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Abstract

In recent years underwater rehabilitation has gained popularity in the treatment

of Parkinson’s disease. Moreover, the study of muscular electrical activity of

pathological subjects during walking have shown important results in clinical

applications. One of the issues of analysis of electromiographic signal is the

correct detection of muscle on and off states during movements execution. How-

ever, many different detection techniques have been implemented to identify

muscle activity. The aim of this thesis was to compare results obtained by the

application of two different muscle activity detection techniques to the signal

acquired during underwater walking of patients with Parkinson’s disease.

Sommario

Negli ultimi anni la riabilitazione in acqua ha guadagnato popolarità nel trat-

tamento della malattia di Parkinson. Inoltre, lo studio dell’attività elettrica

dei muscoli di soggetti patologici durante la camminata ha riportato risultati

importanti nell’applicazione clinica. Una delle difficoltà dell’analisi del segnale

elettromiografico è il corretto rilevamento degli stati di attivazione e disattiva-

zione muscolare durante l’esecuzione dei movimenti. Tuttavia, esistono diverse

tecniche di rilevamento che sono state implementate per identificare tale attività.

Lo scopo di questa tesi è stato quindi quello di confrontare i risultati ottenuti

dall’applicazione di due diverse tecniche di rilevazione dell’attività muscolare al

segnale acquisito per la camminata in acqua di pazienti con morbo di Parkinson.
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Introduction

Comparison of gait between healthy and pathological subjects has been ex-

tensively studied over the years. In addition, information about instants of

muscle activation with respect to the gait cycle has proven to be of paramount

importance in many clinical situations, including improvements in management

of neuromuscular disabilities [2].

Parkinson’s disease is one of the most common neurological disorder that affects

the movement. PD walking has been extensively analyzed. Indeed, Parkinson’s

disease is a motor disorder widespread throughout the world and to date, there is

no definitive cure for this disease. However, along with several pharmacological

and non-pharmacological treatments, one treatment that is gaining popularity is

water rehabilitation, specifically under water walking performance. Therefore,

a thorough understanding of muscle activity during under water walking in

Parkinson’s patients can be a useful tool for the analysis, diagnosis and possible

effects of this treatment on the disease.

Currently, acquisitions of muscle activity under water can be directly performed

due to the technology development of recent years. However, being the ac-

quisition of EMG signal under water a more recent technique, it is still under

investigation.

The aim of this thesis was therefore to compare two different methods applying

two different filtering techniques for the identification of muscle activity on the

EMG signal of Parkinson’s patients walking under water. In addition, these

methods were also applied to land-based walking signals of healthy subjects to
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test their detection efficacy.

Chapter 1 describes the epidemiology, symptoms, and treatment of Parkinson’s

disease. Chapter 2 illustrates the state of the art in gait analysis with a focus

on gait cycle phases, under water walking, and pathological walking in patients

with Parkinson’s disease. Chapter 3 describes in detail surface EMG, the most

common noise artifacts of this signal, the possible processing and filtering tech-

niques and the confounding factors of the EMG signal under water. Chapter 4

presents the subjects involved in the study, the experimental setup and the two

different methods used to identify muscle activity. Chapter 5 reports the results

obtained both for healthy and Parkinson’s disease subjects with the application

of the muscle activity detection algorithm. Finally, in chapter 6 conclusions,

limitations, and possible future developments of this thesis are described.
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Chapter 1

Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder of the Central Nervous

System (CNS) characterized by slowness of motion, muscles stiffness, tremors,

and, from a morphological point of view, by the degeneration of neurons in the

substantia nigra of the compact zone of ventral midbrain. PD is the second most

common degenerative disorder, after Alzheimer, and it is one of the common

causes of neurological disability, involving 1% of the global population over 55

years old [3].

1.1 Epidemiology

Parkinson’s disease epidemiology can be a useful tool to understand the widespread

of the disorder and its possible causes. Epidemiology can be divided into two

different categories: descriptive epidemiology, which outlines the occurrence of

the disease, and analytical epidemiology, which instead deals with the determi-

nants of the disease, i.e. all those factors that may play a role in the causal chain

underlying disease mechanisms.
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1.1.1 Descriptive epidemiology

In descriptive epidemiology the occurrence of new cases of disease, injury, or other

medical conditions over a specified time period is called incidence, while preva-

lence includes both new and existing cases. Consequently incidence measures

the strength of the disease in the population and represents the rate of disease

occurrence, while prevalence measures the disease burden in the population and

increases as the incidence and duration of the disease increases.

In 2019 the incident number of PD was about 1 million cases worldwide, which

has increased by 159.73% since 1990 whereas the global prevalent number has

reached 8 million cases showing an increment of 155.5% from 1990 [4]. Moreover,

recent studies [5, 6] predicted that the burden of PD will grow substantially in

future decades.

The age-specific analysis of prevalence allows to state that PD is dominant in age

classes over 65 and that the largest increasing percentage occurred in the group

aged over 80. Moreover, specific rates among gender shows a slight prevalence of

the disease on men instead of women: this is possibly due to the neuroprotective

effects of estrogen for females and also to the higher occupational factors or

unhealthy lifestyles in males [4].

There are many indexes that can help with the description of Parkinson’s disease

epidemiology, some of the most common ones are listed below:

• Years lived with disability (YLD): is an index that measures the average

lifespan of incident cases until rehabilitation or death and the disability

due to the status. It is widely used to evaluate the health loss caused by

PD;

• Age-standardized rate (ASR): is a summary measure of the rate that a

population would have if it had a standard age structure and it’s necessary

when the data exist for different age groups in multiple populations over

time. This rate can be computed for different variables, like incidence,

prevalence and YLD;
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• Estimated annual percentage change (EAPC): is an index that describes

the trend of ASR, and it is calculated using a linear regression model.

Positive EAPC highlights that there is an increasing trend while a negative

index states for a decreasing trend.

Zejin Ou et al. [4] analyzed the PD burden worldwide from 1990 to 2019, and

they showed how incident and prevalent cases vary from country to country.

Figure 1.1 reports the incidence of PD in terms of ASR in 2019, percentage

changes between 2000 and 2019 and the EAPCs of each country. Figure 1.2

describes the prevalence of PD in terms of ASR in 2019, percentage changes

between 2000 and 2019 and the EAPCs of each country. It can be seen that there

is a heterogeneous distribution between countries that varies for both incidence

and prevalence. Italy, for example, shows a decreasing trend of ASR for incidence

and prevalence, while United States of America shows an increasing index. In

some cases, an increasing trend can be justified by the PD dependence on aging,

correlated with a sound health system and a decreasing fertility rate. Whereas,

the decreasing trend of Italy may be due to the Mediterranean diet, since it was

demonstrated it reduced the risk for PD. Nevertheless, Parkinson’s epidemiology

data and studies [4, 5, 6] highlight the necessity to find effective strategies to

decrease the overall burden of PD, that cover pharmacological treatment [3, 7],

neurosurgery [8] and rehabilitation [9] as well.

1.1.2 Analytical epidemiology

Analytical epidemiology is constantly trying to find out the cause-effect relation

of the diseases. As a consequence, since the discovery of PD, many researchers

have been trying to identify a single cause of the disease. However, more recent

research suggests the presence of multiple causes [3].

In 1878 Charcot identified stress as the possible cause of the onset of PD, and

over the years the possibility of a hereditary and infectious cause was taken into

consideration and analyzed [3]. Only more recent studies have found that forms

of familiar PD in which inheritance follows a Mendelian pattern are extremely
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Figure 1.1: The distribution of ASRs, percentage changes, and EAPCs of Parkinson’s disease
incidence at the national level. (A) shows the ASR in 2019; (B) the percentage changes
in number between 2000 and 2019; (C) the EAPCs in countries/territories, respectively.
Countries/territories with an extreme value are annotated (Zejin Ou et al., [4]).
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Figure 1.2: The distribution of ASRs, percentage changes, and EAPCs of Parkinson’s disease
prevalence at the national level. (A) shows the ASR in 2019; (B) the percentage changes
in number between 2000 and 2019; (C) the EAPCs in countries/territories, respectively.
Countries/territories with an extreme value are annotated (Zejin Ou et al., [4]).
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rare (less than 1% of all PD patients) [10]. PD, then, can be considered a

sporadic disorder.

Nowadays, there is evidence that PD is a disorder that involves multiple func-

tional and neurotransmitter systems, moreover its pathological characteristics

are similar in each of the targeted neuron groups, suggesting a common neurode-

generative process [3].

In 1960 it was discovered that in PD subjects the level of dopamine, which is a

neuromodulatory molecule functioning as a neurotransmitter in brain, was much

lower in comparison to that of healthy subjects. Consequently it was possible to

start thinking of a treatment with levodopa, at that time known as a precursor

of dopamine, and still used today [10].

The causes are still largely unknown [11], although they are mostly attributed

to both genetic and environmental factors and, in some cases, to a prolonged

exposition to one or more toxic substances (i.e. 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine, named MPTP). It also appears that moderate exercise is

associated with a slightly reduced risk of disease [3]. Furthermore, various group

of foods and specific nutrients have been investigated as a potential risk factors

of PD and, on the other hand, it has been studied the possibility to obtain

beneficial effects on longevity and age-related diseases through some specific

diets, for example the Mediterranean one [4].

1.2 Symptoms

Nowadays PD diagnosis is still a clinical diagnosis since there are no specific

biochemical and neuroradiological markers. The classic symptomatological

picture is described by the presence of some main traits such as [3]:

tremors are present in approximately 70% of patients, they mainly occur at

rest at an average frequency of 3-6 Hz. They may arise at the onset of

the disease and they are usually unilateral, occurring firstly at the upper

limb level. Later they can spread to the controlateral side nevertheless

13



maintaining a certain asymmetry.

stiffness is characterized by an augmented muscular tone both in flexors and

extensors muscles. It is present in 89-99% of PD subjects.

bradykinesia consists in a slowdown of the speed of movement execution,

it occurs in 77-98% of cases usually together with akinesia (inability

to initiate movement) and hypokinesia (movement amplitude reduction).

Early indicators can be observed in distal muscle groups with manifestations

of reduced dexterity and impaired repetitive finger movements or prone-

supination of the hand. In more advanced stages of the disease, akinesia

takes over, making it difficult to perform movements of daily life.

postural changes occur as a result of a balance disorders present in PD pa-

tients. Balance is controlled by the extrapyramidal motor system from

information derived from vision, the vestibular system and the proprio-

ceptive system. There is a sensation of balance when the visual image is

stabilized. Patients with Parkinson’s disease tend to perceive as "good" a

position that is actually pathological, thus causing the postural changes.

As the disease progresses, there is also a loss of postural straightening

reflexes.

These primary symptoms, that, if lateralized, can be clinically diagnostic of

PD [10], are often accompanied by various non-motor symptoms related to

the neurovegetative system (sialorrhea, seborrhea, constipation, orthostatic

hypotension) and psychic (depression, memory disorders). Therefore it seems

reductive to refer to PD exclusively as a motor disorder, since it is also a

neurological disease and can involve all the districts in which neurotransmitters

are present. In patients with Parkinson’s disease, in fact, in addition to the

motor symptoms mentioned above, there is also a degeneration of neurons

in the substantia nigra of the brain that are responsible for the production

of dopamine (DA), which is in turn responsible for the activation of circuits

that control movement and balance. In the substantia nigra and noradrenergic
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locus coeruleus of PD subjects, single or multiple, spherical, acidophilic masses

presenting a dense nucleus with a peripheral halo, termed "Lewy bodies", are

frequently found [3]. Consequently, a definitive diagnosis of Parkinson’s disease

requires pathological confirmation of two invariant features, namely the presence

of the Lewy bodies (LBs) in regions of predilection and a reduced number of DA

neurons in the substantia nigra pars compacta [10]. Furthermore, in order to

assess the presence of PD, in addition to the classical clinical diagnosis which

has a high margin of error [12], it is possible to achieve greater specificity using

functional neuroimaging techniques for evaluation, such as positron emission

tomography (PET) or single photon emission computed tomography (SPECT)

[3].

1.3 Treatment and rehabilitation

There are many therapeutic options for treating PD, some of the most common

ones are:

• anticholinergic treatment, the first pharmacological treatment used for PD

[3], now specifically used for resting tremors [7]

• pharmacological substitutional treatment with levodopa, a precursor of

dopamine, and, more recently, with substances that act directly on dopamin-

ergic receptors

• deep brain stimulation (DBS) or other surgical approach

• rehabilitation

Choosing one or more of these options depends on the type of Parkinson, the

stage of the disease and they are in some cases applied together, depending on

the need. For example, rehabilitation is strongly recommended in every stage of

the disease and independently on the motor symptom of the patient [7].

In general, levodopa is used to treat motor symptomps in almost all PD subjects,

whereas for young subjects with prominent tremor, anticholinergic agents can
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be used, being mindful of potential cognition-related adverse events.

Selection of the optimal therapy requires a thorough evaluation of the risks and

benefits of each possible treatment. Levodopa, for example, has shown excellent

results in terms of functional improvement, such that patient response to this

therapy has itself become one of the diagnostic criteria for PD [3]. However,

levodopa has increased dyskinesia risks, particularly with higher doses. In

contrast, therapy with monoamine oxidase-B (MAO-B) inhibitors and dopamine

antagonists is associated with lower risk of dyskinesia but, at the same time, has a

lower efficacy [7]. As the disease progresses, PD subjects could require even higher

doses of drugs and a possible addition of other therapies with complementary

mechanism of action, like DBS or therapy with levodopa-carbidopa enteral

suspension (via percutaneous endoscopic transgastric jejunostomy). However,

thalamic procedures (unilateral focused ultrasound thalamatomy or DBS) are

usefull only for the tremor but not for other parkinsonian features [7]. A general

summary diagram describing a proposed therapy for Parkinson’s motor symptoms

is shown in figure 1.3.

Currently, there is no pharmacological therapy that prevents or delays PD

progression, for this reason a physical therapy is considered as an adjuvant to

pharmacological and surgical treatments in a way to maximize functional ability

and minimize secondary complications [13]. Indeed, there is much evidence

that rehabilitation and exercise bring beneficial effects to people quality of life,

especially that of the elderly and those with neurological disorders [7]. Moreover,

exercise has been associated with a reduced risk of developing PD [14].

There is no unique physical treatment for PD. A wide variety of rehabilitation

methods can be found in literature, such as general physiotherapy that includes

stretching, muscle strengthening, balance and postural exercises, gait and aerobic

activity, or other types of training as resistance or strength training [7], treadmill

training [15] and underwater training [16]. Certainly, different exercise approaches

may enhance different motor aspects of PD. For example, resistance training can

increase muscle strength and thus improve gait performance, while stretching

can help to adjust the abnormally flexed posture in PD [13]. Moreover, a study
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Figure 1.3: Proposed general approach to treat motor symptoms in Parkinson disease (M. J.
Armstrong and M. S. Okun, [7]).

on treadmill training [15] reports significant results of clinical benefits on motor

symptoms in PD subjects undergoing high intensity training. Furthermore, it

is known that providing external temporal or spatial stimuli, can facilitate the

initiation and maintenance of ongoing motor activities, particularly the rhythmic

ones, such as gait, as they may help to compensate the defective generation of

internal signals in PD that usually lead to loss of balance.

Alongside rehabilitation strategies, non conventional strategies, like music and

dance therapy or Tai Chi, were tested too. Tai Chi has shown an enhance of

postural control and a decrease in falls [13].

PD is characterized by relatively large phenotypic heterogeneity, and it is not

known yet whether there are types of PD that are better suited to specific therapy.

Nevertheless, a relatively preserved ability in motor learning has been found in

subjects with PD, although consolidation of learned material may sometimes be
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defective. Thus, both frequency and intensity of training are very important,

since these elements seem to have an influence on short and long-lasting effects of

motor performance [13], and so a poor training schedule might limit the benefit

of the physical therapy or its maintenance over time.
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Chapter 2

Motion capture and gait

analysis

Newtonian mechanics is the oldest branch of physics devoted to the study of

motion, the forces that causes the motion and the internal forces that act within

the body. Biomechanics is the application of Newtonian mechanics to the study

of the neuromuscular skeletal systems and one important branch of Biomechanics

is the motion analysis of human gait. Indeed, Biomechanics is widely used in

orthopedics, physical medicine and rehabilitation characterizing both functions

and dysfunctions of the muscular skeletal system [17].

2.1 History

The science of gait analysis has its origin in Europe in the 17th century even

if the first know written reference to the analysis of walking was made by

Aristotle around 384-322 BCE [18]. The discoveries done in this field provided a

solid scientific foundation for the understanding of human walking. These are

attributed to some important scientists like Borelli who in De Motu Animalium

(1679) analyzed the action of the muscles, the movement of the limbs, the
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activities of man and animals and some aspects of human physiology, Galvani

who wrote De Viribus Electricitatis In Motu Musculari (1791), where the earliest

electrical experiments on animals’ muscles can be found, Newton to whom

are attributed his dynamic laws and study of forces in Philosophiae Naturalis

Principia Mathematica (1687), and many others like Descartes, Marey, Carlet and

the Weber brothers. Then, in the 19th century also Braun and Fischer created

a representation of the gait of military subjects carrying backpacks employing

the principles of Newtonian classical mechanics, the coordinate geometry of

Descartes, and mathematical concepts of Borelli for muscles action estimation

[2].

The basis of modern gait analysis originated in Europe during the Renaissance.

At that time, Cardan studied the properties of three-dimensional angles, Galileo

introduced deductive reasoning by experimental observation, and Descartes

devised an orthogonal system for describing the position of objects in space. A

few years later, Borelli performed the first experiment in gait analysis. However,

in Borelli’s work there were some mistakes in physical laws which were correctly

formulated by Isaac Newton only few years later [18].

In 1836, the Weber brothers combined knowledge of mechanics and physiology

in their publication Mechanik der Gehwerkzeuge in which they reported the

presence of a correlation between walking speed and step cycle parameters

including stride length and cadence. Moreover, they were the first ones to

provide illustrations of limbs segment position at different walking instants. In

the same period, electrophysiology was born in parallel with human movement

studies, and attributed to Duchenne, who was at the time a student of human

movement [18].

In 1872, Gaston Carlet designed the first shoe with three pressure sensors placed

inside the sole and published the first accurate description of healthy human

gait. Then, in addition to human movement, animal movement was also studied,

expecially that of the horses. Carlet’s teacher, Jules Etienne Marey, adapted

pressure measurement devices in order to detect equine cannon bone pressure

during gallop. Hence he discovered the existence of a short period when no
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Figure 2.1: The Horse in Motion by Eadweard Muybridge, 19th June 1878 (Wikimedia
Commons, [19]).

hoof rests on the ground. In order to further prove this findings, Stanford and

Muybridge took multiple pictures of the whole trot (Fig. 2.1); their work was

published in 1878 [18].

In the following years, Marey refined the imaging technique and used it for human

movement pathological studies. Then, his work was continued by Charles, Robert,

Jean and Pierre Ducroquet, culminating in the book Walking and Limping: A

study of Normal and Pathological Walking (1965). Further, Mary introduced the

use of force plates during gait analysis, though the first commercially available

force plates were developed in 1969.

Marey, however, always focused on the study of two-dimensional measurements.

Braun and Fisher were the first ones to conduct a three-dimensional analysis of

gait, and their work remained a definitive study of kinematics for several decades

[18].

In 1945 a group of 40 scientists of the University of California at Berkeley worked

on the study of amputee gait, introducing the need of distinguishing normal

from pathological gait. Through their studies, gait analysis began to be used
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as a clinical tool. Later, two surgeons, Jacquelin Perry and David Shutherland,

separately made major contributions to the development of clinical gait analysis

by combining EMG with kinematics and kinetics. Dr Perry, then, focused on

lower extremity function of human body, developing an unique instrumentation

for monitoring EMG, foot floor contact, joint motion and energy cost of walking.

This incorporation of computer processing of foot switch and EMG helped the

identification of some gait parameters, like stance and swing percentages, walking

velocity, stride length and stride frequency [2].

Nowadays, with technology development and a growing interest in motion

analysis, motion capture is becoming more and more sophisticated allowing for

an accurate identification of walking instants and a comprehensive understanding

of the muscle activation associated with them. Moreover, such systems are

capable of measuring in real time the three-dimensional movement of a subject,

with accuracy greater than half a millimeter.

2.2 Instrumentation

Motion capture systems aim to objectively measure the movement of body

segments (kinematic) and, in some cases, ground reaction forces and joint

moments (kinetics), and muscles activation (EMG). Motion capture is able to

reconstruct trajectories of anatomical landmarks in space during a movement

execution. The most common method requires a laboratory where the analysis

is performed. However, the expanding use of wearable devices [20] and the

introduction of innovative methods have facilitated motion capture analysis

outside of a laboratory.

Currently, many tools support motion capture analysis. The use of these tools

depend also on the type of application for which motion capture is intended

(clinical, sports, research, movies, etc.).

The systems used for acquisition can be divided into two main groups: optical

and non-optical systems.
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2.2.1 Non optical systems

Non-optical systems are systems that do not require the use of cameras. These

systems use sensors attached to body parts to send data about their position in

space. They can be divided into different categories: mechanical, electromagnetic

systems and inertial.

Mechanical systems use electrogoniometers or rigid structures attached to the

joints of the body that articulate as subject’s body in motion [21]. These systems

are low cost but they are quite cumbersome and could reduce the naturalness of

movement.

Electromagnetic systems are composed of small electric coils, which acquire

signals along the three space dimensions. Measurements are detected by a

continuous magnetic flux generation and an external generation of a small

voltage or current due to the movement [21].

Inertial systems are based on the use of small sensors containing accelerometers

often combined with gyroscopes and magnetometers. Accelerometer consists of

a mass whose weight is known and which is free to move inside the instrument

due to the inertial forces. This instrument is capable to transduce acceleration

into an electrical signal; therefore, for subjects in static position, is able to

measure angular rotations. In order to analyze dynamic movements, instead,

gyroscopes and magnetometers are combined with accelerometers through sensor

fusion algorithms. Generally, these systems are compared to the optical ones as

reference criterion or used in conjunction with them to complement data [21].

2.2.2 Optical systems

Optical systems are systems that requires the use of cameras. There should be

at least two cameras to be able to calculate the three-dimensional position of

a point and they have to be in a fixed position. For each camera it is possible

to draw the straight line passing through the optical center of the lens to the

position were the point is projected in the sensor. The intersection of two of

these straight lines drawn for the same point for two cameras set at a fixed
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distinguishable. In contrast, passive markers are retroreflective, therefore infrared

cameras are used with this type of markers. The reflective material that covers

the surface of the markers is called Scotchlite and it reflects infrared light

emitted by diodes mounted on cameras back to the camera lens. There are

pros and cons on the choice of active or passive markers. Active markers are

immediately and automatically recognizable but require a local power supply,

on the other side passive markers are to be recognized on the basis of the initial

static positioning and a "model" of anatomic arrangement is required but they

not require continuous power supply [23]. Although there are many advantages

to using active markers, to date the most widely used ones are passive markers,

since current hardware, and software, have nearly eliminated problems with

marker identification and tracking, thus removing the principal objection to

passive marker systems [24].

Marker-based optical systems are principally used for gait analysis since they

are known to provide accurate results. Generally, eight or more cameras are

necessary for full-body capture through different marker sets comprising around

40 markers applied to specific anatomic landmarks [21]. Markers are attached to

subject’s skin following specific protocols. Gait analysis protocols presented in

literature are different in number of markers to be applied and in positions where

they have to be attached but they all lead to define the position and orientation

of the body segment on which they are placed. A good choice of protocol is

important for the purpose of the experiment and for ensuring reproducibility of

marker application. One of the major problems related to the use of the marker-

based technique is soft tissue artifacts, for this reason all protocols provide an

arrangement of markers aimed at minimizing this error, some providing the

application of markers on anatomical landmarks where the movement of the

bone under the skin is minimal, others act directly on the static calibration

of the position of the marker during the execution of the two extremes of the

movement [23].

In the laboratory configuration, cameras are placed at a fixed distance from

each other and all directed toward the center of the room. In some cases, image
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Figure 2.3: The human movement analysis laboratory. Basic measurement instruments are
depicted together with their systems of axes (p: photogrammetry; d: dynamometry). If level
walk is analyzed, the motor task frame may coincide with the frame of one of the two force
plates (A. Cappozzo et al., [25]).

acquisition is combined with the use of two force plates placed in the center of

the laboratory with known position with respect to the reference system. An

example of the setup of a laboratory for gait analysis is shown in Fig. 2.3.

In gait analysis, the subject is asked to walk back and forth across the room.

When he/she steps on the platform, it is possible to determine force and moment

components acting during the foot stance phase and combine this information

with the body segments position at each instant. In addition, another type

of information is usually combined; in fact, in some cases during gait analysis,

EMG acquisitions are also performed. In this case, EMG sensors are applied on

the subject’s skin with reference to the position of the muscles of lower body.

From these measurements, it is possible to associate each instant of step cycle
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with the presence of certain force and moment components and specific muscle

activations.

Markerless optical systems

Markerless optical systems are able to reconstruct subject movements without

the use of markers. They consists of sophisticated computer image processing

techniques that reconstruct the three-dimensional motion from video of cameras.

The employed cameras generally comprise one or two regular video cameras, and

they are used together with infrared and ultrasonic sensors. This instrumentation

is also employed for videogame and entertainment and is used to identify human

forms from which to extract body segments and joints [21]. Markerless techniques

allow the reduction of errors derived from the use of markers, including soft

tissue artifacts. These artifacts can be distinguished into relative errors that

are due to relative movement between two or more markers defining a rigid

segment and absolute errors that are instead due to the movement of a marker

relative to the bone landmark it represents [23]. However, the type of cameras

used for markerless motion capture have usually lower resolution and acquisition

frequency than those used in the laboratory, thus reconstructing the trajectory

of a body segment during gait results in less accuracy [21].

2.3 Gait analysis

The most common application of movement analysis is gait analysis [17]. The act

of walking relies on the repetition of a sequence of limb motions to simultaneously

move the body forward while also maintaining stance stability.

Nowadays, there are mainly three different approaches for the definition of

significant gait events [1]:

• subdivision of gait cycle according to the variation of reciprocal floor

contact by the two feet

• use of time and distance qualities of the stride
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• events functional significance identification within the gait cycle

2.3.1 Gait cycle division

During walking, the support of the right foot is alternated with that of the left

one. While one foot is resting on the ground, the other one moves forward until

it advances to a new support site. The action is then repeated in a reciprocal

and alternating manner.

Since walking is a cyclic movement, a single sequence performed by a limb is

defined as a gait cycle (GC). Consequently, the instant of beginning and end of

the cycle should be identified. Thanks to the fluency of movement, any instant

could be defined as the onset of GC. However, the starting point of GC is

generally identified in the first floor contact of the foot. For healthy subjects, this

coincides with the first heel strike [1]. The end point of the cycle then coincides

with the next heel strike.

GC can be divided into two periods: stance and swing phases (Fig. 2.5). The

former identifies the entire period in which the foot is in contact with the floor,

even partially, while the latter identifies the phase in which the foot is completely

detached from the ground and moves forward. The stance begins with the

initial contact of the foot and ends when the foot is lifted off the ground, which

corresponds to the beginning of swing phase. Stance period can be divided into

three different phases, distinguished by the presence or absence of the stance of

the controlateral foot. The first and third parts of stance phases are characterized

by a double limb support, indeed both the feet are in contact with the floor.

In contrast, in the second phase only the foot taken in exam is in contact with

the floor. These phases are defined in order: initial double limb stance, single

limb support and terminal double limb stance [1]. Initial double limb stance

begins with the initial contact of the foot, single limb support when the opposite

foot is lifted and terminal double limb stance with the initial contact of the

controlateral foot.

29





from the concept of GC are usually defined. They are: cadence, speed, step

width and single support percentage.

Cadence is the frequency of walking and the reciprocal of stride time, it is

generally expressed in steps per minute. Speed represents the mean speed of

the center of mass of the subject over the course of the gait. Step width is the

distance between two feet when they are both on the floor perpendicular to the

direction of walking. Lastly, single support percentage is the percentage of the

GC time supported by a single limb [27].

Primitive interpretations of a subject’s gait may be conducted solely using

spatio-temporal parameters. Most of the times they are integrated with all

other information and signals acquired during the performing of gait analysis.

However, comparison of those parameters with that of healthy subjects could be

a diagnostic tool [27].

2.3.3 Phases of gait

A single stride contains 8 functional patterns (Fig. 2.5), that are [1]:

Initial contact (0-2% GC)

This phase includes the instant in which the foot touches the floor and the

reaction of body to the weight transfer.

Loading response (3-12% GC)

This phase is part of the initial double limb stance and ends when the

other limb is lifted for swing.

Mid stance (13-31% GC)

This phase is the first phase of single limb support. It begins as the

controlateral foot starts the swing period and ends when the body weight

is aligned with the forefoot.

Terminal stance (32-50% GC)

This phase begins when the heel rises and ends when the other foot reaches

31



the ground. This last event coincides with the end of single limb support

interval. In this phase, the weight of the body goes forward to the forefoot.

Pre-swing (51-62% GC)

This is the final phase of stance. It begins with the initial contact of the

other foot and continues until ipsilateral toe off. In this phase the body

prepares itself to a transfer of weight on the other foot and contributes to

the progression of forward movement while preparing the foot to swing.

Initial swing (63-75% GC)

This phase is the first one-third of swing period. It begins as the foot is

totally lifted from the floor until the swinging foot is opposite to the stance

foot.

Mid swing (76-87% GC)

This phase is the middle third of swing period. It begins when initial

swing ends and continues till the swinging limb is forward and the tibia is

vertical.

Terminal swing (88-100% GC)

The last phase of swing and of the entire gait cycle. It starts when the

tibia is vertical and ends when the foot touches the floor.

Patterns from 1 to 5 are part of stance period, while patterns from 6 to 8 are

of swing period. Each pattern directly identifies the functional significance of

the different motions occurring at the individual joints. The phases of gait

also provide a means for correlating the simultaneous actions of the individual

joints into patterns of total limb function. This is significant for interpreting the

functional effects of disability [1].

2.4 Underwater gait analysis

In recent years, the application of motion analysis in environments different

than the one of the laboratory gradually increased. Therefore, in addition to
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Figure 2.5: Functional division of gait cycle based on the work of Perry and Burnfield (2010)
(ProtoKinetics, [28])

the opportunity of conducting motion analysis outdoors, it application is also

performed in aquatic environments, usually in swimming pools.

The application of gait analysis in aquatic environment is due to the important

role gained by both study on swimmers and in-water rehabilitation. Indeed, the

aquatic environment provides an alternative option for active rehabilitation since

it is shown to be effective in changing mobility, quality of life, dynamic balance

and pain in some musculoskeletal conditions [29].

Underwater motion capture requires a few caveats compared to traditional

stereophotogrammetric motion capture. This is due to the fact that in water it is

not possible to use neither infrared cameras neither standard spherical markers.

The latter can not be used because they can lead to problems of bulk and passive

resistance of water since they have a non-negligible volume. Moreover, there is

also an illumination issue in video recording, since in water there is presence of

bubbles and turbulence that could affect the marker visibility. To that, in an

aquatic environment is preferred the use of bi-adhesives or non-reflective markers
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drawn on the subject’s skin. Consequently, the impossibility of using of infrared

cameras underwater and the consequent use of non-reflective markers leads to

the use of conventional underwater cameras which must be synchronized with

each other, and then also the resulting video recordings should be analyzed using

a specific feature tracking software [30].

Moving in this direction, some underwater cameras were tested to verify that

they provided results comparable to those obtainable on land. In [31] the authors

tested GoPro Hero3+ for 3D reconstruction resulting in low variability and good

accuracy in both the environments and better results as the image resolution

increases.

Walking in water is supposed to be quite different to on land gait, due to

buoyancy and water drag. Thus, considerations on spatio-temporal parameters

during underwater walking have also been done [29, 32, 33]. The most evident

results for self-selected walking speed were that subjects generally walk slower

and take shorter steps in water, cadence resulted lower compared to on land

GC. Furthermore, also the maximum walking speed resulted lower in water than

on land. From a kinematic point of view, the range of movement of subjects

walking at self-selected speed were similar in both environments. Then, force

outcomes showed a consistent reduction in vertical ground reaction force in water

at self-selected speed of walking in both weight acceptance and the propulsive

phase of stance. Finally, average and peak of muscle activity at self-selected

speed were shown to be similar in water and on land environment in the majority

of studies and muscle groups, whereas they appear lower for walking at maximum

speed [29]. In the work of Barela et al. [33], however, muscle activation patterns

in water versus on land were shown to be different for most of the muscles

examined. This was justified by the fact that the subjects in water walked at a

self-selected speed, so it was likely that the speed of walk in water was much

lower than on land, in addition, the reduction in weight in the water due to

buoyancy may lead to a decrease in the intensity of the load and propulsive

events requiring less muscle activation. Indeed, it is known that different speed

of walking can influence spatiotemporal parameters and muscular activation
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patterns [1, 33, 34, 35].

2.5 Gait analysis in Parkinson’s disease

Healthy gait appears coordinated, efficient and effortless. A presence of either a

motor or a neurological disease, or a trauma, can alter the precision, coordination,

speed and versatility that characterize normal walking [1]. Thus, clinical gait

analysis assumes great importance since there are many subjects affected by

motor disorder which has its origin in neurodegenerative disease such as PD,

multiple sclerosis, cerebellar ataxia, myopathies, brain tumours and some types of

dementia. The comparison of spatio-temporal parameters between pathological

and healthy subjects is a good tool for various application in clinical field, indeed,

the first symptoms of neurological diseases generally comprise abnormality in

walking, inability to coordinate balance, slower pace and frequent falls [36].

Many studies about gait of subjects with Parkinson’s disease have been carried

out [16, 37, 38, 39]. These works provided evidence for the existence of a central

disorder in PD subjects in the correspondence between movement amplitude

selection and execution, leading to a reduction in stride length, and significant

variations in movement amplitudes [39]. In addition, compared with healthy

subjects, reduction of stride velocity, increased gait cycle time and longer dura-

tion for stance and double support were observed in PD subjects [38]. Moreover,

shuffling gait and freezing were observed, and are known to affect stride parame-

ters. Freezing is a common problem for PD subjects, in particular at advanced

stages. It consist in patient inability to perform walking or other motor tasks

and, during gait, it occurs primarily when attempting to start walking, but it

can also arise when turning or walking through a narrow passageway or doorway.

Its possible causes can be identified in a combination of different factors such as

an increasing inability to generate stride length superimposed on a dyscontrol

of the cadence of walking [40]. Hence, increased double stance time could be a

consequence of freezing, as PD patient may experience postural instability and

thus keep both feet in contact with the ground, stopping or trying to drag them.
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However, since walking abnormalities in PD are mostly due to akinesia, that

is basal ganglia dopamine deficiency-related symptom, and to a lesser extent

rigidity, some studies reported how drug treatments [39] or subthalamic nucleus

deep brain stimulation [38] can improve some gait parameters of PD subjects.

The walking of subjects with PD, can also be used as a rehabilitation tool. Ac-

tually, rehabilitation approaches for PD are characterized by wide heterogeneity.

This is because motor rehabilitation can be considered as a relearning process on

how to move, indeed motor learning in PD subjects is feasible, but it is impaired

in comparison to normal population [13]. Thus, cognitive status is a crucial

factor in the outcome of rehabilitation.

An emerging rehabilitation approach for PD is underwater walking training

[41]. As reported by The American Parkinson Disease Association [42] there are

various advantages for PD subjects on performing water exercises. The first one

reported is that buoyancy provides support to weak muscles for reassured balance

and improves posture simply by standing in the pool, so the patient experiences

a reduced fear of falling and movement is perceived as easier. Then, there is a

muscular stiffness reduction and an improved posture and motor control. Fur-

thermore, the freedom of movement promotes an increasing in range of motion.

The latter is confirmed in work by Volpe et al. [16] where subjects performed a

three-week underwater training session. The training consisted of walking at a

self-selected speed back and forth within the pool for 40 minutes per day at the

same time each morning. Movement analysis was performed before and after the

training. From this, spatiotemporal parameters were extracted together with

joint range of motion and compared. The results showed significant differences

on spatiotemporal parameters and sagittal plane lower limb kinematics.
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Chapter 3

Electromyography

Electromyography (EMG) is the recording of the electrical activity of muscles.

This can be performed using different types of sensors: invasive or non-invasive

electrodes. The former ones are usually composed by a needle or a fine-wire

electrode that is inserted inside the muscle, while the latter ones are electrodes

that are placed directly on the surface of the skin [43]. The detection of electrical

activity by invasive electrodes is more accurate, however the use of surface EMG

is often preferred as it is not painful to the subject and it is not necessary to

anesthetize the subject before placing the electrode [44].

Therefore measuring the electrical activity of muscles during a task execution

allows for the estimation of internal forces that cause the movement. EMG

sensors are often integrated and used together in a more complex motion analysis

system. Hence, the use of EMG as a clinical assessment tool is increasing its

popularity.

3.1 Muscle physiology

Muscles can be classified according to their tissue type: cardiac, smooth, and

striated (or skeletal). Unlike smooth muscle and cardiac muscle, skeletal muscle

is under voluntary control [45].
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Skeletal muscles are the most prevalent muscles in the body and are the re-

sponsible for the movement of the body’s limbs. These muscles are attached to

bones by tendons, and they are surrounded and supported by dense connective

tissues, which are thin fibrous membranes called epimysium (or fascia) [46]. The

muscle fiber is identified as the structural unit of skeletal muscle. It is a thin

structure ranging from 10 to 100 µm in diameter and from a few millimeters up

to 40 cm in length. A fascicle is defined as set of more muscle fibers arranged

together. Fasciculi are the first subdivision of skeletal muscles, and they are

surrounded by perimysium, a sheath formed by extensions of the epimysium into

the muscle [46]. Each muscle fiber is formed by a bundle of thinner myofibrils [45].

The myofibrils are composed by a series of sarcomeres arranged end-to-end and

composed by proteic filaments. Each sarcomere consists of filaments composed

by two proteins: actin and myosin. Due to the precise arrangement of the

myofibrils, characteristic landmarks can be identified. These are [46]:

• Z lines formed by the interconnections of the thin myofilament from adiacent

sarcomeres;

• dark A bands where actin and myosin filaments are present;

• H bands, which are lighter parts of A bands where only myosin filaments

are present

• I bands, adjacent to A bands, which instead contain only actin filaments.

The skeletal muscle organization is shown in Fig. 3.1.

In order to produce movement, muscles contract. During muscle contraction, the

length of actin and myosin filaments does not change, but they slide over each

other, resulting in a decrease in the width of H and I bands and the distance

between Z lines, thus causing the shortening of the length of the muscle [45].

This mechanism of muscle contraction is due to the neat arrangement of actin

and myosin forming cross-bridges between them (Fig. 3.2). The force generated

by filaments sliding is transmitted both longitudinally and laterally within the

fiber, reaching the Z line and continuing until myotendinous junction, tendons
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Figure 3.1: The structure of striated, or skeletal, muscle (Britannica, [45]).

Figure 3.2: The
structure of actin
and myosin fil-
aments (Britan-
nica, [45]).
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and joints [47]. The force generated by muscle contraction depends on the

pennation angle, which is the angle at which muscle fibers insert into the tendon,

on the muscle size and on the number of actin-myosin cross-bridges formed.

In order to briefly describe the causes that generates muscles contraction, the

use of energy, in the form of ATP, is crucial in these phases. It allows to generate

the sliding of myosin filaments heads of on those of actin and then to create new

bonds between them in a different point from the previous one, thus promoting

the approaching of the ends of the sarcomere. ATP binds to myosin head and is

hydrolyzed, cleaving the cross-link with actin. The release of phosphate from

ATP due to hydrolysis provides the necessary energy for myosin to move to

a new, closer actin molecule. As a result of this power stroke, force is then

generated. The amount of force that is generated by the muscle depends on

multiple factors. These include dependence on the length of the muscle at the

time of activation and on the velocity of the movement [47].

3.1.1 Origin of electromyographic signal

The electrical component has origin during contraction, however, also when

muscle is at rest, it has been shown the presence of a resting potential. The

muscle resting potential, is defined as resting membrane potential, and it is due

to the different ion concentrations of extra and intra cellular fluids. Intra and

extra cellular fluids are different for composition, they are present in and between

muscle fibers respectively, and are divided by a semipermeable membrane, called

sarcolemma. Sarcolemma surrounds muscle fibers and present channels for ion

transport [46].

Intracellular fluid has high concentration of potassium (K+) and an organic

anion (A+), while extracellular fluid has high concentration of sodium (Na+)

and chloride (Cl−). Therefore, because of the higher concentration inside the

sarcolemma, K+ diffuses through the membrane to extracellular fluid, however,

organic anions are too large to flow in the membrane channels. Similar problems

have Na+ ions that have difficulties in flowing through membrane due to their
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size. Because of this, a positive charge is then produced outside the membrane,

creating a voltage difference of −80 mV between inside and outside the muscle

fiber and thus achieving equilibrium in the resting state. Variations from this

equilibrium state occur when an internal or external stimulus occurs [46].

3.1.2 Motor unit action potential

All voluntary movements start from the brain. Muscle contraction is triggered

by cortical signals that travel from the brain to the motor unit needed for the

movement. Each motor unit, consists of a set of muscle fibers, and it is innervated

by a motor neuron. Each motor neuron can innervate one or more motor units;

for this reason some muscles appear to work together in a coordinating manner

[48]. When a muscle fiber contraction is requested, the central nervous system

initiates a depolarization in a motoneuron. This depolarization is transmitted

along the axons of the neuron to the end plate of the muscle fiber, where the

neuro-muscular junction is located. The latter is the synapse between motor

neurons and skeletal muscle fibers. Here, acetylcholine is released in proximity

to the active zone of the muscle where receptors for this chemical are present.

This event causes a subsequent, rapid depolarization of the muscle fiber. Each

depolarization and subsequent repolarization of the muscle fiber represents thus

an action potential [46].

When a muscle fiber is depolarized, a potential difference is established between

its active site and adjacent areas. Consequently, to restore balance, a ionic

current is generated and propagated to the inactive areas. Therefore, the action

potential propagates in both directions throughout the muscle fiber from the

initial active region to the adjacent regions. This is called "muscle fiber action

potential". Finally, this action potential, propagates also through the adjacent

fibers to the whole muscle, allowing muscle contraction to occur [46].

EMG is able to detect action potentials only of an entire group of fibers, that

compose a motor unit. Therefore the overall action potential of a motor unit,

that is the summation of single fiber action potentials, is called the motor unit
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Figure 3.3: (A) Two different motorneurons that innervate various fibers of a single motor
unit. Each fiber action potential contributes to MUAP generation. (B), (C) and (D) represent
different MUAP shapes (M. Raghavan et al., [51]).

action potential (MUAP).

Surface EMG is then the recording of a train of one or more MUAPs in time

domain. For example, if a generic function f(t) for a single MUAP can be

assumed, a MUAP train can be then described as follows [49]:

MUAPTj(t) =
∑

i

kj f
( t − θij

αj

)

(3.1)

where i is the number of a single MUAP, j is a specific motor unit, kj and αj

are an amplitude and a scaling factors, respectively, and θij are the occurrence

times of the MUAPs of the motor unit j.

Furthermore, each MUAP can have different shapes and duration. The shape can

vary as a result of the position of the electrode on the skin and the contribution

of the action potential of the individual fiber (Fig. 3.3). Instead, MUAP duration

varies from approximately 5 to 15 ms and is defined as the time from the initial

deviation from baseline to the final return of the MUAP to baseline [50].

43



3.2 Surface EMG

Internal forces created by muscles are responsible for externally measured forces.

EMG allows to record the electrical activity of the muscle placing sensor on

subjects’ skin or directly within the muscle, using a needle. EMG electrode can

be of different types and dimensions, indeed, according to the size, a sensor

allows to detect the potential of a smaller or larger muscle area [23].

In surface EMG, sensors are directly applied on the region of skin in correspon-

dence to the muscles under study. Surface EMG records the summation of fibers

action potentials conducted from the muscle to the skin surface through ions

movements. This recording allows for the detection of an attenuated version of

the muscle action potentials since both skin and tissues act as a filter for the

signal [46]. A typical EMG signals has amplitude between 1 µV and 1 mV and

frequency content from 1 Hz to 500 Hz [23].

There are different configurations of surface EMG sensors: monopolar, bipolar

(single differential) and double differential.

Monopolar configuration requires to apply a single electrode on the region of

the skin closest to the muscle belly and a reference electrode to a region or

prominence of bone. Bipolar configuration, instead, requires the use of two

electrodes for measuring the EMG of the same muscle. A good choice of inter-

electrodes distance (usually 1 or 2 cm) and electrodes position is determinant on

the resulting quality of the acquisition [52]. Then, as for monopolar systems, a

reference electrode is placed on a bony prominence. Finally, double differential

configuration is similar to the single differential one but with one more electrode

[23]. These last two types of configurations, since they involve the use of more

electrodes, provide the advantage of removing common component and amplifing

the differential, thus reducing noise more effectively than the monopolar configu-

ration.

EMG acquisitions can provide information about the state of muscles during

the execution of a movement; good interpretation of the signal can help identify

which muscles are active and at which time interval. Indeed, muscles EMG of
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Figure 3.4: Representation of muscle activity during a gait cycle. The grey color indicates
the periods where the muscles are active during the gait cycle (A. Bonnefoy-Mazure and S.
Armand, [54]).

the lower limbs during walking is widely studied in clinical and research fields

since it provides useful information even on the differences between healthy and

pathological walking [1], e.g. Parkinson’s disease [37, 53].

Therefore, one of the objectives of EMG is to identify the association between

the different phases of gait and the muscle activation timing of different muscles

involved in walking. This has been largely studied [2, 54] reporting the finding

of characteristic pattern of muscle activation of healty subjects during a gait

cycle, which is shown in Fig. 3.4.

3.2.1 Noise artifacts

Plenty of factors can influence the acquisition of EMG. Indeed, noise contami-

nations are very common in this signal, specially for dynamic acquisition, and
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have different origins. First of all, the choice of single or double differential elec-

trode configuration can lead to noise reduction due to common components and

amplification of the differential one. In general, all configurations need ground

electrode to be well adherent to the skin area relative to the bony prominence

for external and internal noise reduction [23].

Another important noise component is due to movement artifacts. They often

occurred when cables are handled or allowed to move during the activity exe-

cution [46]. Moreover, when the muscle contracts its length is reduced, and so

the electrode placed on this muscle region is sensitive to skin movement, thus

registering electrical activity due to this artifact. Frequency range of this type of

contamination is usually 1-10 Hz and has a voltage comparable to that of EMG

amplitude [44].

Another source of noise in EMG is the crosstalk contamination. This type of

noise is due to the activation of muscles near to that of interest for which EMG

sensors detect the electrical activity that is erroneously attributed. Therefore,

crosstalk is an issue in particular when the aim is to determine muscular activa-

tion timing since this interpretation can be misleading. This artifact cannot be

totally eliminated, but can be greatly reduced by placing the electrode in the

midline of the muscle belly [55].

Moreover, as for all biological signals, electrocardiographic (ECG) artifacts are

always present and are the most frequent endogenous common mode sources.

They are not easy to remove since ECG frequency spectra are similar to those of

EMG [44]. However, some techniques have been implemented to try to overcome

this issue [56, 57].

Another noise component is the powerline interference, that is due to the stray

capacitive coupling between a subject and the power line source [57] found at a

frequency of 50 or 60 Hz (depending on the country). This component can be

removed using a notch filter.

Finally, anatomical, biochemical, and physiological factors can also influence

signal acquisitions. These are part of the internal noise and directly affect the

quality of the EMG. They are mainly related to muscle fibers type, number per
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unit, depth and position [44].

3.2.2 EMG data processing techniques

In order to extract useful features and information from EMG acquisition, it is

necessary to remove or, at least, reduce the noise components. Many methods

for noise removal and feature information extraction exist in the literature.

[44, 57, 58].

Usually, the raw emg signal has a low voltage bias or offset due to its characteristic

oscillation. This bias can be easily removed computing the signal mean value

and subtracting it to the original signal [23]. There is not an unique filtering

technique for EMG signals. Then, it is important to choose an appropriate

filtering technique in order to remove noise components. This choice can be done

having a look at the raw signal and its frequency component. In general, since

frequency components of movement artifacts and instability of the electrode-skin

interface are typically lower than 20 Hz a high-pass filter can be applied to the

signal in the first stage of processing. The recommended cutoff frequency for

high-pass filter is 10-20 Hz [59], however in movement, gait analysis, or clinical

situations involving patients with movement disorder cutoff frequency should

be augmented to 25-30 Hz [58, 59]. Then, high frequency noise artifacts can be

reduced using a low-pass filter with cutoff frequency in the range of 350-400 Hz

[57].

In all cases of filtering, it should be taken into account that the application

of filters causes a reduction of the amplitude of the signal and consequently a

reduction of some of its harmonics and possible loss of information, therefore for

a good choice of cutoff frequencies a trade-off is needed [57, 58].

Demodulation techniques

The EMG signal has both positive and negative components because of its

oscillatory nature and it is often rectified. The rectification consist in converting

the whole EMG signal into positive. This is done by first squaring the signal and
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then calculating its square root. Typically this technique is used for determining

a threshold that establishes whether the muscle is active or not [23].

From the rectified signal, the linear envelope of the signal can be defined. As a

matter of fact, this is extracted from the rectified signal which is filtered with

a low-pass filter. This combination is called the linear envelope detector [46].

Of course, different filters provide different envelopes. However, the low-pass

filter cutoff frequency typically ranges from 6 to 25 Hz [23]. The linear envelope

is then represented by a curve that can be more or less smooth. When the

muscle contracts the envelope increases, on the opposite when the muscle relaxes

envelope returns to the baseline. Therefore, although an increasing on envelope

curve is not always due to muscle but may be due to noise, envelope helps on

muscle activation identification by setting a threshold whose value depends on

the mean power of the background noise [60] and so give information about

the onset duration. This technique was widely applied in locomotion studies

where periodic activity is present and for which repetitions can be averaged over

an interval of time [46]. However, the choice of a single threshold is generally

unsatisfactory since it strongly depends on the choice of the threshold value

[43], thus a double-threshold detection approach has been proposed in 1998 by

Bonato et al. [61] resulting in better accuracy.

Another feature that can be extracted from EMG signal is the root-mean-square

(RMS) voltage. This is calculated in three steps: first each signal samples is

squared, then average value over a specified window length is computed and

finally square root is applied to it [23]. Hence RMS is similar to envelope but

is computed using a moving window, so it gives a linear envelope of voltage or

a moving average over time. The RMS output values provide instantaneous

measure of EMG signal power and depends on motor unit characteristics [46].

Fast Fourier transform

The envelope and the RMS of EMG signals are characteristic features of the

signal in the time domain. By transforming the signal in the frequency domain,
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additional information can be obtained. Indeed, EMG signal can be viewed as a

random stochastic process since its oscillations are produced by the continuous

contraction and relaxation of muscle fibers. These contractions can be consid-

ered in the range between 20 and 400 Hz without loss of information [59]. A

representation of signal in frequency domain can allow to find out if there are

dominant frequencies in that particular EMG trace. This can be done using

Fast Fourier Transform (FFT), that is an implementation of a discrete Fourier

transform.

In general, FFT is represented by its power spectrum as a function of frequency.

For this reason, it has been used in particular for the study of muscle fatigue

[62], since it is known that a variation in muscle force causes a modification of

the frequency content of the signal [43], resulting in a frequency shift of the

power spectrum and in its compression as the conduction velocity of the fibers

decreases during a sustained muscle contraction [63].

The two most reliable measures of power spectrum are the mean and the median

frequency [46]. The former is the average of all frequencies weighted by their

power. The latter is the frequency at which the power density spectrum is

divided into two regions with equal power, and appears to be less sensitive to

noise than the mean frequency. These parameters are linearly related to the

conduction velocity of muscle fibers and are a good tools to monitor frequency

shift [62] or determine muscle force and fatigue [63]. The Fourier transform

however assumes the stationarity of the signal, so it can be used only in cases

where it meets this condition. In general being EMG a non stationary signal the

use of different methods, like wavelet transform, can be more effective [64].

Wavelet transform

As an alternative to the Fourier transform, the wavelet transform has gained

popularity. This type of transform is linear and transforms efficiently the signal

with flexible resolution in both time and frequency domains [44]. Indeed, its

application has been found to be very effective for surface EMG signals, which

49



have non-stationary and multicomponent nature [43].

Wavelet transform (WT), as for Fourier transform, can be either discrete or

continue. Both ones are efficient in EMG signal processing and analysis. The

discrete wavelet transform (DWT) requires little time for analysis, but introduces

downsampling, while continous wavelet transform (CWT) is more consistent and

is less time-consuming [44].

Assuming that the acquired EMG signal is represented by the function in time

s(t), then the CWT of the signal can be calculated through its general formula

as follows:

CWT (a, τ) =
1√
a

∫

∞

−∞

s(t) w∗
( t − τ

a

)

dt (3.2)

where τ is a translation time index, a is a scale parameter (a > 0) related to the

frequency content and w(t) is a function called mother wavelet [49].

The tuning of parameters a and τ allows to modify frequency and time resolution

of the transform. Indeed, WTs are able to study high frequency components

with sharper time resolution than low frequency components [65]. Thus, WT is

a useful tool for EMG signal decomposition and has a huge advantage over the

Fourier transform techniques which are time invariant.

The choice of the mother wavelet to use in CWT computation, however, is

determinant for the result [66]. Mother wavelet can be considered as a band-

pass function that has different characteristics since it can assume different

time-frequency structures [44]. For this reason it also allows for multiresolution

analysis, having focus on different signal frequency components. The parameter

scale a is fundamental for extracting information at different time and scales

[66].

There is no well-defined rule for mother wavelet function choice related to specific

task execution, but it has been proved that some functions provide better results

than others in EMG processing. Some of the popular standard families of wavelet

basis functions are Haar (Fig. 3.5a), Daubechies, Coiflet, Symmlet, Morlet, and

Mexican Hat. Each of these function is different in shape and characteristics.

For example, Coiflet is ideal for data compression while Daubechies is more
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been proposed as an innovative rehabilitation strategy for the treatment of axial

disorder in PD subjects, particularly for balance and gait impairments [69].

However, in literature, there is not yet much experimental evidence to confirm

this.

A possible way to confirm the benefits of underwater walking is EMG underwater

recording. This may help to have a broader understanding of gait dynamics

during underwater walking, as it is quite different from walking on land. The

differences are mostly due to the buoyancy and water drag. So, EMG of walking

in shallow or deep water has been evaluated both in healthy [32, 33, 70] and

pathological subject [53, 69].

Underwater surface EMG is usually acquired using specific EMG sensors for

underwater acquisitions to be applied directly on the skin of the subject or using

special techniques to make them water resistant or using fine wired electrodes.

For example, some EMG sensors have a completely waterproof coating or taping

that guarantees an acquisition similar to that obtainable out of the water [71].

However, in addition to the classic observations made for surface EMG, EMG

signals acquired underwater can be affected by other sources of noise. Therefore,

in order to obtain a correct understanding of this type of signal, possible con-

founding factors due to underwater recording should be taken into account.

Rainoldi et al. [71] stated that the lack of a standard protocol for underwa-

ter recording have led to different results in underwater versus on land EMG

acquisition. Indeed, some authors found a difference in EMG amplitude when

performing the same task on land and in water, resulting in lower amplitude in

water [72, 73]. On the other hand, other authors found a greater amplitude in

the water compared to the signal acquired in dry environment [74]. However,

this may be due to multiple factors. For example, some studies acquired the

EMG signal of an isometric contraction for which only one limb was immersed

in water, while others compared the acquisitions of the entire walk for which

the body was completely immersed and consequently was subjected to a greater

drag force [75]. In addition, for underwater gait analysis, walking speed, walking

direction and existence of water current seems to influence the results [72].
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As reported from Veneziano et al. [74], there are three main factors to consider

in the aquatic environment: the buoyancy force, water temperature and the

choice of waterproofing technique. Buoyancy causes a force pointing upwards

that reduces the actual force exerted in water with respect to air. This could

explain the finding of lower amplitude in wet environment. Water temperature,

on the other hand, may affect the temperature of muscles, which normally have

a higher temperature than the skin. This occurs since the transfer of heat from

the surrounding environment to the body is more intense, and tissues closer to

the skin tend to become colder than in a dry environments. Consequently, a

decrease in muscle temperature can cause a decrease in muscle fiber conduction

velocity. Finally, the use of waterproof techniques is discussed. Indeed, to be

able to compare signals acquired on land and in water, the authors suggest using

the same waterproofing technique for both data acquisition setups. In this way,

artifact due to coating or taping can be reduced. However, the use of same

taping both on land and in water have not often been used in literature.
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Chapter 4

Materials and methods

The main goal of the research was to study muscle activations of patients with

PD before and after undergoing an underwater (UW) rehabilitation program.

The aim of this thesis instead was to study UW muscle activations of patients

comparing different methods for signal processing and muscle activity detection

in order to compare which methods work best for the signal acquired in water.

Indeed, EMG signals were acquired directly in water while subjects were walking.

Consequently, different signal processing methods were used in combination with

two muscle activity identification algorithms. These methods were then also

used for signals acquired on land (OL) from healthy subjects used as controls

(CS).

In this chapter subjects demographic data, signals acquired, the protocol used,

the conditions where data were collected and the methods applied to identify

muscles activations are illustrated.

4.1 Participants

In this work surface EMG signals acquired from 4 PD subjects and 5 healthy

subjects during walking were analyzed.
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Variable Mean value
(Unit of measurement) (± SD)

Age (years) 63, 00 (± 1, 58)

Weight (kg) 67, 60 (± 10, 76)

BMI (kg/m2) 25, 01 (± 0, 78)

Height (m) 1, 64 (± 0, 12)

Table 4.1: Healthy subjects data

4.1.1 Healthy subjects

Motion analysis was performed for 5 CS subjects and electrical signals of lower

body muscles were acquired during on land (OL) walking by surface EMG. The

average registry data of the subjects is reported in Table 4.1.

Data acquisition on CS involved the application of EMG sensors placed on

lower limbs following a mixed acquisition protocol. sensors were placed in both

right and left limbs in correspondence to the muscles belly. Table 4.3 shows the

protocol used for 4 CS, whereas table 4.4 shows the protocol used for one CS that

was the same used for PD subjects. BTS Free EMG 1000 (BTS Bioengineering

S.P.A., Italy) sensors were used with a sampling frequency of 1000 Hz.

Subjects were asked to walk at a self-selected speed in the laboratory room.

Subsequently, through the use of specific motion analysis equipment and software,

two consecutive initial contacts of the GC were identified for both the right and

left sides of all subjects. Accordingly, all EMG acquisitions were analyzed and

processed and finally muscle activation intervals during GC were identified.

4.1.2 PD subjects

In this work 4 PD subjects have been involved; their demographic data and their

clinical characteristics are reported in table 4.2.

PD subjects acquisitions used were those taken before to start the UW rehabili-

tation program of three weeks. In this program subjects were asked to walk at

self-selected speed, back and forth in a swimming pool with a level of immersion
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Variable Mean value
(Unit of measurement) (± SD)

Age (years) 72, 50 (± 11, 90)

Weight (kg) 72, 50 (± 16, 58)

BMI (kg/m2) 25, 72 (± 4, 18)

Height (m) 1, 67 (± 0, 13)

UPDRS TOT 58, 25 (± 15, 86)

UPDRS III 33, 75 (± 14, 77)

Hhoehn & Yahr 3 (± 0, 82)

Table 4.2: PD subjects data

between the mammillary line and the shoulders. The program was performed

for 40 minutes on a daily basis at the same time of day for a total of four weeks.

All participants underwent UW motion analysis before the start of hydrotherapy

program. All subjects underwent also OL motion analysis before to start the

program. However, in this work it was considered only the OL acquisition of

one PD subject, given that the exact same protocol was used for both OL and

UW acquisitions for this subject only. The protocol followed for EMG sensors

application for PD subjects is shown in table 4.4. It consisted of placing 8 Mini

Wave Waterproof (Cometa srl, Italy) EMG sensors on the skin area corresponding

to the belly of specific muscles of the lower body of the PD patients (Fig. 4.1).

These sensors sampled at a frequency of 2000 Hz. Thereafter, as for healthy

subjects, all EMG data were analyzed and processed and finally muscle activation

intervals during 3 GCs were identified.

4.2 Methods

Currently, there is no general agreement in the literature regarding the methods

for UW signals processing. Therefore, in order to assess the muscle electrical

activity of PD subjects walking in water, signal processing was performed

following some methods present in literature regarding the OL EMG analysis
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(a) (b)

Figure 4.1: OL experimental setup of PD subject.

during motion analysis. In particular, the two main methods used in this work

were:

• the double threshold statistical method of Bonato et al. [61], developed

specifically for gait analysis and which has been shown to be significantly

better than single-threshold methods;

• the technique implemented by Merlo et al. [49] based on the identification

of the action potentials of individual motor units by using the continuous

wavelet transform.

Finally, the results of these methods were compared in term of number of

activations and percentage of activations for each muscle-specific EMG during

GCs. Moreover, two different filtering techniques were employed the first using

Butterworth filter of fifth order and the second using a bandpass filter with

cutoff frequency of 30-300 Hz and 3dB bandwidth.
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Muscle’s name Acronym

Right Peroneus longus RPL
Right Tibialis anterior RTA
Right Gastrocnemius lateralis RGL
Right Extensor digitorum RED
Right Gluteus medius RGM
Right Rectus femoris RRF
Right Biceps femoris caput longus RBF
Left Peroneus longus LPL
Left Tibialis anterior LTA
Left Gastrocnemius lateralis LGL
Left Extensor digitorum LED
Left Gluteus medius LGM
Left Rectus femoris LRF
Left Biceps femoris caput longus LBG

Table 4.3: Protocol 1 for EMG acquisition

Muscle’s name Acronym

Right Tibialis anterior RTA
Right Rectus femoris RRF
Right Biceps femoris RBF
Right Gastrocnemius lateralis RGL
Left Tibialis anterior LTA
Left Rectus femoris LRF
Left Biceps femoris LBF
Left Gastrocnemius lateralis LGL

Table 4.4: Protocol 2 for EMG acquisition
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4.2.1 Experimental Setup

UW gait analysis for PD patients was performed in a swimming pool. Inside

the pool, four GoPro Hero 8 were placed just below the water level at a known

and pre-determined distance (two on one side and two on the other side of

the pool), fixed on dedicated tripods. The cameras were oriented towards the

center of the pool and their video acquisitions were synchronized later between

the different cameras using a TrackOnField software [76]. The GoPro cameras

acquired underwater videos at 30 fps. Camera calibration was performed using a

checkerboard of known size placed at the bottom of the pool immediately before

the start of each experiment.

Adhesive markers made with double colored tape were placed on the skin of

patients following the IOR gait protocol [77], and 8 EMG sensors (4 bilaterals)

were placed following protocol shown in table 4.4. EMG sensors did not require

the use of cables since they were connected wireless to the amplifier. EMG

recordings were made online and were stored in an internal memory. Sensors

were synchronized and controlled by a remote controller that allowed acquisition

to be started simultaneously for all sensors.

All sensors had a waterproof body so no additional protection was required,

whereas the electrodes required the application of a proper insulation sheath for

the waterproofing during UW acquisitions. However, one PD patient (PD1 of

table 4.5) was analyzed without the insulation sheath during both the UW and

OL acquisitions.

During the UW experiment, all PD patients were asked to walk back and forth

the pool. In addition, during the same acquisition, the patients were asked to

perform the Romberg test with both eyes open and eyes closed while remaining

stationary in the center of the pool (Fig. 4.2). The same test was also performed

during the OL acquisition of the PD patient. In contrast, the OL acquisitions of

healthy subjects did not involve the execution of the Romberg test. A general

summary of the modality of acquisition and sensors used for both CS and PD

subjects is shown in table 4.5.
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Figure 4.2: A PD subject during UW Romberg test execution

In order to identify the instants of GC in EMG acquisitions, synchronization

between EMG and video acquisitions was needed. In order to do this, a video

recording taken outside the pool was used, capturing the instant of the start of

EMG signal acquisition (whereby the light from the sensors changed from green

to red). While both the outside and underwater cameras were recording, the

light inside the pool was turned on and immediately turned off. This allows to

identify a common instant for the two cameras (external and underwater) and

to scale the time axis in order to know for which instant, according to the UW

cameras, the EMG acquisition started. An example of an entire acquisition of a

PD subject can be see in figure 4.3, where all the 8 EMG channels are shown,

synchronized with the time of the main UW camera.

4.2.2 Data Processing

The entire signal processing steps were performed using Matlab 2020a. The first

step regarded the synchronization of the time axis of UW EMG acquisitions

with the instants of the UW camera video. Then, for all subjects, the temporal
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Figure 4.3: Raw EMG channels of a PD subject during underwater walking and Romberg test
execution. The two vertical lines indicate an interval selected for the application of one of the
algorithm used for muscle activity identification in which the subject was performing Romberg
test.
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Subject ID Modality EMG sensors name fc [Hz] Channels Protocol

CS1 OL BTS Free EMG BTS Bioengineering S.P.A., Italy 1000 14 1

CS2 OL BTS Free EMG, BTS Bioengineering S.P.A., Italy 1000 14 1

CS3 OL BTS Free EMG, BTS Bioengineering S.P.A., Italy 1000 14 1

CS4 OL BTS Free EMG, BTS Bioengineering S.P.A., Italy 1000 14 1

CS5 OL BTS Free EMG, BTS Bioengineering S.P.A., Italy 1000 8 2

PD1 OL Mini wave Waterproof, Cometa srl, Italy 2000 8 2

PD1 UW Mini wave Waterproof, Cometa srl, Italy 2000 8 2

PD2 UW Mini wave Waterproof, Cometa srl, Italy 2000 8 2

PD3 UW Mini wave Waterproof, Cometa srl, Italy 2000 8 2

PD4 UW Mini wave Waterproof, Cometa srl, Italy 2000 8 2

Table 4.5: General summary of EMG acquisition modality for healthy subjects (CS) and
Parkinson subjects (PD).

instants of 3 right steps and 3 left steps performed during the UW gait analysis

for the same gait direction were identified from the video. The initial instant of

the step cycle was matched to the moment of initial foot contact on the pool

bottom and the final instant to the moment of the next initial contact of the

same foot.

The same preprocessing pipeline was applied to each EMG signal of both UW and

OL signals of CS and PD subjects. For each EMG acquisition, the mean value of

the entire acquisition was calculated and subtracted from it. Then, a notch filter

was applied to remove the 50 Hz power frequency and a first-order filter was

applied to remove heart beat artifacts. From the filtered signal obtained, two

different muscle activity identification methods were implemented and applied

for all subject acquisitions.

Double threshold detection method

The first method used for the identification of muscles’ activations was the

double threshold (DT) detector of Bonato et al. [61]. This method is a statistical

method that focuses on adjusting three main parameters: the value of the first

threshold (ζ), the value of the second threshold (ro) and the length of the

observation window (m). These parameters contribute to determine the detector
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performance since their choice is strictly correlated to the false alarm probability

(Pfa), which is the probability of misclassifying noise samples as signal, the

detection probability (Pd), which is the probability of correctly classify signal

samples albeit corrupted by noise and the temporal resolution, which depends

on the choice of the observation window length. A longer observation window

length generally increases the probability of a correct detection, but the more

it increases the lower the temporal resolution of the detector is. The second

threshold defines the number ro of m successive samples that are above the first

threshold ζ needed to acknowledge the presence of signal. The first threshold

can then been chosen to maximize the probability of detection and minimize

the probability of false alarm and it depends on signal-to-noise ratio (SNR) and

noise power.

However, since this method required knowledge of the SNR of the signal, an

estimate of this parameter was made for all signals using the algorithm described

by Agostini and Knaflitz [78]. Therefore, for each EMG channel, the steps

followed for muscle activity identification with this method were:

1. Noise power estimation (Pnoise) and signal power estimation (Psignal)

using an auxiliary time series obtained subdividing the signal samples

in M epochs constituted by r consecutive samples and considering the

normalized sum of square of each epoch. In this case, the desired time

resolution was of tresol = 5 ms so the number of consecutive samples was

set as r = fc · tresol, where fc is the signal sampling frequency, and the

number of epochs as M = N
r

− 1 for all signal channels.

2. Computation of root-mean-square value of the background noise enoise as:

enoise =
√

Pnoise (4.1)

3. Estimate the SNR (in dB) as:

SNR = 10 · log10

Psignal − Pnoise

Pnoise

(4.2)
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4. Generation of Gaussian white noise simulation using the estimated noise

power information.

5. Filtering of simulated noise with a 5th-order Butterworth filter using as

cutoff frequencies combinations of values between 15 and 20 Hz and between

465 and 479 Hz, respectively. Computation of the second threshold ro

using noise variance of white filtered simulated noise for all combinations.

Selection of the second threshold value that maximize Pd.

6. Signal filtering with a 5th-order Butterworth filter using the same cut-off

frequencies used for noise filtering corresponding to the value selected for

the second threshold.

7. Computation of the first threshold ζ value using SNR estimate of point 3

and the desired false alarm probability.

8. Application of the selected threshold ζ to the filtered signal.

9. Determination of the presence or absence of activation using a cascade post

processor. The detector starts a primary count when its logical state has

been stable for at least 30 ms. If the output level remains stable for 30 ms

the transition is accepted. Otherwise, the instant of second transition is

memorized and a secondary count is initiated.

The steps described above from 1 to 3 referred to the algorithm of Agostini [78]

for SNR estimation, while steps from 4 to 9 referred to the double threshold

method of Bonato et al. [61].

The post processor of point 9 is useful since the detector output of point 8 may

show erroneous transitions (false positives) due to spurious high levels of output

or false negatives for spurious low levels. Therefore, a post processor is cascaded

to the output in order to eliminate these erroneous transitions that generally

have a duration of few signal samples. Since it is generally accepted that a

muscle activation shorter than 30 ms has no effect in controlling the joint motion

during gait, the post processor rejects all transitions that last less than 30 ms

[61]. An example of the output of this algorithm is shown in Fig. 4.4.
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Figure 4.4: Detection of muscle activity using DT method. The green lines represent the
instants of the activation onset, whereas the red ones indicate the instants where the muscle
turns to the off state.

Continuous Wavelet Transform

Another method developed that has been shown to be effective for identifying

muscle activity is that of Merlo et al. [49]. This algorithm, unlike the DT method

which is a probabilistic method, is based on the construction of a physical model

describing the waveforms of the motor units of the EMG signal. The goal of the

method is to find where EMG signal matches the waveform of a single action

potential thus identifying the presence or absence of muscle activity. This is

done applying CWT to the EMG signal, selecting as mother wavelet the one

that best approximates the shape of an action potential.

In this thesis, the fourth-order Daubechies (db4) wavelet was used as mother

wavelet to compute the CWT of the signal (see Fig. 3.5b). This choice is justified

by a more recent article [44] which, after investigating several research studies,

has observed that better results are obtained with the Daubechies function.

For each EMG signal, the steps followed for muscle activity identification with
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this method were:

1. Filtering of the signal with a bandpass filter (3-dB bandwidth: 30-300 Hz).

2. CWT computation for the entire signal using equation (3.2):

CWT (a, τ) =
1√
a

∫

∞

−∞

s(t) w∗
( t − τ

a

)

dt

for 10 different scale parameters a and using as mother wavelet wo the

db4. The scale parameter a was varied so that the w∗ function was scaled

to remain within the physiological duration of a MUAP, i.e., between 5

and 40 ms, in this way CTW acted as a bank of filters matched to the

MUAP shape. An example of CWT computation for the 10 different scale

parameters is shown in Fig. 4.5.

3. Application of a classic event detection scheme, defined by the function

η(t):

η(t) = max
a

{CWT (a, t)} (4.3)

4. Setting of a threshold using the maximum of the function in a defined

range:

M = max{η(t)}, for t ∈ [t1noise
, t2noise

] (4.4)

th = γ M (4.5)

where [t1noise
, t2noise

] is an interval in which EMG activity is not present

and γ is a scale parameter (γ > 1).

5. Signal values above the threshold have been classified as ON and those

below as OFF.

6. Events identified and separeted by a temporal distance smaller than 125

ms were considered as belonging to the same contraction and merged. This

value corresponds to a global muscular firing rate of eight pulses per second

(pps), which is arbitrary assumed as the lowest effective muscle activity.
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Figure 4.5: CWT of the right biceps femoris EMG signal during the performance of UW
walking. CWT was calculated for 10 different scaling parameters such that the overall wavelet
duration was maintained between 5 and 40 ms. Each raw corresponds to CWT computed
with a different scale parameter a.

7. The detected events shorter than 5 ms were attributed to either isolated

MUAPs or noise related spikes and disregarded.

Therefore, the intervals for which muscle activity was present or absent were

obtained for all channels of the EMG signal.

However, all signals acquired from both healthy and PD subjects, had no

acquisition interval where only noise was acquired that instead is required by

equation (4.4). Therefore, two different intervals of signal for the calculation of

the threshold at point 4 were used and results compared. These intervals were:

• the interval coincident with the execution of the Romberg test, in which

muscle activity is assumed to be absent than during walking;
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• a noise interval extracted through the application of an algorithm imple-

mented by Ying and Wall [79] specific for rhythmic EMG signals behaviors.

The latter is based on a statistical method with an adaptive algorithm that dis-

criminates noise regions from EMG and allows multichannel data to be processed.

The method is a reinterpretation of Texton’s single threshold algorithm [60] that

roughly distinguished the amplitude of the noise region and that of EMG. In

this case, the signal for which the subject was performing only walking activity

was provided to the algorithm as the input signal, since this method works

well for cyclic signals. Parameters required for the application of the algorithm

were scaled according to authors indications in dependence of EMG sampling

frequency. At the output, the algorithm provided the regions where only noise

was present and the raw EMG signal in a form ready for further analysis. The

longest of these noise regions was then used as the interval [t1noise
, t2noise

] in

(4.4). An example of the application of the method described above that uses

this noise interval is shown in Fig. 4.6.

Another parameter to set was the scale parameter γ of equation (4.5). The

choice of this parameter was made following the results reported by Merlo et al.

[49], i.e. using a low gamma (γ = 1.1) in case of low SNR and higher γ in case

of higher SNR (γ = 1.6). For CS EMG signals both γ = 1.1 and γ = 1.6 were

used and compared, while for UW signals only γ = 1.1 was used.

Finally, it was intended to verify how much the type of filtering applied in

step 1 affected the determination of muscle activation instants. Therefore, all

subsequent steps were re-performed using instead of simple bandpass filtering,

the filtering implemented for the DT method (from point 4 to point 6 of DT

method).

4.2.3 Comparison

In order to compare the results obtained from the two different methods and

type of filtering, two parameters were extracted from each step of each subject

for which muscle activity was detected. These parameters were:
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Figure 4.6: Detection of muscle activity using CWT method. The first figure shows the signal
in blue and activations are represented by red line. The second figure shows the function
η(t) computed as specified by the algorithm. The dotted green lines define the noise interval
selected as [t1noise

, t2noise
] using noise extraction method and the dotted red line represents

the threshold applied to η(t) computed using γ = 1.6 multiplied by the maximum of η(t)
within noise interval.
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• Number of activations, that is the number of times within the same GC

that the muscle goes from inactive to active state;

• Percentage of activation that represents the overall normalized percentage

over the duration of the GC for which the muscle is in an active state.

These two parameters were subsequently averaged for the three steps in order

to compare the results of the different methods used (DT, CWT, and CWT

using Butterworth filter). Then an overall average and standard deviation of

these parameters were calculated for all muscles of the CS subjects and the PD

subjects.
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Chapter 5

Results and discussion

In this chapter the results obtained for both CS (section 5.1) and PD (section

5.2) subjects are reported in terms of number of activations and percentage of

activations.

5.1 Results of healthy subjects

Instants of CS muscles activation were extracted using both DT (Fig. 5.1a) and

CWT methods. However, since Romberg test was not acquired for CS subjects,

only the noise interval identified by the noise extraction (NE) algorithm [79]

described in the previous chapter (4.2.2) was used as noise interval required for

the CWT method.

CWT was tested for two different values of γ namely γ = 1.1 (CWT 1.1, Fig.

5.1b) and γ = 1.6 (CWT 1.6, Fig. 5.2a). Finally, in order to compare the

different filtering techniques, the same filtering technique used for DT method

was used for CWT with γ = 1.6 (CWT 1.6 Butterworth, Fig. 5.2b).

All detected muscle activations were represented by reporting the EMG corre-

sponding to one GC and the time scale normalized over the entire duration of

the GC, in order to have a representation of the signal by GC percentage, as

shown in Figure 5.1 and 5.2.
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(a)

(b)

Figure 5.1: (a) RTA activity identified with DT method for subject CS2 during the GC, (b)
RTA activity identified with CWT 1.1 (NE) method for subject CS2 during the GC.
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(a)

(b)

Figure 5.2: (a) RTA activity identified with CWT 1.6 (NE) method for subject CS2 during
the GC, (b) RTA activity identified with CWT 1.6 Butterworth (NE) method for subject CS2
during the GC.
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The overall results of the number of activations and percentage of activations of

all muscles of protocol 1 are shown for subject CS5 for all 3 steps considered

in Fig. 5.3. It can be seen that there are some differences between the DT and

CWT methods in both the number of activations detected and the activation

percentage. In some cases CWT gives as output a 100% activation percentage,

this is related both to the choice of the scaling factor for the threshold deter-

mination and to the noise interval considered. In fact, decreasing or increasing

the value of the scale factor γ, results into more or less percentage of activation

respectively. In addition, the noise interval considered is selected specifically for

each muscle, therefore, the calculated maximum of the detection function may

vary depending on how the CWT signal was identified within the period as the

noise-only interval by NE method. An example of this difference is shown for

RTA of CS5’s third step. Indeed, in this specific case the choice of γ = 1.1 and

γ = 1.6 provided the results shown in Fig. 5.4.

Another noticeable point is that in some cases, CWT method failed to detect

muscle activity, resulting in 0 number and percentage of activation as it can be

seen for CWT 1.6 and CWT 1.6 Butterworth of step 2 and 3 of CS5 LRF in

Fig. 5.3. This may be due to mainly two factors. The first one was that the

chosen γ parameter turned out not to be appropriate for that specific signal

and thus the threshold was set too high to allow detection of muscle activity.

The second aspect was that, in some cases, within the noise-only interval there

could be peaks of noise component not eliminated by the filtering technique that

the CWT detected as a match for the MUAP. Therefore, the maximum of the

detection function in that noise range resulted similar or sometimes even higher

than the value of the function in the remaining range, resulting in a threshold

selection too high even in the case of low γ. Another possibility, although not

verifiable, could be a misidentification of the noise interval computed by the NE

algorithm .

Moreover, it can be seen that the application of a different type of filtering to

the signal, using the same method and scaling parameter, can also affect the

identification of muscle activations. An example can be seen for the third GC of
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(a)

(b)

Figure 5.4: Influence of the scale factor γ in the identification of muscle activity with (a) CWT
1.1 method and (b) CWT 1.6 method
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LTA of CS5 in Fig. 5.5. This difference occurs since the different type of filtering

affects the signal amplitude and consequently the noise range over which the

CWT is calculated and the resulting detection function may also appear different.

Therefore, a different maximum value M of the noise range is obtained which

leads to a different threshold selection and consequently the muscle activity

identification could be different.

Then, the two different methods using the same preprocessing technique are

compared in Fig. 5.6 for CS5 RTA of the third GC where the CWT method

appears more restrictive.

Finally, when comparing DT with CWT it can be noted that in some cases the

choice of γ = 1.1 is the one that provides results most similar to those of DT,

while in others it is that of γ = 1.6. This might suggests basing the choice of γ

according to the specific signal under investigation instead of fixing it globally a

priori.

A general summary of all muscles and for all GCs of CS subjects is reported in Fig.

5.7. Here, data obtained are reported in boxplots in order to visually compare

results obtained for the different methods employed. It can be observed that

the CWT 1.6 and the CWT 1.6 Butterworth methods in many cases provided

the same results for the number activations while there were some differences

in the percentage. Moreover, for RBF these two methods provided the same

values both for number and percentage of activation. This might suggest that

the algorithm provides similar results for the two different types of filtering.

However, it can be observed that the CWT 1.6 butterworth method did not find

activations in some GCs for both RPL and LBF, while the CWT 1.6 method

where bandpass filter was used did not find activations only for LBF.

Finally, it can be said that in most cases the DT method is the one that reports

more variability in the number of activations but less variability in the percentage

of activation. This can be seen in particular for RPL, LTA, LED and LBF. In

general, the CWT method reports more variability in percentage of activations.

This can be explained since for some GCs the percentage of activation detected

was 100% while for others GCs of the same muscle no activations were found,

78



(a)

(b)

Figure 5.5: Influence of different preprocessing in the identification of muscle activity with (a)
CWT 1.6 method and (b) CWT 1.6 Butterworth method
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(a)

(b)

Figure 5.6: DT and CWT methods comparison with the application of the same preprocessing
technique: (a) DT method and (b) CWT 1.6 Butterworth method
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resulting in higher variability. This can be observed for example in RED and

LED for both filtering methods and in RPL only in the case of CWT 1.6 with

bandpass filtering.

The results of the average and standard deviation values of number of activations

and percentage of activation are reported in tables 6.3 and 6.4 of the appendix 6.

5.2 Results of PD subjects

A similar comparison as that made for CS subjects was performed also for PD

subjects. Instants of PD subjects muscle activation were extracted using both

DT and CWT methods. This was done both for UW EMG acquisition of the

4 PD subjects and OL EMG acquisition of PD1 subject. In all these cases,

Romberg test was performed. Therefore, the CWT method was applied using as

noise interval either the interval extracted with NE method or the interval while

subjects were performing Romberg test.

CWT method was applied to UW signals setting the scale factor γ = 1.1, whereas

gamma was set to 1.3 when considering OL signals. Therefore, the methods

applied to UW signals were: DT, CWT 1.1 (Romberg), CWT 1.1 Butterworth

(Romberg) and CWT 1.1 (NE). While the methods applied to PD1 OL signals

were: DT, CWT 1.3 (Romberg) and CWT 1.3 Butterworth (Romberg). An

example of the application of the above methods to UW signals is shown in Fig.

5.8.

In Fig. 5.9 the results are reported in terms of number and percentage of

activation for all muscles of subject PD1 for 3 different OL GC. In Fig. 5.10

the results are reported in terms of number and percentage of activation for all

muscles of subject PD1 for 3 different UW GC.

Similar observations done for the results found in terms of number and percentage

of activation of CS subjects can be drawn for PD ones. Indeed, CWT methods

did not find any activation in some cases while in others they found a 100% of

activation. The possible causes of these inconsistencies could be the combination

of the choice of the scaling parameter and the selected noise interval or a presence
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Figure 5.8: DT, CWT 1.1 (Romberg), CWT 1.1 Butterworth (Romberg) and CWT 1.1 (NE)
methods comparison for RBF of PD2 during UW GC.
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of spurious peaks within the only-noise interval used for the analysis or even

an erroneous identification of the noise interval with NE method. However,

it was observed that in the OL date there were no cases in which the CWT

method found 100% activations, and there was only one case in which it found

no activations. The latter case used the CWT method with butterworth filtering.

In contrast, in the UW analysis, 100% activation and 0% activation were found

in both cases of CWT with bandpass filtering and with butterworth filtering. In

some specific cases described below, however, it is possible that the detection

of 0% activation was correct because for some patients’ EMG channels the

electrodes may have made poor contact. Therefore, although the subject was

walking, no activation was recorded and then detected. Indeed, one observation

that can be drawn from these analyses was that the UW signal appeared to be

much corrupted by noise and artifacts than the OL signal. This could be due

to the presence of confounding factors during the recording of the UW EMG

signal. For example, all channels of EMG acquisitions of PD4 were corrupted

by a regular artifact. This artifact repeated at a constant frequency of about

1,4 Hz (i.e. every 0,7 seconds), so it was probably generated by electronics or

by the acquisition system, since it was present in all the acquisition both when

the subject was walking and when he was executing the Romberg test. The

artifact is shown in Fig. 5.11 for the Romberg test execution. In addition, for

all channels acquired with the exception of RTA and LTA, sensors seemed to

have a bad contact with the subject’s skin since for almost all the acquisition

the signal was close to zero. For this reason, in the subsequent calculation of

the average for all subjects of the number and percentage of activations only

the results obtained for RTA and LTA of PD4 were included. Moreover, to PD4

signals a notch filter was applied to remove the artifact above described before

the application of CWT method, since the only bandpass filtering resulted not

enough to reduce the artifact. The results of the different processing technique

applied for PD4 signals are shown for RTA and RBF for a 10 seconds interval in

which the subject was walking in Fig. 5.12 and 5.13 respectively.

Finally, in the case of CWT (Romberg) method, it must be stressed out that
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Figure 5.11: Raw signals of UW EMG acquisition for PD4 during Romberg test execution
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Figure 5.12: Comparison of filtering techniques to test the effectiveness of artifact removal in
UW EMG acquisition of PD4 for RTA. The same interval of 10 seconds of EMG acquisition
while the subject was walking is reported for the comparison.
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Figure 5.13: Comparison of filtering techniques to test the effectiveness of artifact removal in
UW EMG acquisition of PD4 for RBF. The same interval of 10 seconds of EMG acquisition
while the subject was walking is reported for the comparison.
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using the Romberg test as a noise-only interval, could lead to detect lower

activation rates. In fact, this was a methodological choice considering that a

stationary subject presents no muscular activity. This is confirmed by the results

obtained for OL signals in almost all cases. Indeed, results obtained for OL

walking (Fig. 5.9) are comparable to those obtained with DT method. However,

it was observed from the UW GoPro video that some PD patients struggled to

remain completely still during the execution of the Romberg test. Indeed, some

of them, during this phase, were taking small steps forward and backward and

others were waving their arms in order to maintain equilbrium. As a result, this

may have led to an higher muscle activity than that of OL. An example can be

seen in Fig. 4.3 for RTA and LGL. However, further consideration and analysis

should be done to prove the validity of this hypothesis.

A general summary of all muscles and all UW GCs for all PD subjects considered

in the analysis is reported in Fig. 5.14. Here, for each muscle, data obtained

for all GCs of all subjects with a specific method are reported in boxplots in

order to visually compare results obtained for the different methods used. It

can be seen that the DT method showed high variability in the determination

of number of activations and in general it found higher number of activations

with respect to CWT methods, recording up to 13 activations for LBF. Then,

CWT 1.1 (NE) method shows in almost all cases the highest variability in the

percentage of activation. As already hypothesized for CS, it might be due to

the case where a 0% and 100% of activation are found for the same muscle in

different GCs.

The results of the average and standard deviation values of number of activations

and percentage of activation are reported in tables 6.1 and 6.2 of the appendix

6.

5.3 UW/OL comparison

The last analysis investigated regarded the comparison between the results

obtained with the application of two different methods to UW and OL signals.
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These methods were DT and CWT 1.1 (NE). The results are reported for the

common EMG channels between protocol 1 and 2 for CS and PD subjects. It was

observed that DT method applied on UW signals obtained in general a higher

number of activations with higher variability than the number of activations

found for OL signals. Indeed, for DT applied on UW signals the maximum

number of activations found was 13 activations per GC, while for DT applied

to OL signals it was 7. This was probably depended on the post-processor

used by this method that classified transitions that remained stable for longer

than 30 ms as muscle activity both for UW and OL EMG signals. However,

the application of this method was over the entire GC which, in terms of time

duration, was longer in water than OL. Therefore, by applying DT method

to a longer time period it is possible to find a higher number of activations.

However, this difference was not observed for the CWT method which never

finds more than 7 activations per GC both for UW and OL signals. Finally,

comparison between OL and UW results for PD1 using DT method is reported

in Fig. 5.16. Each boxplot comprises the results obtained for the 3 GCs for UW

and OL acquisitions respectively. It can be seen that in all cases, the number of

activations was higher for UW results than OL while percentages of activations

were lower in UW data than OL. The only exception was the biceps femoris

since RBG had both lower number and percentage of activation, while LBF had

both higher number and percentage of activation.
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Chapter 6

Conclusions

The present work had the aim of comparing different techinques for the elab-

oration of EMG signals acquired underwater on PD subjects. Firstly, healthy

subjects were analyzed OL in order to validate the methodologies. Secondly, com-

parison among different preprocessing techniques and noise intervals extraction

were performed on a cohort of 4 PD subjects who underwent EMG acquisition

underwater. DT appeared to be the most robust technique. CWT, generally,

selected narrower ranges of activation. The generalisability of these results is

subject to certain limitations.

The main one was that no real UW noise-only acquisition was available, thus

leading to the use either of the Romberg test execution interval or of an interval

extracted through NE algorithm. Therefore, this choice may have led to lower

effectiveness of the CWT detection algorithm. Moreover, the underwater setup

played a key role in the elaborations; indeed, in some cases, bad contact of the

electrodes to the skin seems be found in some acquired data.

Another limitation lies in the parameters choice. Firstly, the choice of the

Romberg test as a noise-only interval UW. The obtained results showed in fact

a possible presence of muscle activity while performing UW Romberg test in

some cases comparable in amplitude to that of walking. However, further studies

are needed to support this aspect. Secondly, gamma parameter choice in the
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CWT method is crucial either considered alone or in combination with the other

parameters to be set (e.g. filters). Different combinations of values were tested

but no unique solution was found to be the best one in the analyzed cases. A

possible future development for the use of this method is to automatically set

the parameters in order to obtain reliable results and to decrease the occurrences

of failure in detecting the activation.

On the other hand, DT method applied in UW signals found a higher average

number of activations than OL signals and CWT methods applied to the same

UW signals. Further research could be carried on the tuning of some parameters

of this method, such as the minimum time period considered by the postprocessor

for the identification of muscle activity or the observation window length for

UW acquisitions.

Consequently, filters parameters must be taken into account. Current literature

suggest to apply the same methodologies used in OL signals to UW ones. This

can be a good practice to make both signals comparable but it must be kept

in mind that different signal types may require different processing. Therefore,

future research could be carried on this direction. Moreover, it is important

to notice that walking UW is different than walking OL. In fact, it was found

that during UW walking some PD subjects walked only on tiptoes without ever

or almost never completely resting their foot or heel. This type of walking is

different from that usually performed OL, so it is reasonable to expect some

differences in muscle activity.

Finally, the methods described may be fine for detecting individual GC activa-

tions, however, a larger subjects database would be needed for a more in-depth

comparison. The identification of muscle activity is then of fundamental impor-

tance to give a contribution to the gait analisys especially in patients with motor

diseases. It is important not only to find the correct method for the identification

of activations and the execution of a proper preprocessing of the acquired signal,

but also to distinguish whether there are differences in the processing of the

EMG signal depending on the environment in which it is acquired.
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Appendix A

Muscle
name

DT CWT 1.1 (Romberg)
CWT 1.1

Butterworth (Romberg)
CWT 1.1 (NE)

MEAN (± SD) MEAN (± SD) MEAN (± SD) MEAN (± SD)

RTA 5,5 (± 2,4) 2,2 (± 1,9) 1,8 (± 1,6) 1,7 (± 1,3)
LTA 4,0 (± 3,0) 1,6 (± 1,3) 1,2 (± 1,3) 2,2 (± 2,1)
RRF 3,8 (± 3,6) 2,0 (± 2,3) 2,7 (± 3,5) 1,8 (± 2,4)
LRF 3,8 (± 2,3) 1,6 (± 1,3) 1,1 (± 1,3) 0,7 (± 1,1)
RGL 3,8 (± 2,4) 3,6 (± 1,7) 4,4 (± 1,3) 1,3 (± 1,1)
LGL 5,3 (± 1,2) 3,6 (± 1,5) 2,2 (± 1,7) 1,1 (± 1,5)
RBF 2,7 (± 2,0) 2,1 (± 1,1) 3,3 (± 2,1) 1,6 (± 1,3)
LBF 7,2 (± 1,9) 1,9 (± 2,2) 2,9 (± 3,1) 3,0 (± 2,1)

Table 6.1: Average number of muscle activations per GC for EMG UW signals of PD subjects

Muscle
name

DT CWT 1.1 (Romberg)
CWT 1.1

Butterworth (Romberg)
CWT 1.1 (NE)

MEAN (± SD) MEAN (± SD) MEAN (± SD) MEAN (± SD)

RTA 37,33 (± 20,0) 8,5 (± 7,2) 4,8 (± 5,2) 18,2 (± 19,4)
LTA 27,5 (± 23,3) 11,7 (± 15,9) 10,5 (± 15,4) 47,9 (± 38,5)
RRF 24,4 (± 32,6) 23,5 (± 36,1) 15,8 (± 33,0) 19,9 (± 20,7)
LRF 15,7 (± 11,1) 9,3 (± 10,2) 4,8 (± 8,9) 12,1 (± 22,5)
RGL 22,5 (± 24,7) 41,2 (± 35,8) 34,8 (± 20,5) 41,5 (± 38,5)
LGL 42,1 (± 23,3) 32,5 (± 25,0) 23,8 (± 26,6) 24,4 (± 35,8)
RBF 35,7 (± 30,2) 55,2 (± 31,7) 45,6 (± 23,1) 42,4 (± 33,1)
LBF 53,2 (± 20,5) 31,6 (± 40,6) 29,4 (± 35,0) 52,3 (± 31,0)

Table 6.2: Average percentage of muscle activation per GC for EMG UW signals of PD subjects
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Muscle
name

DT CWT 1.1 (NE) CWT 1.6 (NE)
CWT 1.6 Butterworth

(NE)

MEAN (± SD) MEAN (± SD) MEAN (± SD) MEAN (± SD)

RPL 2,6 (± 1,0) 1,9 (± 0,9) 1,7 (± 0,8) 1,8 (± 0,8)
LPL 2,3 (± 0,9) 1,8 (± 0,9) 1,6 (± 0,5) 1,6 (± 0,7)
RTA 1,4 (± 0,5) 2,0 (± 0,5) 2,2 (± 0,4) 2,2 (± 0,4)
LTA 1,9 (± 0,9) 2,5 (± 0,5) 2,4 (± 0,5) 2,4 (± 0,5)
RGL 1,1 (± 0,3) 1,4 (± 0,8) 1,2 (± 0,9) 1,3 (± 0,9)
LGL 3,1 (± 0,9) 1,9 (± 1,0) 1,6 (± 0,8) 1,7 (± 0,8)
RED 2,3 (± 0,5) 2,4 (± 1,2) 2,1 (± 1,0) 2 (± 0,9)
LED 2,3 (± 1,3) 2,1 (± 0,9) 2,2 (± 0,9) 2 (± 0,8)
RGM 1,7 (± 1,1) 1,4 (± 0,8) 1,3 (± 0,8) 1,3 (± 0,8)
LGM 1,9 (± 0,8) 2,3 (± 0,8) 2,1 (± 0,5) 2,1 (± 0,5)
RRF 1,1 (± 0,3) 2,6 (± 0,5) 1,8 (± 1,1) 1,8 (± 1,1)
LRF 1,2 (± 0,4) 1,8 (± 1,0) 1,5 (± 1,3) 1,5 (± 1,3)
RBF 1,7 (± 0,5) 2,1 (± 0,7) 1,6 (± 1,3) 1,6 (± 1,3)
LBF 2,3 (± 1,0) 2,2 (± 0,6) 2 (± 0,9) 1,9 (± 0,7)

Table 6.3: Average number of muscle activations per GC for EMG OL signals of CS subjects

Muscle
name

DT CWT 1.1 (NE) CWT 1.6 (NE)
CWT 1.6 Butterworth

(NE)

MEAN (± SD) MEAN (± SD) MEAN (± SD) MEAN (± SD)

RPL 67,0 (± 17,4) 55,2 (± 26,7) 37,4 (± 30,3) 35,9 (± 27,5)
LPL 51,9 (± 27,4) 67,0 (± 20,9) 56,0 (± 22,3) 57,0 (± 22,5)
RTA 66,7 (± 15,8) 66,4 (± 16,3) 55,7 (± 11,6) 57,4 (± 13,1)
LTA 62,5 (± 13,4) 48,4 (± 14,3) 37,9 (± 15,9) 38,0 (± 16,3)
RGL 23,8 (± 14,1) 30,8 (± 18,7) 21,2 (± 14,4) 18,4 (± 12,5)
LGL 68,5 (± 16,2) 35,7 (± 28,2) 26,8 (± 25,8) 28,7 (± 25,4)
RED 67,8 (± 12,7) 67,9 (± 27,6) 52,4 (± 29,6) 52,2 (± 29,5)
LED 70,6 (± 16,0) 73,6 (± 19,5) 54,0 (± 33,4) 55,7 (± 33,8)
RGM 39,2 (± 22,0) 31,5 (± 19,5) 27,0 (± 20,2) 27,2 (± 20,4)
LGM 39,1 (± 28,6) 44,8 (± 19,2) 35,5 (± 20,4) 35,3 (± 20,5)
RRF 16,9 (± 6,3) 33,4 (± 18,1) 21,7 (± 17,6) 21,1 (± 15,9)
LRF 18,1 (± 9,9) 20,7 (± 16,9) 13,5 (± 13,3) 13,4 (± 13,2)
RBF 48,1 (± 25,1) 36,6 (± 27,6) 27,3 (± 28,9) 27,5 (± 28,9)
LBF 38,3 (± 16,3) 56,2 (± 25,2) 39,4 (± 25,6) 43,4 (± 27,6)

Table 6.4: Average percentage of muscle activation per GC for EMG OL signals of CS subjects
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