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Abstract

The Vojta’s conjecture establishes geometrical conditions on the degeneracy of the set of
S-integral points for an algebraic variety. The goal of the thesis is to prove that for certain
algebraic varieties for which such conditions are not verified the set of S-integral points is
Zariski-dense. Some effective methods in this respect has been developed by Beukers in
his paper “Ternary form Equations” , in which he proved the density of integral solutions
of some homogeneous diophantine equations. Following such ideas, the work of the
thesis consists of finding the density of S-integral points on some varieties for which it is
not known at the moment, imposing the needed arithmetical and geometrical conditions.
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Chapter 1

Introduction

1.1 Historical notes

The study of the diophantine equations, namely of the set of integral or rational solutions
to an equation of the form

f (x1, ..., xn) = 0, f ∈ Z[x1, ..., xn]

has fascinated many mathematicians since ancient times. One of the most famous prob-
lem is the Fermat’s last theorem on the non-existence of solutions in integers to the dio-
phantine equation

xn + yn = zn

for n ≥ 3. Fermat himself proved the conjecture in the case n = 4, successively Euler
proved it for n = 3, Legendre for n = 5 and Kummer for n a regular prime. Nevertheless
the general case was an open problem in Number Theory from 1637, when it was conjec-
tured by Pierre de Fermat, to 1995 when it was definitively solved by Andrew Wiles, who
used modern techniques from Algebraic Geometry and Algebraic Number Theory.

The research area of this thesis is Diophantine Geometry, the branch of Mathematics
which studies diophantine equations using methods from Algebraic Geometry. Roughly
speaking the idea of the subject is the following: suppose to have a diophantine equation

f (x1, .., xn) = 0, f ∈ Z[x1, ..., xn].

Its zero locus in C is a complex algebraic variety V( f ) and we want to study how its
geometric properties determine the distribution of integral or rational solutions of our
equation.

In the case of the plane curves (when n = 2) the theorems of Siegel and Faltings give
geometrical conditions for the finiteness of the set of the integral and rational points on
an algebraic plane curve:

Theorem 1.1.1 (Siegel’s Theorem). Let C ⊆ A2 be an affine plane curve defined over Q, let C̃
be its projective closure. If |C(Z)| = ∞ then g(C) = 0 (so C is a rational curve) and |C̃ \ C| ≤ 2.

Theorem 1.1.2 (Faltings’ Theorem). Let C̃ be a projective plane curve defined over Q. If
|C̃(Q)| = ∞ then g(C̃) ∈ {0, 1}.
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CHAPTER 1. INTRODUCTION 2

The previous results actually hold in a more general context: substituting any number
field κ for Q and any ring of S-integers OS for Z (for the definition of OS see chapter 3).
Observe that Faltings’ theorem implies a weak version of Fermat’s last theorem

Corollary 1.1.3. The diophantine equation

xn + yn = zn

has only a finite number of primitive integral solutions if n ≥ 4.

Proof. Primitive integral solutions correspond to Q-rational points on

C̃ : Xn + Yn = Zn.

Since C̃ is smooth, from the genus formula we have that

g(C) = (n− 1)(n− 2)
2

then g(C) > 1 for n ≥ 4, by Faltings’ theorem there is only a finite number of solutions in
Z.

We see some example in which the set of rational point is infinite.

Example 1.1.4. It is known that the Fermat’s equation for n = 2 has infinitely many
primitive solutions, i.e. that the circumference

C̃ : X2 + Y2 = Z2

has infinitely many Q-rational points. Since for Z = 0 there is no solution in Q, all the
possible solutions are in the affine part

C : x2 + y2 = 1

Note that there is a point with rational coordinates: P = (1, 0), all the lines throw P except
the vertical one are of those of equation

y = tx− t.

Note that there is a bijection between t ∈ Q and points with rational coordinates different
from (1, 0): in fact any line with slope t ∈ Q intersects C in a Q-defined point and for any
Q ∈ C κ-rational point the line LPQ is defined over κ. So all the rational points of C are
solutions of a system {

y = t(x− 1)
x2 + y2 = 1

It follows that all the primitive integral pythagorean triples are

{(t2 − s2,−2ts, t2 + s2), where t, s ∈ Z, gcd(t, s) = 1}
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Example 1.1.5. Consider the elliptic curve defined over Q whose affine equation is

E : y2 = x3 + ax + b

where 4a3 + 27b2 6= 0. Suppose that there is a point P which is Q-rational and not a tor-
sion point. Then there are infinitely many Q-rational points on C: in fact the summation
formulas are defined over Q, so

Q 7→ Q⊕ P

is an infinite order automorphism defined over Q which preserves rational points. The
idea of constructing infinitely many automorphisms which fix integral or rational points
is widely used to prove the non-degeneracy of the set of S-integral points.

Faltings and Vojta gave deep generalizations of the Siegel’s theorem in their papers
[Fa], [V1] and [V2]. The idea of their work is to embed the varieties in their generalized
Jacobian and to use the Roth theorem and the theory of the heights in the Jacobians.
Corvaja and Zannier gave another proof of Siegel’s theorem based on Schmidt Subspace
Theorem, avoiding thus the use of the embedding in the jacobian. See for example [Co,
Ch.3] for a proof. This approach has both the advantages to simplify the argument and to
be generalizable to higher dimension.

Though many results has been discovered in higher dimension, it does not exist a
result like Siegel and Faltings theorems for curve. Vojta formulated a conjecture, still
unproven, which establishes conditions under which the integral points on an algebraic
variety of arbitrary dimension is not Zariski-dense.

Conjecture 1.1.6 (Vojta’s Conjecture). Let X̃ ⊆ Pn be a smooth complex projective variety
defined over κ. Let D be a κ-defined divisor with only normal crossing singularities.
Let K be a canonical divisor of X̃ and suppose that K + D is big. Let S be any finite set of
valuations containing the archimedean ones, then the set of the S-integral points on X̃ \D
is not Zariski-dense.

For the definition of S-integral point with respect to a divisor D the reader is referred
to chapter 3. Recall that a divisor D on a projective variety X̃ is said to be big if

h0(X̃, nD) ≈ ndim(X̃) for n→ ∞.

1.2 Goals and structure of the thesis.

As we have seen in the previous section, many important results in literature concern
the degeneracy of the set of integral points on algebraic varieties and of course Vojta’s
conjecture is one of the most important open problem in Diophantine Geometry. Never-
theless the goal of this thesis is in some sense the opposite: finding methods to prove the
existence of a Zariski-dense set of integral points for algebraic varieties (obviously not sat-
isfying the hypothesis of the Vojta conjecture). We will mainly follow the ideas developed
by Beukers in his paper [Beu]. A standard method to construct integral points is to con-
struct a large family of automorphisms of the variety fixing them. Anyway constructing
such automorphisms is in general a difficult problem. The strategy ideated by Beukers
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consists of finding a sufficiently large number of subvarieties on which it is known the
density of integral points.

Chapter 2 contains standard results about the Pell equation and related equations.
Though the content is very elementary, the method used to prove the infiniteness of the
solutions in integers of a Pell-Type equation (if there is at least one of them) can be geo-
metrically interpreted as the construction of an infinite order automorphism. It is a first
example of the which we will use later.

In Chapter 3 we give the definition of S-integral point, which depends on a number
field κ, on a finite set of primes of κ, on projective variety defined over κ, on a divisor
of the variety defined over κ. We will see various characterizations and examples. This
chapter belongs to the compilation part of the thesis, nevertheless some characterization
of the notion of S-integral point is not usual in literature and the section about integral
points on linear spaces is a generalization of a result proved by Beukers in [Beu] and other
mathematicians before him

Chapter 4 belongs to the compilation part of the work: we describe the method de-
veloped by Beukers in his paper [Beu] used to prove existence of a Zariski-dense set of
integral points on algebraic surfaces of the type P2 \ D, deg(D) ≤ 3. It is related to find
solutions to ternary homogeneous equations of low degree, particularly interesting is the
case when the degree is 3. The original contribution in this chapter consists of some inter-
esting examples and some results of density (theorems 4.2.8 and 4.2.12) concerning higher
degree divisors with not normal crossing singularities.

Chapter 5 is the original one of the thesis. We generalize the ideas of Chapter 4 to
prove the non-degeneracy of the set of the integral points on 3-dimensional algebraic
varieties of the type P3 \D. Analogously to what happens in chapter 4, it is related to the
solutions of some quaternary homogeneous equations. Particularly interesting is the case
when deg(D) = 4. The author was able to prove the density only under some particular
hypothesis on the geometry of D.



Chapter 2

Pell equation and related equations

One of the most famous diophantine equations is the so-called Pell equation:

x2 − dy2 = 1

where d is a square-free integer. As we will prove in this section, this equation has an
infinity of solutions in integers. A complete treatment can be found in [Za, Ch. 1, Sec 4]
or in [Mo, Ch. 8]. A strictly related problem is the following:

x2 − dy2 = m where m ∈ Z

This kind of diophantine equation is called Pell type equation. Not always this equation
has solutions. But if there is a solution, then the equation has infinity solutions.

2.1 Diophantine Approximation

The first step in proving the existence of infinite solutions of a Pell equation is to discuss
about Diophantine approximation. Informally the subject is to find a “good” rational
approximation of a real number α. The idea is that a rational approximation

p
q

(p, q ∈ Z)

with gcd(p, q) = 1 is good whenever we are able to obtain a small value of
∣∣∣∣ p

q
− α

∣∣∣∣ using

small coprime integers p, q. So for example we want to consider
∣∣∣∣√2− 99

70

∣∣∣∣ ' 7.2 · 10−5 a

better approximation than
∣∣∣∣√2− 1414213

1000000

∣∣∣∣ ' 5.6 · 10−6, though the last is more accurate

considering only the absolute value of the difference. More formally:

Definition 2.1.1. A rational approximation is good if
∣∣∣∣ p

q
− α

∣∣∣∣ < q−2

In fact, there are infinitely many good approximations of an α ∈ R \Q as stated by the
following proposition.

Proposition 2.1.2. Let α ∈ R \Q, then there are infinitely many p, q ∈ Z such that gcd(p, q) =
1 and

|qα− p| < q−1

5
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For the proof we need the following lemma:

Lemma 2.1.3. (Dirichlet) Let n ∈ Z+, α ∈ R. Then it is possible to find p, q ∈ Z such that
0 < q ≤ n and

|qα− p| < 1
n + 1

Proof. (of the lemma) The problem is clearly solved if we find q ∈ {0, 1, . . . n} such that

|{qα}| < 1
n + 1

(We take p = bqαc)

So consider the set {0, {α}, . . . , {nα}} and the partition of the interval [0, 1):

[0, 1) =
[

0,
1

n + 1

)
∪ ...∪

[
n

n + 1
, 1
)

Two situations may occur:

(1) There is a q ∈ {0, ..., n} such that {qα} ∈
[

0,
1

n + 1

)
. In this case it is plain that we

are done.

(2) There is no q ∈ {0, ..., n} such that {qα} ∈
[

0,
1

n + 1

)
. The set {0, {α}, . . . , {nα}}

has n + 1 elements so by the box’s principle there are distinct r, s ∈ {0, ..., n} such

that {rα}, {sα} ∈
[

m
n + 1

,
m + 1
n + 1

)
. So |{rα} − {sα}| < 1

n + 1
and the conclusion

follows from the fact that if r > s then |{(r− s)α}| = |{(r)α} − {(s)α}|

It can happen that p and q are not coprime, but we can simplify the factors by gcd(p, q)
and the inequality holds a fortiori.

Proof. (of the proposition) The fact that it exists a couple (p, q) such that gcd(p, q) = 1
and |qα − p| < q−1 is trivial: we can choose q = 1 and p = bαc. Suppose now that
there are only finitely many couples (pi, qi) ∈ Z × Z such that |qiα − pi| < q−1

i . Let
ε := min |qiα− pi|, so ε > 0 (here we use the fact that α ∈ R \Q) and we choose n >> 0

such that ε <
1
n

. Apply the previous lemma: we can find p and q such that

|qα− p| < 1
n
< ε

which is a contradiction.

2.2 Solutions to Pell and Pell-type equations

As anticipated before, the diophantine approximation problem is related to Pell equa-
tions. Suppose to have a solution (x, y) of x2 − dy2 = 1. We can assume that x, y > 0. So
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x =
√

1 + dy2, so |x− y
√

d| =
√

1 + dy2 − y
√

d. Recall that in general
√

1 + x ≤ 1 +
1
2

x
for x ≥ 0. So we have the following inequality:∣∣∣∣xy −√d

∣∣∣∣ < 1

2
√

dy2

in other words a solution of the equation gives a good rational approximation of
√

d.
We will see in the proof of the next theorem how we can perform the other direction, so
how to prove the existence of solutions of a Pell Equation, starting from the diophantine
approximation.

Theorem 2.2.1. There are infinitely many solutions to the Pell equation

x2 − dy2 = 1

Proof. The proof consists of two steps:

STEP 1 In this first step we prove that for a suitable choice of an integer k ∈ Z the
equation

x2 − dy2 = k

has infinitely many solutions. We know by diophantine approximation that the inequality

|x− y
√

d| < 1
|y|

has infinitely many integral solutions with gcd(x, y) = 1.
Note that from the inequality |x − y

√
d| ≤ |y−1| ≤ 1 we get that x ≤ 1 + y

√
d. This

implies the following chain of inequalities

|x2 − dy2| = |x ≤ 1 + y
√

d||x ≤ 1− y
√

d| ≤ 2|y|
√

d
|y| ≤ 2

√
d + 1

So actually all the infinitely many solutions (x, y) of the good-approximation problem are
such that the quantity x2− dy2 ∈ (−1− 2

√
d, 1 + 2

√
d) ∩Z, which is a finite set. So there

must be a k ∈ (−1− 2
√

d, 1 + 2
√

d) ∩Z such that the diophantine equation

x2 − dy2 = k

has infinitely many solutions.
STEP 2 The idea is the following: two solutions (x1, y1), (x2, y2) of the equation of

STEP 1 correspond to factorizazions in the ring Z[
√

d]:

(x1 + y1
√

d)(x1 − y1
√

d) = k

(x2 + y2
√

d)(x2 − y2
√

d) = k
(2.1)

The idea is to divide the two equations, obtaining in this way a factorizazion of the form

αβ = 1, α, β ∈ Q[
√

d]
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We are interested to the case in which α, β ∈ Z[
√

d]. It happens when we have “non-
trivially” equivalent factorizations, i.e. when

(x1 + y1
√

d) = u(x2 + y2
√

d)

(x1 − y1
√

d) = u−1(x2 − y2
√

d)
(2.2)

u ∈ Z[
√

d]∗ \ {±1} (And in fact we want to prove that Z[
√

d] 6= {±1} )

Consider the fraction
x1 + y1

√
d

x2 + y2
√

d
=

1
k
[(x1x2 − dy1y2) +

√
d(−x1y2 + x2y1)]

it is an element of Z[
√

d] if {
x1 ≡ x2 mod k
y1 ≡ y2 mod k

We have infinitely many solution (x, y) ∈ Z2 to the equation x2 − dy2 = k, so there
are infinitely many of them congruent mod k and so equivalent, consequently there are
infinitely many non-trivially equivalent (i.e. u 6= ±1). And so we are able to find a non-
trivial solution (ξ, η) of this Pell equation (i.e. with η 6= 0). Having a non trivial solution
allows us to construct infinitely many distinct solutions simply taking power.

Remark 2.2.2. Whenever d 6= 1 mod 4 the ring Z[
√

d] is exactly the ring of integers Oκ

of the number field κ = Q[
√

d]. Remember the Dirichlet Unit Theorem (See for example
[Ma, Ch.5] or [Mi1, Ch. 5])

O∗κ ∼= U ×Zr1+r2−1

where U is the group of roots of unity in Oκ, r1 is the number of the real embeddings of
κ and r2 is the number of complex non-coniugate embeddings. In the case κ = Q[

√
d]

r1 + r2 − 1 = 1, U = {±1}.
One can prove, following essentially the same method of the proof of Dirichlet Unit The-
orem, that also in the case d ≡ 1 mod 4 the structure of Z[

√
d]∗ is of this kind. See for

example [Za, Ch.1, Sec. 4].

Remark 2.2.3. We have seen during the proof of the above theorem that if there is a non-
trivial solution we can construct infinitely many of them. There is also a geometric in-
terpretation of this fact: the orthogonal group over Z of the quadratic form x2 − dy2 is
composed by elements of the shape M =

(
x ±dy
y ±x

)
where x, y ∈ Z and x2 − dy2 = 1. This

group fixes the hyperbola x2 − dy2 = 1 and preserve points with coordinates in Z.

In general the diophantine equation, called Pell type equation,

x2 − dy2 = m

with m 6= ±1 not necessarily has solutions in integers for example

x2 − 3y2 = 2

has no solution as it can be shown by an easy argument: If (x, y) ∈ Z2 would be a
solution, then necessarily x ≡ y ≡ 1 mod 2 and so x2 ≡ y2 ≡ 1 mod 8. It follows that

x2 − 3y2 ≡ −2 mod 8
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which is a contradiction.
Anyway applying the idea of the remark it is possible to show that the existence of one
solution to Pell type equation implies that they are infinitely many.

Proposition 2.2.4. Let d be a squarefree positive integer. Suppose that there is (x, y) ∈ Z2 such
that

x2 − dy2 = m

Then there are infinitely many solutions to such diophantine equation.

Proof. Suppose that (a, b) ∈ Z2 is a solution of the Pell equation

a2 − db2 = 1

then by remark 2.2.3 there is an element of the orthogonal group over Z of the quadratic
form X2 − dY2, namely (

a db
b a

)
which fixes the hyperbola x2 − dy2 = m and preserves integral points.

2.3 The general case of degree 2

Now we want to understand when an irreducible conic C of equation

Q(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 where a, b, c, d, e, f ∈ Z (2.3)

has infinitely many integral points. Recall the classification of the real affine plane conics:

(i) It is an hyperbola whenever it has two real points at infinity, i.e. whenever ax2 +
bxy + cy2 split into two linear form over R[x, y]

(ii) It is a parabola whenever it has one real points at infinity, i.e. whenever ax2 + bxy +
cy2 is the square of a linear form over R[x, y]

(iii) It is an ellipse whenever it has two complex conjugated points at infinity i.e when-
ever ax2 + bxy + cy2 is irreducible over R[x, y].

In the case (iii) it is plain that it has only a finite number of integral points, in fact Z2is
a lattice in R2 and an ellipse is a compact subset.

The case (i) generalizes that of Pell-type equations. And actually it is possible to reduce
the problem to Pell equation. In fact let ax2 + bxy + cy2 + dx + ey + f = 0 be the equation
of the hyperbola. We can do the following change of variables:{

t = 2ax + by + d
u = (b2 − 4ac)y + bd− 2ae

We got that the equation of the hyperbola is a Pell-type equation

u2 − ∆t2 = α2 + ∆β (2.4)
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where
∆ = b2 + 4ac, α = bd− 2ae β = 4a f − d2

One can verify that the integral solutions (x, y) of (1.3) correspond to integral solutions
(u, v) of (1.4) which further satisfy the following congruences:{

u ≡ α mod ∆
∆t ≡ b(u− α) + ∆d mod 2a∆

If ∆ is a square it is trivial that there are only finitely many solutions. If it is not a square we
can consider µ a non trivial element of Z[

√
∆]∗. Because of the fact that Z[

√
∆]/(2a∆) is a

finite set, there exists an integer m ∈ N such that µm ≡ 1 mod 2a∆. If (u, t) is a solution
of (1.4) satisfying the congruences, also (u′, t′) given by u′ + t′

√
∆ = (u + t

√
∆)µk it is.

Consequently we have found an infinite family of solutions of the starting problem.
Consider now the case (ii). We have that ax2 + bxy+ cy2 = A(rx+ sy)2, where A, r, s ∈

Z and gcd(r, s) = 1. There exists a Bezout relation:

ru− sv = 1, u, v ∈ Z

so we can do the following change of coordinates:{
X = rx + sy
Y = vx + uy

Since det ( r s
v u ) = 1, the linear isomorphism induced by this matrix preserves integral

points. We have thus shown that we can assume without loss of generality that the equa-
tion of the parabola is

dy = ax2 + bx + c

This is a congruence problem, in fact it is equivalent to solve

ax2 + bx + c ≡ 0 mod d

and it is clear that if there is a solution, there are infinitely many.



Chapter 3

S-integral points on algebraic varieties

In this section we will give a notion which generalizes that of integral points on an affine
variety. For an affine variety a point is integral if all their coordinates are. This kind of no-
tion cannot be immediately generalized to arbitrary quasi-projective varieties. Consider
for example the case of the projective space Pn(C). We know that a point P = [p0 : ... : pn]
is said to be Q-rational if it is possible to find a suitable choice of the homogeneous coor-
dinates such that p0, ..., pn ∈ Q. But then we can also find a choice such that p0, ..., pn ∈ Z,
so every Q-rational point is also integral, which does not agree with what we expect in
the case of affine spaces. Identifying An with Pn \ D with D = {X0 = 0} the integral
points of An correspond to {[1 : a1, ..., an] : a1, ..., an ∈ Z}. Note that in general for every
P ∈ Pn(Q) is possible to choose the coordinates in such a way that p0, . . . pn ∈ Z and
gcd(p0, ..., pn) = 1. The integral points on P2 \ D are those which do not “reduce to D”
modulo every prime p, making that particular choice of the homogeneous coordinates.
The idea is that the notion of integrality depends on the divisor we are removing from
Pn.

3.1 Some facts from valuation theory

Recall some results about the theory of the absolute values which we will need later, see
for example [Mi1, Ch.7,8].

Definition 3.1.1. Let K be a field. An absolute value on K is a a function || : K → R such
that

1) |a| ≥ 0, |a| = 0⇐⇒ a = 0

2) |ab| = |a||b|

3) |a + b| ≤ |a|+ |b|

An absolute value is called non-archimedean if |a+ b| ≤ max(|a|, |b|) ∀a, b ∈ K, archimedean
otherwise.

Example 3.1.2. Let Q be the field of the rational numbers. There is the standard euclidean
absolute value | · |which is archimedean. There are also non-archimedean absolute values

11
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corresponding to the prime integers p:

|x|p :=
(

1
p

)vp(x)

where vp is the p-adic valuation.

In some sense these are the only absolute values on Q.

Definition 3.1.3. Let K be a field. Two absolute values are equivalent if they induce the
same topology on K.

Proposition 3.1.4. | · |v and | · |w are equivalent if and only if ∃α > 0 such that

| · |v = | · |αw

Definition 3.1.5. A place on a field κ is an equivalence class of absolute values.

Theorem 3.1.6. Let κ be a number field, the “infinite” (archimedean) places of κ correspond to
the non-conjugate inclusions σ : κ ↪→ C: in fact all the non-equivalent archimedean valuations
are those of the form

{| · | ◦ σ, σ ∈ Emb(κ/Q)}
The “finite” (non-archimedean) non-equivalent absolute values correspond to p-adic valuations,
where p ∈ Spec(Oκ).

As for the standard euclidean absolute value, there exist analogue notions of Cauchy
sequence and completion of a valuation field (κ, v), denoted by κv.

3.2 Definition and various characterizations

Definition 3.2.1. Let κ be a number field, let S be a finite set of valuations of κ containing
the archimedean ones. The ring of S-integers of κ is

OS :=
⋂
v/∈S

Ov = {x ∈ κ such that |x|v ≤ 1 ∀v /∈ S}

Remark 3.2.2. Note that OS ⊇ Oκ. If S = {∞} then OS = Oκ.

Example 3.2.3. Let κ = Q, S = {∞, p1, ..., pt}, then OS =

{
m

pe1
1 · ... · p

et
t

}
Note that, since Ov is a PID, we can define a reduction map in a very similar way to

what we did at the beginning of this section in the case of Z:

ρκ,v : Pn(κ) → Pn(κ(v))
[p0 : ..., pn] 7→ [p0 mod v : ... : pn mod v]

by choosing coordinates [p0 : · · · : pn] such that p0, ..., pn ∈ Ov and gcd(p0, ..., pn) = 1 in
Ov.
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Definition 3.2.4. Let κ be a number field. Let v be a non-archimedean valuation of κ. Let
P, Q ∈ Pn(Q̄). Let κ′/κ be a number field on which both P and Q are defined. Let V′ be
the set of the valuations of κ′ extending v. We say that P does not coincide with Q mod v
or that P does not reduce to Q mod v if

ρκ′,v′(P) 6= ρκ′,v′(Q), ∀v ∈ V′

Remark 3.2.5. The previous definition is independent from the choice of the extension
κ′/κ in which both P and Q are defined. In fact if there is κ′′ ⊃ κ′ then for every v′′

extending a fixed valuation v′ of κ′

Q ≡ P mod v′ ⇐⇒ Q ≡ P mod v′′

Definition 3.2.6. Let κ be a number field, let S be a finite set of valuations containing the
archimedean ones. Let X be an irreducible smooth projective variety defined over κ. Let
D be an effective divisor defined over κ. Let P ∈ X \D be a κ-rational point. We say that P
is an S-integral point on X \D if P does not coincide with Q mod v, ∀Q ∈ D(Q̄), ∀v /∈ S.

Remark 3.2.7. Let κ be a number field, let S be a finite set of valuations containing the
archimedean ones. Let P = [p0 : · · · : pn], Q = [p0 : · · · : pn] ∈ Pn(κ), the condition that
P and Q do not coincide mod v for any v /∈ S can be described ”globally”:

({piqj − pjqi : 0 ≤ i < j ≤ n}) = (p0, ..., pn)(q0, ..., qn)

where the equality holds in Spec(OS). Obviously the only non trivial inclusion is “⊇”.

In the case when the variety is the projective space there is a nicer characterization.

Lemma 3.2.8. Let κ a number field. Let p ∈ Spec(Oκ). Let f ∈ Op[x] be a polynomial with
coprime coefficients in Op. Suppose that x0 mod p is a solution of the congruence

f (x) ≡ 0 mod p

Then it is possible to find a number field extension `/κ, a prime P ∈ Spec(O`) lying over p and
x1 ∈ OP such that

1. f (x1) = 0

2. x1 ≡ x0 mod P

Proof. Let ` be the splitting field of f (x). Let P be a prime lying over p. Then there is a
factorization of f (x) in OP [x]

f (x) = (a1x + b1)(a2x + b2) · · · (anx + bn)

where gcd(ai, bi) = 1 in OP . Note that it is not possible that P | ai for all i = 1, ..., n. Oth-
erwise f (x) mod P would have no solution, contradicting our assumptions. Suppose
that a1, ..., am are all the ai not divided by P , then f (x) mod P has degree m (and so f (x)

mod p), and so all its roots are classes mod P of some −bi

ai
for i = 1, ..., m, in particular

x0 mod p.
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Proposition 3.2.9. Let κ be a number field, let v be a non-archimedean valuation of κ. Let D be a
κ-defined divisor of Pn defined by the equation

F(X0, ..., Xn) = 0, F ∈ κ[X0, . . . , Xn]

Then:
P does not coincide with Q mod v ∀Q ∈ D(κ̄)⇐⇒ F(P) ∈ O∗v

whenever we choose coprime coefficients for F in Ov and coprime coordinates for P in Ov.

Proof. The implication “⇐” is easy: if P reduces to a point Q ∈ D mod v, then, denoting
κ′/κ a finite extension on which Q is defined, there is a valuation v′ of κ′ extending v such
that P mod v′ = Q mod v′, then F(P) ≡ 0 mod v′, so F(P) ≡ 0 mod v.

Consider now the implication “⇒”. Assume that F ∈ Ov[X0, ..., Xn] with coprime
coefficients and P = [x0 : · · · : xn] where x0, ..., xn ∈ Ov and gcd(x0, ..., xn) = 1. Suppose
that F(x0, ..., xn) ≡ 0 mod v, we want to find Q ∈ D coinciding with P mod v. There is
i ∈ {1, ..., n} such that v(xi) = 0. We can assume without loss of generality that i = 0 and
that x0 = 1. Let f (x1, ..., xn) := F(1, x1, ..., xn), we are reduced to the problem of lifting
(x1, ..., xn) mod v solution of

f (x1, ..., xn) ≡ 0 mod v

to a a point (x′1, ..., x′n) such that f (x′1, ..., x′n) = 0. This can be done simply fixing n − 1
variables and considering the problem in t

f (t, x2, ..., xn) ≡ 0

Then by lemma 3.2.8 there is an extension field κ′/κ, a valuation v′ extending v such that
x′1 ≡ x1 mod v and f (x′1, x2, ..., xn) = 0.

Corollary 3.2.10. Let κ be a number field, D ⊂ Pn a κ-defined divisor. Let S be a finite set places
containing the archimedean ones. Then

P ∈ Pn(κ) \ D is an S-integral point
⇐⇒

v(F(P)) = 0 for all v /∈ S, choosing coprime coefficients for F in Ov and coprime coordinates for
P in Ov.

Proof. Immediate from the previous proposition.

This notion of S-integral point generalizes the usual notion, as shown by the following
proposition.

Proposition 3.2.11. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Consider X = Pn and let D = {X0 = 0}. Then the set of S-integral points on An =
Pn \ D is

An(OS) = On
S = {[1 : a1 : ... : an] : a1, ..., an ∈ OS}
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Proof. It is clear that every point [1 : a1 : ... : an] with a1, ..., am ∈ OS is an S-integral point
on Pn \ D. Consider now the converse inclusion:
Assume that a0, ..., an ∈ OS. If [a0 : ... : an] is S-integral, let a = gcd(a0, ..., an), it can be
factorized

a = pe1
1 · · · p

et
t

Let v /∈ S be a place of κ, let pv be the corresponding prime ideal. Suppose that pv /∈
{p1, ..., pt}, then in Ov we have that gcd(a0, ..., an) = 1 and so the fact that the point [a0 :
... : an] does not reduce to D means that pv - a0, i.e. |a0|v = 1, and then in particular
|a0|v ≥ max(|a1|v, ..., |an|v).
Suppose now that pv = p1, choose b ∈ pe1

1 \ p
e1+1
1 . Then[ a0

b
: ... :

an

b

]
= [a0 : ... : an]

and
a0

b
, ...,

an

b
∈ Ov, gcd

( a0

b
, ...,

an

b

)
= 1 in Ov. The fact that the point does not reduce

to D implies that pv - a0

b
, it follows also in this case that |a0|v ≥ max(|a1|v, ..., |an|v). This

means that
a1

a0
, ...,

an

a0
∈ OS.

There is also a more global characterization of S-integral points when X = Pn:

Proposition 3.2.12. Let A ∈ Pn(κ), let D = {F(X0, ..., Xn) = 0} be a κ-defined divisor,
d = deg(F). Let A be the (fractional) ideal generated by the homogeneous coordinates of A, let
F be the ideal generated by the coefficients of F. Then

A is S-integral⇐⇒ (F(A)) = F · Ad

Remark 3.2.13. This is independent from the choice of homogeneous coordinates for and
coefficients for F. And it is equivalent to the fact that F(A) ∈ O∗S whenever OS is a UFD,
choosing F and A with coprime coefficients.

Proof. Note that in general F(A) ∈ F · Ad ⇐⇒ (F(A)) ⊆ F · Ad.
Suppose that A is S-integral. Let v /∈ S a valuation of κ, the fact that A does not reduce to
D mod v means that if we choose a, f ∈ Ov such that (a) = A, ( f ) = F then

1
f

F
(

1
a

A
)
= (1)⇐⇒ (F(A)) = F · An, in Ov

this is equivalent to the fact that |F(A)|v = |F · An|v, ∀v /∈ S⇐⇒ (F(A)) = F · An

Remark 3.2.14. Note that, if OS is a PID, for every P = [p0 : ....pn] ∈ Pn(κ) we can
choose representatives in such a way that p0, ..., pn ∈ OS, gcd(p0, ..., pn) = 1. In this
case let F(X0, ..., Xn) = 0 be the equation of D, where F(X0, ..., Xn) ∈ OS[X0, ..., Xn] is an
homogeneous polynomial with coprime coefficients, then P is an S-integral point if and
only if F(p0, ..., pn) ∈ O∗S
Remark 3.2.15. In the case κ = Q and S = {∞}, if F ∈ Z[X0, . . . , Xn] is a homogeneous
polynomial with coprime coefficients, then if D := V(F) then integral points on Pn \ D
correspond to solutions in Z of the diophantine equation

F(X0, . . . , Xn) = ±1
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3.3 Basic examples

Example 3.3.1. Let Gm = A1 \ {0} = P1 \ {[1 : 0], [0 : 1]}, κ = Q, S = {∞}. Let
[x0 : x1] ∈ Gm, where x0, x1 ∈ Z and gcd(x0, x1) = 1. [x0 : x1] is an integral point if

p - x0, x1∀p prime⇐⇒ [x0 : x1] = [1 : ±1]

So in this case there are only finitely many S-integral points.

Example 3.3.2. Let Gm = A1 \ {0} = P1 \ {[1 : 0], [0 : 1]}, κ = Q, S = {∞, p1, ..., pt}. In
this case the S-integral points are those of the form ±pe1

1 · ... · p
et
t , e1, ..., et ∈ Z, of course

they are infinitely many if t > 0.

Example 3.3.3. Consider κ = Q, S = {∞}, X = P1, D = {[1 : ±i]}, then D has equation
X2 + Y2 = 0, so [x : y] with x, y ∈ Z, gcd(x, y) = 1 is integral if x2 + y2 ∈ {±1}, so there
are only finitely many solutions.

The next example, though similar, has a completely different behaviour.

Example 3.3.4. Consider κ = Q, where d ∈ N is square-free. S = {archimedeans}.
Let D = {[±

√
d : 1]}. The equation of D is X2 − dY2 = 0, so it is Q-defined. A point

[x : y] ∈ P1 \D (with gcd(x, y) = 1) is integral if and only if x2− dy2 ∈ O∗S = Z∗ = {±1}.
It follows from the discussion about the Pell equation that they are infinitely many.

Example 3.3.5. Let X = P1, lκ a number field, S any finite set of places containing the
archimedean ones, D = {[1 : 0], [0 : 1], [1 : 1]}. Then there are only finitely many S-
integral points on P1 \ D. In fact if [X0 : X1] is S-integral on P1 \ D if and only if

X0, X1, X0 − X1 ∈ O∗S
there are only finitely many possibilities by S-unit equation:

Theorem 3.3.6 (S-unit equation). Let κ be a number field, S a finite set of places containing the
archimedean ones. The set of the solutions to the diophantine equation

u + v = 1, where u, v ∈ O∗S
is finite.

3.4 S-integral points for embedded varieties

Let X ⊂ Pn be a smooth irreducible variety defined over a number field κ. Let S be a
finite set of valuations containing the archimedean ones. Let D be a κ-defined divisor,
we investigate the relation between S-integral points on Pn \ D and S-integral points on
X \ (X ∩ D) An inclusion is trivial:

{S-integral points on X \ (X ∩ D)} ⊇ {S-integral points on Pn \ (D)} ∩ X

in fact if a point on X does not coincide with any point of D mod v for any v /∈ S, then a
fortiori it does not coincide with a point on X ∩ D. The converse is not true, as shown by
this example.
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Example 3.4.1. Let κ = Q, S = {∞}, let L : 2X1 + 2X2 = X0 and D : X0 = 0. By propo-
sition 3.2.11 the set of S-integral points on L \ D is given by the solutions in integers of
the equation 2x + 2y = 1 which is plainly the empty set. Nevertheless there are infinitely
many S-integral points on X \ [1 : −1 : 0], this is true in general (see 3.5.3). For example
there is the point [2 : −1 : 2].

Note that in the previous example the lines L and D coincide mod 2. This is in fact
the cause for which the two notions of integrality are not equivalent: if X mod v has no
component contained in D mod v for any v /∈ S, then

{S-integral points on X \ (X ∩ D)} = {S-integral points on Pn \ D} ∩ X

3.5 Integral points on linear subvarieties of the projective
space

In this section we study the density of integral Spoints on varieties of the type V \W,
where V ⊆ Pn is a linear subspace and W ⊆ V is a codimension-1 linear subspace of V.
The easiest case is P1 \ {P}. The proof of the next proposition follows that of [Beu, Thm
2.1].

Proposition 3.5.1. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let P ∈ P1(κ) be a κ-defined point. Then there are infinitely many S-integral points on
P1 \ {P}.

Proof. Let P = [a : b]. Let X = [x : y] be a κ-rational point, then X is S-integral on P1 \ {P}
if and only if

(ay− bx) ⊇ (a, b)(x, y)

Substituting x = ta, y = 1 + tb we have that ay − bx = a, and so the condition of S-
integrality becomes

(ta, 1 + tb)(a, b) ⊆ (a)⇐⇒ ta2, a + tab, tab, b + tb2 ∈ aOS.

So we have to find t ∈ κ such that

1. t ∈ a−1OS ∩ b−1OS

2. b + tb2 ∈ aOS, so b + tb2 = am, for some m ∈ OS.

Now t =
am− b

b2 so
am− b

b2 ∈ a−1OS ∩ b−1OS. It is possible to find such t and m if and

only if b ∈ aOS +

(
b2

a
∩ bOS

)
. In other terms if and only if

v(b) ≥ min(v(a), max(2v(b)− v(a), v(b))
= min(v(a), v(b) + max(v(b)− v(a), 0))
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which is true in both the cases v(b) ≥ v(a) or v(b) ≤ v(a). This proves the existence of an
S-integral point.
To see that they are infinitely many note that if [x : y] is integral on P1 \ {[a : b]}, then

(x, y)(a, b) ⊆ (ay− bx)

If we choose t ∈ a−1(x, y) ∩ b−1(x, y) we have that

(x + ta, y + tb)(a, b) ⊆ (x, y)(a, b) ⊆ (ay− bx) = (a(y + tb)− b(x + ta))

so [x + ta : y + tb] is also integral. Since we have infinitely many choices for t, the set of
S-integral points on P1 \ {[a : b]} is Zariski-dense.

The previous result can be generalized to any line L ⊂ Pn defined over κ and any
κ-rational point P ∈ L.

Lemma 3.5.2. Let κ be a number field, S a finite set of places containing the archimedean ones.
Let Pn be the projective space with homogeneous coordinates [X0, ..., Xn]. Let P be a κ-defined
point. Denote H := {X0 = 0}. Then the set of S-integral points on Pn \ H which do not coincide
with P mod v for any v /∈ S is Zariski-dense.

Proof. Let P = [p0 : ... : pn]. Let Q = [1 : q1 : ... : qn] be an S-integral point on P3 \ H.
Then Q does not coincide with P mod v if and only if

(p0q1 − p1, ..., p0qn − pn) = (p0, ..., pn) =: I

In other words we want to find q1, ..., qn ∈ OS such that for every prime p ∈ Spec(OS) we
have that

vp(p0q1 − p1, ..., p0qn − pn) = vp(I).

Let p | I, let e := vp(I). If vp(p0) ≥ e + 1 then there exists i ∈ {1, ..., n} such that vp(pi) = e
and so vp(p0qi − pi) = e and so vp(p0q1 − p1, ..., p0qn − pn) = e: in this case we do not
need to impose conditions on the qj.
Suppose conversely that vp(p0) = e, we impose that

q1 ≡ 1 +
p1

p0
mod p

By Chinese Remainder Theorem it is possible to find q1 ∈ OS which satisfies all these
congruences.
Let q | (p0q1 − p1) be a prime such that q - I. If vq(p0) > 0 then there exists pi such that
q - pi, so vq(p0qi− pi) = 0 and so vq(p0q1− p1, ..., p0qn− pn) = 0. If q - p0 then we impose
that

q2 ≡ 1 +
p2

p0
mod q

By Chinese Remainder Theorem it is possible to find q2 satisfying these congruences. It
follows that

(p0q1 − p1, p0q2 − p2) = (p0, ..., pn)

and so a fortiori for every choice of q3, ..., qn. Since we have infinitely many choices for
q1 and infinitely many choices for q2 fixed q1, the set of (q1, ..., qn) ∈ On

S satisfying all the
conditions is Zariski-dense.
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Proposition 3.5.3. Let κ be a number field, let S be a finite set of valuations of κ containing the
archimedean ones. Let L ⊂ Pn be a straight line defined over κ. Let P ∈ L. Then there are
infinitely many S-integral points on L \ {P}

Proof. We proceed by induction on n. The case n = 1 has been already proved. Suppose
that n > 1. We can assume without loss of generality that L is not contained in H : X0 = 0.
Let Q be an S-integral point on Pn \ H, not belonging to L and not coinciding with P
mod v for any v /∈ S: we have proved its existence in the previous lemma. Consider the
projection from Q to H: it restricts to an isomorphism

π : L→ L′

Let L′ := π(L), P′ := π(P). By inductive hypothesis there is a Zariski-dense set of S-
integral points on L′ \ {P′} Let R′ be an S-integral point on L′ \ {P′}. Then R := π−1(R′)
is S-integral on L \ {P}. We distinguish two cases:

1. If Q mod v /∈ L mod v then R mod v 6= P mod v otherwise

P′ mod v = LQ mod v,P mod v ∩ H mod v = LQ mod v,R′ mod v ∩ H mod v = R′ mod v

which contradicts what we are assuming.

2. If Q mod v ∈ L mod v then

R mod v = LQ mod v,R′ mod v ∩ L mod v = Q mod v

since Q does not coincide with P mod v then the same is true for R.

Since by inductive hypothesis there are infinitely many S-integral points on H \ L, the
assertion follows.

Remark 3.5.4. Note that in the proof, if we assume that Q coincides with no point of L
mod v for any v /∈ S, the projection π restricts to a bijection between S-integral points on
L \ {P} and S-integral points on L′ \ {P′}.
If it is not the case, an S-integral point on L \ {P} can be sent to a point not S-integral on
L′ \ {P′}. Suppose that P mod v ∈ L mod v and that it does not coincide with a certain
point R, which is S-integral on L \ {P}, then R′ = π(R) is not S-integral on L′ \ {P′}. In
fact

P′ mod v = LR mod v,Q mod v ∩ H mod v = LR mod v,Q mod v ∩ H mod v = R′ mod v

The method of the previous propositions gives an effective way to compute integral
points on lines.

Example 3.5.5. Let κ = Q, S = ∞. Let L ⊂ P2 be a line defined by the equation

L : 15X + 10Y + 6Z = 0.

Compute all the S-integral points on L \ {P}, where

P := [2 : −3 : 0]
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In this case P′ = P = [2 : −3 : 0]. Note that there exists Q = [1 : −1 : 1] an S-integral
point on P2 \ D. The integral points on P1 \ {[2 : −3]} correspond to the solutions of the
Bezout’s relation

3x + 2y = 1

The set of all the solutions is {(1 + 2n,−1− 3n) : n ∈ Z}. Intersecting the line through
[1 : −1 : 1] and [1 + 2n : −1− 3n : 0] with L we get the set of points

{[16 + 22n : −16− 33n : 5]}

Example 3.5.6. Let κ = Q, S = ∞. Let L be the line

5X + 10Y + 2Z = 0

and P = [2 : −1 : 0] the point we are removing. Note that the diophantine equations

(5x + 10y + 2z)z = ±1

have no solution in Z, so the set of S-integral points on P2 \ D, where

D := {(5X + 10Y + 2Z)Z = 0}

is empty. The set of S-integral points on P1 \ {[2 : −1]} correspond to the solutions of the
Bezout’s relation

x + 2y = 1

and so it is the set {[−1 + 2n : 1− n] : n ∈ Z}.
Consider the point P = [0 : 0 : −1]. Then, using the projection from P of the proof of the
theorem, we get an infinite family of integral points on L \ {P}.

{[−2 + 4n : 2− 2n : 5] : n ∈ Z}

If we project from the point P′ := [1 : 0 : −1] we find the family

{[2 + 6n : 3− 3n : 5] : n ∈ Z}

Note that the two families are disjoint since the linear system{
4n− 2 = 6m + 2
−2n + 2 = −3m + 3

has no solution.

Proposition 3.5.3 is actually a particular case of a more general result.

Theorem 3.5.7. Let κ be a number field, S a finite set of valuations of κ containing the archimedean
ones. Let V ⊆ Pn be an m-dimensional projective linear subspace defined over κ. Let W ⊂ V
be an (m − 1)-dimensional projective linear subspace defined over κ. Then the set of S-integral
points on V \W is Zariski-dense.
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Proof. We proceed by induction on m. The case m = 1 is precisely the proposition 3.5.3.
Suppose now m > 1. Let X ⊂ W be a codimension 1 linear subspace defined over κ.
Consider the set

{W ′ ≤ V : W ′ ⊇ X, dim(W ′) = m− 1}
It is parametrized by a line in P(

∧n−m+1Q̄n+1). So by theorem 3.5.3 there are infinitely
many W ′ defined over κ, passing through X and not coinciding with W mod v for any
v /∈ S. By inductive hypothesis there is a Zariski-dense set of S-integral points on W ′ \
X = W ′ \ (W ′ ∩W). Since W ′ does not coincide with W mod v for any v /∈ S, they are
also S-integral on V \W.

Corollary 3.5.8. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let H ⊆ Pn be an hyperplane defined over κ. Then set of S-integral points on Pn \ H is
Zariski-dense.

Remark 3.5.9. Note that the corollary is trivial if we assume that OS is a UFD. In fact if

a0X0 + ... + anXn = 0

is the equation of H, where gcd(a0, ..., an) = 1 inOS, then obviously there exist ξ0, ..., ξn ∈
OS such that

a0ξ0 + ... + anξn = 1

So [ξ0 : ... : ξn] is an S-integral point.



Chapter 4

Constructing integral points on surfaces

In this chapter we shall see the methods to prove the existence of a Zariski-dense set of
S-integral points on certain surfaces developed by Beukers in [Beu]. The main ideas are
the following ones:

1. Find a sufficiently large number of automorphisms preserving integral points.

2. Find infinitely many curves contained in the surface for which it is known the exis-
tence of infinitely many integral points.

4.1 Integral points on lines and conics

This section contains technical results needed later.

Proposition 4.1.1. Let κ be a number field, S a finite set of valuations of κ containing the
archimedean ones. Let C ⊆ P2 be a geometrically irreducible conic defined over κ. Let P ∈ C
be a κ-rational point. Suppose that C has good reduction outside S, i.e. C is irreducible for every
v /∈ s. Then there are infinitely many S-integral points on C \ {P}.

Proof. Let L0 be the tangent line to C in P. Consider the pencil P ⊆ P2∗ of all the straight
lines through P. By proposition 3.5.3 there are infinitely many lines L S-integral on P \ L0,
so they do not coincide with L0 mod v for any v /∈ S. Each of these L intersects the conic
in P and in another point Q. This point is integral on C \ P: In fact it is the other point of
intersection of L mod v with Cmod v.

Remark 4.1.2. Note that all the S-integral points arise in this way: if Q is S-integral on
C \ P then the line through P and Q does not coincide with the tangent mod v, for any
v /∈ S.

Example 4.1.3. Consider the parabola given by the equation

x + y = (x− y)2.

We find all the solutions in Z using the method of the previous corollary. Using projective
coordinates X, Y, Z the point is P = [1 : 1 : 0], the tangent in P is Z = 0. The integral lines
on P \ {Z = 0} are

X−Y = nZ, where n ∈ Z

22



CHAPTER 4. CONSTRUCTING INTEGRAL POINTS ON SURFACES 23

so all integral points are solutions of the systems{
x + y = (x− y)2

x− y = n

So (x, y) =
(

n(n + 1)
2

,
n(n− 1)

2

)
Proposition 4.1.4. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let C be a singular cuspidal cubic defined over κ with good reduction outside S, i.e. Cmod v
is a geometrically irreducible cuspidal cubic mod v for every v /∈ S. Then there are infinitely
many S-integral points on C \ {P}.

Proof. Similarly to the proof of corollary 4.1.1 we choose the cuspidal tangent L0 in P,
we consider the pencil P of all the lines through P. We have that the integral points on
C \ {P} correspond to integral lines on P \ {L0}.

Example 4.1.5. We find all the solutions in Z of the diophantine equation

y = (x + y)3

Note that it has a cusp P = [1 : −1 : 0], which is the intersection of C with the line at
infinity Z = 0, which is of course the tangent L0. The lines through P are that of the form

aX + aY + cZ = 0.

The integral lines on P \ L0 are those with a ∈ {±1}, c ∈ Z, so in the affine part that of
the form x + y = n. So all the integral points are solutions of the systems{

y = (x + y)3

x + y = n

(x, y) =
(
n− n3, n3).

As we have seen (proposition 3.5.3), for every κ-defined straight line, for every κ-
defined point P ∈ L, the set of S-integral points on L \ P is Zariski-dense.
We now consider the case when we remove a κ-defined divisor on L given by two points.
The next examples show that there can be different behaviours

Example 4.1.6. Let κ = Q, L = P1, S = {∞}.
{P1, P2} = {[a : ±bi]}, where a, b ∈ Z gcd(a, b) = 1: in this case there are only finitely
many S-integral points on P1 \ {P1, P2}, corresponding to the solutions in integers of

a2y2 + b2x2 = 1

Example 4.1.7. Let κ = Q, L : P1, S = {∞}, D = {[±
√

d : 1]}. Then the set of S-integral
points on P1 \ D corresponds to the solutions of the equations

x2 − dy2 = ±1

which are infinitely many.
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The solutions of a Pell Equation can be interpreted also as integral points on a projec-
tive conic minus two points.

Example 4.1.8. Let κ = Q, Let C : X2 − dY2 = Z2, where d ∈ Z is squarefree,

D = {[±
√

d : 1 : 0]} = C ∩ {Z = 0}

Since C has no component coinciding with {Z = 0}mod v for every v /∈ S, the set of S-
integral points corresponds also in this case to solutions in Z of the diophantine equations

x2 − dy2 = ±1

Recall that we remarked (2.2.3) that the existence of infinitely many solutions of the
Pell equation was geometrically interpreted as existence of infinitely automorphisms of
the hyperbola fixing the set of S-integral points. The idea for the general case is the same:
constructing automorphisms fixing integral points. We start from a technical result.

Lemma 4.1.9. Let κ be a number field, S a finite set of valuations of κ containing the archimedean
ones. Let A, B, C ∈ P2 such that A + B + C is a 0-cycle defined over κ. Suppose that they are
not contained in the same straight line. Denote a, b, c the corresponding ideals generated by their
coordinates. Let I = det(A|B|C)a−1b−1c−1 (I is independent from the choice of the homogeneous
coordinates).

(1) Suppose that A, B, C ∈ P2(κ). Let

U := {x ∈ O∗S : x ≡ 1 mod I}

then for every choice of α, β, γ ∈ U, there exists T ∈ GL3(OS) such that T has eigenvectors
A, B, C (thinking them as column vectors), and α, β, γ are the corresponding eigenvalues:

T · A = αA, T · B = βB, T · C = γC

(2) Suppose that A ∈ P2(κ), B and C are conjugate points defined over a quadratic extension
κ′/κ of κ, let S′ be the set of valuations of κ′ extending those of S, let

U′ = {x ∈ O∗S′ : x ≡ 1 mod (I)},

then for every α ∈ U, β ∈ U′ we can find T ∈ GL3(OS) such that

T · A = αA, T · B = βB, T · C = β̄ · C

(3) Suppose that κ′′/κ is a cubic extension and A, B, C are conjugate points defined over κ′′, let
S′′ be the set of valuations of κ′′ extending those of S, let

U′′ = {x ∈ O′′∗S : x ≡ 1 mod (I)}

Then for every α ∈ U′′ we can find T ∈ GL3(OS) such that

T · A = αA T · B = ᾱB, T · C = ¯̄α · C
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Proof.

(1) Consider

M := (A|B|C), L =

α 0 0
0 β 0
0 0 γ


Then T = MLM−1 satisfies the request. One has to check that for every choice of
α, β, γ ∈ U all the entries of T are in OS, i.e. that:

M · L · adj(M) ≡ 0 mod det(M),

or equivalently that they are inOv for every v /∈ S. We can assume that A, B, C have
coprime coordinates in Ov (it is a UFD) , case IOv = det(M)Ov, then

M · L · adj(M) ≡ MI3adj(M) ≡ 0 mod det(A|B|C).

Then T has entries in Ov for every v /∈ S, then it has entries in OS.

(2), (3) Similar to (1), consider L =

α 0 0
0 β 0
0 0 β̄

 for (2) and L =

α 0 0
0 ᾱ 0
0 0 ¯̄α

 for (3).

Theorem 4.1.10. Let κ be a number field, S a finite set of valuations of κ containing the archimedean
ones. Let L ⊆ P2 be a κ-defined projective line. Let A, B ∈ P2(κ̄) such that D = {A, B} is a
κ-defined divisor.

(1) Suppose that A, B ∈ L(κ). If |O∗S| = ∞ then the set of S-integral points on L \ {A, B} is
either empty or infinite.

(2) Suppose that |O∗S| < ∞ and one of the following hypothesis holds:

• A, B ∈ L(κ) ;

• A, B ∈ L(κ′), where κ′/κ is a quadratic extension such that no archimedean valuation
of κ splits in κ’.

Then there are only finitely many S-integral points on C \ {A, B}.

(3) Suppose that A, B ∈ P2(κ′) where κ′/κ is a quadratic extension such that at least one
valuation of κ splits in κ′. Then the set of S-integral points on L \ {A, B} is either empty or
infinite.

Proof.
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(1) Suppose that |O∗S| = ∞. Let x ∈ L \ {A, B} be an S-integral point. Then, for every
v /∈ S, choosing coprime coordinates for A and for x

rk((A|x) mod v) = 2

Let C ∈ P2 \ L be a κ-rational point. Choose α, β, γ ∈ U as in 4.1.9 and T ∈ GL3(OS) such
that

T(A) = αA, T(B) = βB, T(C) = γC

Then T fixes the line L, in fact the equation for L is

det(A|B|x) = 0

and det(A|B|Tx) =
det(T)det(A|B|x)

αβ
. Further T preserves integral points on L \ {A, B}.

The fact that x is S-integral means that for every v /∈ s if we choose coprime homogeneous
coordinates for A and for x

rk((A|x) mod v) = 2

Note that
rk((A|Tx) mod v) = rk((αA|Tx) mod v)

= rk((TA|Tx) mod v)
= rk(T · (A|x) mod v)
= rk((A|x) mod v) since det(T) ∈ O∗S

(4.1)

So Tx is an S-integral point. We want to prove that they are infinitely many. Note that the
function

f (x) :=
det(A|C|x)
det(B|C|x)

is such that f (Tx) =
β

α
f (x) So in particular

f (Tx) 6= f (x)⇒ Tx 6= x

Since we can choose infinitely many different values for
β

α
it follows that the set of S-

integral points on L \ {P} is infinite.

(2) We prove only the case when A, B ∈ L(κ) and |O∗S| < ∞. Suppose to have chosen C an
S-integral point on P2 \ L (it exists by theorem 3.5.7). Then it follows that for an S-integral
point x on L \ {P} we have that.

det(A|C|x) = acx, det(B|C|x) = bcx

where a, b, x are the ideals respectively generated by the coordinates of A, B, x. It follows
that

( f (x)) =
a

b
Since |O∗S| < ∞ there are only finitely many choices for f (x), so all the S-integral points
are contained in a finite number of lines

det(A|C|x) = a det(B|C|x), where (a) =
a

b

so they are finitely many.
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(3) We choose α ∈ U′ as in lemma 4.1.9 and T ∈ GL3(OS) such that

T(A) = αA, T(B) = ᾱB, T(C) = γC

Given an S-integral point x, we can find infinitely many S-integral points considering

T(x), since there are infinitely many choices for
ᾱ

α
.

Remark 4.1.11. The previous proof can be generalized to a line L ⊂ Pn for n ∈N+. In fact
we can choose auxiliary points C1, Cn−1 such that Ci does not reduce to Span(Ci−1, ..., C1, A, B)
mod v for any v /∈ S and consider the fibration

f (x) :=
det(A|C1|...|Cn−1|x)
det(B|C1|...|Cn−1|x)

The proof in the cases of a geometrically irreducible conic is very similar.

Theorem 4.1.12. Let κ be a number field, S a finite set of valuations of κ containing the archimedean
ones. Let C ⊂ P2 be a κ-defined projective and geometrically irreducible conic. Let A, B ∈ P2(κ̄)
such that D = {A, B} is a κ-defined divisor of C.

(1) Suppose that A, B ∈ C(κ) and that |O∗S| = ∞, then the set of S-integral points on C \
{A, B} is either empty or infinite.

(2) Suppose that |O∗S| < ∞ and that one of the following is true

• A and B are defined over κ;

• A and B are defined over a quadratic extension κ′/κ such that no archimedean valua-
tion of κ splits in κ′.

Then there are only finitely many S-integral points on C \ {A, B}.

(3) Suppose that A, B are defined over a quadratic extension κ′/κ such that there is at least one
archimedean valuation of κ which splits in κ′. Then there are infinitely many S-integral
points on L \ {A, B}.

Proof.

(1) Let C be the intersection point of the two tangents to C in A and B. Note that C is a
member of the pencil

a det(A|C|x)det(B|C|x) + b det(A|B|x)2 = 0, [a : b] ∈ P1(κ̄)

in fact C belong to the pencil of all conics passing through A and B and having two
specified lines intersecting it with multiplicity 2 in those points, which is in fact the
pencil defined above. Choose α, β γ ∈ U, where U is the set defined in lemma 4.1.9.
Suppose that

γ2 = αβ
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We construct the automorphism T as in lemma 4.1.9 such that

T(A) = αA, T(B) = βB, T(C) = γC

Then T fixes any conic of the pencil, in particular C and preserves integral points.
The function

f (x) :=
det(A|C|x)det(B|C|x)

det(A|B|x)2

is such that

f (Tx) =
det(A|P|Tx)
det(B|P|Tx)

=
β

α
f (x)

Since there are infinitely many choices for
β

α
, we are able to construct infinitely many

S-integral points.

(2) We consider the case when A, B are defined over κ. We want to show that there are
only finitely many S-integral points. This part is trickier than the case of the line,
since we cannot assume that C is S-integral. Write

x = aA + bB + cC

The fact that x is S-integral means that it does not reduce to A or B mod v for any
v /∈ S, which is equivalent to the fact that:

|aa|v ≤ max(|bb|v, |cc|v)
|bb|v ≤ max(|aa|v, |cc|v)

This implies that for every v /∈ S

|cc|v ≤ max(|bb|v, |aa|v)

C has an equation of the form

det(A|C|x)det(B|C|x) = d det(A|B|x)2

which implies d =
ab
c2 .

|cc|2v ≥ max(|a|2v|a|2v, |b|2v|b|2v)
|ab|v|c|v
|d|v

≥ max(|a|2v|a|2v, |b|2v|b|2v)

|c|2v
|d|v
≥ max

(∣∣∣∣ba
∣∣∣∣
v
|b|v,

∣∣∣ a
b

∣∣∣
v
|a|v
)

So we have a system of inequalities:
∣∣∣∣ba
∣∣∣∣
v
|b|2v ≤

|c|2v
|d|v∣∣∣ a

b

∣∣∣
v
|a|2v ≤

|c|2v
|d|v

⇐⇒ |d|v|a|v|c|2v
≤
∣∣∣∣ba
∣∣∣∣
v
≤ |c|2v
|d|v|b|v

this implies that ( f (x)) =

(
b
a

)
belongs to a finite set of ideals, and since |O∗S| <

∞ there are only finitely many values for f (x), and so only finitely many integral
points.
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(3) Very similar to (1).

Remark 4.1.13. Also in this case it is possible to extend the previous theorem to a κ-
defined conic C contained in a κ-defined plane H ⊂ Pn, considering auxiliary points
C1, ..., Cn−2 and a fibration

f (x) =
det(C1|...|Cn−2|A|C|x)det(C1|...|Cn−2|B|C|x)

det(C1|...|Cn−2|A|B|x)2

Example 4.1.14. Consider C : X2 − dY2 = mZ2, κ = Q, S = {∞}, {A, B} = {[±
√

d : 1 :
0]}. In this case ` = Q(

√
d). This is the classical Pell-type equation. We follow the way of

PART 1 to find the automorphisms T fixing integral points. Consider α = +b
√

d ∈ O∗S′ =
O∗` , such that a2 − db2 = 1, so β = a− b

√
d and γ = 1. Consider T ∈ GL3(Z) the matrix

with eigenvectors

 1
±
√

d
0

 and corresponding eigenvalues α and β. It is

a bd 0
b a 0
0 0 1


which acts on the affine part as the matrix

(
a bd
b a

)
which is an element of the orthogonal

group over Z of the quadratic form x2 − dy2.

Example 4.1.15. Consider the hyperbola x2− 2xy− y2 + x + y = 0. It has two conjugates
points at infinity, namely {A, B} = {[1±

√
2 : 1 : 0]}, it contains (1,1), then it has in-

finitely many integral points, let’s compute a non-trivial automorphisms T. First we find
the point P. The two tangents in A and B ( i.e. the two asymptotes) and their point of
intersection are:

2x− (2 + 2
√

2)y + 1 +
√

2 = 0
2x− (2− 2

√
2)y + 1−

√
2 = 0

P =

(
1
2

, 0
)

We have that P =

(
0,

1
2

)
= [0 : 1 : 2] Consider α = 3 + 2

√
2, β = 3− 2

√
2, γ = 1. Then

we are searching for T such that:

T ·

1 +
√

2 1−
√

2 0
1 1 2
0 0 1

 =

7 + 5
√

2 7− 5
√

2 0
3 + 2

√
2 3 + 2

√
2 2

0 0 1


A solution is T =

5 2 −1
2 1 0
0 0 1

. In affine coordinates it is the affine map

T(x, y) = (−1, 0) + (5x + 2y, 2x + y)
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Corollary 4.1.16. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let C be a nodal singular cubic, which is irreducible mod v for every v /∈ S. Suppose that
the node P is κ-defined. Let L1 and L2 be the two distinct tangent lines in P.

(1) If O∗S is infinite or the lines are defined over a quadratic extension in which at least one
archimedean place of κ splits, then the set of the integral points on C \ {P} is either empty
or infinite.

(2) If O∗S is finite and the lines are either defined over κ or over a non-split quadratic extension,
then there are only finitely many S-integral points.

Proof. Consider the pencil of all the lines of P2 through P. A point Q ∈ C \ {P} is integral
if and only if L := LPQ is S-integral on P \ {L1, L2}, where P is the pencil of lines spanned
by L1 and L2. So the theorem follows immediately from 4.1.10.

4.2 Ternary homogeneous equations

In this section we consider the problem of finding solution to the equation

F(x, y, z) ∈ O∗S where F(X, Y, Z) is a form with coprime coefficients

Particularly interesting is the case when OS = Z: we are searching for solutions of the
diophantine equation

F(X, Y, Z) = ±1.

The problem is equivalent to find S-integral points on the algebraic surface
P2 \ {F(X, Y, Z) = 0}. Note that the canonical class of P2 is K = [−3div(H)], where
div(H) is a line divisor. If deg(F) ≤ 3 we have that

K + D = [(deg(F)− 3)H]

is not a big divisor. So the hypothesis of the Vojta’s conjecture are not satisfied and it is
possible that the set of S-integral points on P2 \ D is Zariski-dense. The next theorem
considers the case when deg(F) = 2.

Theorem 4.2.1. Let κ be a number field, S a finite set of valuations of κ containing the archimedean
ones. Let C be a geometrically irreducible conic defined over κ. Let κv be the completion with re-
spect to the valuation v.

(1) Suppose that C(κv) = ∅ for every v ∈ S. Then there exist only finitely many S-integral
points on P2 \ C.

(2) If κ ) Q or |O∗S| = ∞ then the set of S-integral point on P2 \ C is either empty or Zariski
dense.

(3) If κ = Q, S = {∞} and C(R) 6= ∅, then the set of S-integral points on P2 \ C is either
empty or Zariski-dense.
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Proof.

(1) The idea is to prove that the height of S-integral points is bounded. Consider now
C : F(X, Y, Z) = 0, where F is a ternary quadratic form. There is a well defined
continuous function:

P2(κv) → R+

[X : Y : Z] 7→ |F(X, Y, Z)|v
max(|X|2v, |Y|2v, |Z|2v)

Since P2(κv) is compact in the v-adic topology, the function has a minimum mv > 0
since C(κv) = ∅. Let [X : Y : Z] be an S-integral point in P2 \ C we have by global
characterization of integrality that:

F(X, Y, Z) = F · (X, Y, Z)2

where F denotes the ideal generated by the coefficients of F. So for every v /∈ S

|F(X, Y, Z)|v = |F |v max(|X|2, |Y|2, |Z|2)

Using the product formula for the valuations we have that

1 = ∏
v
|F(X, Y, Z)|v ≥ ∏

v∈S
mv ∏

v/∈S
|F |v ∏

v∈S
max(|X|v, |Y|v, |Z|v)2

= ∏
v∈S

mv ∏
v/∈S
|F |vH(X, Y, Z)2 (4.2)

So the height is bounded on integral points, so they are finitely many.

(2) Let P be a fixed S-integral point.

(2.1) If |O∗S| = ∞, then, for any κ-defined straight line L, passing through P, there
are infinitely many S-integral points on L \ (L ∩ C) by proposition 4.1.10, which are
S-integral points on P2 \ C. It follows that the set of S-integral points on P2 \ C is
Zariski-dense.

(2.2) If |O∗S| < ∞, κ ) Q the assertion follows also in this case if there are
infinitely many lines through P intersecting C in two conjugate points. Note that
this is in fact a consequence of Hilbert Irreducibility Theorem.

Theorem 4.2.2 (Hilbert Irreducibility Theorem). Let κ be a number field, d ∈ Z+,
F(X1, ..., Xd, Y) ∈ κ[X1, ..., Xd, Y] an irreducible polynomial of degree ≥ 1 in Y. Then for a
Zariski-dense set of (a1, ..., ad) ∈ κd the polynomial F(a1, ..., ad, Y) ∈ κ[Y] is irreducible.

For a proof see for example [Co]. In our case if we assume that the affine equation
of the conic is f (x, y) 6= 0 and P = [0 : 1 : 0], then the lines through P are exactly
those of the form x = a.

(3) Suppose that C(R) 6= ∅, let P ∈ C(R), let Q be an S-integral point on P2 \ C. Also in
this case the idea is to apply 4.1.10, but we need to prove the existence of infinitely
many lines for which the two intersection points are conjugate over a real quadratic
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extension of Q.
Denote by X the pencil of lines through P and consider it as a real manifold. Let
L0 be the line through P and Q. There is a neighbourhood of L0 (in the euclidean
real topology) U ⊂ X such that L ∩ C ⊂ P2(R), for all L ∈ U. The set of Q-
rational points of U is euclidean-dense in U, so a fortiori they are infinitely many,
i.e. there are infinitely many lines through P, defined over Q and intersecting C in
real points. From the proof of Hilbert Irreducibility Theorem it can be deduced that
actually if F(X1, ..., Xd, Y) ∈ Q[X1, ..., Xd, Y] is an irreducible polynomial then the
set of (x1, ..., xd) ∈ Qd, such that F(x1, .., xd, Y) ∈ Q[Y] is irreducible, is dense in the
euclidean topology. It follows that there are infinitely many straight lines through
P which are Q-defined and which intersect C in two points conjugate defined over
a real quadratic extension of Q.

The case when C is a reducible conic is also simpler.

Proposition 4.2.3. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Suppose that C = L1 + L2 is a reducible plane conic defined over κ.

(1) Suppose that |O∗S| = ∞ and L1, L2 are defined over κ, or that they are defined over a
quadratic extension κ′/κ and |O∗S′ | = ∞, where S′ denotes the set of valuations of κ′ ex-
tending those of κ. Then the set of S-integral points on P2 \ C is either empty or Zariski-
dense.

(2) If |O∗S| < ∞ and L1, L2 are lines which are either κ-defined or defined over a non-split
quadratic extension, then the S-integral points are contained in a finite number of lines
through P = L1 ∩ L2.

Proof. Let P be the pencil of all lines through P. It is a line in P2∗. If ∃Q ∈ P2 \ C integral
then the line L := P ∨ Q does not coincide with L1 or L2 mod v for any v /∈ S. So it is an
S-integral point on P \ {L1, L2}

(1) By proposition 4.1.10 there are infinitely many lines through P not coinciding with
L1 and L2 mod v for any v /∈ S. For each of these lines M there are by 3.5.3 infinitely
many S-integral points on M \ P so S-integral in P2 \ L1 + L2.

(2) By proposition 4.1.10 in this case there are finitely many L S-integral on P \ {L1, L2},
and any S-integral point Q must lies on one of these lines.

Now we study the solutions of ternary homogeneous equations of degree 3. We start
from the case of a geometrically irreducible cubic. The following the theorem is the main
of result of the paper [Beu].

Theorem 4.2.4 (Beukers). Let κ be a number field, S a finite set of valuations containing the
archimedean ones. Let C be a geometrically irreducible cubic curve defined over κ with a κ-rational
flex F. Denote by M the inflectional tangent to the curve in F. Assume that L mod v is not a
component of Cmod v for any v /∈ S. Then the set of S-integral points on P2 \ C is Zariski-dense.
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Proof. The idea is to find infinitely many conics which intersect C in 2 points (with multi-
plicity 3) having no common component with C mod v for every v /∈ S and containing at
least one integral point. Let

T(X, Y, Z) = 0

be the equation for C. By an abuse of notation we call L(X, Y, Z) the linear form defining
L. By proposition 3.5.3 there are infinitely many S-integral points on L \ {F}, which are
S-integral points on P2 \ C since L mod v is not a component of Cmod v for any v /∈ S.
Let R be one of these points. Fix a κ-defined straight line M throw F, which does not
coincide with L mod v for any v /∈ S (it exists by proposition 3.5.3). Also in this case, by

an abuse of notation, we call M(X, Y, Z) the linear form defining M. Let a =
T(R)

M(R)3 , then

the cubic curve
C0 : T(X, Y, Z)− aM(X, Y, Z) = 0

contains the line L since deg(C0) = 3, but (L.C0)F ≥ 3 and (L.C0)R ≥ 1. Then

T(X, Y, Z)− aM(X, Y, Z) = L(X, Y, Z)Q(X, Y, Z)

where Q(X, Y, Z) is a quadratic form defined over κ. For any t ∈ κ call Mt = M + tL,
then the cubic

Ct : T(X, Y, Z)− aMt(X, Y, Z)3 = 0

contains the line L
T(X, Y, Z)− aMt(X, Y, Z)3 = L ·Qt

where Qt = Q− 3tM2− 3t2LM− t3L2 is a quadratic form. For all but finitely many t ∈ κ
the zero locus of Qt is a geometrically irreducible conic. Note that

Qt ∩ C = Mt ∩ C =: {At, Bt}

and clearly (Qt.C)At = (Qt.C)Bt = 3. Remember by global characterization of S-integral
points that

T(R) = tr3, M(R) = mr

where t, m, r denote the ideals generated respectively by the coefficients of T, M and the
coordinates of R. It follows that

(a) =
t

m3 .

We can assume without loss of generality that a = 1 and so t = m3. Recall (3.5.1) that,
given an S-integral point R on L \ {F}, it is possible to construct infinitely many of them
taking Rs := R + sF, where s ∈ r · f−1 (f denotes the ideal generated by the coefficients of
F). The condition that Rs ∈ Qt can be written

Q(Rs)− 3tM(Rs)
2 − 3t2L(Rs)M(Rs)− t3L(Rs)

2 = 0⇐⇒ t =
Q(R + sF)

3M(R)2

In particular the conic Qt is κ-defined and it contains the S-integral point Rs. Note that if
|O∗S| = ∞ it contains infinitely many S-integral points. It follows that the set of S-integral
points on P2 \ C is Zariski-dense. In the remaining part of the proof we suppose that



CHAPTER 4. CONSTRUCTING INTEGRAL POINTS ON SURFACES 34

|O∗S| < ∞. First we show that for infinitely many t ∈ κ, the line Mt intersects the cubic C
in F and two points which are conjugate defined over a quadratic extension of κ. To see
this, assume (without loss of generality) that L : Z = 0, M : X = 0 and F = [0 : 1 : 0].
Then the equation of the cubic is

X3 + ZG(X, Y, Z) = 0

The κ-defined lines through F are those of equation

Mt : X = −tZ, t ∈ κ.

The intersection Mt ∩ C is given by the system of equations{
X = −tZ
−t3Z2 + Q(−tZ, Y, Z) = 0

and for t 6= 0 a solution [X : Y : Z] is such that Z 6= 0. Since t3 + g(t, y, 1) ∈ κ[t, y] is
an irreducible polynomial, we have that, by Hilbert Irreducibility Theorem, for infinitely
many t ∈ κ the solutions of the previous system are not defined over κ.
Note that if κ ) Q then it implies that the set of S-integral points on P2 \ C is Zariski-
dense.
To end the proof we consider the case κ = Q. We show that for s >> 0 the two points
of intersection are defined over R. We have the study the sign of the discriminant of the
equation

−t3Z2 + Q(−tZ, Y, Z) = 0

Write explicitly Q(X, Y, Z) = a11X2 + a22Y2 + a33Z2 + 2a12XY + 2a13XZ + 2a23YZ. Then

−t3Z2 + Q(−tZ, Y, Z) = a22Y2 + (−ta12 + a23)YZ + (−t3 + t2a11 − ta13 + a33)Z2

Note that a22 = Q(0 : 1 : 0) and that t(s) = Q(1 : s : 0). Q(1 : s : 0) and Q(0 : 1 : 0) have
the same sign for s >> 0, so it is clear that the discriminant of the previous equation is
positive for s >> 0.

Example 4.2.5. Consider the case when C is an elliptic curve defined over Q, S = {∞}.

Y2Z = X3 + pXZ2 + qZ3, p, q ∈ Q

In this case

F = [0 : 1 : 0], L = Z, M = X, T = X3 + pXZ2 + qZ3 −Y2Z

We have that Mt(X, Y, Z) = X + tZ so

Qt(X, Y, Z) = pXZ + qZ2 −Y2 − 3tX2 − 3t2XZ− t3Z2

An integral point on L \ {F} in this case is [1 : 0 : 0], and actually the family of all S-
integral points is {[1 : n : 0]}. For every n the condition to impose on t if we want that Qt
contain [1 : n : 0] is

t =
Q(1 : n : 0)
M(1 : 0 : 0)

= −n2

3
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Figure 4.1: An example of the previous construction for the elliptic curve y2 = x3 + 8

It follows that we get hyperbolas y2 = px + q + n2x2 − n4x
3

+
n6x
27

In the figure we picture the case of the curve y2 = x3 + 8. When n = 2, 3 the vertical lines

are respectively x =
4
3

and x = 3. The corresponding conics are

y2 = 9x2 − 27x + 35, y2 = 4x2 − 16
3

x +
280
27

Example 4.2.6. Consider the diophantine equation x3 + y3 + z3 = 1. Searching solutions
in integer corresponds to find integral points on P2 \ C where C is the projective smooth
cubic given by T(X, Y, Z) = X3 + Y3 + Z3.
We can apply the method of the previous theorem: Consider the Q-rational flex
F = [1 : −1 : 0]. The tangent line to C in F is L(X, Y, Z) = X + Y. We choose a line

M(X, Y, Z) = Z

not coinciding with L mod v for any v /∈ S. An integral point on L \ {F} is R = [0 : 0 : 1].
Actually the set of S-integral points on L \ {F} is {[n : −n : 1], n ∈ Z}. We have that

Q(X, Y, Z) = X2 − XY + Y2

Qt(X, Y, Z) = X2 − XY + Y2 − 3t(X + Y)2 − 3t2Z(X + Y)− t3Z2
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Choosing R = [0 : 0 : 1] we have that

t(n) =
Q(n : −n : 1)
3M(0 : 0 : 1)2 = n2.

If we consider the system
Z = −t(X + Y)
X3 + Y3 + Z3 = 0
X + Y 6= 0

⇐⇒
{

Z = −t(X + Y)
X2 − XY + Y2 − t3(X + Y)2 = 0

Substituting t = n2 the last equation is equivalent to

(n6 − 1)x2 + (2n6 + 1)XY + (n6 − 1)Y = 0

which has real solutions if and only if ∆ = 3(4n6 − 1) > 0, so for all n 6= 0.

Remark 4.2.7. The problem of finding a Zariski-dense set of solutions in Z to the previous
diophantine equation was very studied by the number theorists in the past. It was solved
by D.H. Lehmer in 1956, see [Le], to which the interested reader is referred. He started
from a set of known parametric solutions.

x0(t) = 9t4, y0(t) = −9t4 + 3t, z0(t) = −9t3 + 1

He noted that for any t, (x0, y0, z0) verifies an equation of the second degree:

x2 − xy + y2 = 21t6(x + y)2 − 27t4(x + y) + 9t2

whose solutions can be obtained from those of the Pell equation

a2 − db2 = 1

where d = 324t6 − 3 is the discriminant of the equation above. For each t ∈ Z he con-
sidered the family of solutions of such an equation, which allowed him to produce a
sequence of curves on the surface containing infinitely many integral points.

Suppose now that the cubic is singular either cuspidal or nodal, then we see that con-
sidering a divisor D containing the cubic and the tangents in the singularity (so its degree
is 4 or 5 depending on the case the singularity is a node or a cusp) the set of S-integral
points on P2 \ D is Zariski-dense. Note that in this case K + D is big, but it is not normal
crossing, so the assumptions of the Vojta’s Conjecture are not satisfied.

Theorem 4.2.8. Let κ be a number field, let S be a finite set of valuations containing the archimedean
ones such that |O∗S| = ∞. Let C be a cuspidal cubic defined over κ. Let P be the cusp and let L0 be
the principal tangent in P.

(1) If |O∗S| < ∞ then the set of S-integral points on P3 \ (C + L0) is not Zariski-dense.

(2) Suppose that Cmod v is irreducible for every v /∈ S. Suppose that there exists another
cuspidal cubic C ′ irreducible mod v for every v /∈ S having a cusp in P and tangent L0.
Suppose also that it is distinct from C mod v, ∀v /∈ S and that C ∩ C ′ = {P}. Then the
set of S-integral points on P2 \ (C + L0) is Zariski-dense.
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Proof.

(1) Let F(x) = 0 be the equation for C. Consider the fibration

f (x) :=
F(x)

L0(x)3

If x is S-integral on P3 \ (C + L0) then

( f (x)) =
F
L3

0

where F ,L′0 are the ideal generated respectively by the coefficients of F and L0. So
all the S-integral points are contained in a finite number of cubic curves of the pencil{

( f (x)) = aL(x)3, where (a) =
F
L3

0

}

(2) Consider the pencil P of the lines through P. Let L be an S-integral points on P \
{L0}. We have that L∩C = {P, Q}, L∩C ′ = {P, Q′}. By corollary 4.1.4 Q′ is integral
on C ′ \ {P}. Then by our hypothesis it is integral on P2 \ (C + L0). Then it is also
integral on L \ {P, Q}. By proposition 4.1.10 there are infinitely many S-integral
points on L \ {P, Q} and these points are also integral on P2 \ (C + L0), since by
assumptions L mod v is not a component of C + L0 mod v, ∀v /∈ S. Since there
are infinitely many integral lines L, the set of S-integral points on P3 \ (C + L0) is
Zariski-dense.

Remark 4.2.9. There is an easier way to show potential density for this variety. Note that
there is an obvious fibration

P2 \ D → Λ \ L0
∼= Ga

where Λ is the pencil of lines through the cusp P. This fibration is a principal Gm-bundle.
The existence of another cusp as in the hypothesis ensures that there is a regular section
of the bundle and so

P2 \ D ∼= Gm ×Ga

So it is geometrically isomorphic to an homogeneous space. The idea of the proof is the
same as in [Co, Thm 5.3.1].

Example 4.2.10. Let κ = Q[
√

2], S = {∞}. Let

C : y2 + x3 = 0.

In this case P = (0, 0) and L0 : y = 0. This cubic satisfies all the assumptions of the
theorem. Since there is the cubic

C ′ : y2 + x3 + y3 = 0

which verifies all the needed hypothesis we conclude that the diophantine equation

y(y2z + x3) = (1 +
√

2)e

has a Zariski-dense set of solutions where x, y, z ∈ Z[
√

2] are coprime. e ∈ Z.
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Example 4.2.11. Let κ = Q, S = {∞, vp}. Let, as in the previous example

C : y2 + x3 = 0, C ′ : y2 + x3 + y3 = 0

it follows that the diophantine equation

y(y2z + x3) = pe

has a Zariski-dense set of solutions where x, y, z ∈ Z are coprime, e ∈ Z. Note that
with this method we can compute all the solutions to this equation: note that they are
contained in the family of cubics

Y2Z + X3 − uY3 = 0, where u ∈ O∗S = Z[p−1]∗

All these cubics verify the hypothesis of C ′ in the theorem, so all S-integral points on
them are given by intersections with lines L which are S-integral on P \ L0. They lines of

equation X + tY = 0 where t ∈ Z

[
1
p

]
.

{
X = −tY
Y2Z + X3 − uY3 = 0

It follows that Z = (t + u)Y. Then all S-integral points are{
[−t : 1 : t3 + u] : t ∈ Z

[
1
p

]
, u ∈ Z

[
1
p

]∗}
More explicitly {

[−n · p2a : p3a : n3 ± pb] : n, a, b ∈ Z, p - n
}

Theorem 4.2.12. Let κ be a number field, let S be a finite set of valuations containing the
archimedean ones. Let C be a geometrically irreducible nodal cubic defined over κ. Let P ∈ C
be the node, let L1 and L2 be the two principal tangents in P.

(1) Suppose that |O∗S| < ∞. Then the set of S-integral points on P2 \ (C + L1 + L2) is not
Zariski-dense.

(2) Suppose that Cmod v is irreducible for every v /∈ S. Assume that there is an integral point
on P2 \ (C + L1 + L2) and that there exists another nodal cubic C ′ irreducible mod v for
every v /∈ S having a node in P and principal tangents L1 and L2. Suppose also that it is
distinct from C mod v, ∀v /∈ S and that C ∩ C ′ = {P}.
Then there are infinitely many integral points on P2 \ C + L1 + L2.

Proof.
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(1) Suppose that F(x) = 0 is the equation for C.

f (x) :=
F(x)2

L1(x)3L2(x)3

If x is an S-integral point we have that

( f (x)) =
F 2

L3
1L3

2

Since |O∗S| < ∞ there are only finitely many possible values for f (x) and so x is contained
in the finite set of sextic curves

F(x)2 = aL1(x)3L2(x)3, where (a) =
F 2

L3
1L3

2

(2) Consider the pencil P of lines through P. Let L be an S-integral point on P \ {L1, L2} (it
exists since we are assuming that there exists at least one integral point on P2 \ L1 + L2).
We have that L ∩ C = {P, Q}, L ∩ C ′ = {P, Q′}. By corollary 4.1.16 Q′ is integral on
C ′ \ {P}. then by hypothesis it is S-integral on P2 \ C + L1 + L2. Then it is also integral
on L \ {P, Q}. By theorem 4.1.10 there are infinitely many S-integral points on L \ {P, Q}
and these points are also S-integral on P2 \ C + L1 + L2, since by assumptions L is not a
component of C + L1 + L2 mod v for any v /∈ S. Since there are infinitely many integral
lines L, the set of Sintegral points is Zariski-dense.

Remark 4.2.13. Similarly to the case of theorem 4.2.8, it can be proved that this variety is
geometrically isomorphic to Gm ×Gm, which is an homogeneous space for the action of
an algebraic group. See for example [Co, Thm 5.3.1].

Consider now the case when the cubic is reducible.

Theorem 4.2.14. Let κ be a number field, S a finite set of places containing the archimedean ones.
Let L1 + L2 + L3 be a κ-defined cubic given by three lines.

(1) If L1 ∩ L2 ∩ L3 = {P} then all the S-integral points on P2 \ (L1 ∪ L2 ∪ L3) are contained
in finitely many lines through P.

For the next cases we assume that L1, L2, L3 are in general position.

(2) Suppose that |O∗S| < ∞ and that at least one of the lines is defined over κ. Then the set of S-
integral points is not Zariski-dense: more precisely, assuming L3 is κ-defined, it is possible
to find a finite set of conics passing through A := L1 ∩ L3 and B := L2 ∩ L3 tangent to L1
and L2 containing all integral points.

(3) Suppose that the three lines are conjugate defined over a cubic extension of κ, then the set of
S-integral points on P2 \ (L1 ∪ L2 ∪ L3) is either empty or infinite.

(4) Suppose that |O∗S| = ∞, then the set of S-integral points on P2 \ (L1 ∪ L2 ∪ L3) is either
empty or infinite.
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Proof.

(1) In this case the set of S-integral points is not potentially dense, i.e. is not dense for
every enlargement of κ and S. In fact all the S-integral points on P2 \ (L1 ∪ L2 ∪ L3)
are contained in a a finite set of lines through P. In fact if Q is an S-integral point,
then LPQ is a line which is not a component of (L1 ∪ L2 ∪ L3)mod v for any v /∈ S.
The conclusion follows from the fact that there are only finitely many S-integral
points P \ {L1, L2, L3}, where P is the pencil of lines through P.

(2) Suppose that x is an integral point on P2 \ L1 + L2 + L3. Let C := L1 ∩ L2. C is a
κ-defined point since L1 and L2 are either κ-defined or conjugate. The points A =
L1 ∩ L3 and B = L2 ∩ L3 are conjugate if L1 and L2 are. It follows that the rational
function

f (x) =
det(A|C|x)det(B|C|x)

det(A|B|x)2

is κ-defined. Since x is an integral point we have that, denoting by A,B, C,X the
ideals generated by the coordinates of A, B, C, x;

(det(A|B|x)) = ABX , , (det(A|C|x)) = ACX , (det(B|C|x)) = BCX

where, if L1 and L2 are conjugate, the equalities hold in OS′ , where S′ is set of valu-
ations of κ′ extending those in S. Anyway we get that

( f (x)) =
C2

AB

as ideals inOS. So in particular ( f (x)) does not depend on the chosen integral point
x, then f (y) = u f (x) with u ∈ O∗S for any other y integral. Then all integral points
y satisfies an equation

det(A|C|y)det(B|C|y) = α det(A|B|y)2

where α ∈ f (x) · O∗S.

(3) Suppose that κ′′ is a cubic extension. We can construct a function

f (x) =
det(A|C|x)det(B|C|x)

det(A|B|x)2

Under our assumption we can construct automorphisms T from any λ ∈ U′′ as in
lemma 4.1.9 such that T ∈ GL3(OS) and

T(A) = λA, T(B) = λB, T(C) = ¯̄λ if the degree is 3

Note that T preserves the property that a point P ∈ P2(κ′′) does not coincide with
a point of C(Q)mod v′′ for any v′′ /∈ S′′, where S′′ is the set of the valuations of κ′′

extending those of S. It follows that T preserves S-integral points. Suppose that

x = αA + βB + γC
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then
T(x) = λαA + λ̄βB + ¯̄λγC

and since α, β, γ 6= 0, the density of S-integral points follows from the density in P2

of the set
{[λ : λ̄ : ¯̄λ], λ ∈ U′′}

(4) Similar to part (3).

The last is the case when the cubic is a union of a line and of a geometrically irreducible
conic.

Theorem 4.2.15. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let C = L + Q be a κ-defined cubic, whose components are a line and a geometrically
irreducible conic (necessarily defined over κ).

(1) If |O∗S| < ∞ then the set of S-integral points is not Zariski-dense.

(2) If |O∗S| = ∞ and L ∩ Q ⊆ P2(κ), then the set of the S-integral points on P2 \ C is either
empty or Zariski-dense.

(3) If |O∗S| = ∞ and there exists at least an integral point P such that the tangent to Q through
P is κ-defined, then the set of S-integral points is Zariski-dense.

Proof.

(1) Let L = 0 and Q = 0 be the equations for the line and the conic. We consider the
fibration

f (x) =
Q(x)
L(x)2

Note that if x is integral then we have that

( f (x)) =
Q
L2

so there are only finitely many possibilities for f (x) if O∗S is finite, so there is a
finite number of conics in the pencil spanned by Q and L2 containing all the integral
points.

(2) Suppose that P is an integral point.

(2.1) If {A, B} = L ∩ Q we consider the lines LAP and LBP. By integrality of P
they do not reduce to components of C mod v for any v /∈ S. By theorem 4.1.10
there are infinitely many integral points R on LAP \ {A, P}, which are also integral
on P2 \ C. For each R we can consider the lines LBR: by the same argument they
contain infinitely many S-integral points on P2 \ C. Since we have infinitely many
choices for R we have that the set of S-integral points is Zariski-dense.

(2.2) Suppose that L is tangent to Q, i.e. L ∩ Q = {A}. Consider the pencil of
conics

αL(x)2 = βQ(x), where [α : β] ∈ P1
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All of them have L as tangent line in A. We need to add the assumption that L is not
a component of Q mod v for any v /∈ S. So all conics

L(x)2 = uQ(x), u ∈ O∗S

have no common component with L + Q mod v for any v /∈ S. And by corollary
4.1.1 they have infinitely many integral points.

(3) Consider the κ-defined tangent LP: it intersects the cubic in two κ-defined points.
By proposition 4.1.10 there are infinitely many integral points R on LP \ LP ∩ L +
LP ∩Q. For each R we consider a line LR through R, tangent to Q and distinct from
LP: it is κ-defined and contains an integral point, so it contains infinitely many of
them. Since we have infinitely many choices for R the set of S-integral points is
Zariski-dense.



Chapter 5

Higher dimensional results

In this section we consider the case when the variety has dimension 3. We consider the
case X = P3, the canonical class is K = [−4div(H)], where div(H) is a plane divisor. For
a divisor D such that deg(D) ≤ 4 we have that K + D is not big, so we can hope that the
set of S-integral points on P3 \ D is Zariski-dense.

5.1 Integral points on quadric surfaces of P3

Now we study the density of integral points on smooth quadric surfaces of P3. Recall
that in general every smooth quadric is isomorphic to P1×P1. It can be proved using the
Segre’s embedding:

σ : P1 ×P1 → P3

([X0 : X1], [Y0 : Y1]) 7→ [X0Y0 : X0Y1 : X1Y0 : X1Y1]

Potential density of the set of S-integral points on P1 ×P1 \ D, where D is a smooth di-
visor of type (2, 2), was already proved by Hasset and Tschinkel under some geometrical
and arithmetical conditions. It is actually a consequence of a more general theorem:

Theorem 5.1.1. Let X be a smooth Del Pezzo surface and D a smooth anticanonical divisor. Then
the set of integral points on X \ D is potentially dense.

Proof. see [HS, Th. 7.2].

We will see that actually we do not need to require D to be smooth.

Lemma 5.1.2. Let κ be a number field. Let X be a smooth quadric surface defined over κ. Suppose
that there exists a straight line L0 ⊂ X defined over κ. Then for every κ-rational point P ∈ X, the
two lines contained in X and passing through P are κ-defined.

Proof. Let P ∈ L0 be a κ-rational point. Let MP ⊂ X be the other line through P. Then
MP is necessarily κ-defined: otherwise we would have three distinct lines L, MP, MP con-
tained in X and containing P: contradiction.
Suppose now that P0, P1 are two distinct κ-rational points in L0. Let M0 and M1 be the
two lines of the other ruling passing respectively through P0 and P1. Let P2 ∈ M0 be a

43
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κ-defined point P2 6= P0. Let L1 be the line of the other ruling passing through P2. Then
there exists a fourth κ-defined point P3 := L1 ∩ M1. Let H0, H1, H2, H3 be the κ-defined
tangent planes to the quadric surface respectively in P0, P1, P2, P3. The set of all quadric
surfaces containing the lines L0, L1, M0, M1 is a pencil spanned by H0H3 and H1H2, then
the equation of the quadric is

H0H3 = aH1H2

where necessarily a ∈ κ since, by hypothesis, X is κ-defined. The four planes are in
general position, so there is a κ-defined isomorphism between X and the quadric

X0X3 = X1X2

for which the assertion is plainly true.

Proposition 5.1.3. Let κ be a number field and S a finite set of valuations containing the archimedean
ones such that |O∗S| = ∞. Suppose that Q is a smooth quadric surface defined over κ and
D = Q∩Q′ a (2, 2)-divisor defined over κ, where Q′ is a κ-defined quadric surface such that Q′
mod v has no common component with Qmod v for any v /∈ S. Suppose further that

1. ∃L0 ⊂ X a κ-defined straight line

2. ∃P ∈ X \ D an S-integral point.

Then the set of S-integral points on Q \ D is Zariski-dense.

Proof. By the previous lemma the two lines contained in Q through P are κ-defined. Let
L be one of them. By proposition 4.1.10 there are infinitely many S-integral points Q
on L \ L ∩ D. Since L mod v is not a component of Q′mod v for any v /∈ S, they are
also S-integral on P3 \ Q′ and so a fortiori on Q \ D. For each Q we can choose the line
MQ ⊂ Q containing Q. This line is necessarily κ-defined and so it contains infinitely
many S-integral points of Q \ D. So the set of S-integral points is Zariski-dense.

To end the section we consider the easier case when D is a conic (a plane section). In
this case we do not need any assumptions on existence of κ-defined lines contained in the
quadric.

Lemma 5.1.4. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let H ⊂ Pn be a κ-defined plane. Let C ⊂ H be a κ-defined conic. Assume that ∃P ∈ C(κ)
such that P mod v is a smooth point of Cmod v for every v /∈ S. Then there are infinitely many
straight lines contained in H and defined over κ which do not coincide with a component of C
mod v for any v /∈ S.

Proof. Let L0 be the tangent in P to C and P the pencil of all the lines contained in H
passing through P. By proposition 3.5.3 there are infinitely many S-integral points on
P \ {L0}, so there are infinitely many κ-defined lines through P not coinciding with L0
mod v for any v /∈ S. We show that L mod v is not a component of Cmod v for any v /∈ S.
We distinguish two cases:

• Cmod v is irreducible. In this case the assertion is tautological.
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• Cmod v is reducible, given by two distinct lines. One of them is L0 mod v and by
construction

L0 mod v 6= L mod v

on the other side L mod v cannot be the other component, otherwise P mod v would
be a singular point of Cmod v.

Proposition 5.1.5. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let Q be a quadric surface of P3 defined over κ, H ⊂ P3 a plane defined over κ. Let
C := H ∩Q. Suppose that there is a κ-defined point P ∈ Q which is S-integral onQ \ (Q∩ H).

(1) Suppose that P is an S-integral on P3 \ H, that |O∗S| = ∞ and that there is a point Q ∈ C
not belonging to one of the two lines through P contained inQ, defined over κ and such that
Q mod v is a smooth point for Qmod v for every v /∈ S. Then the set of S-integral points
on Q \ (Q∩ H) is Zariski-dense.

(2) Suppose that |O∗S| = ∞ and that Cmod v is irreducible for any v /∈ S. Then the set of
S-integral points on Q \ (Q∩ H) is Zariski-dense.

(3) Suppose that κ = Q, P is an S-integral point on P3 \ H, that C is geometrically irreducible
with good reduction outside S, i.e. Cmod v is irreducible for any v /∈ S and that C(R) 6=
∅. Then the set of S-integral points on Q \ (Q∩ H) is Zariski-dense.

Proof.

(1) By the previous lemma there are infinitely many κ-defined straight lines L ⊂ H such
that L mod v is not a component of Cmod v. For each such L denote by Π be the
plane generated by L and P. Then Π mod v contains no component of Cmod v for
any v /∈ S. The family of the planes Π through P and Q is a pencil not equal to one
of the two pencils of planes containing a line of Q through P (in fact otherwise P, Q
would belong to both the lines contained in Q). So, for all but finitely many planes
Π through P and Q, we have that Π ∩ Q is a conic C ′ which intersects C in two
points. By proposition 4.1.12 the set of S-integral points on C \ (C ∩ C ′) is Zariski-
dense and they are also S-integral on Q \ C. In fact suppose that P′ ∈ C ′ reduces
mod v to a point of C, so in particular

P′ mod v ∈ H mod v ∩Π mod v

But by construction the line H mod v ∩Π mod v is not a component of Cmod v so

P′ mod v ∈ (Π ∩ C) mod v

(2) The set of the κ-defined planes passing through P which do not coincide with H
mod v for any v /∈ S is Zariski-dense on the linear system of all the planes through
P.
Let Π be one of these planes, we can assume that it is not a plane through one of
the lines of Q passing through P (in fact the planes through one of these two lines
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form a 1-dimensional family), then C ′ := Π ∩ Q is an irreducible κ-defined conic,
by proposition 4.1.12 the set of S-integral points on C ′ \ (C ′ ∩ H) is Zariski dense.
Now we show that they are also S-integral on Q \ C. Let v /∈ S be a valuation of κ,
let R ∈ Q \ C(κ) such that R mod v ∈ Cmod v, then

R mod v ∈ C mod v ∩Π mod v

which is given by two points (counting multiplicities) since by assumptions Cmod v
is irreducible and it cannot have a component contained in Π mod v. So R coincides
with a point of C ∩Π mod v ∀v /∈ S.

(3) Since there are infinitely many couples of points of C defined over a real quadratic
extension of Q, there are infinitely many Q-defined planes Π through P intersecting
C in a couple of conjugate points defined over a real quadratic extension. Since C
mod v is not contained in Π mod v, the result follows like part (1).

Example 5.1.6. The set of the solutions in Z of the equation

xy + xz + yz + x + y + z = 0

is Zariski-dense in the affine surface defined by that equation. In fact we are in the case
when κ = Q, S = {∞}, the quadric surface is

Q : XY + XZ + YZ + XW + YW + ZW = 0

and the plane is
H : W = 0

Note that H mod p is not a component of Qmod p for any prime number p, the plane
conic

XY + XZ + YZ = 0

is irreducible mod p for every prime number p and it contains real points, so it contains
points belonging to a real quadratic extension of Q. There is an integral point P = [1 :
−1 : 1 : 1] on P3 \ H.
So the set of S-integral points on Q \ (Q ∩ H) is Zariski-dense. Since H mod v is not a
component of Q mod v for any v /∈ S, they are also integral on P3 \ H.

5.2 Quaternary homogeneous equations of degree≤ 3

In this section we study the density of S-integral points on P3 \D, where D is a κ-defined
divisor and deg(D) ≤ 3. The case of degree 1 was considered in a more general context
in theorem 3.5.7. We start with the case when deg(D) = 2, the idea of the proof is very to
similar to 4.2.1.

Theorem 5.2.1. Let κ be a number field, S be a finite set of valuations containing the archimedean
ones. Let Q be a smooth quadric surface defined over κ.
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(1) If κ ) Q or |O∗S| = ∞, then the set of S-integral points on P3 \ Q is either empty or
Zariski-dense.

(2) If κ = Q and Q(R) 6= ∅, then the set of S-integral points on P3 \ Q is either empty or
Zariski-dense.

(3) If Q(κv) = ∅ for every v ∈ S, then there are only finitely many S-integral points on
P3 \ Q.

Proof.

(1) The idea is to apply proposition 4.1.10.

• Suppose that |O∗S| = ∞ and that there exists a point P, which is S-integral on
P3 \Q. Then, for every κ-defined straight line L through P, L contains infinitely
many S-integral points by 4.1.10.

• Suppose that κ ) Q, let P an S-integral point on P3 \ Q. Denote by X the
2-dimensional linear system of the lines through P. Then the set

{L ∈ X such that L is κ-defined and L ∩Q ⊂ P3(κ)}

is not Zariski-dense by Hilbert’s Irreducibility Theorem. So the set of the lines
of X which are κ-defined and intersect the quadric surface in two points not
defined over κ is Zariski-dense on X. On each of these lines there are infinitely
many S-integral points. It follows that the set of S-integral points is Zariski-
dense.

(2) Let P be an S-integral point on P3 \ D. Since Q(R) 6= ∅, there is an R-defined
straight line, denoted by L0 such that L∩Q(R) 6= ∅. Denote by X the 2-dimensional
linear system of the straight lines through P, considered as a real manifold with
the euclidean topology. There is an open neighbourhood U of L0 ∈ X such that
L ∩Q(R) 6= ∅, ∀L ∈ U. The set of Q-rational points of U is euclidean-dense on U.
Then it is Zariski-dense on X. We are also able, as in the proof of 4.2.1 to find an
euclidean-dense subset of U composed by Q-defined straight lines which intersect
Q in two points which are conjugate defined over a quadratic extension of Q. It
follows that the set of S-integral points on P3 \ Q is Zariski-dense.

(3) Suppose that Q(κv) = ∅ for any v /∈ S, the idea is the same of 4.2.1. We consider a
function

F(X, Y, Z, W) = 0

the equation for Q. Consider for any v ∈ S the map

π : P3(κv) → R+
0

[X : Y : Z : W] 7→ |F(X, Y, Z, W)|v
max(|X|v, |Y|v, |Z|v, |W|v)2

This is clearly well defined and independent from the choice of homogeneous co-
ordinates. Since P3(κv) is compact in the v-adic topology, we have that π has a
minimum value mv > 0 and proceeding like in 4.2.1 we prove that the height of
integral points is bounded, so they are only finitely many.
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Example 5.2.2. The solutions [x : y : z : w] of the diophantine equation

x2 + y2 − z2 − w2 = 1

form a Zariski-dense subset of P3. In fact we are in the case (2) of the previous theorem
when

Q : X2 + Y2 − Z2 −W2 = 0

there is a point
Q = [1 : 0 : 1 : 0] ∈ Q(R)

and a point P = [1 : 0 : 0 : 0] S-integral. So the set of solutions [x : y : z : w] in integers to

x2 + y2 − z2 − w2 = ±1

is Zariski-dense. Since
F(X, Y, Z, W) = −F(Z, W, X, Y)

it follows that
x2 + y2 − z2 − z2 = 1

has a Zariski-dense set of solutions in Z.

Now we consider the case when S is an irreducible cubic surface.

Theorem 5.2.3. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let S be an irreducible cubic surface defined over κ.

(1) Suppose that S has only a finite number of singularities. Suppose that there is a κ-rational
smooth point F and a κ-defined straight line L containing F such that:

• (L.S)F=3;

• L mod v is not a sub-variety of Smod v for any v /∈ S;

• it exists a plane H0 ⊃ L such that H0 ∩ S is a smooth plane cubic curve.

Then the set of S-integral points on P3 \ S is Zariski-dense.

(2) Suppose that S is singular, but not a cone and that |O∗S| = ∞. Assume that there are
L, M ⊂ P3 κ-defined lines such that:

• L and M are skew lines;

• L ⊂ S and it contains a κ-rational singular point of S ;

• there exists P ∈ M such that P is S-integral on P3 \ S ;

• M is either tangent to S in a κ-defined point or it intersects S in a κ-defined point.

Then the set of S-integral points on P3 \ S is Zariski-dense.

Proof.



CHAPTER 5. HIGHER DIMENSIONAL RESULTS 49

(1) Let P be the pencil of all the planes containing L. If there is H0 ∈ L sucht that H ∩ S
is smooth, then the set of all the planes H ∈ P intersecting S in a smooth curve
is a dense open set of P . So in particular there are infinitely many such that H is
κ-defined and H ∩Q is a smooth plane cubic. For each such H let C := H ∩ S , then
all assumptions of Beukers’ theorem 4.2.4 are verified:

• C is a smooth cubic by construction, hence irreducible;

• F is a κ-rational flex of C whose inflexional tangent is L;

• L is not a component of Cmod v for any valuation v /∈ S: this follows a fortiori
from the fact that L mod v is not a subvariety of Smod v.

Then the set of S-integral points on H \ C is Zariski-dense. Since H is not a com-
ponent of Smod v for any v /∈ S, they are S-integral points on P3 \ S . Since we
have infinitely many choices for H. Since there are infinitely many choices for H, it
follows that the set of S-integral points on P3 \ S is Zariski-dense.

(2) By proposition 4.1.10 M contains infinitely many S-integral points R. For each such
R we consider the plane H containing R and L. Note that, since L and M are skew
lines, all these planes are distinct one from the other. Let Q ∈ L be a κ-defined
singular point of S . Note that Q is a singular point of H ∩ S = C + L, so, if C
is an irreducible conic (it happens except for a finite number of planes), it follows
that Q ∈ L ∩ C. So by theorem 4.2.15 the set of S-integral points contained in H is
Zariski-dense in H. So the set of S-integral points on P3 \ S is Zariski-dense.

Example 5.2.4. The diophantine equation

x3 + y3 + z3 + w3 = 1

has a Zariski-dense set of solutions in integers. In this case κ = Q, S = {∞} and the cubic
is the Fermat cubic surface:

S : X3 + Y3 + Z3 + W3 = 0.

We are in the case (1) of the previous theorem, there is a κ-defined triple tangent to S
which is not a component of S mod p for any prime integer p, namely

M :

{
X + Y = 0
Z = 0

in the point F = [1 : −1 : 0 : 0]. If we choose H0 : Z = 0, we have that H0 ∩ S is a smooth
cubic curve, so the set of S-integral points on P3 \ S is Zariski-dense.

Example 5.2.5. Let κ = Q, S = {∞, p}, where p is a prime number, let S be the Cayley’s
nodal cubic surface

XYZ + YZW + ZWX + WXY = 0
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Then the set of S-integral points on P3 \ S is Zariski-dense, i.e the diophantine equation

xyz + yzw + zwx + wxy = pe

has a Zariski-dense set of solutions in Z

[
1
p

]
. The singular points of S are [1 : 0 : 0 : 0]

and its permutations. Note that there is a line L ⊂ S containing a κ-defined singular point

L :

{
X = 0
Y = 0

[0 : 0 : 0 : 1] ∈ L and there is another κ-defined line

M :=

{
Z = 0
X = W

which is skew to L and contains the S-integral point

[1 : 1 : 0 : 1]

Note that the general plane containing L has an equation

X = tY

and its intersection with S is{
X = tY
Y(tYZ + ZW + tZW + tYW) = 0

the other component is an irreducible conic for t 6= 0,−1. The two points of intersection
between L and C are given by the system

X = 0
Y = 0
ZW(1 + t) = 0

and they are [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1].

We end this section considering the case when the cubic is reducible

Theorem 5.2.6. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let S = Q+ H be a cubic surfaces given by a smooth quadricQ and a plane H both defined
over κ.

(1) If |O∗S| < ∞ then the set of S-integral points on P3 \ S is not Zariski-dense.

(2) Assume either that H ∩ Q is a couple of κ-defined lines or H ∩ Q = C is an irreducible
conic and it contains a point A such that A mod v is a smooth point for Cmod v for any
v /∈ S. Suppose that there is a point P which is S-integral on P3 \ S and a κ-defined line M
containing P. Suppose that M verifies one of the following assumptions:
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• M is tangent to Q in a point not in H ∩Q
• M intersectsQ in a point ofQ∩ H and it is not contained in any quadric of the pencil

spanned by Q and H2.

Then the set of S-integral points on P3 \ S is Zariski-dense.

Remark 5.2.7. Note that if M would be tangent toQ in a point Q of H ∩Q, then it would
be tangent in Q to any quadric of the pencil spanned byQ and H2, consequently we could
find a quadric of the pencil containing it.

Proof.

(1) Consider the fibration

f (x) =
Q(x)
H(x)2

Then if x is an S-integral point on P3 \ S , then

(Q(x)) = q · x2, (H(x)) = h · x

where q, h, x are the ideals generated by the coefficients of Q, H and the coordinates
of x. Then all the S-integral points belong to a finite number of quadric surfaces

aH(x)2 = Q(x), where (a) =
q

h2 .

(2) By construction the line M intersects S in at most two points which are either κ-
defined or conjugate defined over a quadratic extension. Then by proposition 4.1.10
the set of S-integral points on M \ (M ∩ S) is Zariski-dense and, since M mod v is
not a subvariety of Smod v for any v /∈ S, they are S-integral points on P3 \ S . For
both the possible behaviours of M we can find infinitely many quadric surfaces of
the pencil containing at least one integral point:

• If M is tangent to Q in Q /∈ H then no quadric of the pencil contains M: if it
would exist such a quadric then it would intersect Q in Q∩ H and so it would
follow that Q ∈ H: contradiction. In this case we can construct recursively a
sequence of distinct quadrics containing at least one integral point: we start
from an S-integral point R1 ∈ M, we define Q1 a quadric of the pencil and R′1
the other point of intersection between M and Q and for any n ≥ 2:

- We choose an S-integral point Rn ∈ M \ {Ri, R′i, i = 1, ..., n− 1};
- We define Qn the quadric of the pencil through Rn.

By construction Qn1 6= Qn2 if n1 6= n2.

• M intersect Q in two distinct points Q and Q′ and necessarily Q′ /∈ H, so like
in the previous case M cannot be contained in some quadric of the pencil (since
it would imply that Q′ ∈ H). Let R, R′ be two distinct S-integral points on M,
let QR,QR′ be the corresponding quadric surfaces of the pencil through them.
If QR = QR′ then R = R′ otherwise QR ⊃ M contradicting our assumptions.
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If H ∩ Q is a couple of κ-defined lines then any κ-defined quadric of the pencil
has the rulings defined over κ, using an argument analogous to 5.1.3 each quadric
containing at least an integral point contains a Zariski-dense set of integral points.
In the other case the assertion follows from 5.1.5.

Example 5.2.8. The set of the solutions [X:Y:Z:W] in integers of the diophantine equation

(X + Y + Z + W)(XY + XZ + XW + YZ + YW + ZW) = 2e for some e ∈N

is Zariski-dense. In this case κ = Q, S = {∞, 2}

S : (X + Y + Z + W)(XY + XZ + XW + YZ + YW + ZW) = 0

We have that
(X + Y + Z + W, XY + XZ + XW + YZ + YW + ZW) =
(X + Y + Z + W, Y2 + YZ + YW + Z2 + ZW + W2)
So the intersection is an irreducible conic. Note that there exists an S-integral point P =
[1 : 2 : 0 : −1]. Let M = V(X + W, Y + Z + 2W), then M 3 P and it is tangent to Q in
[1 : 1 : 1 : −1] which is not a point of H. So by previous theorem the set of S-integral
points on P3 \ S is Zariski-dense. Since the change of variables

X 7→ −X, Y 7→ −Y, Z 7→ −Z, W 7→ −W

inverts the sign of the form S , then the set of the solutions in Z of the diophantine equa-
tion

(X + Y + Z + W)(XY + XZ + XW + YZ + YW + ZW) = 2e, for some e ∈N

is Zariski-dense.

5.3 Quaternary homogeneous equations of degree 4

In this section we study the problem of finding a Zariski-dense set of S-integral points on
P3 \ D, where D is a reducible κ-defined divisor such that

D = H1 + H2 + H3 + H4 or D = Q1 +Q2

where H1, H2, H3, H4 are distinct planes, Q1 and Q2 are smooth quadric surfaces defined
over κ, whose intersection is reducible. Unfortunately the author was not able to prove
(or disprove) the density in the interesting cases whenQ1 orQ2 intersect transversally or
in a couple of distinct conics. The case when D is irreducible looks to be very hard.

Theorem 5.3.1. Let κ be a number field. Let S be a finite set of valuations containing the
archimedean ones. Let D = H1 + H2 + H3 + H4 be a κ-defined quartic surface, where H1, H2, H3, H4 ⊂
P3 are 4 planes in general position (so H1 ∩ H2 ∩ H3 ∩ H4 = ∅).

(1) If |O∗S| is finite and that there is a sub-divisor D′ ⊂ D defined over κ. Then the set of S-
integral points on P3 \ D is not Zariski-dense. In the case when all the Hi are defined over
κ, there is only a finite number of S-integral points.
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(2) Suppose that |O∗S| = ∞ and that there is a sub-divisor D′ ⊂ D defined over κ. Then the set
of S-integral points on P3 \ D is either empty or Zariski-dense.

Proof. (1) We distinguish three possible cases

(1.1) H1, H2, H3, H4 are defined over κ. In this case we can choose various fibra-
tions over Gm:

f1(x) =
H1(x)H2(x)
H3(x)H4(x)

f2(x) =
H1(x)H3(x)
H2(x)H4(x)

f3(x) =
H1(x)H4(x)
H2(x)H3(x)

If x is integral we have that
(Hi(x)) = Hi · X

where Hi and X are the ideal generated respectively by the coefficients of Hi and
the coordinates of x. Then we have that

( f1(x)) =
H1H2

H3H4
, ( f2(x)) =

H1H3

H2H4
, ( f3(x)) =

H1H4

H2H3
.

Let ξ be a fixed S-integral point on P3 \ D. Consider the three family of quadric
surfaces:

F1 := {H1(x)H2(x) = aH3(x)H4(x), a ∈ f1(ξ)O∗S}
F2 := {H1(x)H3(x) = aH2(x)H4(x), a ∈ f2(ξ)O∗S}
F3 := {H1(x)H4(x) = aH2(x)H3(x), a ∈ f3(ξ)O∗S}

For each i all the S-integral points are contained in
⋃

Q∈Fi

Q. So all integral points are

contained in the finite set ⋃
Q1∈F1,Q2∈F2,Q3∈F3

Q1 ∩Q2 ∩Q3

(1.2) Suppose that H1 + H2 is defined over κ. Then H3 + H4 is also κ-defined. So
there is a κ-defined fibration

f (x) :=
H1(x)H2(x)
H3(x)H4(x)

.

If ξ is a fixed integral point then all integral points are contained in the finite family
of quadrics

H1(x)H2(x) = aH3(x)H4(x), a ∈ f (ξ)O∗S
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(1.3) Suppose that H1 + H2 + H3 is defined over κ. Then H4 is κ-defined and we
can construct a κ-defined fibration

f (x) =
H1(x)H2(x)H3(x)

H4(x)3 .

By the same argument we can prove that if ξ is a fixed integral point then all integral
points are contained in the finite set of cubic surfaces

H1(x)H2(x)H3(x) = aH4(x)3, a ∈ f (ξ)O∗S

(2) Consider the points

P1 := H2 ∩ H3 ∩ H4, P2 := H1 ∩ H3 ∩ H4, P3 := H1 ∩ H2 ∩ H4, P4 := H1 ∩ H2 ∩ H3

We have that

H1(x) = det(x|P2|P3|P4)

H2(x) = det(P1|x|P3|P4)

H3(x) = det(P1|P2|x|P4)

H4(x) = det(P1|P2|P3|x)

Let ξ be an S-integral point on P3 \ D. We distinguish three cases:

(2.1) H1, H2, H3, H4 are defined over κ. Consider the following group of auto-
morphisms

T := {T ∈ GL4(OS) : T(Pi) = λiPi where λi ∈ O∗S}.

It’ T(ξ) is integral for any T ∈ T . Further the set {T(ξ) : T ∈ T } is Zariski-dense in
P3 since ξ /∈ H1 + H2 + H3 + H4 and the set

{[λ1 : λ2 : λ3 : λ4]}

is Zariski-dense in P3.

(2.2) Suppose that H1 + H2 and H3 + H4 are defined over κ, then also the subva-
rieties {P1, P2} and {P3, P4} are defined over κ. Similarly to (2.1) we consider set of
automorphisms

T := {T ∈ GL4(OS) : T(Pi) = λiPi where λi ∈ O∗S, λ2 = λ̄1, λ4 = λ̄3}.

Also in this case the density of the set of S-integral points follows from the density
in P3 of the set

{[λ1 : λ̄1 : λ3 : λ̄3]}

(2.3) Suppose that H1 + H2 + H3 is defined over κ and that H1, H2, H3 are conju-
gate over a cubic extension. Let

f (x) =
det(x|P2|P3|P4)det(P1|x|P3|P4)det(P1|P2|x|P4)

det(P1|P2|P3|x)3 .
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All integral points verify an equation

det(x|P2|P3|P4)det(P1|x|P3|P4)det(P1|P2|x|P4) = f (ξ)det(P1|P2|P3|x)3

and the set of automorphisms

T := {T ∈ GL4(OS) : T(Pi) = λiPi where λ2 = λ̄1, λ3 = ¯̄λ1}

preserve S-integral points. In this case the density of integral points follows from
the density in P3 of the set

{[λ1 : λ̄1 : ¯̄λ1 : λ4]}

Theorem 5.3.2. Let κ be a number field, S a finite set of valuations containing the archimedean
ones. Let D = Q1 +Q2 be a κ-defined divisor, where Q1 and Q2 are smooth quadric surfaces.
Suppose that Q1 mod v and Q2 mod v have no common component for any v /∈ S.

(1) Suppose that |O∗S| < ∞ and that Q1 and Q2 are either defined over κ or they are conju-
gate over a quadratic extension κ′/κ such that |O∗S′ | < ∞, where S′ denotes the set of the
valuations of κ′ extending those of κ. Then the set of S-integral points on P3 \ D is not
Zariski-dense: they are contained in a finite set of quadric surfaces of the pencil spanned by
Q1 and Q2.

(2) Suppose that |O∗S| = ∞. Assume thatQ1 andQ2 are κ-defined and thatQ1 ∩Q2 contains
at least one straight line defined over κ. Suppose further:

• There is an S-integral point P on P3 \ D;

• There is a straight line M ⊂ P3 defined over κ, not contained in any quadric of the
pencil spanned by Q1 and Q2, such that P ∈ M and that one of the following is true:

- ∃Q ∈ Q1 ∩Q2 ∩M such that M is tangent to Q1 in Q, but not to Q2.
- M is tangent both to Q1 and to Q2 and Q1 ∩Q2 ∩M = ∅.

Then the set of S-integral points on P3 \ D is Zariski-dense.

(3) Suppose that |O∗S| = ∞. Assume thatQ1 ∩Q2 = 2C, where C is a smooth conic irreducible
mod v for any v /∈ S. Suppose further:

• ∃P an S-integral point on P3 \ (Q1 +Q2);

• ∃M a κ-defined bitangent line to (Q1 +Q2) not intersecting C and not contained in
Q1 +Q2 such that P ∈ M;

• M is not contained in any quadric of the pencil spanned by Q1 and Q2;

Then the set of S-integral points on P3 \ (Q1 +Q2) is Zariski-dense.

Proof.
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(1) Consider the fibration f : P3 \ D → Gm given by

f (x) =
Q1(x)
Q2(x)

.

Let q1 and q2 be the corresponding ideals of OS generated by their coefficients. If x is an
integral point on P3 \ D then

( f (x)) =
q1

q2

so there are only finitely many possibilities.

(2) Suppose to be in the case when ∃Q ∈ Q1 ∩Q2 ∩M such that M is tangent to Q1 in Q,
but not to Q2. The other case is very similar.
We have that M ∩ Q1 = {Q}, M ∩ Q2 = {Q, Q′}, where Q 6= Q′. By proposition 4.1.10
the set of S-integral points on M \ {Q, Q′} is infinite. Since M mod v is not contained in
Q1 +Q2 mod v for any v /∈ S, we have that they are S-integral points on P3 \D. For each
R S-integral point on M \ {Q, Q′} there exists one and only one quadric of the pencil,
denoted by QR, containing it. Note that

R 6= R′ ⇒ QR 6= QR′

in fact otherwise there would be a quadric of the pencil containing three distinct points of
M (Q, R and R′) so it would contain M, contradicting our assumptions. So we have found
infinitely many quadric surfaces of the pencil containing at least one integral point. By
proposition 5.1.3 the set of S-integral points on QR \ (Q1 ∩ Q2) is Zariski-dense for any
R as before. Since QR mod v has no common component with (Q1 ∪Q2)mod v for any
v /∈ S, they are S-integral points on P3 \ D. It follows that the set of S-integral points on
P3 \ D is Zariski-dense.

(3) By proposition 4.1.10 the set of S-integral points on M \M∩ (Q1 ∪Q2) is Zariski-dense
and they are also S-integral on P3 \ (Q1 ∪ Q2). Since M is not contained in any quadric
of the pencil spanned by Q1 andQ2 there are infinitely many quadric surfaces Q of the
pencil containing at least one integral point. Applying proposition 5.1.5 for each Q the
set of S-integral points on Q \ C is Zariski-dense and since Qmod v has no common
component with Q1 mod v and Q2 mod v for any v /∈ S they are S-integral points on
P3 \ (Q1 +Q2).

Example 5.3.3. The diophantine equation

(XW −YZ)(XY− ZW) = 2e for some

has a Zariski-dense set of solutions in Z

[
1
p

]
. This is the case of the previous theorem

part (2) whenever

κ = Q, S = {∞, 2} Q1 = XW −YZ, Q2 = XY− ZW.

Consider the point P = [1 : 1 : 0 : 2]: it is an S-integral point on P3 \ (Q1 +Q2), consider
the κ-defined straight line

M :=

{
X−Y = 0
2Y− Z−W = 0
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then P ∈ M and M is tangent to Q2 in [1 : 1 : 1 : 1] ∈ Q1 ∩Q2 and it is not contained in
any quadric of the pencil spanned by Q1 and Q2: in fact: M ∩Q1 = {[1 : 1 : 1 : 1], [0 : 0 :
1 : −1]} and [0 : 0 : 1 : −1] /∈ Q2. So the set of solutions in integers to the diophantine
equation

(XY− ZW)(XW −YZ) = ±2e for some e ∈N

is Zariski-dense. Since the change of variables

X 7→ Z, Y 7→W, Z 7→ X, W 7→ Y

invert the sign of the form

F(X, Y, Z, W) = (XY− ZW)(XW −YZ),

it follows that the set of solutions in integers to the diophantine equation

(XY− ZW)(XW −YZ) = 2e for some e ∈N

is Zariski-dense.

Example 5.3.4. Let p be a prime number. The set of solutions in integers to the diophan-
tine equation

(X2 + Y2 + Z2 −W2)(XY− ZW) = pe

is Zariski-dense.
We have that

V(X2 + Y2 + Z2 −W2) ∩V(XY− ZW) = V(Y−W, X− Z) ∪V(Y + W, X + Z)
∪V(Y− Z, X−W) ∪V(Y + Z, X + W)

We are in the case (2) of the theorem when κ = Q and S = {∞, p}, the two quadrics have
plainly no common component mod v for any v, we need only to find the line M of the
statement. Consider the points

Q = [1 : 0 : 0 : 1] ∈ Q1 ∩Q2, P := [1 : 1 : 0 : 1]

Then P is S-integral on P3 \ D and the line through P and Q is

M :=

{
X = W
Z = 0

which is tangent to Q. Note also that M is not contained in any quadric of the pencil
spanned by Q1 and Q2

Qt : X2 + tXY + Y2 + Z2 − tZW −W2

So the result follows from part (2).
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Example 5.3.5. The set of the solutions in integers of the diophantine equation

(XY + XZ + YW)(XW + YZ + YW) = ±2e

is Zariski-dense. We are in the case (2) of the theorem, whenever κ = Q and S = {∞, 2},
Q1 = V(XY + XZ + YW), Q2 = V(XW + YZ + YW).

V(XY + XZ + YW) ∩V(XW + YZ + YW)

=

V(Z2 − XW + ZW −W2, YZ + XW + YW, XY + XZ + YW) ∪V(Y, X)

where the first component is irreducible of degree 3. Let Q = [1 : 0 : 0 : 0], P = [1 : 0 : 1 :
1]. Then P is an S-integral point on P3 \ D and the line joining them is

M := V(Y, X−W)

which is tangent to Q2 in Q. Note that M is not contained in any quadric of the pencil,
then the result follows from part (2).
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