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Abstract

The current COVID-19 pandemic is an unprecedented global health crisis, with severe eco-
nomic impacts and social damages. Mathematical models are playing an important role in this
ongoing emergency, providing scientific support to inform public policies worldwide. In this
thesis work, an epidemic model for the spread of the novel Coronavirus disease in the Veneto
region has been proposed. Starting from the available local Health System data to examine
past year contagion numbers and other features potentiality, a SEIQRD (Susceptible Exposed
Infected Quarantined Removed Deceased) compartmental schema has been designed general-
izing the classic SIR model. Then, the infection dynamics have been practically implemented
in two versions: as a Deterministic Equation-based formulation and as an Agent-based model.
While the former has been maintained simple and computationally inexpensive in order to
serve as a baseline and to quickly provide parameter estimates, for the latter a detailed meta-
population of agents with personalized attributes and network of contacts has been developed
to recreate as realistic as possible simulations. Once these models have been trained and vali-
dated, they could became valuable tools for various types of analysis and predictions. In partic-
ular, the agent-based version, thanks to its flexibility as well as to its higher resolution, could be
exploited for exclusive a posteriori evaluations of the effectiveness of the adopted containment
measures in reducing the pandemic in Veneto.
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1
Introduction

As of July, 2021, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has in-
fected more than 180 million individuals, reporting more than 3.9 million victims worldwide.
Since December 2019, when the virus was firstly identified from a cluster of viral pneumonia
cases in Wuhan, China, the situation rapidly evolved becoming a large-scale pandemic.
All Countries with the coordination of the World Health Organization (WHO), are facing
important decisions to fight the spread of the epidemic, for which a vaccine has been only de-
veloped in recent months. It has been shown that non-pharmaceutical measures like social
distancing, face masks, home isolation as well as school and commercial activity closure are es-
sential to reduce contagion numbers effectively [23] [25] [35] [47].
However, after more than a year spent in a pandemic state, profound economic and social dam-
ages are evident [18] [39], calling for interventions seeking a trade off between sanitary and fi-
nancial guarantees. Accurately monitoring case statistics, modeling the epidemiological curves
and forecasting the outbreak loads in the health and economic systems are then fundamental to
assist and inform policymakers, possibly providing significant thresholds and guideline direc-
tions. The entire scientific community has therefore mobilized to make its contribution, not
only from a medical or biological point of view, but also from the mathematical aspect.
The purpose of this work is to contribute to the field by producing models for the COVID-19
epidemic in Veneto, a region in northern Italy, an area particularly affected by the pandemic.
After a careful and precise analysis of the available local data, provided by the healthcare sys-
tem of the Veneto region, two models have been created experimenting with different levels of
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flexibility and numerical tractability. A reference SEIQRD compartmental schema has been
designed as a customized generalization of the classic SIR model.
In practice, it has been firstly implemented as a totally Deterministic Equation-based model.
Despite its simplistic assumptions, it resulted to be suitable for validating the compartments
and transitions choices as well as for producing initial estimates of the parameters, thanks to its
low computational burden.
Then, a more complex Agent-based version has been realized, generating a meta-population of
individuals with specific personalized attributes such as age and presence of chronic diseases,
both variables turned out to be strongly related to the severity of Coronavirus disease. More-
over, in order to overcome the typical differential equations limitation of homogeneous mixing
and to obtain more realistic simulations, in this version the dynamics of contagion have been
based on networks. Each agent has in fact connections defined by a multi-layered social graph
representing plausible household, work, school or other generic community contacts.
Both models have been fitted on the epidemiological curves observed in Veneto, allowing at
least part of the parameters to vary over time. In this way, they could better encode the al-
ternating stringency of the containment measures and non-pharmaceutical strategies adopted
during the last year. The validation and the training of such models have certainly constituted
the most complicated and challenging phase of the entire work, especially as regards the Agent-
based one, whose simulations generally require long execution times.
However, once the optimal parameters have been found, these models become useful tools
for carrying out unique retrospective analyses on the effectiveness and the timeliness of the
applied measures in reducing the effects of the pandemic. As a matter of fact, knowing the
parametrized probabilities and rates values in each period, it is possible to simulate various sce-
narios conducting a What-If analysis. In addition, these models could be used for forecasting
purposes, predicting the progress of infections, deaths or hospitalizations.
To conclude, thanks to their flexibility and their detailed structure, they could be possibly ex-
ploited by the scientific community to gain new understandings on the transmission dynamics
or to provide basis to policymakers.
The thesis is organized as follows. First of all, the basic notions and examples of epidemiologi-
cal modeling are introduced in Chapter 2, where the state of the art on COVID-19 models is
also presented. Chapter 3 describes the overall available data, as well as the performed prepro-
cessing and exploratory analysis. In Chapter 4 the technical details on the adopted modeling
methodologies are given, while in Chapter 5 the corresponding fitting and simulation results
are shown and discussed. Finally, the concluding remarks are reported in Chapter 6.
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2
Epidemiological modeling

An epidemiological model is first of all a mathematical model: a description of a system, a set
of rules or of interacting and organized components, using mathematical tools with a certain
degree of complexity and approximation. Models are generally developed to help explain a sys-
tem, to study the effects of its various components as well as to make predictions about their
behaviour. From a biological and medical point of view this numerical approach is essential
to estimate critical quantities, gain new understanding, organize natural data and seek optimal
intervention strategies. Additionally, it is fundamental to simulate experiments not easily re-
producible in vivo such as the spread of infectious diseases in populations, the primary concern
of epidemiological models.
The aim of this chapter is exactly that to present the fundamental basis of most epidemiological
models: the Compartmental model, starting from its simplest formulation as SIR (Susceptible–
Infectious–Recovered) to its generalized variants. The main popular implementation strategies
are then described, while highlighting the major advantages and limitations, with special atten-
tion to their recent applications to SARS-CoV-2.

2.1 Compartmental Models

Compartmental models are a class of very flexible modelling technique. As the name suggests,
the elements of the system under study are divided into groups, compartments, representing
a certain state or condition. The possible variations between compartments are instead mod-
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eled with transitions, usually in the form of rates. Although they can be generalized to many
contexts, they are especially applied in the epidemiological field, for which they have become
famous.

2.1.1 The SIR Model

One of the most adopted epidemic model is the SIR compartmental model proposed by Ker-
mack and McKendrick in 1927 [34], for its description here [40] is closely followed. Consid-
ering a disease spreading in a population of sizeN , it splits its individuals into nonintersecting
compartments. In one of the simplest scenarios, there are three such classes:

• Susceptible: individuals who have no immunity to the infectious agent, who are healthy
but can contract the disease if exposed. The size of this class is usually denoted by S.

• Infectious: individuals who are currently infected and can transmit the infection to sus-
ceptible individuals who they contact. The size of the class of infectious individuals is
denoted by I .

• Recovered: individuals who are recovered from the infection and cannot contract the
disease again, hence those individuals could neither infect nor been infected, no more
affecting in any way the transmission dynamics. The class of recovered individuals is
usually denoted byR.

The number of individuals in each of these classes changes with time, that is, S(t), I(t), and
R(t) are functions of time t. The total population sizeN is the sum of the sizes of these three
classes and it is assumed costant: N = N(t) = S(t) + I(t) + R(t).
Regarding the epidemiological dynamics, the model represents them with a system of ODEs
that describe how each class changes over time. Note that S, I and R must be integers, but
assuming that the size of the population N is large enough, the condition could be relaxed to
treat them as continuous variables.
Starting to mathematically modelling, when a susceptible individual enters into contact with
an infectious individual, that susceptible individual becomes infected with a certain probability
and moves from the susceptible class into the infected class. Hence, the susceptible population
decreases in a unit of time by all individuals who become infected in that time, while the com-
partment of infectives increases by the same quantity. The number of individuals who become
infected per unit of time in epidemiology is called incidence. The rate of change of the suscep-
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tible could be then written as the derivative

S ′(t) = −incidence.

Now the problem moves to rightly represent the incidence: considering one infectious indi-
vidual, it could be assumed that cN is the number of contacts per unit of time this infectious
individual makes. Here it is assumed that the number of contacts made by one infectious indi-
vidual is proportional to the total population size with per capita contact rate c. The ratio S

N
is

instead the probability that a contact is with a susceptible individual. Thus, cN S
N

is the number
of contacts with susceptible individuals that one infectious individual makes per unit of time.
However, not every contact with a susceptible individual necessarily leads to transmission of
the disease. Suppose p is the probability that a contact with a susceptible individual results in
transmission. Then, pcS is the number of susceptible individuals who become infected per
unit of time per infectious individual. Consequently, βSI is the number of individuals who
become infected per unit of time, the incidence, where β = pc. As a result, the following
differential equation for susceptible individuals is obtained:

S ′(t) = βIS.

If we define λ(t) = βI , then the number of individuals who become infected per unit of time
is equal to λ(t)S. This function is called the force of infection, where the coefficient β is the
constant of proportionality called the transmission rate constant. The number of infected
individuals in the population I(t) is called instead the prevalence of the disease.
At this point, having the susceptible individuals who become infected moved to the compart-
ment I , it is known that those subjects could recover or die. In particular, in the Kermack–
McKendrick SIR Epidemic Model it is assumed that they leave the infected class at constant
per capita probability per unit of time γ, called the recovery rate. That is, γI is the number of
infected individuals per unit of time who recover. So,

I ′(t) = βIS − γI.

Finally, individuals who recover leave the infectious compartment and move to the recovered
one with the same rate

R′(t) = γI.

5



Figure 2.1: Flowchart of the Kermack–McKendrick SIR epidemic model (left) and an example of the typical
behaviour of the three compartment sizes in function of time, proportionally to the population sizeN (right).

Thus, the whole model is given by the following system of ODEs:
dS
dt

= −βSI
dI
dt

= βSI − γI

dR
dt

= γI

(2.1)

To be mathematically well defined, this system is equipped with initial conditions S(0), I(0),
and R(0). Moreover, a differential equation model such as the model in 2.1 is well posed if
through initial condition, there exists a unique solution. Because the dependent variables in
the model denote physical quantities, it also required that solutions that start from nonnegative
initial conditions remain nonnegative for all times in order to ensure mathematical acceptability
and biological significance.

2.1.2 Mathematical Properties of the SIR Model

Constant population size

First of all observe that the population sizeN(t) is constant at every instant of time t, as initially
assumed. Denoting byN the total population size at time zero, it is known that

N = N(0) = S(0) + I(0) + R(0).
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By definition, at each time t, the sum of the three not intersecting compartments gives the size
of the total population at that time

N(t) = S(t) + I(t) + R(t)

Obtaining the derivatives and substituting the right hand terms for all the three equations in
system, it follows that

N ′(t) = S ′(t) + I ′(t) + R′(t) = −βSI + βSI − γI + γI = 0.

Hence,N(t) is constant and equal to its initial value,N(t) = N .

Analysis of the three classes dynamics

Now, let’s analyse the dynamic for each of the classes. Firstly note that, because S ′(t) < 0

for all t, the number of susceptible individuals is always declining, independently of the initial
condition S(0). Since S(t) is monotone and positive, the limit

lim
t→∞

S(t) = S∞

exists and it is finite. With an analogous reasoning, the number of recovered individuals has
a monotone behaviour, independently of the initial conditions: since R′(t) > 0 for all t, the
number of recovered individuals is always increasing. Given also that the number of recovered
is bounded byN , the limit

lim
t→∞

R(t) = R∞

exists and it is finite. On the other hand, the number of infected individuals may be mono-
tonically decreasing to zero, or may have nonmonotone behavior by first increasing to some
maximum level, and then decreasing to zero. A necessary and sufficient condition for an initial
increase in the number of infecteds can be easily determined forcing the derivative of I(0) to
be strictly positive

7



I ′(0) = βS(0)I(0)− γI(0) > 0

I ′(0) = (βS(0)− γ)I(0) > 0

⇐⇒ βS(0)− γ > 0

⇐⇒ S(0) >
γ

β

In other words, if S(0) > γ
β

, there is a sudden increase in the prevalence and then a decline to
zero, generating a full-fledged epidemic or outbreak, otherwise, I(t) monotonically decreases
to zero resulting in no epidemic. If almost everyone is initially susceptible, i.e. S(0) ≃ N , then
a newly introduced infected individual can be expected to infect other people at rateβN during
his infectious period which lasts 1

γ
(see estimation below). Thus, this first infective individual

can be expected to infect:

R0 =
βN

γ

individuals. The number R0 is called basic reproduction number, and it is undoubtedly one
of the key parameter when analysing the spread of an infectious disease.
To determine the values of the two limits S∞ and R∞, let’s instead divide the equation for S
by the equation forR

dS

dR
= −β

γ
S,

then solving for S in dR,
S(t) = S(0)e−

β
γ
R(t).

Now recalling that the size of each of the three compartment is always smaller than the size of
the total population, the following bound holds

S(t) = S(0)e−
β
γ
R(t) ≥ S(0)e−

β
γ
N > 0 ∀t ∈ [0,∞)

It is hence possible to conclude that S∞ > 0. This quantity is called the final size of the
epidemic. It is interesting to highlight that this means that the epidemic does not end because
all susceptible individuals have been infected and are now immune, but on the contrary that
some individuals are always able to escape the disease.
Another important result to show is that, according to the SIR model, at a certain time the
epidemic dies out, i.e.

lim
t→∞

I(t) = I∞ = 0.
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To see this, start integrating the first equation∫ ∞

0

S ′(t)dt = −β
∫ ∞

0

S(t)I(t)dt

S∞ − S(0) = −β
∫ ∞

0

S(t)I(t)dt

S(0)− S∞ = β

∫ ∞

0

S(t)I(t)dt

then, recalling thatS is nonnegative and monotonically decreasing, the right hand term can be
bounded as

S(0)− S∞ = β

∫ ∞

0

S(t)I(t)dt ≥ βS∞

∫ ∞

0

I(t)dt.

This last inequality implies that I(t) is integrable on [0,∞), hence, being also nonnegative and
definitively decreasing, its limit for t→ ∞ is 0.
In Figure 2.1 a graphical example is given to summarize the typical dynamics just described.

System solution

To solve the system, first notice that the variableRdoes not participate in the first two equations.
Consider thus only the equations for S and I , which are coupled, and leave out the equation
forR, which could be always obtained in this model from the relationR = N − S − I :

S ′(t) = −βSI
I ′(t) = βSI − γI.

Dividing the two equations, obtain

I ′

S ′ =
βSI − γI

−βSI
= −1 +

γ

βS
.

Then, separating the variables and integrating at each member

I ′ =

(
− 1 +

γ

βS

)
S ′

I = −S +
γ

β
ln(S) + c
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where c is an arbitrary constant. Thus, the orbits of the solution are given implicitly by the
equation

I + S − γ

β
ln(S) = c.

Since the Kermack-McKendrick model is equipped with initial conditions S0 = S(0) and
I0 = I(0), from the above equality computed in (S0, I0) an explicit expression of the constant
c can be deduced:

c = I0 + S0 −
γ

β
ln(S0).

Hence, the solution could be finally written as

I(S) = I0 + S0 − S +
γ

β
ln

(
S

S0

)
(2.2)

Even if this is an exact solution, it only gives I as a function of S and not as a function of t:
particularly, it does not give any indication of the time taken to reach any particular points on
the orbits. Unfortunately, despite the simplicity of the SIR model, it is impossible to obtain an
exact solution for I(t). In that case, it is necessary to proceed with numerical strategies, like the
Euler’s method, which description is not covered because out of the purposes of this work.
It is worthwhile to mention that Equation 2.2 also allows to compute the maximum number
of infected individuals that is attained. This number occurs when I ′(t) = 0, that is, when
S = γ

β
. Substituting in S, it is trivial to conclude that

Imax = I0 + S0 −
γ

β
− γ

β
ln(S0) +

γ

β
ln

(
γ

β

)
where Imax is the maximum number of infected individuals reached in the epidemic, i.e. the
maximum severity of the epidemic. Being able to estimate this values for a newly occurring
infectious disease could be important to know when the number of infections will begin to
decline, but also to forecast the impact of the spreading disease on the sanitary or economic
systems.

Parameters Estimation

For many diseases, information about the mean duration of the exposed period or the infec-
tious period is available, for instance in medical literature is known that the duration of the
infectious period for influenza is 3-7 days with a mean around 4-5 days. In the SIR model this
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knowledge could be easily exploited to help better estimate the recovery rate γ.
Start by assuming that there is no inflow in the infectious class and a certain number of individ-
uals I0 have been put in the infectious class at time zero. Then the differential equation that
gives the dynamics of this class is given by

I ′(t) = −γI, I(0) = I0.

This first order differential equation can be easily solved: the number of people in the infectious
class at time t is therefore given by

I(t) = I0e
−γt,

equivalently, the ratio
I(t)

I0
= e−γt

gives the proportion of people who are still infectious at time t ≥ 0, or, mathematically speak-
ing, it gives the probability of being still infectious at that time. At this point, the fraction of
individuals who have left the infectious class could be obtained as

F (t) = 1− eγt, t ≥ 0.

This is clearly a probability distribution, the corresponding probability density function is
given by γe−γt. Hence the length of the infective period is distributed exponentially with pa-
rameter γ and known expected value 1

γ
. To conclude, having in practice the mean duration of

the infection in a subject, i.e. the mean time spent in the infectious class, the recovery rate γ
can be estimated as the reciprocal of this value.
Regarding the parameter of transmission rate β, the estimation is quite a bit more difficult.
However, the equation of the orbit found in the previous paragraph could be additionally
exploited to get some interesting approximation. Recalling that limt→∞ I(t) = 0, while
limt→∞ S(t) = S∞ > 0 gives the final number of susceptible individuals after the epidemic
is over, imposing the passage by both (S0, I0) and (S∞, 0) it could be written that

I0 + S0 −
γ

β
ln(S0) = c = 0 + S∞ − γ

β
ln(S∞)

⇐⇒ I0 + S0 − S∞ =
γ

β
(ln(S0)− ln(S∞))
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Therefore,

β

γ
=

ln
(

S0

S∞

)
S0 + I0 − S∞

.

Now, assuming that I0 ≃ 0 and S0 ≃ N , the just obtained equation could be rearranged
including the key term R0

β

γ
=

ln
(

S0

S∞

)
N − S∞

⇐⇒ R0

(
1− S∞

N

)
= ln

(
S0

S∞

)
.

Practically speaking, the real importance of this relation lies in the fact that, contrary to the
contact rate β, the quantities S0 and S∞ may be estimated with a quite good accuracy by sero-
logical studies. Access these data, however, is possible only after the epidemic has run its course,
thus making this estimate of R0 feasible just in a retrospective way.
An alternative approach to avoid extractingβ from data, is to approximate the second equation
in System 2.1 with:

I ′ = (βN − γ)I.

From this approximation, which is valid only in the early period of the spreading, it is immedi-
ately get the following

I(t) = I0e
(βN−γ)t,

meaning that, initially, the number of infectives grows exponentially with initial exponential
growth rate

r = γ(R0 − 1).

Since r may be determined experimentally when an epidemic begins, and N , γ may be mea-
sured as well, also β can be indirectly calculated as

β =
r + γ

N
.

A word of warning should be spent to underline that R0 and r are not the same parameter,
even if both are strength measure of the spreading. First of all note that while the former is
an unitless quantity, consequently it does not provide any information about time, the latter
measures how fast the spreading runs in time. Introducing the concept of generation time
GT , i.e. the amount of time between an individual is infected by an infector and the time that
the infector was infected [16], it is possible to link the two parameters. As a matter of fact,
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in literature, many authors have provided mechanical ways to combine those three quantities,
for example as R0 = 1 + rGT [37]. Nevertheless, many problems arise with those relation,
either practically and theoretically speaking. Firstly, in order to obtain meaningful relations,
often many limiting assumptions should be made, like the one thatGT not vary in time, a too
strong hypothesis. Additionally, generation times are not trivial to calculate, since a detailed
contact-tracing would be needed. For these reasons, a common solution is to introduce the
so-called serial interval, definable as the time between the instants when an infector and an
infectee become symptomatic.

Interpretation ofR0

As already said, R0 is one of the key parameter when analysing the spread of a disease. The
reason of its importance lies in the following property:

let (S(t), I(t)) be the solution of the System 2.1, defined respectively the suscep-
tible, infectious fraction as

s(t) =
S(t)

N
, i(t) =

I(t)

N
,

if R0 ≤ 1, then i(t) decreases to 0 as t → ∞. Otherwise, if R0 > 1, then i(t)
first increases up to a maximum value

imax = i0 + s0 −
γ

β
(1 + ln(R0)),

and then decreases to 0 as t → ∞. The susceptible fraction s(t) is instead a
decreasing function and the limiting value s∞ is the unique root in

(
0, γ

β

)
of the

equation

i0 + s0 − s∞ +
γ

β
ln

(
s∞
s0

)
= 0.

Epidemiologically, these results are reasonable: if enough people are already immune so that a
typical infective initially replaces itself with no more than one new infective, the number of in-
fectives decrease, leading to no epidemic. On the contrary, if a typical infective initially replaces
itself with more than one new infective, then infectives initially increase so that an epidemic out-
break occurs. The speed at which an epidemic progresses depends on the characteristics of the
disease.
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2.1.3 Generalizations and Variants of the SIR Model

From the definitions and descriptions just discussed, it is evident that the Kermack–McKendrick
SIR model is based on several assumptions:

• there are no vital dynamics, i.e. births and deaths in the population;

• the population is closed, in the sense that either no new individual can enter the popu-
lation and no one can leave it, therefore eliminating phenomena such as due to tourism
or immigration;

• after the exposition to the infection, all recovered individuals have complete immunity
and cannot be infected again.

These assumptions seem very restrictive, but within certain limits and scenarios, they can be sat-
isfied. For example, most of the diseases typical of childhood years, commonly called childhood
diseases, lead to permanent immunity and can be thus suitably modelled by the SIR epidemic
model (e.g. chickenpox, smallpox, rubella, etc.).
However, when the duration of the epidemic outbreak is quite long, when the pandemic is
global in scope or when the hypotheses do not hold from a medical - clinical point of view, the
SIR simplifications are too limiting. For these reasons, many variants of this model have arisen
in the literature over time [6][15]. A short summary for the main generalizations are here listed.

• The SIRmodelwith vital dynamics: introducingB, thebirth rate, andµ, thenatural
mortality rate, respectively the number of births and deaths per unit time, the classical
system is modified as follows 

dS
dt

= B − βSI − µS
dI
dt

= βSI − γI − µI
dR
dt

= γI − µR

(2.3)

Note that usually, it is assumed that the birth rate depends on the total population size,
i.e. B = Λ(N). Moreover, it is important to underline that here the fatality parameter
refers to deaths due to natural causes and not due to the disease in study.

• The SIS model: after the exposition to infection, in this variant, individuals could only
become susceptible again. This is the case, for example, for the common cold and in-
fluenza, which do not confer any long-lasting immunity. The model system reduces to{

dS
dt

= −βSI + γI
dI
dt

= βSI − γI
(2.4)
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Recalling that N = S + I is constant, the system can be rewritten in the form of a
logistic differential equation

dI

dt
= (βN − γ)I

(
1− 1

N − γ
β

)
,

for which it is possible to easily find an analytical solution by separation of variables given
an initial condition I0

I(t) =
I0K

I0 + (K − I0)e−rt
,

where r = βN − γ and K = N − γ
β

. Similarly to what done for the SIR, also for the
SIS model it is possible to give explicit conditions in the basic reproduction number for
the prediction of the epidemic outbreak: ifR0 < 1 then all solutions with non-negative
initial value approach the limit zero as t → ∞, while if R0 > 1 then all solutions with
non-negative initial values except the constant solution I ≡ 0 approach the limitK .

• The SIRD model: a new compartmentD is defined to model potential fatal infection.
An infected subject could hence move to class R or D, respectively if completely recov-
ered or deceased due to the disease. These design settings could be of particular interest
for infections with very high mortality percentages, like Ebola virus. The new system of
equations is 

dS
dt

= −βSI
dI
dt

= βSI − γI − µI
dR
dt

= γI
dD
dt

= µI

(2.5)

Again, µ parameterizes the number of deaths per unit time, but with the difference that,
in this variant, only deceases due to the infection are considered.

• The SEIR model: considering that, for many common infections there is a significant
incubation period during which individuals who have been infected are not yet infec-
tious, a popular modification includes a compartmentE for exposed but not yet conta-
gious subjects. The time interval between the instant when an individual is infected and
the one when he or she becomes infectious is called latent period. Thus, introducing a
new parameter ϵ, where ϵ−1 is the mean value of the latent period, assumed exponentially
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distributed, the SEIR model is described by the following ODEs system
dS
dt

= −βSI
dE
dt

= βSI − ϵE
dI
dt

= ϵE − γI
dR
dt

= γI

(2.6)

for which similar mathematical properties can be obtained as those previously shown
for SIR and SIS.

• The MSIR model: while implementing a model with vital dynamics, it could be im-
portant to include the passive immunity phenomenon. As a matter of fact, for many
infections, like measles, babies do not directly born into the susceptible compartment.
On the contrary, since for the first few months of life they are immune to the disease
thanks to the protection from maternal antibodies, passed across the placenta or addi-
tionally through colostrum, they initially belong to a new class, say M , for maternally
derived immunity. Only when these passive antibodies are gone, the infant becomes sus-
ceptible to the disease, moving from the passively immune state M to the susceptible
state S with a per capita rate δ. In the case of infants without any passive immunity, be-
cause their mothers were not exposed to the infection, the class S is directly entered, so
that they could immediately be infected. Mathematically this is translated as

dM
dt

= B − δM − µM
dS
dt

= δM − βSI − µS
dI
dt

= βSI − γI − µI
dR
dt

= γI − µR

(2.7)

whereB andµ are respectively the birth rate and the natural mortality rate with the same
interpretation of System 2.3.

As anticipated, this is only a list of few representatives of the most popular variants, it is easy
to imagine that an huge variety of generalizations can be designed. It is possible to derive many
other combinations as a mixture of these models, e.g. SEIS, MSIRS, etc. Other ways contem-
plate changes in the effects of the vital dynamics or vertical transmission of the infection from
parents to their offspring, true for diseases like AIDS and Hepatitis B [11]. Finally, a common
approach is to add new ad hoc compartments, e.g. V for vaccinated,Q for quarantined, etc. or
classes representing also non-human species acting as transmission vector, such as mosquitoes
in malaria [3].
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2.2 Practical Implementation

Despite the simplicity and compactness of its definition, the practical development of a com-
partmental model cannot be considered equally trivial. In fact, this places mathematicians and
more in general researchers in front of a challenge: implement a model that is as much more
representative of the real phenomenon while computationally and analytically tractable. Ac-
cording to the adopted solution, the methods can be classified as deterministic or stochastic,
networks-based or agent-ased epidemic models. On the following pages a short survey is pre-
sented.

2.2.1 Deterministic versus Stochastic Models

One of the first aspects to consider during the designing phase is undoubtedly that of choosing
whether to proceed in a deterministic or stochastic way. Recall that in a deterministic model
every set of variable states is uniquely determined by the parameters in the model and by the
initial value of the variables themselves. On the other hand, stochastic models are character-
ized by randomness, hence variable states are described by probability distributions instead of
being simply constant.
In the case of compartmental models, their original deterministic nature, which formulation
corresponds to the one just presented above, makes them quite simple to treat both analyti-
cally and computationally. Nevertheless, as expected, their major downside is that they could
not be very realistic, since what they aim to represent, e.g. inter-human contacts or exposition
to viruses, is intrinsically ruled by randomness. Made these premises, their powerful remains
undeniable: the classical deterministic SIR model without births and deaths is still among the
most studied and it is generally quite effective at describing the dynamics of a range of infec-
tions in many populations [4]. Even today this strategy could be appealing when interested in
more modest extensions of the SIR model that focus only on specific aspects of the complex
problem, maintaining a relatively small parameter set and deterministic equations. A success-
ful example is given in [29] where the authors adopted this method to study the transmission
dynamics within and between households, assuming them as the key mechanism for the spread
and persistence of infection.
However, there are cases in which deterministic models are insufficient, making necessary the
choice of a stochastic strategy. Firstly, if considering an epidemic outbreak in a small commu-
nity, like a day-care center, an office or a school, it seems reasonable to assume some uncertainty
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in the final number of infected. Therefore, it is important to stress that the deterministic ap-
proaches are valid and reasonable only in case of sufficiently large populations and relatively
short epidemic, for this reason they should be used and interpreted with caution [7].
Moreover, even when the community is large andR0 > 1, it should be possible that, by chance,
the epidemic never takes off if the outbreak is initiated by only one or a few initial infectives.
These arguments motivate the definition of stochastic version epidemic model. Statistically, a
further evidence that is often brought in favor of their use is that they enables parameter esti-
mates from disease outbreak data to be equipped with standard errors [12].
In practice, the main differences are, as said above, that the state function S(t), I(t), etc. as
well as the parameters like the contact rate or the recovery time are now random variables. Re-
garding the mathematical tools, discrete time Markov chain, continuous time Markov chain,
stochastic differential equations, branching process and Poisson process constitutes the funda-
mental basis, which allow to confer unique properties to the stochastic models. As a matter
of fact the probability of disease extinction, the probability of disease outbreak, the quasista-
tionary probability distribution, the final size distribution or the expected duration of an epi-
demic could be derived, showing in some case that, even under the same hypothesis, stochastic
models can exhibit different asymptotical behaviours from their deterministic counterpart. Of
course there are many possible types of stochastic epidemic model, the decision of which type
of model to choose, or a new one to invent, depends on the specific questions to be explored
and on the available data. Please refer to [1][2][14][28] for more technical details and for many
nice examples starting from the original SIR definition.

2.2.2 Network Models

The typical example of epidemic modeling for a society subgroup, like school students, pro-
vided above, also reveals another weakness of deterministic models. The assumption of a ho-
mogeneous uniformly mixing cannot be easily accepted for small population size. In homo-
geneous mixing the contacts of a person are assumed equally randomly distributed among
all others in the population. One immediate implication of this hypothesis is that the force
of infection λ is the same for all individual classes, contrary to what happens in real popula-
tions, where the mixing is more likely to be heterogeneous and contacts are not random. As
a matter of fact, recent research works have shown that the social contact networks have com-
munity structure in which nodes usually tends to have more links within a cluster than that of
between communities [51]. They also observed that, even when there is a significant number

18



of infected individuals in a community, the contacts that actually transmit diseases between
susceptible and infected do not grow quickly. This phenomenon, called crowding or protec-
tion effect, makes clear that the linear force of infection used in the standard SIR model has
serious limitation under the typical scenario. An heterogeneous mixing assumption is there-
fore preferable, since it allowsλ to reflect the social structure, such as age-related changes in the
degree of mixing and contact or differences in behavior, e.g. due to non pharmaceutical inter-
ventions, like isolation and curfew, which can alter the standard contact patterns, all important
factors for understanding disease spread [20].
Practically speaking, this can be done switching to network epidemic models. A network, or a
graph, is a structure made of a set of objects eventually paired according to some relation. These
objects are mathematically abstracted in vertices, also called nodes, while the related pairs of ver-
tices are called edges. In network epidemic models then, the whole population is represented
by a graph whose vertices are the subjects and whose edges describes physical contacts or social
relationships. In other words, the population is made of single individuals instead of compart-
ments allowing to consider different interactions types from the classical homogeneous mixing.
These individual-level models usually make analysis difficult and simulations computationally
intensive, but offer a totally different way of describing biological populations which seems to
better fit epidemiological data coming from the real world.
Another attractive reason for studying epidemic models on networks is to better understand
what network features affect spreading the most. In this way it is possible to gain knowledge
and make hypothesis on how to reduce the spreading adopting suitable public health measures
such as vaccination, isolation, travel restrictions, etc., testing their effectiveness by incorporat-
ing them into the model.
Reformulating the problem, new questions thence arise: how to build a realistic network, in
particular, how assign links, how are node degrees, i.e. numbers of edges connected to each
vertex, distributed and what do they depend on?
The first factor to consider is whether the underlying social structure is known or not. Al-
though very rare, there are cases in which contacts between individuals belonging to the pop-
ulation under study were directly observed or estimated from data taken on a sample. In such
works, researchers proceeded by means of prospective survey [42], contact diaries [45], avail-
able socio-demographic data [24][37], all tools that constitute milestones in this field before
the advent of modern contact tracing, possible only with more advanced technology or in more
systematic and meticulous settings.
However, in most cases this is not feasible, which explains why a random network model is
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often more advocated.
Several artificial generated networks have been proposed in the field of disease transmission.
Each of these idealized networks can be defined in terms of how individuals are distributed in
space, both in geographical or social terms, and how connections are established. The most
popular types among them are now presented specifying assumptions as well as the major im-
plications for epidemic spread. For the main notions and results, [33] has been closely followed.

• Random network: in this network, the spatial position of individuals is irrelevant, and
connections are formed at random. As a matter of facts, this type of models has the least
possible structure. For example, in the famous Erdős-Rényi random graph it assumes
that every pair of individuals is connected to each other, independently, with probabil-
ity δ/n, wheren is the number of nodes and δ is the unique parameters representing the
mean degree. Given these assumptions, it is easy to deduce that the number of neigh-
bours any individual has is distributed as a Binomial Bin(n − 1, δn) for which it is
mathematically known that asymptotically, as n → ∞, it tends to the Poisson distribu-
tionPois(δ). The random network is therefore characterized by a lack of clustering and
by homogeneity of individual-node network properties. From disease spreading point
of view, despite an effective rescaling in the growth rate can be observed, the epidemic
dynamics for this particular settings remains analogous to a an SIR model with a homo-
geneously mixed population.

• Lattice: these models rely on very different assumptions. Individuals are positioned
on a regular grid of points, usually two dimensional, in which only adjacent individu-
als are linked to mimic spatial localized contacts. Lattices are therefore homogeneous
at the individual level and highly clustered thanks to the localized nature of its connec-
tions. Similarly to all networks, lattice models show a reduced initial growth of infection
compared with random-mixing models, usually presenting a stronger effect because the
spatial clustering of contacts causes a more rapid saturation of the local environment.
Another common feature is the power-law, at which the frequency distributions of both
epidemic sizes and epidemic durations have been proved to obey to.

• Small-world network: this model tries to overcome the limitation of the previous ones.
While lattices display high clustering but long path lengths, i.e. a large number of steps
required to move between two randomly selected individuals, random networks have
short path lengths, but low clustering. Small-world networks tries instead to offer a
trade-off solution by adding few random connections to a lattice like network. These
rare long-range connections have a very important effect when simulating the spread of
infection, since that allow the infection to reach all individuals in the population quite
quickly. With the support of Percolation theory it has been proved that, even with a
few distant links, there are significant changes in epidemic behaviour, which could po-
tentially dramatically increase the likelihood of an epidemic. Nevertheless, since these
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long-range connections are less frequent, the transmission of infection still remains pre-
dominantly localized, keeping true the strong saturation property.

• Scale-free network: in this category of graphs another important standard network
measures is considered: the degree distribution of node-individuals. In the topologies
described untill now the number of contacts per subject is almost uniform. However,
observing real social networks, it is often the case that many individuals have a small
number of neighbours, while a few of them have significantly more connections. Since
these highly connected individuals, called super-spreaders, could be fundamental pro-
tagonists in the spread and maintenance of infection, the inclusion of such dispropor-
tionately connected nodes in epidemic models is necessary. Scale-free networks provide
an easy way to achieve this behaviour of heterogeneity. The most famous model among
them is the Preferential attachment model, also called Barabási-Albert model by the
names of its inventors. It is built dynamically, adding one by one new individuals to an
already formed network with a connection mechanism that simulates the natural forma-
tion of social contacts. Each new node connects preferentially to individuals that already
have a large number of contacts. This produces a graph where the number of contacts
per individual takes a power-law distribution.

• Exponential random graph: this class of models provides a way to explicitly construct
very flexible networks with a given set of properties. Its is inspired by statistical physics
and allows for penalizing or favoring more or less any network feature such as individ-
ual edges, or summary statistics like the mean degree, number of triangles, low degree
correlation or higher moments of the degree distribution. Exponential random graphs
have the simple property that the probability of connection between two nodes is in-
dependent of the edges presence between any other pair of distinct nodes. This allows
the likelihood of any nodes being connected to be calculated conditionally on the graph
equipped with certain network properties. In practice, there is no direct method for
generating such networks. They are instead obtained by starting with an initial network
and then adding or deleting edges based on techniques like Markov Chain Monte Carlo
until the chain is close to stationarity. A a range of plausible networks are thus produced,
guaranteeing that they agree with the provided information.

Other well known structures notable to mention are the Spatial network, the Configuration
model, the Poissonian random graphs, as well as the Random block models.
The type of network topology to be used should be carefully chosen depending on the context
and disease. At that point, given the graph of contacts, the transmission model can be designed
properly setting the parameters or their probability distributions in case of stochastic approach.
Many re-adaptations of the SIR on network are possible. Two famous examples are the Reed-
Frost discrete time epidemic model and then a continuous time Markovian model.
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Another important aspect to take into consideration is the variability of edges in time: while
for short time spans outbreaks a static network may be sufficient, when interested in longer
periods, a dynamic model, where not only nodes can appear or disappear mimicking the vital
dynamics, but also connections could be dropped or created, might be preferred.
In order to draw realistic conclusions, it is finally necessary to validate the models, preferably
fitting them on specially collected contacts network or disease data to infer parameters with
proper statistical methods. Of course, if the entire underlying graph is observed, it is often
straightforward. However, as mentioned above, this only happens in rare situations. In fact,
more complex inference strategies are usually performed on the few available egocentric or out-
break data [13].

2.2.3 Agent Based Models

The last practical methodology to implement an epidemic model here presented is the Agent-
Based Model (ABM), or Individual-Based Model (IBM), approach.
Agent-based modeling and simulation is a quite new strategy that has gained increasing atten-
tion over the last two decades, catching on in various fields of application, ranging from econ-
omy and social sciences to biology and epidemiology. The reasons for its success are of different
nature:

1. the systems to analyze and model are becoming more and more complex in terms of their
interdependencies and details, requiring new solutions.

2. Some systems have always been too complex for classical equation based methods to ade-
quately model. As a matter of fact, to guarantee analytical and computational tractabil-
ity, these traditional approaches rely on tight assumptions. ABMs are instead able to
relax some of them, providing a more realistic view.

3. Nowadays data are being collected and organized into databases at finer levels of granu-
larity. Micro-data can hence support individual-based simulations including many vari-
ables and details.

4. Finally, but most importantly, computational power is advancing rapidly, large-scale mi-
crosimulation models, not plausible just a few years ago, can be now ran within minutes
or hours.

Let’s now describe the main ingredients and characteristics of ABMs. The main reference for
this part is [38].
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The primary protagonists are, of course, the agents. Despite, there is no universal agreement
on the precise definition of the term “agent”, general guidelines could be given still allowing
an extremely high degree of flexibility. Agents consist of any type of independent components,
having diverse, heterogeneous, and dynamic attributes and behavior. Regarding the latter, it
is intended as the representation of a process that links the agent’s sensing of its environment
to its decisions and actions. Its description can range from simple if-then rules to complex
behavioral models from the fields of cognitive science or artificial intelligence. According to
some authors, the component’s behavior must also be adaptive in order for it to be considered
an agent. In this sense, the agent label is reserved only to components that can learn from
their environment and dynamically change their behaviors in response to experiences, hence
providing adaptation. Another characteristic usually associated to agents is autonomy, they
should then be active responders and planners rather than purely passive components.
From a more practical point of view, agents are usually described by the following properties:

• autonomous and self-directed: an agent can function independently in its environ-
ment and in its interactions with other agents, generally from a limited range of situa-
tions that are of interest;

• modular or self-contained: an agent is an identifiable, discrete individual with a set of
characteristics or attributes, behaviors, and decision-making capability;

• social: an agent interacts with other agents according to a given protocol or mechanism
(e.g. contention for space and collision avoidance, agent recognition, communication
and information exchange, influence and other domain-or application-specific rules);

• live in an environment: an agent is situated, in the sense that its behavior is situationally
dependent, which means it is based on the current state of its interactions, not only with
other agents, but also with the surrounding environment;

• explicit goals: an agent may have a role or tasks that drive its behavior, this allows it to
continuously compare the outcomes of its moves to its goals, giving it a benchmark for
possibly modifying them as in a reinforcement learning setting;

• learn and adapt: an agent may have the ability to change its behaviors based on its expe-
riences. Individual learning and adaptation requires an agent to have memory, usually
in the form of a dynamic agent attribute;

• resource attributes: an agent may finally have specific finite attributes that indicate its
current stock of one or more resources (e.g. energy, wealth, information, etc.).
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Once the agents were defined properly setting their type, attributes and behavioural rules ac-
cording to the application interests, the agent relationships should be added. As a matter of
fact, the second fundamental ingredient of an ABM is the method controlling which agents
interact, when they interact, and how they interact. Many topologies are available to this pur-
pose, in particular, a list of the most commonly used schemes for representing social agent
interaction is presented below.

• “Soup” Model: in the “soup” or aspatial model, agents have no location and the model
has no specific spatial representation. In general, pairs of agents are randomly selected
for interaction and then returned to the soup from which they came.

• Cellular Automata: this configuration represents agent interaction patterns and avail-
able local information by using a lattice. Specifically the cells immediately surrounding
an agent are its neighborhood, agents can move from cell to cell on this grid, usually only
horizontally or vertically, with the rule of no more than one agent per cell at the same
time.

• Euclidean Space: in this model, agents can freely roam in 2D, 3D or higher dimensional
spaces.

• Geographic Information System (GIS): according to this settings, agents move over a
realistic spatial landscape, which considers geographical boundaries, natural elements as
well as artificial building or services (schools, shops, etc.)

• Network topology: it allows an agent’s neighborhood to be defined more generally and
sometimes more accurately. As already seen, network topology may be either static or
dynamic, where links could be determined step by step according to the mechanisms
included in the model.

No matter what topology is used to connect the agents, in an agent-based model the essential
idea is that interaction as well as information transfer remains local.
Given the fundamentals of agent-based modelling, it is clear that ABMs present multiple ap-
pealing features when dealing with epidemiological models: randomness, heterogeneous mix-
ing and heterogeneous population. They are therefore capable of overcoming all the major
limitations and fragility of compartmental models and, more in general, of traditional models
described by differential equations, like SIR [43]. Indeed, ABMs provide a quite simple way
to model a system in which individuals, as single entities, could present important differences
both in attributes and behaviour, allowing to include a range of possible factors, ranging from
age or gender to cultural, economical or health status, all potential determinants in the spread
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of an infectious disease in a population. Moreover, ABMs are also more suitable in situations
in which it has been observed that individuals tend to adapt their behaviour to the epidemic,
due to social pressure, fear of contagion or after the introduction of control measures as well
as vaccination programs [31].
Lastly, it is worthwhile to mention that the compartmental, equation-based and agent-based
approaches are not necessarily mutually exclusive, in fact there are successful examples in liter-
ature where an hybrid version is implemented seeking to maintain the qualities from both the
methods [10].

To conclude, a great variety of epidemiological models have been developed over the years, start-
ing from the simple deterministic formulation of Kermark and McKendric, increasing the re-
alism by adding a more and more detailed social structure. The cost of this gained precision is
that these models are often analytically intractable, hence researchers could only rely on com-
plex microsimulations, which can be difficult to parametrize, require a computationally inten-
sive analysis and might hinder even the basic understanding of the causal factors of the studied
behaviour. Therefore, despite the increasing computational power available to researchers to-
day, analytically tractability remains an invaluable property to guarantee interpretable tools to
understand the role that different determinants play in the spread of the infection. Finally, the
fact that very little computational power is required for their analysis and practical implemen-
tation makes simple compartmental model still very attractive for policy information [44], in
particular when quick results are needed, as in the case of new infection outbreaks, like in the
current Coronavirus emergency.

2.3 Models for COVID-19

Since the very first days from the discovery of the novel coronavirus circulation in early 2020,
mathematical methods, statistical analysis and forecasting were fundamental tools to inform
policy makers and researchers. The common will to fight a devastating pandemic has led to an
extraordinary production in scientific literature, in particular for the epidemic modeling field.
For a complete understanding it is important to briefly recall the main characteristics about
this recent Coronavirus disease (principally referring to the last World Health Organization re-
ports).
Firstly, COVID-19 is a contagious disease with a very heterogeneous symptomatology. It has
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been observed that at least a third of infected people are asymptomatic, i.e. do not develop any
noticeable symptoms. On the other hand, among the remaining cases, the majority are pauci-
symptomatic, i.e. develop mild to moderate symptoms (including fever, cough, headache, fa-
tigue, breathing difficulties, loss of smell and taste up to mild pneumonia), while 14% de-
velop severe symptoms (dyspnea, hypoxia), and5% suffer critical symptoms (respiratory failure,
shock, or multiorgan dysfunction). In addition, older people, and those with pre-existing med-
ical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer seem
to be more likely to develop serious illness.
Regarding the infection spread, transmission occurs when people are exposed to virus-containing
respiratory droplets or airborne particles exhaled by an infected person. It has been observed
that the risk of infection is highest when people are in close proximity for a long time, but par-
ticles can even be inhaled over longer distances, particularly in poorly ventilated and crowded
indoor spaces, where they can remain suspended in the air for minutes to hours. Touching a
contaminated surface or object may also lead to infection although this seems not to substan-
tially contribute to the overall transmission.
After an incubation period, infected subjects can transmit the virus to another person, starting
from up to two days before symptoms onset and they could remain infectious till to ten days
after, in moderate cases, and up to twenty days for more severe cases.
Since its first detection in China, SARS-CoV-2 has rapidly spread in few months all over the
World, in particular in Italy, which was one of the first Western countries to face the health
emergency and is still one of the most severely affected nations. The lack of preparation for
the outbreak of COVID-19 beside the high rate of transmissibility, unknown complications,
and inappropriate medications led indeed to a world-wide disaster paralyzing the health care
and economic systems even in developed countries. The main motivations for epidemic model
studies should be hence searched in the urgent need to respond as precisely as possible to ques-
tions on the dynamics of diffusion as well as on the effectiveness of proposed containment
measures, while providing guideline thresholds for the general public safety.
The nature and purpose of the models have physiologically evolved with the progress of the
epidemic, depending on the acquired medical knowledge and most importantly from the avail-
able data.
Although almost a century has passed since its definition, the SIR model has been one of the
mostly adopted, at least as a starting point [41]. The simplicity of such ordinary differential
Equation-based model made it very appealing, in particular in the first phase of the epidemic,
when advanced Artificial Intelligence-based models could not be properly validated due of the
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absence of sufficient training datasets and Agent-based modeling could be not exploited be-
cause the detailed population-level parameters such as rates of contacts, distancing and virus
infectivity parameters they rely on were not yet known.
As expected, many variants have been proposed as an alternative to the classic SIR and SEIR
definitions, introducing newer compartments and topologies better describing SARS-CoV-2
infection. Reflecting the observed course, a common approach has been to separately model
different sub-groups distinguishing on the stage and severity of the disease, for example includ-
ing asymptomatic, symptomatic, hospitalized and deceased compartments [36]. In addition,
quarantined, isolated or positive detected via test have been also commonly represented espe-
cially when assessing the quality of preventive measures and non-pharmaceutical interventions
is the core purpose [27]. Only lately, vaccinated term has been also added to the model to
predict how vaccination, with specially crafted drugs like AstraZeneca, Pfizer, Moderna, etc.,
could control the epidemic [19].
However, as already discussed in the previous sections, the SIR/SEIR models have numer-
ous limitations and their validity is based on assumptions, such as closed population, homo-
geneity or constant parameters, all too restricting for the study of COVID-19 epidemic, espe-
cially for its long duration and global scope. For these reasons, it has been often used in its
stochastic or Agent-based versions, which are more complex and flexible. In particular, the
very characteristics of the virus, of the associated disease and of the pandemic evolution, led
the researchers to focus on techniques that would allow to include individual as well as local
variability: age-stratified compartments and parameters [47], meta-populations with distinct
socio-economical roles and contact types like schools, households, work spaces [23], or multi-
ple communities representing different clusters or geographical areas [8].
The correct representation of population connectivity has been another fundamental point
given that Coronavirus transmission is by close contact and that the implemented containment
methods and interventions like mask and social distancing try to directly modify it. Network
based models are then ideal to generate more realistic mixing, for example estimating the un-
derlying graph from social network data or contact tracing [9]. In literature, several proposals
have further added to the level of individual contacts, e.g. for mobility and community inter-
actions in order to inspect possible spreading paths between regions or to test the effectiveness
of travel restriction [21] [25] [35].
The SIR model is also not very accurate in predicting for wider temporal horizons. For these
purposes it has been therefore preferred to exploit more sophisticated strategies requiring more
detailed knowledge of the biomedical and epidemiological aspects. Technically speaking, many
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authors have proceeded with standard time-series techniques, like ARIMA models or smooth-
ing splines [22] [26] more suited for prediction. Recently, even Deep Learning approaches have
been tested for forecasting, benefiting from the natural memory properties for sequences of the
Recurrent Neural Networks, for example by embedding long short term memory (LSTM) into
compartmental formulation in order to design an hybrid model [48] [50] or designing a spatio-
temporal Graph Neural Network with mobility data [32].
In conclusion, the range of models produced in this last year is very rich and varied. As often
happens, there does not exist a single technique or proposal better than others, but the model-
ing choices must be guided based on the scenario of interest, the specific purpose or questions
and on the available data.
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3
Data presentation

Prior to the model design and implementation, an extensive work has been done to properly
clean, prepare and analyze in depth the data under investigation. The purpose of this chapter
is to present the dataset, with its main potentialities and problems, and to summarize the main
studies and results obtained during the exploratory data analysis phase.
First of all, the data here examined were made available by Azienda Zero, the Veneto regional
health authority, to the Cardio-Thoraco-Vascular Sciences and Public Health Department of
the University of Padova. The records were provided in three different databases:

1. the first set contains personal and clinical information of patients tested positive to SARS-
CoV-2 by molecular swab performed in Veneto between the 21st of February 2020 and
23rd February 2021. In almost all cases, for each patient only the date of first positivity
is reported, together with any other possible dates of hospitalization or re-positivization.
For this reason, among the total 328, 832 records, only 516 are related to the same pa-
tients appearing twice. In particular, it has been noticed that, for these cases, the presence
of duplicated subjects is due to significant modification between the different rows, such
as hospitalization or clinical status updates. Probably they were automatically collected
in the dataset by the system.

2. The second database contains instead the records of all molecular swabs, both positive
and negative, performed in Veneto region between the 1st of January 2020 and 1st April
2021. In total 4, 511, 302 tests were collected. The available features are much less and
sparse with respect to the previous set, appearing more linked to swabs information
rather than to the subject on which that are performed.
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3. The last database is essentially similar to the second as concern its fields, but it contains
3, 800, 129 records about antigenic swabs made, always in Veneto, between the 1st of
January 2020 and 30th March 2021.

The three sets are thus structurally inhomogeneous, however a subject code is always reported
as primary key in order to ensure unique distinction of each patient within each database.
Moreover, considering that the majority of the collected information comes from an applica-
tion manually compiled by the health workers, many physiological errors, inconsistencies, miss-
ing values and redundancies have been found. The most worth to mention common problems
are: outcome results transcribed with different expressions, identical record repetition, patients
neither domiciled nor resident in Veneto, patients with infeasible or not given date of birth,
swab report dates switched with collection dates. A thorough cleaning has been then carried
out by crossing all the available features in order to minimize all the errors losing as little infor-
mation as possible. After that, the three databases have been manipulated, standardized and
merged together in order to create an unique repository from which extrapolate the history
of each subject in terms of swabs, in particular, the number of molecular and antigenic swabs,
both positive or negative to which he/she subjected to, the first date and the duration of his/her
positivity period, the date of the definitive recovery etc.
The overall database resulting from these phases contains 8, 205, 939 swab records, of which
4, 416, 677 molecular and 3, 789, 262 antigenic, relating to 2, 350, 259 distinct subjects.
At this point, an in-depth exploratory and statistical analysis has been carried out. The main
results are presented in the following sections.

3.1 Swab tests analysis

With the intention to proceed from the general to the particular, the analyses carried out on the
overall dataset are firstly reported in this section. In this initial part, the investigations focused
more on the swabs tests information rather than on the tested patients.
To start, the number of swabs performed over the weeks has been determined, both distin-
guishing by type (molecular or antigenic) and by outcome (positive or negative). The graphs
in Figure 3.1, 3.2 show the the absolute frequencies. Figure 3.3 shows instead the percentage
numbers of positive swabs per week, both on the total and on the different types of tests (note
that in this, as well as in all the next lineplots, unless otherwise specified, the observations have
been interpolated with cubic splines in order to make the graph smoother).
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Figure 3.1: Weekly swab tests occurrences by response.

Figure 3.2: Weekly swab tests occurrences by type.

Figure 3.3: Weekly percentage of positive swab tests by type.
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From these preliminary images it can be already deduced that, as expected, the number of total
swabs performed increases consistently over time, reaching a maximum of nearly350, 000units
per week thanks to the systematic introduction of antigenic tests. In addition, it can be noted
that the percentage of positive outcomes is higher in the second peak rather than in the first
one, at the beginning of COVID-19 outbreak. Comparing the prevalence by exam typology,
it is also interesting to observe that in this late period the percentage of positives is larger for
molecular swabs, for which it approaches a rate of 40%. A possible explanation could be that
antigenic swabs, given their speed and convenience, have been frontier tests, used not only to
assess suspicious subjects, but widely adopted during monitoring and screening activities in
specific subgroups or samples of the population.

3.2 Tested population analysis

The exploration then moved on understanding what were the characteristics of the overall pop-
ulation tested: age, presence of pre-existing diseases, clinical course of COVID-19 and possible
associations between the various factors.

Figure 3.4: Percentage of molecular swabs by
age group and response.

Figure 3.5: Percentage of antigenic swabs by
age group and response.

3.2.1 Age

The analysis firstly focused on the occurrences by age group. In order to have an unbiased size
reference, the age distribution among the patients subjected to at least one swab has been firstly
compared with that of the total population of Veneto (source: ISTAT data), both depicted in
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Figure 3.6. The histogram in Figure 3.7 shows instead the absolute occurrences by age and
by swab type. Finally, Figures 3.4 and 3.5 represent respectively the percentage number of
molecular and antigenic tests divided by age group and by outcome.

Figure 3.6: Age distribution of tested versus total population in Veneto.

Figure 3.7: Absolute frequencies of swab tests by age class and type.

From these images it seems that the percentage of positives within the antigen tests is lower
and less variable with respect the various age categories. On the contrary, in molecular tests,
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different age groups correspond to different positivity percentages: in particular, the positivity
rate shows a bimodal trend with a first peak around 14−18 years and a moderate second spike
at 65− 79.

Figure 3.8: Average age of tested and positive tested individuals by week. Bounds represents punctual 95%
confidence interval for the statistic.

Suspecting that age has been among the most crucial factors during the pandemic, the weekly
mean ages of examined patients has been determined. From Figure 3.8 it can be observed that,
in the first weeks of 2020, the average age of the population subjected to swabs shows a very
high variability due to the small sample size of performed swabs in that period. Starting from
March, at the outbreak beginning, when tests started to be routinely performed, there is instead
a certain stability, together with a low variability, around 45− 55 years old.
A very different behavior is exhibited by the weekly average ages of patients tested positive to
COVID-19. While in the first months of the epidemic the statistic is close to 60 year, with the
introduction of containment measures and non pharmaceutical interventions (masks, distanc-
ing, etc.) it grows up to 75. Around June 2020, just after the end of the total lock-down, the
average age drops abruptly till August, where the minimum value of 37 is recorded. Finally
it starts increasing again getting closer and closer to the average age of the overall population
subjected to swabs (please note that the observations at the very time extremes, both left and
right, are of no significance as very noisy and incomplete).
Motivated by this triphasic trend, the analyses have been refined splitting the data according
to three macro-intervals (for convenience, the extremes have been chosen in correspondence to
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beginning or end of the months):

1. from the 30th of December 2019 to the 31st May 2020;

2. from the 1st of June 2020 to the 31st August 2020;

3. from the 1st of September to the 1st April 2021.

Figure 3.9: Age distribution of tested population during the three different macro-intervals.

Figure 3.10: Age distribution of positive tested population during the three different macro-intervals.

The age distribution, both for all tested subjects and for only those resulting positive, has been
then estimated from data via a KDE method for each of these periods. The results are shown
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in Figures 3.9 and 3.10 in which the median value is also indicated with a dashed vertical line.
Considering the overall swabs, the centrality measures seems stable, only the tails slightly vary:
the number of younger individuals subjected to swab increases over time, vice versa for those
aged over 80, whose relative values decrease. On the contrary, for tests with positive outcome,
the distribution seems to change more significantly over the three time intervals. A reduction
in age is, particularly evident during the summer months (median 40, mode 25 years, against
respectively 62 and 57 years recorded in the first peak of infected).

3.2.2 Presence of chronic pathologies

From this section onward, the described results refer to the analysis carried out only on the
first database, i.e. the set of records related to positive molecular swabs. As anticipated, in this
database numerous features are available with both personal and clinical information. For the
sake of completeness, it should be precised that the investigations considered only the subjects,
thus eliminating the possible duplicates of a person with more swabs records, with domicile
or residence in a Venetian province. As a matter of fact, there are 5, 862 individuals with both
residence and domicile outside the Veneto region (e.g non-EU citizen or coming from neigh-
boring municipalities). Discarding these observation, the actual number of analyzed subjects
is 322, 015.

Figure 3.11: Prevalence percentages of principal chronic conditions and diseases in positives.
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To start, the data relating to clinical history have been firstly taken into account, which could be
interesting for a potential correlation study with hospitalizations. In detail, for each recorded
patient it is known whether he/she is pathological and if suffering from certain disorders or
diseases such as diabetes, immunodeficiency, obesity etc. Calculating the percentages of patho-
logical subjects in the sample of positives it emerges that for both genders less than 10% has at
least one chronic pathology.
Going deeper into the available categories of conditions, Figure 3.11 represents the percentages
of subjects, again positive and diversified by gender, affected by specific pathologies. Although
it would be necessary to evaluate these percentages with those of the entire population, from
this graph it is possible to deduce that the most common pathologies among COVID-19 in-
fected are cardiovascular diseases, diabetes and cancer.
The age distribution of pathological and non-pathological positives have been also compared
(see Figure 3.12). As expected, in the first case the distribution is left skewed, while the sec-
ond is more symmetrical. The values of the medians, represented with the vertical dashed lines,
further confirm this observation.

Figure 3.12: Age distribution pathological versus non-pathological positive tested population.

3.2.3 Clinical status

Subsequently, the subjects have been divided into seven macro categories according to the sever-
ity of their clinical condition during the period of COVID-19 positivity: asymptomatic, mildly
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symptomatic, severe symptomatic, ordinary hospitalization, hospitalized in sub-intensive care
area, hospitalized in intensive care and finally deceased. To simplify, an unique status have been
hence assigned to each subject, referring only to the most critical occurred.
In Figures 3.13, 3.14 the absolute frequencies and the percentages of occurrences of such condi-
tions are presented distinguishing by different age groups. From these graphs it can be deduced
that, as already known, at younger ages (less than 25) the symptomatic rate is very low and
only in rare cases the symptoms are severe or require hospitalization. Between 25 and 65 years,
the number of symptomatic cases start to increase, with a consequent raise in hospitalizations,
which however only rarely is of intensive type. Finally, among the over 65s, the number of hos-
pitalizations in critical areas as well as deaths become significant, monotonically increasing as
age grows.

Figure 3.13: Absolute frequencies of clinical status
during positivity by age class.

Figure 3.14: Percentages of clinical status during
positivity by age class.

The histograms in Figures 3.15 and 3.16 show instead how the frequencies and percentages of
the various clinical status vary over the course of the weeks, starting from the date of first con-
firmed Italian case (21st February 2020). In absolute terms, while hospitalizations and deaths
are more stable, a significant increase in the number of asymptomatic and pauci-symptomatic
patients is evident. This phenomenon could be easily explained by to the increase in the num-
ber of performed tests over time. In percentage terms, this behavior is reflected in a decrease
over time both in hospitalizations, even in critical areas, and in deaths. By analyzing in more
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detail the trend over time of the most severe clinical status (Figure 3.17) it could be in fact
observed that the number of hospitalizations remains almost constant between the first and
second epidemic peak, while the number of deaths shows an increase of 100%. To have a fair
comparison, recall that an increase of 500% occurred in the total number of swabs, as already
shown in Figure 3.2. Finally, note once again, that in both the mentioned graphs the summer
period curve (from June to August) is substantially flat, both in terms of positive swabs and
hospitalizations or deaths.

Figure 3.15: Absolute frequencies of clinical status during positivity by week.

Figure 3.16: Percentages of clinical status during positivity by week.
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Figure 3.17: Absolute frequencies of hospitalizations and deceases by week.

3.2.4 Positivity duration

An important aspect to highlight, both from a epidemiologic and a healthcare point of view,
regards the duration of the positivity interval of COVID-19 patients.
Figures 3.18 and 3.19 show, respectively, an histogram related to observed time span values and
the corresponding estimated probability. Please take in mind that for this study only positive
subject with at least a molecular test have been considered. Moreover the duration of positivity
has been obtained as the number of days between the first swab with positive outcome and the
one of first negativization.
Looking at the images it is easy to deduce that two weeks are usually sufficient to obtain a defini-
tive negativization (median positivity period around 15 days). In addition, the associated den-
sity probability is right-skewed (skeweness = 7.63), with a right tail significantly heavier than
the left, indicating an unneglectable number of healings much longer than the common ob-
served.
In Figures 3.20 and 3.21 it is instead represented the positivity duration distributions as dif-
ferent categories vary: age and clinical state. In the first image it is evident how the positivity
period length of a patient is proportionally related with his/her age, showing up to 10 days of
gap between the mode values in young people (about 12 days in age class 6 − 10 years) and
elderlies (about 21 days for the over 85s ).
Almost the same considerations could be done for clinical states: patients with important symp-
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Figure 3.18: Absolute frequency histogram of
COVID-19 positivity duration (in days).

Figure 3.19: Estimated density probability of
COVID-19 positivity duration (in days).

toms present a longer positivity time. As a matter of fact, the curves exhibit a decrease in skewe-
ness as the severity of symptomatology increases, with a flattening of the median on the average.
Interestingly, by considering the positivity duration trend, it seems to distinguish two clusters
having almost overlapping curves: non-severe (asymptomatic, pauci-symptomatic and symp-
tomatic patience) and severe (sub-intensive care unit, ICU and deceased). A singularity in this
quite monotone behavior regards the positivity duration of dead patients. It seems in fact just
slightly shorter than that for ICU subjects. A reasonable explanation could be that death factor
reduces the right tail containing the longest positivity intervals.

Figure 3.20: Estimated density probabilities of positivity duration (in days) for the different age classes.
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Figure 3.21: Estimated density probabilities of positivity duration (in days) for the different clinical states.

3.2.5 Association of chronic pathologies with clinical status

A further step has been the assessment of any possible relation between the severity of clinical
condition and the presence of pathologies. As a matter of fact, calculating the percentages for
each type of clinical status both among pathological and non-pathological subjects, a positive
correlation seems to subsist (see Figure 3.22). In the barplots depicted in Figure 3.23 these
percentages are further refined distinguishing by type of disease or disorder. As expected, hos-
pitalization and death rates are higher, up to three times, for unhealthy individuals. Looking
specifically at the disorder types, it can be noticed that subjects suffering from severe obesity,
diabetes, metabolic or cardiovascular diseases are - in proportion - the most hospitalized in in-
tensive or sub-intensive care areas. As concerns deaths, it is interesting to observe that mortality
is below 5% in non-pathological subjects, while it is around 20% in patients with diabetes, res-
piratory or metabolic diseases and obesity, reaching up to 43% for people with kidney disease.
To rigorously test this suspected association between pre-existing pathological conditions and
greater risk of hospitalization or death, a Logistic Regression has been then performed for each
of the binary variables representing the following states:

• whether the subject was generally hospitalized or not;

• whether the subject was hospitalized in sub-intensive or intensive care units or not;

• whether the subject deceased of COVID-19 infection or not.
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Figure 3.22: Comparison of clinical status percentages in pathological versus non-pathological subjects.

Figure 3.23: Comparison of clinical status percentages among different pre-existing pathological conditions.
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The independent variables considered are: gender, age and the possible presence of (at least)
one of the different pathologies annotated in the database. Tables 3.1, 3.2 and 3.3 summarize
the results obtained by the three different models. In the case of hospitalization, both ordi-
nary and in critical areas, it can be noted that the association with various pathologies is always
significant (p value < 0.05) except for kidney diseases. Regarding critical hospitalization in
sub-intensive or intensive areas, the correlations look very similar, however the significance in
the correlation with cardiovascular or respiratory diseases and immunodeficiency is lost. Lastly,
for the death variable, again almost all covariates are significant in the model, except in this case
the presence of metabolic diseases and tumors.
Finally, it can be noted that, for all the fitted regressions, age and gender have very low p value,
indicating a strong correlation, respectively, between having an elderly age and being male with
being hospitalized or deceased due to COVID-19 infection. To conclude, a word of warning
should be spent: it is important to remember that, as shown in Figure3.12, pathological sub-
jects are more frequently older than 60 years. Moreover, the same subject can have more than
one pathology. Regression, being a quite simple model, could then be partially affected by
potential collinearity between the different variables, thus making the produced estimates not
always reliable.

Parameter Estimate Std. Error z value P (> |z|)
(Intercept) −6.0359813 0.0346133 −174.383 < 2e− 16

Gender (M) 0.6675209 0.0172746 38.642 < 2e− 16

Age 0.0472151 0.0004588 102.920 < 2e− 16

Chronic pat. (Yes) 1.0858865 0.0529421 20.511 < 2e− 16

Tumor (Yes) 0.1137400 0.0552832 2.057 0.039647

Diabetes (Yes) 0.2049454 0.0533589 3.841 0.000123

Cardiovascular dis. (Yes) −0.1534317 0.0482027 −3.183 0.001457

Immune def. (Yes) 0.8049120 0.1714105 4.696 2.66e− 06

Respiratory dis. (Yes) 0.2258442 0.0709723 3.182 0.001462

Kidney dis. (Yes) −0.0794344 0.0935577 −0.849 0.395858

Metabolic dis. (Yes) 0.4334227 0.0799977 5.418 6.03e− 08

Obesity BMI 30− 40 (Yes) 1.6877930 0.1267510 13.316 < 2e− 16

Obesity BMI> 40 (Yes) 1.7627082 0.3543682 4.974 6.55e− 07

Others (Yes) 0.2998589 0.0462308 6.486 8.81e− 11

Table 3.1: Logistic Regression coefficients estimates for generic hospitalization.
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Parameter Estimate Std. Error z value P (> |z|)
(Intercept) −6.4458454 0.0450921 −142.948 < 2e− 16

Gender (M) 0.6033411 0.0226399 26.649 < 2e− 16

Age 0.0436977 0.0005985 73.010 < 2e− 16

Chronic pat. (Yes) 0.9202806 0.0657675 13.993 < 2e− 16

Tumor (Yes) 0.1600888 0.0663979 2.411 0.01591

Diabetes (Yes) 0.2053499 0.0634610 3.236 0.00121

Cardiovascular dis. (Yes) 0.0189364 0.0600309 0.315 0.75243

Immune def. (Yes) 0.3473677 0.2143526 1.621 0.10512

Respiratory dis. (Yes) 0.0883396 0.0859035 1.028 0.30378

Kidney dis. (Yes) −0.0713022 0.1098011 −0.649 0.51610

Metabolic dis. (Yes) 0.4425574 0.0917432 4.824 1.41e− 06

Obesity BMI 30− 40 (Yes) 1.3633186 0.1319264 10.334 < 2e− 16

Obesity BMI> 40 (Yes) 0.8960875 0.3663225 2.446 0.01444

Others (Yes) 0.2349282 0.0556509 4.221 2.43e− 05

Table 3.2: Logistic Regression coefficients estimates for sub-intensive or intensive care units hospitalization.

Parameter Estimate Std. Error z value P (> |z|)
(Intercept) −12.644054 0.097843 −129.228 < 2e− 16

Gender (M) 0.876102 0.025678 34.119 < 2e− 16

Age 0.123706 0.001126 109.840 < 2e− 16

Chronic pat. (Yes) 0.484169 0.079416 6.097 1.08e− 09

Tumor (Yes) 0.094009 0.074613 1.260 0.207688

Diabetes (Yes) 0.263789 0.070051 3.766 0.000166

Cardiovascular dis. (Yes) −0.159370 0.072477 −2.199 0.027884

Immune def. (Yes) 0.939991 0.242704 3.873 0.000108

Respiratory dis. (Yes) 0.748789 0.090565 8.268 < 2e− 16

Kidney dis. (Yes) 1.284249 0.102791 12.494 < 2e− 16

Metabolic dis. (Yes) −0.185186 0.121107 −1.529 0.126238

Obesity BMI 30− 40 (Yes) 1.166812 0.171859 6.789 1.13e− 11

Obesity BMI> 40 (Yes) 1.103265 0.441432 2.499 0.012444

Others (Yes) 0.179513 0.062880 2.855 0.004306

Table 3.3: Logistic Regression coefficients estimates for decease.

3.2.6 Contacts and chains of infection

Within the first database, the one relating to individuals tested positive to a molecular swab,
there are two potentially interesting features: the subject identifier code of the hypothetical in-
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Figure 3.24: Log-scale occurrences of number of
generated cases by same infector.

Figure 3.25: Log-scale occurrences of weakly
connected component size in the reconstructed directed

graph of infection.

fector and the nature of this infection contact, i.e. whether infected and infector are co-housing
or not. The usability of this information is however severely limited by two factors. Firstly, a
very low percentage of the entire records has at least one of these two fields filled in (only42, 036
out of 322, 015 rows), secondly, within these small set, there are 18, 773 records reporting an
infector code which cannot be traced back to one of subjects at disposal in the database.
Despite the weakness of this information, these contact tracking data have been anyway ex-
plored in order to save as most as possible useful notions on infection transmission.
To begin, the number of cases generated by each of the annotated infector has been calculated
(the histogram in Figure 3.24 shows the log-frequencies). Most of the individuals appear to
have caused at most two infections, coherently with the historically estimated values of the ef-
fective reproduction number Rt, although there are also rarer cases of more prolific spreaders
with up to five positivized contacts.
With the available information, the chains of infection have been then reconstructed. Practi-
cally speaking, this has been done building a directed graph, where nodes represent the positive
individuals, and directed edges are placed to symbolize the causal relation between infector and
infected nodes. To detect possible correlations, paths or clusters, the weekly connected compo-
nents have been then determined. Figure 3.25 shows the histogram, again in log-scale, relating
to the size of the infection chains that can be reconstructed from the graph as connected com-
ponents. As it can be seen, the results are unfortunately not very significant. There are few
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Figure 3.26: Absolute frequencies of infector by age group and contact type.

chains of unitary size, relating to patients who are annotated as infectors of themselves (clearly
errors due to manual filling). The majority of chains are of size 2 or 3, although in rare cases it
is possible to reconstruct a path of length 6.
Considering the type of contact, from Figure 3.26, it can be seen that most of the infections
were caused by cohabiting infectors aged between 25 and 79 years.
To better examine how the ages of the infector-infected contacts are distributed, the matrices
of occurrences have been calculated. In detail, each elementM(i, j) of each table corresponds
to the number of contacts between an infector belonging to age group i and an infected subject
in age group j. The results are represented to the left of the following page: in Figure 3.27 the
total occurrences in all contacts, in Figure 3.29 those between cohabitants only and finally in
Figure 3.31 the non cohabitants.
Such matrices are useful to determine the quality and quantity of annotations on the tracking,
however, they are difficult to interpret as they depend on the size of the subpopulation which
is not uniform among the different age categories. An attempt of normalization is given in Fig-
ures 3.28, 3.30 and 3.32. Mathematically, each elementM(i, j) has been divided by the area of
the corresponding rectangle (i, j), i.e. the product between the number of infected subjects in
range i and that of infected subjects in range j. Then each row has been divided by the sum of
all its elements, so as to make the matrix stochastic and therefore interpretable in probabilistic
terms. It is important to specify that while the couples are counted allowing repetitions, the
subjects are instead considered unique, trying to model the infected-infected population in a
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more precise way.

Figure 3.27: Absolute frequencies in total contacts. Figure 3.28: Normalized frequencies in total contacts.

Figure 3.29: Absolute frequencies in household
contacts.

Figure 3.30: Normalized frequencies in household
contacts.

Figure 3.31: Absolute frequencies in non-household
contacts.

Figure 3.32: Normalized frequencies in non-household
contacts.
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It is interesting to note that in all cases the matrices exhibit a greater number of contacts in
the diagonal, which represents relationships between individuals belonging to the same age
group. This behaviour is particularly marked in the household contacts, where plausibly it re-
flects interactions between siblings of close ages or couples. In this matrix it can be also seen
that larger values are even present in the off-diagonal, in correspondence to parent-child cou-
ples (e.g. 25 − 44 with 0 − 2). As concern non-cohabitants contacts, the matrix presents the
most important values   especially in correspondence of the first entries of the diagonal, proba-
bly representing infection transmission between schoolmates or work colleagues, while as the
age increases peer contacts seem to decrease.
In general, the obtained contact maps patterns quite resemble those already existing in liter-
ature, such as the average daily contacts matrices estimated for Italy in the POLYMOD data
[42], nevertheless, it will be necessary to operate carefully when using those produced by the
Venetian data as for some ages couples the sample size may be not sufficient to give meaningful
results.

3.2.7 Incidence

The last quantity which has been extrapolated and analyzed by positive patients data is the
weekly incidence of COVID-19. In order to compare the epidemic trend between different
geographical areas and various population subgroups, such as students, workers, etc. the calcu-
lation of incidence has been repeated for all the Venetian provinces or municipalities as well as
for each age class. In compact notation, for each Venetian territory i, for each age group j and
for each week k, the incidence has been calculated as the quantity

I(i, j, k) :=
NC(i, j, k) · 105

P (i, j)
(3.1)

where NC(i, j, k) is the number of new positive cases counted in week k with ages among
class j and domiciled in i, while P (i, j) is is the total number of inhabitants belonging to the
age group j and domiciled in province/municipality i (demographic data from ISTAT census
2020). The scaling to 100 thousands has been instead chosen since it is the commonly adopted
reference number.
The graphs depicted in Figure 3.33 represents the incidence trends in each age class comparing
by provinces. For the 563 municipalities instead, the total incidence has been instead summa-
rized in an animated cloropleth map. Four instantaneous examples are given in Figure 3.34.

49

https://doi.org/10.1371/journal.pcbi. 1005697.s002
http://demo.istat.it/
http://demo.istat.it/


Figure 3.33: Weekly incidence of COVID-19 in the Venetian provinces for each age group.

The incidence measure confirms many deductions already presented above, such as the pres-
ence of two separate peaks or that elderlies were initially most affected by the infection. How-
ever, it also points out the importance, not only of the age factor, but also of the possible local
territorial differences in the spread of the epidemic due to geophysical condition, like popula-
tion density, or socio-cultural aspects, in particular in the initial or intermediate phases of the
epidemic.
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Figure 3.34: Incidence in the Venetian municipalities in four different representative time instants of
COVID-19 epidemic.
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4
Methods

In this chapter the implemented methodologies will be accurately described. The main focus
are the designed epidemiological models, as the very purpose of this work. Details will be also
given regarding the adopted strategies for the parameters fitting as well for the validation on the
Veneto region case.

4.1 Deterministic Model

To begin the experimentation, a deterministic Equation-based model (DM) have been firstly
developed as a generalization of the standard SIR. In this setting no stochasticity is allowed in
order to have a single direct result, avoiding the necessity to repeat the simulations multiple
times to have a summarizing behaviour. Indeed, the purpose and motivations of this type of
model in this study are several. First of all, have a baseline in order to both validate the compart-
mental scheme and have a comparison reference in performances as well as starting estimates for
parameters when further more complex models will be developed. In addition, its simplicity
of implementation and its short execution time, thanks to neglectable computational burden,
make it very suitable for an initial experimental phase.
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Figure 4.1: SEIQRD compartmental model: Susceptible (S), Exposed (E), Infected Asymptomatic (IAs),
Infected Symptomatic (ISy), Infected Hospitalized (IHo), Quarantined (Q), Removed (R), Deceased (D).

4.1.1 Compartmental formulation

Let’s hence describe the included compartments and the represented dynamics. As usual, S
denotes the class of susceptible, healthy individuals with no immunity and that can contract
the virus if exposed to infected person andE represents exposed but not yet contagious subjects.
Once the incubation phase ends, exposed individuals become infectious with rate ϵ and could
either develop symptoms (ISy) or be asymptomatic (IAs) according to probabilities PAs and
PSy. More severe symptomatic patients could eventually be hospitalized with probabilityPHo,
moving to IHo with rate ψ. Critical symptomatics could die by the viral disease both when
hospitalized or not respectively with probabilitiesPD|Ho andPD|Sy, moving toD with fatality
rate µ. Infected asymptomatic and infected symptomatic not hospitalized could be uncovered
and home quarantined with probabilities PQ|As and PQ|Sy, moving to Q with rates ϕAs, ϕSy.
Individuals in IAs, ISy, IHo,Q all contribute to the infection dynamics with differently scaled
transmission rates βAs, βSy, βHo, βQ. Finally, infected subjects move to R when they recover,
when they are discharged from the hospital or when their quarantine period ends with recovery
rates γAs, γSy, γHo, γQ.
Note that, here it has been assumed that infected hospitalized once discharged are certainly
also healed and no longer contagious, therefore they do not need any further home quarantine
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period. The reason for this choice has been to make the roles of Q and IHo almost equivalent
from an epidemiological point of view: in both cases the subjects are certainly tested, traced
by the health system and can potentially infect only a very limited number of contacts. This
decision has allowed to simplify some necessary transitions.
The formal mathematics of the DM is shown in System 4.1.1, while a graphical schema of the
compartments is represented in Figure 4.1. A summary of all the parameters is also given in
Table 4.1.

System 4.1.1

dS
dt

= − S
N
(βAsIAs + βSyISy + βHoIHo + βQQ)

dE
dt

= S
N
(βAsIAs + βSyISy + βHoIHo + βQQ)− (PAs + PSy)ϵE

dIAs

dt
= PAsϵE − (1− PQ|As)γAsIAs − PQ|AsϕAsIAs

dISy

dt
= PSyϵE − (1− PQ|Sy − PD|Sy − PHo)γSyISy − PD|SyµISy − PQ|SyϕSyISy − PHoψISy

dIHo

dt
= PHoψISy − (1− PD|Ho)γHoIHo − PD|HoµIHo

dQ
dt

= PQ|AsϕAsIAs + PQ|SyϕSyISy − γQQ

dR
dt

= (1− PQ|As)γAsIAs + (1− PD|Sy − PQ|Sy − PHo)γSyISy + (1− PD|Ho)γHoIHo + γQQ

dD
dt

= µ(PD|SyISy + PD|HoIHo)

It is easy to understand that, by definition, this SEIQRD model suffers from all the main lim-
itations of a simple Equation-based model, such as closed population assumption, no vital dy-
namics and above all homogeneous mixing. However, its number of parameters and transition
edges should ensure some flexibility. Pleas note that all the splitting edges are parametrized
with probabilities summing up to 1 in order to mathematically represent disjoint possibilities
as XOR split.
Once defined the system of ODEs representing the transition flows from each compartment,
two steps have been necessary to have a practically usable model: find valid parameters values
and obtain the solution.
For the latter task, the odeint function from the Python scipy.integrate library has been
exploited. This module provides a pre-implemented way to numerically solve stiff or non-stiff
systems of first-order ordinary differential equations using lsoda from the FORTRAN library
odepack. In particular, it returns the solution for the initial value problem given the initial con-
ditions. In the case of interest, aiming to model the epidemic in Veneto starting from the very
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beginning, while it was reasonable to set IHo 0, Q0, R0, D0, respectively the initial number of
hospitalized, quarantined, removed and deceased to zero, the real starting sizes for E0, IAs 0

and ISy 0 were unknown. For that reason, these quantities have been treated ad hyperparame-
ters during the training phase. RegardingN , the population size, it has been approximated to
4, 900, 000 individuals (source ISTAT census).

4.1.2 Parameters estimation from available data

From the investigations carried out so far on the data provided by the Veneto region, it has been
clear that part of the parameters necessary to the model could be potentially directly observable
from the data itself.
In particular, as seen in the previous chapter, features from more than three hundred thousand
patients tested positive to molecular tests for SARS-CoV-2 are available for this study. There-
fore, taking advantage of the information transmitted by the regional Health System regarding
the clinical status during positivity, the dates of the last positive and the first negative swab, any
dates of hospitalization, discharge or death, as well as dates of start and end of quarantine, it
has been possible to explicitly estimate the value of the following parameters: PAs, PSy, PHo,
PD|Sy, PD|Ho, γAs, γSy, γHo.
For γQ, the recovery rate from the home isolated compartment, on the other hand, it has been
assumed that it is constantly equal to the reciprocal of the minimum quarantine period, which
by law was almost always 14 days during the first period of the pandemic.
Table 4.2 shows the obtained statistics and, where meaningful, the computed 95% confidence
intervals.

4.1.3 Parameters fitting

For the remaining unknown parameters, which are the most interesting and challenging, a
training strategy has been adopted.

Time dependence

The first important factor to take into consideration has been the time dependence and vari-
ability of the parameters values. In Figure 4.2 an example of solution with fixed parameters
is depicted. It can be seen that the produced solution returns functions of two types: mono-
tonic “s”-shaped curves or bell shaped curves. Even testing different combinations of initial
conditions, it has been clear that keeping all parameters constant over time, it would have been
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Parameter Description
βAs Transmission rate in infected asymptomatic
βSy Transmission rate in infected symptomatic
βHo Transmission rate in infected hospitalized
βQ Transmission rate in home quarantined
ϵ Inverse of latent, incubation period duration
ϕAs Quarantining rate for infected asymptomatic

ϕSy
Quarantining rate for infected symptomatic

not hospitalized
ψ Hospitalization rate for infected symptomatic
γAs Recovery rate in infected asymptomatic

γSy
Recovery rate in infected symptomatic not

hospitalized
γHo Recovery rate in infected hospitalized
γQ Inverse of quarantine period duration
µ Fatality rate

PAs
Probability to be infected asymptomatic

(P (IAs|I))

PSy
Probability to be infected symptomatic

(1− PAs)

PHo
Probability to be hospitalized when
infected symptomatic (P (IHo|ISy))

PQ|As
Probability to be home quarantined when infected

asymptomatic (P (Q|IAs))

PQ|Sy
Probability to be home quarantined when infected
symptomatic not hospitalized (P (Q|ISy − IHo))

PD|Sy
Probability to decease when infected symptomatic

not hospitalized (P (D|ISy − IHo))

PD|Ho
Probability to decease when infected hospitalized

(P (D|IHo))

Table 4.1: Deterministic model parameters description.
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Parameter Estimate 95% CI
PAs 0.645 (0.6435, 0.6468)
PSy 0.355 (0.3531, 0.3565)
PHo 0.223 (0.2203, 0.2252)
PD|Sy 0.024 (0.0237, 0.0255)
PD|Ho 0.271 (0.2655, 0.2764)
1/γAs 17.859 days (17.788, 17.931)
1/γSy 17.762 days (17.674, 17.850)
1/γHo 26.094 days (25.758, 26.429)
1/γQ 14 days -

Table 4.2: Known or observable parameters in Veneto population data.

Figure 4.2: Example of system solution with constant parameters.
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impossible to obtain behaviors with two peaks like those observed in Veneto (see Chapter 3).
As expected then, to have reliable estimates, the fitting should have been done separately on
different time intervals. At this point the choice of periods has been crucial for the success and
meaningfulness of the results. Even if a trial and error approach has been followed, these de-
cisions have been mostly guided by knowledge on the available time-series and historical facts,
such as the presence of peaks or the activation of specific containment measures.

Training data and performance metric

The other fundamental ingredients for the fitting have been, as usual, a performance measure
and a training set. It has been therefore necessary to understand which of the various informa-
tion from the provided databases were the most decisive and, above all, the most reliable. As
already discussed in the previous Chapter, the records of positive tested cases seem incomplete,
especially at the beginning of the pandemic, when the made swab exams were fewer compared
to later stages. It is therefore not certain that the reported values are the actual ones, in particu-
lar for the asymptomatic infected who are the most difficult to detect. On the other hand, the
observations reported for hospitalizations, quarantined and deaths due to, or with, the novel
Coronavirus disease can be considered more correct. It is obvious instead that the numbers of
exposed persons are impossible to observe. As a matter of fact, by definition an exposed subject
is not yet infected, hence it does not show any symptom and would result negative to test, being
impossible to be traced by the health mechanism.
It has been hence decided to exploit as training data the daily observation of hospitalized, de-
ceased, quarantined and all the positive subjects, respectively represented by symbols IHo, D,
Q and P . In the case of model predictions, this quantity of positive tested has been approxi-
mated as the sum of all infected and quarantined individuals.
Concerning the performance metric, given a time interval [ti, tf ], it has been defined by an ad
hoc Mean Weighted Squared Relative Error as follows:

MWSRE(ti, tf ) =
∑

c ∈{IHo,D,Q,P}

(
ω(c) ·

∑tf
t=ti

( ȳc(t,x)−yc(t)
yc(t)

)2
δ(ȳc(t, x)− yc(t))

(ti − tf )
∑tf

t=ti δ(ȳc(t, x)− yc(t))

)

where yc(t) and ȳc(t, x) respectively denote real and predicted values, depending on trainable
parameters x, for the size of class c at time t ∈ [ti, tf ]. Note that, each compartment c taken
into account has been weighted byω(c) in order to give more importance to errors made on the
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number of deceases and infected hospitalized, which are more truthful. On the other hand, the
choice of the relative error has been made to eliminate the differences in the orders of magnitude
between the different types of compartment sizes. In addition, a second weighting component
δ is included to encourage the model to overestimate rather than underestimate. In practice
δ has been defined as a step function similar to sign(·). Again, all of these weights has been
decided as hyperparameters, prior to the actual fitting.

Optimization algorithm

The last choice has regarded the optimization algorithm to perform the training in practice.
Also for this task a pre-implemented Python module has been used: scipy.optimize. Note
that, since the parameters are rates or probabilities, i.e. with support in [0, 1], it has been nec-
essary to use a method to minimize a multivariate objective subject to constraints. Technically
speaking, the function minimize with argument method set to 'trust-constr' has been
exploited. In short, it defines a Trust Region method for constrained optimization by includ-
ing a barrier penalty to encourage solution points in the desired support space, please refer to
[17] for more details.

4.2 Network Agent Based Model

COVID-19 strength of transmission, similarly to other airborne diseases, radically changes de-
pending on the context environment, the duration and type of contact. Consequently it could
be incorrect to assume that contagion is equally likely between family contacts, work, school
or other community spaces.
It is also worthwhile to remember the role of super-spreaders and super-spreader events result-
ing in clusters of cases, as happened in the South-Korean church in the early 2020. They con-
stitute a concrete major risk factor for epidemic spread.
Furthermore, from the medical knowledge acquired so far, as well as from the analyses on the
Veneto region here produced, it is clear that the severity of the disease, the risk of critical hospi-
talization or the risk of fatality are strongly correlated with age.
All these considerations have been the motivation for designing of a more complex Agent-based
model (ABM), possibly able to overcome the transmission and population homogeneity limi-
tations of an Equation-based version.
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4.2.1 Meta-population setting

To simulate the mechanisms of infection as reliable as possible, a high resolution synthetic pop-
ulation has been firstly created.
Each agent of the meta-population is defined as a subject of age class a, which could be even-
tually a pathological patient depending on p ∈ {YES, NO}. Here pathological means that
the individual has at least one disease commonly classifiable as chronic such as diabetes, hyper-
tension, cancer, etc. The adopted age groups are the same eleven as those of the studies in the
previous chapter: 0−2, 3−5, 6−10, 11−13, 14−18, 19−24, 25−44, 45−64, 65−
79, 80− 84, 85+. In this way students of various grades, workers and the elderly are precisely
represented by the model.
Regarding contacts, agents are connected each other by edges defined in a multi-layers network,
please refer to Figure 4.3 for a summarizing schema. The first layer gives the household con-
nections (orange). The second connection type represents workplaces: agents in adult ages are
supposed to have both generic contacts at work (light blue), both close contacts with colleagues
(blue). On the other hand, the third layer models schools: children and young agents attend
a school (shaded area) and belong to one of its classes (light green). They are also supposed
to have close contact only with some friends among the classmates (dark green). For simplicity
here an agent is defined student when aged between 3 and 24 years, while it is defined a working
adult when aged from 25 to 64 years. Finally, the last edge type tries to include all the possible
remaining common and habitual contacts in the community (magenta): friends, sport, shops,
cafes, etc.
In practice, the values of a and p have been randomly assigned to each agent. The reference
discrete distributions were been priorly obtained respectively from the last ISTAT census on
Veneto and from a 2014 survey on the CSD Longitudinal Patient Database, an Italian general
practice registry [5] (Tables 6.2 and 6.1 in Appendix). Note that, the pathologies presence prob-
ability here varies depending on the different age groups.
For the network instead, to implement household, work and school contacts, random sam-
plings respectively of size h, w and s agents have been iteratively performed until all the pop-
ulation has been covered. Each set of nodes has been then connected following the simple
complete graph as reference topology rule. Moreover, each completely connected group of co-
working agents have been further randomly partitioned into non-intersecting subgraphs of size
wc to simulate different stronger contacts between close colleagues. Analogously for school,
firstly students have been partitioned into classes of size sc and then these have been randomly
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divided into small groups of sf friends. In this way each agent has a sort of local context of
belonging, but its number of really significant and more likely infectious contacts remains lim-
ited.
To produce a more realistic population, the sample sizes have been also generated stochasti-
cally. The household composition h varies in [1, 5] according to the observed distribution in
the Veneto region (as always obtained from ISTAT census data, here reported in Table 6.3 in
Appendix). A correction mechanism has been also implemented in order to allow only adult
aged individuals to be assigned to one member family (single) and to ensure that children have
at least a parent.
The remaining sizes w, s, wc, sc, sf have been instead defined as random variables uniformly
or normally distributed, whose statistics have been left as hyperparameters.
Finally, as regards the community layer, the Barabási-Albert model has been preferred as the
most suitable random graph for social network. As a matter of fact, thanks to its preferential
attachment property it encourages non-uniform degrees and the presence of hub nodes which
could potentially be super-spreaders. Again,m, the number of new edges to be added at a time
by the building algorithm, has been treated as hyperparameter.
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Figure 4.3: Meta-population setting in the Agent Based model: agents attributes and multi-layered network of
contacts.
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4.2.2 Infection dynamics

As regards the contagion transmission dynamics, the Agent-based model follows exactly the
same compartmental scheme as the deterministic one (see Figure 4.1). The real important dif-
ference lies in how those parameters are formulated and how the mechanisms of infection is
implemented in practice.
Although all agents follow the same infection dynamics rules, each of them now has part of the
parameters strictly personalized, depending on his age a, on the possible presence of chronic
pathologies p and on a stochastic component. The choice of which parameters to customize
has been mostly guided by the available data, reflecting whether it would be possible to estimate
in such detail from the Veneto observations or if there would already exist known values in the
literature.
Indeed, as already explained above, the available health system databases have allowed to ex-
plicitly estimate some of the probabilities and rates. By further splitting the records in order
to divide by age groups and pathological or non-pathological subjects, it has been possible to
obtain a and p specific approximation for the proportions PAs, PSy, PHo, PD|Sy, PD|Ho (see
Table 6.5 in Appendix).
Similarly, for the recovery rates 1/γAs, 1/γSy, 1/γHo the mean and the standard deviation
could be calculated (Table 6.6 in Appendix). Starting from those values, a random recovery
time is here assigned to each agent sampling from a Gamma probability distribution having
the corresponding statistics.
Note that for 1/γQ instead, again the value of 14 days has been adopted, as commonly defined
by law.
Finally, differently from the DM, here also ϵ has been allowed to vary dependently on the age.
Exploiting the estimation provided in [30] (reported in Table 6.4 in Appendix), the incubation
time is assigned to each agent sampling from aGamma distribution.
For all the remaining,ϕAs,ϕSy,ψ,µ,PQ|As andPQ|Sy, it has been proceeded as usual by simply
adopting constants to be properly trained.
Concerning the mechanisms that simulate contagion, the Agent-based model does not include
β transmission rates, but uses probabilities. At each time step, each infected agent in IAs, ISy,
IHo orQ, can only infect its susceptible neighbouring agents in the underlying network graph
according to specific probabilities.
In detail, individuals inQ can only transmit the virus to co-housing contacts, this eventuality is
regulated by probability Ph|Q. Hospitalized patients are instead supposed to potentially infect
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solely through the community layer edges with probability Po|Ho. Finally, for subjects in IAs

and ISy it is allowed to spread COVID-19 in all the designed environments, respectively with
probabilitiesPh|As,Ph|Sy for household members,Pw|As,Pw|Sy in workplaces,Pwc|As,Pwc|Sy

for close work colleagues, Ps|As, Ps|Sy in schools, Psc|As, Psc|Sy for classmates, Psf |As, Psf |Sy

for school friends and Po|As, Po|Sy for other community contacts.
Note that since the multi-layered social network is constant, in order to include in the model
also contacts of non-repetitive or habitual nature, the possibility of completely random connec-
tions sampled among the overall population has been added in the case of asymptomatic and
symptomatic infected. As usual, infection force is parametrized by probabilities: Pc|As, Pc|Sy.

4.2.3 Model implementation and fitting

In practice, the mesa module, the Python 3-based counterpart to NetLogo or MASON, has
been exploited to develop the Agent-Based model.
Technically speaking, each agent is spatially placed in its correspondent node of the underlying
social network, given as anetworkx graph object, while time is controlled by aStagedActivation
scheduler.
Precisely, each step of the simulation corresponds to a real day and includes two stages. Firstly,
the variables of each agent are checked and eventually updated if it is time to move to a different
compartment. Then, once a day, individuals in IAs, ISy, IHo orQ can infect their contacts: for
every susceptible and allowed neighbour, a Bernoulli experiment is conducted with the respec-
tive probability, where the success outcome corresponds to virus transmission. Please note that
at each stage, agents are activated randomly to avoid possible artefacts due to order bias.
As regards the choice of parameters, it has been proceeded in a similar way to the Deterministic
model. As already discussed, part of the values have been directly extrapolated from the data of
the Veneto region and from recent publications, while for the remaining a training procedure
has been necessary. However, since a single simulation of the model with a fairly high number
of agents, at least around 105, takes quite long time, to speed up the fitting it has been decided
to use the results of the Equation-based model for the parameters ϕAs, ϕSy, ψ, µ, PQ|As and
PQ|Sy.
Another important clarification to be made is that also in this case the parameters strictly linked
to the infection dynamics can vary over time. Hence, as expected, in order to have an unbiased
comparison and to be able to exploit previous estimates, the time periods to be used must be
the same as in the Deterministic model.
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Summing up, the only trainable parameters left behind have been the transmission probabil-
ities Ph|As, Ph|Sy, Pw|As, Pw|Sy, Pwc|As, Pwc|Sy, Ps|As, Ps|Sy, Psc|As, Psc|Sy, Psf |As, Psf |Sy,
Po|As, Po|Sy, Pc|As, Pc|Sy, Ph|Q and Po|Ho.
Although the fitting setting is the same as the first model, the agent-based version has required
some fundamental changes. First of all, since in this case the results are run dependent, before
calculating the MWSRE measure it is necessary to repeat several times the simulation in order
to obtain an average behaviour. Furthermore, since it is computationally impossible to run a
simulation with a number of agents equal to the Veneto population, the predicted numbers
should be further re-proportioned.
It is therefore evident that a single function evaluation is numerically expensive and slow. More-
over, the ABM does not produce continuous values, but discrete curves. For these reasons, it
has been decided to choose as numerical optimization algorithm a different method than Trust
Region. In details, the derivative-free optimization solver for constrained problems COBYLA
(Constrained optimization by linear approximation) [46] has been adopted. It works by iter-
atively approximating the actual constrained optimization problem with linear programming
problems, therefore it is able to speed up the training, but it is less precise. Concluding the prac-
tical implementation overview, note that also for this operation, the built-in library function
minimize has been used.

66



5
Experiments and results

In this chapter, the results of the different designed modelling strategies on Veneto will be pre-
sented, while highlighting strengths and weaknesses of each method. The conducted simu-
lation and forecasting experiments will be also described, discussing the real capabilities and
applicability of the models to the COVID-19 case.

5.1 Deterministic model results

To start, the results obtained with the deterministic-differential equation model are introduced.
However, before moving on the actual discussion on fitting, it is worthwhile to remember
which hyperparameters have been left to a trial and error approach.
As a matter of fact, one of the most critical decision has been the choice of reasonable time
intervals in which varying the parameters. Please remember that these trainable parameters
have been designed to be piecewise constant functions. First of all, a criterion based on the
reconstruction of the different dates of activation or variation of the implemented protection
or restriction measures has been adopted. Then the hypothesized periods have been validated
by comparing the trend of the curves in the observed data. After several attempts, it has been
decided to split over the following eight macro-intervals:

• Period 1, from 17th February 2020 to 10th March 2020, includes the beginning of the
epidemic. Starting from the week of the first COVID-19 case in Veneto in the municipal-
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ity of Vo’, several ordinances were introduced at the local level with restriction measures
mainly addressed to school, public events and travelling.

• Period 2, from 11th March 2020 to 10th May 2020, represents the total lockdown phase.
As a matter od fact, in those months the containment measures were extended to the
whole national territory with the Prime Ministerial Decree (DPCM) of 8th March. Schools,
bars, restaurants, work activities and non-essential shops were completely closed. In ad-
dition, transports were reduced to minimum and travelling was allowed only for basic
needs. Face mask, social distancing and sanitization became mandatory.

• Period 3, from 11th May 2020 to 14th June 2020, contains a few post lockdown weeks,
when a gradual reopening of activities began and regional, national travel restrictions
decayed.

• Period 4, from 15th June 2020 to 5th September 2020, spans instead on summer weeks,
during which the low number of infections allowed generalized reopenings and reduced
the obligation to wear face mask only to indoor spaces.

• Period 5 goes from 6th September 2020 to 2rd November 2020. It includes schools re-
opening of all levels and the new increment in the number of positive cases, with con-
sequent reintroduction of limitations, such as gyms closure and limited hours for bars
and restaurants.

• Period 6, from 3rd November 2020 to 23th December 2020, contains the days when the
second wave of the infection reported its maximum peak. Closure of secondary schools
and travel limitations between municipalities were added to the previous interventions.

• Period 7 approximatively represents the Christmas break, from 24th December 2020 to
18th January 2021. In those days, severe measures similar to those of the first lockdown
were implemented throughout Italy, with the exception of some rules to allow visits to
family members on holidays.

• Period 8, from 19th January 2021 to 13th February 2021, finally includes the remaining
available days, when, with the beginning of the new year, there were again a relaxation
of the rules and a partial reopening of high schools. Note that the very last ten observa-
tions, until February 23rd, were not included in the training in order to allow prediction
experiments on them.

A second challenging decision regarded the starting values to be passed as initial condition to
the ODEs System. While at t = 0, day 17th February 2020, it was reasonable to assume zero
cases in Veneto for IHo 0, Q0, R0, D0, the real starting sizes for E0, IAs 0 and ISy 0 were un-
known. Therefore different combinations of values have been manually tested. It was inter-
esting to discover that with null values, or very low numbers for all three compartments, it is
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impossible to reproduce the first phase of exponential growth and the outbreak observed in
Veneto at the end of February. Indeed, it has been empirically determined that a fair fitting
could result only by setting E0 ∈ [50, 100] and IAs 0, ISy 0 ∈ [3, 10]. On the other hand, for
the fitting of periods from 2 to 8, it has been chosen to assume as initial conditions the solu-
tions found at the previous step in correspondence of the relative time ti .
For the remaining hyperparameters required to train, such as the values in the weighting func-
tions δ and ω or the optimization constraints, refer to the Appendix.
Given all the ingredients, the optimal parameters values returned by the fitting procedure for
each macro-interval are finally shown in Table 5.1. The estimated curves on hospitalized, de-
ceased, quarantined and positive cases are also represented in Figure 5.1 with the corresponding
real observations.

Parameter Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
ti 0 23 84 119 202 260 311 337

tf 22 83 118 201 259 310 336 361

βAs 0.6184 0.2291 0.2334 0.5719 0.7026 0.3144 0.2165 0.1406

βSy 0.6022 0.4060 0.4110 0.7359 0.7488 0.5640 0.3957 0.1217

βHo 0.0785 0.0231 0.0014 0.0025 0.0359 0.0407 0.0286 0.0014

βQ 0.0726 0.0054 0.0011 0.0016 0.0201 0.0191 0.0112 0.0010

ϵ 0.2650 0.4597 0.1028 0.1030 0.1266 0.4078 0.5350 0.5964

ϕAs 0.3968 0.6331 0.9767 0.7772 0.8250 0.7998 0.7230 0.8444

ϕSy 0.4051 0.3861 0.9727 0.8183 0.6906 0.6742 0.6379 0.6447

ψ 0.9510 0.5568 0.0747 0.9025 0.7703 0.6825 0.6879 0.5579

µ 0.0349 0.0603 0.0900 0.0340 0.0468 0.0793 0.1143 0.1642

PQ|As 0.1163 0.6920 0.7425 0.5201 0.6386 0.6962 0.5376 0.6585

PQ|Sy 0.0946 0.6410 0.7349 0.5693 0.5562 0.5453 0.4034 0.3339

Table 5.1: Results of Deterministic model parameters fitting on Veneto population data.

To begin with the results on transmission rates βs, it seems that the model is able to distinguish
the different roles of asymptomatic, symptomatic, quarantined and hospitalized infected, giv-
ing each of them different weights in the contagion capacity. As a matter of fact, it can be
observed that βSy is almost always greater than or equal to βAs, while the values of βQ and βHo

are definitely lower by at least an order of magnitude.
On the other hand, analysing how transmission rates vary over time, it seems that the obtained
values are consistent with the observed phases of growth or decrease and at the same time with
the severity of the active restrictions measures on each individual period. Indeed, after the start
of the epidemic, all βs importantly decrease thanks to the lockdown. However, during sum-
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Figure 5.1: Deterministic model estimated numbers versus real numbers of infected hospitalized (left top),
deceases (right top), quarantined (left bottom) and positive cases (right bottom). Vertical dashed lines separate the

different fitted time periods.

mer and especially with school reopening it seems that the virus has begun to strongly circulate
again, causing the second wave in late autumn, when the transmission rates diminish with the
reintroduction of more stringent restrictions.
Regarding the probabilities of passing into compartmentQ, first of all it should be remembered
that they represents the possibility of being home isolated. Therefore, in the case of positive
symptomatic subjects, the total probability of being uncovered is obtained by adding toPQ|Sy

also the probability of being hospitalized PHo ≈ 0.223, since in that case a patient would be
surely tested to COVID-19.
With this premise in mind, it can be noticed that, with the exception of the first period in which
very low values are estimated, the proportion of infected quarantined is around 40 − 70%.
Moreover, it is interesting to observe that the lowest probabilities occur in summer and in the
Christmas season, both holiday-related times of the year during which people may have lowered
their attention.
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Figure 5.2: Experiment of prediction on hospitalized (left) and deceases (right) with fitted Deterministic model.

For all the remaining parameters ϵ, ϕAs, ϕSy,ψ, µ, it is difficult to give an interpretation of the
results. It is also suspected that the model has slightly overfitted on some of them, compensat-
ing possible errors or limitations, despite showing curves quite close to the real ones.
In fact, looking at the graphs in Figure5.1, it can be seen that the Deterministic model almost
correctly reproduces the numbers of deaths and hospitalized patients, but fails in the estimates
of positives and quarantined, especially in the maximum peak phases. While the error in the
first wave may still be reasonable assuming that the observations at the start of the pandemic
could be incomplete and remembering that the model is encouraged to overestimate by defi-
nition of the chosen performance measure weights, it is not clear why the model predictions
largely deviates in the second peak.
Possible explanations could be searched in the too limiting deterministic formulation or in the
unreliability of parameters estimates directly obtained from the regional health system data, for
which it has been assumed constant validity over time. With regard to the latter hypothesis, it
should be remembered that in Chapter 3 it was shown that the proportions of asymptomatic,
symptomatic and hospitalized patients have changed over time due to the increase in the num-
ber of molecular and antigenic tests, in the awareness of the population and in the screening
campaigns. In particular, it was observed that the proportion of deceased and hospitalized com-
pared to asymptomatic or mild symptomatic has decreased over the months. Therefore, by
forcing instead the model to keep this ratio constant and to optimize the trainable parameters
by fitting more importantly on the IHo andD curves, it is reasonable that it has underestimated
the other categories of positives IAs andQ.

Although the model could be further perfected, since the training results were generally fair, it
has been anyway proceeded to test its forecasting performances.
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In detail, it has been decided to try to predict the cases of deaths and hospitalizations for COVID-
19 for ten consecutive days. The last solutions found during the fitting procedure has been
exploited as initial conditions of the ODEs system, correcting where possible with the real
recorded numbers. The obtained prediction results are shown in Figure 5.2.
As expected, the Equation-based model is not able to accurately predict for wide forecasting
horizons, showing a worsening in the error as time increases. In the conducted experiments, it
seems that the model is able to predict a correct trend. However, the obtained forecasts show
quite high relative errors around 13.08 and 0.008 respectively for infected hospitalized and de-
ceases.
Hence, it is not possible to conclude that the results are acceptable, especially when more pre-
cise estimates are needed, as in the case of hospitalizations, whose numbers are usually exploited
as thresholds by policy makers.

5.2 Agent Based model results

As regards the Agent-based model, the fitting has been decidedly more challenging due to the
complex structure of the underlying population as well as of the personalized dynamics of con-
tagion. To ensure a trade-off between reliable results as well as shorter execution times, it has
been opted for a number of simulation repetitions equal to 10 and a number of 20, 000 agents.
Moreover, parallelization has also been exploited to speed up both the multiple runs of the same
experiment and the training procedure.
Since the model fitting has not yet completed on all the available time records, only the achieved
partial results are here reported. Similarly to the DM, the optimal estimated values for the pa-
rameters and the fitted curves are shown, respectively in Table 5.2 and Figure 5.3. Remember
that, since the ABM has a stochastic component, the plots represent the mean behaviour ob-
tained for each instant of time t together with the corresponding 95% confidence interval.
From the plots it can be seen that this method is able to reproduce the trend of COVID-19 cases
better than the deterministic counterpart, especially for the numbers of positive and quaran-
tined subjects during the second wave of the epidemic. Nevertheless it is necessary to point
out that the ABM is not accurate on low numbers. Indeed, being the meta-population smaller
than the real one, each agent here represents about 250 individuals, thus ABM can not encode
more subtle phenomena. A possible solution would be to adopt a hybrid approach, as in [10],
exploiting the Equation-based model for the first simulation days, or any other period with
lower case numbers, and then continue with the Agent-based one.
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Figure 5.3: Agent-based model estimated numbers versus real numbers of infected hospitalized (left top),
deceases (right top), quarantined (left bottom) and positive cases (right bottom). Vertical dashed lines separate the

different fitted time periods, while the shaded areas give pointwise 95% confidence bounds.

As concern the trainable variables, i.e. the various probabilities of transmission, it is hard to
interpret the obtained numerical results and evaluate their significance. As a matter of fact,
for some of them, unexpected or even apparently incorrect behaviours can be noted among
the different periods. It can not be concluded that the ABM has correctly learned the distinct
roles of the different class of infectors as well as of the various types of contacts, as it does not
return particular distinguishable patterns. It therefore seems that the model has partially over-
fitted due to the high degree of freedom allowed by the many trainable probabilities, all equal
competitors in the same dynamics of contagion. Limiting the search space by providing more
tight constraints for the variables in the optimization problem, exploiting where possible priori
domain knowledges, may help the training algorithm to converge to better and more reliable
solutions.

Despite it is not possible to determine with certainty whether the resulting parameters are valid
or not, given the more than sufficient performance in reproducing the observed curves in the
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Parameter Period 1 Period 2 Period 3 Period 4 Period 5
ti 0 23 84 119 202
tf 22 83 118 201 259

Pc|As 5.043e− 05 0.00013806 < 1e− 16 0.00341038 8.569e− 08
Po|As 3.018e− 05 < 1e− 16 4.366e− 08 3.297e− 06 2.013e− 07
Ph|As < 1e− 16 1.345e− 05 < 1e− 16 0.00946477 0.41788340
Pw|As 0.00142420 0.00021126 1.132e− 07 0.00983549 0.88507141
Pwc|As 0.00010259 2.821e− 06 9.447e− 07 0.00443611 < 1e− 16
Ps|As 7.204e− 05 < 1e− 16 9.999e− 09 1.000e− 08 < 1e− 16
Psc|As 0.06904497 < 1e− 16 9.999e− 09 < 1e− 16 < 1e− 16
Psf |As 0.15547666 1.000e− 08 9.999e− 09 < 1e− 16 0.00249346
Pc|Sy 0.01283323 0.00013608 0.02343780 0.00865469 0.01390100
Po|Sy 2.179e− 07 < 1e− 16 < 1e− 16 3.638e− 05 < 1e− 16
Ph|Sy 0.00673244 0.07981005 < 1e− 16 0.00402936 1.509e− 07
Pw|Sy 0.78679119 0.06119351 < 1e− 16 0.00620262 < 1e− 16
Pwc|Sy 8.035e− 05 0.91536280 0.99999999 0.99457201 0.29880006
Ps|Sy 0.00462901 < 1e− 16 1.000e− 08 1.000e− 08 < 1e− 16
Psc|Sy 0.18031151 < 1e− 16 < 1e− 16 < 1e− 16 0.00013314
Psf |Sy 0.20030259 1.000e− 08 9.999e− 09 1.000e− 08 < 1e− 16
Ph|Q 0.01413586 0.02758206 < 1e− 16 0.02025461 0.00058013
Po|Ho 0.00016182 1.428e− 05 < 1e− 16 7.285e− 05 2.650e− 07

Table 5.2: Results of Agent-based model parameters fitting on Veneto population data.

Veneto region, it has been decided to continue the study experimenting with this fitted version
of ABM.
The prediction of deaths and hospitalizations cases for COVID-19 has been hence tested also
for this model. The ten-days forecasting results are shown in Figure 5.4. It should be specified
that, given the presence of the stochastic component and then the impossibility of reproducing
exactly the same values, in this case the forecasting is not done on the absolute numbers, but on
the daily increases or variations ∆s. In this way, it is possible to obtain more precise numbers
using the last known daily data as starting value and simply adding the predictions on the ∆s.
The predictive abilities of ABM seem decidedly superior to those of DM, showing in the re-
ported test relative errors of 0.047 and 0.023 respectively for the number of hospitalizations
and deceases. In addition, apart from some minor fluctuations, the trend generally looks closer
to real observations. However, a fair comparison will only be possible once both models have
the training completed, so as to be able to repeat the forecasting trial on the same time interval.
The latest carried out experimentation has been a What-if analysis. Given the greater detail of
ABM in reproducing both the population and the spread of infections in the various major
social environments and dynamics, this model has made possible to simulate various potential
pandemic scenarios in Veneto. In particular, the possible effects on the number of positive,
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Figure 5.4: Experiment of prediction on hospitalized (left) and deceases (right) with fitted Agent-based model.
As usual, shaded areas give pointwise 95% confidence bounds.

quarantined, hospitalized and death cases have been simulated considering whether different
restriction strategies were implemented or not.
Firstly, it has been studied on the synthetic population what would have happened if no mea-
sures had been implemented to contrast the spread of the novel Coronavirus. This test allowed
not only to demonstrate once again the importance of the public implemented interventions,
but also to provide a control example for the time-dependent parameters obtained from the
training. In other words, it permits to check whether the separate fitting on various intervals
was useful or not. In practice, it has been proceeded by adopting for each time t, the probabili-
ties and rates fitted for the first period, i.e. that corresponding to the beginning of the epidemic.
A second attempt was generated instead to prove the possible benefit of a second lockdown af-
ter the summer. In fact, it would be particularly interesting to determine whether it could have
avoided the second, and most serious, peak of infections registered in the following months. In
this case the simulation has been run assuming valid the parameters obtained for Period 2 also
for Period 5.
The other experiments concerned instead school protection measures. Indeed, the correlation
between schools opening and the increase in infections number is still a hot topic in epidemi-
ology research as well as between politicians. Here the trend of the aforementioned quantities
have been then obtain both assuming that schools had not been closed during first the first
lockdown phase, both simulating no school reopening after summer 2020. For the former,
the probabilities Ps|As, Ps|Sy, Psc|As, Psc|Sy, Psf |As, Psf |Sy trained on Period 1 have been ex-
ploited also on Period 2, while for the latter they have been all simply assumed to be zero also
in Period 5.
The curves for the various reproduced scenarios are compared to those actually observed in
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Figure 5.5: Simulation experiments of different pandemic scenarios on the Veneto population by varying the
active restrictions and containment measures.

Figures 5.5.
As expected, in the event that no restrictions against the epidemic were implemented (red line),
the numbers of infected subjects, as well as those with critical symptoms and deaths, would
be higher of several orders of magnitude. An interesting behaviour to highlight is that in this
test the curves are unimodal, just like those generally reproduced by an equation method with
constant parameters. However the bells here seem flatter, probably due to the protection effect
guaranteed by the implementation on network.
Continuing on the second experiment, it is clear that the repetition of a lockdown even after
the summer would have benefited the health system, definitively reducing cases to zero (green
line). On the other hand, implementing these extreme measures always leads to serious social
and economic consequences. From this point of view, a second period of total closure would
indeed have been unsustainable.
As regards the restriction on schools, in the case face-to-face teaching modality would not
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restart from September (orange line) it can be noticed that the real curves intersect the con-
fidence zone of the reproduced numbers and that the model generally returns coincident or
even larger values. Therefore, it cannot be proved any significant difference. The test should
perhaps be repeated using more records and continuing the simulation at least until December
2020.
Finally, from the simulating scenario testing the event that schools were never closed (purple
line), it turns out that the epidemic curves almost maintain the same patterns as those origi-
nally recorded. As a matter of fact, both waves of the epidemic can be still distinguished in the
two peaks separated by the summer period, which as usual report instead contained contagions.
The important difference lies in the scale of magnitude, now much higher and at the level of
the results obtained from the simulation with no active restrictive measures.
To conclude, although most of the reproduced scenarios seem reasonable and realistic, it should
be always taken into account that the accuracy of these results is closely linked to that of the
parameter values. Therefore the predicted numbers, especially as regards specific dynamics or
environments such as schools, could be overestimated or underestimated due to previous over-
fitting errors of the model during training. A manual validation of the parameter estimates
would help to understand if ABM could actually constitute a precise tool to perform What-if
analysis for the COVID-19 epidemic in Veneto.

5.3 Code availability

All the code produced for the aforementioned experiments is available at
https://github.com/coclab/COVID-19_Models_Veneto.
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6
Conclusion

In this thesis work, two different strategies for epidemiological modeling implementations have
been proposed for the same reference SEIQRD compartmental schema. In fact, once designed
custom compartments and transitions, an equation-based Deterministic model has been devel-
oped and tested against a more complex Agent-based model.
The two methods, ad hoc created and trained on the COVID-19 infection cases in the Veneto
region, exhibited opposite advantages and limitations, as expected from their complementary
nature. While the Equations-based one is immediate to run, but more imprecise in fitting and
in predicting, the Agent-based model is very computationally demanding, but much more flex-
ible and accurate in forecasting. To speed up the training of the latter, it has been therefore
decided to exploit part of the parameters estimated for the former, which becomes the baseline
model.
Once the time-dependent parameters have been validated on the numbers of positive, quaran-
tined, hospitalized and deceased in Veneto, the Agent-based model has been used to experiment
with different pandemic scenarios changing the implemented anti-contagion rules. These sim-
ulations have once again demonstrated how much containment measures, in particular lock-
down, are essential to reduce the pandemic. Moreover, according to these experiments, there
seems to be a correlation between schools opening and contagions increase. However, it is not
possible to ascertain whether these results are reliable or not, since the estimates obtained for the
transmission probabilities in classroom or in other general school-related environments could
be inaccurate due to model overfitting.
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Although the performances can be considered almost acceptable and satisfactory, the models
have not yet reached an optimal level. The developed prototypes could hence constitute a good
starting point for further works and improvements. In particular, future researches should con-
sider the implementation of more sophisticated mechanisms to represent additional types of
containment measures.
For instance, a multi resolution model with several agents populations running in parallel could
be designed to better encode local variabilities among the regional provinces or municipalities
encompassing information about population density, proportion of elderly people or preva-
lences of certain diseases. This type of approach could also include the exchange of transition
flows between the different communities, which would result particularly useful to understand
how the contagion has moved between the geographical areas and whether the travelling restric-
tions have been effective.
Other possible enhancements may comprise the addition of the viral load between the agents
attributes in order to allow variable personal contagiousness, the insertion of a vaccinated com-
partment or a modification of the simulation step with night and day shifts to study the effect
of curfew.
To conclude, the real challenges would be not only practical, indeed researchers, with the com-
plicity of the regional institutions, should now especially face how to find adequate datasets
containing such high resolution demographical and medical records required by this kind of
methods.
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Appendix

Age distribution in Veneto

Source: ISTAT census

Age group (a) Frequency %

0− 2 105598 2.16

3− 5 118043 2.41

6− 10 222031 4.55

11− 13 141385 2.89

14− 18 232380 4.76

19− 24 285686 5.85

25− 44 1117212 22.89

45− 64 1521131 31.17

65− 79 777127 15.92

80− 84 181729 3.72

85+ 176811 3.62

Tot. 4879133 100

Table 6.1: Observed absolute and percentage numbers of subjects by age class in the Veneto population.

Chronic pathologies presence in Italy

Source: 2014 Italian general practice registry [5]

Age group (a)
% Pathological

(p =YES)
0− 44 28

45− 64 59

65− 79 84

80+ 91

Table 6.2: Observed percentages of subjects with at least one chronic clinical condition by age in the Italian
population.
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Family composition in Veneto

Source: ISTAT census

Household
size (h)

%

1 30.2

2 29.6

3 19.2

4 15.0

5+ 6.0

Table 6.3: Observed percentages of households by number of components in the Veneto region.

Incubation period by age (1ϵ )

Source: [30]

Age group (a) Mean (days) Std.
0− 18 7.0 4.21

19− 64 7.7 4.21

65+ 9.0 4.21

Table 6.4: Estimates of latent period duration in days depending on age.
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Weighting functions

The weighting functions for Mean Weighted Squared Relative Error to be used for the param-
eter fitting have been precisely defined as follows:

ω(c) =


1 if c = IHo or c = D

0.05 if c = Q

0.01 if c = P

δ(e) =

1 if e < 0

0.5 if e ≥ 0

where c indicates the compartment or the class of observation to consider, while e is the differ-
ence between the predicted and the real values.

Optimization problem

The optimization problem involved in the training procedure for the Deterministic model at
each time interval [ti, tf ] has been formulated as follows

min
x

MWSRE(ti, tf )

where x = (βAs, βSy, βHo, βQ, ϵ, ϕAs, ϕSy, ψ, µ, PQ|As, PQ|Sy)

s.t. 0.01 ≤ βAs ≤ 1

0.01 ≤ βSy ≤ 1

0.001 ≤ βHo ≤ 0.2

0.001 ≤ βQ ≤ 0.2

1/10 ≤ ϵ ≤ 1

1/10 ≤ ϕAs ≤ 1

1/10 ≤ ϕSy ≤ 1

1/14 ≤ ψ ≤ 1

1/30 ≤ µ ≤ 1

0.00001 ≤ PQ|As ≤ 0.8

0.00001 ≤ PQ|Sy ≤ 1− PHo − PD|Sy .
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Analogously, the optimization problem involved in the Agent-Based model fitting at each time
interval [ti, tf ] is

min
P̄

MWSRE(ti, tf )

where P̄ = (Ph|As, Ph|Sy, Pw|As, Pw|Sy, Pwc|As, Pwc|Sy, Ps|As, Ps|Sy,

Psc|As, Psc|Sy, Psf |As, Psf |Sy, Po|As, Po|Sy, Ph|Q, Po|Ho)

s.t. 0 ≤ P̄j ≤ 1 ∀ j.

Note that sometimes the constraints have been tightened to enforce a priori knowledges, e.g.
zero probability on school contacts when learning spaces were closed, to help the algorithm to
converge to more reasonable solutions.
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