard control infrastructure for robots us-
ing ROS. These packages are a generalization of the pr2_mechanism’s
packages, which form a set of packages for controlling a pr2 robot1.

1 http://wiki.ros.org/Robots/PR2

http://wiki.ros.org/Robots/PR2
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7.3.1 ROS-Control in Biomot

The ROS-Control workflow is an optional structure for the organiza-
tion of the high-level control used with the newly developed exoskele-
ton. Using such solution would lead to a standardized interface, sim-
ilar to the ones used in other robots, that might allow for the reuse of
already developed and tested modules.

As was previously pointed out, the high-level control strategy of
the exoskeleton isn’t, at the moment of writing, already developed.
In general it will make use of the information coming from external
modules and from the exoskeleton to elaborate the correct input for
the lower control, hence the standardized controllers provided with
the ROS-Control module won’t probably be sufficient and customized
ones will be needed. Also, being the exoskeleton usable in different
scenarios and with different auxiliary module-inputs, the possibility
of easily switching between different controllers needs to be imple-
mented.

At the moment of writing, the available documentation about ROS-
control is fragmented; getting a clear idea about its working princi-
ples and about the correct techniques to solve the presented problems,
is a task that usually requires a lot of effort from the programmers.
In the following sections a generic review of its working mechanisms
and an example of application for the Biomot exoskeleton will be
provided. This documentation will eventually be a start-point for the
creation of a full, ROS-Control based, control-architecture.

7.3.2 ROS-Control workflow

The generic organization of a ROS-Control infrastructure can be seen
in figure 52 from [19].

At the lowest level, data are read from generic robot sensors (en-
coders, load cells,...) and their information is transmitted to an "Hard-
ware interface". This interface stores the information regarding the sta-
tus of the robot and allow their access from multiple controllers. Dif-
ferent controllers can be loaded by a Control manager, depending on
the provided hardware-interface; their output goes back trough the
hardware interface to the low level controllers of the robot. The hard-
ware interface can optionally provide joint safety limitations and data
conversion (transmission elements).

If standardized interfaces are provided by the hardware interface, a
set of already exiting controllers can be used. The kind of controllers
that can be loaded depend on the interfaces registered into the robot
class; for example, if the input required by the low-level controller is
a torque set-point, a standard effort interface can be initialized that
would allow the usage of a effort_controllers/ JointPositionController.
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Figure 52: ROS-Control general scheme

The ROS-control work-frame can be used in conjunction with the
Gazebo simulation environment. A generic robot can be described
trough a URDF(Uniersal Robot Description Format) format, that speci-
fies the geometrical relationships between the joints/links and option-
ally their physical characteristics. Thanks to a dedicated plug-in, these
models can be used in conjunction with ROS-Control and Gazebo to
run simulations and visualize the predicted robot-behaviour. A com-
plete example of integration, with detailed set-up instructions, can be
found in [22].

7.3.2.1 The case of the PR2 robot

As was previously pointed out, the ros-control package is a general-
ization of the code written for the PR2 robot; thanks to the modularity
of the code’s structure and to its generic form, a part of the solutions
provided for this robot can be easily extended to a wide set of robots
including exoskeletons. Following is a description of how, the set of
packages forming the pr2 robot’s code, can interact to provide a cus-
tomized controller. A similar structure will later be used to organize
the control-code for the exoskeleton.

The first package forming the PR2’control code is the pr2_mechanism_model
package. This package includes classes that allow to access the joint’s
information, to write joint’s commands and also contain a physical
description of the robot in an URDF format. When a controller gets
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Figure 53: Flow chart for controller interafce’s methods

initialized, the controller manager passes the controller a pointer to
the RobotState class. The RobotState describes both the kinematic/dy-
namic model of the robot and its current state, providing an hardware
interface. The state of the robot is defined by the position/velocity/-
effort of the joints in the robot and can be updated trough a read func-
tion. Additionally, the RobotState provides access to the ’controller
time’, the time at which a controller cycle is started, and to its output,
that is sent to the robot trough a write function. In contrast to the
system time, the controller time is not affected by the time other con-
trollers consume in their update loop. Moreover, the controller time
is the best measure of when the communication with the hardware
actually occurs.

The class member urdf::Joint::safety also contains various parame-
ters used to configure joint safety controller position and velocity lim-
its (see [27]).

To create a controller compatible with the pr2’s controller manager the
pr2_controller_interface package is used. The package basically con-
tains the C++ controller base class that all controllers need to inherit
from. To implement a real time controller, it needs to be inherited
from the pr2_controller_interface::Controller base class. The base class
contains:

• four methods that need to be implemented: init, starting, update
and stopping;

• one method that can be called: getController.

Figure 53, from [24], shows the order of call for these methods .
The init method, executed in non real-time, is called when a con-

troller is loaded, to initialize it. Note that initializing a controller is
independent of starting it. The init method takes two arguments:

• a pr2_mechanism_model::RobotState that, as previously said, de-
scribes the robot model and state;

• a ros::NodeHandle, which is the "namespace" of the controller.
In the namespace of this node handle, the controller can read
configuration from the parameter server, advertise topics, etc.
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An example of initialization is:

virtual bool init(pr2_mechanism_model::RobotState *robot, ros::

NodeHandle &n); �
The init method returns if the initialization was successful or not. If
the initialization fails, the controller will get unloaded by the pr2 con-
troller manager.

The starting method, executed in real-time, is called once every time
a controller is started, by the controller manager. Starting is executed
in the same cycle as the first update call, right before this update call.

The update method, executed in real-time, is called periodically by
the pr2_controller_manager at a standard frequency of 1000 Hz (that in
a generic case can be changed). This means that the execution time of
all controllers combined cannot take more than 1 milli-second. In the
update loop, the control algorithms are run.

The stopping method, executed in real-time, is called once every
time a controller is stopped. Stopping is executed in the same cycle as
the last update call, right after this update call. The stopping method
does not return anything, it is not allowed to fail.

The getController method allows a controller to get a pointer to an-
other controller. This can be used to create a "chain" of controllers,
where each controller sends its output to the next controller, in real-
time.

More detailed information about the controller interface for the pr2

robot can be found in [24].
In [28], an explanation of how to build a real-time joint controller

using the pr2_controller_interface, the pr2_mechanism_model and
the pr2_controller_manager is given. To write the controller, a pack-
age depending on the pr2_controller_interface, the pr2_mechanism_model
and pluginlib needs to be created. The pluginlib package allows to add
the customized controller as a plugin into the controller manager.

A controller class is then created in the package as a son of the
pr2_controller_interface::Controller class and the init, starting, updat-
ing and stopping methods are properly overloaded. The code can then
be compiled as a library using the rosbuild_add_library command in
the project’s CmakeLists.txt file.

In order to make the process run inside the real-time process, it
needs to be earmarked as destined for it, to achieve this it needs to
be registered as a plugin. Then the pr2_controller_manager can use
the pluginlib to administer the linking, loading, and starting of the
controllers. In [28] is a full description of how to export the controller
as a loadable class, specify the required dependencies and create a
plugin description file accordingly to the pluginlib documentation.
In section 7.3.4 a more generalized example will be given.

In [26] is then described how to run the created controller into
the Gazebo simulation environment. In general, before being started,
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a controller needs to be initialized with its parameters. This can be
done with commands in the form:

rosparam set my_controller_name/parameter_name parameter_value; �
The controller can then be loaded running:

rosrun pr2_controller_manager pr2_controller_manager load my_

controller_name �
and started with:

rosrun pr2_controller_manager pr2_controller_manager start my_

controller_name �
To make configuration and start-up faster, all the parameters can

be included in a YAML file that is loaded on the param server via a
roslaunch file (an example valid for a generic robot will be provided
in the next section).

Communication with the created controller can then be achieved
creating dedicated ROS services that dynamically update the con-
troller’s parameters or set-points. The customized controllers can also
easily include commonly used elements from the control_toolbox pack-
age, for example a PID controller or a white-noise generator.

7.3.3 Developing a standard hardware interface and running standard con-
trollers for Biomot

To make controllers communicate with the actuators and receive in-
formation coming from the exoskeleton’s sensor through the low-
level controller, an hardware interface needs to be provided for the
middleware. To achieve this objective with ROSControl, a robot class,
similar to the RobotState class described for the pr2 robot, needs to be
created.

Since not all the robot-features are already defined at the moment
of writing, a standard interface, similar to the one described in [29],
is initially written for the Biomot exoskeleton. This class can later be
easily expanded and personalized including robot-specific features in
the interfaces (see next section).

A UML file showing the relations between the developed classes is
in appendix A.3.

As for the pr2 robot, the robot class, named BiomotHardwareInter-
face, is derived from the hardware_interface::RobotHW class; this will
later allow to use it in conjunction with the controller_manager, which
is a generalized implementation of the pr2_controller_manager. In its
private members, the class stores the robot’s state information: posi-
tion, velocity, effort and the output elaborated by its controllers. In
the case of the Biomot exoskeleton, velocity information won’t proba-
bly be needed, but their inclusion allows for a more general structure.
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These variables are used to initialize a set of standard interfaces, all
derived from the hardware_interface class:

• JointStateInterface: to initialize this interface, the three robot-
state variables need to be passed as arguments; the controllers
loaded by the controller manager can in this way gain access to
the robot’s information.

• PositionJointInterface: to initialize this interface, an output vari-
able needs to be passed as argument; the compatible controllers
loaded by the control manager can later use this variable to
write their output as a position set-point.

• EffortJointInterface: to initialize this interface, an output vari-
able needs to be passed as argument; the compatible controllers
loaded by the control manager can later use this variable to
write their output as an effort set-point.

The initialization of the updating frequency, of the joints and of
the controllers to be loaded with the relative parameters, is made
trough a YAML configuration file. Such file is structured for example
as follows:

hardware_interface:

loop_hz: 1 # hz

joints:

- rHip

- rKnee

- rAnkle

- lHip

- lKnee

- lAnkle

# Publish all joint states -----------------------------------

joint_state_controller:

type: joint_state_controller/JointStateController

publish_rate: 50

# Position Controllers ---------------------------------------

rHip_position_controller:

type: effort_controllers/JointPositionController

joint: rHip

pid: {p: 100.0, i: 0.01, d: 10.0} #random example values

... �
The parameters contained in this file are loaded on the param-server

when the YAML is launched. The hardware interface will look for
them when it’s initialized and will build as many interfaces as the
joints found on the server, thanks to the usage of std::vectors that can
be resized. This makes the interface flexible and potentially allows it
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to be applied with other robots that use a different number of joints
(for example the H2R robot) simply changing the YAML file.

Once the interfaces are built, the controller_manager is created in-
side the robot-object itself. Another option would be to start the con-
troller_manager outside the object, as is proposed in [29], but the way
of initialization used in this example seems to be the most frequent.

The loop_hz variable is used to set a ros::Duration variable that is
then used to initialize a timer that handles the periodic execution of
an update function. The update function calls a read function that
updates the robot-state variables reading their values from the CAN
network. The controller’s update function is then called trough the
controller_manager, passing the current time and the time elapsed
since the last execution as parameters. The outputs of the controllers
are finally read by the write function that sends their values to the
robot trough the CAN network. All the functions called by the up-
date function (read, update and write) can potentially be executed in
real-time, but their implementation would in that case be platform-
specific. The created example creates a not real-time loop that can be
easily converted to a real time loop once a specific real time capable
kernel is provided.

The created class is compiled as a library in a dedicated catkin pack-
age named biomot_control. To create an instance of it and consequently
create a control loop, an executable is also created implementing a
ROS node named controlLoop. This node also creates a parallel thread
to handle service callbacks from the controller manager; if this thread
was not created, every service call (ex to load a controller) would
block the execution of the control loop.

A generalized example, that was used as a starting point to build
this class and also allows for robot-visualization of a rrbot robot, can
be found in [8].

To run certain kinds of controllers, for example effort based po-
sition controllers or the JointState controller, a robot model must be
loaded on the parameter server with the name robot_description. A
simple, schematic, exoskeleton description can be built using the URDF
(Universal Robot Description Format) format. A simple text file is
used to describe the relationships between the six joints forming the
exoskeleton. It includes the robot name, the list of the links forming
the robot and the list of the nodes. For each node is specified the
parent link, the child link, the origin position and the axis of rotation.
Optionally, other parameters like links’ inertia can be specified, allow-
ing for the implementation of simulations in the Gazebo environment.
Creating simulations is out of the scope of this work, consequently
only a schematic description of the exoskeleton is given. The created
URDF file for Biomot is described in figure 54. In this scheme, rect-
angles represent the links of the robots, ellipsis the joints, the (x, y, z)
coordinates represent the position of each system with respect to the
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Figure 54: Schematic of the Biomot’s URDF file

previous and the (r, p ,y) values show the degrees of rotation around
respectively the axes x, y and z of each reference system.

To load the exoskeleton model, the hardware interface, the YAML
file and the desired controllers with a single command, a launch file
was created; its implementation is as follows:

<launch>

<!-- Load biomot URDF -->

<param name="robot_description" textfile="$(find biomot_control

)/urdf/biomot.urdf"/>

<group ns="biomot">

<!-- Load hardware interface -->

<node name="biomot_HInterface" pkg="biomot_control" type="

controlLoop"

output="screen" />

<!-- Load controller settings -->

<rosparam file="$(find biomot_control)/config/biomot_config_

eff.yaml" command="load"/>

<!-- Load controller manager -->

<node name="ros_control_controller_manager" pkg="controller_

manager" type="controller_manager" respawn="false"
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output="screen" args="spawn rHip_position_controller

rKnee_position_controller rAnkle_position_

controller lHip_position_controller lKnee_position_

controller lAnkle_position_controller" />

</group>

</launch> �
In its beginning, the URDF file containing the description of ex-

oskeleton is loaded from the related package folder. The control loop
node is then started with the name biomot_HInterface and consequently
the hardware interface is built. The configuration YAML file is then
loaded on the parameter server and the controller manager is started
passing the controllers to be spawned as arguments. The spawn op-
tion allows the controllers to be loaded and started with a single com-
mand.

Different launch files can be implemented loading different yaml
files and consequently starting a different set of controllers. It is im-
portant to note that the controller_manager won’t allow more than a
controller to access a resource at the same time; for example every
single joint can be controlled by only one controller at a time.

Once the controller_manager and the controllers are started, a set of
services are provided to the middleware users. A list can be visual-
ized with the "rosservice list" command. For example, if a set of effort
based PID position controllers are loaded, the command returns:

/biomot/biomot_HInterface/get_loggers

/biomot/biomot_HInterface/set_logger_level

/biomot/controller_manager/list_controller_types

/biomot/controller_manager/list_controllers

/biomot/controller_manager/load_controller

/biomot/controller_manager/reload_controller_libraries

/biomot/controller_manager/switch_controller

/biomot/controller_manager/unload_controller

/biomot/lAnkle_position_controller/pid/set_parameters

/biomot/lHip_position_controller/pid/set_parameters

/biomot/lKnee_position_controller/pid/set_parameters

/biomot/rAnkle_position_controller/pid/set_parameters

/biomot/rHip_position_controller/pid/set_parameters

/biomot/rKnee_position_controller/pid/set_parameters

/rosout/get_loggers

/rosout/set_logger_level �
These services can be accessed by other nodes in the middleware or

by the user through command line (rosservice call SERVICE PARAM-
ETERS). For example the list_controllers service returns information
about the running nodes:

controller:

-
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name: joint_state_controller

state: running

type: joint_state_controller/JointStateController

hardware_interface: hardware_interface::JointStateInterface

resources: []

-

name: rHip_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’rHip’]

-

name: rKnee_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’rKnee’]

-

name: rAnkle_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’rAnkle’]

-

name: lHip_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’lHip’]

-

name: lKnee_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’lKnee’]

-

name: lAnkle_position_controller

state: running

type: effort_controllers/JointPositionController

hardware_interface: hardware_interface::EffortJointInterface

resources: [’lAnkle’] �
The list_controller_types service returns a list of known controllers

that can be loaded using the registered hardware interfaces:

types: [’controller_manager_tests/EffortTestController’, ’

controller_manager_tests/ExampleController’, ’diff_drive_

controller/DiffDriveController’, ’effort_controllers/

GripperActionController’, ’effort_controllers/

JointEffortController’, ’effort_controllers/

JointGroupEffortController’, ’effort_controllers/

JointPositionController’, ’effort_controllers/

JointTrajectoryController’, ’effort_controllers/
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JointVelocityController’, ’force_torque_sensor_controller/

ForceTorqueSensorController’, ’imu_sensor_controller/

ImuSensorController’, ’joint_state_controller/

JointStateController’, ’position_controllers/

GripperActionController’, ’position_controllers/

JointGroupPositionController’, ’position_controllers/

JointPositionController’, ’position_controllers/

JointTrajectoryController’, ’velocity_controllers/

JointGroupVelocityController’, ’velocity_controllers/

JointPositionController’, ’velocity_controllers/

JointTrajectoryController’, ’velocity_controllers/

JointVelocityController’] �
The other services allow for unloading controllers, loading new

ones, make dynamic changes in the controllers’ parameters and other
functions.

When the controllers are running, they can also create a set of ROS-
topics that can be used for getting and sending information. A com-
plete list can be visualized running "rostopic list" from command line.
For example, the topics created by the rHip_position_controller of type
"effort_controllers/JointPositionController" are:

/biomot/rHip_position_controller/command

/biomot/rHip_position_controller/pid/parameter_descriptions

/biomot/rHip_position_controller/pid/parameter_updates

/biomot/rHip_position_controller/state �
A position set-point for this controller can for example be sent exe-

cuting manually:

rostopic pub /biomot/rKnee_position_controller/command std_msgs/

Float64 "data: SET_POINT" �
or a dedicated node can publish it at fixed frequency.
The joint_state_controller is a read-only controller that publishes

the state of the robot on the topic "/biomot/ joint_states". The state,
described by position, velocity and effort arrays, is stored in "sen-
sor_msgs/ JointState" messages that can be read by any node in the
middleware.

7.3.4 Writing customized interfaces and controllers

The class described in the previous section registers some standard
interfaces for the exoskeleton. Using these interfaces allow for the
usage of already written controllers, making the development of the
control architecture easier. These controllers by the way, might be in-
sufficient for the exoskeleton functionalities and consequently new
ones might be needed. Customized controllers can still make use of
the standard interfaces and be consequently robot-agnostic. If partic-
ular robot-features need to be accessed by the way, also customized
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interfaces must be provided since standard interfaces only allow the
controllers to access information regarding the joint’s position, veloc-
ity and provided torques.

A basic example explaining how to build a customized interface
can be found in [29].

The simplest way to build it, consists in declaring the robot-specific
variables and functions inside the robot class and then call the func-
tion registerInterface passing the class itself as a parameter. Ex:

class BiomotHardwareInterface: public hardware_interface::RobotHW

, public hardware_interface::EffortJointInterface

{

public:

BiomotHardwareInterface()

{

// Gets parameters and joint names from the param-server

...

// Registers standard interfaces (usable by standard

controllers)

...

//Registers the whole class itself as an interface (usable by

custom controllers)

registerInterface(this);

...

}

//Registers robot specific functions

double get_estimated_torque(std::string jointName);

}; �
To make this possible, the custom hardware interface class needs

to inherit from the standard HardwareInterface class; such derivation
by the way, doesn’t include functions that allow the class for resource
handling as for example getHandle. To make them available, the class
inherits instead from the hardware_interface::EffortJointInterface class.

The robot-specific functions can for example allow the controllers
to access some specific private variable relative to the output of an
exoskeleton’s module. In the created example, a further vector, named
estimated_torque_ is added to the already existing ones. The controllers
based on the Custom interfaces and standard interfaces can coexist;
different controllers can work in parallel on different resources as
schematized in figure 55.

A simple example of how a customized controller can be created
is in [30]; the generic implementation is similar to the one described
in section 7.3.2.1 for a PR2 robot. To write a controller, a new class,
deriving from the controller_interface class needs to be created. To pro-
vide a general example, a customized controller class, named Custom-
Controller, was created. This class implements (at least) four functions:
init, update, starting, stopping, similar to the ones described for the PR2

robot.
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Figure 55: Schematic of the relations between controllers and interfaces

The init function requires two arguments: a pointer to the related
hardware interface and a pointer to the node-handler variable. It uses
the node-handler to load the joints names and their required param-
eters from the param-server. The function then claims the joints’ han-
dle, letting the controller manager know that the resources are allo-
cated and can’t be used by other controllers.

If the controller is based on the customized BiomotHardwareInterface
interface, the function looks like:

bool init(biomotNS::BiomotHardwareInterface* hw, ros::NodeHandle

&n)

{

// Get joint name from the parameter server

if (!n.getParam("joint", my_joint)){

ROS_ERROR("Could not find joint name");

return false;

}

// Get the joint object to use in the loop and reserves the

relate resource

joint_ = hw->getHandle(my_joint);

//Initializes optional services for custom controllers

srv_ = n.advertiseService("setCommand",&CustomController::

setCommand, this);

//Initializes some example parameters

gain_=2;

setpoint_=0;

//Creates a copy of the pointer to the hardware interface to

access robot-specific functions

hwInterface=hw;

return true;

} �
The customized controller can later get access to standard resources

(position, velocity and torque) through the Joint handler (joint_ in
the example) and to robot-specific resources through a pointer to the
hardware interface (hwInterface in the example). The update function
takes as arguments the current time and the time elapsed since it’s
last execution. In this function the robot’s state variables are accessed
trough the provided interface (e.g. through a joint.getPosition() func-
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tion or trough hwInterface -> get_estimated_torque_ (my_joint) for
our example of robot-specific function), the control algorithms are ex-
ecuted and their output is stored back in the hardware-interface class
(ex with joint.setCommand(command)). In the provided example, a sim-
ple proportional position controller that writes an effort command is
implemented.

In the starting and stopping functions, generic code can be executed
when the controller respectively starts or stops.

The so created class (as the one describing the hardware interface)
is compiled as a library trough the CMakeLists.txt file. The package
where the controller is included needs to depend from the plugin-
lib class, the controller_interface and the hardware_interface. To make
the controller visible to the controller_manager, it also needs to be
declared into PluginLib. PluginLib is a library for loading and un-
loading plugins from within a ROS package. Plugins are dynamically
loadable classes that are loaded from a runtime library. Pluginlib can
open a library containing exported classes at any point without the
application having any prior awareness of the library or the header
file containing the class definition.

To export the library into PluginLib, a line like this needs to be
added in the class definition:

PLUGINLIB_DECLARE_CLASS(controller_pkg,ControllerPlugin,

controller_ns::MyControllerClass,

controller_interface::Controller) �
That in the case of our example becomes:

PLUGINLIB_DECLARE_CLASS(biomot_control, CustomController,

biomotControllerNS::CustomController, controller_interface::

ControllerBase); �
Also a Plugin description file needs to be created; it needs to be

declared in the export section of the package.xml file as follows:

<export>

<controller_interface plugin="${prefix}/controller_plugins.

xml" />

</export> �
and then defined as:

<library path="lib/libbiomot_control">

<class name="biomot_control/CustomController"

type="biomotControllerNS::CustomController"

base_class_type="controller_interface::ControllerBase"

/>

</library> �
More than one controller can be declared into the same xml descrip-
tion file.
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Figure 56: Required steps to write a customized controller

The so created controllers can then be started and configured through
YAML configuration files as was explained in the previous section,
otherwise they can be loaded/unloaded dynamically through the
controller_manager services. Running "rosservice call /biomot/controller_manager/
list_controller_types" now also displays "biomot_control/CustomController"
in the list of available controllers. A diagram resuming the required
steps to set-up a new customized controller is in figure 56.

7.3.5 Adding services to communicate with the custom controllers

As the standard controllers, the created custom controllers can load
a set of parameters from the param-server at start time. To let them
communicate with other nodes or with the user by the way, a set of
ROS-services needs to be added to the controller class. As described
in [17], ROS-services allow to define a request / reply mechanism
between multiple nodes. The information passed between the nodes
is described by service files (.srv); in the first section of these files, is
described the kind of data sent by the node that requests the service,
while in the second is described the kind of answer provided by the
server.

In this example only one simple service is provided to modify the
set-point of the controller; the related srv file is:

#setCommand.srv:

float64 command

---

float64 command �
In general, the set-point sent by the service server can be different
from the received one, due to set-point limitations. To use the de-
scribed service, the controller-package needs to depend from the mes-
sage_generation class. If customized services are used, they need to
be declared in the related section of the CMakeLists.txt file in order
to generate the related header file when the package is compiled; the
server class then includes the headers and declares the related service-
handling functions during its initialization.

In the created example, this is done as:

//In the class description’s header file

-----------------------------------
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#include "biomot_control/setCommand.h"

ros::ServiceServer srv_;

//In the init function

-----------------------------------------------------

srv_ = n.advertiseService("setCommand",&CustomController::

setCommand, this);

//The setCommand function to handle the service call

-----------------------

bool CustomController::setCommand(biomot_control::setCommand::

Request& req, biomot_control::setCommand::Response& resp){

setpoint_=req.command; //TODO: eventually check setpoint limits

here

resp.command=setpoint_;

return true;

} �
Other services can be added to dynamically change the controller’s

parameters or to provide other set-points.
The provided example now describes the biggest part of the instru-

ments required when building an high-level control architecture and
can be easily expanded to provide multiple functionalities.

For more details about the code forming this example see appendix
A.3.

7.4 real-time implementation on the bbb

The Beagle Bone Black board was introduced in the exoskeleton system
as an interfacing platform between the low-level hardware and the
ROS middleware. The whole set of functionality that will be required
from this board is not yet fully defined in the project, but in general
it might execute algorithms that will affect the system’s high-level
control in order to improve particular aspects of the human-robot in-
teraction (for example the ROS-Control framework described in sec-
tion 7.3). A part of the required tasks might include the execution
of operations with strict time-constraints ( real-time functionalities).
In general, a real-time software executes functions that are subject to
"real-time constraints", for example operational deadlines from event
to system response, ensuring correct response-times.

Natively, the board runs a Linux OS distribution that, being a user-
oriented operative system, is not designed to execute real-time tasks.
Still, the analysis of the problem pointed out three different ways to
run real-time tasks on the board: the usage of the Programmable Real-
time Units (PRU), described in section 7.4.1, the application of the
Preempt-RT patch, described in section 7.4.2, or the Xenomai software,
described in section 7.4.3.
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Figure 57: Scheme of the BeagleBone Black’s TI chip

7.4.1 Programmable Real-time Units

The BeagleBone Black’s TI chip (XAM3359AZCZ revision 2) contains
the main processor (ARM) along with a number of other modules
(see figure 57).

The TI chip provides, next to the ARM Cortex-A8 processor, two ad-
ditional CPUs (known as PRU-ICSS or PRUSSv2) on the same silicon.
Separate software can be run on this processor, offloading hardware
interfacing and processing of low-level protocols. These CPUs run at
a frequency of 200Mhz and are free from the execution of any soft-
ware related to the operative system; they are consequently ideal for
the execution of fast, low-level tasks that involve real-time constraints.
Their software can be downloaded from the main processor and also
a shared memory exists between the two, allowing for software com-
munication (see [11] for more information).

There are, however, two main problems related with the utilization
of this solution:

• Programming language: code for the PRUs is written in assem-
bler currently, some experimental C compiler has been devel-
oped (see [50]), but their utilization is in general not straightfor-
ward for a programmer, requiring a certain learning curve.
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• Communication with the CAN network: as previously described,
to communicate with the low-level hardware of the exoskeleton,
the BBB makes use of a CAN network. Providing CAN commu-
nication in real-time would be consequently very useful, but no
way for using the PRUs with such interface could be found.

7.4.2 Preempt-RT patch

The Preempt-RT is a patch that modifies the whole Linux kernel in
order to make it fully preentable and gain hard real-time capabilities.
Without preemption support, when higher priority tasks wake up,
they are delayed until current task exits from a syscall or yield ex-
plicitly. Also, user created processes always have lower priority than
processes created in kernel-space. These things together lead to high
time-latencies and poor time-resolution for processes running in user-
space. In a preentable system these problems are avoided, leading to
an improvement in response latency of high priority tasks.

The Preempt-RT patch is developed by a small group of kernel-
programmers and can be freely downloaded and applied to many
versions of the Linux kernel. More information about its working
principle can be found in [10].

To apply it on the BBB, the kernel needs to be cross-compiled on
another machine and downloaded on the micro-sd card or directly on
the EMMC memory trough ssh. Its application to the BBB should be
possible, and a set-up procedure can be found in [46]. With old kernel
versions, like the one that was available when this work began (3.8.13),
the modified kernel couldn’t boot the board. To make it possible, a
newer kernel was set-up on the board; in particular, a pre-built kernel
image for the BeagleBone black could be set-up using apt-get (linux-
image-3.14.35-ti-rt-r55); this kernel, by the way, only supports the PRE-
EMPT_RTB (basic) option. Enabling full preemption still leads to the
system’s instability. Also, the tested kernel doesn’t support the device
tree overlays, that, as explained in section 2.3.5, are used to enable the
CAN network; consequently no communication test could be done.
Newer/other kernel editions might solve this problems and also al-
low for running performance tests like cyclictest.

A comparison between the performances that can be achieved with
and without the application of a preemption patch on the BBB could
be found in [45]. This comparison uses three types of kernel: standard
3.14.0, 3.14.0 with a preent patch and a 3.14.0-rt1 kernel (with the full
preempt-RT patch).

In figure 58 the performances are measured as the Interrupt response
time, which is the time period between the expiry of a hardware
timer and the scheduling of a userspace task; measurement was done
through the cyclictest test program. The graph shows as the applica-
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Figure 58: Interrupt response times for the BBB

tion of the patches leads to a consistent reduction of the response
time.

In figure 59 the performances are measured as the Task switching
time, which is particularly important when the running real-time ap-
plication is formed by a large number of threads/processes. Also in
this case the graph shows as the application of the patches leads to a
consistent reduction of the switching time.

Some real-time frameworks that can be based on this patch and
run on the BBB to execute control functions already exists, like for
example OpenRTDynamics [6].

More information about the ways this patch can be used to run
programs in real-time can be found in [51]; basic real-time programs
could be compiled and executed on the BBB.

In general, the use of the real-time functionalities of the modified
kernel should be done with caution since unbalanced scheduling
times can lead to the instability of the whole system. Also, due to
economic problems, the development of the PREEMPT-rt patches by
the community is paused at the moment of writing.

7.4.3 Xenomai

Another possible solution is to modify the kernel using the Xenomai
framework. Xenomai’s software builds a parallel kernel running in
parallel with the standard Linux kernel. Once the kernel is modified
with the relative Xenomai’s patch, applications can use Xenomai’s
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Figure 59: Task switching times for the BBB

libraries to create particular pThreads that can run in kernel-space
and access to real-time functionalities. More detailed information on
it’s working principles can be found in [2].

This kind of solution provides acceptable time latencies for many
real-time applications; a detailed comparison with the PREEMPT-RT
patch, made on an Beagle Board (not a BBB) is in [32].

The set-up of the patched kernel on the BBB can be achieved using
pre-patched kernel editions or patching a chosen kernel "manually".
A set-up instructions set can be found in [37]. In particular the 3.8.13-
xenomai-r70 kernel from Robert C. Nelson could be successfully set-up
on the board and some real-time example program could be executed.

An experimental ROS package, named rosrt, provides classes for
interfacing with ROS from within realtime systems, such as realtime-
safe Publisher and Subscriber classes and is intended to be used with
Xenomai (see [25]).

Also some real-time functions for sending data via-CAN network
can be found between the Xenomai examples. These functions make
use of a real-time version of the socket-CAN API previously described
in section 4.2.1. Unfortunately, in order to use such functions, a real-
time CAN driver, named rtcan, needs to be loaded on the system.
Using the driver provided with the Xenomai distribution didn’t work
with the BBB; the problem might be solved porting the c_can linux
kernel drivers in rtcan.

Another problem related to the use of the Xenomai framework
comes from the fact that, to use its real-time functionalities, programs
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must be modified in order to use its API. This leads to a quite long
learning curve for the programmers.

Other solutions that provide real-time functionalities to Linux are
available, like for example RTAI (RealTime Application Interface for
Linux) or similar. Also full real-time operating systems could be set-
up on the board, for example QNX is compatible with the BBB (see
[52]). These ones are not described since no good documentation
about their usage with the BBB could be found, but might still be
a valid resource.



C O N C L U S I O N S

During this work, a multiple set of objectives were reached and de-
scribed.

The chosen interfacing platform for the ROS middleware (the Beagle
Bone Black board) was successfully set-up. Thanks to the created CAN
communication library, and to the set-up of the necessary software
and scripts, the board was able to communicate with the exoskeleton
and read its internal data. It was then possible to set-up the ROS
software and forward the received data to a middleware architecture.
Some experiments were executed that showed the possibility to log
the acquired data with a correct time stamp and to synchronize the
exoskeleton with other external modules, in particular with an EMG
acquisition system and the related neuromusculoskeletal model.

The possibility of using the Beagle Bone Black platform to send
set-points to the H2 exoskeleton’s low level controller was also inves-
tigated, giving positive results.

A set of graphical user interfaces were built to provide data visu-
alization and support the activity of other programmers and control-
developers in the group.

Finally, a generic architecture for supporting the construction of
multiple, high level, joint controllers, was created using the ROS-
Control framework. Using this architecture, multiple controllers can
be created and dynamically loaded and setted. Different controllers
can access different resources from the middleware system, depend-
ing on the employed modules and on the case of application. A set of
already existing control-tools can also be employed to easy the work
of the control-developers and make the code more standardized.

Thanks to the modularity of the employed solutions, all the devel-
oped code can be easily changed to support new modules and func-
tionalities. The modularity and the use of standard interfaces also
brings to an easy portability of the programs to other robots, allowing
for cooperation between programmers working on distinct projects.

From a performance point of view, it is not possible to assert that
the provided solutions are the optimal ones. Building optimized, ap-
plication specific, software, might lead to better system performances,
reducing delays in the communication between the devices form-
ing the exoskeleton system. On the other hand, the modularity of
the architecture would be lost, the code development would be de-
layed, modifications in the system structure and interfacing the pro-
grams built by programmers working in distinct groups would be-
come more difficult tasks. In a complex, international project as is
BioMot, using a widely known middleware architecture as ROS, can
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facilitate such operations and at the same time allow for an easier
knowledge diffusion. All the developed code was based upon free-
ware software, allowing for reduction of the project’s cost.

further expansion

This work only formed the starting point of the implementation of a
middleware architecture for the exoskeletons used and developed by
the BioMot project. Being the BioMot exoskeleton and all the related
modules still under development, it wasn’t possible to create and in-
tegrate all the necessary middleware interfaces. For the same reason,
it was not possible to insert in the ROS-Control framework the real
structure of the hi-level controllers to be implemented.

Also the real-time framework to be used in conjunction with the hi-
level controllers was not chosen, and it was not possible to evaluate
the final performances of the communication system.

Once the exoskeleton and its modules will be completed, or par-
tially completed, the programmers of the group will need to evaluate
the possible control solutions and the related control time-constraints.
The code provided by this work can then be easily expanded to
achieve real-time capabilities and properly integrate the informations
coming from the middleware system into the hardware interface.

If the interfacing platform won’t be able to provide all the compu-
tational power required by the new algorithms, the code can be easily
ported to more powerful linux-based platforms. The threaded struc-
ture of the programs eventually allows for distribution of the tasks
on different processors if a multi-core platform is used.

Also newer interfaces, allowing for easy access to the control pa-
rameters by programmers or by users/therapists will be developed.

The modularity of the code and the features provided by the ROS
middleware should make these tasks easier.
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A
D E V E L O P E D PA C K A G E S

Following are some tree schematics representing the distribution of
the files in the packages and some UML schematics representing the
relation between the classes.

a.1 the h2interface package

The h2Interface package contains the developed code for communi-
cation with the h2 exoskeleton. As all the ROS packages, the code is
compiled through a CmakeLists.txt file. The description of the pro-
vided solutions can be found in section 4.2.2 for the CAN communi-
cation library and in the sections 4.3 and 4.4 for the ROS packages.
In section 4.5 is described how to compile the code and in section 4.6
how to launch it. A tree diagram describing the distribution of the
files is in figure 60.

The developed code can be found on the REPOSITORY: https://
bitbucket.org/RehabEngGroup/h2

a.2 the h2r package

The h2r package contains the developed code for communication
with the compliant actuators used in both the Biomot and the h2r
project. The description of the provided solutions can be found in
sections 6.5.1 and 6.5.2 . A tree diagram describing the distribution of
the files is in figure 62.

The developed code can be found on the REPOSITORY: https://
bitbucket.org/beagleboneblack/h2r_ros

a.3 the biomot_control package

The biomot_control package contains the developed code for interfac-
ing the newly developed Biomot exoskeleton with the ROS-Control
framework. The description of the provided solutions can be found
in section 7.3. A tree diagram describing the distribution of the files
is in figure 63.

The developed code can be found on the REPOSITORY: https://
bitbucket.org/RehabEngGroup/h2
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Figure 60: Tree diagrams for the h2 package



A.3 the biomot_control package 109

Figure 61: UML graph for the CAN library
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Figure 62: Tree diagrams for the h2r package
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Figure 63: Tree diagrams for the biomot_control package
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Figure 64: UML graph for the application of ROS Control to BioMot
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