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”grandi” sono stati per me ispirazione e modello per il mio percorso, i tre ”piccoli”, per i

quali spero di essere io un tal figura. Un bacio anche a i miei nonni e i miei zii, parte per

me fondamentale della vera famiglia.

Un ovvio, ma non banale, grazie va a Lucio, che mi ha veramente sopportata nonostante

tutto e ha sempre teso le braccia e spronata quando pensavo di non farcela; probabilmente

senza di te questa tesi non sarebbe finita adesso.

Infine ringrazio tutti voi, anche chi non ho nominato, collettivamente; spero che chi mi è
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Introduction

In game theory the main role is typically played by Nash equilibria; the correlated is a type

of equilibrium which generalizes the first one. It was largely developed by R.J. Aumann

first in 1974 and then in 1987, [2] and [3]. Its idea is simple and maybe more intuitive

than that of Nash, indeed in the latter every players choose his action independently one

from the other, instead in correlated strategies all players observe the same random event

and then choose their action. The most common example that clarifies the idea of the

differences between these two concept, is the battle of sexes; in this case there are two

players, husband and wife, who have to choose either to watch a baseball game or to go

to the opera; the pay-off matrix is the following:

H/W B O

B (2,1) (0,0)

O (0,0) (1,2)

We can immediately observe that there are two pure Nash equilibria (B,B) and (O,O)

whose pay-offs are respectively (2,1) and (1,2) with costs. The mixed one is instead

([2/3, 1/3], [1/3, 2/3]), and the expected reward is 2/3 both for the husband and the wife.

Suppose now that the two spouses call a ”mediator” who suggests to the players what to

choose as a consequence of a random event; suppose that this random event is a coin flip,

such that if its outcome is Head the spouses are told to choose Baseball and if its Tails they

are told to choose the Opera. Now the expected pay-off for both is 3/2 which is strictly

grater than those of Nash; this is due to the fact that the players don’t play independently

one from the other, but their are linked by a correlation device, that in this case is the coin

flip. Hence, it is important to underline that such a ”mediator” doesn’t imply that it is

a cooperative game, on the contrary we are still on the framework of the non-cooperative

games, since the players are not allowed to talk to each other when making their decisions.

We can summarize the ideas of the previous example by saying that a Nash equilibrium,

or more in general a mixed strategy, is a probability distribution over the set of the pure

strategies for the single players, and a correlated strategy is a probability distribution over

the product of all the strategy sets.

Now, the purpose of this thesis is to introduce the concept of correlated equilibrium in

the theory of Mean-Field Games. This general theory was first introduced by J.-M. Lasry

and P.-L. Lions between 2006 and 2007 in a series of papers of which we cite [14], and it is
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8 Introduction

dedicated to the analysis of games with a ”large number of small players”; this means that

while the number of agents tends to infinity, the impact of each one on the overall system

tends to 0. They arise from the mean field models in mathematical physics which study

the behaviour of many identical particles whose interactions depend on their empirical

mean and this explains the name ”mean field”. Usually a solution of the mean field game

is used to construct an approximated Nash equilibrium for the finite case, because when

N is large enough, finding directly an equilibrium is not possible.

Fischer, see [9] in the reference therein, has shown how is possible to go also in the opposite

direction, namely how to start for an ε-Nash equilibrium and obtain a solution for the

mean-field equation. The idea is the following: consider an equation which describes the

evolution of the private states of the N players

dXN
i (t) = b(t,XN

i (t), µN(t), ui(t))dt+ σ(t,XN
i (t), µN(t))dWN

i (t)

with µN := 1
N

∑
i δXN

i
the empirical mean of the private states and u := (u1, . . . , uN) is

the strategy vector and its cost is:

JNi (u) := E
[∫ T

0
f(s,XN

i (s), µN(s), ui(s))ds+ F (XN
i (T ), µN(T ))

]
heuristically if u is a Nash equilibrium with correspondent vector of the private states XN ,

then the empirical measure µN should converge in distribution to a deterministic flow of

measure m, induced by the solution of

dX(t) = b(t,X(t),m(t), u(t))dt+ σ(t,X(t),m(t))dW (t) (1)

where u realizes the following minimum:

min Jm(v) := E
[∫ T

0
f(s,X(s),m(s), v(s)ds+ F (t,X(T ),m(T )

]
(2)

where the minimun is taken over all admissible v such that X solves under v.

The system (1)-(2) is the limit game for the N -player one, and works in this way: for

each m we solve (2) to find the correspondent strategy um, then we solve (1) and get the

correspondent Xm. We now choose m(·) = Law(Xm(·)). Thus the solution of the mean

field game is identified with the pair (Law(Xm(·), um,W ),m).

Motivated by the examples such as the ”battle of sexes”, we have ask ourselves if it

would be worthy to study the behaviour of correlated equilibria of a N -person game with

interactions of the mean-field type, when N →∞. We have confirmed this idea by finding

an example that fits our model of a N -player game in which a correlated equilibrium is

strictly better then the Nash ones for every N .

Thus, we have study the convergence in the case of static games, that could be an indicator

of the possibility of a further generalization. The main difference between the Nash case

is that in correlated strategy there isn’t independence between the strategy (seen as a

random vector which has values on the set of pure strategies) and so between the private
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states of the players; we will see how this difference makes the difficulties rise when we are

searching a mean-field equation which has to be satisfied by the equilibria.

It has to be notice that typically in game theory the final goal is to maximize the so called

expected pay-off, on the contrary mean-field games are usually problems of minimization

of the costs; in this work we go in this latter direction, indeed both the examples and the

theoretic arguments have the intentions of minimizing a cost function.

The thesis is divided in two Chapters, which describe the finite and the limit case of the

model. In Chapter 1 we describe the model, give the definitions, show the properties of

the two types of equilibria we deal with, and prove their mutual relations. In Chapter 2 we

study at first the behaviour of Nash and than that of correlated equilibria when N →∞
and find what type of equations they have to satisfy.





Chapter 1

N-player Games

1.1 Description of the model

Consider a static game with N players; let S ⊆ Rd be the (finite) set of pure strategies (or

actions) for a single player; we’ll consider only symmetric game, so the strategy set is the

same for all the players and the general strategy set is SN := ×NS. Consider a probability

space (ΩN ,AN ,PN); a strategy vector is a random vector αN = (αN1 , . . . , α
N
N) : ΩN → SN ,

where αNi : ΩN → S is player i’s strategy. The dynamic of player i’s private state is

XN
i = φ(αNi )

with φ : S → Rm, so XN
i (ω) = φ(αNi (ω)). We’ll call X ⊆ Rm the set X := φ(S) The

dependence among the players is given only by the cost function:

JNi (αN) = E[g(XN
i , µ̄

N,i
X )] (1.1)

where

µ̄N,iX :=
1

N − 1

N∑
j=1
j 6=i

δXN
j

is called empiric measure and µ̄N,iX : ΩN → P(X ) with P(·) indicates the probability space

of a certain set.

For the calculations, it’s often more useful to look at distributions instead of random

variables. If we indicate with pαNi
the distribution over S of αNi and with pαN the joint

distribution of α on SN (i.e. pαNi
(si) = PN(αNi = si) and pαN (s) = PN(αN = s) = PN(αN1 =

11



12 1. N -player Games

s1, . . . , α
N
N = sN)), then (1.1) could be written explicitly as

JNi (αN) =E
[
g(φ(αNi ), µ̄N,iX )

]
= E

[
g
(
φ(αNi ),

1

N − 1

∑
j 6=i

δφ(αNj )

)]
=

∫
ΩN

g
(
φ(αNi (ω)),

1

N − 1

∑
j 6=i

δφ(αNj (ω))

)
PN(dω)

=
∑
s∈SN

PN(αN = s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
=
∑
s∈SN

pαN (s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
=: JNi (pα)

(1.2)

If we restrict the class of the strategies to those in which αNi are also independent, we’re

considering the so-called mixed strategies; so {αNi }i=1,...,N is a family of independent ran-

dom variables. We observe that, due to independence, the cost function in the case of

mixed strategies becomes

JNi (αN) =
∑
s∈SN

pαN (s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)

=
∑
s∈SN

( N∏
i=1

pαNi
(si)
)
g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
Consider now βN = (βN1 , . . . , β

N
N ) : ΩN → SN another strategy; we introduce the following

notation:

(αN−i, β
N
i ) = (αN1 , . . . , α

N
i−1, β

N
i , α

N
i+1, . . . , α

N
N).

Definition 1.1. A mixed strategy αN = (αN1 , . . . , α
N
N) is said Nash equilibrium if, for

every other mixed strategy βN = (βN1 , . . . , β
N
N )

JNi (αN) ≤ JNi (αN−i, β
N
i ) i = 1, . . . , N (1.3)

We now introduce another type of equilibrium, the correlated one; we will give a definition

which is similar to that of Aumann in [2] and we will show that is equivalent to another

concept, the Bayes rationality. Thus, consider a probability space (ΩN ,PN). A correlated

strategy is a random variable α : ΩN → SN (notice that on the contrary to the previous

case, here we are not supposing the independence between the actions of the players).

Definition 1.2. A correlated strategy αN = (αN1 , . . . , α
N
N) is said correlated equilib-

rium if, for every i and for every other correlated strategy βN = (βN1 , . . . , β
N
N ) such that

βi is a function of αi
JNi (αN) ≤ JNi (αN−i, β

N
i ) (1.4)

This means that for any d : S → S and for any i

JNi (αN) ≤ JNi (αN−i, d(αNi ))
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Explicitly, calling pα the distribution of α over SN :∫
ΩN

g(φ(αNi (ω)), µ̄N,iφ(α)(ω))P(dω) ≤
∫

ΩN

g(φ(d(αNi (ω))), µ̄N,iφ(α)(ω))P(dω)

⇔
∑
s∈SN

pα(s)g(φ(si), µ̄
N,i
s ) ≤

∑
s∈SN

pα(s)g(φ(d(si)), µ̄
N,i
s )

(1.5)

Bayesian Rationality in Games: Given a N -person game, we assume also as given

a probability space (ΩN ,PN), which represent all possible states ω of the world; for each

player i a partition PNi of ΩN , which is i’s information partition. So, if the true state of

the world is ω ∈ PN
i ∈ PNi , then i knows that some element of PN

i is the true state of

the world but he/she doesn’t know which one is it. Notice that conditional on a given ω,

everybody knows everything, but, in general nobody knows which is the true ω.

Let αN(ω) := (αN1 (ω), . . . , αNN(ω)) be the n-tuple of actions chosen at state ω. We assume

that αNi is PNi -measurable for any i; this could be interpreted as the fact that each player

knows the action he’s choosing.

Definition 1.3. A player i is Bayes rational at ω if for any si ∈ S

E[g(φ(αNi ), µ̄N,iφ(α)) | Pi] ≤ E[g(φ(si), µ̄
N,i
φ(α)) | Pi] a.s. (1.6)

This means that each player minimize the his cost given his information.

Theorem 1.4. If each player is Bayes rational at each state of the world, then the distri-

bution of the action N -tuple α is a correlated equilibrium distribution.

Proof. If we take βi as a function of αNi , since αNi is PNi -measurable, βi also is. The Bayes

rationality implies that for each P ∈ PNi

E[g(φ(αNi ), µ̄N,iφ(α)) | P ] ≤ E[g(φ(si), µ̄
N,i
φ(α)) | P ]

Taking si to be constant value of βi throughout P , yields:

E[g(φ(αNi ), µ̄N,iφ(α)) | P ] ≤ E[g(φ(βi), µ̄
N,i
φ(α)) | P ]

multiplying both sides by P(P ) and summing over all P ∈ PNi , we get

E[g(φ(αNi ), µ̄N,iφ(α))] ≤ E[g(φ(βi), µ̄
N,i
φ(α))]

and so, αN is a correlated equilibrium.

Also the converse holds, indeed:

Theorem 1.5. For each N -person game and each correlated equilibrium αN , there is an

information system (ΩN ,PN , {PNi }i) for which it is Bayes rational for the players to play

in accordance with αN .
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Proof. We consider (ΩN ,PN) a probability space and αN : ΩN → SN correlated equilibrium

for 1.2. Let Pi be the partition generated by αN , this means that ω and ω′ belong to the

same P ∈ Pi if and only if αNi (ω) = αNi (ω′).

We know that, for every d : S → S:

E[g(φ(αNi ), µ̄N,iφ(α))] ≤ E[g(φ(d(αNi )), µ̄N,iφ(α))]

thus, if there exists a s̃i ∈ S and a function d : S → S such that

E[g(φ(αNi ), µ̄N,iφ(α)) | α
N
i = s̃i] > E[g(φ(d(αNi )), µ̄N,iφ(α)) | α

N
i = s̃i]

we define h : S → S as

h(s̃i) = d(s̃i)

h(si) = si ∀ si 6= s̃i

hence

E[g(φ(h(αNi )), µ̄N,iφ(α))] =
∑
si∈S

pαNi
(si)E[g(φ(h(αNi )), µ̄N,iφ(α)) | α

N
i = si]

=
∑
si 6=s̃i

pαNi
(si)E[g(φ(h(si)), µ̄

N,i
φ(α)) | α

N
i = si] + pαNi

(s̃i)E[g(φ(h(s̃i)), µ̄
N,i
φ(α)) | α

N
i = s̃i]

=
∑
si 6=s̃i

pαNi
(si)E[g(φ(si), µ̄

N,i
φ(α)) | α

N
i = si] + pαNi

(s̃i)E[g(φ(d(s̃i)), µ̄
N,i
φ(α)) | α

N
i = s̃i]

<
∑
si 6=s̃i

pαNi
(si)E[g(φ(si), µ̄

N,i
φ(α)) | α

N
i = si] + pαNi

(s̃i)E[g(φ(s̃i), µ̄
N,i
φ(α)) | α

N
i = s̃i]

=E[g(φ(αNi ), µ̄N,iφ(α))]

which contradicts the hypothesis.

Observe that since PNi is the partition generated by αNi , then{αNi = s̃i} = P ∈ PNi and

also the vice-versa holds, this means that for every P ∈ PNi :

E[g(φ(αNi ), µ̄N,iφ(α)) | P ] ≤ E[g(φ(d(αNi )), µ̄N,iφ(α)) | P ]

which means that, since d(αNi ) is constant in P and say it si, for every P ∈ PNi and for

every si ∈ S
E[g(φ(αNi ), µ̄N,iφ(α)) | P ] ≤ E[g(φ(si), µ̄

N,i
φ(α)) | P ]

We have thus proved that there is a bijective relation between the correlated equilibria and

the Bayes rationality of the information system. In the following we’ll use predominantly

definition 1.2 because it is operatively more convenient for our purposes but the Bayes

rationality could give a more intuitive meaning of this type of equilibrium.
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Remark 1.6. We observe that if αN is a Nash equilibrium, then it is also a correlated

one, indeed let’s consider pαN its distribution and d : S → S a function, then βN :=

(d(αN1 ), . . . , d(αNN)) is a mixed strategy, so:

∑
s∈SN

pαN (s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
= JNi (αN) ≤ JNi (αN−i, β

N
i ) =

=

∫
ΩN

g
(
φ(βNi (ω)),

1

N − 1

∑
j 6=i

δφ(αNj (ω))

)
PN(dω)

=

∫
ΩN

g
(
φ(d(αNi (ω)),

1

N − 1

∑
j 6=i

δφ(αNj (ω))

)
PN(dω)

=
∑
s∈SN

pαN (s)g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

)
.

Furthermore we have:

Proposition 1.7. The set of correlated equilibria is convex and compact.

Proof. In this proof we’ll use the Definition 1.2 to characterize correlated equilibria. De-

note with ∆N := {x ∈ RN : xi ≥ 0 ∀i,
∑

N

i=1 xi = 1} the simplex in RN , then the set of

correlated equilibria, corr(SN) is a subset of ∆dN .

Take p, p̃ ∈ corr(SN), λ ∈ [0, 1], then for all i and d : S → S:

∑
s∈SN

(λp(s) + (1− λ)p̃(s))g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
= λ

∑
s∈SN

p(s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
+ (1− λ)

∑
s∈SN

p̃(s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
≤ λ

∑
s∈SN

p(s)g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

)
+ (1− λ)

∑
s∈SN

p̃(s)g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

)
=
∑
s∈SN

(λp(s) + (1− λ)p̃(s))g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

)
and so λp(s) + (1− λ)p̃(s) ∈ corr(S).

Moreover, if we write condition (1.5) as:

∑
s∈SN

p(s)
(
g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)− g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

))
≤ 0 ∀ i ∀ d : S → S

we see that corr(SN) is a closed subset of ∆dN which is compact; which implies that

corr(SN) is compact.

Remark 1.8. Remark 1.6, together with Proposition 1.7, says that any convex composi-

tion of Nash equilibria is a correlated equilibrium. The vice-versa is not true in general,

indeed if we consider the simple two person game, called ”chicken” whose costs matrix is:
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D T

D -6,-6 -2,-7

T -7,-2 0,0

In this game there are 3 Nash equilibria, which are (D,T), (T,D) and ([2
3T,1

3D], [2
3T,1

3D])

with payoff respectively (-2,-7), (-7,-2), (−14
3 , −14

3 ). Their distributions as correlated

strategies are:

D T

D 0 1

T 0 0

D T

D 0 0

T 1 0

D T

D 4
9

2
9

T 2
9

1
9

But we have that:

D T

D 1
3

1
3

T 1
3 0

is a correlated equilibrium whose payoff is (-5,-5) and it’s outside the convex hull of Nash

equilibria.

1.2 Existence of Nash and correlated Equilibria

In this section, we’ll prove the existence of the two types of equilibria, as a matter of fact,

one will follow from the other. In the following, we’ll indicate by ∆n the n-dimensional

simplex.

Theorem 1.9 (Nash). Every game with a finite number of players and where the set of

the pure strategies is finite admits a Nash equilibrium in mixed strategies.

Proof. In this proof we’ll use the equivalent definition of JNi as function of the probability

distribution over SN , that is, in the case of mixed strategies:

JNi (p) =
∑
s∈SN

p(s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
=
∑
s∈SN

( N∏
i=1

pi(si)
)
g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
First of all we indicate with Σ the set of the mixed strategies over S (⇒ Σ = ∆d) and

ΣN := ×NΣ (⇒ Σ ⊂ ∆dN ); we define player i’s reaction correspondence, ri as follows:

ri : ΣN → Σ

ri(p) = arg min
p̃i∈Σ

{JNi (p−i, p̃i)} (1.7)

This means that ri is the set function which maps each strategy profile p to the set of

mixed strategies that minimizes player i’s cost function when his opponents plays p−i.

Now we take r as the Cartesian product of all ri, r = (r1, . . . , rN). So r is a set function

r : ΣN ⇒ ΣN . To prove Nash Theorem means to prove that r as a fixed point, that is a

p ∈ r(p); this could be done using Kakutani’s theorem:
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Theorem 1.10 (Kakutani). Let S be a non-empty, compact and convex subset of some

Euclidean space Rn. Let φ : S ⇒ S be a set-valued function on S with a closed graph and

the property that φ(x) is non-empty and convex for all x ∈ S. Then φ has a fixed point.

We recall that to have a closed graph for r means that if (pn, p̂n)→ (p, p̂) and p̂n ∈ r(pn)

then p̂ ∈ r(p).

• Σ is convex and compact since it’s the simplex in Rd. So ΣN is compact and convex

since it’s a finite product of compact and convex sets.

• r(p) is non-empty for all p because the cost function is continuous (because linear

with respect to mixed strategies) and Σ is compact so JNi attains its minimum for

all i.

• r(p) convex for all p: take p′, p′′ ∈ r(p), that means JNi (p−i, p
′
i) = JNi (p−i, p

′′
i ) ≤

JNi (p−i, p̃i) for all p̃ ∈ Σ. Take λ ∈ [0, 1]. For linearity of the cost function function:

JNi (p−i, λp
′
i + (1− λ)p′′i ) = λJNi (p−i, p

′
i) + (1− λ)JNi (p−i, p

′′
i )

=λJNi (p−i, p
′
i) + (1− λ)JNi (p−i, p

′
i) = JNi (p−i, p

′
i) ≤ JNi (p−i, p̃i) for all p̃ ∈ Σ

So also any convex combination of two best responses is a best response.

• r(p) has a closed graph: assume that this condition is violated, so there is a sequence

(pn, p̂n) → (p, p̂) and p̂n ∈ r(pn) but p̂ /∈ r(p); this implies that there exists a i

such that p̂i /∈ ri(p). Let p′i ∈ ri(p) (notice that such an p′ always exists because

we’ve shown, in the previous point, that r(p) s non-empty for all p), so ∃ε > 0 s.t

JNi (p−i, p
′
i) ≤ JNi (p−i, p̂i) − 3ε. Since JNi is continuous and (pn, p̂n) → (p, p̂), for n

sufficiently large we have

JNi (pn−i, p
′
i) ≤ JNi (p−i, p

′
i) + ε ≤ JNi (p−i, p̂i)− 3ε+ ε ≤JNi (pn−i, p̂

n
i ) + ε− 2ε

=JNi (pn−i, p̂
n
i )− ε

Which means that p′i is a strictly better response than p̂ni which contradicts the

hypothesis p̂n ∈ r(pn).

We’ve verified all the hypothesis of Kakutani’s theorem, so we’ve concluded the proof.

We are interested in a particular type of game on which our specific model could be framed.

On that we’ll also show the existence of Nash equilibria:

Definition 1.11. Consider a game (Si, J
N
i ) where Si is the i’s strategy set and JNi : S → R

is the respective cost function. It is called a symmetric game if S1 = . . . = SN and if

the cost functions are invariant for permutations, namely

JNi (αN1 , . . . , α
N
i , . . . , α

N
N) = JNπ(i)(α

N

π(1), . . . , α
N

π(i), . . . , α
N

π(N)
) for any permutation π.

It is now clear that our model fits Definition 1.11, so the following results will be very

helpful.
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Corollary 1.12. Every symmetric game with a finite number of players, where the set of

strategies is finite, admits a symmetric Nash equilibrium.

Proof. We take r as in the definition of the proof of theorem 1.9 and we restrict his domain

to

Σ̃N :=
{
p = (p, . . . , p) ∈ ΣN : p ∈ Σ

}
Due to the symmetry of the definition, JN1 (p̃, p, . . . , p) = . . . = JNi (p, . . . , p, p̃, p, . . . , p) =

. . . = JNN (p, . . . , p, p̃). Thus, if p̃ ∈ r1(p) we have JN1 (p̃, p, . . . , p) ≤ JN1 (p′, p, . . . , p) ∀p′ ∈ Σ

and so JNi (p, . . . , p, p̃, p, . . . , p) ≤ JNi (p, . . . , p, p′, p, . . . , p) for every p′ ∈ Σ and for every i.

This means that if p̃ ∈ r1(p), p̃ ∈ ri(p) for every i. Define:

r̃1 : Σ→ Σ

r̃1(p) := r1(p)

We can now apply Kakutani’s theorem to r̃1, whose hypothesis are verified in the proof of

the Theorem 1.9 also for this case. Thus, there exists a p ∈ Σ such that p ∈ r̃1(p) = r1(p),

which means that p ∈ arg minp̃ J
N
i (p−i, p̃) and, because of the symmetry, p ∈ r̃i(p) := ri(p)

for all i. So there exists a p ∈ Σ such that p ∈ r(p).

Thanks to Remark 1.6, which tells us that every Nash equilibrium is also a correlated one,

we have also proved the existence of correlated equilibria in the case of finite games.

1.3 Correlated vs Nash equilibria

In this section we are going to give three examples based on the same model that justify

our interest to correlated equilibria. The first one allows us to understand the idea but it

doesn’t fit perfectly our setting, the second will increase fit the model but it will not be

interesting when N → ∞; in the last one we will add some difficulties but it will explain

why what we are going to do in Chapter 2 might have an interest.

1.3.1 Example 1

We present a situation with N payers in which correlated strategies give a better result

than mixed one, in the sense that the sum of the costs for a correlated equilibrium is

greater that that of all the Nash’s. This example is inspired from the one in Theorem 11

in [1]. We study a particular simple congestion game, in which there are N players who

could choose between 2 strategies, 0 and 1 (⇒ S = {0, 1}) and the private states coincide

with the actions. The idea is that is the minimal cost is reached only if one player chooses

differently from the others. Thus, we define wN
0 (1 + j−1

N−1), j ∈ {1, . . . , N} the cost of each

player who chooses 0 if exactly j players choose 0 and similarly wN
1 (1 + j−1

N−1). We define
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them as:

wN
0 (1) = w1(1) = −1

wN
0 (1 +

1

N − 1
) = . . . = wN

0 (1 +
N − 3

N − 1
) = wN

1 (1 +
1

N − 1
) = . . . = wN

1 (1 +
N − 3

N − 1
) = 0

wN
0 (1 +

N − 2

N − 1
) = wN

1 (1 +
N − 2

N − 1
) =

1

N

wN
0 (2) = wN

1 (2) = 1

(1.8)

We rewrite the (1.8) as w0 = w1 = (−1, 0, . . . , 0, 1
N , 1). With the notation used among the

general theory, we have

gN(si, µ̄
N,i
s ) = wN

si(1 + µ̄N,is ({si}))

Observe that g is bounded.

Call π = (1, N − 1) the situation in which one player chooses 0 (resp, 1) and the others

N − 1 players choose 1 (resp. 0). Call Aπ ⊆ SN the set all those strategies. We observe

that:

• |Aπ| = 2N

• each s ∈ Aπ gives the minimal global cost (meant as the sum of all the single costs).

Indeed the possible situations are:

– Every player chooses the same strategy (0 or 1) ⇒ global cost = N

– 2 ≤ i ≤ N − 2 players choose 0 (resp. 1) and the N − i others choose 1 (resp.0)

⇒ global cost = 0

– 1 player chooses 0 (resp. 1) and the N − 1 others choose 1 (resp. 1) ⇒ global

cost = −1 + N−1
N = − 1

N < max{0, N}

Consider the correlated strategy p having a uniform distribution over Aπ so it assigns

probability 1
2N to each s ∈ Aπ, so

p(s) =
1

2N
iff s ∈ Aπ.

Then for all i = 1, . . . , N

JNi (p) =
1

2N
(2 · (−1) + 2

1

N
(N − 1)) = − 1

N2
.

So, the global cost is

JNcorr(p) =
∑
i

1

N2
= − 1

N3

Let’s show that α is a correlated equilibrium by showing that relation (1.5) is verified.

Because of the symmetry of the game, it’s sufficient to verify it for a player i. There are

four function d : S → S: the identity, d ≡ 0, d ≡ 1 and that one such that d(0) = 1 and

d(1) = 0. Thus, we just need to verify (1.5) for such a function d. There are two possible

situations:
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• if s ∈ Aπ is such that player i chooses 0 (resp. 1) and the others choose 1 (resp. 0)

- there are only two s ∈ Aπ which verifies this condition - , than, if d(si) = d(0) = 1

(resp. d(si) = d(1) = 0), every player choose 1 (resp. 0) and everyone gets 1 as cost.

• if s ∈ Aπ is such that player i and other N − 1 players choose 0 (resp. 1) and only

one (different from i) chooses 1 (resp. 0) - there are 2N − 2 strategies s ∈ Aπ which

verify this condition - , if d(si) = d(0) = 1 (resp. d(si) = d(1) = 0 ), everyone gets 0

as cost.

So, in the case of d ≡ 0, d ≡ 1, due to the symmetry of the game, the cost, indicated by

JNi (d(p)), is

JNi (d(p)) =
1

2N

(
−1 +

1

N
(N − 1) + 1 + (N − 1) · 0

)
= 1− 1

N

and in the case of d(0) = 1 and d(1) = 0

JNi (d(p)) =
1

2N
(2 · 1 + 2(N − 1) · 0) =

1

N

We have:

JNi (p)−min
d
{JNi (p−i, d(pi))} = − 1

N2
− 1

N
≤ 0.

So p is a correlated equilibrium. If we show that no Nash equilibrium can attain JNcorr(p),

we would have finished.

First of all we observe that any strategy profile in Aπ isn’t an equilibrium, since every

player who has chosen the strategy chosen by the other N − 2 wish to deviate, because

he/she would get a cost of 0 instead of 1
N . The only Nash equilibria are those in which

2 ≤ k ≤ N − 2 players choose the same action, which means that the global cost is

0 < JNcorr(p).

We observe the only strategies who attain the minimal global cost are those in Aπ. So we

want to prove that if at least one player (say i) plays a mixed strategy α, with distribution

p = (p1, . . . , pN), in which pi(0) > 0, pi(1) > 0, then there exists a profile s /∈ Aπ such

that p(s) > 0. Assume that p(s) > 0⇒ s ∈ Aπ. Let s be such a strategy, then

p(s) > 0⇒
∏
j

pj(sj) > 0⇒ pj(sj) > 0 for all j = 1, . . . , N

Since pi(0), pi(1) > 0, p(s−i, 0) = pi(0)
∏
j 6=i p

j(sj) > 0 and p(s−i, 1) = pi(1)
∏
j 6=i p

j(sj) >

0. So both (s−i, 0) and (s−i, 1) are in Aπ, which is impossible since we’ve seen that if a

player deviates from a strategy in Aπ, we obtain a strategy not in Aπ.

The problem with this example is the dependence of g from N , situation which is not

included in our model.

In the following sections, we’ll try to formulate some examples which improves this one

keeping its structure.
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1.3.2 Example 2

Also in this example there are n players who could choose between 2 strategies, 0 and 1

(⇒ S = {0, 1}). We define w0(1 + j−1
n−1) j ∈ {1, . . . , n} the cost of each player who chooses

0 if exactly j players choose 0 (in pure strategies) and similarly we define w1(1 + j−1
n−1).

For simplicity we’ll consider the n-players game when n ≥ 4 and we recall that bxc :=

max{m ∈ Z : m ≤ x}, it’s such that

x− 1 ≤ bxc ≤ x. (1.9)

We consider a game in which:

w0

(
1 +
bn3 c − 1

n− 1

)
= w1

(
1 +
bn3 c − 1

n− 1

)
= −20

w0

(
1 +

n− 1− bn3 c
n− 1

)
= w1

(
1 +

n− 1− bn3 c
n− 1

)
= −1

w0

(
1 +

k − 1

n− 1

)
= w1

(
1 +

k − 1

n− 1

)
= −2 for k 6= {

⌊n
3

⌋
, n−

⌊n
3

⌋
}

(1.10)

Observe that:

g(si, µ̄
n,i
s ) = wsi(1 + µ̄n,is ({si}))

where g is no more dependent from n and it is bounded.

This means that if bn3 c players (i.e. about one third of all players) choose 0 (resp. 1) they

get −20 and the others n− bn3 c get −1; in any other situation everybody gets −2. Thus,

these two situations correspond to only two possible global costs:

• exactly bn3 c players choose the same strategy:

Jn = −20
⌊n

3

⌋
− 1(n−

⌊n
3

⌋
) = −19

⌊n
3

⌋
− n

• all the other situations

J ′n = −2n
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Jn
?
≤ J ′n ⇔ −19

⌊n
3

⌋
− n

?
≤ −2n⇔ 19

⌊n
3

⌋
− n

?
≥ 0.

Using (1.9):

−19
⌊n

3

⌋
− n ≥ 19(

n

3
− 1)− n =

19

3
n− 19− n =

16

3
n− 19

?
≥ 0⇔ 16n

?
≥ 57

Since we’ve assumes n ≥ 4 this is always true. This means that the pure strategies for

which we get the minimal cost are those in which
⌊
n
3

⌋
players choose 0 (resp. 1) and the

other choose 1 (resp. 0). We’ll denote with A the set of these strategies.

We now consider the correlated strategy p with uniform distribution over A.

Before proceeding further, we do some calculations:

1. the number of possible
⌊
n
3

⌋
in a total of n are

( n
bn3 c
)
⇒ |A| = 2

( n
bn3 c
)

2. if we consider a generic player i, the number of sets of
⌊
n
3

⌋
players in which he/she

is contained is
( n−1

bn3 c−1

)
3. (

n⌊
n
3

⌋)− ( n− 1⌊
n
3

⌋
− 1

)
=

n!⌊
n
3

⌋
!(n−

⌊
n
3

⌋
)!
− (n− 1)!

(
⌊
n
3

⌋
− 1)!(n− 1−

⌊
n
3

⌋
+ 1)!

=
(n− 1)!

(
⌊
n
3

⌋
− 1)!(n−

⌊
n
3

⌋
)!

( n⌊
n
3

⌋ − 1
)

=

(
n− 1⌊
n
3

⌋
− 1

)( n⌊
n
3

⌋ − 1
)

4. ( n
bn3 c
)

( n−1

bn3 c−1

) =
n!

(n− 1)!

(
⌊
n
3

⌋
− 1)!(n−

⌊
n
3

⌋
)!⌊

n
3

⌋
!(n−

⌊
n
3

⌋
)!

=
n⌊
n
3

⌋
Now, because of the symmetry of the game, we can consider a generic player i and the

calculations we’ll be the same for all the other players. Thus:

Jni (p)
1.+2.
=

1

2
( n
bn3 c
)(2

(
n− 1⌊
n
3

⌋ )(−20) + 2
(( n⌊

n
3

⌋)− ( n− 1⌊
n
3

⌋
− 1

))
(−1)

)
3.
=

1( n
bn3 c
)( n− 1⌊

n
3

⌋
− 1

)(
− 20− n⌊

n
3

⌋ + 1
)

4.
=

⌊
n
3

⌋
n

(
− 19− n⌊

n
3

⌋) = −
(

19

⌊
n
3

⌋
n

+ 1
)

Remark 1.13. Because of (1.9), we have:⌊
n
3

⌋
n
≤

n
3

n
=

1

3⌊
n
3

⌋
n
≥

n
3 − 1

n
=

1

3
− 1

n

⇒ −19

3
− 1 = −22

3
≤ Jni (p) ≤ −19

(1

3
− 1

n
− 1
)

= −22

3
+

19

n
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We now show that p defined as above is a correlated equilibrium; to do so recall that A

probability distribution p over SN is said correlated equilibrium if, for every i and for every

function d : S → S, we have∑
s∈SN

p(s)g
(
φ(si),

1

N − 1

∑
j 6=i

δφ(sj)

)
≤
∑
s∈SN

p(s)g
(
φ(d(si)),

1

N − 1

∑
j 6=i

δφ(sj)

)
(1.11)

In this case, since S = {0, 1} there are only four possible d, that are d = idS , d ≡ 0, d ≡ 1

or d(0) = 1, d(1) = 0. In the first case, we have no modifications; in the last case:

g(d(si), µ̄
n,i
s ) =

{
g(0, µ̄n,is ) if si = 1

g(1, µ̄n,is ) if si = 0

By symmetry we can consider just one of these two cases. Both in the situation in which

the i-th player had chosen 0 with other
⌊
n
3

⌋
−1 and in that in which he’s in the remaining

n−
⌊
n
3

⌋
, his deviation brings everybody to have cost −2. If we indicate with Jni (d(p)) :=∑

s∈SN p(s)g
(
φ(d(si)),

1

N − 1

∑
j 6=i δφ(sj)

)
, we have:

Jni (d(p)) =
1

2
( n
bn3 c
)( n− 1⌊

n
3

⌋
− 1

)(
− 2 · 2− 2 · 2

( n⌊
n
3

⌋ − 1
))

=

⌊
n
3

⌋
n

(
− 2

n⌊
n
3

⌋) = −2

In the case d ≡ 0, d ≡ 1:

Jni (d(p)) =
1

2
( n
bn3 c
)( n− 1⌊

n
3

⌋
− 1

)(
− 20−

( n⌊
n
3

⌋ − 1
)
− 2− 2

( n⌊
n
3

⌋ − 1
))

=

⌊
n
3

⌋
2n

(
− 19− 3

n⌊
n
3

⌋) = −1

2

(
19

⌊
n
3

⌋
n

+ 1 + 2
)

0
?
≥ Jni (p) + 2 = −19

⌊
n
3

⌋
n
− 1 + 2 = −19

⌊
n
3

⌋
n

+ 1

− 19

⌊
n
3

⌋
n

+ 1 ≤ −19

3
+

19

n
+ 1 = −16

3
+

19

n

?
≤ 0⇔ 16n ≥ 57

since we have assumed n ≥ 4, this is always true. This means that p is a correlated

equilibrium.

If we show that no Nash equilibrium can attain the global cost of the correlated equilibrium,

we would have finished.

First of all we observe that any strategy profile in A isn’t a pure Nash equilibrium, since

every player who has chosen the strategy chosen by n −
( n
bn3 c
)

wish to deviate, because

he/she would get a cost of −2 instead of −1. The only pure Nash equilibria are those in

which 1 ≤ k ≤
⌊
n
3

⌋
− 2 or

⌊
n
3

⌋
+ 2 ≤ k ≤ n−

⌊
n
3

⌋
− 2 or k ≥ n−

⌊
n
3

⌋
+ 2 choose the same

action. The cost is -2 for each player, but we have already proved that Jni (p) + 2 < 0.

We observe the only strategies who attain the minimal global cost are those in A. So we

want to prove that if at least one player (say i) plays a mixed strategy α, with distribution
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q = (q1, . . . , qN), in which qi(0) > 0, qi(1) > 0, then there exists a profile s /∈ A such that

q(s) > 0. Assume that q(s) > 0⇒ s ∈ A. Let s be such a strategy, then

q(s) > 0⇒
∏
j

qj(sj) > 0⇒ qj(sj) > 0 for all j = 1, . . . , n

Since qi(0), qi(1) > 0, q(s−i, 0) = qi(0)
∏
j 6=i q

j(sj) > 0 and q(s−i, 1) = qi(1)
∏
j 6=i q

j(sj) >

0. So both (s−i, 0) and (s−i, 1) are in A, which is impossible since we’ve seen that if a

player deviates from a strategy in A, we obtain a strategy not in A.

In this second example we’ve avoided the dependence of g from n, but we observe that the

point with minimum cost is ”isolated” thus, when n→∞, its presence becomes irrelevant.

1.3.3 Example 3

In this last example we will eliminate the problems concerning the other two, indeed there

will not be any dependence of g upon N and any isolated points. The basic structure is

always the same, that is a congestion game where S = {0, 1}. For sake of simplicity we

consider 6n players, but it can be done for all n with some difficulties in the notation.

The idea is the following: if less then one third and more then a ”certain quantity” (which

is n in this case) of the players chooses 0 (resp. 1), they get −7 and the remaining gets

−1, otherwise everyone has cost −2. So in this type of game we will find a correlated

equilibrium, which is not also a Nash one, that has less global cost with respect to pure

Nash equilibria and symmetric mixed equilibria. We observe that, since among all the

theory of Chapter 3, we study the behaviour of symmetric Nash equilibria and correlated

ones when the number of players goes to infinity, this example is sufficient to justify our

interest in this type of equilibria.

We now formalize the notation with that used in the rest of the thesis.

w0

(
1 +

k − 1

6n− 1

)
= w1

(
1 +

k − 1

6n− 1

)
= −7 if k = n+ 1, . . . , 2n

w0

(
1 +

k − 1

6n− 1

)
= w1

(
1 +

k − 1

6n− 1

)
= −1 if k = 4n, . . . , 5n− 1

w0

(
1 +

k − 1

6n− 1

)
= w1

(
1 +

k − 1

6n− 1

)
= −2 if k = 1, . . . , n, k = 5n, . . . , 6n

Thus, again:

g(si, µ̄
n,i
s ) = wsi(1 + µ̄n,is ({si}))

Consider A the set of vector strategies on which at least n + 1 and at most 2n players

choose the same action. We notice that |A| = 2
∑2n

k=n+1

(
6n
k

)
. We consider in A a correlated

strategy p = (pk, k = n+ 1, . . . , 2n) depending only on the number of the exact k players

choosing the same pure strategy. We will find some sufficient conditions under which pk

• is a correlated equilibrium

• is strictly better then any pure Nash equilibrium

• is strictly better then any symmetric Nash equilibrium
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Before starting to analyse the issues explained above, we observe that p defined as before

can’t be a non-symmetric mixed strategy, because, since pk depends only on the number

of player choosing a certain action, if we take a random vector having distribution p, it

would be exchangeable and hence symmetric as a mixed strategy.

We do some preliminary observations and calculations:

1. (
6n− 1

k − 1

)
+

(
6n− 1

k

)
=

(6n− 1)!

(k − 1)!(6n− k)!
+

(18n− 1)!

k!(18n− k − 1)!

=
(6n− 1)!

k!(6n− k)!
(6n− k + k) =

(6n)!

k!(6n− k)!
=

(
6n

k

)

2.

5n−1∑
k=4n

(
6n− 1

k − 1

)
p6n−k =

5n−1∑
k=4n

(
6n− 1

6n− k

)
p6n−k =

2n∑
k=n+1

(
6n− 1

k

)
pk (1.12)

3. 2
∑2n

k=n+1

(
6n
k

)
pk = 1 and, by 1.:

2

2n∑
k=n+1

(
6n− 1

k − 1

)
pk + 2

2n∑
k=n+1

(
6n− 1

k

)
pk = 1 (1.13)

By the symmetry of the game, we will refer to Player 1. We now calculate the cost of the

correlated strategy p for this player. His/her possible situations are: 1. he has chosen 0
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(resp. 1) with other k = n, . . . , 2n − 1 players; 2. he has chosen 0 (resp. 1) with other

k = 4n− 1, . . . , 5n− 2 players, thus the cost is:

Jn1 (p) = −14

2n∑
k=n+1

(
6n− 1

k − 1

)
pk − 2

5n−1∑
k=4n

(
6n− 1

k − 1

)
p6n−k

(1.12)
= −14

2n∑
k=n+1

(
6n− 1

k − 1

)
pk − 2

2n∑
k=n+1

(
6n− 1

k

)
pk

3.
= −12

2n∑
k=n+1

(
6n− 1

k − 1

)
pk − 1

p is a correlated equilibrium Since |S| = 2 the only possible deviations d in the

definition of the correlated equilibrium are d = idS , d(0) = 1, d(1) = 0, d ≡ 0 or d ≡ 1.

We’ll indicate with Jni (d(p)) the deviated cost of the chosen d. First of all, we observe

that the detailed possible situations deviation are in the table 1.1.

Initial cost n. players with 0 (or 1) n. other players n. players with 0 (or 1) n. other players Deviated cost

-7 n+ 1 5n− 1 → 5n n -2

-7 n+ 2 5n− 2 → 5n− 1 n+ 1 -1
...

...
...

...
...

...

-7 2n− 1 4n+ 1 → 4n+ 2 2n− 2 -1

-7 2n 4n → 4n+ 1 2n− 1 -1

-1 4n 2n → 2n+ 1 4n− 1 -2

-1 4n+ 1 2n− 1 → 2n 4n -7
...

...
...

...
...

...

-1 5n− 2 n+ 2 → n+ 3 5n− 3 -7

-1 5n− 1 n+ 1 → n+ 2 5n− 2 -7

Table 1.1: From Jn
i (p) to Jn

i (d(p))

Thus, if d(0) = 1, d(1) = 0
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Jn1 (d(p)) = 2
(
− 7

5n−1∑
k=4n+1

(
6n− 1

k − 1

)
p6n−k −

2n∑
k=n+2

(
6n− 1

k − 1

)
pk

− 2

(
6n− 1

n

)
pn+1 − 2

(
6n− 1

2n

)
p2n

)
= 2
(
− 7

2n−1∑
k=n+1

(
6n− 1

k

)
pk −

2n∑
k=n+2

(
6n− 1

k − 1

)
pk

− 2

(
6n− 1

n

)
pn+1 − 2

(
6n− 1

2n

)
p2n

)
= 2
(
−

2n∑
k=n+1

(
6n− 1

k

)
pk −

2n∑
k=n+1

(
6n− 1

k − 1

)
pk

−
(

6n− 1

n

)
pn+1 −

(
6n− 1

2n

)
p2n − 6

2n∑
k=n+1

(
6n− 1

k

)
pk

)

= 2
(
− 1

2
−
(

6n− 1

n

)
pn+1 −

(
6n− 1

2n

)
p2n − 6

2n−1∑
k=n+2

(
6n− 1

k

)
pk

)

= 2
(
− 1

2
−
(

6n− 1

n

)
pn+1 −

(
6n− 1

2n

)
p2n − 6

2n∑
k=n+2

(
6n− 1

k − 1

)
pk−1

)

(1.14)

and if d ≡ 0 or d ≡ 1, with analogue calculations as in (1.14):

Jn1 (d(p)) = −7
2n∑

k=n+1

(
6n− 1

k − 1

)
pk −

2n∑
k=n+1

(
6n− 1

k − 1

)
pk

− 7

5n−1∑
k=4n+1

(
6n− 1

k − 1

)
p6n−k −

2n∑
k=n+1

(
6n− 1

k − 1

)
pk

− 2

(
6n− 1

n

)
pn+1 − 2

(
6n− 1

2n

)
p2n

= −7

2n∑
k=n+1

(
6n− 1

k − 1

)
pk −

2n∑
k=n+1

(
6n− 1

k − 1

)
pk

− 1

2
−
(

6n− 1

n

)
pn+1 −

(
6n− 1

2n

)
p2n − 6

2n∑
k=n+2

(
6n− 1

k

)
pk

Now, it is clear that the condition we have to impose in order to achieve ∆ := Jn1 (p) −
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Jn1 (d(p)) ≤ 0 for any d : S → S is:

− 6
2n∑

k=n+1

(
6n− 1

k − 1

)
pk ≤ −

(
6n− 1

n

)
pn+1 −

(
6n− 1

2n

)
p2n − 6

2n∑
k=n+2

(
6n− 1

k

)
pk

⇒− 6
2n∑

k=n+2

(
6n− 1

k − 1

)
(pk − pk−1) +

(
6n− 1

n

)
pn+1 +

(
6n− 1

2n

)
p2n − 6

(
6n− 1

n

)
pn+1 ≤ 0

⇒− 6

2n−1∑
k=n+2

(
6n− 1

k − 1

)
(pk − pk−1)− 6

(
6n− 1

2n− 1

)
p2n + 6

(
6n− 1

2n− 1

)
p2n−1

+

(
6n− 1

2n

)
p2n − 5

(
6n− 1

n

)
pn+1 ≤ 0

Now,

−6

(
6n− 1

2n− 1

)
p2n +

(
6n− 1

2n

)
p2n =

(6n− 1)!

(2n)!(4n!)
p2n(−6 · 2n+ 4n) = −4

(
6n− 1

2n− 1

)
p2n

Thus, two sufficient condition for ∆ ≤ 0 are:

• k 7→ pk not-decreasing

• 4p2n ≥ 6p2n−1

Confronting correlated and pure Nash First of all, we observe that no vector strat-

egy in A could be a pure Nash equilibrium, since all the players having cost -1 wish to devi-

ate in order to decrease their cost to either −6 or −2. In this type of game, pure Nash equi-

libria are those in which exactly k, k ∈ {1, . . . n−1}∩{2n+2, . . . , 4n−2}∩{5n+1, . . . , 6n}
players choose 0 (resp. 1). The cost for each player is thus -2.

We’re interested in having

∆′ := Jn1 (p) + 2 = −12
2n∑

k=n+1

(
6n− 1

k − 1

)
pk + 1 < 0

Using (1.13) and the fact that the distribution we’re interested in is not-decreasing, we

find:

∆′ = −10

2n∑
k=n+1

(
6n− 1

k − 1

)
pk + 2

2n∑
k=n+1

(
6n− 1

k

)
pk

= −10

2n∑
k=n+1

(
6n− 1

k − 1

)
pk + 2

2n+1∑
k=n+2

(
6n− 1

k − 1

)
pk−1

= −10pn+1 −
2n∑

k=n+2

(
6n− 1

k − 1

)
(10pk − 2pk−1) + 2

(
6n− 1

2n

)
p2n

≤ −10pn+1 − 8

6n∑
k=n+2

(
6n− 1

k − 1

)
pk + 2

(
6n− 1

2n

)
p2n
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Now,

−8

(
6n− 1

2n− 1

)
p2n + 2

(
6n− 1

2n

)
p2n =

(6n− 1)!

(2n)!(4n)!
(−8 · 2n+ 4 · 2n) = −4

(
6n− 1

2n− 1

)
p2n

and thus we conclude that ∆′ < 0.

Confronting correlated and symmetric Nash As we said the beginning of this

section, we can restrict our analysis to symmetric mixed strategies. Call 0 < λ < 1 the

probability of each player of choosing 0 and consider player 1 as the reference one. Define

qk := λk(1 − λ)6n−k; without loss of generality, we can suppose λ ≥ 1 − λ ⇒ 1
2 ≤ λ ≤ 1.

Now, his/her possibilities are

• he/she is in the group of k, k = n+ 1, . . . , 2n players choosing 0 (or 1).

• he/she is in the group of k, k = 4n, . . . , 5n− 1 players choosing 0 (or 1).

• he/she is in the group of k, k = {1, . . . n}∩{2n+1, . . . , 4n−1}∩{5n, . . . , 6n} players

choosing 0 (or 1).

Thus, the cost is

Jnmix(q) =− 7
2n∑

k=n+1

(
6n− 1

k − 1

)
(qk + q6n−k)−

5n−1∑
k=4n

(
6n− 1

k − 1

)
(qk + q6n−k)

− 2
4n−1∑

k=2n+1

(
6n− 1

k − 1

)
(qk + q6n−k)− 2

n∑
k=1

(
6n− 1

k − 1

)
(qk + q6n−k)

− 2
6n−1∑
k=5n

(
6n− 1

k − 1

)
(qk + q6n−k)− 2q0 − 2q6n

(1.15)

Before going further we have to do some observations:

1.
6n∑
k=0

(
6n

k

)
qk = 1

2.
6n−1∑
k=5n

(
6n− 1

k − 1

)
(qk + q6n−k) =

6n−1∑
k=5n

(
6n− 1

6n− k

)
(qk + q6n−k) =

n∑
k=1

(
6n− 1

k

)
(q6n−k + qk)

3. − 2

n∑
k=1

(
6n− 1

k − 1

)
(qk + q6n−k)− 2

6n−1∑
k=5n

(
6n− 1

k − 1

)
(qk + q6n−k)− 2q0 − 2q6n

3.
= −2

n∑
k=1

(
6n

k

)
(qk + q6n−k)− 2q0 − 2q6n = −2

n∑
k=0

(
6n

k

)
(qk + q6n−k)

4.

4n−1∑
k=2n+1

(
6n− 1

k − 1

)
(qk + q6n−k) =

4n−1∑
k=2n+1

(
6n− 1

k − 1

)
qk +

4n−1∑
k=2n+1

(
6n− 1

6n− k

)
q6n−k

=
4n−1∑

k=2n+1

(
6n− 1

k − 1

)
qk +

4n−1∑
k=2n+1

(
6n− 1

k

)
qk =

4n−1∑
k=2n+1

(
6n

k

)
qk

5.

h∑
k=j

(
6n− 1

k − 1

)
q6n−k =

h∑
k=j

(
6n− 1

6n− k

)
q6n−k =

6n−j∑
k=6n−h

(
6n− 1

k

)
qk
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We can rewrite the global mixed cost as:

Jnmix(q) =− 7

2n∑
k=n+1

(
6n− 1

k − 1

)
(qk + q6n−k)−

5n−1∑
k=4n

(
6n− 1

k − 1

)
(qk + q6n−k)

− 2

4n−1∑
k=2n+1

(
6n

k

)
qk − 2

n∑
k=0

(
6n

k

)
(qk + q6n−k)

We want to prove that the global cost of the correlated equilibrium is strictly inferior that

that of the Nash one, so, first of all we observe that the global cost for a generic strategy

vector in A is:

−7k − (6n− k) = −6k − 6n k ∈ {n+ 1, . . . , 6n}

but, if we take a strategy vector in AC the only possible global cost is

−2 · 6n

Since k > n, we have

−2 · 6n > −6k − 6n⇔ −6k + 6n > 0.

This means that every strategy vector in A has an inferior global cost with respect to

those in AC ; hence it is reasonable to think that the global costs for the Nash equilib-

ria is greater then those of the correlated one; indeed mixed strategies assign a strictly

positive probabilities to strategy vectors in AC ; on the converse p is only concentrated in A.

By symmetry, the global costs are

Jcorr
glob(p) = 6n · 2

(
−7

2n∑
k=n+1

(
6n− 1

k − 1

)
pk −

2n∑
k=n+1

(
6n− 1

k

)
pk

)

= 2

2n∑
k=n+1

(6n)!

k!(6n− k)!
(−7k − 6n+ k) pk = −6

2n∑
k=n+1

(
6n

k

)
(k + n)2pk

and by analogous calculations we get:

Jmix
glob(q) =− 6

2n∑
k=n+1

(
6n

k

)
(k + n)(qk + q6n−k)

− 2 · 6n

(
n∑
k=0

(
6n

k

)
(qk + q6n−k) +

4n−1∑
k=2n+1

(
6n

k

)
qk

)

Using the fact that
∑2n

k=n+1

(
6n
k

)
2pk =

∑6n
k=0

(
6n
k

)
qk, we get.

Jmix
glob(q) =− 6

2n∑
k=n+1

(
6n

k

)
(k + n)(qk + q6n−k)

− 2 · 6n

(
2n∑

k=n+1

(
6n

k

)
2pk +

2n∑
k=n+1

(
6n

k

)
(qk + q6n−k)

)
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Thus, calling ∆′ := Jcorr
glob(p)− Jmix

glob(q), we have:

∆′ =− 6

2n∑
k=n+1

(
6n

k

)
(k + n)2pk +−6

2n∑
k=n+1

(
6n

k

)
(k + n)(qk + q6n−k)

+ 2 · 6n

(
2n∑

k=n+1

(
6n

k

)
2pk +

2n∑
k=n+1

(
6n

k

)
(qk + q6n−k)

)

=− 6

2n∑
k=n+1

(
6n

k

)
(k − n)2pk + 6

2n∑
k=n+1

(
6n

k

)
(k − n)(qk + q6n−k)

=− 6

2n∑
k=n+1

(
6n

k

)
(k − n)(2pk − (qk + q6n−k))

If we find a particular p that satisfies the previous conditions and such that ∆′ < 0 for

every λ, then we’ve achieved our purpose. We define

pn+1 = . . . = p2n−1 = 0

then:

2

(
6n

2n

)
p2n = 1⇒ p2n =

1

2
(

6n
2n

)
Now:

∆′ =− 6
2n∑

k=n+1

(
6n

k

)
(k − n)(2pk − (qk + q6n−k))

=
2n−1∑
k=n+1

(
6n

k

)
(k − n)(qk + q6n−k)− 6

(
6n

2n

)
n(2p2n − (q2n + q4n))

≤
2n−1∑
k=n+1

(
6n

k

)
n(qk + q6n−k)− 6

(
6n

2n

)
n(2p2n − (q2n + q4n))

=− 6n

2n−1∑
k=n+1

(
6n

k

)
(2pk − (qk + q6n−k)) < 0

Where the last strict inequality follows from the fact that:

1 = 2
6n∑

k=n+1

(
6n

k

)
pk =

6n∑
k=0

(
6n

k

)
qk >

2n−1∑
k=n+1

(
6n

k

)
(qk + q6n−k)

⇒
6n∑

k=n+1

(
6n

k

)
(2pk − (qk + q6n−k)) > 0





Chapter 2

Solutions of Static Mean-Field

Equations

2.1 Strong Solutions

In this section, we want to study the behaviour of Nash equilibria when N → ∞ and

to find and to find an equation that they satisfy in our static model. In the work of

Fischer [9], there is the more general case of stochastic games. Usually the procedure goes

in the opposite direction, namely we start from a mean-field equation, we find a solution

for it and then we go back to the finite case, see [7] for a comprehensive argument.

Consider a mixed strategy (αn1 , . . . , α
n
n); recall that the {αni }i=1,...,n are independent. In

Corollary 1.12 we’ve shown the existence of symmetric Nash equilibria, so it is reasonable

to restrict our study to those strategies {αni }i=1,...,n which are also identically distributed,

with common distribution νn. If we consider the private states {Xn
i = φ(αni )}i=1,...,n, it is

clear that they are also i.i.d. with common distribution υn. In the following we are going

to indicate the empiric measures as µ̄n,iX := 1
n−1

∑
j 6=i

δXn
j

and µ̄nX := 1
n

n∑
j=1

δXn
j
. We make a

first simple observation about the convergence in distribution of these random measures

to stress the fact that for the purpose of convergence (in distribution) it is indifferent

considering one or the other.

Remark 2.1. Notice that µ̄n,iX → µ in distribution ⇔ µ̄nX → µ in distribution, indeed

µ̄nX =
1

n

n∑
i=1

δXn
i

=
1

n

∑
i 6=j

δXn
j

+
1

n
δXn

i
=
n− 1

n

1

n− 1

∑
i 6=j

δXn
j

+
1

n
δXn

i
=
n− 1

n
µ̄n,iX +

1

n
δXn

i

Now, the convergence in distribution is closed under the summation and by Corollary A.32,

we have the two implications, indeed call µ and µ the limit of µ̄nX and µ̄n,iX respectively

(they exists because of the tightness of the sequences).

µ← µ̄nX =
n− 1

n
µ̄n,iX +

1

n
δXn

i
→ 1 · µ′ + 0 · υ = µ′ ⇒ µ = µ′

With an abuse of notation, we will denote the distribution both of µ̄n,iX and µ̄nX with

mn. Now, fixing a particular i, we have that Xn
i : Ωn → X and µ̄n,iX : Ωn → P(X ) are

33
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independent by definition. Moreover, we notice that X and P(X ) are compact because the

first is a finite set and the second is a simplex; so we consider the random vector (Xn
i , µ̄

i,n
X ) :

Ωn → X ×P(X ); it has values in a compact space because product of two compact spaces,

so it is tight. As a consequence of Prokhorov theorem A.26, there exists a sub-sequence,

that we are going to denote as (Xn
i , µ̄

i,n
X ) with abuse of notation, which converges in

distribution to a random vector (X,µ) : Ω → X × P(X ) for a certain probability space

(Ω,A,P).

Since {Xn
i }n are µ̄n,iX are both tight they also are convergent in distribution, up to sub-

sequences. Xn
i and µ̄n,iX are respectively the projection on the first and on the second

component of the vector (Xn
i , µ̄

i,n
X ) and, by the Continuous mapping theorem A.17, it has

to be Xn
i → X and µ̄n,iX → µ in distribution. Thus, calling υ and m the distributions of

X and µ, υn → υ and mn → m weakly.

Observe that, due to the independence, the distribution of the vector (Xn
i , µ̄

i,n
X ) is the

product measure υn ⊗mn and by Proposition A.30, the distribution of (X,µ) is υ ⊗m.

Proposition 2.2 (Strong solutions of the static Mean-Field Equation). Let g be con-

tinue and bounded. Let, for any n, (α̃n1 , . . . , α̃
n
1 ) be a symmetric Nash equilibrium, and

(X̃n
1 , . . . , X̃

n
n ) the correspondent private states with distribution (υ̃n, . . . , υ̃n). Then, up

to a subsequence {υ̃n} converges weakly to a measure υ satisfying:∫
X
g(x, υ)υ(dx) = inf

σ∈P(X )

∫
X
g(x, υ)σ(dx). (2.1)

Moreover the empiric measure µ̄NX , up to sub-sequences, converges in distribution to δυ ∈
P(P(X )).

Remark 2.3. Before starting the proof, we want to see what does it means to be a

Nash equilibrium in terms of the distributions of the private states. We want to prove

that Definition 1.1 is equivalent to: (α̃n1 , . . . , α̃
n
1 ) is a symmetric Nash equilibrium, with

(X̃n
1 , . . . , X̃

n
n ) the correspondent private states with distribution (υ̃n, . . . , υ̃n) if∫

P(X )×X
g(x, y)υ̃n(dx)dmn(dy) ≤

∫
P(X )×X

g(x, y)σ(dx)mn(dy) ∀σ ∈ P(X ) (2.2)

(2.2)⇒ (1.3): if (α̃n1 , . . . , α̃
n
1 ) is a symmetric Nash equilibrium (in the sense of (1.3)), with

(X̃n
1 , . . . , X̃

n
n ) the correspondent private states with distribution (υ̃n, . . . , υ̃n), consider a

generic σ ∈ P(X ) and consider a random variable Xn : Ωn → X with distribution σ. Since

φ : S → X is surjective, because X is defined as X := φ(S) there exists a β : Ωn → S such

that Xn = φ(β) and so by (1.1)∫
P(X )×X

g(x, y)υ̃n(dx)mn(dy) =

∫
Ωn

g
(
X̃n
i (ω), µ̄n,i

X̃(ω)

)
Pn(dω)

=

∫
Ωn

g
(
φ(α̃ni (ω)), µ̄n,i

X̃(ω)

)
Pn(dω) ≤

∫
Ωn

g
(
φ(βni (ω)), µ̄n,i

X̃(ω)

)
Pn(dω)

=

∫
Ωn

g
(
Xn(ω)), µ̄n,i

X̃(ω)

)
Pn(dω) =

∫
P(X )×X

g(x, y)σ(dx)mn(dy)
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(1.3) ⇒ (2.2): for any mixed strategy β define X = φ(β) and let σ be its distribution,

then: ∫
Ωn

g
(
φ(α̃ni (ω)), µ̄n,i

X̃(ω)

)
Pn(dω) =

∫
P(X )×X

g(x, y)υ̃n(dx)mn(dy)

≤
∫
P(X )×X

g(x, y)σ(dx)mn(dy) =

∫
Ωn

g
(
φ(βni (ω)), µ̄n,i

X̃(ω)

)
Pn(dω)

Proof. In the following paragraphs we’ll study µ̄nX = 1
N

∑n
i=1 δXn

i
and we’ll indicate again

with µ̄nX the converging subsequence, that exists since P(X ) is compact. We’ll call µ the

random variable to whom the empiric measure converges. By definition of convergence in

distribution, we have that ∀ f : P(X )→ R continue and bounded:

lim
n→∞

∫
Ωn

f ◦ µ̄nX(ω)P(dω) = En[f(µ̄nX)] = EP [f(µ)] =

∫
Ω
f ◦ µ(ω)P(dω)

First of all we observe that, since X is compact, Cb(X ) is separable1, thus there exists a

countable and dense subset, say T . For the topology induced by the weak convergence,

because of Proposition A.8, if two measures, µ and ν ∈ P(X ), coincide if tested on T than

σ = λ. This means that if 〈σ, f〉 =
∫
X fdσ =

∫
X fdλ = 〈λ, f〉, for all f ∈ T , than σ = λ.

Let Ψ ∈ T and define

mΨ := EP
[ ∫
X

Ψ(x)µ(dx)
]

=

∫
Ω

∫
X

Ψ(x)µω(dx)P(dω)

vΨ := EP
[( ∫

X
Ψ(x)µ(dx)−mΨ

)2]
mn

Ψ := En
[ ∫
X

Ψ(x)µ̄n(dx)
]

=

∫
Ωn

∫
X

Ψ(x)µ̄nω(dx)Pn(dω)

where EP and En are the expected values respectively on (Ω,A,P) and (Ωn,An,Pn).

Notice that the mapping F : σ 7→
∫

Ψdσ is a continuous function in P(X ) (for the topology

induced by the weak convergence), indeed, consider σn ∈ P(X ) for all n, then F (σn) =∫
ψdσn →

∫
ψdσ = F (σ). So, by the convergence of µ̄n to µ, En[F (µ̄n)] → EP [F (µ)],

which means that mn
Ψ → mΨ for every Ψ ∈ T . Moreover, because of the Continuous

mapping theorem in the version A.18:

vΨ = lim
n→∞

En
[( ∫

X
Ψ(x)µ̄n(dx)−mn

Ψ

)2]
= lim

n→∞
En
[( ∫

X
Ψ(x)d

( 1

n

n∑
i=1

δXni

)
(x)−mn

Ψ

)2]
= lim

n→∞
En
[( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)2]
.

Moreover, we observe that, since {Xn
i }i are identically distributed:

mn
Ψ = En

[ ∫
X

Ψ(x)µ̄n(dx)
]

= En
[ 1

n

∑
i

Ψ(Xn
i )
]

= En[Ψ(Xn
1 )]

⇒ En
[ 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

]
= 0 ∀n

(2.3)

1For a complete proof see [8]
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Now, since Xn
i are i.i.d. for i = 1, . . . , n, so do the Ψ(Xn

i ) and the Ψ(Xn
i )2, thus, using

(2.3):

En
[( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)2]
= En

[( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)]
= En

[( 1

n

∑
i

Ψ(Xn
i )
)( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)]
−mn

ΨEn
[ 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

]
= En

[( 1

n

∑
i

Ψ(Xn
i )
)( 1

n

∑
i

Ψ(Xn
i )−mn

Ψ

)]
= En

[( 1

n

∑
i

Ψ(Xn
i )
)2]
−mn

ΨEn
[ 1

n

∑
i

Ψ(Xn
i )
]

=
1

n2
En
[(∑

i

Ψ(Xn
i )
)2]
− (mn

Ψ)2

=
1

n2
En
[∑

i

Ψ(Xn
i )2
]

+
2

n2
En
[ n∑
i=1

∑
j<i

Ψ(Xn
i )Ψ(Xn

j )
]
− (mn

Ψ)2

=
1

n2
n En

[
Ψ(Xn

1 )2
]

+
2

n2
· n(n− 1)

2
En
[
Ψ(Xn

1 )
]2 − (mn

Ψ)2

=
1

n
En
[
Ψ(Xn

1 )2
]
− 1

n
En
[
Ψ(Xn

1 )
]2 n→∞−−−→ 0.

The convergence toward 0 follows from the boundedness of Ψ. We’ve found that vΨ =

0⇒ EP [(
∫
X Ψ(x)dµ(x)−mΨ)2] = 0. Hence for all Ψ ∈ T , P- almost surely∫

X
Ψ(x)µ(dx) = mΨ

but, since T is countable we can exchange the quantifiers and get that P- almost surely∫
X

Ψ(x)µ(dx) = mΨ for all Ψ ∈ T

which means that there exists a set A ∈ Ω with probability one, such that for any ω ∈ A∫
X

Ψ(x)µω(dx) = mΨ for all Ψ ∈ T (2.4)

thus, there exists a unique measure σ ∈ P(X ) such that∫
X

Ψ(x)σ(dx) = mΨ for all Ψ ∈ T .

indeed, the uniqueness follows from: let σ, σ̃ be two measures such that
∫
X Ψdσ =∫

X Ψdσ̃ = mΨ for all Ψ ∈ T , so they coincide if tested on all functions in T ⇒ σ = σ̃.

For the existence, it is sufficient to define σ as σ := µω for an ω ∈ A, observing that the

definition does not depend on the choice of the particular ω since (2.4) holds for every

ω ∈ A.
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We now show that σ = υ which is the limit distribution of υn (up to sub-sequences). As

said before mn
Ψ → mΨ for every Ψ ∈ T , but we’ve also that

mn
Ψ = En

[ ∫
X

Ψ(x)µ̄n(dx)
]

= En[Ψ(Xn
1 )]

=

∫
Ωn

Ψ(Xn
1 (ω))P(dω) =

∫
X

Ψ(x)υn(dx)
n→∞−−−→

∫
X

Ψ(x)υ(dx) for all Ψ ∈ T

By the uniqueness of the limit in distribution:∫
X

Ψ(x)υ(dx) = mΨ =

∫
X

Ψ(x)σ(dx) for all Ψ ∈ T

⇒ σ = υ.

So if F ∈ C(P(X )) and m the distribution of µ:

〈δυ, F 〉 =

∫
P(X )

F (x)δυ(dx) = F (υ)

〈m,F 〉 =

∫
P(X )

F (x)m(dx) =

∫
Ω
F (µω)P(dω) =

∫
A
F (µω)P(dω) +

∫
AC

F (µω)P(dω)

=

∫
A
F (µω)P(dω) =

∫
A
F (υ)P(dω) = F (υ)P(A) = F (υ)

⇒ m = δυ.

Now we have to prove (2.1). We know that (α̃n1 , . . . , α̃
n
1 ) is a Nash equilibrium for all n,

so by (2.2) we find:∫
P(X )×X

g(x, y)υn(dx)mn(dy) ≤
∫
P(X )×X

g(x, y)σ(dx)mn(dy) ∀σ ∈ P(X )

Observe that, because of the boundedness of g we can apply Fubini-Tonelli’s theorem .

Moreover, since P(X )×X is separable (because compact), the product measure υn ⊗mn

is weakly convergent and by Proposition A.30, υn ⊗mn → υ ⊗m. Now:

lim
n→∞

∫
P(X )×X

g(x, y)mn(dy)υn(dx) =

∫
P(X )×X

g(x, y)m(dy)υ(dx)

=

∫
P(X )×X

g(x, y)δυ(dy)υ(dx) =

∫
X
g(x, υ)υ(dx)

and for all σ ∈ P(X )

lim
n→∞

∫
P(X )×X

g(x, y)σ(dx)mn(dy) =

∫
P(X )×X

g(x, y)σ(dx)m(dy)

=

∫
P(X )×X

g(x, y)σ(dx)δυ(dy) =

∫
X
g(x, υ)σ(dx)

⇒
∫
X g(x, υ)υ(dx) ≤

∫
X g(x, υ)σ(dx) for all σ ∈ P(X ), but, since υ realizes the equality,

we have: ∫
X
g(x, υ)υ(dx) = inf

σ∈P(X )

∫
X
g(x, υ)σ(dx)

which concludes the proof.
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We call (2.1) mean field equation. It allows us to study a continuous problem, indeed a

υ that satisfies (2.1) is called a Nash equilibrium for the continuous game. Moreover, we

observe that that condition is equivalent to:

υ({x | g(x, υ) ≤ g(y, υ) ∀ y ∈ X}) = 1. (2.5)

Heuristically it means that, if the other players play with ”mean strategy” υ, the most

convenient thing to do for me is to play υ, namely it is useful to act as the others.

Remark 2.4. Notice that in our case X is finite and thus compact and separable and

also P(X ) is compact and thus separable. But Proposition 2.2 holds even if X is simply

compact, indeed it follows from Proposition A.15.

2.2 Weak Solutions

In this section, we’re going to study the behaviour of correlated equilibria when N →∞.

The purpose is to achieve an equation similar to (2.1), with thw difference that here we

can’t exploit the independence between the variables.

If considering a correlated strategy αn = (αn1 , . . . , α
n
n) in certain probability space (ΩnPn),

due to the symmetry of the problem, in analogy with what we have done in the Nash case,

we can restrict our analysis to the exchangeable ones, which means that (αn1 , . . . , α
n
n)

D
=

(αnσ(1), . . . , α
n
σ(n)) in distribution, for any permutation σ; this implies that also the private

states are exchangeable ⇒ (Xn
1 , . . . , X

n
n )

D
= (Xn

σ(1), . . . , X
n
σ(n)). Observe that for every

finite game it always exists al least one exchangeable correlated equilibrium, indeed we

know that there always exists a symmetric Nash equilibrium (α1, . . . , αn), which is, thus

a collection of i.i.d. random variables, which implies that, seen as a correlated, the vector

(α1, . . . , αn) is exchangeable.

2.2.1 Exchangeability

Before going further, we want to give some useful characterizations and properties of

exchangeable random variables.

Definition 2.5. Let I be an arbitrary index set and E be a Polish space. A family (Xi)i∈I
of random variables with values in E is called exchangeable if

Law[(Xi)i∈I ] = Law[(Xσ(i))i∈I ]

for any finite permutation σ : I → I.

Remark 2.6. It follows directly from the definition that the following are equivalent:

• (Xi)i∈I are exchangeable

• Let n ∈ N and i1, . . . , in ∈ I, j1, . . . , jn be pairwise distinct. Then Law[(Xi1 , . . . , Xin)] =

Law[(Xj1 , . . . , Xjn)].
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Observe that, if we consider n = 1 we have that exchangeable random variables are

identical distributed.

The converse is not true in general. Consider X,Y who take values on {0, 1, 2} with the

following distribution:

X \Y 0 1 2

0 1
7 0 1

7

1 1
7

2
7 0

2 0 1
7

2
7

Making the sum over the rows and the columns we have that P(X = 0) = P(Y = 0) =
2
7 , P(X = 1) = P(Y = 1) = 3

7 , P(X = 2) = P(Y = 2) = 3
7 , but P(X = 0, Y = 1) = 0 6=

1
7 = P(X = 1, Y = 0).

This means that the exchangeability is a stronger property than to be identically dis-

tributed.

Let X = (Xn)n∈N be a stochastic process with values in a Polish space E. Let S(n)

be the set of permutation σ : {1, . . . , n} → {1, . . . , n}. We consider σ also as a map

N → N by defining σ(k) = k for k > n. For σ ∈ S(n) and x = (x1, . . . , xn) ∈ En,

denote xσ = (xσ(1), . . . , xσ(n)). Similarly, for x ∈ EN, define xσ = (xσ(1), xσ(2), . . .) ∈ EN.

Let E′ be another Polish space. For measurable maps f : En → E′ and F : EN → E′,

define the maps fσ, Fσ by fσ(x) = f(xσ), Fσ(x) = F (xσ). In the following, we might write

f(x) = (x1, . . . , xn) both for x ∈ En and x ∈ EN.

Definition 2.7. • A map f : En → E′ is called symmetric if fσ = f for all σ ∈ S(n)

• A map F : EN → E′ is called n-symmetric id Fσ = F for all σ ∈ S(n). F is

symmetric if is n-symmetric for all n ∈ N.

Definition 2.8. Let X = (Xn)n∈N be a stochastic process with values in E. For n ∈ N,

define the σ-algebra E ′n in EN as:

E ′n := σ(F | F : EN → R measurable and n-symmetric)

and let En := X−1(E ′n) be the σ-algebra of the events that are invariant for X under all

permutations σ ∈ S(n). Further, let

E ′ =
∞⋂
n=1

E ′n = σ(F | F : EN → R measurabe and symmetric)

and let E =
⋂∞
n=1 En = X−1(E ′) be the σ-algebra of exchangeable events for X, or briefly

the exchangeable σ-algebra.

Remark 2.9. Let n ∈ N. Then every symmetric function f : En → R can be written in

the form f(x) = g( 1
n

∑n
i=1 δxi). Indeed, for any f symmetric, define

gf :P(E)→ E′

1

n

n∑
i=1

δxi 7→ f(x1, . . . , xn)
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and such that for any other ν ∈ P(E) be measurable. Such gf is well-defined because of

the symmetry of f :

gf

(
1

n

n∑
i=1

δxi

)
= f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) = gf

(
1

n

n∑
i=1

δxσ(i)

)
.

Thus, we’ve associated for every f symmetric, a function g as demanded.

Now, because of Remark 2.9, we have that En = σ(µ̄nX).

Theorem 2.10. Let X = (Xn)n be exchangeable. If ϕ : EN → R is measurable and if

E[|ϕ(X)|] <∞, then, for all n ∈ N and all σ ∈ S(n)

E[ϕ(X) | En] = E[ϕ(Xσ) | En]

In particular

E[ϕ(X) | En] =
1

n!

∑
σ∈S(n)

ϕ(Xσ) =: An(ϕ)

Proof. Let A ∈ En. Then there exists a B ∈ E ′n such that A = X−1(B). Let F = 1B; then

F ◦ X = 1A. By the definition of En, the map F : EN → R is measurable, n-symmetric

and bounded. Therefore, for any σ ∈ S(n)

E[ϕ(X)1A] = E[ϕ(X)F (X)] = E[ϕ(Xσ)F (Xσ)] = E[ϕ(Xσ)F (X)] = E[ϕ(Xσ)1A].

Where we’ve used the exchageability of X in the first equality and the symmetry of F in

the second one. We now observe that An(ϕ) is En-measurable and hence

E[ϕ(X) | En] = E
[ 1

n!

∑
σ∈S(n)

ϕ(Xσ) | En
]

=
1

n!

∑
σ∈S(n)

ϕ(Xσ).

Miming the proof of Theorem 2.10, we have the result also for finite sequence of exchange-

able random variables:

Corollary 2.11. Let X = (X1, . . . , Xn) be exchangeable If ϕ : En → R is measurable

and if E[|ϕ(X)|] <∞, then, for all σ ∈ S(n)

E[ϕ(X) | En] = E[ϕ(Xσ) | En]

In particular

E[ϕ(X) | En] =
1

n!

∑
σ∈S(n)

ϕ(Xσ) =: An(ϕ)

Remark 2.12. We notice that for a finite sequence of exchangeable random variables, we

could not apply directly Theorem 2.10, because it isn’t true that every finite exchangeable

sequence could be extended to an infinite exchangeable; as a matter of fact, for any

n ∈ N \ {1}, there is an exchangeable family of random variables X1, . . . , Xn that cannot
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be extended to an infinite exchangeable family X1, X2, . . .. Take for example X1, X2, X3

which take values in {0, 1} such that:

P(Xi = 1) = P(Xj = 0) =
1

2
∀ j = 1, 2, 3

P(X1 = 1, X1 = 2) = P(X1 = 1, X1 = 3) = P(X1 = 2, X1 = 3) =
1

k

Suppose that X1, X2, X3 could be extended to an infinite sequence of exchangeable random

variables, thus, for every n we should have:

0 ≤ Var
( n∑
i=1

1{Xi=1}

)
= E

[( n∑
i=1

1{Xi=1}

)2]
−
(
E
[ n∑
i=1

1{Xi=1}

])2

=
n∑
i=1

E
[
1{Xi=1}

]
+

n∑
i=1

∑
j 6=i

E
[
1{Xi=1}1{Xj=1}

]
− (nP(Xj = 1))2

=
n

2
+
n(n− 1)

k
− n2

4
=

2nk + 4n2 − 4n− kn2

4k
=
n(2k − 4− (k − 4)n)

4k

⇒ 0 ≤ n ≤ 2k − 4

k − 4

The existence of a superior bound for n implies that the sequence could not be extended

to an infinite one.

2.2.2 Probability Kernels

Before starting the analysis of our particular case we need to introduce a concept that

will generalize the conditional probability to the cases in which we are conditioning by an

event of probability 0. For example, if X is a uniform random variable in [0, 1] and A is an

event, we would like to give sense to an expression of the type P(A | X = 1
2). Moreover,

if X is a random variable which takes values on a measurable space (E, E) and A ∈ A is

an event in a probability space (Ω,A,P), we want also P(· | X = x) to be a probability

measure for all x ∈ E such that ∀A ∈ A, P(A | X)(ω) = P(A | X = x) on {ω : X(ω) = x}.

We begin with a general lemma; we will indicate by B(S) the Borel σ-algebra over a set

S.

Lemma 2.13 (Factorization Lemma). Let (Ω′,A′) be a measurable space and let Ω be a

non-empty set. Let f : Ω→ Ω′ be a map. A map g : Ω→ R̄ is σ(f) - B(R)-measurable if

and only if there is a measurable map φ : (Ω′,A′)→ (R̄,B(R̄)) such that g = φ ◦ f .

Proof. ⇐: If φ is measurable and g = φ ◦ f , then g is clearly σ(f)-B(R̄)-measurable.

⇒: Assume g to be σ(f)-B(R̄)-measurable. First consider the case g ≥ 0. Then there

exist measurable sets A1, A2, . . . ∈ σ(f) as well as numbers α1, α2, . . . ∈ [0,+∞)

such that g =
∑∞

n=1 αn1An . By the definition of σ(f), for any n ∈ N there is a set

Bn ∈ A′ such that f−1(Bn) = An; that is, 1An = 1Bn ◦ f . Define φ : Ω′ → R̄ as

φ =
∑∞

n=1 αn1Bn , thus φ is A′-B(R̄)-measurable and g = φ ◦ f .
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For a general g, consider g+ and g−, its positive and negative parts. As said above

there exist φ+ and φ− such that g+ = φ+ ◦ f and g− = φ− ◦ f , hence φ = φ+ − φ−

does the trick.

Let X be as above and let Z be a σ(X)-measurable real random variable; by Lemma 2.13

(with g = Z and X = f), there exists a map φ : E → R such that

φ is E-B(R̄)-measurable and φ(X) = Z. (2.6)

We’ll indicate, with abuse of notation, Z ◦X−1 := φ.

Definition 2.14. Let X ∈ L1(Ω) and Y : (Ω,A) → (E, E). We define the conditional

expectation of X given {Y = x} by E[X | Y = x] := φ(x), where φ is the function on

(2.6) with Z = E[X | Y ].

Analogously we define P(A | Y = x) := E[1A | X = x] for A ∈ A.

Definition 2.15. Let (Ω1,A1), (Ω2,A2) be two measurable spaces. A map k : Ω1×A2 →
[0,∞] is called a (σ-) finite transition kernel (from Ω1 to Ω2) if:

• ω1 7→ k(ω1, A2) is A1-measurable for any A2 ∈ A2 .

• A2 7→ k(ω1, A2) is a (σ-) finite measure on (Ω2,A2) for any ω1 ∈ Ω1.

If in the second condition the measure is a probability measure for all ω1 ∈ Ω1 then k is

called probability or Markov kernel.

Remark 2.16. Notice that a random measure verifies the conditions in Definition 2.15,

which means that it is always a probability kernel.

Definition 2.17. Let X be a random variable with values in a measurable space (E, E)

and let F ⊂ A be a sub-σ-algebra. A probability kernel kX,F from (Ω,F) to (E, E) is

called a regular conditional probability of X given F if for P-almost all ω ∈ Ω and

for all B ∈ E
kX,F (ω,B) = P(X ∈ B | F)(ω)

that is, ∫
Ω

1B(X(ω))1AP(dω) =

∫
Ω
kX,F (ω,B)1AP(dω) for all A ∈ F , B ∈ E (2.7)

Remark 2.18. Consider the special case where F = σ(Y ) for a random variable Y with

values in a measurable space (E′, E ′); then the probability kernel kX,Y is defined by

(x,A) 7→ kX,Y (x,A) = P(X ∈ A | Y = x) = kX,σ(Y )(Y
−1(x), A)

and it’s called a regular conditional distribution of X given Y . Observe that this map is

the function arising from the Factorization Lemma with an arbitrary value for x /∈ Y (Ω).

To be more precise:

kX,σ(Y ) : Ω× E → R
kX,Y : E′ × E → R.
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given B ∈ E , let φ(·, B) be a measurable function such that kX,σ(Y )(ω,B) = φ(Y (ω), B)

for all ω ∈ Ω. Notice that kX,σ(Y )(ω,B) is constant on the set {ω | Y (ω) = x} if x ∈ E′,
hence φ(x, ·) is a probability measure on (E, E) for every x ∈ Y (ω). For every x /∈ Y (Ω),

set φ(x, ·) = µ(·), where µ is an arbitrary probability measure on (E, E). Therefore φ is a

probability kernel from (E′, E ′) to (E, E). By definition of kX,σ(Y ):

P({X ∈ B} ∩A) =

∫
A
kX,σ(Y )(·, B)dP =

∫
A
φ(Y (·), B)dP =

∫
Y −1(A)

φ(·, B)dLaw(Y )

for every A ∈ σ(Y ). Also, by definition:

P({X ∈ B} ∩A) = E[1{X∈B}1A] = E[E[1{X∈B} | σ(Y )]A] =

∫
A
E[1{X∈B} | σ(Y )]dP

=

∫
A
P(X ∈ B | σ(Y ))(·)dP =

∫
A
P(X ∈ B | Y = x)x=Y (·)dP

=

∫
Y −1(A)

P(X ∈ B | Y = ·)dLaw(Y )

This means that kX,Y (x,B) := φ(x,B) = kX,σ(Y )(Y
−1(x), B) = P(X ∈ B | Y = x) for

every x ∈ Y (Ω) .

Moreover, for every B ∈ E , we can see kX,Y (·, B) as a random measure in the following

way:

kX,Y (·, B) : Ω→ R
kX,Y (·, B)(ω) = kX,Y (Y (ω), B) = kX,σ(Y )(ω,B)

(2.8)

Theorem 2.19 (Existence of the regular conditional distribution). Fix a Borel space E

and let Y be a random element in E and F ⊂ A a sub-σ-algebra. Then, there exists a

regular conditional distribution kX,F of X given F .

Proof. Since E is a Borel space, we may assume S ∈ B(R). The strategy will consist

in constructing a measurable version of the distribution function of the conditional dis-

tribution of X by first defining it for rational values and then extending it for the real

numbers.

For r ∈ Q, let F (r, ·) be a modification of the conditional probability P(X ∈ (−∞, r] |
F). For r ≤ s 1{X∈(−∞,r]} ≤ 1{X∈(−∞,s]}, thus, by the monotonicity of the condition

expectation, there is a null probability set Ar,s ∈ F such that

F (r, ω) ≤ F (s, ω) for all ω ∈ Ω \Ar,s. (2.9)

By dominated convergence (for the conditional expectation), for any r ∈ Q there exists a

null probability set Br ∈ F and C ∈ F such that

lim
n→∞

F
(
r +

1

n
, ω
)

= F (r, ω) for all ω ∈ Ω \Br

as well as

inf
n∈N

F (−n, ω) = 0 and sup
n∈N

F (n, ω) = 1 for all ω ∈ Ω \ C.
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Let N := (
⋃
r,s∈Q) ∪ (

⋃
r∈QBr) ∪ C. For ω ∈ Ω \N define

F̃ (z, ω) := inf{F (r, ω) : r ∈ Q, r > z} for all z ∈ R

By construction F̃ (·, ω) is monotone increasing, right continuous with limit 1 in ∞ and 0

in −∞. This means that F̃ (·, ω) is a distribution function for any ω ∈ Ω \N . For ω ∈ N
define F̃ (·, ω) = F0 with F0 an arbitrary but fixed distribution function.

For any ω ∈ Ω let k(ω, ·) be the probability measure on (Ω,A) with distribution function

F̃ (·, ω). Then, for r ∈ Q and B = (−∞, r],

ω 7→ k(ω,B) = F (r, ω)1NC (ω) + F0(r)1N (ω) (2.10)

is F-measurable. Now {(−∞, r] : r ∈ Q} is a π-system that generates B(R), thus the

measurability holds for all B ∈ B(R) and hence k is identified as a probability kernel.

We now show that k is a modification of the conditional distribution. For A ∈ F , r ∈ Q
and B = (−∞, r], by (2.10),∫

A
k(ω,B)P(dω) =

∫
A
F (r, ω)P(dω) =

∫
A
P[X ∈ B | F ]P(dω) = P[A ∩ {X ∈ B}]

As function of B both sides are finite measure on B(R) that coincide on the π-system

{(−∞, r] : r ∈ Q}. Thus, we have equality for all B ∈ R. Hence P-a.s. k(·, B) = P[X ∈
B | F ], that is k = kX,F .

Proposition 2.20. Let X be a random variable with values on a Borel space (E, E). Let

F ⊂ A a σ-algebra and lef kX,F be a regular conditional distribution of X given F . Let

f : E → R be measurable and E[|f(X)|] <∞. Then

E[f(X)|F ] =

∫
E
f(x)kX,F (·, dx) for P-almost all ω (2.11)

More in general:

Theorem 2.21 (Disintegration Formula). Fix two measurable spaces (E, E) and (T, T ),

a σ-field F ⊂ A and a random element X in E such that P[X ∈ · | F ] has a regular

version kX,F . Further consider a F-measurable random element Y in T and a measurable

function f : E × T → R with E[|f(X,Y )|] <∞. Then

E[f(X,Y ) | F ] =

∫
E
f(x, Y )kX,F (·, dx) a.s. (2.12)

Proof. Take B ∈ E and C ∈ T , then , recalling that X is F-measurable:

P[X ∈ B,X ∈ C] = E[P[X ∈ B,X ∈ C | F ]] = E[P[X ∈ B | F ]1{Y ∈C}]

=E[kX,F (·, B)1{Y ∈C}] = E
[ ∫

E
kX,F (·, dx)1{y∈B,Y ∈C}

]
Thus, we’ve proven that

E[f(X,Y )] = E[

∫
E
f(x, Y )kX,F (·, dx)] (2.13)
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with f(X, y) = 1{X∈B,Y ∈C}. The formula shows the measurability of the integral on the

right-hand side of (2.12) and extends, by linearity and monotone convergence, (2.13) to

any measurable function f ≥ 0.

Fix now a measurable function f : E × T → R+ with E[f(X,Y )] < ∞ and let A ∈ F
be arbitrary. Observe that (X,1B) is a F-measurable random element in T × [0, 1], so

g(X, (Y,1A)) := f(X,Y )1A satisfies our hypothesis, thus by (2.13):

E[f(X,Y )1A] = E[

∫
E
f(x, Y )1AkX,F (·, dx)] A ∈ F

By definition and uniqueness of conditional expectation∫
E
f(x, Y )kX,F (·, dx) = E[f(X,Y ) | F ] a.s.

For general f (and not only f ≥ 0), it’s sufficient taking differences.

Remark 2.22. In the special case in when F = σ(Y ) and P[X = · | Y ] = kX,Y (·, ·), (2.12)

becomes

E[f(X,Y ) | Y ] =

∫
E
f(x, Y )kX,Y (·, dx) a.s. (2.14)

2.2.3 Convergence of Correlated Equilibria

Unlike the Nash case, here we don’t have the independence between the private states,

so we have to study the convergence of the random vector (Xn
i , µ̄

n,i
X ) : Ωn → X ×

P(X ). Due to the compactness of X ,P(X ) and so X × P(X ), up to subsequences

{(Xn
i , µ̄

n,i
X )}n, {Xn

i }n, {µ̄
n,i
X }n are convergent in distribution. Denote with (X,µ) the limit

of the random vector and with p, pn ∈ P(X × P(X )) the respective distributions. Thus:

(Xn
i , µ̄

n,i
X )

n→∞−−−→ (X,µ) in distribution

pn
n→∞−−−→ p weakly

Now, Xn
i and µ̄n,iX are the marginals of the vector, so they are the composition with a

continuous function, the projection; thus, by the Continuous Mapping Theorem A.17, we

find, said υn,mn, υ,m the distributions of Xn
i , µ̄

n,i
X , X, µ:

Xn
i

n→∞−−−→ X in distribution

υn
n→∞−−−→ υ weakly

µ̄n,iX
n→∞−−−→ µ in distribution

mn n→∞−−−→ m weakly

Let us consider Ψ ∈ Cb(X ) (observe that both the continuity and the boundedness hy-

pothesis is redundant because of the compactness of X , but it is an hypothesis which has

to be kept if we only suppose the compactness of X ), then, as in section 2.1, F : P(X )→
R, σ 7→

∫
X Ψdσ is continuous with respect to the weak topology. Thus , if i 6= 1, using the
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fact that the Xn
i are identically distributed:

En
[ ∫
X

Ψdµ̄n,iX

]
= En[F (µ̄n,iX )]

n→∞−−−→ E[F (µ)]

En[

∫
X

Ψdµ̄n,iX ] = En
[ ∫
X

Ψd
( 1

n− 1

∑
j 6=i

δXN
j

)]
= En

[ 1

n− 1

∑
j 6=i

Ψ(Xn
j )
]

=
1

n− 1
(n− 1)En[Ψ(Xn

1 )] = En[Ψ(Xn
1 )]

n→∞−−−→ E[Ψ(X)] =
∑
x∈X

Ψ(x)P(X = x)

By the uniqueness of the convergence in distribution:

E
[ ∫
X

Ψdµ
]

= E[Ψ(X)] =
∑
x∈X

Ψ(x)P(X = x) (2.15)

for any Ψ ∈ Cb(X ).

We have thus obtained that E[µ] = υ. But we can find a better result by calculating the

regular conditional probability of Xn
i given µ̄nX .

Recall that, by Remark 2.1, studying the convergence (in distribution) of µ̄n,iX is equivalent

to study that of µ̄nX and their limit is the same.

Proposition 2.23. Let (Xn
1 , . . . , X

n
n ) exchangeable with Xn

i : Ωn → X for every i, let

µ̄nX = 1
n

∑
i δXi be its empirical measure. Then

kXn
i ,µ̄

n
X

(·, ·) = µ̄nX (2.16)

Proof. We need to prove that µ̄nX verifies (2.7) for every B ∈ B(X ) and for every A that

is σ(µ)-measurable, i.e.:

En[1{Xn
i =x} | µ̄nX ] = µ̄nX(x) a.s.

Now, since (Xn
1 , . . . , X

n
n ) is exchangeable, as a consequence of Corollary 2.11, taking ϕ =

δπ1(Xn)(x), we have:

En[ϕ(Xn) | En] = En[1{Xn
1 =x} | µ̄nX ] = . . . = En[1{Xn

n=x} | µ̄nX ] a.s.

thus

En[1{Xn
i =x} | µ̄nX ] =

1

n

n∑
i=1

En[1{Xn
i =x} | µ̄nX ] = En

[ 1

n

n∑
i=1

1{Xn
i =x} | µ̄nX

]
=En

[ 1

n

n∑
i=1

δXn
i

(x) | µ̄nX
]

= En[µ̄nX(x) | µ̄nX ] = En[〈1x, µ̄nX〉 | µ̄nX ] = µ̄nX(x)

(2.17)

By definition of the regular conditional probability we’ve find that kXn
i ,σ(µ̄nX) = µ̄nX ; thus

for every θ ∈ P(X ), kXn
i ,µ̄

n
X

(θ, ·) = kXn
i ,σ(µ̄nX)((µ̄

n
X)−1(θ), ·) = θ(·) = P(Xn

i ∈ · | µ̄nX = θ).

Briefly we could formally write: Law(Xn
i | µ̄nX = θ) = θ.

If we show that kXn
i ,µ̄

n
X

(·, B), seen as a real random variable, converges in distribution
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to kX,µ(·, B) for all B ∈ B(X ), since µ̄nX converge in distribution to µ, we have that

kX,µ(·, ·) = µ, and hence Law(X | µ = θ) = θ. In order to achieve this result, we first

show the convergence of the conditional expectation; consider f : P(X )→ R a continuous

function, then E[1{X=x}|µ] is the (a.s.) unique function Z such that E[1{X=x}f(µ)] =

E[Zf(µ)]. Because of the convergence in distribution of (Xn
i , µ̄

n
X), we have:

En[1{Xn
i =x}f(µ̄nX)]→ E[1{X=x}f(µ)]

but also

En[1{Xn
i =x}f(µ̄nX)] = En[En[1{Xn

i =x}f(µ̄nX) | µ̄nX ]] = En[f(µ̄nX)En[1{Xn
i =x} | µ̄nX ]]

(2.17)
= En[f(µ̄nX)µ̄nX(x)] = En[µ̄nX(x)f(µ̄nX)]→ E[µ(x)f(µ)]

This means that for all f : P(X ) → R continuous, by the uniqueness of the convergence

in distribution:

E[1{X=x}f(µ)] = E[µ(x)f(µ)]⇒ E[1{X=x}|µ] = µ(x)

Going back to the particular case of a correlated equilibrium, first of all, we suppose that

the function φ that links the chosen strategy within the private state is injective, and thus

bijective. In this situation every deviation from the private state corresponds to a deviation

from the strategy (observe that the converse it is always true), indeed if d : X → X than,

we can define d̃ : S → S as d̃ : φ−1 ◦ d ◦ φ, hence d̃(α) = φ−1 ◦ d ◦ φ(α) = φ−1(d(X)).

We could than rewrite the definition of the correlated equilibrium, for a fixed n, in this

particular situation in the following way: a correlated strategy αn = (αn1 , . . . , α
n
n) is a

correlated equilibrium if, for every i and for every d : X → X

En[g(Xn
i , µ̄

n,i
X )] ≤ En[g(d(Xn

i ), µ̄n,iX )] (2.18)

Proposition 2.24 (Weak solutions of the static Mean-Field equation). Let φ be bijec-

tive. Let g : X × P(X ) → R be continuous (and bounded). Let α̃n = (α̃n1 , . . . , α̃
n
n) an

exchangeable correlated equilibrium when varying n, and (X̃n
1 , . . . , X̃

n
n ) the correspondent

private states. Then, up to a subsequence, the random vector {(X̃n
i , µ̄

i,n
X̃

)} converges in

distribution to (X,µ) satisfying:

E
[ ∫
X
g(x, µ)µ(dx)

]
= inf

d:X→X

{
E
[ ∫
X
g(s, µ)kd(·, ds)

]}
(2.19)

where the infimum is taken over the probability kernels kd(·, ·) = P(d(X) ∈ · | µ) a.s..

Proof. We want to study the convergence of the cost function Jni (α̃). Since (X̃n
i , µ̄

n,i

X̃
), up

to sub-sequences converges in distribution, to (X,µ), say, we have:

Jni (α̃) = En[g(X̃n
i , µ̄

n,i

X̃
)]

n→∞−−−→ E[g(X,µ)]

We can apply the Disintegration Formula (2.12) and obtain:

Jni (α̃)
n→∞−−−→E[g(X,µ)] = E[E[g(X,µ)|µ]]

=E
[ ∫
X
g(x, µ)kX,µ(·, dx)

]
= E

[ ∫
X
g(x, µ)µ(dx)

]
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Since φ is bijective and for any n, α̃n = (α̃n1 , . . . , α̃
n
n) is a correlated equilibrium, by equation

(2.18), for every i and for every d : X → X , En[g(X̃n
i , µ̄

n,i
X̃

)] ≤ En[g(φ(d(α̃ni )), µ̄n,i
X̃

))]. We

write Zn := φ(d(α̃ni )), hence the inequality becomes: En[g(X̃n
i , µ̄

n,i
X̃

)] ≤ En[g(Zn, µ̄
n,i
X̃

))].

Because of the compactness of the spaces we have again (Zn, µ̄
n,i
X̃

)→ (Z, µ) and Zn → Z

in distribution (up to sub-sequences):

En[g(Zn, µ̄
n,i
X̃

))]
n→∞−−−→ E[g(Z, µ)]

Now, P[Z ∈ · | µ] = kZ,µ(·, ·) for some probability kernel kZ,µ, thus, integrating (2.14), we

obtain:

E[g(Z, µ)] = E[E[g(Z, µ) | µ]] = E
[ ∫
X
g(s, µ)kZ,µ(·, ds)

]
(2.20)

So, we have that for every d : X → X

E
[ ∫
X
g(x, µ)µ(dx)

]
≤ E

[ ∫
X
g(s, µ)kd(·, ds)

]
.

Where kd(·, ·) = P(d(X) ∈ · | µ) a.s.. But since d = idX realizes the equality, we finally

have:

E
[ ∫
X
g(x, µ)µ(dx)

]
= inf

d:X→X

{
E
[ ∫
X
g(s, µ)kd(·, ds)

]}

Equation (2.19) tells us that µ, which could be interpreted as the law of X given µ,

minimizes the limit cost function all over the laws of the deviations from X always given

µ.

We know want to verify that a strong solution in the sense of (2.1) is also a weak solution

in the sense of (2.19). Take µ = θ ∈ P(X ) a.s., but, since in (2.15) we’ve proved that

E[µ] = υ, with υ = Law(X), we have θ = E[θ] = E[µ] = υ ⇒ µ = υ a.s. . The left-hand

side in (2.19) becomes

E
[ ∫
X
g(x, µ)µ(dx)

]
=

∫
X
g(x, υ)υ(dx) = E[g(X, υ)]

which is exactly the left-hand side in (2.1). Considering now the right-hand side, we find:

kd(θ,B) = P(d(X) ∈ B | µ = θ) 6= 0⇔ θ = υ

in that case we obtain, since {µ = υ} has probability one, kd(υ,B) = P(d(X) ∈ B | µ =

υ) = P(d(X) ∈ B), hence

kd(·, dx)(ω) = kd(µω, dx) = kd(υ, dx) = P(d(X) ∈ dx) for a.e. ω ∈ Ω

E
[ ∫
X
g(x, µ)kd(·, dx)

]
=

∫
X
g(x, υ)Lawd(X)(dx)

Thus, we observe that a strong solution in the sense of (2.1) is a weak solution in the

sense of (2.19). On the contrary, if in (2.19) we use the hypothesis of the Nash’s case (µ
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deterministic), we do not obtain exactly (2.1), indeed in the latter case we have that the

infimum is taken over all the maps d : X → X , but if X doesn’t have ”full image”, which

means that if Im(X) $ X , we can’t obtain all the distributions over X when varying d,

but only those over Im(X).

In Observation 1.8, we’ve seen that, in the finite case, every linear combination of Nash

equilibria is still a correlated equilibrium; now, we want to see if this behaviour is kept

also in the mean-field case. So, let θ1, θ2 ∈ P(X ), let m, the distribution of µ, be defined

as m = pδθ1 + (1− p)δθ2 ∈ P(P(X )). This means that

P(µ = θ1) = p P(µ = θ2) = 1− p

Then, on the left-hand side, we have:

E
[ ∫
X
g(x, µ)µ(dx)

]
= p

∫
X
g(x, θ1)θ1(dx) + (1− p)

∫
X
g(x, θ2)θ2(dx)

and on the right-hand side:

E
[ ∫
X
g(x, µ)kd(·, dx)

]
=

∫
Ω

∫
X
g(x, µω)kd(·, dx)(ω)P(dω)

=

∫
µ−1(θ1)

∫
X
g(x, µω)kd(µω, dx)P(dω) +

∫
µ−1(θ2)

∫
X
g(x, µω)kd(µω, dω)P(dx)

= p

∫
X
g(x, θ1)kd(θ1, dx) + (1− p)

∫
X
g(x, θ2)kd(θ2, dx)

= p

∫
X
g(x, θ1)P(d(X) ∈ dx | µ = θ1) + (1− p)

∫
X
g(x, θ2)P(d(X) ∈ dx | µ = θ2)

= p

∫
X
g(x, θ1)Law(d(X)|µ=θ1)(dx) + (1− p)

∫
X
g(x, θ2)Law(d(X)|µ=θ2)(dx)

Now, if, for i = 1, 2,
∫
X g(x, θi)θi(dx) = infσ

∫
X g(x, θi)σ(dx), we’ll have:

p

∫
X
g(x, θ1)θ1(dx) + (1− p)

∫
X
g(x, θ2)θ2(dx)

= p inf
σ

∫
X
g(x, θ1)σ(dx) + (1− p) inf

σ

∫
X
g(x, θ2)σ(dx)

≤ inf
σ
{
∫
X
g(x, θ1)σ(dx) + (1− p)

∫
X
g(x, θ2)σ(dx)}

(2.21)

Thus, if σ realizes the infimum in the sense of (2.21), it will also realizes the infimum in

the sense of weak solution of a static mean-field game.

Here the difference between Nash’s and correlated cases are two: (1) as before (in the

case of µ deterministic) the infimum is taken for the modifications of X, (2) we have to

consider the conditioning by the value of µ, that is could be ignored since X and µ are

not independent and {µ = θi}, for i = 1, 2, is not a trivial event.
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2.2.4 Additional remarks

We observe that in (2.19), it would seem natural to have

E
[∫
X
g(x, µ)µ(dx)

]
= inf

f :X×P(X )→X
E
[∫
X
g(f(x, µ), µ)µ(dx)

]
which is equivalent to

E [g(X,µ)] = inf
f :X×P(X )→X

E [g(f(X,µ), µ)] (2.22)

this intuition is given by the fact that it seems reasonable to think that an equilibrium is

also an ”a posteriori” concept, that means that a player reaches a stable situation when,

after seeing what the other players choose (in this case only by means of their empirical

measure), he/she chooses his action.

We weren’t be able to prove (2.22), but it appears to be false by the following motivations.

First of all, we notice that, since a Nash equilibrium is also a correlated one, if (2.22) is

valid, it has to be verified also in the case of the strong solutions; thus, we start from the

case of Nash equilibria when N → ∞. We know that in this case, µ = υ = Law(X) a.s.,

hence we have that any random function f(·, µ) = f(·, υ) a.s., which means that there

a bijective relation between any deviation f : X × P(X ) → X and those of the form

d : X → X , it follows that, in this situation:

E [g(X,µ)] = inf
d:X→X

E[g(d(X), µ)] = inf
f :X×P(X )→X

E [g(f(X,µ), µ)]

If we consider instead the case of N finite, we manage to give a very simple example in

which the deviation f : X ×P(X )→ X is not allowed. In fact, consider a 2-persons game

where every players can choose between two actions, say S = {0, 1}, and the private state

coincides with the respective strategy. The cost matrix we are considering is:

1/2 0 1

0 (-2,-2) (-3,-3)

1 (-3,-3) (-2,-2)

In this case, since µ̄i,nX = δXj , we can simply consider f : S × S → S. We also observe

that, by symmetry, the choice of the player is indifferent; in the following, we will in fact

refer to a generic player.

A symmetric Nash equilibrium is p = (1
2 ,

1
2), indeed:

d

dx
(−2x2 − 6x(1− x)− 2(1− x)2) = −4x− 6 + 12x+ 4− 4x = 4x− 2

which is minimum when x = 1
2 . In this case:

J = E[p] =
1

4
(−2− 3− 3− 2) = −10

4
= −5

2
.



2.2 Weak Solutions 51

Now, we take f : S × S → S defined as follows:

f(0, 0) = 1, f(1, 0) = 1, f(0, 1) = 0, f(1, 1) = 0 (2.23)

So:

E[p̃] =
1

4
(g(f(0, 0), 0) + g(f(1, 0), 0) + g(f(0, 1), 1) + g(f(1, 1), 1))

=
1

4
(g(1, 0) + g(1, 0) + g(0, 1) + g(0, 1))

1

4
(−3− 3− 3− 3) = −3 < −5

2

The next step is to find a correlated equilibrium, which is not also a Nash one, whose

f -deviation, for a suitable f , decreases the cost. We will consider f as in (2.23).

A simple correlated equilibrium p̃ is

1/2 0 1

0 0 1
2

1 1
2 0

Here E [g(f(α1, α2), α2)] = E [g(α1, α2)]. By Proposition 1.7, we now that any linear

combination of correlated equilibria is still a correlated equilibrium, we take p′ = 1
2p+ 1

2 p̃,

which is

1/2 0 1

0 1
8

3
8

1 3
8

1
8

whose cost is J(p′) = 1
8(−2 − 2) + 3

8(−3 − 3) = −22
8 . Applying f we get, J(f(p′)) =

1
8(g(f(0, 0), 0) + g(f(1, 1), 1)) + 3

8(g(f(0, 1), 1) + g(f(1, 0), 0)) = 1
8(−3− 3) + 3

8(−3− 3) =

−3 < −22
8 . If we now show that p′ is not a Nash equilibrium, we would have reached

our purpose; if it is so, we call pi the probability of the ith player of choosing 0, hence:
1
8p1p2 = (1− p1)(1− p2) = 1− p1p2 + p1p2 ⇒ p1 = 1− p2, 3

8 = (1− p1)p2 = p1(1− p2)⇒
p1 = p2 ⇒ p1 = p2 = 1

2 ; but 1
4 6=

1
8 .

Summarizing, we could say that these observations lead us to the following conclusions:

• the intuition is that (2.22) does not work in the correlated case, even if we manage

to obtain it in the limit case of Nash. Indeed, we frame this situation in the very

special case of µ a.s. constant and the examples we have given go in the opposite

direction.

• Another idea could be that of defining at the beginning a correlated equilibrium

as a distribution which minimizes the cost even for modification of the form f :

X × P(X ) → X , but this should be coherent with the concept Nash equilibrium,

which is not since we have shown that such a modification is not allowed in that

case.





Appendix A

Convergence of measures

A.1 Weak Convergence

Consider a metric space (S, d) and a sequences of probability measures (Pn)n∈N in S. We’ll

indicate the space of the probability measures over S with P(S).

Definition A.1. We say that (Pn)n converges weakly to P ∈ P(S) if, for every con-

tinuous bounded mapping f : S → R∫
S
fdPn

n→∞−−−→
∫
S
fdP.

Consider a sequence of random variable Xnn inN which take values is a metric space (S, d);

denote with Pn their distribution. Observe that the probability space on which they’re

defined could be different.

Definition A.2. We say that {Xn}n∈N converges in distribution to the random ele-

ment X, whose distribution is P , if Pn
n→∞−−−→ P weakly.

Explicitly we can write that Xn → X in distribution if, for every f ∈ Cb(S)∫
S
f(x)Pn(dx) =

∫
Ωn

f(Xn(ω))P(dω) = En[f(Xn)]→ E[f(X)]

=

∫
Ω
f(X(ω))P(dω) =

∫
S
f(x)P (dx)

Definition A.3. A σ-finite measure µ on (S, S) is called

1. inner regular if

µ(A) = sup{µ(C) | C ⊂ A is closed} for all A ∈ S (A.1)

2. outer regular if

µ(A) = sup{µ(G) | G ⊃ A is open} for all A ∈ S (A.2)

3. regular if it’s both inner and outer regular.

53
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Proposition A.4. Let (S, d) be a metric space with the Borel σ-algebra S. Then every

probability measure P ∈ P(S) is regular.

Proof. Define

G := {A ∈ S | µ(A) = sup{µ(C) | C ⊂ A is closed } = sup{µ(G) | G ⊃ A is open}}.

If we show that G is a σ-algebra that contains all the closed sets, we’ve finished. Let A

be closed. It’s clear that the first inequality is satisfied. In order to verify the second

one, we define Gn := {x ∈ S | d(x,A) < 1
n}, which is a system of open neighbourhood

of A. Since A is closed,
⋂
n∈N>0

G = A and because of the upper semi-continuity of P ,

infn P (Gn) = P (
⋂
n∈N>0

) = P (A), which proves the second equality.

We now show that G is a σ-algebra. It’s clear that S ∈ G and that G is stable under

complementation. Let (An) be a sequence of elements in G and let A :=
⋃
n∈NAn. By

definition, for every n there exists a closed set Cn ⊂ An and an open set Gn ⊃ An
such that P (Cn) ≥ P (An) − ε

2n and P (Gn) ≤ P (An) + ε
2n ; thus, P (Gn \ An) ≤ ε

2n and

P (An \ Cn) ≤ ε
2n . We set G :=

⋃
n∈NGn and C :=

⋃n0
n=1Cn where n0 is such that

P (
⋃
n∈NCn \ C) ≤ ε. Thus G and F are respectively an open and a closed set such that

C ⊂ A ⊂ G.

P (G \A) ≤ P (
⋃
n∈N(Gn \An)) ≤

∑
n∈N P (Gn \An) = ε

P (A \ C) ≤ P (
⋃
n∈NCn \ C) + P (A \

⋃
n∈NCn) ≤ 2ε

}
⇒ A ∈ G.

Corollary A.5. Let P, P̃ be two probability measures over (S, d), then:

1. if P (C) = P̃ (C) for all C closed (or open) subset of S, then P = P̃ .

2. if
∫
S fdP =

∫
S fdP̃ for every f ∈ C(S), then P = P̃ .

Proof. 1. Direct consequence of Proposition A.4

2. Let C ∈ S be closed. We define a function ϕR→ [0, 1] by

ϕ(x) :=


1 if x ≤ 0

1− x if 0 ≤ x ≤ 1

0 if x ≥ 1

For every n ≥ 1 and every x ∈ S, let fn(x) := ϕ(nd(x,C)). Now, (fn)n is a

decreasing sequence of continue functions over S, whose limit is 1C . By dominated

convergence,
∫
S fndP → P (C) and

∫
S fndP̃ → P̃ (C). By 1., we conclude.

Remark A.6. Observe that, as a consequence of Corollary A.5, the weak limit is unique.

Definition A.7. Let Π ⊂ P(S) be a family of probability measures. A family C of

measurable maps S → R is called a separating family for Π if, for any two measures

P, P̃ ∈ Π ∫
S
fdP =

∫
S
fdP̃ for all f ∈ C ∩ L1(P ) ∩ L1(P̃ )⇒ P = P̃
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Proposition A.8. Let C be a dense subset of Cb(S) equipped with the sup norm ‖·‖∞,

then C is a separating family for P(S).

Proof. We would like to prove that if for every f, f̃ ∈ C
∫
S fdP =

∫
S f̃dP̃ , then for every

g, g̃ ∈ Cb(S)
∫
S gdP =

∫
S g̃dP̃ . Since C is dense in Cb(S), taken g, g̃ ∈ Cb(S), we have that

for any ε > 0, there exist f, f̃ ∈ C such that

‖g − f‖∞ ≤ ε ‖g̃ − f̃‖∞ ≤ ε (A.3)

Now ∫
S
gdP =

∫
S

(g − f)dP +

∫
S
fdP −

∫
S
f̃dP̃ +

∫
S

(f̃ − g̃)dP̃ +

∫
S
g̃dP̃

≤
∫
S
‖g − f‖∞dP +

∫
S
fdP −

∫
S
f̃dP̃ +

∫
S
‖f̃ − g̃‖dP̃ +

∫
S
g̃dP̃

≤‖g − f‖∞ +

∫
S
fdP −

∫
S
f̃dP̃ + ‖f̃ − g̃‖+

∫
S
g̃dP̃ ≤ 2ε+

∫
S
g̃dP̃

Were the last inequality is a consequence of (A.3) and the fact that f, f̃ ∈ C
∫
S fdP =∫

S f̃dP̃ . Analogously, we show that
∫
S g̃dP̃ ≤ 2ε +

∫
S gdP . By the arbitrariness of ε,

we have that for every g, g̃ ∈ Cb(S)
∫
S gdP =

∫
S g̃dP̃ . Thanks to Corollary A.5, we

conclude.

Remark A.9. Weak convergence induces on P(S) the weak topology τw; this is the coars-

est topology such that for all f ∈ Cb(S), the map P(S)→ R, P 7→
∫
S fdP is continuous.

We now introduce two distances in P(S), proving their equivalence by showing that they

induce the same topology τw over P(S).

The first one is the Bounded Lipschitz distance, defined as follows:

ρbL(P,Q) := sup{
∫
A
fd(P −Q) | f : A→ R, ‖f‖bL ≤ 1} (A.4)

where

‖f‖bL = sup
a∈A
|f(a)|+ sup

a,ã∈A

|f(a)− f(ã)|
dA(a, ã)

= ‖f‖∞ + Lip(f)

(P(S), τw) is metrized by bounded Lipschitz distance; indeed, let us consider {Pn} and P

such that ρbL(Pn, P )→ 0 as n→∞. Then for every f bounded and Lipschitz,
∫
A fdPn →∫

A fdP , with ‖f‖bL ≤ 1 and, by linearity, that would be true for any Lipschitz bounded

function (indeed, if h is m-Lip., then h/m is 1-Lip. and if ‖h‖∞ = c then, (‖h‖∞)/c ≤ 1).

Now, since bounded Lipschitz function are dense in Cb(A), by Proposition A.3, we have∫
A fdPn →

∫
A fdP for any f ∈ Cb(A), that is the definition of weak convergence. The

other implication is trivial since any Lipschitz bounded function is also continuous and

bounded.

The second one is the Prokhorov distance, defined as follows:

ρ(P,Q) := inf{ε ≥ 0 | P (A) ≤ Q(Aε) + ε,Q(A) ≤ P (Aε) + ε for all A ∈ S} (A.5)

where Aε := {x ∈ S | d(x,A) < ε}. Observe that for ε↘ 0, Aε ↘ Ā.
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Remark A.10. • If ε ≥ ρ(P,Q), then for every A ∈ S, P (A) ≤ Q(Aε) + ε.

• (A.5) is equivalent to

ρ(P,Q) = inf{ε ≥ 0 | P (A) ≤ Q(Aε) + ε for all A ∈ S}

indeed, if we suppose that P (A) ≤ Q(Aε)+ε for every A ∈ S, we define B = (Aε)C ∈
S ⇒ P (B) ≤ Q(BC)+ε⇒ 1−P (Aε) ≤ 1−Q(Aε)+ε⇒ Q(A) ≤ Q(Aε) ≤ P (Aε)+ε.

ρ(Pn, P )→ 0⇒ Pn → P weakly: for every n, we set εn := ρ(Pn, P ) + 1
n . By observation

A.10, εn ≥ ρ(Pn, P )⇒ Pn(A) ≤ P (Aε) + ε. Let f ∈ Cb(S), M := ‖f‖∞∫
S
fdPn =

∫ M

0
Pn({f ≥ a})da ≤

∫ M

0
(P ({f ≥ a}εn + εn)da =

∫ M

0
P ({f ≥ a}εn)da+Mεn

For n → ∞, ρ(Pn, P ) → 0 ⇒ εn → 0 and so {f ≥ a}εn ↘ {f ≥ a} (because {f ≥ a}εn is

closed). By dominated convergence

lim
n→∞

∫
S
fdPn ≤ lim

n→∞

∫ M

0
P ({f ≥ a}εn)da+Mεn =

∫ M

0
P ({f ≥ a})da =

∫
S
fdP.

This implies that lim supn→∞
∫
S fdPn ≤

∫
S fdP . Now, for every f ∈ Cb(S), define g := 1−

f ∈ Cb(S), so lim infn→∞
∫
S fdPn = lim infn→∞

∫
S(1−g)dPn = 1− lim supn→∞

∫
S fdPn ≥

1 −
∫
S fdP =

∫
S fdP . Thus, we conclude that limn→∞

∫
S fdPn =

∫
S fdP for every

bounded continuous function.

Pn → P ⇒ ρ(Pn, P ) → 0 (if S is separable): Let ε > 0. Consider a S-partition of S

{Ek}k such that diam(Ek) < ε for all k. Let be N such that P (
⋃
i≥N Ei) ≤ ε. Define

G := {G = (
⋃
i∈I Ei)

ε | I ⊂ {1, . . . , N}}. Since #G <∞, as a consequence of portmanteau

theorem (Theorem A.11), there exist n0 such that P (G) ≤ Pn(G)+ε for all G ∈ G and for

all n ≥ n0 (it’s sufficient to take the maximum over the n0 that verifies this equality for

the singles G ∈ G). Let E ∈ S, consider the set J of all the i ≤ N such that E ∩ Ei 6= ∅
and define E0 :=

⋃
i∈J Ei. For n ≥ n0, by noting that E0 ∈ G, we have:

P (E) = P (E ∩
⋃
i≤N

Ei) + P (E ∩
⋃
i≥N

Ei) ≤ P (E ∩
⋃
i∈J

Ei) + P (
⋃
i≥N

Ei)

≤ P (E0) + ε ≤ P (Eε0) + ε ≤ Pn(Eε0) + ε+ ε ≤ Pn(E2ε) + 2ε

The last inequality is justified by the fact that diam(Ei) < ε, Ei ∩ E 6= ∅ for i ∈ J and

thus Ei ⊂ Eε. We’ve found that, for any n ≥ n0, ρ(Pn, P ) ≤ 2ε.

We say that a set A ∈ S is a P-continuity set if P (∂A) = 0. Observe that for every A,

∂A = Ā \ Å is always measurable because it is closed.

Theorem A.11 (Portmanteau). The following are equivalent:

(i) Pn → P weakly.

(ii) For all bounded and Lipschitz f ,
∫
S fdPn →

∫
S fdP .

(iii) For every closed set C ⊂ S, lim supn→∞ Pn(C) ≤ P (C).
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(iv) For every open set G ⊂ S, lim infn→∞ Pn(G) ≥ P (G).

(v) For every P -continuity set A, limn→∞ Pn(A) = P (A).

Proof. (i) ⇒ (ii) and (iii) ⇔ (iv) are trivial.

(ii) ⇒ (iii): Define fk(x) := ϕ(kd(x,C)) as in the proof of Corollary A.5. We have that

fk is Lipschitz because ϕ and d are too and that fk ↘ 1C simply. By hypothesis, for

every k,
∫
S fkdPn

n→∞−−−→
∫
S fkdP . But also, since fk ≥ 1C , we have lim supn→∞ Pn(C) =

lim supn→∞
∫
S 1CdPn ≤ lim supn→∞

∫
S fkdPn =

∫
S fkdP . By the dominated convergence

theorem when k →∞, we conclude.

(iii) + (iv) ⇒ (v): Let A be a P -continuity set, then:

lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (Å) ≤ lim inf
n→∞

Pn(Å) ≤ lim inf
n→∞

Pn(A).

(v) ⇒ (i): Let f : S → R be continuous and bounded. Without loss of generality, we can

suppose f with values over R+, otherwise we consider separately the positive and negative

parts. Let A := {(x, a) ∈ S × R+ | f(x) > a} =
⋃
r∈Q+

({f > r} × [0, r]) ∈ S ⊗ B(R+). If

we indicate by λ the Lebesgue measure and M := ‖f‖∞ <∞, we have

(P ⊗ λ)(A) =

∫
S×R+

1Ad(P ⊗ λ) =

∫
R+

P ({f > a})da

(P ⊗ λ)(A) =

∫
S
fdP

⇒
∫
R+

P ({f > a})da =

∫
S
fdP

Thus,
∫
R+
Pn({f > a})da =

∫
S fdPn =

∫M
0 Pn({f > a})da. Since f is continuous, ∂{f >

a} ⊂ f = a. The set {a ≥ 0 | P ({f = a}) > 0} is at most countable, indeed, for a fixed

n, there are at most n a such that P ({f = a}) ≥ 1
n , otherwise 1 = P (S) =

∑
a∈S P ({f =

a}) ≥ 1
n#{a | P ({f = a}) ≥ 1

n}. Now, for λ-a.e. a, P (∂{f > a}) = 0, and so, for

λ-a.e. a Pn({f > a}) → P ({f > a}). By dominated convergence,
∫M

0 Pn({f > a})da →∫M
0 P ({f > a})da, which means that

∫
S fdPn →

∫
S fdP .

Before proceeding further in the analysis of the convergence, we give some topological

results about S and that link the properties of the space S with those of P(S).

Definition A.12. • A ⊂ S is relatively compact if Ā is compact.

• A ⊂ S is totally bounded if, for every ε > 0, there exist x1, . . . , xN ∈ S such that

A ⊂
⋃N
n=1B(xn, ε).

Proposition A.13. • If A ⊂ S is relatively compact, then A is totally bounded.

• If S is complete, then A relatively compact if and only if A is totally bounded.

Proof. • Consider ε > 0 and an open covering Ā ⊂
⋃∞
n=1B(xn, ε), then there exist a

finite sub-covering Ā ⊂
⋃N
n=1B(xn, ε)⇒ A ⊂ Ā ⊂

⋃∞
n=1B(xn, ε).

• Let S be complete and A be totally bounded. Observe that A totally bounded ⇒ Ā

totally bounded, indeed, for ε > 0, there exist a finite covering A ⊂
⋃N
n=1B(xn,

ε
2),

since a finite union of closed sets is closed, we have Ā ⊂
⋃N
n=1 B̄(xn,

ε
2) ⊂

⋃N
n=1B(xn, ε).
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Ā totally bounded implies that every sequence has a Cauchy sub-sequence, indeed, if

(xn)n is a sequence, than it has a subsequence contained in a ball of radius 1
2 (because

Ā ⊂
⋃N
n=1B(yn, ε) for every ε) then this sub-sequence is contained in a ball of radius

1
3 and so on. By a diagonal argument, take the first element of these sub-sequences

and call the new sequence (xnk)k. If k > h, d(xnk , xnh) < 2
k+1

k→∞−−−→ 0 ⇒ (xnk)k is

Cauchy sub-sequence.

Now Ā is totally bounded and complete. Thus, for every sequence, there is a Cauchy

sub-sequence that is convergent since Ā is complete ⇒ Ā is sequentially compact

and thus compact.

Proposition A.14. If (S, d) is a compact metric space, then S is also separable.

Proof. Consider the following open covering:

In =

{
B(x,

1

n
)|x ∈ S

}
since S is compact, each In has a countable sub-covering Jn = {B(xnm,

1
n)|m ∈ N, xm ∈ S}.

Now A := {xnm|m,n ∈ N} is a countable subset of S, which is dense, indeed, since Jn are

coverings for S for all n, taken an x ∈ S, for all n ∈ N, there exists a m ∈ N such that

d(x, xmn ) < 1
n . This implies that S is separable.

Proposition A.15. S compact metric space ⇒ P(S) compact.

Proof. We’ve seen that with Bounded Lipschitz distance (A.4), P(S) is a metric space

(with the τw topology), thus, compactness and sequential compactness are here equivalent;

we will show in fact that P(S) is sequentially compact, that is for any sequence Pn ∈ P(S),

{Pn} has a convergent subsequence. For convenience, we shall write P (f) := 〈P, f〉 =∫
S fdP .

Because of the separability of C(S), we can choose a countable dense subset, say {fi}i∈N>0 .

Consider the sequence Pn(f1) ∈ R of real numbers. We have |Pn(f1)| = |
∫
S f1dPn| ≤

‖f1‖∞ < ∞ for all n, so Pn(f1) is a bounded sequence of real numbers ⇒ it has a

convergent subsequence P
(1)
n (f1).

Consider the sequence P
(1)
n (f2); as before, it’s a bounded sequence of real numbers, so it

has a convergent subsequence P
(2)
n (f2).

Iterating this process, we obtain, for each i ≥ 1, nested sub-sequences {P (i)
n } ⊆ {P (i−i)

n },
such that P

(i)
n (fj) converges for 1 ≤ j ≤ i. Consider now the diagonal sequence {P (n)

n .

Since, for n ≥ i P (n)
n is a subsequence of P

(i)
n and P

(i)
n (fi) converges for all i, then P

(n)
n (fi)

converges for every i ≥ 1. By the density of fii∈N>0
, we have that P

(n)
n (f) converges for

all f ∈ C(S).

We write w(f) = limn→∞ P
(n)
n (f). to complete the proof we need to show that there exists

a probability measure P such that w(f) =
∫
S fdP ; to do so we’ll use Riesz Representation

Theorem.
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Theorem A.16 (Riesz Representation Theorem). Let S a locally compact Hausdorff

space. For any positive bounded linear functional ψ on Cb(S), such that ψ(1) = 1, then

there is a unique Borel probability measure P on S such that

ψ(f) =

∫
S
f(x)dP (x)

for all f ∈ Cb(S) .

• w is a linear mapping by construction.

• |w(f)| ≤ ‖f‖∞, so w is bounded.

• If f ≥ 0, w(f) ≥ 0, so w is positive.

• w(1) = limn→∞ P
(n)
n (1) = limn→∞ 1 = 1.

We can apply Theorem A.16 and obtain a measure P ∈ P(S) such that w(f) =
∫
S fdP .

This means that P
(n)
n converges weakly to P .

The following theorem extends in a certain sense the continuous mapping theorem, which

guaranties the weak convergence when we compose weakly convergent sequences of proba-

bility measures with continuous functions. Consider hn and h measurable mappings from

(S, d) to (S′, d′), two separable spaces, and consider Pn, P ∈ P(S) such that Pn → P

weakly. Suppose that hn converges to h in some sense. Define E := {x ∈ S|hn(xn) 9
h(x) for some sequnce xn → x}; now x ∈ EC if and only if ∀ ε > 0 ∃ k ∃ δ > 0 such that

n ≥ k, d(x, y) < δ ⇒ d′(h(x), hn(y)) < ε.

Theorem A.17 (Continuous mapping theorem). Assume Pn → P weakly. Assume h :

S → S′ to be a measurable function between two metric space, and assume that its

discontinuity set, Dh, is such that P (Dh) = 0; then Pn ◦ h−1
n → P ◦ h−1 weakly.

Theorem A.18 (Continuous mapping theorem (Extended version)). If Pn → P weakly

and P (E) = 0, then Pn ◦ h−1
n → P ◦ h−1 weakly.

Proof. Using Portmanteau Theorem, we shall show that P (h−1(G)) ≤ lim infn→∞ Pn(h−1
n (G))

for any G ⊂ S′ open. Now, let us take x ∈ EC such that h(x) ∈ G. Thus, h(x) ∈
G ⇒ ∃ε′ > 0 s.t. B′(h(x), ε′) ⊂ G ⇒ ∀ y s.t. d′(h(x), y) < ε′ ⇒ y ∈ G; x ∈ EC ⇒
∀ ε > 0 ∃ k ∃ δ > 0 such that n ≥ k, d(x, y) < δ ⇒ d′(h(x), hn(y)) < ε. Take

ε := ε′ ⇒ hn(y) ∈ G ∀n ≥ k, ∃k, ∀y s.t. d(x, y) < δ ∃δ.
Define Tk :=

⋂
n≥k h

−1
n (G). So {x ∈ EC | h(x) ∈ G} ⊆ T̊k, thus h−1(G) ⊂ E ∪

⋃
k T̊k.

Since P (E) = 0, P (h−1(G)) ≤ P (
⋃
k T̊k); but T̊k ⊂ ˚Tk+1, so by the continuity from below

limk→∞ P (T̊k) = P (
⋃
k T̊k), thus for a given ε > 0 and for k sufficiently large P (h−1(G)) <

P (
⋃
k T̊k) + ε. From Pn → P weakly, it follows that P (T̊k) ≤ lim infn→∞ Pn(h−1

n (G)) ⇒
P (h−1(G)) ≤ lim infn→∞ Pn(h−1

n (G))+ε, which concludes the proof because ε is arbitrary.

Observe that we don’t have problems of mesurability, because P (E) = 0 so it’s measurable,

and all the Tk are countable intersection of reverse-images of measurable functions.

Remark A.19. • In Theorem A.18, if hn = h for all n, this results reduces to Theo-

rem A.17, indeed in such a case E = Dh.
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• If h is everywhere continuous and hn → h uniformly on compact sets, then E is

empty and so, the hypothesis of Theorem A.18 are satisfied.

A.1.1 Tightness

Definition A.20. • A probability P on A is said to be tight if, for every ε > 0, there

exists a compact subset K ⊆ A such that P (Kc) ≤ ε.
• A family of probability Π on A is said to be tight if, for every ε > 0, there exist a

compact subset K ⊆ A such that P (Kc) ≤ ε for every P ∈ Π.

Remark A.21. We observe that in Definition A.20, it is sufficient for K to be relatively

compact, because, in this case, we can take K̄ instead of K.

Definition A.22. Let Π be a family of probability measures over S. We say that Π

is relatively compact if, for every sequence {Pn} of Π, we can extract a sub-sequence

{Pnk} which is weakly convergent.

Remark A.23. If S is separable we know that weak convergence is equivalent to the

convergence under the Prokhorov distance. Thus A.22 coincides with the usual notion of

sequentially relative compactness on (P(S), ρ).

Proposition A.24. If Π is a tight family on (A, d) and if h : A → A′ is a continuous

mapping, then, {P ◦ h−1|P ∈ Π} is a tight family on (A, d′).

Proof. Given ε, choose in A a compact set K such that P (K) > 1 − ε for any P ∈ Π.

Then, K ′ := h(K) is compact since h is continuous and h−1(K ′) ⊆ K, so P (h−1(K ′)) ≥
P (K) > 1− ε.

Theorem A.25 (Ulam). If S is Polish, then every probability P ∈ P(S) is tight.

Proof. Let (xn)n be a dense sequence in S and let ε > 0. For every f ≥ 1, S =⋃∞
n=1B(xn,

1
k ), thus, there exist a Nk < ∞ such that P

(⋃Nk
n=1B(xn,

1
k )
)
≥ 1 − 2−kε.

Let K :=
⋂∞
k=1

⋃Nk
n=1B(xn,

1
k ) that is totally bounded and thus relatively compact, be-

cause S complete (Proposition A.13).

Since P (KC) ≤ P
(⋃∞

k=1(
⋃Nk
n=1B(xn,

1
k ))C

)
≤
∑∞

k=1
ε

2k
= ε, P is tight.

Consider now

Theorem A.26 (Prokhorov). Let Π be a family of probability measures on S. Then:

• If Π is tight, then it is also relatively compact.

• Suppose S separable and complete. If Π is relatively compact, than it is also tight.

Proof. Since the proof of the first point is out of the scope of these thesis we will omit it.

• For the full proof see [4].
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• Let ε > 0. Since Π is relatively compact on (P(S), ρ) and thus totally bounded

(look at Remark A.21 and Proposition A.13). Hence, there exist, for every n ≥ 1,

Q1, . . . , QNn ∈ P(S) such that for all P ∈ Π, ∃ i∗ = i ∗ (n, P ) ≤ Nn with ρ(P,Qi∗) <
ε

2n+1 .

Since S is Polish, by Ulam Theorem, for every n, there exists Kn ⊂ S compact such

that max1≤n≤Nn Qi(K
c
n) ≤ ε

2n+1 . So, for any P ∈ Π:

P (K
ε

2n+1
n ) ≥ Qi∗(Kn)− ε

2n+1
because ρ(P,Qi∗) <

ε

2n+1

≥ 1− ε

2n

Let K :=
⋂
n≥1K

ε
2n+1
n , which is relatively compact, because totally bounded, and

P (K) ≥ 1−
∑

n∈N
ε

2n = 1− ε⇒ Π is tight.

Corollary A.27. If a sequence of probabilities (Pn)n is tight and if all convergent seb-

sequences (in the sense of weak convergence) have the same limit P , than Pn converge

weakly to P .

Proof. Since Pn is tight, Prokhorov Theorem tells us that all subsequences have a sub-

subsequence that converges weakly, so its limit is forcedly P by hypothesis. So for all

functions f continues and bounded all subsequences
( ∫

fdPnk
)

have a sub-subsequence( ∫
fdPnkl

)
who converges toward

∫
fdP . So

∫
fdPn →

∫
fdP , but that’s the definition

of weakly convergence of Pn.

Proposition A.28. • If S is separable, then P(S) is separable.

• If S is Polish, then P(S) is Polish.

Proof. • Fix n ∈ N. Let {Ei}i be a S-partition of S such that diam(Ei) <
1
n for all i.

If Ei 6= ∅, choose xi ∈ Ei. Define

Πn := {
∑
i≤k

riδxi | k ≥ 1, riQ} ⊂ P(S)

Observe that Πn is countable for all n.

Given P ∈ P(S), choose k such that P (
⋃
i>k Ei) <

1
n ; such a k exists because {Ei}

is a partition of S. Choose r1, . . . , rk such that

∑
i≤k

ri = 1
∑
i≤k
|ri − P (Ei)| <

1

n

Put Q :=
∑

i≤k riδxi .



62 A. Convergence of measures

Given E ⊂ S, define J := {i ≤ k | Ei
⋂
E 6= ∅}. E0 :=

⋃
i∈J , then:

P (E) = P (E ∩
⋃
i≤k

Ei) + P (E ∩
⋃
i>k

Ei) = P (E ∩
⋃
i∈J

Ei) + P (E ∩
⋃
i>k

Ei)

≤ P (
⋃
i∈J

Ei) + P (
⋃
i>k

Ei) ≤ P (E0) +
1

n
=
∑
i∈J

P (Ei) +
1

n

≤
∑
i∈J
|P (Ei)− ri|+

∑
i∈J

ri + ε ≤
∑
i∈J

ri + 2ε = Q(E0) + 2ε

Since diam(Ei) <
1
n ∀ i, Ei ∩ E 6= ∅ ∀ i ∈ J ⇒ Ei ⊂ E

1
n ∀ i ∈ J ⇒

⋃
i∈J Ei ⊂ E

1
n .

Thus

P (E) ≤ Q(E0) + 2
1

n
≤ Q(E

1
n ) + 2

1

n
⇒ ρ(P,Q) ≤ 2

n

This means that Πn is a countable, dense family of P(S).

• Suppose that {Pn} is a Cauchy sequence, recalling that a Cauchy sequence is con-

vergent if and only if it has a convergent sub-sequence, if we show that is tight,

then we’ve concluded, indeed, by Prokhorov Theorem A.26, {Pn} is also relatively

compact and, hence it has a convergent sub-sequence.

Fix ε > 0 and δ > 0; our goal is to find a finite number of balls of radius δ
2 (we’ll

call them δ-balls), such that

Pn(C1 ∪ . . . ∪ Cm) > 1− ε ∀n

– choose η such that 0 < 2η < ε ∧ δ
– choose n0 such that n ≥ n0 ⇒ ρ(Pn0 , Pn) < η

– cover S by balls Ai := B(xi, η) and choose m such that Pn(A1∪. . .∪Am) > 1−η
for n ≤ n0

– Bi := B(xi, 2η). If n ≥ n0 (they exist by Ulam Theorem A.25 because we’re

considering a finite number of probability measures)

Pn(B1 ∪ . . . ∪Bm) ≥ Pn((A1 ∪ . . . ∪Am)η) ≥ Pn0(A1 ∪ . . . ∪Am)− η ≥ 1− 2η

If n ≤ n0

Pn(B1 ∪ . . . ∪Bm) ≥ Pn(A1 ∪ . . . ∪Am) ≥ 1− η ≥ 1− 2η

We take Ci := B(xi, δ) if i ≤ m, and so, we’ve found that for every n

Pn(C1 ∪ . . . ∪ Cm) > 1− 2η ≥ 1− ε ∀n

Now we take K :=
⋂
m≥1

⋃m
i=1Ci ⇒ K is compact because

⋂
m≥1

⋃m
i=1Ci is totally

bounded and, by Proposition A.13, relatively compact. Thus for all n

Pn(K) ≥ 1− ε
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A.1.2 Convergence in product spaces

During the thesis, we frequently have to study some convergences of random variable which

take values in product spaces, it is hence useful to give some basics results in such spaces,

which will clarify the situation in our model. Let S := S′ × S′′ be the product of two

metric spaces. If S is separable (which means that S and S′ have t be separable), then the

Borel σ-algebras verifies S = S ′ × S ′′ (we omit the proof of this fact because it is outside

the scope of our argumentation; for a detailed proof see [4]). The marginal distributions

are defined by P ′(A′) := P (A′ × S′′), A ∈ S ′, and P ′′(A′′) := P (S′ ×A′′), A′′ ∈ S ′′.
Moreover we say that a set A ∈ S is a P-continuity set if P (∂A) = 0.

Theorem A.29. If S is separable, and Pn, P are probability measure on S, then Pn → P

weakly if and only if Pn(A′ × A′′) → P (A′ × A′′), for each P ′-continuity set A′ and each

P ′′-continuity set A′′.

Proof. We’re going to use the portmanteau theorem A.11.

⇒: Denote with ∂, ∂′, ∂′′ the boundary operators respectively on S, S′, S′′. It’s sufficient

to observe that ∂(A′ ×A′′) ⊆
(
(∂′A′)× S′′) ∪ (S′ × ∂′′A′′)

)
to conclude.

⇐: We observe that the class A of sets A′ ×A′′ is a π-system for the P -continuity sets.

The hypothesis Pn(A′ × A′′) → P (A′ × A′′) for all P ′-continuity set A′ and each

P ′′-continuity set A′′, let us conclude.

Theorem A.30. If S = S′× S′′ is separable, then P ′n×P ′′n → P ×P ′′ weakly if and only

if P ′n → P ′, P ′′n → P ′′ weakly.

Proof. ⇒: It follows directly from Theorem A.17 since P ′n = Pn ◦π−1
S′ and P ′′n = Pn ◦π−1

S′′

with Pn = P ′n × P ′′n and because of the continuity of the projections.

⇐: Direct consequence of Theorem A.29.

Theorem A.31 (Slutzky’s Theorem). Suppose S = S′ × S′′ separable. If Xn and Yn
are random elements of S′ and S′′ such that Xn → X and Yn → a in distribution, where

a ∈ S′′ is a constant, then (Xn, Yn)→ (X, a) in distribution.

Proof. Suppose that A′ is an X-continuity set and A′′ ⊂ S′′ such that a /∈ ∂A′′ . If a ∈ A′′,
then P(Yn /∈ A′′)→ 0 and so

P(Xn ∈ A′)− P(Yn /∈ A′′) ≤ P(Xn ∈ A′, Yn ∈ A′′) ≤ P(Xn ∈ A′)

P(X ∈ A′) = P(X ∈ A′, Y ∈ A′′) P(X ∈ A′)

If a /∈ A′′, then P(Xn ∈ A′, Yn ∈ A′′) ≤ P(Yn ∈ A′′)→ 0 = P(X ∈ A′, Y ∈ A′′)
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Corollary A.32. Suppose S = S′ × S′′ separable. If Xn and Yn are random elements of

S′ and S′′ such that Xn → X and Yn → a in distribution, where a ∈ S′′ is a constant,

then XnYn → aX in distribution.

Proof. By Theorem A.31, we have (Xn, Yn) → (X, a) weakly. Consider g(x, y) = xy; g is

a continuous function and so, by the continuous mapping theorem we have XnYn → aX

in distribution.
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