
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Looking for axions in exotic, highly magnetised White

Dwarf stars

Thesis supervisor Candidate

Prof. Luca Di Luzio Ruben Zatini

Thesis co-supervisor

Dr. Sebastian Hoof

Academic Year 2023/2024



“E vi dico: lasciate ogni speranza,

o voi che vi accingete a

osservare!”

Bertolt Brecht, La vita di Galileo



Abstract

The Peccei-Quinn (PQ) symmetry is a potential extension of the Standard

Model that offers a compelling solution to the strong CP problem. This sym-

metry predicts the existence of a new pseudoscalar particle, the QCD axion,

which, along with more general axion-like particles (ALPs), is also a viable

dark matter candidate. This thesis focuses on the production of axions in

highly magnetized white dwarfs (MWDs) through axion bremsstrahlung and

their subsequent conversion into X-ray photons in the star’s strong magnetic

field. Since astrophysical processes are generally not expected to produce a

similar signature, the observation of such a signal could provide strong evidence

for the existence of axions. This thesis systematically outlines the procedure

for constructing a template for the axion-induced X-ray signal expected from

isolated MWDs and shows how this prediction can be used to conduct a sta-

tistical analysis of observational data to set constraints on axion interaction

strengths. Numerical techniques are then employed to apply this analysis to

data from MWD RE J0317-853 observed by the Chandra telescope, yielding

axion bounds consistent with recent work by Dessert et al. (2019, ’22). Fi-

nally, this thesis critically examines the currently used methodology and sug-

gests possible extensions and improvements to obtain more accurate statistical

inference on axion models with future data.
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Introduction

The Standard Model (SM) of particle physics, despite its numerous successes,

leaves many fundamental questions unanswered. These unresolved issues, such

as the nature of dark matter and the strong CP problem, suggest the existence

of new physics beyond the SM. Among the various proposed extensions, axion

physics has recently seen growing interest within the scientific community.

This is because it not only provides a compelling solution to two of modern

physics’ fundamental puzzles through an elegant theoretical framework but

also holds promising potential for experimental verification. The QCD axion

emerges as a low-energy remnant of a UV symmetry proposed by R. Peccei and

H. Quinn (PQ symmetry) to explain the absence of CP violation in quantum

chromodynamics (QCD), i.e. the strong CP problem. Additionally, it turns out

that this hypothetical particle is also a good dark matter candidate, making

its detection even more appealing, as it would “kill two birds with one stone”.

From an effective field theory (EFT) perspective, this new pseudoscalar

field needs only an axion-gluons vertex to tackle the strong CP problem. How-

ever, other couplings with SM fields are possible depending on the specific

UV completion that realizes the PQ symmetry, resulting in a rich variety of

proposed axion models. Of particular phenomenological interest is the axion

interaction with photons, mediated by gaγγ, as many detection techniques rely

on it. Along with it, non-hadronic axion models predict a tree-level coupling to

electrons gaee, which is crucial for the phenomenology examined in this thesis.

However, the QCD axion is not the only pseudoscalar particle that can extend

the SM. Axion-like particles (ALPs) also arise naturally in many extensions of

the Standard Model. Although they are not related to the strong CP problem,

ALPs share a similar phenomenology with the QCD axion, including interac-

tions with photons and matter. In the following, we will use the term “axions”

to refer to both the QCD axion and ALPs.

In this thesis, we will review recent works on axion searches based on X-ray
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observations of white dwarf stars (WDs). These extreme astrophysical envi-

ronments provide a unique observational window to investigate the properties

of non-hadronic axion models, which are expected to be efficiently produced

in the WD core. The resulting axion flux would partially convert into a poten-

tially detectable flux of X-ray photons due to the interaction with the WD’s

strong natural magnetic field, providing a signature of the existence of ax-

ions. The primary goal of this work is to develop an analysis pipeline for

X-ray astronomy data, utilizing Python to consistently perform the necessary

numerical computations for WD modeling and data analysis. We will apply

this pipeline to real observational data, ultimately setting stringent bounds on

axion properties and demonstrating the effectiveness of X-ray observations of

WDs as a tool for axion searches.

In chapter 1, we introduce the QCD axion as a solution to the strong CP

problem, illustrating its elegant theoretical framework and focusing on two

classes of benchmark UV models. In chapter 2, we shift to the phenomenology

of the axion. Here, we present an overview of the axion emission processes oc-

curring in astrophysical environments, provide a selection of the axion bounds

obtainable from these processes, and prepare the reader for the following chap-

ters, which form the core of the thesis. In chapter 3, we narrow our focus to

white dwarfs as targets for axion detection, detailing step-by-step the analysis

pipeline for X-ray observations. In chapter 4, we apply the developed pro-

cedure to observational data from the Chandra telescope observation of the

nearby magnetic white dwarf (MWD) RE J0317-853, performing an analysis

that sets stringent bounds on the product gaee × gaγγ. Finally, in chapter 5,

we summarize these results and present our conclusions.

Throughout this work, we will always use natural units where ℏ = c =

kB = 1, so that all quantities involving dimensions of length, mass, and time

are expressed in dimensions of power of eV. Additionally, for the definition

of the dimensionless electric charge e, we will use rationalized units where

α = e2/4π ≈ 1/137 and therefore e ≈ 0.30. However, depending on the context

(astrophysics or laboratory physics), the magnetic field may be expressed in

different units. In some cases, it will be given in cgs units using “Gauss”,

which belongs to an unrationalized system. In other cases, it will be given in

“Tesla”, which belongs to the SI, a rationalized unit system. Remembering

that 1T = 104 G, for all calculations involving the magnetic field, the correct

formulae will be utilized.

2



Chapter 1

Axion as a solution to the

strong CP problem

In this chapter, we aim to guide the reader through the theoretical motivation

behind the introduction of the axion, starting by describing its historical roots

and the context in which it was first proposed. In section 1.1, we introduce

the so-called U(1)A problem through the analysis of the QCD Lagrangian,

exploring how its resolution consequently leads to the strong CP problem, a

significant puzzle in the Standard Model of particle physics. In section 1.2,

we present the QCD axion from an EFT point of view, justifying it as a low-

energy remnant within the Peccei-Quinn framework, which offers a compelling

solution to the strong CP problem. Section 1.3 is dedicated to an overview

of possible UV completion models that realize the PQ symmetry, examining

various theoretical constructions and their implications for axion physics.

1.1 The QCD axial anomaly

Let us start by writing the Lagrangian of QCD:

LQCD =
∑

k= SM
quarks

(
q̄ki /Dqk −mkq̄kqk + h.c.

)
− 1

4
Ga

µνG
aµν , (1.1)
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where we have defined

Dµ = ∂µ − igsT
aAa

µ, (1.2)

T a =
λa

2
, (1.3)

Gµν = ∂µAν − ∂νAµ + ifabcAb
µA

c
ν , (1.4)

where gs is the strong coupling constant, T a are the eight generators of the

SU(3)C group, conventionally taken as T a = λa/2, where λa are the Gell-Mann

matrices; and fabc are the structure constants of SU(3). In the limit of massless

quarks, the Lagrangian in eq. (1.1) enjoys a large global symmetry U(N)R ¹
U(N)L = U(N)V ¹U(N)A with N the number of quark flavors. Looking at the

mass spectrum of the QCD Lagrangian, we immediately notice a significant

energy separation between the masses of the SM quarks. In particular, if we

focus only on the u and d quarks, it is sensible to consider the massless limit,

since mu,md j ΛQCD. Therefore, we can write the corresponding light quark

Lagrangian as follows:

Llight
QCD =

∑

k=u,d

q̄ki /Dqk. (1.5)

This Lagrangian enjoys a chiral symmetry U(2)R¹U(2)L ≃ SU(2)V¹SU(2)A¹
U(1)V ¹U(1)A symmetry, where the identification holds because of the isomor-

phism between the algebras U(N) ≃ SU(N)¹U(1). The non-vanishing quark

condensate ïq̄kqkð ≠ 0 spontaneously breaks the symmetry group U(2)R ¹
U(2)L → SU(2)V ¹ U(1)V . The remaining U(1)V ≡ U(1)B symmetry corre-

sponds to baryon number conservation, while SU(2)V ≡ SU(2)I is the isospin

symmetry. Indeed, it is an experimental fact that SU(2)I ¹ U(1)B is a good

approximate symmetry of nature, as isospin multiplets appear in the hadron

spectrum. The Goldstone theorem tells us that, when global continuous sym-

metry is spontaneously broken, a spin-0 massless field—the so-called Goldstone

boson (GB)—is expected to appear for each generator of the broken symme-

try. In the case of a spontaneously broken axial U(2)A ≃ SU(2)A ¹U(1)A, we

would therefore expect to see four GBs. What we actually observe are three

light pseudoscalar particles, the pions, and an additional particle, the η meson,

which, however, has a significantly larger mass. Including the s quark in the

QCD chiral symmetry yields a similar phenomenology in the hadronic spec-

trum, with eight lighter mesons (π0, π±, η,K0, K̄
0
, K±)—corresponding to the

SU(3)A generators—and a ninth significantly more massive meson, the η′. The

absence of a ninth Goldstone boson in the hadronic spectrum suggests that
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the axial U(1)A symmetry was never a true symmetry for strong interactions.

Indeed, it can be seen that axial transformations on quark fields

qk → eiαγ5qk (1.6)

are anomalous for the QCD Lagrangian in eq. (1.5), meaning the symmetry is

not conserved at the quantum level. For this reason, the corresponding axial

current receives a contribution:

∂µJ
µ
A =

g2sN

16π2
Ga

µνG̃
aµν , (1.7)

where N is the number of fields involved in the axial transformation, i.e. the

number of massless quarks. Here we have also introduced the dual gluon field

strength

G̃a
µν =

1

2
εµνρσG

a ρσ, (1.8)

with the choice ε0123 = −1. This anomalous effect can be traced back to

the non-invariance of the quark fields path integral measure [1] under the

transformation in eq. (1.6)

DqkDq̄k →
(
e−iα

g2s
16π2

∫
d4xGa

µνG̃
a µν

)
DqkDq̄k. (1.9)

At first sight, the existence of such an anomaly seems to explain the observed

phenomenology in the hadronic spectrum: there is no U(1)A symmetry to

be broken and the Goldstone theorem does not apply. However, the term in

eq. (1.7) can be expressed as a total derivative of the Chern-Simons current:

Ga
µνG̃

aµν = ∂µK
µ = ∂µε

µαβγ
(
Aa

αG
a
βγ −

gs
3
fabcAa

αA
b
βA

c
γ

)
, (1.10)

and thus does not have any effect on the action in perturbation theory, leaving

U(1)A a true symmetry for the action of Lagrangian in eq. (1.5). However,

gauge invariance implies the existence of an infinite number of vacua for QCD,

classified with the label |nð with n ∈ Z. Moreover, it is possible to see that

there exist configurations of the Aµ field—called instantons—that interpolate

between different n-vacua and give a non-vanishing contribution to the QCD

action, therefore breaking the U(1)A symmetry. As we will see in the next

section, the resolution of this U(1) problem leads directly to another puzzle

known as the strong CP problem, which is the theoretical motivation to axion
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physics.

1.2 The strong CP problem

The existence of instantons — i.e. configurations that connect different n-

vacua — motivates the introduction of a θ parameter associated with the

true vacuum of QCD |θð, which is a linear combination of the different vacua

|nð. The presence of this vacuum, called the θ-vacuum, leads to the emer-

gence of a new term in the QCD Lagrangian in eq. (1.1). This new term

is a renormalizable operator compatible with Lorentz invariance and SU(3)C

gauge symmetry:

δLθ
QCD =

g2sθ

32π2
Ga

µνG̃
aµν . (1.11)

Equation (1.11), also called θ-term, violates P and T, and thus it also violates

CP. However, this is not the only CP-violating contribution present in the

QCD Lagrangian. In fact, the quark mass terms in eq. (1.1) were assumed to

be real, but the more generally

mq q̄LqR + h.c. → eiθqmq q̄LqR + h.c. (1.12)

The presence of complex phases does not violate Lorentz symmetry or the

SU(3)C gauge symmetry but does violate CP. Usually, this CP-violating term

is neglected since it can be reabsorbed into a phase redefinition of the quark

fields. However, it becomes important in this context because we also have

the additional CP-violating operator in eq. (1.11). We need to quantify the

observable impact of these new parameters θ and θq. In particular, we can

show that only a combination of the two CP-violating parameters θ and θq

constitutes a physical observable. In order to do so, let us perform an axial

transformation U(1)A on a single quark field

q → eiαγ5q i.e.




qL → e−iαqL

qR → eiαqR
. (1.13)

Under this transformation, it is clear that the corresponding complex phase

transforms as θq → θq + 2α. Nevertheless, this transformation also affects the

θ-term. As we have shown in the previous section, the U(1)A symmetry is

anomalous under QCD, so the divergence of the single quark axial current
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reads:

∂µJ
µ
A = 2mqiq̄γ5q +

g2s
16π2

Ga
µνG̃

aµν . (1.14)

Note that the second term has the same form of the θ-term in eq. (1.11). Hence,

when performing an axial rotation, anomalous effects induce an additional

modification of the Lagrangian proportional to the rotation angle α, resulting

in a shift θ → θ− 2α. Therefore the linear combination θ̄ = θ+ θq is invariant

under a single quark axial transformation. To find the general expression

for the physically observable parameter θ̄, one must extend this procedure to

generic axial transformations acting on the flavor space. Calling q a quark

flavor multiplet of Nf flavors, the mass term in the QCD Lagrangian reads

Lquark
QCD £ −q̄LMqqR + h.c. , Mq =



mu

md

. . .




︸ ︷︷ ︸
Nf

. (1.15)

Performing an axial transformation in the flavor space through a Nf ×Nf

diagonal matrix Qa acting on the quark fields

q → eiαγ5Qaq, (1.16)

the phase of the mass matrix undergoes a shift Mq → Mqe
i2αQa , or more

explicitly

arg detMq → arg detMqe
i2αQa = arg detMq + 2αTrQa. (1.17)

One can see that resulting from this transformation, the anomalous shift in

the Lagrangian corresponds to the following transformation of the theta term

θ → θ − 2αTrQa. (1.18)

Consequently, the physical observable quantity θ̄ that is invariant under

the more general transformation in eq. (1.16) is

θ̄ = θ + arg detMq (1.19)

= θ + arg detYuYd in the EW theory. (1.20)
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As a result, all the CP-violating effects of the QCD Lagrangian depend on the

size of θ̄. Since θ̄ is the sum of two unrelated dimensionless contributions, we

might expect it to be of order one. One of the physical observables induced by

the presence of CP violation is a non-vanishing neutron electric dipole moment

(nEDM). Experiments aimed at measuring the nEDM, without finding it,

imply a strong bound on θ̄ size [2], [3]:

|dn|exp < 1.8× 10−26 e cm at (2σ), (1.21)

leading to

|θ̄| < 10−10. (1.22)

This extremely small value of θ̄ would thus correspond to a non-trivial can-

cellation between the two independent quantities in eq. (1.19), thereby raising

the so-called strong CP problem. In the next section, we will explore a possible

solution to this problem, which involves introducing a new chiral symmetry

that drives the CP-violating θ̄ term to zero.

1.2.1 The Peccei-Quinn solution and the QCD axion

Among all possible solutions to the strong CP problem, the Peccei-Quinn

(PQ) solution is particularly significant, since, as we will see shortly, it leaves

a low-energy remnant—the QCD axion—which can be experimentally tested.

The PQ solution involves postulating the existence of a new global axial

symmetry U(1)PQ, which must satisfy two conditions. First, this symmetry

must be anomalous with respect to QCD, allowing the θ̄-term in eq. (1.11)

to be absorbed by an anomalous contribution of the type shown in eq. (1.7).

Second, the symmetry must be spontaneously broken at a high energy scale, as

it is not observed at the energy scales accessible in current experiments. When

this happens, it results in a GB pseudoscalar called the QCD axion. From now

on, we will refer to the QCD axion simply as the axion. The realization of the

PQ symmetry is not unique, and numerous UV models incorporating it have

been proposed. Some of these models will be discussed in section 1.3. Now we

address the axion solution from a bottom-up perspective, and we introduce

the axion field in the effective Lagrangian

La =
1

2
(∂µa)

2 + L(∂µa, ψ) +
g2s

32π2

a

fa
Ga

µνG̃
aµν , (1.23)

where fa is the energy scale of the EFT, also known as the axion decay con-

8



stant. Consequently, the Lagrangian enjoys a pseudo-shift symmetry:

a(x) −→ a(x) + αfa, (1.24)

which induces a variation in the Lagrangian:

δLa
QCD =

g2sα

32π2
Ga

µνG̃
aµν , (1.25)

allowing the θ-term to be absorbed by the field redefinition α = − θ̄. Remark-

ably, the Vafa-Witten theorem [4] ensures that ïað = 0, i.e., the minimum

of the axion potential is CP-conserving. Therefore QCD dynamics drives the

axion to its minimum, eventually solving the strong CP problem. The same

QCD dynamics, through the axion-gluon interaction term in eq. (1.23), causes

the new particle to acquire a non-vanishing massma. The fact that the axion is

not massless does not conflict with the Goldstone theorem, as we constructed

U(1)PQ as an anomalous symmetry from the beginning. The axion mass can

be computed at low energy using the tools provided by chiral perturbation the-

ory (χPT) and expressed in terms of well-understood hadron physics. Here,

we limit ourselves to presenting the final result, referring to [5] for a compre-

hensive treatment:

m2
a =

mumd

(mu +md)2
m2

πf
2
π

f 2
a

, (1.26)

where mπ is the pion mass, and fπ is a constant known from the pion decay

rate via the weak interaction. Plugging the known values into eq. (1.26), we

obtain

ma ≃ 5.7

(
1012 GeV

fa

)
µeV. (1.27)

Phenomenologically speaking, it is important to investigate what possible

interactions the axion may have with the SM fields. To solve the strong CP

problem, we have shown that the axion must interact with gluons, as indicated

in eq. (1.23). However, in general, the U(1)PQ symmetry can also be anomalous

with respect to QED. Therefore, it is necessary to include an axion-photon

interaction term in eq. (1.23). Additionally, if SM fermions are PQ charged

in the UV, we expect to see a derivative interaction between the axion and

fermions. The axion effective Lagrangian can now be written as:

9



La =
1

2
(∂µa)

2 +
g2s

32π2

a

fa
Ga

µνG̃
aµν +

1

4
g0aγγaFµνF̃

µν +
∑

f

∂µa

2fa
c0f f̄γ

µγ5f. (1.28)

Here, Fµν is the electromagnetic field strength tensor, F̃ µν is its dual, and

f represents the SM fermions charged under U(1)PQ. The strength of the

couplings g0aγγ and c0f depends on the specific UV completion considered. In-

deed, we can define E and N as the QED and QCD anomaly coefficients,

respectively, so that the PQ current JPQ
µ is conserved up to the terms:

∂µJPQ
µ =

g2sN

16π2
Ga

µνG̃
aµν +

e2E

16π2
FµνF̃

µν . (1.29)

After the breaking of the PQ symmetry, the axion Lagrangian will contain

the terms:

La £
a

vPQ

g2sN

16π2
Ga

µνG̃
aµν +

a

vPQ

e2E

16π2
FµνF̃

µν +
∂µa

vPQ
JPQ
µ , (1.30)

where vPQ is the order parameter of the U(1)PQ symmetry breaking. Imposing

in eq. (1.30) the normalization of the Lagrangian introduced in the axion EFT

in eq. (1.28), we obtain:

fa =
vPQ
2N

, g0aγγ =
αEM

2πfa

E

N
, c0f =

XHf

2N
, (1.31)

where for the expression of the axion-fermion coupling we have supposed that

the fermion fields receive their masses through a Yukawa term with suitable

Higgs fields f̄LfRHf . In the next section, we will see explicitly how these

terms emerge from the specific UV completion considered. However, It is

important to point out that interaction terms between axions and quarks,

as well as between axions and photons, emerge regardless of the specific UV

model. This can be seen by performing a field-dependent axial transformation

of the quark fields to absorb the axion-gluon interaction term in eq. (1.28):

q → eiγ5
a

2fa
Qaq, (1.32)

where Qa is a generic matrix acting on the quark fields. As already said, axial

transformations are QCD anomalous, so eq. (1.32) modifies the axion effective

Lagrangian in eq. (1.28) with:
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δLQCD
a = − a

fa

g2s
32π2

Tr(Qa)G
a
µνG̃

aµν . (1.33)

Thus, it is possible to rotate away the axion-gluon term by requiring that

TrQa = 1. Following this field redefinition, the quark kinetic term generates

an additional axion-quark interaction term, allowing us to define new axion

couplings cq for the quarks involved in the rotation. Moreover, an extra axion-

photon coupling arises because this transformation is also QED anomalous,

generating a new aFµνF̃
µν term. One can see that the transformation in

eq. (1.32) corresponds to the new couplings:

cq ≡ c0q −Qa,

gaγγ ≡ g0aγγ − (2Nc)
α

2πfa
Tr
(
QaQ

2
EM

)
,

(1.34)

where QEM is the charge matrix of the quarks involved in the transformation,

and Nc is the number of colors. The coupling with the electron, however, does

not receive this type of contribution since it is not involved in the axial rotation

in eq. (1.32). Notably, the coupling c0e receives a radiative contribution δce due

to a photon loop, which allows us to write:

ce ≡ c0e + δce, (1.35)

with

δce =
3α2

4π2

[
E

N
log

(
fa
µIR

)
− 2

3

4md +mu

mu +md

log

(
Λχ

µIR

)]
. (1.36)

The first term is associated with the running of the axion-electron coupling

from fa to µIR, while the second term arises from the axion-pion mixing and is

cut off at the χPT breaking scale, approximately Λχ ∼ 1GeV. The parameter

µIR denotes the energy scale of the physical process, typically µIR ∼ me.

Finally, the axion Lagrangian reads:

La =
1

2
(∂µa)

2 +
1

4
gaγγaFµνF̃

µν +
∑

f

∂µa

2fa
cf f̄γ

µγ5f. (1.37)

These interactions between axion and SM particles are crucial from an exper-

imental point of view, because, as we will see in chapter 2, they enrich the

phenomenology of the axion, providing channels for its potential detection.
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1.3 Axion models

In this section, we aim to analyze some specific axion models that realize the

PQ symmetry in the UV. The simplest UV completion that can be constructed

is the PQWW axion model [6]–[9]. The symmetry is realized with two Higgs

doublets and the SM quarks, which interact in a Yukawa term:

LY = YU q̄LHuuR + YDq̄LHddR + h.c. (1.38)

By enforcing the U(1)PQ symmetry on this term, the PQ charges of the

Higgs and quark fields are fixed. The two Higgs fields develop non-vanishing

vacuum expectation values (VEVs) vu, vd ̸= 0 through a symmetry-breaking

potential:

V (Hu, Hd) = λu

(
|Hu|2 −

v2u
2

)2

+ λd

(
|Hd|2 −

v2d
2

)2

+ Ṽ (|Hu|, |Hd|, |HuHd|),
(1.39)

where Ṽ (|Hu|, |Hd|, |Φ|, |HuHd|) contains terms that do not break the PQ sym-

metry explicitly. In the broken phase, the axion emerges as a combination

of the two angular modes of Hu and Hd exponential representations. Since

it is contained in the Higgs fields, the axion decay constant will be propor-

tional to the electroweak scale, v ≃ 246 GeV. More precisely, it turns out

that fa = (v/6) sin 2β, with tan β = vu/vd. However, high-energy physics ex-

periments ruled out the PQWW model since the small value of fa does not

sufficiently suppress the axion interaction with SM fields. Decay processes of

K, J/Ψ, and Υ [10]–[12] put constraints on the axion-quark coupling, which

are incompatible with the small PQWW axion decay constant fa. Therefore,

the only viable models are those that require light, weakly interacting axions,

where fa k v. These models are commonly referred to as invisible axion

models.

1.3.1 KSVZ models

The KSVZ model [13], [14] is the simplest invisible axion model that one can

build. In its most basic form, this model requires the introduction of a new

vector-like quark field Q = QL + QR that transforms under the fundamen-

tal representation of SU(3)C , is a singlet under SU(2)L, and is neutral under

U(1)Y . Thus, it transforms under the representation Q ∼ (3, 1, 0). Along with
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this field, a new complex scalar field Φ is introduced with the SM represen-

tation Φ ∼ (1, 1, 0), and it is used to give mass only to the new field Q. The

most general renormalizable Lagrangian of this model is:

LKSVZ = Q̄i /DQ+ ∂µΦ
 ∂µΦ− V (Φ) + yQΦQ̄LQR + h.c. (1.40)

These two fields are the only two degrees of freedom charged under the U(1)PQ

symmetry and transform as:

Φ → eiαΦ, Q→ e−iα/2Q. (1.41)

The potential V (Φ) is the typical mexican-hat potential

V (Φ) = λΦ

(
|Φ|2 −

v2PQ
2

)2

, λΦ > 0. (1.42)

This potential spontaneously breaks the symmetry at an energy scale vPQ.

Using the standard exponential parametrization of Φ:

Φ =
vPQ + ρ√

2
eia/vPQ , (1.43)

we observe the mass spectrum in the broken phase:

mρ =
√
2λvPQ, ma = 0, mQ = yQ

vPQ√
2
. (1.44)

Requiring vPQ k v, the radial mode gets a very large mass and we can integrate

it out. In the broken phase, the interaction term reads:

L = −mQQ̄LQRe
ia/vPQ + h.c. (1.45)

Through an axion-dependent axial field redefinition,

Q→ e
−iγ5

a
2vPQQ , (1.46)

we can disentangle the new quark field Q from the axion a and then integrate

it out. As a consequence of the axial transformation, the action undergoes a

shift:

δS =
g2s

32π2

∫
d4x

a

vPQ
Ga

µνG̃
aµν , (1.47)

which results in the axion-gluon term that we have introduced in the EFT in

eq. (1.28). By comparing the two Lagrangians, it is possible to match the two
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energy scales vPQ = fa. In this simple model, there are no additional model-

dependent tree-level interactions with other Standard Model fields, namely

g0aγγ = 0 and c0f = 0 for the couplings in eq. (1.28). However, it is possible

to introduce an interaction with photons by considering a vector-like quark

Q charged under electromagnetism. More broadly, if the field Q transforms

under a more general representation Q ∼ (CQ, IQ, YQ), defining d(IQ) and

d(CQ) the dimension of SU(3)C and SU(2)L representation we get the anomaly

coefficients introduced in eq. (1.29):

E = XQ · d(IQ) · T (CQ) , (1.48)

N = XQ · d(IQ) · Tr q2Q , (1.49)

where XQ and qQ are respectively the PQ charge and EM charge of the heavy

quark field Q; and T (CQ) is the color Dynkin index. Hence these models allow

for a tree-level coupling with photons g0aγγ (motivated ranges for this coupling

can be found in [15]–[17]). However, since no SM fermion carries a PQ charge,

we always have a vanishing model-dependent tree-level axion coupling with

fermions c0f = 0. On the other hand, the axion-gluon interaction term makes

possible an interaction with hadrons, this is why these axion models are called

hadronic.

1.3.2 DFSZ models

Another benchmark model for the invisible axion is the DFSZ model [18], [19].

Like the PQWW model, it utilizes a two-Higgs-doublet model (2HDM) to give

mass to the SM quarks and extends it with a complex scalar field. Therefore,

the SM particle content extension is:

Hu ∼ (1, 2,−1/2), Hd ∼ (1, 2, 1/2), Φ ∼ (1, 1, 0). (1.50)

These complex scalar fields, along with the quark and lepton fields, are all

charged under the PQ symmetry, which acts on the scalar sector as

Hu → eiXHuαHu, Hd → eiXHd
αHd, Φ → eiXΦαΦ. (1.51)

Setting to zero the PQ charges of left-handed fermions, the U(1)PQ transfor-
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mation acts on fermion fields as

qL → qL, lL → lL, uR → eiXuαuR, dR → eiXdαdR, eR → eiXeαeR,

(1.52)

with α the rotation angle. The action of the PQ symmetry on the fermion fields

is determined by the Yukawa Lagrangian. We distinguish now between two

different DFSZ models, the DFSZ type I and II, which differ on the choice of

the Higgs doublet giving mass to electrons. Defining H̃u = iσ2H
∗
u the Yukawa

Lagrangian reads

LY
DFSZ-I =− YU q̄LuRHu − YDq̄LdRHd −




YE l̄LeRHd + h.c. DFSZ I

YE l̄LeRH̃u + h.c. DFSZ II
,

(1.53)

requiring the PQ invariance in the two versions of eq. (1.53) we find

Xu = −XHu
, Xd = −XHd

, Xe =




−XHd

DFSZ I

XHu
DFSZ II

, (1.54)

We will focus now on describing the DFSZ-I model, while keeping in mind

that the DFSZ-II is recovered by simply replacing XHd
→ −XHu

. Introducing

a suitable scalar potential

V (Hu, Hd,Φ) = Ṽ (|Hu|, |Hd|, |Φ|, |HuHd|)− λHuHdΦ
2 + h.c. (1.55)

we can ensure that all three scalar fields pick up a VEV:

ïHuð = vu, ïHdð = vd, ïΦð = vΦ. (1.56)

The electroweak VEV is v ≃ 246 GeV, with v2 = v2u + v2d and tan β = vu/vd.

In the KSVZ model, the axion was associated with the radial mode of the

Φ field. Here it is not trivial to identify the axion as the extra term in the

potential V £ −λHuHdΦ
2 introduces a projection of the axion also along Hu

and Hd. After symmetry breaking, the scalar fields take the values:

Hu =
vu√
2
ei

au
vu

(
0

1

)
, Hd =

vd√
2
e
i
ad
vd

(
1

0

)
, Φ =

vΦ√
2
e
i
aΦ
vΦ , (1.57)
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so that the axion is a general combination of the scalar fields’ radial modes

a = f(au, ad, aΦ). By enforcing the Goldstone theorem:

ï0|JPQ
µ |a(p)ð = ivPQpµ, (1.58)

one can see that the axion field is compatible with the definition:

a =
1

vPQ

∑

i=Hu,Hd,Φ

Xiviai, with v2PQ =
∑

i=Hu,Hd,Φ

X2
i v

2
i . (1.59)

We then need to find an expression for the PQ charges Xi of the scalar

sector. By imposing the PQ invariance of V £ −λHuHdΦ
2, and demanding

that the PQ current does not couple to the Goldstone boson that is eaten by

the Z boson, we obtain:

XΦ = 1, XHu
= −2 cos2 β, XHd

= −2 sin2 β, (1.60)

where we have exploited the freedom of choosing the value of one of the scalar

PQ charges to be one. Now it is possible to invert the relation in eq. (1.59)

and obtain an expression for au and ad in terms of a, vPQ, and the charges

XHu
and XHd

. Then, in the broken phase, the Yukawa Lagrangian reads:

LY
DFSZ £ −mU ūLuRe

iXHu
a

vPQ −mDd̄LdRe
iXHd

a
vPQ −mE ēLeRe

iXHd
a

vPQ + h.c.

(1.61)

Now it is possible to rotate away the axion field a through a set of fermionic

axial transformations, generating the QCD and QED anomalous shifts in

eq. (1.29). It turns out that for the DFSZ-I model E = 8, N = 3, while

for the DFSZ-II one obtains E = 2, N = 3.

These transformations also affect the fermionic kinetic terms, leading to the

axion-fermion couplings c0f shown in eq. (1.28):

c0ui
=

1

3
cos2 β, c0di =

1

3
sin2 β, c0ei =





1
3
sin2 β DFSZ I

−1
3
cos2 β DFSZ II

, (1.62)

where i = 1, 2, 3 is the generation index.

Unlike hadronic KSVZ models, non-hadronic DFSZ models induce a tree-

level coupling with electrons, leading to testable phenomenological effects. As

we will see in chapters 2 and 3, many axion detection strategies are based on

16



the physical assumption that certain astrophysical environments can effectively

produce axions through physical processes mediated by the axion-electron cou-

pling. For this reason, non-hadronic axion models are particularly compelling

for many axion searches in astrophysics.

17



Chapter 2

Selected axion astrophysical

bounds

The previous chapter concluded by illustrating how axion couplings to SM

fields emerge from various UV completion. In order to understand and develop

possible axion detection techniques, it is necessary to investigate the environ-

ments in which these interactions can lead to efficient axion production. In

this chapter, we will focus on describing various astrophysical environments as

possible axion sources. Indeed, being light particles, axions can be produced

in low-energy environments, such as the plasma within stars. Moreover, since

they interact very weakly with SM particles, axions can escape from stellar

cores without being reabsorbed.

In section 2.1, we aim to detail and comprehensively review the possible

axion production processes that are at play in stellar plasmas. For each pro-

cess, we will evaluate the energy loss that these astrophysical environments

experience. This will allow us to assess the relative importance of each pro-

cess under different plasma conditions and will be crucial for quantifying the

astronomically observable effects of axion emission. Section 2.2 is dedicated

to providing an overview of a selection of axion bounds and hints, discussing

qualitatively how different detection strategies can constrain axion properties.

2.1 Axion production in stellar plasma

Since we aim to quantify the energy loss of a star due to axions, we are inter-

ested in describing the production of axions in systems where all other species

are in thermal equilibrium, while the axion can escape. Under these con-
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ditions, we can formulate a general expression for the axion emissivity—the

energy loss rate per unit volume:

ε =
N∏

i=1

∫
gid

3pi
2ωi(2π)3

fi(ωi)
N ′∏

j=1

∫
g′jd

3p′j
2ω′

j(2π)
3
[1± fj(ω

′
j)]

∫
d3pa

2ωa(2π)3
ωa(1 + faxion)

× S
∑

spins

|M|2(2π)4δ4
(

N∑

j=1

pi −
N ′∑

i=1

p′j − pa

)
,

(2.1)

where N represents the number of initial-state particles, and N ′ denotes the

number of final-state particles excluding the axion, which has an energy ωa

and four-momentum pa. The factor S is the symmetry factor for identical

particles in the initial and final states, while gi and g′j are the degeneracy

factor accounting for the internal degrees of freedom of each particle. The

phase-space occupation numbers, fj, follow the usual Bose-Einstein or Fermi-

Dirac distributions, normalized so that the density of a given particle species

is

nj =

∫
d3pj

gjfj(ωj)

(2π)3
. (2.2)

For the final-state occupation factors in eq. (2.1), the plus sign applies to

bosons (due to Bose enhancement), while the minus sign applies to fermions

(due to Pauli blocking). The final-state occupation factor for the axions, faxion,

can be neglected because, being weakly interacting, axions free stream after

being emitted, hence are out of thermal equilibrium. A related useful quantity

to measure the impact of axion emission is the energy loss per unit mass,

denoted as ε̃ = ε/ρ (usually expressed in erg g−1 s−1). Therefore, depending

on the process at play in the star, the axion emissivity will be different. Before

delving into a review of the various mechanisms of axion production, it is

essential to evaluate the impact of the plasma’s presence on eq. (2.1). At

this stage, it is already evident that the plasma introduces stimulation and

blocking factors, but we aim to examine in more detail what other effects are

involved.

2.1.1 Plasma effects

Let us continue with a brief description of the key properties of a stellar plasma.

This part is mostly based on [20]. Given a star at temperature T and density ρ,

it is convenient to introduce the mass fraction parameters Xs for each species

s to describe its plasma composition. Then, the number density ns of a species
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with a mass fraction Xs, atomic weight As and charge Zse is given by

ns =
ρ

mu

Xs

As

, (2.3)

where mu = 1.66× 10−24 g = 0.932GeV is the atomic mass unit. Using these

quantities, we can express the number density of electrons as

ne =
∑

s

Zsns =
ρ

mu

∑

s

XsZs

As

=
ρ

muµe

, (2.4)

where it was defined the quantity µe, the mean molecular weight per electron

µe = (
∑
XsZs/As)

−1. We also introduce here Ye ≈ µ−1
e the mean number of

electrons per baryon (which is typically Ye ≈ 1
2
Xs for all the elements but the

hydrogen). These quantities, together with the various coupling of axion with

SM fields, are the key parameters for determining the impact of the various

axion emissivities on stellar evolution.

The first effect of the presence of plasma that we want to discuss is the screen-

ing of electric charge due to the polarization of the plasma. Electrostatic

fields of electrons and ions are in fact screened by the polarized medium of the

star. For a weakly coupled plasma, the Gauss law in momentum space for the

electric field potential Φ is modified in [20]

[
k2 + k2S

]
Φ(k) = ρ(k), (2.5)

with kS independent of k. For a point-like source, this results in the electric

potential modification

Φ(r) ∝ r−1 −→ r−1e−rkS , (2.6)

hence electric charges are screened for distances r > k−1
S . As a practical effect

of eq. (2.6), for Coulomb processes, the photon inside the squared matrix

elements |M|2 in eq. (2.1) is modified:

1

|q|4 −→ 1

(q2 + k2S)
2
, (2.7)

where q is the momentum carried by the intermediate photon. It turns out

that for a nondegenerate plasma, kS is given by the so-called Debye-Hückle

(DH) screening scale kD
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k2S = k2D =
4πZ2αEMn

T
, (2.8)

where n is the number density of charged particles in the plasma and T is its

temperature. Taking into account the presence of electrons and different ions,

the electric field screening scale reads

k2S = k2e + k2i , (2.9)

where ke is the DH screening scale associated with the electron and ki is due

to the contribution from ions of different species in the plasma. Therefore, the

total DH screening scale can be written as

k2S =
4παEM

T

(
ne +

∑

s

nsZ
2
s

)
. (2.10)

For a strongly degenerate species, eq. (2.5) implies a screening scale

k2S = k2TF =
4Z2αEMmpF

π
, (2.11)

where pF is the Fermi momentum, related to the particle number density by

pF = (3π2ns)
1/3. Typically the degenerate species are the electrons and k2TF j

k2D, hence in a plasma of only degenerate electrons, the main contribution to

the screening scale comes from the ions and k2TF can be safely neglected.

The screening of electric fields is associated with another plasma effect: the

correlation of positions and motions of charged particles. Indeed, if a negative

charge is at a certain position in the plasma, the probability of finding an

electron nearby is reduced due to electrostatic repulsion, while the probability

of finding a nucleus nearby increases. To quantify this effect, we need to

introduce a quantity that measures the correlation between charged particles

in the medium. This effect is captured by the static structure factor S(q) [21],

which modifies eq. (2.7) as follows:

1

|q|4 −→ S(q)

(q2 + k2S)
2
. (2.12)

In the case of DH screening (i.e. screening in a weakly coupled plasma), the

structure factor reads

S(q) =
q2

q2 + k2S
, (2.13)
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finally resulting in
1

|q|4 −→ 1

q2(q2 + k2S)
2
. (2.14)

We conclude by highlighting that this modification of the Coulomb propagator

holds only for a weakly coupled plasma, as it relies on eq. (2.5), which is based

on this assumption. Indeed, the expression of the structure factor in eq. (2.13)

is misleading for a strongly coupled plasma [22], [23], so it has to be evaluated

numerically. In chapter 3, we will show that the typical interior of white

dwarf stars is in a strongly coupled regime. Consequently, we cannot use the

analytical modification in eq. (2.14) for calculating axion emissivity in that

particular environment.

2.1.2 Axion emission processes in stars

Let us now examine the possible axion production processes. The axion La-

grangian written in eq. (1.37) is modified by introducing the relevant operators

for understanding axion production in astrophysical environments and for ex-

perimental sensitivities. In particular, we introduce the couplings with proton

and neutron fields p, n, which arise in the framework of chiral perturbation

theory [24]. Therefore, we write axion effective Lagrangian as shown in [5],

[25]:

La =
1

2
(∂µa)

2 − 1

2
m2

aa
2 +

αEM

8π

Caγ

fa
aFµνF̃

µν
+ Caf

∂µa

2fa
f̄γµγ5f, (2.15)

where the adimensional coefficients Caγ and Caf have both model-dependent

and model-independent contributions:

Caγ =
E

N
− 1.92(4),

Cap = −0.47(3) + 0.88(3)Cu − 0.39(2)Cd − Ca,sea,

Can = −0.02(3) + 0.88(3)Cd − 0.39(2)Cu − Ca,sea,

Ca,sea = 0.038(5)Cs + 0.012(5)Cc + 0.009(2)Cb + 0.0035(4)Ct,

Cae = Ce +
3α2

4π2
E log

(
fa
me

)
− 1.92(4) log

(
GeV

me

)
.

For a better understanding of these couplings, consult [24], [25]. From this

point onward, we will use the rescaled couplings:
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gaγγ =
αEM

2π

Caγ

fa
, gaff = Caf

mf

fa
. (2.16)

From this effective Lagrangian, it is possible to identify the main processes

through which axions are produced in astrophysical plasmas:

Process mediated by axion-photon coupling gaγγ

The Primakoff process, which consists of the conversion of thermal photons

into axions in the electrostatic field generated by the plasma (ions or electrons)

γ + Ze→ a+ Ze.

Processes mediated by axion-electron coupling gaee

• The Compton process, which involves the scattering of thermal photons

off electrons γ + e→ a+ e.

• The electron bremsstrahlung process, e + Ze → e + Ze + a (also called

free-free transition) consists of the emission of an axion by an electron

when it interacts with the electrostatic field generated by the plasma

(ions or electrons).

• Atomic processes include axio-recombination e+I → I−+a (also known

as a free-bound transition), where a free electron is captured into an

atomic shell, leading to the emission of axions. Another process is

axio-deexcitation I∗ → I + a (bound-bound transition), which results

in monochromatic axion emission.

• The pair annihilation process e−+e+ → γ+a, electron-positron pairs can

annihilate to produce axions. As we shall see, astrophysical experiments

aimed at testing axion properties have poor sensitivity to this process.

In the context of solar axion searches, the atomic transitions are usually

grouped with bremsstrahlung and Compton processes in the so-called ABC

processes.

Processes mediated by axion-nucleon couplings

• The nucleon bremsstrahlung process, N +N ′ → N +N ′ + a, a nucleon

N = n, p scatters off another nucleon N ′, emitting an axion. The axion-

nucleon couplings gann, gapp mediate the process.
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Figure 2.1: The Feynman diagrams for the most relevant axion emission pro-
cesses in the context of astrophysical searches

• Nuclear reactions in stars can produce axions through axion-nucleon

couplings. While we will not cover these processes in detail, it is worth

mentioning that one promising observational window involves the nuclear

deexcitation of 57Fe, which results in a monochromatic axion emission

(see outlook section in chapter 5).

Figure 2.1 summarizes the most important axion production processes in

astrophysical environments that we have taken into account in this review.

We now present the axion emissivity per unit mass associated with the

processes described, highlighting the dependence on the plasma characteristics

introduced in section 2.1.1. By comparing these quantities for different stellar

plasma, we can determine which axion emission process dominates in each

astrophysical environment. Note, in this thesis the axion energy loss rate per

unit volume is denoted by ε to remain consistent with the literature referenced

in chapter 3. Consequently, the axion energy loss rate per unit mass is denoted

by ε̃ = ε/ρ. It should be noted that many authors, such as G. Raffelt, denote

the first quantity by Q, while the second one is often denoted by ε. For all the

subsequent expressions of axion emissivities, T and ρ are in units of Kelvin

(K) and grams per cubic centimeter (g cm−3), respectively.
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Primakoff process

The first axion production mechanism described is the Primakoff process

γ + Ze → a + Ze, which is mediated by the axion-photon coupling gaγγ.

By neglecting degeneracy effects and the plasma frequency, a semi-analytical

expression for the energy-loss rate per unit mass due to axion emission can be

provided [25]–[27]:

ε̃P ≃ 2.8× 10−31F (ξ)
( gaγγ

GeV−1

)2 T 7

ρ
erg g−1 s−1, (2.17)

here kS is the Debye-Hückel screening wavenumber defined in eq. (2.8), while

the dimensionless coefficient F (ξ) is a function of ξ2 ≡ (kS/2T )
2 and is of order

one under most stellar conditions [26]. The emission strongly depends on the

temperature of the environment, as it regulates the population of the thermal

photons. General cases with any degree of degeneracy are treated in [28].

Compton process

The Compton process γ + e→ a+ e is driven by the axion–electron coupling

gaee. In the limit of massless axions with energy ωa j me the cross-section of

the process reads [20]

σ =
1

3
α
(gaee
me

)2( ωa

me

)2
. (2.18)

In this limit is possible to neglect the recoil of the target electron, so that

the incoming photon and outgoing axion will have the same energy ω. This

simplifies the integrals to compute the axion emissivity in eq. (2.1), so that it

can be written as [20]

εC = Rdegne

∫
2 d3k

(2π)3
σ ω

eω/T − 1
, (2.19)

where ne is the number density of electrons and T is the temperature. The

factor of 2 accounts for the internal degrees of freedom of the photon, while the

coefficient Rdeg accounts for degeneracy effects due to the Pauli suppression

of degenerate electrons. Hence, Compton processes are significant when the

electrons are non-degenerate. Performing the integral in eq. (2.19), we can

compute the axion energy loss rate per unit mass due to Compton scattering

in terms of the stellar plasma’s properties and the axion-electron coupling gaee,

as reported in [20]
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ε̃C ≃ 2.63× 10−22 Rdegg
2
aeeYeT

6 erg g−1 s−1. (2.20)

As anticipated, when the plasma is too dense, electrons’ degeneracy starts

to play an important role, and the Compton emission of axions is then sup-

pressed.

Electron bremsstrahlung process

We now proceed to describe the emissivity of axion due to axion bremsstrahlung

e + Ze → e + Ze + a processes. Since this type of emission will be crucial

in chapter 3, the calculation of the axion emissivity εB has been carried out

explicitly and in detail in appendix A. Here is simply reported the result in

the case of an extremely degenerate plasma, which is in accordance with the

literature [29]:

ε̃BD ≃ 8.59× 10−7 g2aeeT
4
∑

s

Z2
sXs

As

F erg g−1 s−1, (2.21)

where the dimensionless factor F is a quantity of order one that accounts for

medium effects, including screening of the electric field and interference be-

tween different scattering sites discussed in section 2.1.1. From this expression,

it can be seen that the emission profile is essentially thermal, as ε ∝ T 4 and

does not undergo explicit suppression by density as in eqs. (2.17) and (2.20).

The non degenerate limit is treated in [28], which reports

ε̃BND = 4.7× 101g2aeeT
2.5 ρ

µe

×

×
∑

j

Xj

Aj

[
Z2

j

(
1− 5

8

k2s
meT

)
+
Zj√
2

(
1− 5

4

k2s
meT

)]
erg g−1 s−1.

(2.22)

Pair production

In the case of axion pair production, [30] presents the general expression for

emissivity and distinguishes between different plasma conditions. However,

as pointed out in [20], this process never played a significant role in setting

bounds on axions form stellar evolution considerations. This is because neu-

trino emission via pair annihilation e+e− → νν̄ is generally more efficient, and

the observable effects of energy loss for most types of conditions are primarily

due to this process. The impact of axion production on stellar evolution rel-
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ative to neutrinos is then expected to be most pronounced only in low-mass

stars, but under these conditions, Compton-type processes are the dominant

mechanism.

Nucleon bremsstrahlung process

In axion models with a sizable coupling with nucleons gann and gapp, the axion

can be efficiently produced in some astrophysical environments through N +

N ′ → N + N ′ + a, with N,N ′ = n, p. This process starts to be relevant for

T > 10MeV since it is suppressed by the mass of the pion mediating the

interaction, and a high nucleon thermal momentum is needed for the reaction

to happen. For this reason, it plays a role only in extreme environments like

neutron stars and supernovae. We report here the value of the axion emissivity

per unit mass due to nn scattering, for both degenerate and non-degenerate

limits [25]

ε̃ND ≈ 8.0× 10−17g2ann T
3.5ρ erg g−1 s−1,

ε̃D ≈ 5.7× 10−21g2ann T
6ρ−2/3 erg g−1 s−1.

(2.23)

The rates for the pp scattering have similar expressions.

Atomic processes

Axio-recombination and atomic de-excitation processes are particularly signif-

icant for ions heavier than H and He, which are generally much less abundant.

However, it has been shown in [31] that axio-recombination scales more weakly

with temperature compared to other gaee-mediated processes, ε̃ ∝ T 1.5. In low-

mass stars, which have lower internal temperatures, this weaker scaling can

partially compensate for the low metal abundance, so that for main sequence

stars with mass M f 0.2M» it would be the dominant axion emission pro-

cess. For typical solar plasma conditions, these processes remain subdominant,

contributing about 4% to the total axion flux. Axio-deexcitation contributes

even less to the axion flux, exhibiting monochromatic lines in the emission

spectrum.

In [32], an estimate of the ABC flux from the Sun was made by observing

that axion processes can be scaled to the corresponding processes involving

photons.
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2.2 Axion bounds and hints

Having detailed the possible axion production processes at play in astrophys-

ical environments, we can now explore the current axion detection strategies

that utilize stars as sources. In this section, we aim to provide a brief overview

of some astrophysical bounds and hints that have been placed through as-

tronomical observations. Firstly, it is important to distinguish between two

conceptually different types of axion detections in astrophysics.

Direct detection

This type of search aims to directly detect astrophysical axion fluxes which,

upon entering the experimental apparatus, are converted into a detectable

signal. Axion helioscope experiments [33] are paradigmatic experiments of

this kind. They utilize the inverse Primakoff process, through which axions

are converted back into photons when exposed to a macroscopic magnetic

field. In this way, solar axion flux can be searched using helioscopes, which

are essentially “magnetic telescopes” with an X-ray detector at the far end.

Indirect detection

Axion fluxes can also be detected indirectly when conversion into photons

occurs within the natural magnetic field of the star that produced them, or

within the Galactic magnetic field. In chapters 3 and 4, which form the core of

this thesis, we will extensively discuss the procedure behind a novel detection

strategy that exploits axion-photon conversion inside the magnetosphere of

white dwarf stars.

Indirect detection also includes searching for macroscopic modifications of

astrophysical observables, such as luminosity, temperature, and other measur-

able properties affected by the novel axion energy sink. Therefore, the key

quantities for this type of search are the various axion emissivities ε̃X and the

total axion luminosity La.

It is important to note that an observed anomaly does not provide definitive

axion detection, as there could always be alternative explanations for it, such

as inaccuracies in the theoretical stellar models available. Thus, searches based

on observed anomalies generally yield bounds on axion properties rather than

concrete detections. Nevertheless, when inconsistencies systematically appear,

they can be interpreted as hints that can guide other axion detection strategies.
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2.2.1 Solar axions

Let us begin our overview by detailing the possible bounds that can be obtained

from observations of the Sun. Given its relatively low density, both the Pri-

makoff and Compton processes could play important roles. As mentioned, the

key quantity for evaluating the impact of axion emission on stellar evolution

is the axion emissivity or energy flux. In fig. 2.2, we compare the solar axion

energy flux spectra from Primakoff emission and ABC processes, showing the

dominance of the former. Thus, solar axion detection methods based on axion

emissivity considerations are primarily sensitive to the Primakoff process and

can place bounds on the axion-photon coupling gaγγ.
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Figure 2.2: Comparison made in [5] of the solar axion energy flux spectra from
the Primakoff process and the ABC processes, with gaγγ = 10−10 GeV−1 and
gaee = 10−12.

Solar age bound

Since axion emission increases the consumption of nuclear energy, for the Sun

to have reached its current age, the axion luminosity La must not exceed

the solar luminosity L» [20]. Since the dominant production process is the

Primakoff, we can integrate eq. (2.17) over a standard solar model and find

[27], [34]:

La =
( gaγγ

GeV−1

)
1.85× 10−3 L». (2.24)
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Using the solar age requirement La ≲ L», this translates in a first rough

bound for the axion-photon coupling:

gaγγ ≲ 23× 10−10 GeV−1. (2.25)

Solar Be neutrino flux bound

Another effect of a non-vanishing La is an increased core temperature due to

higher nuclear burning necessary to produce axions. Self-consistent models

indicate that the temperature increase implies an increment in the terrestrial

flux of Be neutrinos [35], [36]. Current measurements of this flux [37] constrain

the value of La and ultimately set a limit on the axion-photon coupling [27]:

gaγγ ≲ 6× 10−10 GeV−1. (2.26)

Helioscopes bounds

Given its proximity, the Sun is also used as an axion source for direct de-

tection with axion helioscopes. These instruments require a powerful magnet

that produces a strong magnetic field, inducing an axion-photon conversion

probability [38]

pa→γ =

(
gaγγB

q

)2

sin2

(
qL

2

)
F(qL)

≈
(
gaγγBL

2

)2

for |qL| j 1,

(2.27)

for an axion with energy ω traveling a distance L in a transverse magnetic field

B. Here, q = pa − pγ is the axion-photon momentum difference and F(qL) is

the form factor

F(qL) =
sin2(qL/2)

(qL/2)2
, (2.28)

that gives F = 1 for |qL| j 1 (coherent conversion), and it drops F → 0

for large values of |qL|. Assuming the ultrarelativistic limit, the momentum

transfer in vacuum is q = −m2
a/2ω, meaning that up to certain values of the

axion mass ma, the coherent conversion occurs, and the helioscope sensitivity

mass-independent. However, beyond a certain threshold value mth, coherence

is lost, and the sensitivity of the instrument drops. A possible strategy to

regain coherence is to fill the conversion region with a buffer gas that induces
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an effective photon mass mγ, which can be adjusted to match ma [39].

We report here the results obtained by the CERN Axion Solar Telescope

(CAST), a helioscope experiment that is now decommissioned. The exper-

iment used an LHC test magnet with a magnetic field of up to B = 9T over a

length of L = 9.3m. For small values of the axion mass ma < 0.02 eV—which

ensure coherent conversion—the CAST experiment set a limit [40]:

gaγγ < 0.66× 10−10 GeV−1 at (2σ). (2.29)

In fig. 2.3 we show the limit set by the CAST experiment together with

the projection of IAXO, the next-generation helioscope.
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Figure 2.3: The IAXO projections compared to the limits set by the CAST
experiment on the (gaγγ,ma) parameter space. Note that for ma > 0.02 eV,
CAST starts losing sensitivity, which was regained during a buffer gas phase,
as highlighted by the “jittery” profile. This plot was obtained using code
provided in [41].

In addition to its main result, CAST also investigated other axion pro-

duction channels in the Sun, enabled by the axion-electron coupling gaee and

the axion-nucleon couplings gann, gapp. Indeed, for certain non-hadronic mod-

els, the ABC axion flux is comparable to the Primakoff flux, as shown in

fig. 2.4. In these well-motivated cases, helioscopes provide limits on the prod-

uct gaee × gaγγ, which is particularly relevant to this thesis. As we will see

in chapter 3, non-hadronic axion models that predict tree-level coupling with

electrons open up new observational windows for testing axion properties and
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Figure 2.4: Comparison made in [5] of the solar axion flux spectra from the
Primakoff process and the ABC processes, using the same coupling values as
in fig. 2.2: gaγγ = 10−10 GeV−1 and gaee = 10−12.

potential axion discovery.

Within the framework of helioscope experiments, we present the results

of an analysis of CAST data [42], which considers gaee as responsible for the

production of solar axions through ABC reactions. This analysis yielded the

following constraint for low masses ma ≲ 10meV:

gaee × gaγγ < 8.1× 10−23 GeV−1 at (2σ). (2.30)

In fig. 2.5 it is reported the parameter space (gaee×gaγγ,ma) with the result

of such analysis.

2.2.2 Globular cluster stars

Next, we explore the bounds on axion couplings that arise from observations

of globular cluster (GC) stars. Globular clusters are stable and gravitationally

bound systems containing tens of thousands to millions of stars. They are

of great interest because their constituent stars formed at approximately the

same time and location, with very similar initial conditions. Consequently,

their observation allows for the study of stellar evolution, particularly through

color-magnitude diagrams (CMD). In these diagrams, surface brightness is

plotted against surface temperature, and stars are located in distinctive posi-
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Figure 2.5: CAST constraints on gaee × gaγγ as a function of ma, obtained
under the model dependent assumption that the solar emission is dominated
by the ABC reactions mediated by the electron coupling gaee. Plot taken from
[42].

tions that represent particular evolutionary stages. We are interested in GCs

because the additional axion energy sink affects stellar evolution, leading to

observable changes in specific regions of their CMDs. By comparing these

expected deviations with observational data, we can set stringent bounds on

axion couplings.

Red giant branch tip bound

During the main sequence (MS) phase, stars spend the majority of their life-

times burning hydrogen. As the hydrogen in the core depletes, they move off

the main sequence and, after a transient phase on the sub-giant branch, stars

enter the red giant branch (RGB). At this stage, the star is characterized by an

inert helium core surrounded by a burning hydrogen envelope. As the envelope

expands, the helium core becomes more massive and increasingly contracts,

causing its temperature and pressure to rise and developing electron degen-

eracy. Eventually, the helium in the core ignites in a process known as the

helium flash, marking the so-called RGB tip in the CMD. This occurs when

the RGB star has reached approximately ρ ∼ 106 g/cm3 and T ∼ 108 K.

The CMD observable used to constrain axions is the luminosity of the

RGB tip, which is essentially determined by the combined effects of energy
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Figure 2.6: Color-magnitude diagram of the M3 globular cluster taken from
[43]. This diagram illustrates the distribution of stars based on their brightness
and surface temperature, showcasing the various evolutionary stages of the
stars within the cluster.
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sources, and energy sinks like plasma neutrinos γ → νν̄ [44] and axion emis-

sion. Indeed, additional energy losses lead to extra cooling, causing the helium

core to grow more before it can ignite. The overall result is a shorter RGB

phase, characterized by an RGB tip with higher luminosity [27]. Given the

high density and temperature, the dominant mechanism of axion production

is axion-bremsstrahlung eq. (2.21), making this CMD observable sensitive to

the axion-electron coupling gaee. For a more detailed overview of the different

treatments of this RGB tip constraint, refer to [27]. Here, we limit ourselves

to reporting the value from a recent analysis [45] that considers observational

data from 22 GCs. The resulting bound is:

gaee < 1.48× 10−13 at (2σ) . (2.31)

R parameter bound

After the helium flash, the core expands, and the star enters the horizontal

branch (HB) phase, a stage in stellar evolution where helium fusion occurs in a

non-degenerate core. Similarly to the previous case, this evolutionary phase is

associated with a CMD observable that allows us to constrain axion properties.

Since GC stars are approximately coeval, the number of stars observed in a

given portion of the associated CMD is proportional to the time spent by a

star in that region. As previously mentioned, axion bremsstrahlung speeds up

the RGB phase. Consequently, the number of RGB stars NRGB is affected by

the axion-electron coupling gaee. Similarly, axion emission processes shorten

the HB phase. Because the helium core expands during this phase, HB stars

are less dense compared to RGB stars, having a core density of ρ ∼ 104 g/cm3

and a temperature of T ∼ 108 K. For this reason, in HB stars axions are

efficiently produced through the Primakoff and Compton processes, and NHB

is modified by both gaγγ and gaee. An efficient way to quantify the CMD

observable impact of the axion couplings gaee and gaγγ is the R-parameter:

R =
NHB

NRGB

. (2.32)

Typically, an axion model assumption is made neglecting the effects of the

axion-electron coupling gaee, so that eq. (2.32) is used to derive bounds on

the axion-photon coupling gaγγ. In [46], [47], data from 39 GCs—which yield

an observed value Robs = 1.39 ± 0.03—are compared with the theoretical

parametrization:
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Rth(gaγγ, Y ) = 6.26Y − 0.41
( gaγγ

10−10 GeV−1

)2
− 0.12, (2.33)

where Y is the helium abundance of the GB. Measurements of GCs’ helium

abundances result in the bound:

gaγγ < 0.65× 10−10 at (2σ). (2.34)

Here we also present a theoretical parametrization of eq. (2.32) provided in

[5], [25] that includes the effects of axion interactions with electrons:

Rth(gaγγ, gaee, Y ) = R0(Y )− Faγγ(gaγγ)− Faee(gaee), (2.35)

where R0(Y ) is a function of the helium abundance Y in the GC, and Faγγ

and Faee are positive-defined functions of the axion couplings. Reference [48]

provides approximate analytical expressions for these functions.

2.2.3 White dwarf bounds and hints

White dwarfs (WDs) represent the final stage of the evolution of low-mass

stars (M f 8M»). After exhausting their nuclear fuel and losing most of their

envelopes, they remain as carbon-oxygen stars with masses in the range of

0.5 − 1.4M». With no nuclear reactions to counteract gravitational collapse,

the star shrinks until electron degeneracy pressure stops the process. As a

result, WDs are approximately the size of Earth, resulting in a high density

of about 106 g cm−3. The core temperature, which varies with the age of

the star, typically ranges from 106 to 107 K. Because of this, the Primakoff

and Compton processes are suppressed in the core of WDs, making axion

bremsstrahlung the most relevant axion production mechanism [29]. On top

of that, the high degree of electron degeneracy further suppresses electron-

electron interactions, leaving electron-ion axion bremsstrahlung, mediated by

the axion-electron coupling gaee, as the dominant process. The evolution of

WDs involves contraction and cooling, and adding a novel energy sink would

result in an accelerated cooling process. In the following, we will discuss two

observables to test the effects of an additional cooling agent, thereby placing

bounds on axion properties.
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White dwarf luminosity function

The first observable is the White Dwarf Luminosity Function (WDLF), which

describes the distribution of the number of white dwarfs in a given stellar

population as a function of their luminosity. As this is determined by the

rates at which these stars form and cool, an efficient axion production can

significantly alter the shape of the WDLF. Notably, the slope is related to the

cooling speed of white dwarfs, while the amplitude characterizes the cooling

time and the white dwarf birthrate. Simulated WDLFs that incorporate axion

cooling effects can be compared to observed WDLFs to constrain gaee. Such

computations of the Milky Way galactic disk WDLFs are performed in [49],

and subsequently compared with WDLFs obtained using data from both the

SDSS [50] and SuperCOSMOS sky surveys [51]. The result of this analysis

places the constraint [49]

gaee < 2.1× 10−13 at (2σ). (2.36)

To add to this, studies on the WDLF of the Milky Way suggest a systematic

excessive cooling compared to what is expected from standard stellar evolu-

tion theory [52]. As a result, it is possible to derive a cooling hint for the

axion-electron coupling, i.e., the value of gaee that best explains the observed

anomaly, yielding gaee ≃ (1.4± 0.3)× 10−13 at (1σ) [25].

White dwarf variables

The second important astrophysical observable for white dwarfs is the pe-

riod change of white dwarf variables (WDVs), a set of white dwarfs whose

luminosity pulsates periodically. For these stars, the cooling rate is obser-

vationally reflected by a variation in the pulsation period P . In particular,

the rate of period change, Ṗ /P , is connected to the rate of change of the

core temperature, Ṫ /T—see [53] for a complete overview on the topic. The

presence of an extra cooling channel, like the one due to axion production,

would accelerate the cooling, resulting in an anomalous larger rate of period

change. Indeed, by observing the period variation of several WDs over a few

decades, it has been possible to systematically measure a larger variation than

theoretically predicted [53]. Assuming this is entirely due to axion emission

via bremsstrahlung, eq. (2.21), it is possible to derive bounds and hints for

gaee. In particular, we report the results obtained from the analysis of WDV
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G117-B15A observations [54]

gaee < 6.7× 10−13 at (2σ). (2.37)
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Chapter 3

Axion astrophysical bound from

white dwarfs X-ray observations

In the previous chapter, we introduced various astrophysical axion detection

techniques and discussed some of the bounds obtainable on axion couplings

with SM particles. Particularly, we introduced helioscope experiments like

CAST and IAXO, which exploit the conversion of an axion flux in a magnetic

field to obtain a detectable signal. Now, we introduce another axion detection

strategy that similarly utilizes the inverse Primakoff effect to convert an axion

flux, produced in the interior of a star, directly into photons within the star’s

natural magnetic field. This has the significant advantage of achieving a much

higher conversion probability pa→γ compared to what can be obtained in a

laboratory setting. In fact, from eq. (2.27), it can be inferred that a major

practical limit on the conversion probability on Earth is due to our capacity

to fill relatively small regions of space L ∼ 10m with relatively weak magnetic

fields B ≲ 10T compared to those developed in the magnetosphere of certain

stars. In this chapter, we will detail an analysis pipeline for X-ray data from

white dwarf observations to constrain axion properties based on this novel

phenomenology.. In section 3.1, we will explain why WDs are an excellent

candidate for this type of search, and we will go on to characterize in detail

the emission of axions from the WD plasma and the subsequent conversion into

photons in the external magnetic field. Section 3.2 deals with the modeling of

the response function of a typical X-ray telescope. Section 3.3 is devoted to

laying out the general statistical analysis principles for this type of experiment.
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3.1 White dwarfs as source for axion detection

Among the various types of astrophysical objects, white dwarfs stand out as

excellent targets for detecting axion-induced photon flux. The first reason is

that, for certain axion models, these stars can be prolific sources of axions.

As discussed in section 2.2.3, axions can be produced in the plasma of white

dwarfs through electron-ion axion bremsstrahlung, mediated by the axion-

electron coupling gaee. Non-hadronic axion models that predict a tree-level

coupling to electrons (like DFSZ models) can thus lead to efficient production

of axions in the WD plasma, making white dwarfs a well-justified candidate

for axion searches.

The second reason is that certain white dwarfs can develop extremely in-

tense magnetic fields, which can convert a significant fraction of emitted ax-

ions into detectable photons. During its evolution into a white dwarf, the star

undergoes significant shrinkage. Assuming the conservation of magnetic flux

during its evolution from the main sequence to the compact star phase [55],

this results in certain white dwarfs having very intense magnetic fields. White

dwarfs can have magnetic fields ranging from 103 to 109 G, with over 600 white

dwarfs identified as having strong magnetic fields between 2 and 1000 MG [56]

(to be compared with the artificial magnetic fields of helioscopes B < 0.1MG).

Another factor that makes white dwarfs particularly interesting for indirect

axion flux detection is that, under the typical WD core temperature and den-

sity conditions, the emission spectrum of axion-induced photons peaks in the

X-ray band. Since no other astrophysical processes are expected to produce

hard X-ray photons (>0.5 keV) from isolated white dwarf stars [57], [58], they

provide a clean environment for this novel type of observation. In table 3.1,

we present the typical characteristics of white dwarfs:

Table 3.1: Typical values for properties and conditions of white dwarf stars

Quantity Value
Mass 0.5− 1.4M»

Radius (0.4− 2)× 10−2R»

Luminosity < 10−4 L»

Surface Temperature < (0.8− 4.0)× 104 K
Core Temperature ∼ 107 K
Density 1.8× 106 g cm−3

Composition C and O
Surface B-field ∼ (103 − 109)G
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Figure 3.1: The schematic phenomenology behind white dwarf X-ray emission
(adapted from [59]): gaee enables axion production in the WD interior through
axion-bremsstrahlung, the axion is subsequently converted into X-ray photons
by the external magnetic field thanks to the gaγγ coupling.

In fig. 3.1 we schematically summarize the phenomenology that motivates

X-ray observations of white dwarfs to detect axion emission. Hence, the general

expression for the axion-induced photon flux on Earth reads

dFaγ

dω
(ω) =

dLa

dω
(ω)× pa→γ(ω)×

1

4πdWD

, (3.1)

where dWD is the distance between the WD and the Earth. Note that the axion

luminosity spectrum dLa/dω depends on gaee, while the probability conversion

is mediated by gaγγ through the inverse Primakoff. This is why the spectrum

in eq. (3.1) will depend on the product gaee × gaγγ and, consequently, this

type of axion detection experiment aims to test such a quantity. The goal of

this section is to model the axion-induced photon flux described in eq. (3.1),

thereby developing the first part of our analysis pipeline.

3.1.1 Axion emission from white dwarfs

Let us start by computing the axion luminosity of a generic white dwarf. In

section 2.1 we have seen that the dominant axion production process in these

stars is the axion bremsstrahlung from electron-ion scattering in eq. (2.21).

The related axion emissivity spectrum is computed in appendix A in the limit

of a vanishing axion mass, yielding the expression:

dεa
dω

=
α2

EMg
2
aee

4π3m2
e

ω3

eω/T − 1

∑

s

Z2
sXsρ

Asmu

F. (3.2)
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This includes a sum over the species s of nuclei present in the plasma, and

the dimensionless quantity F accounts for the medium effects described in

section 2.1.1, i.e., charge screening and correlation between ion positions, and

is typically of order one. When the mass of the axion becomes comparable

to the temperature of the environment in which it is produced (ma ∼ T ), the

expression in eq. (3.2) is no longer valid, as the axion production would be

Boltzmann suppressed. To obtain the axion luminosity spectrum of the WD,

it is necessary to integrate eq. (3.2) over the entire volume of the white dwarf

under study:

dLa

dω
(ω) =

∫
dV

dεa
dω

, (3.3)

In particular, we assume that the system enjoys spherical symmetry so that

the axion luminosity spectrum reads:

dLa

dω
(ω) = 4π

∫ RWD

0

dr r2
dεa
dω

(r), (3.4)

where RWD is the WD radius. Therefore, the quantities needed to compute

the spectrum in eq. (3.4) are the various profiles T (r), ρ(r), Xs(r), and F (r).

A further simplification is to consider the core temperature constant T (r) =

T throughout the star volume, given the high thermal conductivity of the

degenerate plasma in white dwarfs [60]. From the expression in eq. (3.4), we

can already understand the shape of the spectrum. It is, in fact, a black

body-type spectrum, dLa

dω
∝ ω3

eω/T−1
. The Wien displacement law tells us that

the emission peak occurs at ω ≈ 2.82T , which, for typical white dwarf core

temperatures of T ∼ 107 K, corresponds to emission in the keV range, thus

justifying observation in the X-ray spectrum.

In order to compute the axion luminosity spectrum, it is essential to have a

model for the interior of the star that provides the density ρ and composition

Xs profiles of the species s present in the plasma. Typically, these quantities

are obtained through numerical simulations of stellar evolution, ensuring that

the obtained astrophysical properties match the actual observations of the

white dwarf under consideration. On the other hand, the calculation of the

medium factor profile F (r) is less straightforward.
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3.1.2 Medium effects on axion emission

In appendix A we have derived the formal expression for the medium factor

F which we recall here

F =

∫
dΩ2

4π

∫
dΩa

4π

(1− β2
F )[2(1− c12)− (c1a − c2a)

2]

(1− c1aβF )(1− c2aβF )(1− c12)(1− c12 + κs)
, (3.5)

where pF is the electron Fermi energy, βF is the correspondent electron velocity,

and κs = kS/2pF. This expression was obtained assuming a weakly coupled

plasma and this is not the case for the typical conditions of a WD plasma. In

order to show this, we first define the plasma coupling parameter

Γ̃ =
EC

kT
, (3.6)

where EC is the Coulomb energy per ion EC = Z2
s e

2/4πas = ZsαEM/as with as

the ion-sphere radius defined by n−1
s = 4πa3s/3, where ns is the ion density. The

ratio in eq. (3.6) quantifies the strength of electrostatic interaction between

particles in the plasma relative to their thermal energy. For consistency with

the cited literature, a rescaled quantity Γ = 4πΓ̃ will be used. Numerically it

is found that

Γ = 2.275× Z2A−1/3

(
T

107K

)−1(
ρ

106 g cm−3

)1/3

. (3.7)

This quantity effectively measures how strongly the plasma particles interact

with each other. Depending on the magnitude of Γ, plasma properties change,

Γ < 1 corresponds to a weakly coupled plasma, Γ k 1 to a strongly coupled

plasma. Let us take as an example a white dwarf composed solely of carbon-12

(12C), with a typical density of ρ = 1.8 × 106 g cm−3 and consider a range of

temperatures T = 106 − 107K. Utilizing the expression in eq. (3.7), we obtain

a range of values for the coupling parameter Γ ≃ 360− 35, hence the plasma

of a typical white dwarf is always strongly coupled and F has to be computed

numerically. The only numerical parametrization available in the literature is

given in [61], [62], which provides fitting functions for the F medium factors

for plasmas consisting of a single element. This requires calculating distinct

Fs values for each species s present in the white dwarf and then summing

them up.We note that this approach to evaluating medium effects may not

be entirely adequate. A unified procedure that accounts for the presence of

multiple elements in the WD plasma would be necessary. The actual formula
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used for the computation of a white dwarf axion emissivity spectrum reads

dεa
dω

=
α2

EMg
2
aee

4π3m2
e

ω3

eω/T − 1

∑

s

Z2
sXsFs

Asmu

ρ. (3.8)

For the calculation of the various profiles Fs(r), it is necessary to consider

another effect due to the size of Γ. When Γ > 178, the plasma undergoes

a phase transition, and the ions arrange themselves in a body-centered cubic

lattice [63], [64], a condition that suppresses axion emission. In [61], [62] are

provided two separate numerical recipes for Fs depending on the state of the

plasma.

3.1.3 Axion-photon conversion

We now turn to the framework used to compute the axion-photon conversion

probability in the magnetosphere of a white dwarf. The formula in eq. (2.27)

only applies to regions with a constant magnetic field, and thus it does not

apply to the natural field of a white dwarf, which varies along the direction

of axion propagation. Nevertheless, the starting point for both derivations

is always the Lagrangian of axion electrodynamics [65], [66]. Here we make

the approximation in which all the emitted axions follow a radial trajectory

originating from the center of the white dwarf. In this scenario, and under

the assumption that the magnetic field changes over a scale much larger than

the wavelength of both the axion and the photon, the equations of motion

for the axion and photon fields simplify to a system of first-order differential

equations. Using the Weyl gauge A0 = A0 = 0 and considering trajectories in

which the angle with respect to the magnetic field does not vary one can write

the mixing equations as [65]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥

a

)
= 0, (3.9)

where ω is the axion/photon energy and r is the radial trajectory coordinate.

The term A∥(r) represents the vector potential component perpendicular to

the propagation direction and along which the external magnetic field has its

full projection, while a(r) denotes the axion field. The requirement to consider

only trajectories with a constant angle relative to the magnetic field will soon

be justified by a specific choice of magnetic field geometry. This simplification

allows us to consider the mixing of the axion field only with one component
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of the vector potential.

Calling B(r) the magnetic field strength at distance r from WD center,

and Θ the constant angle between the radial direction and the magnetic field,

the off-diagonal term that induces the mixing reads

∆B(r) =
gaγγ
2
B(r) sinΘ. (3.10)

Hence, the coupling gaγγ governs the mixing, so we expect the final photon

flux to depend on this quantity. Also, note that a magnetic field BT = B sinΘ

transverse to the direction of motion of the axion/photon is necessary to induce

the mixing. The axion diagonal term reads

∆a = −m
2
a

2ω
, (3.11)

and accounts for the slight momentum differences in the vacuum between

axion and photon states. Similarly to what we have seen for the conversion in

helioscopes, the transition is maximized for small axion masses ma, i.e. when

we have a coherent superposition of the two particles [67]. The other diagonal

term is due to QED vacuum birefringence effects, which lead to [65]

∆∥(r) =
7

2
ω ξ(r) sin2 Θ, (3.12)

with ξ(r) = (αEM/45π)[B(r)/Bcrit]
2 and Bcrit = m2

e/e ≈ 4.41 × 1013 G. This

term is due to a refractive index for A∥ greater than unity, which is induced

by the presence of a magnetic field. The magnetic field B of the white dwarf

thus has two opposite effects: it facilitates mixing through ∆B, but makes the

photon and axion less degenerate through ∆∥, making oscillation more difficult.

However, this latter effect is suppressed by the strong Bcrit and therefore it

starts to play a role only for strong magnetic fields. One can check that, for

a choice of gaγγ = 10−11 GeV−1 — i.e. the order of magnitude of the current

bound for low-mass axions — and ω = 10 keV, the ratio ∆∥/∆B becomes

bigger than unity for values BT ≳ 100MG.

The conversion probability of an axion into a photon, pa→γ, is calculated

by solving eq. (3.9) and comparing the squared magnitude of an initially pure

axion state with the asymptotic solution for the electromagnetic vector poten-

tial. If the external magnetic field B were constant along a trajectory of length

L, solving eq. (3.9) would yield the result in eq. (2.27). In appendix B we show

that, in the weak mixing limit, one can use the formalism of time-perturbation
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theory to obtain a perturbative expansion of the amplitude of the transition.

At the leading order (LO), the corresponding conversion probability is given

by

pa→γ =

∣∣∣∣∣

∫ ∞

RWD

dr′∆B(r
′)e

i∆ar′−i
∫ r′

RWD
dr′′∆∥(r

′′)

∣∣∣∣∣

2

, (3.13)

where the integral starts at the white dwarf surface since we are assuming that

X-ray photons produced inside the star are reabsorbed and cannot escape.

The conversion probability clearly depends on the geometry assumed for the

magnetic field of the WD. In a first approximation, the magnetic field of a star

can be approximated to a pure magnetic dipole. Under this assumption, the

magnetic field of the WD expressed in spherical coordinates (r, θ, φ) reads

B(r, θ) =
|m|
4πr3

[
3r̂(m̂ · r̂)− m̂

]
, (3.14)

where m is the magnetic dipole moment, which verifies |m|/4π = B0R
3
WD/2

with B0 is the value of the field at the surface and directed along the magnetic

axis. Using this magnetic field modeling, it follows that radial trajectories

have a constant angle with respect to the magnetic field B. Using a magnetic

dipole the entries of the mixing matrix in eqs. (3.10) to (3.12) read

∆B(r, θ) =
1

2
gaγγBT (r, θ), (3.15)

∆a(ω) = −m
2
a

2ω
, (3.16)

∆∥(r, θ, ω) =
7

2
ω

α

45π

(BT (r, θ)

Bcrit

)2
. (3.17)

Since the coordinate θ corresponds to the angle between the trajectory and

the magnetic pole m̂ · r̂ = cos θ, the transverse magnetic field BT = B · θ̂ reads

BT (r, θ) =
B0

2

(RWD

r

)3
sin θ. (3.18)

Therefore the conversion probability pa→γ depends on the axion-photon cou-

pling gaγγ, the axion mass ma, its energy ω, the field strength B0, the viewing

angle θ, and the white dwarf radius RWD.

As reported in [59], for a dipole magnetic field and in the limit of massless

46



5 10 50 100 500 1000

BT,0 [MG]

0.1

0.5

1

5

10

p
a
→

γ
×
10

−
4

Figure 3.2: The RE J0317-853 conversion probability pa→γ for different values
of BT,0. For this plot we used gaγγ = 10−11 GeV−1, ω = 10 keV and RWD =
0.004R», a typical WD radius

axion ma → 0, the conversion probability can be expressed analytically as

pa→γ =
(∆B,0RWD)

2

(∆∥,0RWD)
4
5

∣∣∣∣∣
Γ(2

5
)− Γ(2

5
,− i

5
∆∥,0RWD)

5
3
5

∣∣∣∣∣

2

, (3.19)

where Γ(z) is the gamma function, Γ(a, z) is the upper incomplete gamma

function, ∆B,0 and ∆∥,0 are the two functions in eqs. (3.15) and (3.17) taken for

the transverse magnetic field BT,0 evaluated at the surface r = RWD. Figure 3.2

shows the plot of eq. (3.19) as a function of BT,0. As previously mentioned,

when the magnetic field is not too intense, the contribution of ∆B,0 is dominant

in eq. (3.19), and pa→γ increases significantly with BT,0. However, as BT,0

increases, the contribution due to ∆∥,0 becomes more evident, slowing the

growth of the conversion probability.

We can now ask what exactly the massless limit assumed to derive this

analytical expression means. To evaluate the impact of the axion mass ma on

the integral in eq. (3.13), we define the critical mass index as the ratio between

the quantities in the exponent

I(r,ma) =

∣∣∣∣∣
∆a(ma)r∫ r

RWD
dr′∆∥(r′)

∣∣∣∣∣ . (3.20)
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Conservatively, we have chosen typical values BT,0 = 100MG and ω = 1keV

for the magnetic field of the WD and the energy of the axion, respectively.

When this parametric expression reaches the order of unity, the axion mass

starts to play a significant role, and the approximated expression in eq. (3.19)

ceases to be valid. Naturally, this ratio also depends on the distance r con-

sidered in the calculation of pa→γ. However, using the dipole magnetic model,

it is observed that already at distances r ∼ 10RWD, the amplitude of the

integrand has dropped by almost four orders of magnitude, meaning the sub-

stantial contribution to the conversion probability has already been evaluated.

Therefore, we can set r = 10RWD in eq. (3.20) and observe that I ≲ 1 for

axion masses ma ≲ 10−5 eV.

Using eq. (3.13)—or eq. (3.19) in the axion massless case—we can compute

the energy probability profile pa→γ(ω) needed in eq. (3.1). Once the distance

to the white dwarf under observation, dWD, is determined, we have all the

necessary ingredients to calculate the axion-induced X-ray flux dFaγ/dω in

terms of the product of the couplings gaee × gaγγ.

3.2 Modeling the detector response

Let us continue with the description of our pipeline. Given that the final goal

is to perform a statistical analysis of the data from an observation, it is crucial

to incorporate the response of the instrument used into our signal model. In

general, characterizing the response and performance of a measurement system

is complex, as they depend on several parameters. Here, we will focus on two

fundamental aspects relevant to the type of astrophysical observations we are

interested in.

3.2.1 Bandwidth and energy resolution

The energy bandwidth is defined as the energy interval over which the instru-

ment has adequate detection efficiency, i.e. over which it is observationally

employed. The effective area Aeff(ω) of the telescope accounts for the geomet-

ric area of the mirror and any factors in vignetting, obscuration, and detector

quantum efficiency. This quantity helps us select the suitable energy range,

cutting off both very low and very high energies where the detector’s efficiency

drops. Indeed, given the axion-induced flux spectrum dFaγ/dω, the differential

number of expected photons with energy ω after a Tobs observation is given by
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ω
dNtrue

dω
(ω) =

dFaγ

dω
(ω)Aeff(ω)Tobs. (3.21)

However, this is still not the final observed spectrum. In fact, within the

bandwidth of the instrument, the energy resolution can play an important

role, quantifying the capability of measuring the energy separation between

two equally strong spectral lines. For a quantitative handling of the data, the

energy resolution is taken into account through the use of convolutions, so that

the measurement result can be described by a convolution of the real signal

and the response function of the telescope:

dNobs

dω
(ω) =

∫ +∞

−∞

dNtrue

dω′
(ω′)×R(ω, ω′) dω′. (3.22)

Here R(ω, ω′) is the spectral response function of the instrument, which de-

scribes how the observed energy ω of the photons is distributed relative to

their actual energy ω′. Hence, the integral over the unobserved true energy

in eq. (3.22) gives the mean of the energy signal, weighted according to the

impact of the measuring system. Typically the spectral response function is a

Gaussian function

R(ω, ω′) = R(ω − ω′) =
1√
2πσ

e−
(ω−ω′)2

2σ2 .

We will soon see in section 3.2.2 the implementation of a Gaussian response

function in the signal convolution. Since some statistical analyses require

binned data, it is sensible to divide the expected signal in eq. (3.22) in Nbins

of width ∆ωi. Finally, integrating eq. (3.21) over ∆ωi, we obtain the expected

number of observed photons in the i-th energy bin:

Nobs,i =

∫

∆ωi

dNobs

dω
dω. (3.23)

Hence, our model predicts the number of photon counts in the i-th energy

bin due to axion emission si ≡ Nobs,i ∝ (gaee × gaγγ)
2. Already at this stage,

assuming a likelihood distribution for the number of observed photons ni dur-

ing the observation, it would be possible to conduct a statistical analysis to

constrain the value of gaee × gaγγ, or to make an axion discovery claim.
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3.2.2 The point spread function

Let us now discuss the parameters related to the spatial distribution of the

signal. Since we are interested in narrow-field imaging, i.e. on the observation

of a single source (the white dwarf), we will disregard the field of view (FOV)

parameter, assuming that the effective area is spatially constant. However, it

is necessary to incorporate the spatial spreading of the signal into the model.

Similar to the energy response function, the telescope’s spatial resolution ef-

fect is handled through the convolution of the incoming signal with a spatial

response function, known as the point spread function (PSF), which describes

how the true signal is spread across the detector’s surface. In our case, the ob-

served white dwarf can be considered a point-like source, so that the incoming

signal is a two-dimensional Dirac delta in the detector coordinates (x, y).

Modeling the PSF of an instrument is quite complex and requires con-

sideration of various physical contributors, such as optics, detector character-

istics, and atmospheric effects (for ground-based telescopes). Here, we con-

tinue developing our signal template by using a Gaussian function as a simple

parametrization for the telescope’s PSF.

The convolution of a point-like signal with a Gaussian function in two di-

mensions (with detector coordinates related to some astronomical coordinates

of the source) results in a shift and intensity modulation of the Gaussian, based

on the position and intensity of the point-like signal. Consider an incoming

point-like signal in the detector coordinates

Iin(x, y) = I0 · δ(x− x0) δ(y − y0),

that has a peak I0 at (x0, y0) and is zero elsewhere. The Gaussian function

G(x, y), is described by:

G(x, y) =
1

2πσxσy
e
−

(

(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

)

, (3.24)

where (µx, µy) is the center of the Gaussian and (σx, σy) are the standard

deviations along the x- and y-axes. The convolution of Iin with G(x, y) defines

the measured signal:

Iout(x, y) = (Iin∗G)(x, y) =
∫
I0·δ(u−x0)δ(v−y0)G(x−u, y−v) du dv. (3.25)

Applying the delta’s property, which ”samples” the function with which it is
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convoluted at the point where the delta is nonzero, we obtain:

Iout(x, y) = I0 ·G(x− x0, y − y0). (3.26)

This means that the measured signal result is simply the Gaussian function

translated so that its center is at the point (x0, y0), with the original intensity

modulated with I0.

In section 3.2.1, we saw that the expected signal intensity in the i-th energy

bin is Nobs,i. Considering the telescope’s spatial resolution, the observed signal

becomes

Si(x, y) = Nobs,i ·G(x− x0, y − y0), (3.27)

where (x0, y0) is the position of the white dwarf expressed in detector coor-

dinates. The standard deviations (σx, σy) are characteristic of the instrument

used and the specific observation performed.

The most common types of detectors employed in X-ray telescopes are CCD

(Charge-Coupled Device) sensors. They consist of a grid of tiny, light-sensitive

elements called pixels. Although the EM signal arrives at the detectors as

a continuous function, the discrete pixels in the detectors integrate it and

measure the intensity of the wave in their respective area. We can reproduce

this pixellation process by integrating eq. (3.27) over a grid that matches the

detector’s pixel layout. Therefore, the signal template we have built provides

si,j ∝ (gaee × gaγγ)
2, the predicted number of axion-induced photon counts in

the i-th energy bin and the j-th detector pixel.

3.3 Statistical analysis

We now outline the general principles for performing statistical analysis in the

context of X-ray observations of WD that we have just described. This section

is mostly based on [68], [69]. We are dealing with a counting experiment where

the data ni,j represent independent measurements of the number of events

observed in the i-th energy bin and the j-th pixel. Consequently, the data are

well described by a Poisson likelihood function:

L(θ) =

Nbin∏

i=1

Npix∏

j=1

µi,j(θ)
ni,je−µi,j(θ)

ni,j!
, (3.28)
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where

µi,j(θ) = si,j(θs) + bi,j(θb), (3.29)

are the contributions from the signal and the background, respectively, and de-

pend on the model parameters θ = {θs,θb}. In our case, the signal parameter

θs is proportional to (gaee × gaγγ)
2.

We construct now the hypothesis testing procedure to carry out to make

a discovery claim or to set an upper limit for the value of gaee × gaγγ. For

this purpose, we start defining the null hypothesis H0 that predicts only back-

ground, and the signal hypotheses H1 (which can be parameterized by θs). To

test a hypothesized value of θs, we define the log-likelihood ratio test statistic

as:

t(θs) = −2 ln

(
L(θs, θ̂

ˆ
b)

L(θ̂s, θ̂b)

)
. (3.30)

Here, L(θs, θ̂
ˆ
b) is the likelihood function evaluated at the hypothesized value of

θs and the conditional maximum likelihood estimates (MLEs) θ̂
ˆ
b of the back-

ground parameters θb (and thus is a function of θs). The denominator in the

logarithm, L(θ̂s, θ̂b), represents the likelihood function evaluated at the global

MLEs of both the signal and background parameters, θ̂s and θ̂b, respectively.

High values of t(θs) correspond to a high incompatibility between the data and

the tested signal model. The level of disagreement can be quantified using the

p-value, formally defined as:

p(θs) =

∫ ∞

t(θs)obs

f(t(θs)|θs) dt(θs), (3.31)

where f(t(θs)|θs) is the probability density function of the statistic t(θs) under

the hypothesis θs, the second argument gives the value of θs assumed for the

data distribution. It is also called the sampling distribution for the test statistic

t(θs). The quantity t(θs)obs is the value of t(θs) observed from the data.

The p-value allows us to determine the significance with which a certain

hypothesis can be rejected. If the null hypothesis H0 is rejected in favor of the

signal hypothesis, we could claim a discovery. Conversely, if our goal is to set

limits, the test will be performed on the θs signal hypothesis. A low p-value

would therefore indicate that such a signal is unlikely given the observed data,

allowing us to set an upper limit on θs. Then, we define two test statistics, to

be used respectively for a discovery claim and for determining the upper limit
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on θs.

Discovery test statistic

With the purpose of testing the hypothesis with θs = 0, we define the test

statistic as follows:

q(0) =





t(0) = −2 ln

(
L(0, θ̂

ˆ
b)

L(θ̂s, θ̂b)

)
θ̂s g 0,

0 θ̂s < 0,

(3.32)

where we have chosen to consider only “physical” signal, i.e. models with

θs g 0. If θ̂s < 0 is found for such models, the best agreement with data

occurs for θs = 0, so that q(0) = 0. This ensures that there cannot be a

disagreement between the null hypothesis and the data if the best estimate of

the signal is less than zero.

Upper limit determination test statistic

If our goal is determining an upper limit for the signal parameter θs, we use

the following statistic to test a θs signal hypothesis:

q(θs) =





−2 ln

(
L(θs, θ̂

ˆ
b)

L(0, θ̂b(0))

)
θ̂s < 0,

−2 ln

(
L(θs, θ̂

ˆ
b)

L(θ̂s, θ̂b)

)
0 f θ̂s f θs,

0 θ̂s > θs.

(3.33)

Note that in this case, it is θ̂s > θs that does not belong to the rejection region,

while if θ̂s < 0, we use again θ̂s = 0 as the best estimate for the signal.

In both statistics, the p-value quantifies the disagreement between the data

and the hypothesis. Its value is calculated similarly to eq. (3.31), and a sam-

pling distribution for the considered test statistic is needed to evaluate the

integral. Fortunately, in the large sample limit, asymptotic formulas can be

obtained for the test statistics defined eqs. (3.32) and (3.33). Indeed, the works

of Wilks [70] and Wald [71] ensure that the test statistic t(θs) in eq. (4.11)

follows a χ2 distribution with one degree of freedom in the asymptotic limit.

These approximations become exact in the large sample limit and have been

found to provide accurate results even for fairly small sample sizes [68]. For
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very small data samples, Monte Carlo methods can always be used to deter-

mine the required distributions.
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Chapter 4

Data analysis of RE J0317-853

Having outlined the general framework for axion detection in isolated white

dwarfs, we now turn to a specific case study. In this chapter, we will review

the results from two key papers: [59] (hereafter referred to as Paper I) and

[72] (hereafter referred to as Paper II). By reproducing their results, we aim

to demonstrate the effectiveness of the pipeline illustrated in chapter 3.

Paper I proposes observing the X-ray spectrum of the magnetic white dwarf

star (MWD) RE J0317-853. This star is an ideal candidate for such observa-

tions due to its high core temperature, strong magnetic field, and relative

proximity to Earth. These factors contribute to a high expected flux of axion-

induced X-ray photons, making RE J0317-853 an optimal target for axion

searches (The reader should refer to Section I of the supplementary material

in Paper I for a comparison list of WDs, which was constructed using catalogs

from [56], [73], [74].).

In Paper II, the authors detail the results of a ∼ 40 ks observation of

RE J0317-853 conducted with the Chandra X-ray telescope. The absence of

an observed X-ray signal during this observation allowed the authors to set

stringent constraints on the product of the axion-electron and axion-photon

couplings, gaee × gaγγ.

In section 4.1 we compute the axion-induced X-ray flux spectrum of RE

J0317-853. Section 4.2 is dedicated to modeling the Chandra instrument re-

sponse function. Finally in section 4.3 we derive the upper limit on gaee×gaγγ.
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4.1 Axion-induced X-ray flux from RE J0317-853

Let us apply the procedure outlined in section 3.1 to calculate the axion-

induced X-ray flux of RE J0317-853. This section will detail each step and

present the quantitative results of the calculations. To help the reader fol-

low the computations, a list of key observations and derived properties of

RE J0317-853 is provided in table 4.1.

Table 4.1: Characteristics of the MWD RE J0317-853. Notice the agreement
with the values reported in table 3.1.

Quantity Value Authors Ref.

Mass 1.2− 1.4 M» Kulebi et al. (2010) [75]
Radius 0.003− 0.004 R» Kulebi et al. (2010) [75]
Effective temperature 30 000− 50 000K Barstow et al. (1995) [76]
Magnetic field 200− 800 MG Burleigh et al. (1999) [77]
Rotation period ∼ 725 seconds Ferrario et al. (1997) [78]
Distance ∼ 30 pc Brown et al. (2021) [79]
Core temperature ∼ 1.38 keV Dessert et al. (2022) [72]
Composition Mainly C,O,Ne,Mg Dessert et al. (2022) [72]
Density 106 − 108 g/cm3 Dessert et al. (2022) [72]

4.1.1 RE J0317-853’s axion emissivity spectrum

We start by detailing the procedure followed to compute the axion emissiv-

ity spectrum due to the electron-ion axion bremsstrahlung, we recall here its

expression introduced in eq. (3.2)

dεa
dω

=
α2

EMg
2
aee

4π3m2
e

ω3

eω/T − 1

∑

s

Z2
sXsFs

Asmu

ρ, (4.1)

To evaluate the axion emissivity spectrum for RE J0317-853, we have em-

ployed the model of its interior presented in Paper II. In this model, the core

temperature Tc = 1.388(5) keV was estimated using WD cooling sequences

provided by [80]. This estimation was achieved by fitting the available mod-

els over the cooling age to the measured absolute magnitude bands data [74].

This procedure also led to selecting MWD = 1.22M» as the best value for

the mass of RE J0317-853. The composition and density profiles Xs and ρ of
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Figure 4.1: Density profile ρ of RE J0317-853 as a function of the mass co-
ordinate Mencl. This plot was obtained from the supplementary material of
Paper II.

RE J0317-853 were obtained from numerical simulations in Paper II. These

simulations tracked the evolution of a white dwarf with RE J0317-853’s mass

from its formation until it cooled to below the observed luminosity. The den-

sity and composition profiles for the four most abundant ions in RE J0317-853

are reported as a function of the mass coordinate Mencl =
∫ r′

0
4πr′2ρdr′ in the

supplementary material of Paper II.

We digitized these profiles using the plot digitization software [81], which

allowed us to create datasets for numerical calculations using Python. The

resulting density and composition profile plots are shown in figs. 4.1 and 4.2.

Numerical Computation of Fs Factors

As mentioned in the previous chapter, the plasma in white dwarfs is strongly

coupled, requiring numerical methods to calculate the medium factors Fs for

the four species shown in fig. 4.2. First, we computed the profiles of Γs for

each species using eq. (3.7), identifying the value of Mencl at which the phase

transition Γ = 178 occurs, as displayed in fig. 4.3.

Depending on the plasma state at each spherical slice of the WD, we

selected the appropriate fitting function for Fs from [61], [62]. These Fs

parametrizations were numerically implemented using Python, resulting in
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Figure 4.2: Abundance profiles Xs of the four most abundant ions in
RE J0317-853 as a function of the mass coordinate Mencl. This plot was ob-
tained from the supplementary material of Paper II.
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Figure 4.3: Profiles of the coupling parameter Γs for the four most abundant
species in RE J0317-853. The dotted gray line correspond to the threshold
value Γ = 178 at which the phase transition takes place.
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Figure 4.4: The Fs profile for the four most abundant species in RE J0317-853
obtained from the implementation of [61], [62] parametrization in our Python
script.

the profiles shown in fig. 4.4.

We also define a weighted sum of the Fs factors:

F̄ =

∑
s Fsws∑
sws

with ws =
Z2

sXs

As

, (4.2)

which allows us to evaluate the weighted contribution of the various species.

The profile is shown in fig. 4.5.

Notice that as one moves toward the center of the star, the density in-

creases, and the plasma becomes increasingly strongly coupled, eventually

transitioning to the solid lattice phase. These two different plasma states

explain the jumps in the profiles and highlight the axion emission suppression

due to the solid phase of the plasma.

In fig. 4.6, we also show the plot for the sum over the species s in eq. (4.1),

comparing it with the one presented in Paper II. The difference between the

two curves is mainly due to the profile of FO, which differs significantly from

that calculated in Paper II. This discrepancy can be attributed to an imple-

mentation error in the parameterization used, which does not have a significant

impact when integrated into the overall profile of the WD to obtain the axion

luminosity.
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Figure 4.5: Weighted sum of the Fs medium factors of RE J0317-853 shown
in fig. 4.4
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Figure 4.6: Yellow line: The profile of the sum in eq. (4.1) obtained using our
routine. Blue line The same profile shown in the supplementary material of
Paper II.
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Figure 4.7: Axion luminosity spectrum of RE J0317-853, obtained by setting
gaee = 10−13 and T = 1.383 keV. Note that the emission spectrum peaks at
energies ω ≳ keV.

RE J0317-853 axion luminosity spectrum

We can now proceed to calculate the axion luminosity spectrum of RE J0317-853

using the expression in eq. (3.4):

dLa

dω
(ω) =

∫ RWD

0

dr 4πr2
dεa
dω

(r)

=
α2

EMg
2
aee

4π3m2
e

ω3

eω/T − 1

∫ RWD

0

dr 4πr2ρ(r)
∑

s

Z2
sXsFs

Asmu

(r)

=
α2

EMg
2
aee

4π3m2
e

ω3

eω/T − 1

∫ MWD

0

dMencl

∑

s

Z2
sXsFs

Asmu

(Mencl).

(4.3)

The integration was performed using the scipy.integrate package. The

result, shown in fig. 4.7, was obtained by selecting a value of gaee = 10−13, i.e.,

the current limit placed on the axion-electron coupling (see eq. (2.31)). For

the temperature, we chose the conservative value T = 1.383 keV.

As anticipated, the axions are emitted in the keV energy range, with a peak

near ω ∼ 3T . This spectrum can be analytically integrated over all energies

to determine the total axion luminosity. Our calculation yields:
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La ≃ 7.84× 10−4 L».

This result is consistent with the axion luminosity value reported in Paper II,

which is approximately La ≈ 8× 10−4 L».

4.1.2 Axion-photon conversion in RE J0317-853’s mag-

netosphere

Following section 3.1.3, we now turn to the computation of the energy profile of

the axion-photon conversion probability pa→γ(ω) induced by RE J0317-853’s

magnetic field. To do so, we use the general expression in eq. (3.13), which we

report here:

pa→γ =

∣

∣

∣

∣

∣

∫ ∞

RWD

dr′∆B(r
′)e

i∆ar′−i
∫ r′

RWD
dr′′∆∥(r

′′)

∣

∣

∣

∣

∣

2

. (4.4)

We have decided to restrict our computation to the case of vanishing axion

mass ma → 0; however, the following method is entirely general and allows

for calculating the probability even outside this massless regime. In order to

compute the integral in eq. (3.13), we employed numerical methods. Before

presenting the results of the computation, we describe the precautions taken

into account when performing the numerical integration of eq. (3.13):

• First, we used the pure dipole magnetic field model described in eq. (3.14)

to determine the integration upper bound, Rmax, which has to be used in

place of np.inf. This was done in order to make code executions faster

and to avoid unstable behavior and numerical errors of the integration

function scipy.integrate.quad. The quantity Rmax was determined by

gradually increasing its value and observing when the integral converges

to the correct profile given by the axion massless analytical result in

fig. 3.2. We have found that at Rmax ∼ 20RWD the conversion probability

already matches the analytical result.

• Secondly, when we implemented the functions in eqs. (3.15) to (3.17) in

Python, we optimized them using the @njit decorator from the Numba

library [82]. This optimization was necessary because these functions

are called iteratively within loops and by the scipy.integrate.quad

function. The @njit decorator from the Numba library significantly

reduces execution times by performing just-in-time (JIT) compilation
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Figure 4.8: The RE J0317-853 conversion probability pa→γ for different values
of θ, the angle between the magnetic axis and the radial trajectory, choosing
ω = 10 keV, ma = 10−9 eV, and gaγγ = 10−11 GeV−1. We show both the
B0 = 400MG and B0 = 200MG results, comparing them to the plot shown in
the supplementary material of Paper I

of the decorated functions, avoiding the slowdowns typically associated

with Python’s interpreted execution.

Given these precautions for the numerical integration of eq. (3.13), we com-

puted the conversion probability pa→γ as a function of the angle θ between the

trajectory and the magnetic axis. This allowed us to perform a consistency

check with the results shown in Paper I. Figure 4.8 shows the comparison be-

tween the plot obtained from our numerical integration and the one presented

in Paper I.

As illustrated, using B0 = 200MG in our Python script yields the same plot

as presented in Paper I, which was claimed to be obtained with B0 = 400MG.

Despite this discrepancy, we successfully validated our code’s accuracy by re-

producing the analytical result shown in fig. 3.2. Therefore, we can confidently

assert that our code functions correctly, as an error by a factor of 2—such as

that between 200 MG and 400 MG—would have been evident.

Having established the reliability of our numerical integration procedure,

we can now proceed to calculate the key quantity of interest: the conversion

probability pa→γ(ω) as a function of axion/photon energy ω. To achieve this,

it is crucial to understand the geometry of the star’s magnetic field, as pa→γ
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Figure 4.9: Illustration explaining the choice of the coordinate system (x, y, z)
and the resulting relationship between the angle θ (between the photon trajec-
tory towards Earth and the magnetic axis) and the angle φ (which parameter-
izes the precession of the dipole moment m̂). The right-handed orthonormal
basis is chosen such that the WD’s rotation axis aligns with the ẑ-direction,
while the remaining x- and y-axes are selected so that the vector pointing to
Earth Ô does not project onto the x-axis. The angular coordinates (α, φ) are
taken as typically done for spherical coordinates. Note the choice of α as the
polar angle, since θ was already used.

depends on the angle θ. According to [77], RE J0317-853 observations are

well explained by a dipole magnetic field with B0 = 363MG, a αO = 51◦ angle

between the rotational axis and the observer, a αm = 20◦ angle between the

rotational axis and the magnetic axis, and a 19% offset along the magnetic axis.

To simplify the calculations, we neglected the axis offset and implemented a

pure dipole model. Furthermore, to remain consistent with Paper II, we used

a magnetic field strength B0 = 400MG.

First, the angle θ can be parameterized in terms of the azimuthal an-

gle φ of the dipole moment m̂, which varies uniformly with the rotation of

RE J0317-853 around its axis. Using our chosen coordinate system described

in fig. 4.9, we can express θ(φ) as:

θ(φ) = arccos (sinαO sinαm sinφ+ cosαO cosαm) . (4.5)

For a fixed axion/photon energy ω, the conversion probability pa→γ depends

on the value of φ at which the axion is emitted in our direction, i.e., pa→γ(φ) =

pa→γ(θ(φ)). Given that RE J0317-853’s rotation period is ∼ 725 s [77], which is

short compared to the observation time of ∼ 40 ks, it is reasonable to compute
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Figure 4.10: Solid blue line: The RE J0317-853 conversion probability pa→γ(ω)
as a function of photon energy ω, obtained by averaging over φ. Dotted red
line: The same probability profile but for a fixed angle θ = 51◦. Both profiles
are calculated for ma = 10−9 eV and gaγγ = 10−11 GeV−1.

pa→γ for a large number of events at uniformly distributed φ and then take

the average.

ïpa→γðφ =
1

2π

∫ 2π

0

pa→γ(φ)dφ. (4.6)

In practice, we generate a set of uniformly distributed φ values and use the

relationship between θ and φ to find the corresponding θ values. For each θ, we

calculate the conversion probability pa→γ. We then numerically integrate these

probabilities over the range of φ values using the trapezoidal rule, implemented

with the np.trapz function from the Numpy library. This process is repeated

for a range of energy values ω ∈ [0, 50] keV, resulting in the energy profile of the

average conversion probability ïpa→γðφ(ω). In fig. 4.10, we plot this averaged

probability profile compared to the result obtained for a fixed angle θ = 51◦.

Note that, given the characteristics of the magnetic field of RE J0317-853 and

the energy range of interest for the axions ω ∼ 1 − 50 keV, it is possible to

use the critical mass index defined in eq. (3.20) with r = Rmax to verify that

the massless limit we are considering is a good approximation for low axion

masses ma j 10−5 eV. Therefore, all the results obtained from the analysis

will be valid in this specific low-mass range.
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Figure 4.11: Dotted black line: The axion flux spectrum of RE J0317-853
computed from the result obtained in section 4.1.1. Solid blue line: The axion-
induced photon flux spectrum of RE J0317-853 obtained using the averaged
ïpa→γð energy profile calculated as described in eq. (4.6). The red dotted line
shows the result for a fixed angle θ = 51◦. All plots are obtained by setting
gaee = 10−13 and gaγγ = 10−11 GeV−1.

Using eq. (3.1), the last quantity needed to compute the axion-induced

X-ray flux spectrum is the distance of RE J0317-853 from Earth. Parallax

measurements from Gaia-DR3 [79] set the RE J0317-853 distance to dWD =

29.38(2) pc. Using a conservative value of dWD = 29.40 pc, we obtain the

profile shown in fig. 4.11.

4.2 Chandra instrument response functions

In this section, we apply the procedure for instrument response modeling de-

scribed in section 3.2 to the observation of RE J0317-853 with the Chan-

dra telescope. To start, we report the characteristics of the observation de-

scribed in Paper II, where the MWD RE J0317-853 was observed using the

Chandra ACIS-I instrument without a grating for a total observation time of

Tobs = 37.42 ks.
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Figure 4.12: Effective area of the ACIS-I detector of the Chandra Telescope.
Note the energy range of the telescope efficiency. Plot digitized from [83].

4.2.1 Chandra energy response funtion

The first instrument parameter we need to determine is the energy bandwidth

of the observation. To illustrate this, the effective area profile of the ACIS-I

CCDs is shown in fig. 4.12. This profile was obtained by digitizing the ef-

fective area plot from the Chandra Proposers’ Observatory Guide (POG) [83]

in a dataset that was subsequently fitted using splines, specifically employ-

ing the PchipInterpolator routine from the scipy library in Python. Using

piecewise-cubic Hermite interpolating polynomials (PCHIPs) ensures that the

interpolated curve is monotonic between the data points [84], avoiding unre-

alistic overshoots in the effective area curve.

To maintain consistency with the analysis performed in Paper II, we adopt

their choices for energy signal cut-offs and binning. Thus, the expected ob-

served photon signal is divided into four energy bins, each with a width of

2 keV, ranging from 1 to 9 keV. Given that the bin width ∆ω = 2keV is

more than 20 times greater than the energy resolution of the ACIS detec-

tor (≲ 100 eV), the energy response function described in section 3.2.1 has a

negligible effect and is therefore omitted from the analysis.

Now, we construct a histogram describing our signal prediction similar to
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Figure 4.13: Comparison between the ω × dFaγ

dω
histogram for RE J0317-853

as reported in Paper II and the one obtained from our signal prediction. The
product of couplings is set to gaee × gaγγ = 10−24 GeV−1.

the one shown in Paper II. By defining the bin centers ω̄i = {2, 4, 6, 8} keV,

we compute our histogram entries as:

hi = ω̄i ×

∫

∆ωi

dFaγ

dω
dω ×

1

∆ωi

i = 1, ..., 4. (4.7)

We compare the two histograms in Figure 4.13. We observe an overall

factor of approximately 1.85 between the two results, indicating that our pro-

cedure successfully recovers the same flux spectrum shape obtained in Paper

II but predicts a less intense signal. This discrepancy could be due to certain

steps, such as the calculation of the Fs medium factors and the computation of

the conversion probability, which were challenging to reproduce and required

approximations.

Finally, we calculate the number of expected photons observed in the i-th

energy bin by following the procedure outlined in section 3.2.1. The result is

shown in fig. 4.14. For both histograms, the integrals over the energy bins

were performed numerically using the np.trapz function.

4.2.2 Chandra PSF

The final step in obtaining the signal template for the observation described

in Paper II is the implementation of the PSF for the Chandra telescope. In
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Figure 4.14: Histogram for the expected number of photons from the Chandra
observation of RE J0317-853. The product of couplings is set to gaee × gaγγ =
10−24 GeV−1.

Paper II, the CIAO (Chandra Interactive Analysis of Observations) software

was used [85]. To adapt our PSF Gaussian parameterization efficiently, we

base it on the signal template shown in Paper II, adjusting the source position

(x0, y0) and standard deviations (σx, σy) to reproduce it as closely as possible.

Regarding the pixelation process, we reconstructed a pixelated grid in our

Python script to emulate the pixels of the ACIS-I detector of Chandra based

on the signal template image from Paper II. As described in section 3.2.2, for

each of the four energy bins, the PSF-convoluted signal was integrated over

the grid using the scipy.integrate.dblquad function for double numerical

integrations. The result for the first energy bin is shown in fig. 4.15. The same

image also shows the region of interest (ROI) that will be considered in the

data analysis, consistent with what was done in Paper II.
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Figure 4.15: Signal template for the first energy bin of the axion-induced X-ray
signal from the Chandra observation of RE J0317-853. The region of interest
(ROI) considered in the data analysis is also indicated, consistent with the
approach taken in Paper II.

4.3 Upper limit from RE J0317-853 observa-

tion

We now present the results of the RE J0317-853 observation with Chandra as

described in Paper II. The authors provide a pixelated counts map obtained

after data reduction of their observational data. Based on that map, we in-

serted the observed counts into our grid to perform the data analysis within

our framework. We plot in fig. 4.16 our pixelated counts’ map.
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Figure 4.16: Pixelated map of the photon counts observed during the Chandra
observation of RE J0317-853 after data reduction. The map shows the distri-
bution of observed counts, with no clear excess of photons in the vicinity of
the source.

As shown in the figure, the data indicate no clear excess of photons in the

vicinity of the source. We proceed to set an upper limit on gaee × gaγγ, as

described in section 3.3.

4.3.1 A simplified analysis

Before conducting the statistical analysis within the framework that includes

spatial information given by the Chandra PSF, we will simplify the process

by considering only the energy spectrum information of the expected and ob-

served signals. Firstly, we eliminate the two observed counts that are outside

the region of interest. In this simplified analysis, the histogram in fig. 4.17

summarizes the observational data.
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Figure 4.17: Histogram of the observed photon counts from the Chandra ob-
servation of RE J0317-853.

As described in section 3.3, we proceed to analyze the data {ni} using the

Poisson likelihood:

L(θ) =
4
∏

i=1

µi(θ)
nie−µi(θ)

ni!
, (4.8)

where

µi(θ) = si(θs) + bi(θb). (4.9)

The signal parameter θs is defined by normalizing gaee × gaγγ with the typical

energy scale of our prediction:

θs =

(

gaee × gaγγ

10−24 GeV−1

)2

. (4.10)

The background parameters θb depend on the specific choice of background

model utilized. In our statistical analysis, different models will be considered,

evaluating the impact of this choice on the upper limit found for θs (and

consequently for gaee×gaγγ). To do this, we first have to select the correct log-

likelihood test statistic as expressed in eq. (3.33). Let us now detail the general

steps followed to implement the statistical analysis routine in our script:

1. Compute the best-fit parameters: Compute the MLEs for the pa-
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rameters, θ̂ = {θ̂s, θ̂b} by performing a global minimization of

− ln (L(θs,θb)) ,

using the scipy minimization function minimize [86].

2. Construct q(θs) profile for a range of θs values: Since we have

always found the MLE for the signal to be θ̂s g 0, we construct the test

statistics

q(θs) = −2 ln

(

L(θs, θ̂
ˆ
b)

L(θ̂s, θ̂b)

)

, (4.11)

where θ̂
ˆ
b are the background parameters optimized for a fixed value of

θs. Therefore, we have performed iterative conditional optimizations on

the background parameters for a range of θs values, each time using the

best-fit background parameters from the previous iteration as the initial

guess. This way, the function eq. (4.11) is evaluated on a grid of θs.

3. Determine the upper limit: Finally we constrain θs at the 95% level

of significance. We exploit the asymptotic formula for the test statistic

in eq. (4.11), as explained at the end of section 3.3. Thus, we identify

the value of θs at which the q(θs) crosses the threshold q̄ = 3.84, finally

obtaining the confidence upper limit for gaee×gaγγ by inverting eq. (4.10).

These steps are independent of the specific background model employed

in the analysis. Let us see this procedure effectively at play for different

background models.

Free background model

In this background model, the four background counts in each energy bin are

directly considered as nuisance parameters, θb = {bi}. The best parameters are

found to be {θ̂b} = {ni} so that the data are all explained by the background.

We followed the procedure just detailed, obtaining the following bound for

gaee × gaγγ for low axion masses ma j 10−5 eV:

gaee × gaγγ ≲ 3.39× 10−25 GeV−1 at (2σ). (4.12)
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Constant background model

Let us now consider the simplest background model, i.e. the one parametrized

by a single parameter θb = C that predicts the same counts in each energy

bin bi = C. Again the best signal parameter found through ML estimation is

θ̂s = 0, while the background parameter is found to be Ĉ ≃ 0.75. Our analysis

yielded the following constraint for low masses ma j 10−5 eV:

gaee × gaγγ ≲ 3.35× 10−25 GeV−1 at (2σ). (4.13)

Linear background model

We consider here a model for which the background signal varies linearly in

the signal spectrum:

dNbkg

dω
=M ·

( ω

1 keV

)

+Q. (4.14)

This model implies that the number of background counts in the i-th energy

bin [2i− 1, 2i+ 1] keV is given by

bi =

∫

∆ωi

dNbkg

dω
dω =

(

M

2
· [(2i+ 1)2 − (2i− 1)2] +Q ·∆ωi

)

× keV

= (4M · i+ 2Q)× keV ≡ m · i+ q i = 1, ..., 4,

(4.15)

where we have defined the dimensionless parameters {m, q} by a proper nor-

malization of {M,Q}. In this case, the background parameters are θb =

{m, q}. We repeat the analysis routine and we find the low axion mass

ma j 10−5 eV constraint:

gaee × gaγγ ≲ 3.63× 10−25 GeV−1 at (2σ). (4.16)

Power law background model

The last model we will analyze is a two-parameter power-law background

model. This background model is well-motivated physically, as power-law

spectra frequently appear in astrophysics [87]. In particular, accreting bi-

nary systems can produce X-ray falling spectra that can be modeled with a

power-law distribution [58], [88]. Similarly to the linear case, we start from a

background spectrum

74



dNbkg

dω
= K ·

( ω

1 keV

)−α

, (4.17)

so that the background counts in the i-th energy bin, i = 1, ..., 4 are expressed

as

bi =

∫

∆ωi

dNbkg

dω
dω =















K

−α + 1
· [(2i+ 1)−α+1 − (2i− 1)−α+1]× keV α ̸= 1

K · ln

(

2i+ 1

2i− 1

)

× keV α = 1

=















k

−α + 1
· [(2i+ 1)−α+1 − (2i− 1)−α+1] α ̸= 1

k · ln

(

2i+ 1

2i− 1

)

α = 1

(4.18)

Again, we have defined the background parameters θb = {k, α} to be

dimensionless quantities. We repeat the analysis routine and we find the con-

straint for ma j 10−5 eV:

gaee × gaγγ ≲ 3.80× 10−25 GeV−1 at (2σ), (4.19)

The constraints obtained from this simplified analysis are approximately

two orders of magnitude stronger than the one obtained from the CAST ex-

periment for low axion masses in eq. (2.30).

We present in fig. 4.18 the plots showing the log-likelihood ratio profiles

q(θs) for the different background models, along with the corresponding re-

sults. It is noteworthy that for the first three background models, the global

optimization of the likelihood yielded θ̂s = 0, with the background signal fit-

ting all the observed counts. However, for the power-law background model,

the minimum was obtained at θ̂s ≃ 0.18, suggesting a non-vanishing axion sig-

nal as the best fitting model. We can now use the discovery statistic defined in

eq. (3.32) to assess the no-signal hypothesis H0. Given the low value obtained

q(0) ≃ 0.14,

we conclude that the observed counts are very well explained by the back-

ground only, thus we cannot reject the null hypothesis H0 due to its low

statistical significance.

75



0.0 0.1 0.2 0.3 0.4
θs

0

1

2

3

4

q
(θ

s
)

Free background model

0.0 0.1 0.2 0.3 0.4
θs

0

1

2

3

4

q
(θ

s
)

Linear background model

0.0 0.1 0.2 0.3 0.4
θs

0

1

2

3

4

q
(θ

s
)

Constant background model

0.0 0.1 0.2 0.3 0.4
θs

0

1

2

3

4

q
(θ

s
)

Power-law background model

Figure 4.18: Blue solid lines : The log-likelihood profiles q(θs) obtained imple-
menting different background models. The red dotted line corresponds to the
95% C.L. threshold obtained using the large-sample limit, q̄ = 3.84.
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4.3.2 Including spatial information

We now add a layer of complexity to our analysis by considering the spatial

spreading of the signal. Similar to the previous case, we analyze the data using

the Poisson likelihood:

L(θ) =

Nbin
∏

i=1

Npix
∏

j=1

µi,j(θ)
ni,je−µi,j(θ)

ni,j!
, (4.20)

where ni,j represent independent measurements of the number of events ob-

served in the i-th energy bin and the j-th pixel, Npix is the number of grid’s

pixel considered in the analysis, and µi,j(θ) = si,j(θs) + bi,j(θb). We have pre-

viously described how the pixelation process of the histogram in fig. 4.14 yields

the signal prediction si,j for every choice of gaee×gaγγ (and thus is a function of

the normalized signal parameter θs). The background models discussed earlier

can be easily extended to this new framework by considering bi,j(θb) = bi(θb)

to be the same for every pixel j within the same energy bin i.

As mentioned earlier, pixels outside the region of interest will be excluded

from the analysis. This was implemented in our script using a circular mask

that excludes pixels in our grid that are farther from the source than the ROI

radius. The number Npix is reduced accordingly.

We now run again our analysis routine in this new framework for the dif-

ferent background models. This time, the various models do not lead to sig-

nificant differences, all yielding the same upper limit for θs. We choose to

report the limit obtained using the free background model, consistently with

the analysis performed in Paper II,

gaee × gaγγ ≲ 2.30× 10−25 GeV−1 at (2σ), (4.21)

for axion masses ma j 10−5 eV. In fig. 4.19 we show the log-likelihood ratio

profile resulting from our analysis. As expected, adding spatial information

to the analysis results in a significantly stronger limit on gaee × gaγγ. Let us

now compare this result with the one reported in Paper II for the same mass

range:

gaee × gaγγ ≲ 1.30× 10−25 GeV−1 at (2σ). (4.22)

The two results are similar, but the one found through our analysis is

slightly weaker. We comment here on the possible reasons for this discrepancy:
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Figure 4.19: Upper limit obtained by incorporating the spatial distribution of
the signal in our statistical analysis and using the free background model.

• As highlighted in fig. 4.13, our signal prediction si,j differs from the one

of Paper II by a multiplicative factor of approximately 1.85. Adjusting

for this factor, we obtain a much closer limit:

gaee × gaγγ ≲ 1.70× 10−25 GeV−1 at (2σ).

explaining part of the discrepancy.

• We used the large-sample limit to determine the test statistic’s threshold

that constrains θs, even though the observation we are analyzing falls

within a low-count regime. Paper II, on the other hand, performed Monte

Carlo simulations to set the 95% confidence level threshold, which could

explain the remaining difference in the obtained limit.

We emphasize that Monte Carlo simulations have shown that the asymp-

totic formulas employed in our analysis still provide reasonable results in our

case [68].
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Chapter 5

Conclusions

In this thesis, we have developed an analysis pipeline for X-ray data from

WD observations aimed at probing axion properties. In doing so, we have

critically examined and extended the current methodology in the literature,

developing Python scripts for performing the numerical computations required

in the analysis. We have applied this procedure to the Chandra observation of

MWD RE J0317-853, utilizing the data and information provided in Dessert

et al. (2019, ’22) [59], [72] to obtain an upper limit on gaee × gaγγ. We now

summarize the key results obtained in this thesis:

• Our analysis of RE J0317-853 X-ray data from Chandra yielded a limit

on gaee × gaγγ in line with [72].

• We extended the current procedure to include several physically moti-

vated background models and quantitatively assessed their impact on

the limit on gaee × gaγγ.

• In appendix A, we thoroughly calculated the axion emissivity due to

electron-ion bremsstrahlung for an extremely degenerate plasma. We

corrected a mistake in the expression shown in [20], a result also con-

firmed by [89].

• We identified a structural limitation for the numerical calculation of the

medium factor F in the expression for axion emissivity. The only frame-

work provided in the literature (detailed in [61], [62]) includes parame-

terizations for F only for a WD plasma composed of a single element. In

realistic cases where multiple elements are present, the currently followed

procedure may not be entirely adequate.
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We provide the reader with an outlook and suggest possible improvements

for future analyses and projects of this type:

• Although the different background models implemented did not signifi-

cantly alter the limit set on gaee×gaγγ using RE J0317-853 observational

data, they could have a stronger impact in future analyses.

• We may extend the analysis to specific axion models, particularly non-

hadronic axion models, which predict a sizable axion-electron coupling

gaee. While the sensitivity of these searches applies to regions of the

parameter space most relevant for ALPs, even non-canonical QCD axion

models could be impacted by the achievable bounds (see [90], [91] for

instance).

• Different processes could extend the analysis, such as the emission of

14.4 keV axions by thermally excited 57Fe nuclides through axion-nucleon

coupling [92]–[94]. These axions could be converted in the WD’s mag-

netic field, providing a detectable hard X-ray signal. An analysis similar

to the one conducted in this thesis could place significant limits on the

product of gaγγ with the axion-nucleon coupling.

• Finally, although the pipeline was constructed for analyzing X-ray data

from WD observations, we emphasize that it serves as a general and

flexible analysis framework. Each component is “self-contained” and

can be easily adapted to different phenomenologies and observations.

For example, the axion emissivity calculation can be modified for other

axion production processes in different astrophysical environments. Ad-

ditionally, the magnetic field geometry can be modified for axion-photon

conversion in contexts other than a pure magnetic dipole field.
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Appendix A

Axion bremsstrahlung

Consider the axion effective Lagrangian term describing the axion-electron

interaction:

Laee = gaee
∂µa

2me

ēγµγ5e. (A.1)

This term can be recast in a pseudoscalar basis, provided that we restrict to a

single GB attached to an external fermion line. This is indeed the case for axion

bremsstrahlung. Hence, in this context, the Lagrangian term is equivalent to:

Laee = −igaeeaēγ5e. (A.2)

The Feynman rule associated with this interaction is:

gaeeγ5

Moreover, the Feynman rule for the QED vertex is

−ieγµ
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We can use them to first calculate the Axion radiation from an external leg

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

pf + pa

pf

pa

a

= gaeeū
′γ5

i

/pf + /pa −m
Γ(pf + pa)

= igaeeū
′γ5

( /pf + /pa) +m

(pf + pa)2 −m2
Γ(pf + pa)

= −igaeeū
′
( /pf −m) + /pa

m2
a + 2pf · pa

γ5Γ(pf + pa)

= igaeeū
′

γ5 /pa

m2
a + 2pf · pa

Γ(pf + pa).

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

pi

pi − pa

pa

= igaeeΓ(pi − pa)
(/pi − /pa) +m

(pi − pa)2 −m2
γ5u

= igaeeΓ(pi − pa)
γ5 /pa

m2
a − 2pi · pa

u.

Now let us compute the amplitude for the axion emission due to bremsstrahlung

e− + (A,Z) → e− + (A,Z) + a in the limit of static and heavy nuclei:

pi pi − pa

pa

q

pf pi

pf + pa
q

pa

pf

The amplitudes for the two diagrams are denoted with M1 and M2 respec-
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tively. Then the amplitudes read

M1 = igaeeū
′
(

− ie /Aext

) γ5 /pa

m2
a − 2pi · pa

u =
Ze2gaee
∣

∣q
∣

∣

2 ū′
[ γ0γ5 /pa

m2
a − 2pi · pa

]

u, (A.3)

M2 = igaeeū
′

γ5 /pa

m2
a + 2pf · pa

(

− ie /Aext

)

u =
Ze2gaee
∣

∣q
∣

∣

2 ū′
[ /paγ

0γ5

m2
a + 2pf · pa

]

u. (A.4)

Where we have used the fact that the external Coulomb field in momentum

space reads Aµ
ext(q) =

(

Ze/
∣

∣q
∣

∣

2
,0
)

. Now we compute the complex conjugates

of the amplitudes in eqs. (A.3) and (A.4)

M 
1 =

(Ze2gaee
∣

∣q
∣

∣

2 ū′
[ γ0γ5 /pa

m2
a − 2pi · pa

]

u
) 

=
Ze2gaee
∣

∣q
∣

∣

2 ū · γ0

[ γ0γ5 /pa

m2
a − 2pi · pa

] 

γ0 · u
′

=
Ze2gaee
∣

∣q
∣

∣

2 ū
[ /paγ

0γ5

m2
a − 2pi · pa

]

u′,

M 
2 =

(Ze2gaee
∣

∣q
∣

∣

2 ū′
[ γ5 /paγ

0

m2
a + 2pf · pa

]

u
) 

=
Ze2gaee
∣

∣q
∣

∣

2 ū
[ γ0γ5 /pa

m2
a + 2pf · pa

]

u′.

In order to calculate the total unpolarised Feynman amplitude
∣

∣M
∣

∣

2
it is

necessary to compute the following quantities:

∑

pol

M1M
 
2 =

Z2e4g2aee
∣

∣q
∣

∣

4

1

[m2
a − 2pi · pa][m2

a + 2pf · pa]
Tr[γ0γ5 /pa(/pi +m)γ0γ5 /pa( /pf +m)],

∑

pol

M2M
 
1 =

Z2e4g2aee
∣

∣q
∣

∣

4

1

[m2
a − 2pi · pa][m2

a + 2pf · pa]
Tr[ /paγ

0γ5(/pi +m) /paγ
0γ5( /pf +m)],

∑

pol

∣

∣M1

∣

∣

2
=
Z2e4g2aee
∣

∣q
∣

∣

4

1

[m2
a − 2pi · pa]2

Tr[γ0γ5 /pa(/pi +m) /paγ
0γ5( /pf +m)],

∑

pol

∣

∣M2

∣

∣

2
=
Z2e4g2aee
∣

∣q
∣

∣

4

1

[m2
a + 2pf · pa]2

Tr[ /paγ
0γ5(/pi +m)γ0γ5 /pa( /pf +m)].

The Mathematica package FeynCalc [95] is used to compute these quatities.

In order to obtain the unpolarised amplitude everything is summed up and

divided by the number of initial polarization states (i.e. divide by 2). In

addition, it is considered the limit where the mass ma = 0, then the amplitude
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reads:

∣

∣M
∣

∣

2
=
Z2e4g2aee

2
∣

∣q
∣

∣

4

1

(pa · pi)2(pa · pf )2
×

×
{

2ωa(pa · pi)
[

2ωa(pa · pf )(pi · pf −m2) + 2ωi(pa · pf )(pa · pi − pa · pf )
]

+

+ 2(pa · pi)
[

(pa · pf )(pa · pf − pa · pi)− 2ωaωf (pa · pf )
]

(pa · pi − pa · pf )
}

=
Z2e4g2aee

2
∣

∣q
∣

∣

4

[4ω2
a(pi · pf −m2)

(pa · pi)(pa · pf )
+

4ωaωi(pa · pi − pa · pf )

(pa · pi)(pa · pf )
+

− 2
(pa · pf − pa · pi)

2

(pa · pi)(pa · pf )
+

4ωaωf (pa · pi − pa · pf )

(pa · pi)(pa · pf )

]

=
Z2e4g2aee
∣

∣q
∣

∣

4

[

2ω2
a

pi · pf −m2 − pa · (pf − pi)

(pa · pi)(pa · pf )
+ 2−

(pa · pf )

(pa · pi)
−

(pa · pi)

(pa · pf )

]

.

Since the potential is static, the normalized S-matrix element is given by

Sfi = 2πδ(ωi − ωf − ωa)
( 1

2ωiV

)1/2( 1

2ωfV

)1/2( 1

2ωaV

)1/2

Mfi,

from which we get the transition probability to the final states of the process

dωfi =

∣

∣Sfi

∣

∣

2

T
dΠ

= (2π)δ(ωi − ωf − ωa)
( 1

2ωiV

)( d3pf
(2π)32ωf

)( d3pa
(2π)32ωa

)

∣

∣Mfi

∣

∣

2
.

(A.5)

The differential cross-section is obtained considering this transition probability

for one scattering center and unit incident flux. Hence, we have to divide

eq. (A.5) by the incident flux Φ = neve. With our choice of normalization of

the states ne = 1/V :

dσ =

∣

∣Mfi

∣

∣

2

8ωiωfωave
δ(ωi − ωf − ωa)

d3pfd
3pa

32π

=

∣

∣Mfi

∣

∣

2

16π3

∣

∣pf
∣

∣dωfωadωa

ωive

dΩa

4π

dΩe′

4π
δ(ωi − ωf − ωa).

Taking into account the Pauli blocking effect for the final states the differential
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cross section reads

dσ =

∣

∣Mfi

∣

∣

2

16π3

∣

∣pf
∣

∣dωfωadωa

ωive

dΩa

4π

dΩe′

4π
δ(ωi − ωf − ωa)(1− fe(ωf , T )).

The final state axion does not get the Bose enhancement since axions are not

in thermal equilibrium. Then the (differential) number of scattering events

per unit of time and volume is given by

dγ = dσ ·
dneve
ge

nN

= nN
dne

ge

∣

∣Mfi

∣

∣

2

16π3

∣

∣pf
∣

∣dωfωadωa

ωi

dΩa

4π

dΩe′

4π
δ(ωi − ωf − ωa)(1− fe(ωf , T )).

(A.6)

where we are using here the normalization dne = ged
3pi/(2π)

3fe(ωi, T ) with

ge the number of internal degrees of freedom. We can integrate over dΩe since

the process is isotropic and we can use the delta to remove the integration over

dωa. Summing over the initial and final polarizations of all particles we obtain

the unpolarized expression of the scattering rate density. Finally multiplying

by the axion energy ωa, we get the differential energy loss rate per unit of

volume (also called axion emissivity)

dε = nN

∣

∣M
∣

∣

2

16π5
dωife(ωi, T )dωf (1− fe(ωf , T ))

dΩe′

4π

dΩa

4π
ω2
a

∣

∣pf
∣

∣

∣

∣pi
∣

∣

=
α2g2aeeZ

2nN

π3
dωife(ωi, T )dωf (1− fe(ωf , T ))×

×
dΩe′

4π

dΩa

4π

∣

∣pf
∣

∣

∣

∣pi
∣

∣ω2
a

∣

∣q
∣

∣

4

[

2ω2
a

pi · pf −m2 − pa · (pf − pi)

(pa · pi)(pa · pf )
+ 2−

(pa · pf )

(pa · pi)
−

(pa · pi)

(pa · pf )

]

.

(A.7)

Now, let us consider the effects due to the presence of plasma described in

section 2.1.1. In particular, the expression in eq. (A.7) is modified by the

screening of the electrostatic fields of the ions on which the electrons scatter,

and by the correlation effects of the scattering sites. By using eq. (2.14), we
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obtain the expression:

dε =
α2g2aeeZ

2nN

π3
dωife(ωi, T )dωf (1− fe(ωf , T ))×

×
dΩe′

4π

dΩa

4π

∣

∣pf
∣

∣

∣

∣pi
∣

∣ω2
a

q2(q2 + k2S)

[

2ω2
a

pi · pf −m2 − pa · (pf − pi)

(pa · pi)(pa · pf )
+ 2−

(pa · pf )

(pa · pi)
−

(pa · pi)

(pa · pf )

]

(A.8)

This expression has to be compared with the one found by Raffelt in [29].

Note the different sign obtained for the pa · (pf − pi) term. Now we address

the explicit computation of the axion emissivity spectrum dε/dωa in a white

dwarf plasma due to axion-bremsstrahlung. In order to do so we can use the

energy delta in eq. (A.6) to remove the integration over dωf and restore the

dωa. For later convenience, we label with F the quantity

F =

∣

∣pf
∣

∣

∣

∣pi
∣

∣ω2
a

q2(q2 + k2S)

[

2ω2
a

pi · pf −m2 − pa · (pf − pi)

(pa · pi)(pa · pf )
+ 2−

(pa · pf )

(pa · pi)
−

(pa · pi)

(pa · pf )

]

,

(A.9)

so that, integrating over the solid angles of the outgoing particles and over

the possible energies of the incoming electron, the axion emissivity spectrum

dε/dωa is formally written as

dε

dωa

=
α2g2aeeZ

2nN

π3

∫ ∞

me

dωife(ωi, T )(1− fe(ωi − ωa, T ))

∫

dΩe′

4π

∫

dΩa

4π
F .

(A.10)

In order to evaluate eq. (A.9), we need to compute the various scalar products

between particles momenta. The high electron degeneracy of white dwarfs

allows some simplifications, since in this limit the term fe(ωi, T )(1 − fe(ωi −

ωa, T )) has a sharp peak, setting ωi ≃ ωf ≃ ωF and |pi| ≃ |pf | ≃ pF to

the value of the Fermi energy and Fermi momentum respectively. Hence, for

the typical condition of a white dwarf plasma, ωa j ωi, ωf ≃ ωF. In this

degenerate limit and taking as reference frame the one in which the heavy
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nuclei are static, the important quantities to compute eq. (A.9) are written as:

pi · pa = ωiωa − |pi||pa| cos θia ≃ ωFωa(1− βFcia),

pf · pa = ωfωa − |pf ||pa| cos θfa ≃ ωFωa(1− βFcfa),

pi · pf = ωiωf − |pi||pf | cos θif ≃ ω2
F(1− βFcif ),

pa · (pf − pi) ≃ ωaωF(/1− βFcfa − /1 + βFcia) = ωaωFβF(cia − cfa),

m2
e ≃ ω2

F − p2F = ω2
F(1− β2

F),

|q|2 ≃ 2p2F(1− cif ),

where βF = pF/ωF, ckl = cos θkl with θkl k, l = i, f, a the relative angles

between particles. By plugging these quantities in eq. (A.9), it is possible to

notice that the term pa · (pf − pi) carries an additional ωa dependence, which

is small in high degeneracy limit. Thus, this term is safely negligible for the

axion-bremsstrahlung emissivity calculation, making the differences between

the result in eq. (A.7) and the one calculated by Raffelt in [20] irrelevant in this

context. We point out that a recent paper by Carenza and Lucente [89] has

found the same result as ours. Here the important terms for the calculation

are explicitly computed:

2ω2
a

[

(pi · pf )−m2
e

]

= 2ω2
aω

2
F(1− βFcif − 1 + β2

F) = 2ω2
aω

2
F(β

2
F − cifβF),

2(pi · pa)(pf · pa) = 2ω2
aω

2
F(1− βFcia)(1− βFcfa),

= 2ω2
aω

2
F

[

1− (cia + cfa)βF + (ciacfa)β
2
F)
]

,

−(pf · pa)
2 = −ω2

aω
2
F(1− βFcia)

2 = −ω2
aω

2
F(1− 2βFcia + c2iaβ

2
F),

−(pf · pa)
2 = −ω2

aω
2
F(1− βFcfa)

2 = −ω2
aω

2
F(1− 2βFcfa + c2faβ

2
F).

Substituting these terms inside the expression of F we get

F =

∣

∣pf
∣

∣

∣

∣pi
∣

∣ω2
a

q2(q2 + k2S)

[

2ω2
a

pi · pf −m2 − pa · (pf − pi)

(pa · pi)(pa · pf )
+ 2−

(pa · pf )

(pa · pi)
−

(pa · pi)

(pa · pf )

]

=

≃
ω2
aβ

2
F [2(1− cif ) + (cia − cfa)

2]

4p2F(1− cif )(1− cif + κ2s )(1− βFcia)(1− βFcfa)
×
m2

e

m2
e

=
ω2
a [2(1− cif ) + (cia − cfa)

2]

4(1− cif )(1− cif + κ2s )(1− βFcia)(1− βFcfa)
×

1− β2
F

m2
e

,

where we have defined the dimensionless quantity κ2s = k2S/2p
2
F. Plugging this
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quantity back in eq. (A.10), we can express the axion emissivity as

dε

dωa

=
α2g2aeeZ

2nN

4π3m2
e

∫ ∞

me

dωiω
2
a fe(ωi, T )(1− fe(ωi − ωa, T ))×

×

∫

dΩe′

4π

∫

dΩa

4π

(1− β2
F) [2(1− cif ) + (cia − cfa)

2]

(1− cif )(1− cif + κ2s )(1− βFcia)(1− βFcfa)
.

Now we can use the fact that in the degenerate limit T j pF and the integral

over the incoming electron energy ωi can be performed analytically [20], [72]

and leads to

dε

dωa

=
α2g2aeeZ

2nN

4π3m2
e

ω3
a

eωa/T − 1
F, (A.11)

where we have defined the dimensionless form factor F as

F =

∫

dΩe′

4π

∫

dΩa

4π

(1− β2
F) [2(1− cif ) + (cia − cfa)

2]

(1− cif )(1− cif + κ2s )(1− βFcia)(1− βFcfa)
. (A.12)

It is now possible to generalize the expression of the axion emissivity to the

presence of multiple species. In fact, by using eq. (2.3) we can recast eq. (A.11)

as

dε

dωa

=
α2g2aee
4π3m2

e

ω3
a

eωa/T − 1

∑

s

Z2
sρs

Asmu

F. (A.13)
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Appendix B

Axion-photon conversion

probability

Consider the axion-photon mixing equations introduced in section 3.1.3:

[

i∂r + ω +

(

∆∥ ∆B

∆B ∆a

)](

A∥

a

)

= 0, (B.1)

we introduce the particle “state vector” Ψ such that

Ψ(r) =

(

A∥(r)

a(r)

)

. (B.2)

With this substitution, the mixing equation resembles a Schrödinger equation

for Ψ, where time has been replaced with a trajectory coordinate r:

[

i∂r + ω +

(

∆∥ ∆B

∆B ∆a

)]

Ψ(r) = 0. (B.3)

Assuming the weak-mixing limit, we can apply the formalism of “time”

perturbation theory. We define the Hamiltonian H(r) as composed of a free

part H0(r) and a perturbative interaction part H1(r), such that:

H0(r) = −

(

ω +∆∥(r) 0

0 ω +∆a

)

, H1(r) = −

(

0 ∆B(r)

∆B(r) 0

)

.

(B.4)

This separation is motivated by the fact that we assume the mixing term

∆B to be small compared to the diagonal terms in eq. (B.3), which is always

89



the case. With this separation, our mixing equations can be rewritten as:

i∂rΨ(r) = [H0(r) +H1(r)] Ψ(r). (B.5)

This naturally leads to describing the evolution of the state vector Ψ in the

interaction picture. The transition to states and operators in the interaction

picture is given by the following relations:

Ψ = U0Ψ
int,

H int
1 = U  

0H1U0,
(B.6)

where we have defined the time evolution operator for the ”time”-dependent

free Hamiltonian H0(r):

U0(r) = exp

(

−i

∫ r

0

H0(r
′)dr′

)

. (B.7)

For simplicity, we have chosen the starting coordinate as r0 = 0. For an

arbitrary initial point, the limits of the integral in eq. (B.7) should be adjusted

accordingly.

One can easily check that under these redefinitions, the axion-photon mix-

ing equations are rewritten as:

i∂rΨ
int = H int

1 Ψint. (B.8)

The general solution to this equation is formally given by:

Ψint(r) = U(r)Ψint(0), (B.9)

where U(r) is the “time” evolution operator for H int
1 , which can be written as

a Dyson series :

U(r) =
∞
∑

n=0

(−i)n

n!

∫ r

0

dr1 · · ·

∫ r

0

drnPr(H
int
1 (r1) · · ·H

int
1 (rn)), (B.10)

and Pr is a path-ordering operator. Therefore, to first order in perturbation

theory, the state vector can be approximated as:

Ψint(r) ≃

(

I− i

∫ r

0

dr′H int
1 (r′)

)

Ψ(0), (B.11)
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where we used Ψint(0) = Ψ(0) and I is the identity matrix.

Returning to the Schrödinger picture, we write:

Ψ(r) = U0(r)

(

I− i

∫ r

0

dr′U  
0(r

′)H1(r
′)U0(r

′)

)

Ψ(0). (B.12)

We now have all the ingredients to compute the axion-photon conversion

probability for an axion that has traveled a distance r along its trajectory.

Indeed, pa→γ is calculated by squaring the transition amplitude of an initially

pure axion state emerging as a photon at a distance r. Hence, the initial

condition for the state vector is Ψ(0) = (0, 1)T ≡ |að, corresponding to a pure

axion state. The final state we are interested in is a pure photon (1, 0)T ≡ |γð,

thus:

Aa→γ = (1, 0) ·Ψ(r) = −i ïγ|U0(r)|γð

∫ r

0

dr′ïγ|
[

U  
0(r

′)H1(r
′)U0(r

′)
]

|að

= −i [U0(r)]γγ

∫ r

0

dr′ exp

(

i

∫ r′

0

dr′′(∆a −∆∥)

)

∆B(r
′).

(B.13)

Taking the square of the modulus, setting r → ∞ and restoring RWD as initial

propagation point, we obtain:

pa→γ =

∣

∣

∣

∣

∫ ∞

RWD

dr′∆B(r
′)ei∆ar′−

∫ r′

0
dr′′∆∥(r

′′)

∣

∣

∣

∣

2

. (B.14)
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