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UNIVERSITÁ DEGLI STUDI DI PADOVA

Abstract
Dipartimento di Ingegneria Industriale

MSc in Aerospace Engineering

Three-objective optimization studies of an S-duct

by Alberto Meneghin

Nowadays the CFD analysis has become one of the most reliant tool that an

engineer can use to study the evolution of the flow field. Furthermore, thanks

to the evoulution of the computer and the increasing computing power, Multi-

Objective Optimisation problem can be now solved in less time. In this work the

CFD analysis and the MOO are combined. In particular the MOO is focused

on the optimisation of an S-duct intake while the CFD analysis is a study of

the interaction between different s-duct, obtained by the MOO, with the rotor

67. The S-duct intake create inlet distorsions to the fan and many studies have

been done to replicate these inlet distorsions. In literature total pressure and

swirl distorsion are analised separatly but in reality the two distorsions coesist

together and the main problem of the automatic generation of inlet distorsions is

recreate the two distorsions combined. On the other hand, in this thesis a full cfd

simulation is conducted. Since the distorsions involve swirl and total pressure a

single blade simulation does not describe the full phenomenon but instead a full

annulus simulation is required. The first CFD simulation presented in Chapter

7 focus on the S-duct intake studied by Delot but adapted to the geometrical

requirement of the fan. This simulation shows the evolution of the two counter-

rotating vortices and that the performance of the transonic fan drastically decrease.

The two counter-rotating vortices, under the influence of the rotational speed

of the fan, merge together generating a single vortex that negatively affect the

velocity field. This simulation will be used as reference. In Chapter 6 three MOO

are presented. The main difference from the previous studies conducted, is that

the first two optimisations have a new objective function that has been created.

This new function, called Symmetry Maximum Error (S.M.E.) and described in

Chapter 4, has the goal to minimise the total pressure difference between the
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uppper and the lower part of the S-duct. The last optimisation instead was done

by [1]. In Chapter 8 are reported the results from the different CFD analysis with

the optimised S-ducts. The results show that different S-ducts provide better inlet

conditions for the fan. In particular different vortices structure, position, strength

and distance are analised. The results show that the optimisation of the S.M.E.

incresed the performance of the fan and reduce the total presuure losses on the

S-duct.
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SOMMARIO

Il lavoro condotto durante questi sei mesi presso l’Università di Cranfield è in-

centrato sull’analisi dell’interazione tra una presa dinamica a forma di S e un fan

transonico. In questo studio, il fan transonico viene fornito dalla NASA ed è il test

case R67, mentre le differenti geometrie dell’S-duct sono state ottenute tramite un

processo di ottimizzazione. La prima geometria analizzata è la S-duct scalata di

Delot ed è stata utilizzata come punto di riferimento per le altre geometrie. Dalle

simulazioni CFD riportate nel Capitolo 7 si può notare come i due vortici creati

dall’S-duct si fondano, sotto l’influenza del campo di moto del rotore, e creino un

singolo vortice che ruota in senso orario. Oltre alla geometria di Delot, altre otto

geometrie sono state analizzate. Queste ultime sono state ottenute tramite un

processo di ottimizzazione utilizzando una nuova funzione oggetto appositamente

creata per ridurre le distorsioni in ingresso. Questa nuova funzione oggetto ha

lo scopo di minimizzare la differenza di pressione totale tra la parte superiore ed

inferiore della presa dinamica all’AIP ed è descritta nel Capitolo 4. Nel Capitolo

6 sono riportate le otto differenti geometrie ottenute dall’ottimizzazione. Infine

nel Capitolo 8 sono riportati i risultati delle diverse simulazioni CFD con le otto

S-duct. I risultati ottenuti dimostrano come diversi tipi di vortici influenzano il

campo di moto del rotore. In particolare numero, taglia e distanza dei vortici sono

elementi determinanti per le prestazione del rotore.
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Chapter 1

S-duct state-of-the-art

1.1 S-duct flow physics

Figure 1.1: S-duct in the engine research building.

An serpentine inlet or commonly called S-duct is a type of jet engine intake duct

used in several types of military aircraft, like the Lockheed Martin F-22 Raptor,

and civil trijet aircraft, like the Dassault Falcon 8X. In the civil field the S-duct

represents a design solution approached by some aircraft manufacturers to get

less drag and lowering the engine position compared to straight through design.

This particular intake also allows a shorter fin and a rudder closer to longitudinal

axis. On the other hand, due to his bendend shape, engine performances are

compromised and inlet distortions are genereted. The latter can be categorised

1
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as: Total Pressure, Swirl Angle and Total Temperature. The Total Temperature

distorsion is not analise in this thesis since it is relevant only for military aircraft.

1.1.1 Total Pressure Losses

The definition of the total pressure is: the pressure value when the fluid element

is brought to rest isoentropically [2]. The total pressure for an incompressible flow

can be defined as:

Ptot = Pstatic +
1

2
ρυ2 (1.1)

and the total pressure losses are described with the Pressure Recovery (PR) pa-

rameter:

PR =
Ptot,out
Ptot,in

(1.2)

The total pressure losses are caused by the cross-section growth and by the duct

bends. These two zones lead to flow separation and cause a reverse flow and

vortices formation. The flow separation has been studied for many years and it

is a common aerodynamics phenomenon that occurs in diffusing channel. The

phenomenon is due to the boundary layer detachment off the walls, because the

flow experiences an adverse pressure gradient in increasing cross-section area. As

a result, the vortices genereted convey the low-energy region towards the center,

reducing both magnitude and uniformity pressure distribution leading to pressure

losses. The flow detachment, in diffusing S-duct, is placed right after the first

bend and it occupies a wide downstream region generating a big wake, as proved

by Wellborn’s experiments [3]. We have to clarify that this downstream region is

generated, not only by the growing area, but also by the curved centerline.

Figure 1.2: Flow separation in an S-duct.
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1.1.2 Swirl

Swirl is a parameter that determines the distortion of the flow. In fact, considering

cylindrical coordinates it is possible to divide the velocity vector in the tangential

and the axial components and the swirl is defined as follow:

α = arctan
Vθ,AIP
Vz,AIP

(1.3)

If it has the same rotation direction of the compressor it is considered positive.

Figure 1.3: Rappresentation of swirl angle.

As Fig.1.3 shows, the swirl physically represents the angular deviation between

the local velocity vector and the normal vector, both referred to the AIP plane.

El-Sayed in [4] adfirm how the swirl phenomenon might cause severe problems in

the aircraft engine, such as vibration and surge. In aeronautics, there are four

different types of swirl that could affect a flow within an S-pipe and these are

briefly described below:

� Bulk Swirl

� Paired Swirl

� Tightly-Wound Vortex

� Cross-Flow Swirl

Bulk Swirl:The bulk swirl develops when the entire flowfield spins in one direc-

tion about the compressor axis; the swirl is called co-rotating swirl if flow rotates

in the same direction of the engine, otherwise it is named counter-rotating swirl.

This distortion is defined as “the circumferential mean value of the flow angle for

each constant radius R” [5]. The generation of the Bulk swirl can be internal or ex-

ternal to the duct, but the former circumstance is more important for the project;
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Figure 1.4: Swirl Classification.

it occurs when the “inlet flow experienced a non-axisymmetric total-pressure gra-

dient, normal to angle plane,which combines with static-pressure gradient of the

S-bend flow” [6]. Figure 1.5 displays how the sideslip flow separation at the inlet

causes a wide lowenergy region that starts to rotate. His intensity mainly depends

on geometric parameters and flow conditions.

Figure 1.5: Bulk Swirl Rappresentation.

Paired Swirl: This type of swirl is the most important because it is the most

common swirl that takes place in a bent duct. The paired swirl consists of two or

more paired vortices rotating in opposite directions. If the vorteces have the same

magnitude, the swirl is called twin swirl, otherwise simply offset paired swirl. To

explain the physics behind this type of swirl there are two alternatives. The first

is due to the vorticity vector that is turned by the duct shape, which creates a flow

rotation at the end. The second explanation is due to the pressure gradient and

the momentum. Referring to figure 1.6(a) we can see that in the low area there is

an increasing static pressure due to the growing of the radius and the balancing

of the centrifugal forces.
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(a) High momentum and Low momentum flow in an S-duct.

(b) Paired Swirl in an S-duct.

Figure 1.6: Paired Swirl development in an S-duct.

Now we have to consider the boundary layer conditions that influence the velocity

of the flow. This velocity is equal to zero at the walls, and it is maximum in

the flow core, so even the momentum distribution is either not uniform. There is

a blending of a high velocity and low velocity and this is the reason of the two

counter-rotating vortexes. When the high velocity flow, that is in the core of the

duct, is going through the bend it tries to maintain his path, thanks to the higher

momentum, until it finds the upper wall. On the other hand, the low velocity, that

is located near the walls, whenever it finds the adverse pressure gradient region,

slips around the walls towards the inside part of the bend.

Tightly-Wound Vortex: It is commonly known as inlet-ground vortex for its

characteristic of attaching to airplane surfaces or to the ground.This type of swirl

is highly energetic and it is generated by several mechanisms such as tip vortices,

leading-edge extensions and near-static operations in ground proximity.

Cross-flow swirl:This kind of swirl is similar to the paired one, except for the

presence of a uniform velocity in cross-flow direction. It is common to find this

type of swirl in straight inlet ducts with the flow directions normal to the motion
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Figure 1.7: Example of Ground vortex.

Figure 1.8: Tightly-Wound Vortex Generation.

of the aircraft. Lift fans, turboshaft and turboprop with bifurcated intake ducts

usually suffer this type of swirl.

1.1.3 DC60

The DCθ is a distortion parameter that represents the variation of the total pres-

sure across the engine face. It has been derived by Rolls Royce and used extensively

in the European fighter programs Tornado (Stocks and Bissinger, 1981) and Eu-

rofighter (Bissinger and Jost, 2000) as reported by [7]. It’s important to define

this parameter because in this way we can quantify the total pressure distortion

at the AIP. It is defined as follows:

DCθ =
Ptot,AIP − Ptot,θ

qf,AIP
(1.4)
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Where Ptot,θ is the minimum mean total pressure of all sectors of the extent in the

AIP (so it correspond to the worst sector), Ptot,AIP and qf,AIP are the mean total

pressure and the dynamic head, respectively, at AIP. θ is the angular value of the

sector and 60° is the value that is most used.

Figure 1.9: Example of DC60.

1.2 S-duct Prior Studies

Nowaadys s-duct intake represents an important topic both for military and civil

applications; several research in the last decades has been performed to better un-

derstand and map flowfield characterization in order to reduce flow distortions and

improve duct performances. In the early studies, information about the flowfield

has been obtained only by prototype test. Then with the progresses in computa-

tional analysis we are now able to simulate the flow with mathematical models,

facilitating S-duct studies. Thanks to the CFD we can easily compare experimen-

tal results with the mathematical models.

1.2.1 Experimental Research

In order to determine the behaviour of the flow field throughout and at exit of

s-ducts, several experimental campaigns have been conducted over the years. The

whole history of experimental test is well described in [8] and in this paragraph

we will consider only the major events.

� John R Weske: One of the very first experimental research was conducted by

Weske. He studied the pressure and velocity field at the exit of elbow shaped
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ducts with the final aim of improving the knowledge on aircraft intakes design

parameters. The main finding was that the most influential parameter for

the pressure drop downstream of the ducts was, more than the offset, the

ratio between the exit and the inlet duct radius.

� John R Henry: He studied the effects of flow separation and skin friction on

the pressure recovery in 1944, elaborating results from previous experimental

investigations.

� P Bansod and RW Guo: The presence of the two contra-rotating vortices at

the exit of s-shaped intakes was investigated in detail only later, with the

works of Bansod and Guo on simplied models of engine inlets.

All of the above reported experimental investigations have the goal to build a

more concrete knowledge of the complex aerodynamic phenomena of s-shaped

ducts. Most of this studies were conducted with simplied models, thick boundary

layer and incompressible flow. Moreover, the duct’s radius was constant, so it

did not involve the diffusion phenomena throughout the duct, hence reducing the

presence of separation. A consistent breakthrough in the physical knowledge of the

s-duct aerodynamics was achieved thanks to the experimental and computational

campaigns performed by Wellborn [9] in the 1993. In these studies, both the effects

of compressibility and diffusion were taken into account. All of the tests were

performed at NASA Lewis Research Center. The experiment is well-described in

Figure 1.10: Schematic representation of Wellborn experiment.

[8]. After passing through a bell mouth intake the flow moved to a settling chamber

to be then expanded and accelerated in a convergent nozzle. The contraction ratio

of the latter was chosen in order to achieve low turbulence intensity and uniform
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flow. A constant area section then guided the flow directly into the duct. A double

circular arc diffusing duct was designed (Fig.1.10),with the aim to develop and

study a complex three dimensional velocity field and flow separation. Visualization

techniques and pressure measurements were used to investigate the flow. 220

pressure transducers at different stream-wise and circumferential positions were

used to register the wall static pressure throughout the duct. Three- and five-hole

probes were used to measure total pressure, static pressure and flow direction at

different planes (planes A, B, C, D and E in Fig.1.11) for numerous radial and

circumferential positions. The inlet Mach number was set to 0.6 and the Reynolds

number of the inlet free-stream at 2.6 · 106. The study demonstrated the strong

coupling between the boundary layer and the flow at the core of the duct. A vast

separated region downstream of the first bend was observed. Furthermore, the

curvature of the duct was found to be responsible for the generation of pressure-

driven secondary flow, which eventually induce the creation of the two contra-

rotating vortices downstream.

Figure 1.11: S-duct pressure contour on planes A, B, C, D and E.
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1.2.2 CFD

Computational fluid dynamics (CFD) is the rapidly evolving science of numer-

ically solving the equations of fluid motion to produce quantitative predictions

and/or analyses of fluid flow phenomena. When used appropriately, CFD is often

ideal for parametric studies or flow-physics investigations that would otherwise be

impractical or impossible via entirely theoretical or experimental efforts.

Delot CFD analysis

The Delot analysis, conducted in 2006 are the starting point to understand how to

simulate a flow in a s-duct. Delot based her study on Wellborn’s S-duct geometry

carring out several computational tests for defining the best set up that best

reproduce real flow. She compared several meshes, solver codes and turbolence

models; the project stated that Fluent solver best matches the separate region and

well predicts low pressure region. For the purpose of our analysis, it is crucial to

remind an important statement that she postulated after her research: the fluent

solver well represents the separated region and the low pressure region, but the

PR coefficient is higher than the one of the real flow.

Figure 1.12: Scheme of Delot experiment.

Recent CFD analysis

In order to understand the simulation done, in this thesis we have to analize the

previous work done by Marco Barison [10], Enrico Manca [11], L. Guglielmi [6],

Rigobello Aurora [12], R.Tridello [13], Alessio D’ Ambros [14], Davide Dal Magro
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[1] and Marco Tridente [15]. Marco Tridente, Alessio D’Ambros and Davide Dal

Magro are by far the most important and the most recent sources.

� Alessio D’Ambros:

His research consisted in the optimization of the Wellborn’s geometry con-

sidering two objective functions: the pressure losses (1−PR) and the swirl.

It is important to remind how this author proceeded: the geometry manage-

ment has been controlled with the Free-Form Deformation (FFD) technique,

whereas the analysis of the flow has been performed using the steady-state

computational fluid dynamics (CFD). Furthermore, the exploration of the

design space has been achieved utilising the heuristic optimization algorithm

Tabu Search (MOTS). As a matter of fact, the two most important results

of this work are, on one hand the huge reduction of the value of swirl and,

on the other hand the parametrization that D’Ambros implemented. In fact,

with respect to the previous studies, he had the intuition of changing the

position of the controls points and this variation was the cause of the good

results obtained.

� Davide Dal Magro

His research improved Alessio D’Ambros work finding a new objective func-

tion: the DC60 that reduce the pressure distorsion at the AIP using the

same heuristic optimization algorithm Tabu Search (MOTS). He then per-

form studies on input uncertainties changing from a non robust to a robust

optimization and using as input the velocity, with a gaussian distribution and

a standard deviation of 10. To quantify the uncertainties he used two non

intrusive polynomial chaos techniques: the non intrusive point collocation

and the non intrusive spectral projection. In the end, Davide cooperated

with Marco Tridente to join the s-duct with the rotor 67. In order to do that

he scaled up the Delot s-duct and then perform two non robust optimization,

the first one with the CP and the swirl as objective functions, the second

one with the CP and the DC60 as objective functions.

� Marco Tridente

His research consisted in the study of rotor 67 performance. He created

various mesh and then perform steady state simulation to validate the model.

After that he studied the influence of the s-duct flow on the full annulus using

Davide’s s-ducts. To study the whole system he had to create also the ogiva
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Table 1.1: Davide’s Results Swirl.

CP Improvement SWIRL Improvement

Baseline 0,048042 - 4,73307 -
CP best 0,043898 8,626% 3,233 31,68159%

Swirl best 0,048298 -0,533% 2,511 46,9437%

Table 1.2: Davide’s Results DC60.

CP Improvement DC60 Improvement

Baseline 0,048042 - 0,48911 -
CP best 0,0438 8,82769% 0,0761 84,4392%
D60 best 0,044232 7,93056% 0,00017 99,9656%

Figure 1.13: View of Marco’s run set up.

Figure 1.14: Pressure contours for distorted (left) and clean (right) model
near peak condition.
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mesh. In total he studied 7 geometries and he decided to simulate just one

speed line, and not the entire compressor map; because the simulation was

higly time-demanding. The speed line that was taken into account was the

95% of the rotational speed. The results from the simulaton underlined how

the inlet condition on the fan are distorted and this lead to deterioration of

the rotor overall performance.In the end he observed that the distortion is

located on the left lower part of the rotor as you can see in Fig. 1.14

1.3 S-duct Future Studies

To advance in the propulsion performance and to reduce emissions new technolo-

gies have to be studied. To do this Other than the transonic fan, that has high

performance, the Boundary Layer In-gesting studies has recently attract the at-

tention of many aeronautics companies.

1.3.1 Boundary Layer Ingestion

The Boundary Layer Ingestion is so important because it can reduce fuel burn in

jet engines, thus reducing emissions and the cost of operating the aircraft. With

BLI, an airplane’s engine is located near the rear of the aircraft. Thanks to the

presence of the fuselage and the wings the inflow of the engine is distorted and

this lead to re-energize the aircraft wake. This gives us the oppurtunity to waste

less cinetic energy.

Figure 1.15: Aircraft wake cinetic energy.
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Figure 1.16: Expamble of new project concept using BLI.



Chapter 2

Axial Compressor state-of-the-art

Most modern passenger and military aircraft are powered by gas turbine engines,

which are also called jet engines. There are several different types of jet engines,

but all jet engines have some parts in common. Typically every jet engine is

composed by:

� Intake or duct: that capture and drive the air to the compressor;

� Axial Compressor: that compress the flow;

� Combustion Chamber: that mix the air and the fuel and burned;

� Axial Turbine: that converts the flow of the fluid into rotating mechanical

energy;

� Nozzle: that increase the kinetic energy of the flow at the expense of its

pressure and internal energy.

The most common propulsive system used in the civil aviation is the turbofan,

which is characterized by a big fan in front of the compressor. This required that

part of the energy of the turbine is used to move a fan instead of producing thrust

in the nozzle. Having a big fan leads to increase the mass flow rate breathed

reducing the specific thrust but increasing the propulsive efficiency.

15
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Figure 2.1: Turbojet and Turbofan schematic view.

2.1 Axial Compressor

Compressors and fans provide mechanical compression for the air stream that

enters a gas turbine engine. Thermodynamically, their function is to increase

the fluid pressure, efficiently. The shaft power to drive the compressor typically is

produced by expanding gases in the turbine. There are three types of compressors:

� radial-flow

� mixed-flow

� axial-flow

In the first one the fluid path undergoes a 90° turn from the axial direction. These

machines are sometimes referred to as centrifugal machines. The second one is an

hybrid between the axial and the radial-flow machines. In the third one, the fluid

path is predominantly along the axis rotation of the shaft. In aircraft gas turbine

engines, the axial-flow compressors and turbines enjoy the widest application and

development due to its ability on working with large mass flow and the high effi-

ciency. To achieve a large pressure rise, axial-flow compressors and fans need to be

staged thus becoming a multistage machinery, or compression system. The single

stage is composed by a rotor and a stator where the rotor blade imparts angular

momentum to the fluid, while the following stator blade row removes the angular

momentum from the fluid. Sometimes more stator blades are used, in paticular:

-The IGV (inlet guide vanes) that are placed in front of the compressor. They are

designed to add swirl in the direction of rotor motion to lower the Mach number

of the flow relative to the rotor blades, and thus improve the aerodynamic perfor-

mance of the rotor.
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Figure 2.2: Multistage axial compressor.

-The OGV (outlet guided vanes) that are placed downstream of the last stage.

They are designed to reduce the swirl of the fluid before it enters in the channel

for the combustion chamber.

2.1.1 Velocities Triangles

In order to better understad how the energy is exchanged within a stage, it is

important to analise the triangles of velocity. Refering to Figure 2.3, we can

define section 1 as the inlet, section 2 as the outlet of the rotor and section 3 the

outlet of the stator. In all sections there is a triangle of velocity where:

� c is the absolute flow velocity

� ω is the relative flow velocity

� U is the tangential blade speed (U = ω ∧ r)

and the relation that exists is:

~c = ~ω + ~U (2.1)
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Figure 2.3: Absolute and relative flow angles in a compressor stage.

The flow angles are measured with respect to the axial direction, or axis of the

machine, and are labeled as α and β, which correspond to the absolute and relative

flow velocity vectors c and ω, respectively. One method of accounting for positive

and negative swirl velocities is through a convention for positive and negative

flowangles. It can be observed that the absolute velocity vector upstream of the

rotor has a swirl component in the direction of the rotor rotation. Hence, the

absolute flow angle α1 is considered positive.

The triangle of velocity can be plot in the T-S diagram shown in Figure 2.4 using

also the assumption that the axial velocity maintains a constan valuet throughout

the stages. Through the rotor the mechanic energy of the shaft is transformed into

fluid enthalpy increasing the absolute velocity, static and total temperature. But

to satisfy equation 2.1, the relative velocity must decrease and as a consequence

the static pressure increases. After the rotor the flow passes through the stator

and, since the entire work of the stage is done by the rotor, the total temperature is

conserved. Hence the blade of the stator act as a diffuser for the absolute velocity.

Consequently, there is only a loss of total pressure due to the friction of the fluid

with the blade.

2.1.2 Isentropic and Polytropic Efficiency

To better understand the performance of a compressor it is really useful to indro-

duce the isoentropic efficiency. This is calculed as:

ηis =
Lis
L

=
h02is − h01
h02 − h01

(2.2)
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Figure 2.4: Absolute and relative states of gas across a compressor rotor and
stator.

and it is called total-to-total efficiency. The isentropic efficiency considers only

the start and end states of the compression and expansion processes and it pays

no attention to the actual paths the compression and expansion processes take. In

fact, the higher the exit temperature is, the higher the real work is and, since it

is at the denominator of equation 2.2, the lower the efficiency is. Since the work

is not a thermodynamic property and depends on the actual path, the polytropic

analysis endeavours to account for the path taken during the compression and

expansion processes in determining the actual work. In a polytropic process, the

compression or expansion process takes place in small steps (infinitesimally small

steps). Calculating the work for the polytropic process involves the summation of

the work for each step. It is calculeted as follow:

ηpol =
dhis
dh

=
dp/ρ

cp dT
(2.3)
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That can be transform into:

ηpol =
k

k − 1

ln

(
p02
p01

)
ln

(
T 0
2

T 0
1

) (2.4)

Figure 2.5: Definition of Polytropic Efficiency.

2.1.3 Compressor Map

Compressor pressure ratio plotted against the mass flow rate through the com-

pressor is the compressor performance map. A compressor operates over a large

range of flow and speed delivering a stable head/pressure ratio. As state in [16]

and referring to figure 2.6, the surge point in a compressor occurs when the com-

pressor back pressure is high and the compressor can not pump against this high

head causing the flow to separate and reverse its direction. Surge is a reversal

of flow and is a complete breakdown of the continuous steady flow through the

whole compressor. The phenomenon of surging should not be confused with the

stalling of a compressor stage. Stalling is the breakaway of the flow from the suc-

tion side of the blade aerofoil thus causing an aerodynamic stall. A multi-stage

compressor may operate stably in the unsurged region with one or more of the

stages stalled, and the rest of the stages unstalled. A decrease in the mass flow

rate, an increase in the rotational speed of the impeller, or both can cause the

compressor to surge. The curves that present a vertical asymptote are iso-velocity

line. This asymptote is the choke limit. The compressor choke point is when

the flow in the compressor reaches Mach 1 at the blade throat, a point where no

more flow can pass through the compressor. This phenomenon is often known in

the industry as “Stone Walling”. In the end, there are the isoefficiency lines that
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rappresent the efficiency of the compressor. Although uniform inlet conditions are

Figure 2.6: Example of Compressor Map.

highly desirable and system designers attempt to insure distortion-free flow en-

tering compressors, situations frequently arise in which substantial total pressure,

velocity, and angle variations exist at the compressor inlet. Aircraft gas turbines

are particularly prone to inlet distortion problems due to changes in aircraft at-

titude and the effect of the airframe on the inlet flow conditions, but industrial

insallations may also suffer from inlet distortion in cases where poorly designed

bends have been installed upstream of the compressor. Many research reveal that

the inlet distortion both deteriorates the performance of the fan resulting in reduc-

tion of total pressure ratio, efficiency and stall margin of the transonic compressor.

Figure 2.7: Example of Compressor Map with inlet distorsion.
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2.2 Transonic Axial Compressor

In modern gas turbine engines requirements for high performance and compactness

have become very tight leading the technological development towards the reduc-

tion of cost and increased safety. Because of this it is mandatory for compressor

stages to operate at the highest values of both efficiency and pressure ratio as pos-

sible. As a matter of fact high efficiency implies a low fuel consumption, while a

high pressure ratio helps to decrease the number of stages and the cross-sectional

area of the engine: as a consequence size and weight can be reduced. Transonic

axial flow compressors are fundamental to achieve the task as they make it possible

to maximize pressure ratios per stage unit. A modern transonic fan stage produces

a stage pressure ratio of 1.6. This type of compressors have tip blade speed up

to 500 m/s. This gives an higher specific work and the increased rotational speed

has brought relative mach number levels in the transonic regime, with peaks of

up to about 1.7. The resulting flow field is really complex: while the inner sec-

tions of rotor blade operate at relatively high subsonic Mach numbers, proceeding

towards the tip, relative speeds increase up to supersonic values featuring highly

three-dimensional inviscid/viscous structures, strong shock boundary layer inter-

action and intense tip clearance effects [17]. In this way a single compressor rotor

can achieve pressure ratios even higher than two. However the isentropic effi-

ciency results slightly penalized by the presence of the shock wave that dominates

the passage in the outer part of the blade. Despite the slightly lower efficiency,

transonic compressors remain the most efficient solution, especially for aircraft

engines, thanks to their compactness. Therefore, considerable research efforts are

being spent, both numerically and experimentally, to improve efficiency and stall

margin at peak efficiency and near stall operation. In next section it will be briefly

described the shock wave theory to better understand the interaction between the

shocks and the blade.

2.2.1 Shock Waves

The shock wave, or shock, is a type of propagating disturbance that moves faster

than the local speed of sound in the medium. The shock wave propagates through

a medium but is characterized by an abrupt, nearly discontinuous, change in pres-

sure, temperature, and density of the medium and since it is a no-work process the
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total temperature and enthalpy remains costants (in normal shock). The shock

wave can be divided into:

� Normal shock wave

� Oblique shock wave

� Bow shock

Normal shock wave can be seen as a special case of an oblique shock wave. This

wave is normal to the flow and causes a sudden deceleration; static pressure, tem-

perature, density, and entropy rise; Mach number and total pressure drop across

the wave. Compression Mach waves may coalesce to form an oblique shockwave.

Figure 2.8 shows a schematic drawing of an oblique shock flow with a representa-

tive streamline that abruptly changes direction across the shock. The shock wave

angle with respect to upstream flow is called β and the flow-turning angle is θ.

The flow is resolved into a normal and a tangential direction to the shock wave.

From the equation of continuity along the tagential direction, it is possible to ob-

Figure 2.8: Oblique shock with the wave angle and flow turning angle.

tain that ω1 = ω2, so the tangential component of the velocity remains constat

and the Mach number downstream of the shock wave depends only by the normal

component of the upstream Mach and the two angle β and θ as proven by equation

2.5.

M2
2 =

Mn,2

sin(β − θ)
(2.5)
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From the continuity equation and with the constancy of the tangential components,

the θ − β −M relation can be obtain.

tan θ = 2 cot β
M2

1 sin β − 1

M2
1 (γ + cos(2β)) + 2

(2.6)

and in relates the deflection angle as a function only of the inlet mach and β.

The function can also be plotted giving the θ − β −M graph reported in figure

2.9. Once set the θ and the Mach there are two β angle possible solution. This is

Figure 2.9: θ-β-M relation.

related with the concept of strong and weak shock, above the red line the shock

is strong and under the red line is weak. This line connects all the maximum

deflection angle of each iso-Mach line; in fact for every Mach number there is a

maximum value of θ. If θ > θmax a bow shock generates detached, from a certain

distance δ, from the body. The blue line is called sonic line because it diveds the

graph into two zone (M < 1 and M > 1).

2.2.2 Transonic Compressors Aerodynamics

The Aerodynamic of the transonic compressor is profoundly different from the

subsonic one and in the last decades many research have been conducted. As
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alreary pointed out to reach higher pressure ratio high tip speed becomes manda-

tory leading to supersonic relative Mach number near the tip. Because of this, the

outer part of the annulus experiences strong shock waves that a subsonic profiles

can’t handle well. In fact, if a subsonic profile is invested by a flow with Mach over

0.7-0.75 it is going to accelerate due to his rounded leading edge creating a sonic

bubble leading to a normal shock. However the absolute Mach number is restricted

under the unity, more precisely 0.7 is usually cited as the Mach number limit in

front of the fan to avoid chocking in the intake. If the relative Mach continue to

grow reaching supersonic value there is the creation of the bow shock detached

from the profile. Figure 2.10(a) highlights that there are two different zone: one

subsonic in which the shock is almost normal, hence the reduction of the Mach is

consistent, while the supersonic one is far from the leading edge because the shock

is too weak. A supersonic blade profoundly differs from a subsonic one. The

(a) Transonic flow over a subsonic profile. (b) Supersonic flow over a subsonic profile.

Figure 2.10: Transonic and supersonic flow over a subsonic profile.

leading edge of the profile has to be as sharp as possible to have an oblique shock

attached to the blade as much as possible, because a normal and detached shock

would brings higher losses. The radius will be limited by mechanical integrity con-

siderations only. Even the thickness of the blade is limited to a minimum dictated

by mechanical constraint, in order to interfere the least possible with the super-

sonic flow. Then the supersonic profiles are highly staggered to allow the relative

flow to enter smoothly into the blade passage, reaching 60 with respect to the axial

direction. A distinguishing detail of a supersonic profile is the camber liner that is

straight up to 60− 70% of the chord, while the remaining part is slightly curved.

To better understand this choice it is important to analise the path that the fluid

undergoes. A fluid particle before entering the cascade crosses a series of oblique
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shocks, detaching and compressing the flow. However the prediffusion performed

by these fronts is gentle, because, thanks to the viscosity of the fluid, shocks fade

as they propagate upstream the compressor [17]. The biggest contribution to the

pressure rise is given by the much more intense shock passage between the two

blades. As can be notice in figure 2.11 this shock is almost normal to the incoming

flow, hence the shock is ”stronger” than the oblique one. The normal shock leads

to a dissipative diffusion process that decelerate the relative flow downstream to

subsonic velocities. After the analysis it is possible to unveil why the transonic

Figure 2.11: Shock wave in a supersonic profile.

compressor has this particular blade shape:

� Suction side: is almost flat to prevent a large expansion of the flow that

would lead to an even high even higher Mach number in front of the passage

shock and therefore a large entropy production. In this first part the the

diffusion is only due to the presence of the shock. Sometimes the suction

surface is even negatively cambered to avoid such problem, even if the flow

capacity is reduced. After the shock the suction side become a conventional

cambered airfoil because the Mach number is lower than unity.

� Hub to Tip: the profiles are less and less cambered because over the outboard

sections of the rotor dominates the shock system (the adiabatic efficiency is

reduced) while in the inner section the flow is still subsonic. This results in

growing pressure ratio from hub to tip giving two zone dominated by two

diffusion mechanism.
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(a) Hub section. (b) Mid section. (c) Tip section.

Figure 2.12: Section profiles of an transonic compressor.

2.2.3 Off-Design Shock Wave Structure

The shock pattern in Figure 2.11 represents the normal operating condition of the

transonic compressor. However this shock wave pattern change as the operating

condition varies. In fact if the back pressure is changed, keeping the rotation speed

constant, the shock wave patter transforms as shown in Figure 2.13. Two different

operating condition arise: one called near surge (stall) and the last one called near

choking.

Figure 2.13: Shock wave pattern in a supersonic compressor in different op-
erating condition.

� At low back pressure the flow is chocked, the massflow increase and shock

fronts departing from the leading edge are rather oblique. This wave enters

the blade passage and impinges well back on the suction side: therefore even

if shock losses are rather low the interaction leads to the complete separation

of the flow. Thanks to the presence multiple shock fronts, shock losses are

not high, however as the absolute velocity is very high, profile losses lower

considerably both efficiency and pressure ratio.
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� At ”medium” back pressure the flow is at his peak efficiency and occurs when

the shock is just inside the rotor.

� At hight back pressure the flow is stalled, the massflow decrease and the

shock is ejected from the passage channel and becomes almost normal to

the incoming flow. Shock losses and supersonic turning are inevitably high:

mass flow rate rapidly falls together with efficiency, even if pressure ratio

remains high.

2.2.4 Transonic Compressor Losses

The interaction between the rotor’s blades and the shock wave leads to aerody-

namic losses but if its shape is accurately controlled these losses are not so hight.

What cannot be controlled and it is difficult to measure are the indirect losses

caused by the shock. These are for example the interaction with the boundary

layer, the tip leakage vortex and, more generally, with secondary flows. The most

important is the tip leakeage vortex since the transonic compressor are unshrouded

and highly loaded machines. The pressure imbalance is so hight, between pressure

and suction side, that drives the flow from one side to the other, through the

tip gap region as shown in Figure 2.14. The result is the formation of a vortex

that increases aerodynamic losses and could lead to blockage near the casing and

instabilities. This interaction is retained to be one of the principal phenomena

bringing to stall in transonic compressors. In fact, the vortex is forced to slow

down passing through the shock front and if the deceleration is too strong the

vortex might break down. Another type of losses are the hub corner losses. This

loss is positioned near the suction side of the blade hub and it is related with a

viscous effect of the boundary layer, by which the flow migrates towards the tip

wall.

2.3 Rotor 67

The Rotor 67 (R67) developed by NASA is a transonic low aspect-ration fan. This

fan will be used to better understand the interaction between the s-duct and the

fan. The main thecnical data, referred to the design operative point, are reported
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Figure 2.14: Tip leakeage vortex.

in table. It was decided to use this fan because it has been widely studied and

many blade optimization have been done.

Figure 2.15: Rotor 67.
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Table 2.1: Nasa Rotor 67 Specifications.

Properties Value

Design Rotational Speed 16043[rpm]
Number of Blades 22

Total Pressure Ratio 1.63

Mass Flow Rate 33.25 [
kg

s
]

Tip Velocity 429 [
m

s
]

Mrelinlet 1.38
Shroud Tip 0.1016 [cm]
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Optimisation

This chapter is meant to give basic knowledge of optimisation problems. The

latters can be find in many field of studies, especially Engineering and Economy

fields. To give a simple example let’s consider a salesman who has to sell goods to

customers in different cities. The optimisation problem lies in finding the shortest

route that passes through every city. The more cities are introduced, the more

complicated and highly non-linear the problem will become. Apart from this,

also the boundaries condition have to be taken into account and the problem

gets more complicated. To solve an optimisation problem we can use general

automated design techniques that are implemented in cycles (loops). In computer

programming, a loop is a sequence of instructions that are continually repeated

until a certain condition is reached. Cycle are generally composed of three main

processes: design analysis, results evaluation and new design creation. As stated

in [18] the design analysis process is to determine the response of a specified

design when it is subjected to a certain combination of input parameters. An

example is to find the output pressure recovery of an S-duct as a result of certain

fluid properties inputs at the inlet area. The results evaluation process is used

to verify if the last design is optimum and in the end the new design creation

process is used to create a new design for the next iteration. To do the last

two steps efficient algorithms are required in order to reduce the computational

cost. Also an important evaluation of manufacturing constrains has to be done.

For example we know that a really thin rotor blade offer good performance but

under a certain thickness the blade will break. In a numerical optimisation, the

design variables are those parameters that can be changed in the system while

the code is searching for the best design that minimize or maximize one or more

31
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specific characteristics called objective functions. In mathematical terms, a simple

deterministic optimisation problem can be stated as follows: given an independent

variable x ∈ R called design variable, and an objective function f(x), the goal of a

optimisation cycle is to automatically change the design variable in order to find

a certain x∗ such that f(x∗) is a global minimum or maximum (it depends on the

problem we are analysing). In a more general case, x can be a design vector of

design variables x = (x1, . . . , xn) ∈ Rn. The optimisation is called single-objective

(SOO) if only one objective function is present, otherwise is called multi-objective

optimisation (MOO). It has to be underline also that a global optimum design

might even not exist for complex problems: in these situations a decision maker

comes into play by choosing one solution that may be of particular interest with

respect to the others.

3.1 Problem Formulation

One of the difficult part of an optimisation process is the selection of design vari-

ables, constraints, objectives, models and uncertainties. The design variables are

entities that can change the shape or properties of the model within a specified

range during a sensitivity or optimization design study. The design variables that

are created affect only the shape of the model.As a very simple example, consider

a rectangular wing with a pre-defined airfoil. It can be defined by deciding on the

values of the following two design variables:

(b, c) (3.1)

Placing these variables along orthogonal axes defines a design space, or set of all

possible design options. Each point in the design space corresponds to a chosen

design, as illustrated in Fig. 3.1 The design variables are often bounded, so they

usually have an upper and a lower limit. In the end they can be continuous, discrete

or boolean. In our case of studies the control points of a parametrized S-duct can

be considered design variables. After this the constraints have to be decided. A

constraint is a condition that must be satisfied to make the design feasible and

is imposed by the designer. Constraints can be either hard constraints, which set

conditions for the variables that are required to be satisfied, or soft constraints,

which have some variable values that are penalized in the objective function if,

and based on the extent that, the conditions on the variables are not satisfied.
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Figure 3.1: Rappresentation of the Design Space.

Examples of constraints in a S-duct design can be related to manufacturing. Or,

if after an iteration, the result of one or more objective functions exceed a certain

value. The objective function is a mathematical equation that describes the output

target. The latter corresponds to the maximization or minimization of profits or

losess with respect to production. It then uses the correlation of variables to

determine the value of the final outcome. Many solution methods have only one

single objective function. But other methods allow multi-objective optimization,

such as the calculation of a Pareto front. If the designer wants to avoid the MOO he

can create a new objective function based on the previous one and use a weighted

sum where each weight describe the influence of every objective function. In the

end the optimization has to be choose. Optimization models can be classified in

terms of the nature of the objective function and the nature of the constraints.

Special forms of the objective function and the constraints give rise to specialized

algorithms that are more efficient. From this point of view, there are four types

of optimization problems, of increasing complexity.

� Unconstrained: Is an optimization problem where the objective function can

be of any kind (linear or nonlinear) and there are no constraints.

� Linear: Is an optimization problem with an objective function that is linear

in the variables, and all constraints are also linear

� Quadratic: Is an optimization problem with an objective function that is

quadratic in the variables (i.e. it may contain squares and cross products of

the decision variables), and all constraints are linear.
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� Nonlinear: Is an optimization problem with an objective function that is an

arbitrary nonlinear function of the decision variables, and the constraints

can be linear or nonlinear

These models can also be empirical models ot theoretical models. The selection of

the model determines the accuracy of the solution and the computational cost.

Figure 3.2: Scheme of an Optimization Problem.

3.2 Single and Multi-objectives problems

Once we set all the design variables, constraints, objectives and the models, the

designer has to choose how many objectives function wants to study. With only

one objective function the goal will be to minimise or maximise function; with

two or more the designer has to choose a trade off solution. Based on this, single

and multi-objectives optimisation problem can be expressed in a deterministic

mathematical problem.

3.2.1 Deterministic Optimisation Problem

Definig an objective function f(x), where x ∈ X represents vector of design vari-

ables. A single-objective minimisation problem is formulated as:

f(x∗) ≤ f(x) ∀ x ∈ X

s.to g(x) ≤ 0, h(x) = 0
(3.2)
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where g(x) and h(x) are constraints vectors and X is the design space. A deter-

ministic multi-objective minimisation problem can be formulated as

min
X

[f1(x); f2(x); . . . fm(x)] ∀ x ∈ X

s.to g(x) ≤ 0, h(x) = 0
(3.3)

where, like before, g(x) and h(x) are constraints vectors and X is the design space.

In the first system is important to underline that the objective function is only one

and there’s no uncertainties input ζ. On the other hand, in the second system a

set of objective functions are minimise or maximise [f1(x); f2(x); . . . fm(x)] where

x ∈ X represents a vector of design variables. The MOO has the problem that

it does not ensure that all the objective functions are minimized. In Fig.3.3 we

can see an example of multi objective optimisation where x1 and x2 are the two

objective functions.

Figure 3.3: Example of MOO with constraints.

3.2.2 Concept of Dominance and Pareto Front

To affirm that a solution A dominates the solution B the following statements

have to be verified:
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� The solution A is not worst than the solution B in each objective function.

What just asserted means that fj(A) ≤ fj(B) ∀j = 1, .....,m where m is the

number of the objective functions.

� The solution A is strictly better than the solution B, in at least one objec-

tive function. As a consequence, this means that fk(A) < fk(B) for at least

one k in 1, ....m.

If none of these statements are verified, this means that both (A and B) are non-

dominated solutions. The non-dominated solutions have the characteristic that if

one objective function improves, the other has to become worse. In the Fig.3.4 we

have a clear example where the points 6,5 and 3 are non-dominated points. The

mathematical set that contains all the non-dominated solutions is called Pareto

Front.

Figure 3.4: Example of non-dominated objective functions.

3.3 Optimization Algorithms

In order to find better solutions, the choice of the algorithm covers an important

role. In fact, the aim of the algorithm is to decide how to change the decision

variable . The most know algorithms are the exact algorithms. These algorithms

always solve an optimization problem to optimality finding the exact mathematical

solution. To find the exact mathematical solution is not easy and sometimes
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impossible. For some application there are exact algorithm but the best known

exact algorithms require exponential time. Another type of algorithm ate heuristic

algorithms. Heuristic means to find or to discover by trial and error. These

algorithms is designed to solve a problem in a faster and more efficient fashion than

traditional methods by sacrificing optimality, accuracy, precision, or completeness

for speed. They are most often employed when approximate solutions are sufficient

and exact solutions are necessarily computationally expensive. In the end there are

the metaheuristic algorithms. Metaheuristics generally perform better than simple

heuristics. The metaheuristic can be considered as a ”master strategy that guides

and modifies other heuristics to produce solutions beyond those that are normally

generated in a quest for local optimality” [19]. In addition, all metaheuristic

algorithms use a certain tradeoff of randomization and local search.

3.3.1 Metaheuristic Algorithms

In our thesis we are going to use the metaheuristic algorithms. Two major com-

ponents of any metaheuristic algorithms are: intensification and diversification, or

exploitation and exploration [20]. Diversification means to generate diverse solu-

tions so as to explore the search space on a global scale, while intensification means

to focus on the search in a local region knowing that a current good solution is

found in this region. A good balance between intensification and diversification

should be found during the selection of the best solutions to improve the rate of

algorithm convergence. The selection of the best ensures that solutions will con-

verge to the optimum, while diversification via randomization allows the search

to espace from local optima and, at the same time, increases the diversity of so-

lutions. A good combination of these two major components will usually ensure

that global optimality is achievable [21]. To intensify and differentiate the design

space, the algorithm has to make a decision that can be based on:

� non-preference methods: The new design is chosen randomly, without any

strategy.

� priori method: All the designs have been already choosen without waiting

the results of the simulations. The main problem with this type of method

is that it may have too optimistic or too pessimistic expectations, because

the decision maker unknows the results.
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� posteriori method: The new design is chosen after every iteration analysing

the results. In order to do that, it is created a Pareto-optimal set but the

main drawback is the computational cost that is requested.

Figure 3.5: Posteriori Method and Pareto Front.

� interactive methods: These methos allow the user to interact with the sim-

ulation and guide the solution.

A posteriori method will be use in our optimisation. In literature exist many

metaheuristic algorithms for optimization, such as Simulated Annealing, Genetic

Algorithms, Differential Evolution ecc.. In this thesis we are going to use the Tabu

Search algorithm.

3.3.2 Tabu Search

Tabu search was developed by Fred Glover in the 1970s, bur his seminal book

was published much later in 1997. The search history is a major component of

the method and uses memory. In essence, Tabu search can be considered as an

intensive local search, and the appropriate use of search history avoids revisiting

local solutions by recording recently tried solutions in tabu lists. Over a large
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number of iterations, these tabu lists could save a significant amount of comput-

ing time, leading to improvements in search efficiency. As most algorithms are

memoryless or only use results of the last or two last steps, it is initially difficult

to see the advantage of using the search history. The subtleties of memory and

history could introduce too many degrees of freedom, and a mathematical analysis

of the algorithm behaviour becomes intractable. However, Tabu search remains

one of the most successful and widely used metaheuristics in optimization. The

method has also many variants and, in this work, the alternative chosen has been

proposed by Kipouros [22] and the software that he developed is called Multi-

objective Tabu search (MOTS). The memory structures used in tabu search can

roughly be divided into three categories:

� Short Term Memory: The list of solutions recently considered. If a potential

solution appears on the tabu list, it cannot be revisited until it reaches an

expiration point.

� Medium Term Memory: Here all the points of the Pareto optimal setare

recorded, and also the output of the analysis. In this memory are stored

the points that are used as starting points for the intensification move. As

a result, this implies that if the research finds a worst result with respect to

the starting point, the following research will start from the actual Pareto-

optimal.

� Long Term Memory: this memory contains all the points of the simulations.

The main aim of this stage is to obtain a diversification move.

Figure 3.6: MOTS memories.

Every iteration 2nvar new points are created systematically by the optimizer with

nvar as design variables. The MOTS optimiser uses a step to create these point
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that is decided by the user. Then the optimiser evalute all the objective functions

for all the non tabu points. The point xi+1 thas has better objective function will

be the new starting point for the next iteration. If during the evaluation on the

new points created, more than one is a non-dominated point, one of them will be

choosen randomly, while the other will be recorded in the Medium Term Memory.

Figure 3.7: Flow diagram of the MOTS algorithm.
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S-Duct case of study

The aim of this work is to find a way to reduce the computationl cost of the s-duct

and rotor 67 coupled system. As we know the total pressure distorsion caused by

the s-duct does not allow us to study only one blade of the rotor 67 but instead

we have to simulate the full annulus. In order to do that, as already discovered

in Marco’s work [15], a symmetry studies of the total pressure at the AIP of the

s-duct has to be done. Hence a new objective function has to be created and as

starting point it will be used the geometry studied from Davide’s [1] and Marco’s

[15] works. The code and the optimisation loop are the ones used in [14] and in

this chapter the geometry of the baseline, the parameterization, the mesh and the

CFD parameters will be analysed.

4.1 Geometry

The geometrical model implemented as baseline configuration was designed as

defined in Wellborn experiment and scaled up to adapt it to the rotor 67 geometry.

The duct centerline is defined by two planar circular arcs with same radii, R, and

subtended angles,θmax/2. Its coordinates are defined by the following equations:

for 0 ≤ θ ≤ θ/2

xcl = R sin θ (4.1)

ycl = R cos θ −R (4.2)

zcl = 0 (4.3)

41
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for θ/2 ≤ θ ≤ θmax

xcl = 2R sin(θmax/2)−R sin(θmax − θ) (4.4)

ycl = 2R cos(θmax/2)−R cos(θmax − θ) (4.5)

zcl = 0 (4.6)

The radius of the section perpendicular to the centerline is a function of θ:

r

r1
= 1 + 3

(
r2
r1
− 1

)(
θ

θmax

)2

− 2

(
r2
r1
− 1

)(
θ

θmax

)3

(4.7)

where r-1 and r-2 are the inlet and the outlet radius respectively. Both centerline

and radius distribution are a function of the arc angle θ. The value of θmax, R, r1

and r2 are the same of the Delot experiment but scaled up with a factor of 3.1295.

To obtain more accurate results there are:

Table 4.1: S-Duct baseline geometry parameters.

Parameter Value

θmax 60°
R 0.6650m · 3.1295
r1 0.0665m · 3.1295
r2 0.0820m · 3.1295

Figure 4.1: S-duct Scheme.
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� at the inlet, a cylindrical duct eight times longer than the inlet radius. Its

purpose is to ensure uniform inlet conditions;

� at the outlet, a cylindrical duct six times longer than the outlet radius. Its

purpose is to guarantee that the outlet conditions do not have any influence

on the upstream flow.

In the table 4.2 all the value of the main parameters are reported. In the end

Table 4.2: Overall geometry parameters.

Parameter Value

Offset 2R(1− cos(θmax/2))
LSDuct R
Linlet 8r1
Loutlet 6r1

LAIP = Linlet + LSDuct + r1 9r1 +R
LTOT = Linlet + LSDuct + Loutlet 14r1 +R

only half of the s-duct has been simuleted due to the simmetrical flow dicover by

Wellborn [? ] and Delot [? ].

4.2 Parameterization

In this research it has been used the same parameterization of the Wellborn S-

duct studied by D’Ambros [14]. The reasons behind this choice are mainly two:

first because this parameterization results in a great improvement of the previous

ones. Second because it has been used in the previous work of [1],so we have

the opportunity to compare the results. The entire parameterization is based on

the Free Form Deformation (FFD) technique. In computer graphics, free-form

deformation (FFD) is a geometric technique used to model simple deformations

of rigid objects. It is based on the idea of enclosing an object within a cube or

another hull object, and transforming the object within the hull as the hull is

deformed. Deformation of the hull is based on the concept of so-called hyper-

patches, which are three-dimensional analogs of parametric curves such as Bézier

curves, B-splines, or NURBs. As visual example it can be viewed as the entire

geometry that has to be parametrized that has been incorporated in a 3D lattice,

and the latter is divided into regular sections, and the nodes of every section are
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called control points. The points of the geometry are linked to the control points

since their position is described by a weighted sum of the control points. Two

simplifications have been made in order to improve the method:

� The S-duct has a symmetry plan (x-y),so only half S-duct has been simulated

in order to reduce the computational cost.

� The inlet and the outlet cylindrical tube are fixed so it is not necessary to

parameterize them.

The parallelepipedic lattice has been created from a planar rectangular plane. To

Figure 4.2: S-duct parallelepipedic lattice.

links the control points and the geometry the FFD method is mathematically

described by the following equation:

Xffd =

l,m∑
i,j=0

Bi(s)Bj(t)Pij (4.8)

Where:

� Xffd is a vector containing the Cartesian coordinates of the displaced point;

� l,m are the number of control point in S and T direction respectively;
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� Bk(u) are the degree 3 Bernstein polynomials;

� s, t are the generic point coordinate in the S T system of reference (0 ≤ s ≤
1, 0 ≤ t ≤ 1);

� Pij is a vector containing the Cartesian coordinates of the control point.

Now selecting a S section, and moving the control points, in correspondence to

the S-duct surface, the geometry obtained results similar to the baseline but not

equal as shown in Figure 4.3. The main problem is that the control points do

Figure 4.3: Difference between baseline and deformed geometry.

not interpolate the surface. To obtain a closer result, it is possible to invert the

equation of a Bezier curve, since for a fixed section, the geometry can be described

with a 1D FFD formulation (Bezier curve) as follows:

Xffd =
m∑
i=0

Bj(t)Pi (4.9)

But, as [14] discover, to invert the equation some constraints have to be imposed:

1. y′p1 = −r

2. y′p6 = r tangency condition

3. y′p1 = y′p2 symmetry condition

4. y′p5 = y′p6 symmetry condition

5. y′p3 = −y′p4 symmetry condition
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6. z′p3 = z′p4 tangency condition

7. z′p2 = z′p5

In order to guarantee tangential condition at the inlet and at the outlet, the control

points in the inlet section are copied and translated shortly after. The control

points in the outlet section are copied and translated shortly before. The control

points of the cross sections of the inlet and the outlet are fixed for manufacturing

constraints. The degrees of freedom (dof) of the parameterization can be defined

as follow:

� P1 and P6 that can only move along x-y, in order to respect the symmetry

(2dof);

� P2 and P5 that, in order to respect the tangential conditions, they have the

same x and y as

� P1 and P6. As a result, they only have one direction to move (1dof each);

� P4 and P5 are free to move (3dof each).

These above mentioned conditions can be applied to all the sections. Each cross-

section at the end has twelve dof and so three cross section have been performed

in the s-shape, and this means that l is equal to 7.

4.3 Mesh

Solving the continuous non-linear fluid-dynamics equations is not possible. So it

is necessary to approximate the domain with nodes, connected in a cells network,

and the equations are solved algebraically. The mesh can be divided in two types:

unstructured and structured. The latter is the most difficult to build but since

volumes are aligned with streamlines, it improves the solver convergence. To built

the mesh, it was decided to use the one already created by D’Ambros [14]. The

sofware used to generate the mesh every iteration is ICEM. The mesh has been

created with the same topology as [14] and to create a structure mesh it was use

the blocking technique. Due to the scaling up the number of mesh elements change

from 1.8 · 106 to 3.2 · 106 An H-grid structure was imposed in the center of the
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Figure 4.4: Overview of Parameterization.

duct section and an O-grid structure around the walls. This type of mesh allow to

better simulate the detachment of the flow. In fact the mesh density grows near

the wall as you can see in Figure 4.6 and in Figure 4.7.

Figure 4.5: Overview of the s-duct mesh.
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Figure 4.6: Inlet and Oulet Surface Mesh.

Figure 4.7: Symmetry plane mesh of the S shape.
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4.4 CFD Analysis

The analysis were carried with the ANSYS Fluent solver. Due to the low compu-

tationl cost it was decided to do a steady state RANS simulation and to better

mach the experimental data the turbulence model that was chosen is the K − ω
SST. The number of iterations is fixed to 200 with the first order and 500 with

the second order, in this way the residuals can go below 10−5. The boundary con-

ditions are the one found by [1] due to the scaled up geometry and are reported

in table 4.3.

Table 4.3: Boundary Conditions.

Parameter Value

Inlet static pressure 77819 Pa
Inlet total pressure 106390Pa

Outlet static pressure 88822 Pa
Total temperature 288.2 K

4.5 Optimization Loop

In this section the optimization loop will be briefly discussed. The optimization

starts with an initial design vector, then the initial geometry is parameterized,

defining variable vector size and control points location. After, the geometry

and its mesh are genereted in ICEM. Then, the 3D model is imported in Fluent

solver, the simulation is set up and run. In the end, the objective functions are

evaluated from simulation results with a Python script, and provided the optimiser

to generate a new design vector, closing the loop.

4.6 Objective Functions

As already said in Chapter 2, the MOTS allows to analyse more than one objective

functions. Unlike previous work that use 3 types of objective function: pressure

losses, swirl and DC60; in this work the pressure losses and the DC60 will remain

but a new objective function to analyse the symmetry of the flowfield at the AIP
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Figure 4.8: MOTS loop.

has to be created. This new objective function will be called Symmetry maximum

error.
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4.6.1 Pressure Losses

Total pressure losses have been already described in Chapter 1. This parameter

describes these pressure drops and it is calculated with an area-averaged method.

PR =
Ptot,out
Ptot,in

(4.10)

PR coefficient should be maximized for reducing pressure losses within the duct

but the optimization problem is designed to minimize the goals, so the objective

function has to be defined as follow:

CP = 1− PR (4.11)

4.6.2 DC60

The DC60 help to reduce the pressure distorsion and since it is defined as:

DCθ =
Ptot,AIP − Ptot,θ

qf,AIP
(4.12)

we can keep the DC60 as objective function to be minimize.

4.6.3 Symmetry Maximum Error (S.M.E.)

The Symmetry maximum error measures the difference of total pressure between

every symmetric point of the S-duct mesh. The final ojective is to have the same

blade loading for every 22 blade of the rotor and to reduce the vortices strenght.

This task is really difficult to achieve since due to the S-duct at the AIP there

will be always a Paired Swirl. The latter will strongly influcence the flowfield

because half of the fan will experience a co-rotating swirl and the other half will

experience a counter-rotating swirl. Since the blade loading is heavily related to

the inlet pressure profile and as proven by [15] the DC60 pressure distorsion help

the symmetry, it was decided that the total pressure profile, and not the swirl,

has to be symmetric. So the main objective is to have the same pressure profile

between the top and the bottom. This can be achieve thanks to the mesh point by

subtracting each symmetric point giving us a vector of pressure difference(or error).

Since it is very expensive in term of computational time to reduce all the total
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pressure difference beween each point it was decided, after some testing, to reduce

the maximum error of total pressure difference. To have a visual rappresentation

and to better understand the Symmetry maximum error objective function we can

refer to Figure 4.9. The mesh at the AIP has 4480 node and it has been divided in

two parts: the lower and the upper. Then the total pressure difference is calculeted

for each symmetric point, for example the two blue one. After that it has been

obtained a vector with 2240 total pressure difference. The absolute value of each

difference has been taken and the maximum one has been extrapoleted to be the

objective function.

Figure 4.9: AIP mesh points.



Chapter 5

NASA R67 Computational

Analysis

In this chapter it will be discussed the validation of the model carried out by

Marco Tridente [15]. It is important to underline that this section briefly sums up

the process and the results obtained by Marco. The validation process was done

in two part:

� Validation of the single blade with different meshs

� Validation of the full annulus coupled with the ogive

The softwares used for every simulation are:

� CFX-TurboGrid for the generation of the mesh of the rotor

� CFX-Pre-Solver to set the parameters for the simulation

� CFX-Post to visualize the results and to do the post-processing

� SolidWorks to create the geometry of the ogive

� ANSYS workbench to create the mesh of the ogive

53
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5.1 Single Blade Validation

5.1.1 Geometry and Mesh Creation

The geometry of the rotor was directly created in ANSYS CFX-Turbogrid, thanks

to the coordinates of hub, shroud and profile (provided by NASA) that were

properly formatted to act as input file for the the creation of the model. Then the

Figure 5.1: Geometry Frontal View.

computational grid was generated also in ANSYS CFX-Turbogrid. Three domains

were created:

� Inlet: it keeps the fluid in his initial state

� Passage: it contains the blade itself

� Outlet: it captures what happens near the trailing edge and the effect of the

wake

The passage domain is really complex since the simulation deeply depends on the

mesh’s quality. After the geometry creation and the tip gap setting, the topology
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of hub and shroud were genereted using the Automatic Topology and Meshing

tool (ATM optimized). A number of intermediate layer were used to construct

the 3D grid guiding the mesh through the spanwise. Many meshes were created

in which the number of mesh elements varies to understand his influence on the

results and, with a coarse mesh, save computational time.

Table 5.1: Comparison of different type of mesh implemented

Number of Nodes
Coarse k − ε 700k nodes

Coarse 900k nodes
Fine 1.8 mln nodes

Very Fine 2.0 mln nodes

Figure 5.2: Mesh of the passage.

5.1.2 Simulation Set-Up

The software used to set-up the simulation was CFX-Pre-Solver. In the table

below, all the main parameters are reported. The turbulence model used is the

RANS(Reynolds Averaged Navier-Stokes Simulation), which is not that precise

but the cost of the simulation is very lower. In particular, the model used is the

SST k − ω.
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Table 5.2: CFX-Pre Set-up parameters

Ansys CFX Solver set-up

Analysis Type Steady State
Domain Type Fluid Domain
Fluid and Particles Definition Air Ideal Gas
Reference Pressure 0 [atm]
Domain Motion Option Rotating
Domain Motion Angular Velocity -16043 [revmin−1]

Domain Heat Transfer Total Energy
Turbulence Option SST
Wall Function Automatic
Wall Heat Transfer Model High Speed

No Slip Wall
Hub Smooth Wall

Adiabatic
Rotating Frame
No Slip Wall
C-R Wall

Shroud Smooth Wall
Adiabatic
Rotating Frame

Boundary Condition
Subsonic
Stat. Frame P0

101325 [Pa]
Inlet Normal to BC

Stat. Frame T0
288.2 [K]
Frame Stationary
Subsonic

Outlet MFR or Pressure
Variable

Advection Scheme High Resolution
Turbulence Numerics High Resolution

Solver Control No. Iteration 3200
Timescale Control Auto Timescale
Convergence Criteria MAX 1e-5

5.1.3 Validation’s Results

In Figure 5.3 and 5.4 the results obtained with the 100% of the rotational speed are

reported. In the x axis is reported the non-dimensional mass flow rate ṁ
˙mchoke

. The

experimental data almost match every model implemented but the error commited

during the simulation varies from mesh to mesh. What has to be underline is the
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optimal results obtained by the coarse mesh that are very close to the experimental

one. In Table 5.3, it is important to notice that the coarse mesh with SST model

Figure 5.3: Compressor ratio with different mesh.

Figure 5.4: Isoentropic Efficiency with different mesh.

faithfully represents the phenomenon, and, from now on it will be used for further

simulation since it is 1 million nodes lighter than the two fine meshes.
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Table 5.3: Comparison of different type of mesh implemented

Mass Flow Rate [kg
s

] Relative Error PR Relative Error

Design Point 33.25 - 1.63 -
Coarse k − ε 33.4185 0.0051% 1.5929 0.022%

Coarse 33.2862 1.08e-3 % 1.6171 0.008 %
Fine 33.4047 0.0046 % 1.6272 0.0017 %

Very Refine 33.2366 4.03e-4% 1.6434 0.0082%

Now it is possible to analise the behaviour of the shock waves and compare them

with the experimental data.

In Figure 5.5, the curve of the Relative Mach and Pressure at different span

(a) Pressure and Relative Mach Blade Load-
ing at 20.

(b) Pressure and Relative Mach Blade Load-
ing at 50.

(c) Pressure and Relative Mach Blade Load-
ing at 70.

(d) Pressure and Relative Mach Blade Load-
ing at 90.

Figure 5.5: Pressure and Relative Mach Blade Loading at different span lo-
cation.

location are rappresented. From the 50% of the span (Figure 5.5(b)), the shock

wave phenomenon appear and grow stronger as the span increase due to the higher

velocity ((U = ω ∧ r)).This affects also the position of the shock as well; the wave,
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indeed, tends to move towards the trailing edge as the % of span increases. Another

important result can be seen in Figure 5.6. In fact, the shock wave behaviour

perfectly matches the experimental results. The shock wave at the leading edge

is able to reduce the number of Mach the unity, hence, no shock wave occurs in

the channel. However in the choking condition the shock wave is not still enough

to reduce the Mach below 1 and a second shock occurs between the blades as

highlighed in Figure 5.7. In the end, the entire map of the compressor was

(a) Blade to blade Contour of Mrel near peak.

(b) Experimental blade to blade Con-
tour of Mrel near peak.

Figure 5.6: Comparison between contours of Mrel of experimental and CFD
near peak.

simulated (always with the coarse mesh) with the rotational speed ranging from

75% to 100%.
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Figure 5.7: Contour of Mrel near choking condition.

(a) Compressor map NASA rotor R67. (b) Isentropic efficiency NASA rotor R67.

Figure 5.8: Performance of the NASA rotor 67.

5.2 Full Annulus Validation

To match the S-duct and the fan, a full annulus simuliation is required since the s-

duct pressure profile at the outlet is not uniform. In this simulation the boundary

conditions are the same as the single channel with a clean incoming flowfield (no

distortion is generated), but the problem is the central hole that is created when

the full anulus is assembled. For instance, when there is the revolution of the

blades, the region of the shaft is left blank and this should be avoided. To close

the hole, an ogive was implemented upstream of the fan to drive the air from the

inlet towards the blades. The geometry was created on SolidWorks and the mesh

was genereted ANSYS workbench. Then the fan and the ogive were connected
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(a) Full annulus geometry of R67. (b) Full annulus geometry of R67 modified.

Figure 5.9: Full Annulus.

Figure 5.10: Ogive’s mesh.

with the Frozen Rotor model because it has the lowest computational cost and

because two frames remain in the exact relative same position. The drawback of

this model is that transient effect are not taken into account. The pitch change

option was set to Automatic to avoid errors. In Figure 5.11 it is possible to see

the system assembled with three domains:

� Ogive: where the boundary conditions are set

� Rotor’s blades

� Outlet: where the flow is analysed

The main problem of this type of simulation is the high computational cost. In fact,

as reported in Table 5.4, to complete the simulation, it takes more than 14 hours

with 16 processors (equivalent to 1 node on the cluster of Cranfield University).

Even for this validation a compressor map study was done but with only 95%
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Figure 5.11: Full annulus simulation set-up.

Table 5.4: Single channel and full annulus simulation features

Simulation Mesh Model No. of Nodes CPU Cost No. of Iterations

Single channel Coarse 900k 4 hrs 3200
Full annulus Coarse 22 mln 14 hours 500

and 100% due to the high time reguired. The Figure 5.12 highlights the similarity

between CFD and experimental data and the error is not so big taking in account

that the number of the iteration is really low. In the end, Table 5.5, 5.6 and 5.7

report the massflow and efficiency errors compared to the experimental results.

Table 5.5: Single channel and full annulus simulations’ comparison (Near
Stall)

Simulation ṁ [kg/s] ∆ṁ ηis ∆ηis

Single Channel Fine 33.2366 - 0.905865 -
Single Channel Coarse 33.2202 +0.0164 0.903910 1.955e− 3

Full Annulus 33.1807 +0.0559 0.906602 −7.37e− 4

Table 5.6: Single channel and full annulus simulations’ comparison (Near
Peak)

Simulation ṁ [kg/s] ∆ṁ ηis ∆ηis

Single Channel Fine 33.4226 - 0.911848 -
Single Channel Coarse 33.4402 −0.0176 0.904349 7.499e− 3

Full Annulus 33.4088 +0.0138 0.907245 4.603e− 3



Chapter 5. NASA R67 Computational Analysis 63

Table 5.7: Single channel and full annulus simulations’ comparison (Near
Choke)

Simulation ṁ [kg/s] ∆ṁ ηis ∆ηis

Single Channel Fine 34.2867 - 0.888468 -
Single Channel Coarse 34.2762 +0.0105 0.875048 +0.01342

Full Annulus 34.2976 −0.0109 0.871416 +0.013264

Figure 5.12: Comparison between full annulus simulation, single channel sim-
ulation and experimental data.





Chapter 6

Analysis of the Optimisation

Results

In this chapter the results of three optimisations and the baseline will be discussed

and compared. The three optimisations have different objective functions:

� The first one has the CP and the S.M.E.;

� The second one has the DC60 and the S.M.E.;

� The third one has the CP and the Swirl.

6.1 Baseline

It is important to analyse the baseline because it allows us to compare the results

and verify the phenomena already described in chapter one. The Figure 6.1(a)

underlines the presence of the two counter rotating vortices that occur in the

lower part of the duct while Figure 6.1(b) highlights the swirl distorsion. In Table

6.1 the baseline results are reported. Figure 6.1 shows how the Mach number

evolve over the duct. It can be noticed that the flow tends to accelerate near the

S-bend, reaching higher Mach number and generating a sonic bubble. This is due

to the fact that the flow forms a strong and wide detached area.

65
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Table 6.1: Baseline Results.

CP DC60 S.M.E.

0.048042 0.48911 16531.8

(a) Baseline Total Pressure contour. (b) Baseline Swirl contour.

Figure 6.1: Baseline AIP contour.

Figure 6.2: Baseline Total Pressure and Mach Number.

6.2 Optimisation with CP and S.M.E. Results

Using Davide’s results[1] as starting point, after 250 iterations, the best results can

be seen in Table 6.2. One important task that the S.M.E. function has achieved

is the heavy reduction in the pressure losses. In fact, the best results found by

Davide only reach a minimum of 0.043 while the new best one is 0.0397. The

Figures 6.3,6.4 and 6.5 show where the position of the two vortices has move.

With this three geometries the vortices are placed in the center of the duct and

this leads to an hight swirl component.
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Table 6.2: CP and S.M.E. Results.

CP Improvement S.M.E. Improvement

Baseline 0.048042 16531.832

Best CP 0.039766 +17.2% 6587.0 +60.1%
Best S.M.E. 0.043742 +8.95% 5091.6 +69.2%

Trade 0.041696 +13.2% 5961.7 +63.9%

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.3: CP Best AIP Contour.

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.4: S.M.E. Best AIP Contour.
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(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.5: Trade AIP Contour.

To better understand how the flow behave in this three S-ducts it is important

to analise the cross-section shape and the Mach number. Figure 6.8, 6.9 and 6.10

show the different shape of the S-duct. The first thing that is important to notice

is the Mach number. The difference with the baseline is massive. In fact there is

no more the formation of the sonic bubble but instead the flow decelerate reaching

an average of 0.45 Mach number in front of the ogiva. The deleceration of the flow

is caused by the big increase of area of the cross section. All three geometries have

the first five cross section that continue to rapidly increase the area and changing

the shape, with the widest having a shape really close to an oval. Then the cross

section slowly decrases the area to match the ogiva inlet area. Another important

difference is the curvature of the S-duct. In Figure 6.6 the white curve represents

the baseline, the blue one the best CP, the green one the best S.M.E. and the red

one the trade off. It can be noticed that all three bottom line have an increase

curvature, especially the blue one; while also the top line follows almost the same

behaviour of the baseline.

Figure 6.6: Baseline and Results S-bends.
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Figure 6.7: Cross-Section CP Best(Left) S.M.E. Best(Mid) Trade Off (Right).
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Figure 6.8: CP Best Total Pressure and Mach Number.

Figure 6.9: S.M.E. Best Total Pressure and Mach Number.

Figure 6.10: Trade Total Pressure and Mach Number.
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6.3 Optimisation with DC60 and S.M.E. Results

Using Davide’s results[1] as starting point, after 300 iterations, the best results

can be seen in Table 6.3. Also in this optimisation the two vortices have move to

the center part but compared to the previous optimisation the swirl component

has slightly decrease. The curvature of the three duct compared to the baseline is

pretty different. The bottom line of the DC60 is over the baseline while the other

two are under.

Table 6.3: DC60 and S.M.E. Results.

DC60 Improvement S.M.E. Improvement

Baseline 0.48911 16531.8

Best DC60 0.00017 99.96% 8878.4 46.3%
Best S.M.E. 0.042068 91.4% 4744.1 71.3%

Trade 0.029569 93.95% 6107.8 63.1%

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.11: DC60 Best AIP Contour.

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.12: S.M.E. Best AIP Contour.
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(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.13: Trade AIP Contour.

To better understand how the flow behaves in this three S-ducts it is important to

analyse the cross-section shape and the Mach number. Figure 6.16, 6.17 and 6.18

show the different shape of the S-duct. Also in this optimisation, the sonic bubble

has dissapear due to the increase of the cross section area. The main difference

with the previous optimisation is that the DC60 grown in area is reduced, so

the cross sections are less large and more circular. Moreover, the last three cross

section have radically changed, transforming into a rounded triangular shape. This

shape is really particular and his contribution to the flow is really important. In

fact a triangular shape bound and restrict the flow. The three wall configuration

tend to compress and uniform the flow reducing a lot the swirl component in the

middle part. In fact the core of the flow (in red) when is about to be cut by the

detach flow (in blue) find a decrase in cross section and almost flat wall on both

side. This leads to change the trajectory of the core that is compressed an guided

by the wall itself. The Best S.M.E. has also a big oval cross section and near the

ogive it has also a rounded triangle shape. The trade off instead has an almost

square cross section.

Figure 6.14: Baseline and Results S-bends.
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Figure 6.15: Cross-Section DC Best(Left) S.M.E. Best(Mid) Trade Off
(Right).
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Figure 6.16: DC Best Total Pressure and Mach Number.

Figure 6.17: S.M.E. Best Total Pressure and Mach Number.

Figure 6.18: Trade Total Pressure and Mach Number.
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6.4 Optimisation with CP and Swirl Results

This optimisation was carried out by Davide [1] and here it will be reported the

results due to the will to study the interaction with the rotor 67. This optimisation

is really interesting because, instead of having two counter rotating vortices on the

AIP, four vortices are genereted. Only two geometries will be analisyed because

the best CP geometry simulation is very unstable and no results have been possible

to produce.

Table 6.4: CP and Swirl Results.

CP Improvement Swirl Improvement

Baseline 0.04804 4.73329

Best Swirl 0.04829 -0.5% 2.51120 +46.9%
Trade Off 0.04707 +2.0% 2.58174 +45.5%

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.19: Swirl Best AIP Contour.

(a) Total Pressure Contour. (b) Swirl Contour.

Figure 6.20: Trade Off AIP Contour.
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Figure 6.21: Cross-Section SW Best(Left) Trade Off (Right).
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The cross section view shows how the geometry of the s-ducts has changed. The

best swirl solution have the first three cross section that evolve into an almost

vertical oval but then on the fifht and sixth cross section it becomes more triangular

and in the end the last two section return circular to match the ogive. The trade

off solution instead of having and oval shape on the fourth section, it has already

a triangural section that in section five and six become more and more rounded.

The problem with this inverted triangle cross section is that the flow form a sonic

bubble right before the s-bend due to the wide detached flow area.

Figure 6.22: Swirl Best Total Pressure and Mach Number.

Figure 6.23: Trade Off Total Pressure and Mach Number.





Chapter 7

S-duct and R67 Interaction

From this chapter the simulations of the different s-ducts and the rotor 67 are

carried out. The main purpose of this thesis is to understand how the s-duct

deteriorate the transonic fan performance. As already described in chapter six,

the s-duct creates inlet distorsions and many studies have been done to replicate

these inlet distorsions. In literature total pressure and swirl distorsion are analysed

separately but in reality the two distorsions coesist together and the main problem

of the automatic generation of inlet distorsions is to recreate the two distrosions

combined. On the other hand, in this thesis a full cfd simulation is conducted.

Since the distortions involves swirl and total pressure a single blade simulation

does not describe the full phemonema but instead a full annulus simulation is

required.

7.1 S-duct and R67 Simulation Set-Up

The entire simulation was carried out on CFX, by exploiting the cluster of Cran-

field University. The parameters of the simulation are:

� No. of Nodes 23e+6

� No. of Domain 4

� No. of Iteration 1500

� No. of CPU 16 Core

79
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� Computational Cost 2 days

Since the hight computational cost and in accordance with the previous work done

by Marco [15] it was decided to simulate just one speed line and in particular the

95% of the rotational speed. A big difference between this thesis and the previous

studies conducted by Marco[15] is that the s-duct is connected with the ogiva at

the AIP surface. So the mesh created from the optimisation was cutted at the AIP

using ICEM CFD and then connected with the frozen rotor interface to the ogiva.

This allows us to compare the results analysed in the optimisation with the rotor

performance. In fact, if the final portion of the s-duct is not removed the flow has

enough space to dissipate the vortices and the distorsions become less and less.

Figure 7.1: Marco’s Configuration.

Figure 7.2: New Configuration.
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As inlet condition, a total pressure boundary condition is set at 106300 [Pa] while

the outlet static pressure varies every simulation due to the will to study the com-

pressor map. Since many simulations have been done, to describe the interaction

between each s-duct and the rotor 67 only the condition near the peak efficiency

will be analysed.

7.2 Baseline and R67 interaction

Figure 7.3 shows the different performance between the ogiva and rotor 67 with

the clean inlet flow and with the baseline. Since the total pressure at the inlet of

the ogive is different for the two simulations in the x axis it is used the corrected

mass flow rate with 101325 [Pa] as pressure reference and 288.2 [K] as temperature

reference. The two graphs show that the s-duct drastically decrease the perfor-

mance of the rotor 67. Moreover the mass flow rate has considerably decreased

because the inlet area of the s-duct is smaller than the area of the fan. In fact,

all the s-ducts that are analysed in this chapter are diffusive ducts. To better un-

derstand why there is a huge reduction in term of efficiency and pressure ratio it

is important to analyse how the flow interact with the three domain: s-duct,ogive

and fan.

(a) Pressure Ratio. (b) Isoentropic efficiency.

Figure 7.3: Compressor Map for the Clean Flow and the Baseline.
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Table 7.1: Clean and Distorted Flow.

Model ṁ [kg/s] Error ηis ∆ηis

Near Peak Clean 32.48 0.915197

Near Peak Distorted 31.76 -2.25% 0.888567 -2.91%

7.2.1 S-duct Baseline

As already described in Chapter 6 and as Figure 7.4 shows, the baseline creates

two counter rotating vortices in the low area of the duct leading to a formation of

a low total pressure region. This leads to an high swirl component at the inlet of

the ogive.

Figure 7.4: Vorticity of the S-duct Baseline.

7.2.2 Ogive Interaction with S-duct Baseline

After the formation of the two counter rotating vortices, the flow, when encouters

the ogive domain, is affected by the rotor velocity. In Figure 7.5, it is important

to remember that: the fan and the ogive are rotating in the counterclockwise

direction, the vortex on the bottom left is rotating in the counterclockwise direction

while the other one in the bottom right is rotating in the clockwise direction.

Reffering to Figure 7.5 it is clear how the vortices are affected by the fan. The

counterclockwise vortex is push by the rotational speed of the fan, since both are

rotating in the same direction, and merge with the clockwise vortex giving birth

to a single strong vortex in the bottom right region. It is also important to notice

how the absolute velocity field has changed in Figure 7.7. This new field is created

because, when the flow positioned in the central part of the duct touch the ogive,
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it starts to slip, but due to the position of the vortex, the right side attract more

mass flow than the left side. So the flow tends to converge to right side of the

ogive and increase his speed. Since the flow tends to travel the shortest distance

to reach the vortex, the shortest way is the right side instead of the left side. The

outlet velocity contour is dominated with high speed on the right side while the

left lower side has lower speed.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 7.5: Velocity Streamline.

Figure 7.6: Velocity Streamline through the Ogive (Left) and at the Outlet
(Right).
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Figure 7.7: Inlet Velocity Contour (Left) and Outlet Velocity Contour (Right).

Figure 7.8: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

7.2.3 R67 Interaction with S-duct Baseline

To better understand how the inlet conditions affect the fan performance, it is

important to compare the clean inlet flow condition near peak efficiency with the

conditions created by the s-duct. First of all, Figure 7.10 and Figure 7.11 allow

to compare the inlet Mach number for the clean and the distorted flow. Using

Figure 7.6, the Mach number contour becomes clearer. Remembering that the fan

is rotating in the countercloakwise direction, the flow in the lower left part also

is rotating in that direction and so the relative Mach number is smaller. Instead

in the lower right part the flow is rotating in the cloakwise direction and so the

relative Mach number is higher. The absolute Mach number has also two regions

and it was described in the previous section. To better understand where theta

starts and to indroduce a blade numeration Figure 7.9 is used as reference.
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Figure 7.9: Theta Reference and Blade Number.

Figure 7.10: Inlet Mach Number Clean Conditions.

Figure 7.11: Inlet Mach Number Baseline.

After the analysis of the relative and absolute Mach, Figure 7.12 and Figure 7.13

show the different component of the absolute and relative velocities. To better

understand these contours, Figure 7.14 and Figure 7.15, taken from ANSYS CFD-

POST Guide, will be used as reference. The velocity streamwise and the velocity
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blade to blade in standard frame are similar to the absolute Mach number due

to the low circumferential velocity. The circurferential velocity (positive in theta

direction) assumes positive value in the right side and in the top left side, and

negative value in the bottom left side. The spanwise velocity assumes positive

value near the hub, with the zone near the vortex having the highest values and

zero or negative value near the tip. The absolute flow angle for the right side

and the top left side is close to 90° while in the bottom left side the flow angle

is more that 90°. This means that the absolute velocity changes quadrant on

the blade to blade plane. In the end the relative blade to blade velocity and the

relative circumferencial velocity have the same trend of the relative Mach number

and it can be related to the vortex position. Figure 7.16 gives a nice view of

Figure 7.12: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right).

Figure 7.13: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right).
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Figure 7.14: Velocity Components

Figure 7.15: Velocity Com-
ponents in Blade-To-Blade

Plane

the position of this shocks for three different span: 0.2, 0.5 and 0.8 and highlight

how the distorted flow affect the shock position. In particular reffering to Figure

8.13(c) and remembering that blade number 1 is at the top, and the fan is rotating

in the direction bottom to top, blade number from 3 to 16 experience a chocking

condition where the shock is highly oblique due to the high inlet Mach number;

blade number 1, 2, 21 and 22 experience a normal shock and blade number from

17 to 20, due to the low inlet relative velocity almost under the speed of sound,

create just a sonic bubble. This velocity observation can be extend to the other

two figures 8.13(b) and 8.13(a). In fact, the fan can be divided into three regions:

The first one is from blade number 3 to 16 where the inlet Mach number is higher

than the clean flow condition. The second one is from blade number 21 to 2

where the inlet Mach number is close to the peak efficiency. The last one is from

blade 17 to 20 where the inlet Mach number is lower than the clean flow condition

and the blade can’t generate a schok. To resume, the s-duct creates two counter-

rotating vortex that merge together due to the rotational speed of the fan. The

single vortex generated affects the relative and absolute velocity field that moves

the position of the shock wave inside or outside the blade or creates just a sonic

bubble.
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(a) Span=0.2. (b) Span=0.5. (c) Span=0.8.

Figure 7.16: Blade to Blade Contour.



Chapter 8

S-duct Optimisation and R67

Interaction

8.1 CP/S.M.E. optimisation and R67 interaction

Figure 8.1 shows the different performance between the baseline and the optimisa-

tion results. The graphs show that the new s-ducts obtained by the optimisation

give better inlet conditions to the fan allowing it to work more efficiently. In fact,

in Table 8.1 the performance of each s-duct near the peak condition are reported.

The best results reach +0.834464% over the polytropic efficiency of the baseline.

To understand why these s-ducts have better performance it is important to un-

derstand how the flow has changed compared to the baseline.

Table 8.1: Baseline and Optimisation Performance Near Peak.

Model ṁ [kg/s] ηis ∆ηis ηpol ∆ηpol

Baseline 31.76 0.888567 0.894706

Best CP 31.40 0.896349 +0.88% 0.902172 +0.83%
Best S.M.E. 31.32 0.895800 +0.81% 0.901689 +0.78%
Trade Off 31.27 0.895013 +0.73% 0.900959 +0.70%

89
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(a) Pressure Ratio. (b) Isoentropic efficiency.

(c) Polytropic efficiency.

Figure 8.1: Compressor Map Comparison Between Baseline and Optimisation
Results.

8.1.1 S-duct Best CP

As already described in Chapter 6, the CP best geometry creates two counter-

rotating vortices placed on the middle part of the duct. Figure 8.2 shows the

vortices structure inside the duct.

Figure 8.2: Vorticity of the S-duct Best CP.
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8.1.2 Ogive Interaction with S-duct CP Best

After the formation of the two counter rotating vortices, the flow, when encouter

the ogive domain, is affected by the rotor velocity. Figure 8.3 shows that the

vortices structure evolve in the ogive. When the two counter rotating vortices

reach the ogive, since their core is placed slighly under the center of the ogive,

they start to move downward. After this movement the two vortices follow the

same phenomena that occur in the baseline simulation. In fact the two vortices

start to merge and in the end a single vortex is created on the bottom of the

ogive. The main difference with the baseline is that now the core of the vortex is

placed almost in the bottom center. Another important difference is the distance

between the two core vortices. The more distant they are, the less influence the

right vortex will have. In the end it has to be analyse how the velocity field has

evolved. As Figure 8.5 shows, the velocity field is more homogeneous and has less

distorsion. This is due to the fact that when the flow touch the ogiva the two

vortex are still present and both attract almost the same mass flow, with the right

vortex attracting a little big more since it’s stronger.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.3: Velocity Streamline.
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Figure 8.4: Velocity Streamline through the Ogive (Left) and at the Outlet
(Right).

Figure 8.5: Inlet Velocity Contour (Left) and Outlet Velocity Contour (Right).

Figure 8.6: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.
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8.1.3 R67 Interaction with S-duct CP Best

Figure 8.7 and Figure 8.8 compare the inlet Mach number. Comparing to the

baseline simulation it is clear that the cp best s-duct provide a better velocity

field. The rotor can be divided in two side: The right side which is dominated by

hight inlet velocities; the left side with is dominated by velocities that are close

to the peack efficiency. This is due to the central position of the vortex that is

rotating in the cloackwise direction.

Figure 8.7: Inlet Mach Number Clean Conditions.

Figure 8.8: Inlet Mach Number CP Best.
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Figure 8.11 and 8.9 describe the absolute and relative components. What is impor-

tant to notice is how all the components have improved compared to the baseline

and they are really closer to the components present in the clean flow simulation.

Figure 8.9 and 8.10 show how the components have improved but still there are

some distorsions. In particular the velocity streamwise has higher velocities in the

right side. The velocity spanwise has two opposite region, one on the top where

the flow has the velocity component in the direction of the tip while the other

one in the bottom side where the flow has the velocity component in the direction

of the hub. In the end the absoluete circumferencial velocity is the one who has

the better improvement but still due to the presence of the vortex form an inlet

distorsion. It can be seen that on the outer region the circuferencial velocity has

drastically decrease reaching value around -20 [m/s] on the left side and +20 [m/s]

while in the inner part the velocities reach higher value and change sign meaning

that the flow change direction. Figure 8.11 and 8.12 compare the absolute flow

angle and the relative component. Also here it can be seen how the flow angle

has drastically improve having value close to 90° meaning that the inlet absolute

velocity is almost axial. In the end also the relative components has seen a big

improvment with the cirfumferencial velocity being the very close to the clean

condition.

Figure 8.9: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right).
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Figure 8.10: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right)Clean Flow.

Figure 8.11: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right).
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Figure 8.12: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right) Clean Flow.

After the absolute and the relative components analysis, Figure 8.13 shows the

blade to blade contour. It is clear now why this s-duct provide better performance

compared to the baseline. Refering to span=0.8 the position of the shock waves has

drastically improved. Now the fan can be divided into two region. The right side

from blade 6 to blade 17 is characterized by oblique shock waves due to the higher

inlet Mach number. The opposite side from blade 18 to blade 5 is characterize by

normal shock waves near the leading edge that is the best condition for a transonic

compressor. Near the hub the blade to blade countour is different. In the right side

is domineted by low inlet velocities while on the left side it has higher velocities

compared to the clean conditions. To resume the right side of the fan near the

hub is dominated by lower velocities than the clean flow. Near the tip the right

side of the flow is dominated by higher velocities than the clean flow. The left side

has the opposite characteristic of the right side.
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(a) Span=0.2. (b) Span=0.5. (c) Span=0.8.

Figure 8.13: Blade to Blade Contour CP Best.

8.1.4 S-duct S.M.E. Best and Trade

Due to his similarity with the s-duct best CP for the all S.M.E. best and trade

simulation, it will be reported only the main conotur without a deep description.

From the picture below it can be seen that both duct create two counter rotating

vortices in the middle part of the duct.

Figure 8.14: Vorticity Trade(Left) and S.M.E Best(Right).
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8.1.5 Ogive Interaction with S-duct S.M.E. Best and Trade

As Figure 8.15 and 8.16 show the streamline and the velocity contour. The single

vortex formation phenomena has been already described in section 8.1.2. While

the velocity contour are pretty much the same as the best CP simulation. In the

end the last contour reports the total pressure distorsion.

Figure 8.15: Streamline Inlet and Outlet S.M.E Best(Left) and Trade(Right).

Figure 8.16: Velocity Inlet and Outlet S.M.E Best(Left) and Trade(Right).

Figure 8.17: Total Pressure Inlet and Outlet S.M.E Best(Left) and
Trade(Right).

8.1.6 R67 Interaction with S-duct S.M.E. Best and Trade

The blade to blade view reports the relative Mach number and as already said,

there are two regions that are working in two different conditions, one near peak

and the other one with oblique shock waves.



Chapter 8. S-duct Optimisation and R67 Interaction 99

Figure 8.18: Mach Abs and Rel S.M.E Best(Left) and Trade(Right).

Figure 8.19: Blade-to-Blade span=0.2,0.5 and 0.8 S.M.E Best(Left) and
Trade(Right).

8.2 DC60/S.M.E. optimisation and R67 interac-

tion

Figure 8.20 shows the different performance between the baseline and the optimi-

sation results. The graphs show that the new s-ducts obtained by the optimisation

give better inlet conditions to the fan allowing it to work more efficiently. In fact,

in Table 8.2 are reported the performance of each s-duct near the peak condition.

The best results reach +0.98% over the polytropic efficiency of the baseline and it

is also a huge improvement compare to the previous optimisation.

Table 8.2: Baseline and Optimisation Performance Near Peak.

Model ṁ [kg/s] ηis ∆ηis ηpol ∆ηpol

Baseline 31.76 0.888567 0.894706

Best DC60 31.74 0.896039 0.84% 0.901773 0.79%
Best S.M.E. 31.49 0.897677 1.03% 0.903506 0.98%
Trade Off 31.45 0.894769 0.70% 0.900665 0.67%
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(a) Pressure Ratio. (b) Isoentropic efficiency.

(c) Polytropic efficiency.

Figure 8.20: Compressor Map Comparison Between Baseline and Optimisa-
tion Results.

8.2.1 S-duct Best DC

As already described in Chapter 6 the DC60 best geometry creates two counter-

rotating vortices placed on the middle part of the duct. Figure 8.21 shows the

vortex structure inside the duct.

Figure 8.21: Vorticity of the S-duct Best DC.
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8.2.2 Ogive Interaction with S-duct DC Best

In Figure 8.22, the velocity streamline for each section are reported. It can be

notice how the inlet condition are different from the cp best simulation. In fact,

the two counter rotating vortices that enter in the ogiva domain have their core in

a much lower position respect to the cp best and also the distance between the two

vortices is lower. This anticipates the formation of the single vortex and lead to

a more distorted velocity field. If the vortex merging phenomenon is anticipated,

more mass flow will be attract to the right and to the top left side giving as a

results a velocity distribution rappresented in Figure 8.23.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.22: Velocity Streamline.

Figure 8.23: Inlet Velocity Contour (Left) and Outlet Velocity Contour
(Right).
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Figure 8.24: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

8.2.3 R67 Interaction with S-duct DC Best

From Figure 8.25 it is possible to see how the anticipated formation of the single

vortex affect the inlet relative Mach number. The region with an higher velocity

has shift position toward the low side compare to the best cp simulation and on

the lower lef side the Mach number is lower than the clean condition. This leads

to have more blades that work with oblique shock wake or detached rather than

normal and close to the tip, decresing the overall efficiency. As for the previous

optimisation, the fan can be divided in two regions. In fact from the blade to

blade view it is clear that from blade number 1 to 18 the shock is oblique while

from blade number 19 to 22 the shock is almost normal but detached from the

blade. This means that only few blades are working near the peak efficiency while

on the best cp simulation almost 10 blades had the normal shock wave. So the

main conclusion is that to have better inlet condition to the fan, not only the size

and the position of the 2 vortex is important, but also the distance between the

two core of the vortices when they touch the ogive and start splitting.

Figure 8.25: Inlet Mach Number DC Best.
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Figure 8.26: Blade-to-Blade span=0.2,0.5 and 0.8 DC best.

8.2.4 S-duct Best S.M.E.

As already described in Chapter 6 the S.M.E. best geometry create two counter-

rotating vortices placed on the middle part of the duct that are higlighted in Figure

8.27 below.

Figure 8.27: Vorticity of the S-duct Best S.M.E..
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8.2.5 Ogive Interaction with S-duct S.M.E. Best

Figure 8.28 helps to understand why this s-duct provides better inlet conditions

to the fan. It can be noticed that the two vortices are placed in a more center

position and the distance between the 2 core is higher compared to the dc best

and cp best simulation. This initial position of the two vortices delays the merging

phenomena. In fact, if the vortices have their core distance increased, the influence

that the right vortex has on the left one is much less. To destroy the left vortex

and start the merge phenomena, two main actor give their contribution. The first

one is the rotational speed of the fan and it is constant for every s-duct simulation.

The second one is the right vortex that acts stronger or weaker depending on the

relative position of the two vortices and his position change depending on the

s-duct shape. From the last section the merging vortex phenomenon has almost

finish but his position is pretty central.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.28: Velocity Streamline.
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Figure 8.29: Inlet Velocity Contour (Left) and Outlet Velocity Contour
(Right).

Figure 8.30: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

8.2.6 R67 Interaction with S-duct SME Best

Figures 8.31, 8.32, 8.33 and 8.34 show the inlet condition and the blade to blade

view. It is important to notice how the inlet mach number has become more

symmetric and how the shock wave distrubution has improved. More than half of

the fan is working with normal shock while the rest is working with oblique shock.

This increase the efficiency of the fan since it is direcly related to the shock wave

position.
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Figure 8.31: Inlet Mach Number SME Best.

Figure 8.32: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right).

Figure 8.33: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right).
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Figure 8.34: Blade-to-Blade span=0.2,0.5 and 0.8 S.M.E. best.

8.2.7 S-duct Trade Off

In the Figure below it is highlight the vortex structure inside the s-duct already

described in Chapter 6.

Figure 8.35: Vorticity of the S-duct Trade Off.
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8.2.8 Ogive Interaction with S-duct Trade Off

Figure 8.36 shows the formation of the single vortex. As already said, the two

counter rotating vortices have their core position under the center of the ogive.

This leads to an anticipated vortex formation that causes a more distorted flow to

the fan.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.36: Velocity Streamline.

Figure 8.37: Inlet Velocity Contour (Left) and Outlet Velocity Contour
(Right).

8.2.9 R67 Interaction with S-duct Trade Off

As Figure 8.40 shows, the efficiency of the fan is deterioreted due to the hight

speed on right side of the fan and the low speed on the bottom left.
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Figure 8.38: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

Figure 8.39: Inlet Mach Number Trade Off.

Figure 8.40: Blade-to-Blade span=0.2,0.5 and 0.8 Trade Off.
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8.3 CP/Swirl Optimisation and R67 interaction

As it is possible to notice from Table 8.3 the trade off simulation give good results

while the best swirl seem to be inefficient. To better understand how the flow

evolve in the next sections it will be analise the interaction with the ogive and the

rotor 67.

Table 8.3: Baseline and Optimisation Performance Near Peak.

Model ṁ [kg/s] ηis ∆ηis ηpol ∆ηpol

Baseline 31.76 0.888567 0.894706

Best Swirl 32.46 0.89086 +0.26% 0.896814 +0.24%
Trade Off 32.67 0.898006 +1.06% 0.903649 +1.00%

8.3.1 S-duct Best Swirl

As it is possible to notice from Figure 8.41, the s-duct creates four vortices on the

AIP. Two that rotate in the countercloackwise direction on the left side and two

that rotate in the cloackwise direction on the right side.

Figure 8.41: Vorticity of the S-duct Best Swirl.

8.3.2 Ogive Interaction with S-duct Swirl Best

From Figure 8.42 it can be seen how the flow evolves in the ogive domain. The

two counter rotating vortices in the middle follow the same phenomena described

in Chapter 7 with the baseline simulation. These two vortices merge together and
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form a single vortex rotating in the cloackwise direction. The two external vortices

are also affected by the rotational speed of the fan but since they are rotating in

opposite direction their behaviour is different. The external left vortex, since is

rotating in the same direction of the fan, is compress towards the outer perimeter

and then almost destroyed by the rotational speed of the fan and by the influence

of the central vortex that has been generated. The external right vortex is also

affected by the central vortex that is stronger and attract the little vortex. In

the end a single vortex on the bottom right side of the rotor is genereted and the

velocity field is pretty similar to the baseline with the lower left side having lower

velocities compared to the clean flow.

(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.42: Velocity Streamline.

Figure 8.43: Inlet Velocity Contour (Left) and Outlet Velocity Contour
(Right).
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Figure 8.44: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

8.3.3 R67 Interaction with S-duct Swirl Best

Figure 8.45 shows the relative inlet Mach number. The trend of the relative Mach

number is really close to the baseline simulation, with the lower left side dominated

by low inlet velocities. This bad inlet contidions affect the fan performance and in

the Figure 8.48 the shock waves are very different for each blade. In the blade to

blade view it is clear why the efficiency of this simulation is so low. Many blades

are working in a almost choking conditions while some other blades experience

only a sonic bubble without the shock wave.

Figure 8.45: Inlet Mach Number Swirl Best.
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Figure 8.46: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right).

Figure 8.47: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right).

8.3.4 S-duct Trade Off

As already described in chapter 6 the s-duct create 6 vortices on the AIP surface

and the vorticity is highlight on Figure 8.49.

8.3.5 Ogive Interaction with S-duct Trade Off

From Figure 8.50 the structure of the vortices can be analysed. In the inlet con-

dition 6 vortices are genereted by the s-duct. The two little vortice right after the
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Figure 8.48: Blade-to-Blade span=0.2,0.5 and 0.8 Trade Off.

Figure 8.49: Vorticity of the S-duct Trade Off.

inlet domain of the ogive and before the ogive it self merge with the two external

vortices. While the two vortices in the middle starts to merge as already described

in Chapter 7. After touching the ogive the 4 vortices starts to converge and merge

towards the bottom center. But unlike the previous simulation the vortices can’t

merge in time before the fan and three vortices are still present.
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(a) Inlet. (b) Section 2. (c) Section 3.

(d) Section 4. (e) Section 5. (f) Outlet.

Figure 8.50: Velocity Streamline.

Figure 8.51: Inlet Velocity Contour (Left) and Outlet Velocity Contour
(Right).

8.3.6 R67 Interaction with S-duct Trade Off

The three vortices create an inlet relative Mach number reported in Figure 8.53.

As is possible to see the region near the hub has improve a lot but the outer region

has the same distorsion as the trade off from the previous section. From the blade

to blade view it important to notice that many blades are working with almost

normal shock wave and from Figure 8.54 the velocity span wise has the velocities

distosion concentreted on the bottom side of the fan.
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Figure 8.52: Total Pressure Contour at the Inlet (Left) and Outlet(Right)of
the Ogive.

Figure 8.53: Inlet Mach Number Trade Off.

Figure 8.54: Streamiwise(Top Left),Blade to Blade Abs (Top Right), Span-
wise(Bot Left), Crf Abs(Bot Right).
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Figure 8.55: Flow Angle Abs(Top Left),Blade to Blade Rel(Top Right), Flow
Angle Rel(Bot Left), Crf Rel(Bot Right).

Figure 8.56: Blade-to-Blade span=0.2,0.5 and 0.8 Trade Off.





Chapter 9

Conclusions

The aim of the thesis was to understand the interactions between different S-

ducts intake and a transonic fan. At the beginning, the first step was the study

of the baseline geometry interaction. Since the high computational cost and in

accordance with the previous work done by Marco [15] it was decided to simulate

just one speed line and in particular the 95% of the rotational speed. The results

show that the s-duct baseline drastically decrease the performance of the rotor

67. The baseline creates two counter rotating vortices in the low area of the duct

leading to a formation of a low total pressure region. The two vortices, under

the effect of the rotational speed of the fan, merge together in the ogive domain.

The single vortex created on the bottom part of the fan creates a velocity inlet

distorsion that negatively affect the shock wave near the tip. After the baseline

three different optimisation were conducted with a new objective function called

S.M.E.. The new function proved to be successful in the reduction of the CP

value. In Chapter 6 the different geometry of the optimisations are reported

and compared. In particular the S.M.E. has the ability to create, in the firt 5

cross-section, geometry with a wide and oval shape developed in the horizontal

direction. The DC60 instead in the last 3 cross-section seems to create geometry

with a rounded triangular shape. On the contrary, the swirl objective function

creates inverse triangular shape that develop in the vertical direction. In the end

in Chapter 8 are reported the CFD simulation of the optimised s-duct. The results

show that the vortices structure affects in different way the performance of the fan.

In particular the first 6 geometries (first two optimisation) show that the two big

counter-rotating vortices increase the performance compared to the baseline. The

increase in the performance depend on the vortex absolute and relative position.

119
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In fact for the absolute position the best one seems to be the one with the two

vortices positioned in the middle of the ogive (Best Cp). But also the relative

position of the two vortices has to be taken into account. In fact, as proven on

the seventh simulation (Best S.M.E.), the vortices have to be as far as possible.

In fact, if the vortices have their core distance increased, the influence that the

right vortex has on the left one is much less. To destroy the left vortex and start

the merge phenomena, two main actors give their contribution. The first one

is the rotational speed of the fan and it is constant for every s-duct simulation.

The second one is the right vortex that acts stronger or weaker depending on the

relative position of the two vortices and his position change depending on the s-

duct shape. In the end the last two simulation show the 4 vortices interaction.

The best swirl gives bad condtions to the fan but the trade off improves a lot the

efficiency of the rotor.
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