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Introduction

Nowadays people have to attend tests very frequently. The tests are used
to evaluate their ability or to understand their knowledge about a partic-
ular argument. To achieve such result we need to know the difficulty of
each problem of the test so we need to evaluate people ability and question
difficulty together. Georg Rasch, a Danish statistician, has been the first
person who attempted to model the probability a subject makes a certain
amount of errors in a test made up by a fixed number of questions, also
called items (Fienberg 2004). The model proposed by Rasch belongs to the
family of models of the Item-Response Theory (IRT) and, within this family
it is called 1PL model. IRT models fit the probability a subject, say the sth,
answers correctly an item, say the ith, with a parameter which depends on
both the subject and the item indexes. Let us call such parameter πsi. Rasch
proposed to model πsi with a logistic regression which uses one parameter
per subject and one parameter per item. The subject parameters measure
the ability of the subjects while the item parameters measure the difficulty
of the items. The latter are relative measures, that is the item parameters
measure how more or how less difficult an item is compared to an item used
as reference. The Rasch model, also called 1PL model, represents the first
step among the class of Item-Response models. One of its extensions is the
2PL model that adds one parameter per item which is interpreted as its
discriminating power, that is how much that item discriminates the subject
ability.
The 1PL model belongs to the class of generalized linear models so its esti-
mation can be worked out without problems. The 2PL model however is non
linear in the parameter set and its estimation is troublesome. This thesis
proposes to estimate such models first assuming random effects for the sub-
ject parameters , which is the standard in literature, and then using some
penalization on the likelihood function for the discrimination parameters.

This thesis uses the paradigm of the likelihood theory which belongs to
the so-called frequency-decision paradigm. Such paradigm and the likelihood
theory are briefly reviewed in Chapter 1.

Chapter 2 gives a review on generalized linear model in general and
the logistic regression in particular because, as mentioned above, the Rasch
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model belongs to the class of generalized linear models and more specifically
it is a logistic regression, and the 2PL model is somehow connected with
them. This chapter offers an overview of generalized linear mixed models as
well because they can be used to threat random effects which we use when
dealing with the 2PL model.

Because this thesis purpose is trying to estimate the 2PL model with
some penalization of the likelihood function, Chapter 3 deals with the most
used penalization techniques such as the LASSO and ridge regressions and
Lq and elastic net penalties, even though only the LASSO will be used.

The Item-Response Theory itself is presented in Chapter 4, in particular
it analyses the 1PL and 2PL model likelihood functions. We present here our
proposal to handle the 2PL model, that is we assume random effects for the
subject parameters and then we penalize the resulting likelihood function in
the hope we get a model in between 1PL and 2PL models.

Chapter 5 presents the most operative part of this document. Here we
present the simulation procedure we have followed and we analyse the col-
lected results. Our purpose is understanding if the proposal of penalizing
the marginal likelihood is useful to regularize the model and if it helps iden-
tifying which parameters are really present in the model. We also compare
different methods to select the tuning parameter of the model.

This document has an appendix which reports the used code to allow
readers to reproduce the simulations.
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1 | Likelihood Theory

This thesis follows the so-called frequency-decision paradigm. This introduc-
tory chapter purpose is briefly recalling the paradigm basic concepts such as
the definition of likelihood function.

1.1 Introduction

The purpose of statistical inference is to summarize the observed data y by
reconstructing its true probability distribution function. This process can
be split roughly into three different steps:

1. Model specification;

2. Statistical inference;

3. Empirical model validation.

The first step will be reviewed in Paragraph 1.2 while the other paragraphs
of this chapter will deal with the second one. Model validation is an essential
part of any statistical analysis but it is not dealt in this thesis.

1.2 Model specification

A statistical model F is a probability distribution family where each of its
members is, at least qualitatively, compatible with the observed data y.
When p0(·), the data true probability distribution, belongs to F then F is
said correctly specified. If p0(·) /∈ F then F is said misspecified.

On real data studies, statistical models are considered approximate de-
scription of the true probability distribution which captures the features
studied. Depending on the level of specification, the statistical model can
belong to any of the following classes:

Parametric Model: this model specification is used when previous knowl-
edge of the phenomenon is available. F is a restricted class of distri-
butions indexed by a finite-dimensional parameter, that is

F = {p(y, θ), θ ∈ Θ ⊆ Rp}.

9



1. Likelihood Theory

This kind of models are called parametric because the difference be-
tween two distribution lies in the difference of the θ parameter. The
true model is p0(y) = p(y, θ0) and θ0 is the true parameter value. A
correct specification is determined by the relation θ0 ∈ Θ: if the re-
lation is verified then the model is correctly specified otherwise the
problem is misspecified.

Non-parametric Model: when the rules which discriminate the probabil-
ity distributions do not identify a finite-dimension parameter but they
just give a set of simplifying assumption like the random variable sup-
port or the distribution function mathematical properties, the model
is called non-parametric.

Semi-parametric Model: this kind of specification is a mix of the previous
ones. The elements of F are identified by both a parameter and some
simplifying assumption. Formally it can be represented as

F = {p(y, θ), θ ∈ Θ},
where θ = (τ, h(·)),

with τ a finite-dimension parameter, whereas h(·) cannot be index by a
finite-dimension parameter. The simplifying assumptions are referred
to h(·).

The three model macro-categories can be sorted by their specification level:
the parametric model requires the deepest specification level but it grants
small-sized distribution families whereas the non-parametric level requires
just a few specifications but it defines wide distributions families. The semi-
parametric is somehow a compromise of the previous two.

1.3 The likelihood function

This work is related to parametric models so the purpose is to identify the
most likely parameter set given the observed data. The identification of the
model parameters from the observed data is called estimation process. The
identified parameter set is called estimate.

A popular estimation procedure is given by the likelihood theory, devel-
oped by Fisher in 1922 (Fisher 1922). It is based upon the likelihood function
and, via its maximization, it offers a standard procedure to estimate the un-
known parameters.

Fisher’s likelihood definition is the following (Fisher 1922):

The likelihood that any parameter (or set of parameters) should
have any assigned value (or set of values) is proportional to the
probability that if this were so, the totally of observations should
be that observed.

10



1. Likelihood Theory

This means, given a set of observed data y, the likelihood function computed
on the θ vector is proportional to the probability of observing the y set if
the true parameter value is θ,

L(θ, y) = c(y)p(y, θ),

where c(y) is a positive factor which depends on the data only. Often the
likelihood function is referred as L(θ), omitting the y data underlining since
the likelihood function is computed on the model parameter θ with y fixed
at the observed data. It is very important to say the multiplicative factor
c(y) must be non negative.

The likelihood theory owes its popularity to its simplicity and generality,
in fact it provides general approximations of the sampling distributions of the
estimated quantities. These approximations are based on some probability
limit theorems which are valid when n, the sample size, diverges, i.e. n→∞.
The sample size index n, in likelihood theory, should be considered as the
amount of information brought by the available data: as it increases, the
inference procedure should get more precise.

Likelihood asymptotic results are valid when some regularity hypotheses
are met. When a parametric problem respects all of them it is called regular
(parametric) model (Azzalini 1996). Regularity assumptions are referred to
the statistical model F = {p(y, θ), θ ∈ Θ ⊆ Rp} and they are:

1. the model must be identifiable that means a one-to-one correspondence
between Θ elements and F elements exists;

2. the support of Y must not depend on θ and it is common to all the
elements of F ;

3. the parametric space Θ ⊆ Rp is an open set and p is not influenced by
n, the sample size;

4. the likelihood function is at least three-times differentiable (in θ) with
continuous derivatives.

1.4 Likelihood related quantities

From the likelihood definition it comes naturally that an estimate of θ, θ̂, is
the value of the parameter which maximizes the likelihood function. When
dealing with regular problems, the parameter set which maximizes the likeli-
hood function can be worked out with a standard procedure. This procedure
involves some quantities related to the likelihood function. This section will
present them.

11



1. Likelihood Theory

1.4.1 Log-likelihood function

The likelihood function computed for a parameter set θ is defined as the
probability of observing the y data if the underlying model is indexed by θ.
Usually y is made up by many observations which could make the compu-
tation of p(y, θ) hard, very often models make the hypothesis that the data
are independent random variables Yi. This assumption makes the analytical
expression of p(y, θ) far easier, i.e.

p(y, θ) =

n∏
i=1

pYi(yi, θ)

where n represents the sample size, that is the size of the observed data and
yi is the ith observation. When Yi i = 1, . . . n have all the same distribution
there is additional simplification.

Under the independence assumption, the likelihood function is the prod-
uct of n terms. Maximizing a function often involves the derivative and
when the function is the product of n terms this can be gruelling and com-
putationally onerous. To simplify the problem it is convenient considering a
transformation of the likelihood function, its natural logarithm, which is a
monotone transformation. Such function is called log-likelihood function and
it is denoted by

`(θ) = logL(θ).

Under the assumption of independence the log-likelihood function can be
expressed as

`(θ) =
n∑
i=1

log pYi(yi, θ),

which is made up by the sum of n terms. This offers some theoretical support
too because the most important asymptotic probability results involve the
sum of random quantities.

1.4.2 Score function

The score function is defined as the derivative function of the log-likelihood,
that is

`∗(θ) =
∂

∂θ
`(θ).

If the parameter is p dimensional the score function is the log-likelihood
gradient. The score function can be computed if and only if the likelihood
function is differentiable at least once. When the model is regular the score
function can always be computed.

Due to its definition, the score function is used to find the estimate of θ
via the equation `∗(θ) = 0 which is called likelihood equation.

12



1. Likelihood Theory

1.4.3 Observed and expected information

Under regularity assumptions, the likelihood function is at least three times
differentiable so the second order derivative function of the log-likelihood can
be used with the score function to find out which is the parameter set that
maximizes the likelihood function. The second order derivative function is
usually referred to as

`∗∗(θ) =
∂2

∂θ∂θT
`(θ) =

∂

∂θT
`∗(θ).

When the parameter θ is p dimensional the score function is the log-likelihood
Hessian. The opposite of the log-likelihood Hessian computed in θ is called
observed information and it is usually denoted by j(θ) = − `∗∗(θ). The
expected value of the observed information is called expected information
and it is denoted by i(θ) = E[j(θ)].

1.4.4 Maximum Likelihood Estimate and Estimator

The θ̂ value which maximizes the likelihood function is called maximum
likelihood estimate. Usually this value is found by solving the likelihood
equation `∗(θ) = 0.

Under the principle of repeated sampling, the likelihood equation, before
observing the data, is a random quantity. The solution of such equation
before the data are observed is called maximum likelihood estimator and it
is usually referred to as θ̂n or θ̂n(Y ) to denote it as a function of the data
when they will be observed. Because the maximum likelihood estimator is
computed before observing the data, it is a random quantity itself.

1.5 Likelihood asymptotic results

The likelihood theory owns its wide use to its generality and its asymptotic
results. While the former has been reviewed in the previous paragraphs,
the latter will be briefly presented here. The following results hold when
the regularity assumptions are met. This paragraph reports only the main
results and does not provide their proofs. Further details can be found, for
instance, in Pace and Salvan (1997).

Maybe one of the most important result is the maximum likelihood es-
timate consistency: when the sample size diverges the estimate converges
in probability and, under slightly stronger conditions, almost surely to the
true parameter value θ0. This means the maximum likelihood estimate is a
good choice because, as the amount of available information grows, the fitted
estimate “falls” nearer to the parameter true value.

The maximum likelihood estimate consistency is related to the unbiased
property of the likelihood equation. Indeed, when the model is regular,

13



1. Likelihood Theory

the first Bartlett identity asserts the likelihood equation is unbiased, that is
Eθ
[
`∗(θ, Y )] = 0. There is a second Bartlett identity as well that involves

the variance of the score function: when the model is regular, the variance of
the score function is the expected information, that is Varθ[`∗(θ, Y )] = i(θ).

The two Bartlett identities are used to show that, before observing the
data, the score function is asymptotically a normal random variable with
null mean and variance the expected information, which is

`∗(θ, Y )
d−→Np(0, i(θ)).

This result is used to test hypothesis as well as to get the asymptotic dis-
tribution of the maximum likelihood estimator: it can be proved, under the
regularity conditions and with the score asymptotic result, the maximum
likelihood estimator is asymptotically normal distributed with mean the pa-
rameter true value θ and variance i−1(θ), that is

θ̂n
d−→Np(θ, i

−1(θ)).

Because the true value θ is unknown i(θ) can be approximated by either
i(θ̂) or j(θ̂). Again, this result is used to test hypothesis. The statistical
test based on this approximation is called Wald test. The Wald test is very
popular due to its simplicity and generality but it has also some limits. For
instance, it is not invariant under reparameterizations of the model.

In a neighbourhood of θ, the parameter true value, the likelihood can be
approximated with a Taylor series. Considering the terms until order 2 it is

`(θ)
.
= `(θ̂) + `∗(θ̂)(θ̂ − θ) +

1

2
(θ̂ − θ)T `∗∗(θ̂)(θ̂ − θ).

The second term is zero because `∗(θ̂) = 0 due to the definition of θ̂. Rear-
ranging the terms we get the parabolic approximation of the likelihood func-
tion, which is

`(θ)− `(θ̂) .
= −1

2
(θ̂ − θ)Tj(θ̂)(θ̂ − θ).

The parabolic approximation of the likelihood function with the asymptotic
distribution of the maximum likelihood estimator are used to show the like-
lihood ratio asymptotic distribution is χ2

p, that is

W (θ) = 2{`(θ̂)− `(θ)} d−→χ2
p.

Again, this result is mainly used to test hypothesis. The likelihood ratio test
should be preferred to the Wald test because it has better properties and its
convergence to the asymptotic distribution is often faster.

14



2 | Generalized Linear Models

Often the analysed data have asymmetric roles: some variables can be con-
trolled or the interest of the analyst lies on a restricted subset. When such
situation is verified the study purpose is to find a model which explains the
behavior of the variables. The formers are called explicative variables or
regressors while the latter are response variables. This chapter deals with
problems where there are many regressors, say p, and just one response vari-
able. The formers will be indexed by the letter x while the latter will be
labelled with y. The whole problem can be mathematically summed up as

E[Y ] = f(x, θ).

In parametric models, such as the ones described in this chapter, f is a well
defined function from X ⊆ Rp to Y ⊆ R. The study purpose is selecting the
parameter θ̂ which best fits the available data.

2.1 Linear models

Among the family of functions from Rp to R the simplest form is the linear
one. Models in the form E[Y ] = x1β1 + . . . xpβp are called linear models.
Linear models are linear in β, the coefficient vector, and not in x, the set of
regressors. Linear models are very useful when the response variable support
spreads on the whole R set. A more formal definition of linear models is

Yi =

p∑
j=1

βjxij + εi, (2.1)

where εi is the error term. Linear models make three hypothesis on εi, called
second order hypotheses:

1. E[εi] = 0 ∀ i = 1, 2, . . . n;

2. Var[εi] = σ2 ∀ i = 1, 2, . . . n;

3. cov(εi, εj) = 0 ∀ i 6= j;

15



2. Generalized Linear Models

Often a further simplifying assumption is added: the ε variables are nor-
mally distributed. When this further assumption is verified, the asymptotic
approximations coincide with the true estimators distributions.

Under the second order hypotheses, the maximum likelihood estimate for
β can be expressed analytically

β̂ = (XXT)−1XTy,

where X = (x1, . . . xp) is the regression matrix made up by p columns, the
ith containing the set of observed values for the ith regressor, xi. From the
asymptotic results of the likelihood theory, it can be shown the β̂ estimator
is asymptotically normal distributed

β̂
.∼Np

(
β, (XXT)−1σ2

)
.

When the εi are normal, then the above distribution is exact.

2.2 Introduction to generalized linear models

Linear models are a powerful modelling instrument but sometimes the hy-
pothesis that the response variable support spreads the whole R set is not
met:

• some variables, such as survival time of people or machines, are strictly
positive;

• some are count-data, such as the number of clicks in a web page;

• some data are binary, like employed/unemployed;

• some data can be categorical as people educational qualification.

These kind of data can hardly be represented with a continuous real variable.
To overcome this issue, a generalization of the linear models has been intro-
duced. Due to its nature, this new model class has been named generalized
linear models.
Consider the following definition of linear model:

Yi|xT
i ∼ f(·),

E[Yi|xT
i ] =

p∑
j=1

βjxij ,

Var[Yi] = σ2 ∀ i = 1, 2, ·n,
cov(Yi, Yj) = 0 ∀ i 6= j.

(2.2)

Equations (2.2) are equivalent to Equation (2.1) with 1, 2 and 3 except
for the error term (εi): this piece of information has been included in the
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2. Generalized Linear Models

conditional distribution of Yi given xT
i . The generalization introduced by

generalized linear models redefines the conditional expected value of Yi and
relaxes the homoschedasticity hypothesis. Generalized linear model’s defini-
tion of conditional expected value is not the linear predictor itself but some
transformation, that is

E[Yi|xT
i ] = g

 p∑
j=1

βjxij

 .

The g(·) function is called link function. It can be proved that the asymp-
totic results obtained for linear models hold for generalized linear models
coefficient estimators as well, as long as maximum likelihood estimator is
considered.

2.3 Generalized linear model for binary data

The purpose of this thesis is the study of Item Response Theory (IRT) mod-
els, in particular generalization of the Rasch model (Fienberg 2004). These
models deal mainly with binary data, so, among the family of generalized
linear models, only models for binary data, and in particular the logistic
model, will be analysed.

Binary data can be thought of as the realization of a dichotomous vari-
able. Usually one of the two possible responses is more scientifically interest-
ing so it’s called “success” while the other one is called “failure”. This scheme
can be summed up with a 0/1 variable, a successes corresponds to 1 while
0 is assigned to failure. The probability of getting a success is not generally
equal to the probability of getting a failure so the considered variable should
be indexed by a parameter, say π, which represents the success probability.
This model describes a Bernoulli random variable of index π.

When the response variable is dichotomous it can be represented with
a Bernoulli variable of index πi: the success rate depends on the subject.
In this particular use the generalized linear model considers the conditional
mean of the response variable with a function of the linear predictor,

E[Yi|xT
i ] = πi = g

 p∑
j=1

βjxij

 .

17



2. Generalized Linear Models

The log-likelihood function is

`(β) =

n∑
i=1

yi log πi + (1− yi) log(1− πi)

=

n∑
i=1

yi log g

 p∑
j=1

βjxij

+ (1− yi) log

1− g

 p∑
j=1

βjxij


=

n∑
i=1

yi logit g

 p∑
j=1

βjxij

+ log

1− g

 p∑
j=1

βjxij

 ,

where logit(x) = log x
1−x . The link function g(·) has to map R to [0, 1].

There are plenty of functions which meet this requirement but the following
are the most widely used:

• inverse logistic function: logit−1(x) = ex

1+ex ;

• “probit” function: probit(x) = Φ(x), where Φ(·) is the standard normal
distribution function;

• inverse complementary log log function: cloglog(x) = log
(
− log(1−x)

)
.

Among the proposed functions, the inverse logistic is the most widely
used because it simplifies the log-likelihood function and allows meaningful
parameter interpretation. When g(·) = logit−1(·) the regression model is
called logistic regression and the log-likelihood is

`(β) =
n∑
i=1

yi

p∑
j=1

βjxij − log
(

1− e
∑p
j=1 βjxij

)
.

For compactness it is good practice to rewrite the log-likelihood function
with matrix notation

`(β) =

n∑
i=1

yix
T
i β − log

(
1− exT

i β
)
,

where xT
i is the ith row of the regression matrix. Often the linear predictor,

xT
i β, is referred to as ηi.
While the linear model β̂n estimator can be expressed analytically, in the

logistic model and, more generally, generalized linear models, estimators of
β̂n cannot be expressed analytically but numeric iterative algorithms have
been developed. In particular a Fisher-scoring method is used. A description
can be found, for instance, in Pace and Salvan (1997, page 237).
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2. Generalized Linear Models

2.4 Generalized Linear Mixed Model

Sometimes it is not possible to gather all the information which is necessary
to describe a population or, at least, to build a good model with the avail-
able covariates. These unobserved variables will make the model estimation
process biased. Generalized linear mixed models purpose is to deal with such
situations and to offer a solution to overcome the problem.

2.4.1 A brief overview

Generalized linear models assume the expected value of the response ran-
dom variable is the transformation of the linear predictor. The underlying
assumption is that all the necessary explicative variables have been observed.
When this hypothesis is not met some bias is introduced in the model. Let
us consider a simple linear model where the explicative variables are split
into two groups, of which only one has been observed. This means the ith
relation between the response and the regressors is

yi = α+ xT
i β + ωT

i b+ εi,

where xT
i is the observed explicative variables vector, ωT

i the unobserved
regressors set and εi the error term for the ith subject. The maximum
likelihood estimator for β, as shown in Section 2.1, is β̂n = (XTX)−1XTy.
With simple algebraic passages it can be shown that this solution is biased:
the expected value of β̂n is not β but β + (XTX)−1XTΩb where Ω is the
matrix which columns are ωi. The same problem affects generalized linear
models. An overview of the problem and its solutions can be found in Pace
and Salvan (1997, Section 9.3.3), and more detailed in Gelman and Hill
(2007). This chapter will deal with just one solution that will be used in the
next chapter.

2.4.2 The logistic mixed model

Section 2.3 has presented the logistic regression and it explained why it is
a good model for binary responses so let us use it within the mixed model
formulation. The response variable expected value is the inverse-logit trans-
formation of the linear predictor, that is

E[Yi] = πi =
eηi

1 + eηi
,

where ηi is the linear predictor for the ith subject. The assumption is that
the linear predictor is made up by two components, one well known (xT

i ) and
one unknown (bi)

ηi = α+ xT
i β + bi.
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2. Generalized Linear Models

If all the bi terms were known the likelihood function of the model would be

L(α, β) =
n∏
i=1

(
eηi

1 + eηi

)yi ( 1

1 + eηi

)1−yi
,

but they are not because they are intrinsic of the subjects. The trick used
by the generalized linear mixed models is treating the unknown terms as
random variables with their own distribution function, bi ∼ g(·). The new
likelihood function must take into account this new piece of information,
that is

L(α, β) =
n∏
i=1

(
eηi

1 + eηi

)yi ( 1

1 + eηi

)1−yi
g(bi).

On the other hand, the components bi are not observed and therefore they
are integrated out from the likelihood by integrating each term of the product
in bi, i.e.

L∗i (α, β) =

∫
R

(
eηi

1 + eηi

)yi ( 1

1 + eηi

)1−yi
g(bi)dbi,

thus arriving at L(α, β) =
∏n
i=1 L

∗
i (α, β).

A typical assumption for g(·) is the normal distribution which implies
the above integral cannot be solved analytically and some numerical approx-
imation must be used. The next paragraph will present one possibility.

2.4.3 Laplace Approximation

The previous paragraph has introduced the logistic mixed model problem.
It has been shown the likelihood function is expressed as the product of
definite integrals. The computation of the analytical form of the primitive
function is very often gruelling so some kind of approximation can be useful
to save time. When the integrand can be expressed as the exponential of
a continuous function with a unique absolute minimum a viable numeric
approximation method of the definite integral is the Laplace approximation.
Let us use the following notation∫

R
e−nf(x)dx,

where n, as usual, is the sample size and let x̃ be the unique absolute min-
imum of f(·). The Laplace approximation is computed from the Taylor
expansion of f(·) around x̃, that is

∫
R
e−nf(x)dx

.
=

∫
R

exp
{
n · f(x̃)− n

2
f II(x̃)(x− x̃)2 − n

6
f III(x̃)(x− x̃)3+

− n

24
f IV(x̃)(x− x̃)4 + n ·O

(
(x− x̃)5

)}
dx.
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2. Generalized Linear Models

The term nf I(x̃)(x− x̃) does not appear in the previous formula due to
x̃ definition. With some algebraic steps which involve the normal density
function, see Pace and Salvan (1997, Section 9.3.3), the discussed integral
can be approximated to

e−nf(x̃)

√
2π

nf II(x̃)

(
1 +O(n−1)

)
, (2.3)

which is the general form of the Laplace approximation.
This thesis is focused on the logistic regression and some kind of gener-

alization so, in the following lines the approximation will be applied to the
logistic mixed model likelihood.

The first required step to be able to apply the Laplace approximation is
writing the integrand as the exponential of a function with a unique absolute
minimum. This can be easily done by involving the log-likelihood function
which, by definition, is the natural logarithm of the likelihood function

L∗i (α, β) =

∫
R
e`i(α,β)

=

∫
R

exp log

{(
eηi

1 + eηi

)yi ( 1

1 + eηi

)1−yi
g(bi)

}
dbi

=

∫
R

exp {yiηi − log (1− eηi) + log g(bi)} dbi.

(2.4)

The next step of the algorithm requires to find the absolute minimum (in
bi) of the exponent function. Before carrying out this step the distribution
of the random effects must be known. Here we proceed with the generic
function g(·) so the results hold in general. Usually the optimization has to be
carried out numerically, using software for constrained maximum likelihood
estimation.
The identified value, b̃i, is then used to compute the Laplace approximation
of the marginal likelihood which, for the logistic regression is

`∗i (α, β)
.
=

n∑
i=1

η̃iyi − log
(
1 + eη̃i

)
+ log g(b̃i)−

1

2
log|j̃bibi |,

where j̃bibi is the ith diagonal element of the b-block of the likelihood observed
information matrix when bi = b̃i. The parameter of interest estimates, i.e.
α̂ and β̂, are then computed from the approximated marginal likelihood
using the standard estimation procedure of the likelihood theory, that is we
compute its first derivative, we solve the likelihood equation and discriminate
the roots with the help of the Hessian.

A useful software which handles random effects via the Laplace approx-
imation is the R package TMB. This package creates a C++ implementation of
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2. Generalized Linear Models

the marginal likelihood and its analytical gradient from a C++ template of
the exponent function of (2.4) thus the optimization of the marginal likeli-
hood from R is very easy and computationally non onerous. The use of this
package is review in Chapter 5.
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3 | Penalized Likelihood

Regression models are generally evaluated via their prediction error, defined
as the mean square of the residuals

E
[
(Y − Ŷ )2

]
.

The prediction error can be split into two additive non-negative terms, the
estimator variance and its squared bias

E
[
(Y − Ŷ )2

]
= Var

[
Ŷ
]

+ B
(
Ŷ
)2
.

The bias of a an estimator is the difference between the estimated parameter
true value and the mean of the estimator. In the case into account, the
estimator is the prediction of Y , that is Ŷ , and the true value is Y itself. This
means the squared bias factor of the current account is B2(Ŷ ) = {Y −E[Ŷ ]}2.

In regression models variance and bias trends are usually competitive,
that is as the first grows the latter decreases. More formally, let p be the
model complexity, usually given by the number of regressors, the estimator
variance and bias have opposite trends: variance grows with the model com-
plexity, on the other hand, bias diminishes with growing model complexity.
An example of variance-bias trade-off is shown in Figure 3.1.

p

B2
(
Ŷ
)

Var
[
Ŷ
]

E
[
(Ŷ − Y )2

]

Figure 3.1: Variance-bias trade-off plot.

Usually model complexity is far smaller than sample size and this makes
the prediction bias ignorable. The best model is the one which minimizes the
predictor variance. On the other hand, when the model complexity is large,
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3. Penalized Likelihood

variance increases without any important gain in bias. The model overfits
the data involving an excess of optimism in evaluating the prediction error
(Azzalini and Scarpa 2012).

Another problem that afflicts models when p is large is estimate instabil-
ity. Estimate instability means little sample alterations cause great estimates
changes. Finally, sometimes p is even greater than n, which makes the model
non identifiable.

These problems can be overridden using some kind of regularization, that
is modifying the estimation process in a way such that the new estimates
are, in some sense, smoother than the default ones.

In generalized linear models a popular way is log-likelihood penalization
by adding a term such that the solution of the penalized likelihood equations
smooths the ordinary estimates, that is

˜̀(β) = `(β)− s(β). (3.1)

The term s(β) has to decrease as the elements of β are smoother, usually
uniformly closer to 0. This method is called penalized likelihood because it
modifies the likelihood function by adding a penalization term which shrinks
the maximum likelihood toward the target. Such technique has many bene-
fits among which a prediction error reduction and estimate existence when it
is affected by multicollinearity. The following paragraphs present the most
popular penalization techniques. Further details can be found in Hastie et al.
(2009, Sections 3.4, 3.8 and 7.1-7.3), Azzalini and Scarpa (2012, Chapter 3)
and Agresti (2015, Chapter 11).

3.1 Ridge Penalization

Among the family of regularization methods, ridge regression introduces a
quadratic penalization, that is s(β) = λ‖β‖22 where ‖·‖2 is the L2 norm.
Ridge estimates can be seen as the solutions of the maximization problem

max
β

`(β) subject to
p∑
i=1

β2i ≤ t.

The Lagrangian form of the problem is actually

max
β

{
`(β)− λ

p∑
i=1

β2i

}
= max

β

˜̀(β) (3.2)

which respects Equation (3.1) definition of penalized log-likelihood. The
threshold t and the Lagrangian λ factor are bind by a one-to-one relation
so the greater λ the greater estimate shrinkage. In linear models it is good
practice letting the intercept unconstrained: its penalization would make the
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3. Penalized Likelihood

procedure depending on the origin chosen for the Y response; that is, adding
a constant c to each of the targets Yi would affect the intercept as well as
all the other coefficients. When dealing with a linear model, the problem
described by the Equation (3.2) has an analytical solution,

β̂R = (XTX + λIp)
−1XTy,

where X is the regressors matrix and Ip the p × p identity matrix. It can
be shown that leaving the intercept unconstrained leads to split the problem
into two branches: estimating the intercept with the sample mean of the y
data and estimating the other coefficients with a ridge regression of y against
centred inputs. Under these hypothesis the estimates become:{

β̂0 = ȳ

β̂R = (X̃TX̃ + λIp)
−1X̃Ty,

where X̃ is the matrix made up by the last p columns of X, each one centred
on its own sample mean, i.e. x̃i = xi − x̄i.

The choice of quadratic penalty ‖β‖22 makes ridge regression solution a
linear function of y: it adds a positive constant to the diagonal of XTX
before inversion. The resulting problem is then non-singular, even if XTX
is not a full rank matrix.

3.2 LASSO

Another popular penalization solution is LASSO (Least Absolute Shrinkage
and Selection Operator). Instead of penalizing the log-likelihood function
with the square of euclidean distance of the β vector it uses the Manhattan
norm of the β vector, that is s(β) = λ

∑p
i=1|βi| = λ‖β‖1.

As ridge regression, LASSO regression can be defined as a constrained
maximization problem:

max
β

`(β) subject to
p∑
i=1

|βi| ≤ t.

Again, λ and t are bind by a one-to-one relation. As ridge Lagrangian form,
LASSO Lagrangian form corresponds to a penalized likelihood:

max
β

{
`(β)− λ

p∑
i=1

|βi|

}
= max

β

˜̀(β). (3.3)

Ridge and LASSO difference lies on the constrain, while ridge constrain
shape is an hypersphere, LASSO’s one is an hypercube. A graphical example
when p = 2 is shown in Figure 3.2.
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3. Penalized Likelihood

β1

β2

(a) LASSO constrain.

β1

β2

(b) Ridge constrain.

Figure 3.2: LASSO and ridge constrains when p = 2.

LASSO constrain has sharp edges so some coefficients can be exactly zero:
whenever the likelihood is tangent to a constrain edge, the coefficients laying
on that edge are estimated as zero. This property is very useful because it
provides an automatic variable selection method.

The λ parameter of (3.3) is called tuning parameter because it is used to
set the shrinkage level: the greater λ the greater the shrinkage.

As with ridge regression, in linear models it is good practice leaving the
intercept unconstrained. Again, the intercept estimate is the sample mean
of the response while the other coefficients are estimated with a LASSO
regression with the same response, that is y, against the centred regressors,
that are x̃i = xi − x̄i. Where ridge regression estimates can be expressed
analytically, LASSO estimates cannot, but efficient algorithms to estimate
the model with a set of tuning parameter values have already been developed.
For instance, Azzalini and Scarpa (2012) describe the LARS algorithm in
Section 3.7, Hastie et al. (2015) present LARS and other algorithms.

3.3 Lq penalization

Both ridge and LASSO penalization are proportional to a norm of the coef-
ficients vector: the first one is the square of the euclidean norm, the second
one is the Manhattan norm. However euclidean and Manhattan norm are
just two possible choices. In linear algebra, a norm is a function that assigns
a strictly positive length or size to each vector in a vector space, apart possi-
bly for the zero vector, which is assigned a length of zero. This means that,
for each real number q ≥ 1, it is possible to define the q-norm as

‖x‖q =

(
p∑
i=1

|xi|q
) 1

q

.

From this specification it is clear that ridge and LASSO regression are
just two possible choices. Using the generic q-norm as penalization function
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3. Penalized Likelihood

is called Lq penalization, so LASSO il also called L1 penalization and ridge
is also known as L2 penalization. Figure 3.3 shows the Lq constrain for
different values of q.

(a) q = 1. (b) 1<q<2. (c) q = 2. (d) q > 2. (e) q → ∞.

Figure 3.3: Lq constrains when p = 2.

Lq penalization has been introduced to have more penalizing flexibility
but it is more computationally onerous selecting the best pair (q, λ).

3.4 Elastic net

Another popular generalization of LASSO and ridge penalization is the elas-
tic net penalization. It is defined as a weighted mean of the two penalizations:

s(β) = λ

p∑
i=1

(
α|βi|+ (1− α)β2i

)
.

α is a number in [0, 1]. When α is 1, elastic net and LASSO penalization
are the same, on the other hand, when α is 0, we get the ridge constrain.
Mean value will define a constrain which lies between LASSO and ridge ones.
Figure 3.4 shows elastic net constrain with different α values when p = 2.

(a) α = 1. (b) α=0.75. (c) α = 0.5. (d) α=0.25. (e) α = 0.

Figure 3.4: Elastic net constrains.

While α role is defining the constraint shape, λ role is setting the coeffi-
cient shrinkage level: the greater λ the greater the shrinkage.

Elastic net constraints are very similar to Lq constraints but, while the
second one has differentiable edges, the first has not. This means elastic
net can set some coefficients exactly to zero while Lq can not. Elastic net
provides a more flexible approach than ridge and LASSO regression but it
has two tuning parameters, λ and α, instead of one. This makes elastic net
tuning more onerous.
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4 | Item-Response Theory

IRT is the acronym for Item Response Theory. The purpose of IRT is to
model the probability that a subject would answer correctly a specified
amount of questions, also called items, given the total number of tests. This
model was proposed the first time by Rasch, so some IRT models are also
known as Rasch models (Fienberg 2004). The first paragraph describes the
typical setting while the following introduce the most used models, the 1PL
and 2PL.

4.1 Model setup

The purpose of IRT is to model the probability that a subject right-answers
an item with a function which depends on some parameters. Each subject
has to answer each item just once so a suitable model which describes the
problem is through Bernoulli random variables. The probability parameter
of these variables depends on the subject and the item. The whole problem
can be analytically expressed as

Ysi ∼ Be(πsi),

πsi = f(θ, s, i),
(4.1)

with s = 1, . . . S and i = 1, . . . I. The s subscript is the index of the subject
while i is the item index. From this follows that I is the total amount of
items, S the number of subjects and n = S · I is the total sample size. For
now f(·) is a generic function which summarizes the subject-item couple with
a number from 0 to 1. Finally Ysi is 1 when subject s gives the right answer
to item i, and 0 otherwise.

The model in (4.1) is a generalized linear model for binary data thus the
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4. Item-Response Theory

log-likelihood function associated to the given problem is the following

`(θ) =
S∑
s=1

I∑
i=1

ysi log πsi + (1− ysi) log(1− πsi)

=
S∑
s=1

I∑
i=1

ysi log f(θ, s, i) + (1− ysi) log
(
1− f(θ, s, i)

)
=

S∑
s=1

I∑
i=1

ysi logit f(θ, s, i) + log
(
1− f(θ, s, i)

)
.

(4.2)

The θ parameter represents the vector of all parameters used by the model.
The following sections will provide a more detailed description of the model,
depending on the specific assumptions.

4.1.1 1PL model

The simplest parametric model is a logistic regression where the response
variable is Ysi and the regressors are subject and item indicators. The link
function f(·) is the inverse of the logistic function, which is the canonical
choice for binomial data. Formally, the problem can be expressed as

Ysi ∼ Be(πsi),

πsi =
eγs+αi

1 + eγs+αi
.

(4.3)

From Equation (4.2) we have

`(α, γ) =
S∑
s=1

I∑
i=1

ysi(γs + αi)− log
(
1 + eγs+αi

)
. (4.4)

This is a classical logistic regression and can be easily estimated with the
common generalized linear model estimating algorithm. Each αi parameter
represents the difficulty of that item while each γs represents the ability of
that subject. The parameter α = (α1, . . . αI) can be estimated by means
of conditional likelihood, thus eliminating the effect of nuisance parameter
γ = (γ1, · · · γS). Of course, we can switch the role of α and γ for the
estimation of γ. We note that the conditional likelihhod is valid also when
one assumes the γs as random effects (Sartori and Severini 2004).

The model of (4.4) is non identifiable without any constrain. It is com-
mon practice setting one of the αi coefficients, i.e. α1 equal to 0 or their
sum equal to 0, i.e.

∑I
i=1 αi = 0 and similarly for the γs coefficients, that is

γ1 = 0 or
∑S

s=1 γs = 0.
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4.1.2 2PL model

The difference between the 2PL and the 1PL model is the addition of a new
vector of coefficients which purpose is quantifying the item discrimination
power, that is the how much that item discriminates the subjects by their
ability. These new coefficients will be denoted by β = (β1, . . . βI). The new
probability of success is then

Ysi ∼ Be(πsi),

πsi =
eβiγs+αi

1 + eβiγs+αi
.

(4.5)

Note that βi = 1, i = 1, . . . I gives the 1PL model. This new model likelihood
can be easily written by adding the βi coefficients in Equation (4.4) as shown
in (4.6).

`(α, β, γ, y) =

S∑
s=1

I∑
i=1

ysi(βiγs + αi)− log
(
1 + eβiγs+αi

)
. (4.6)

The new linear predictor is non-linear in θ = (α, β, γ), the vector of
coefficients, as opposed to the linear predictor of the 1PL model. This means
this model cannot be fitted with logistic regression software.

Equation (4.5) is not the only parametrization of the model. Another
common parametrization is

πsi =
eβi(γs+α̃i)

1 + eβi(γs+α̃i)
,

where α̃i = αi
βi
. Even this parametrization is non-linear in θ. Among these

two different parametrizations this thesis will use the one in (4.5).

4.2 Penalized likelihood for IRT models

The 1PL model, when I and S are fixed, can be represented as a generalized
linear model so its estimation is possible, the 2PL model is non linear in the θ
vector so its estimation is gruelling. Even numeric maximization algorithms
do not converge because, although the model is identifiable, the parameter
estimates are unstable and they typically do not converge even using great
amount of data. To overcome the described situation, this thesis proposes
to proceed as follows:

1. 2PL models, in literature, are almost always estimated using random
effects for the subject parameters so we treat the γs coefficients like
random terms of a logistic mixed model and marginalize with respect
to the γs coefficients with the Laplace approximation;
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2. Even though assuming the γs as random effects allows to obtain max-
imum likelihood estimate of the item parameters, these are not always
satisfactory. Therefore we also use some kind of penalized likelihood,
penalizing the βi coefficients, on the approximated likelihood in order
to obtain a compromise between 1PL and 2PL models.

Each step is analysed in the following paragraphs.

4.2.1 Laplace approximation of the 2PL likelihood function

Section 2.4 discussed generalized linear mixed models and showed how the
likelihood function has to be modified to take into account the information
brought by the random terms. Such information can be included only if the
random effects distribution is known. A common approach, which this thesis
follows, is assuming the random coefficients are independent and identically
distributed as a Gaussian random variable. The assumption the γs ∼ N(0, 1)
avoids us the constrains on α and β that are needed when the γs are treated
as fixed effects. With this piece of information, each term of the likelihood
function becomes

Ls(α, β; ys) =

∫
R

I∏
i=1

{(
eηsi

1 + eηsi

)ysi ( 1

1 + eηsi

)1−ysi
}
φ(γs)dγs (4.7)

where ηsi = αi + βiγs and φ(·) is the standard normal density function.
As (4.7) shows, the terms of the likelihood function are definite integrals
in γs and they can be written in the form

∫
R e

f(x)dx so their value can be
approximated with the Laplace formula. The optimum of the exponent part
of the integrand function of

∫
R

exp

{
I∑
i=1

ηsiysi −
I∑
i=1

log (1 + eηsi) + log φ(γs)

}
dγs,

i.e. γ̃s, is used to obtain the approximation

`∗s(α, β, ys)
.
=

I∑
i=1

η̃sys −
I∑
i=1

log
(
1 + eη̃s

)
+ log φ(γ̃s)−

1

2
log j̃γsγs

where j̃γsγs is the sth element of the γ-block of the penalized likelihood
observed information matrix when γs = γ̃s.

This step will be performed using software TMB, as described in the next
chapter.
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4.2.2 Penalized 2PL model

The 1PL model can be easily estimated due to its link with the logistic
regression while the 2PL model cannot because the linearity hypothesis is not
met. From this consideration bears the idea of penalizing the β coefficients
in the likelihood function with the purpose of making the 2PL model more
regular and more similar to the 1PL one. The penalty used in this thesis is
the L1 in the hope that only a few non-one β coefficients will be estimated.
The resulting marginal penalized log-likelihood function is

˜̀(α, β, y) =
S∑
s=1

I∑
i=1

(
η̃siysi − log

(
1 + eη̃si

)
+ log φ(γ̃s)+

−1

2
log j̃γsγs

)
− λ

I∑
i=1

|βi − 1|,

(4.8)

where the λ parameter must be specified.
In Section 3.2 λ was called tuning parameter because it sets the shrinkage

level of the model. Its selection is important because if the chosen value is
too big it will introduce unneeded bias while too small values will not reduce
estimates variation enough. There are many selection methods; this thesis
explores the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC). Both methods belong to the family of model selection based
on information criteria. Such methods select the tuning parameter which
minimizes the expression

IC(λ) = −2 `(θ̂(λ), λ) + penalty(p),

with θ̂(λ) the estimate of (α, β) obtained from (4.8) with the given λ, and
the penalty function is a positive factor which is directly proportional to
the number of non-zero estimates: the greater that number, the greater the
penalty. Akaike’s penalty is the double of the number of non-zero coeffi-
cients, that is penalty(p) = 2p. The Bayesian Information Criterion penalty
is the number of non-zero estimates multiplied by the natural logarithm of
the sample size, that is penalty(p) = p log n. The two criteria have a simi-
lar structure but their theoretical base is very different: while the first one
has been extracted from the theoretical expected distance between the true-
model and the estimated model likelihood, the latter is got from a Bayesian
perspective. A more detailed description of model selection based on infor-
mation criteria can be found in Azzalini and Scarpa (2012, Section 3.5.3)
and Hastie et al. (2009, Section 7.5).
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5 | Simulation Study

The purpose of this thesis is analysing the properties of the α and β coefficient
estimators. The estimators considered are:

1. marginal penalized maximum likelihood estimators;

2. marginal penalized maximum likelihood estimators computed via L1-
penalized marginal likelihood. This scenario is further split into two
scenarios depending on the method used to select the tuning parameter:

(a) tuning parameter selection via AIC;

(b) tuning parameter selection via BIC.

The estimators are computed in simulated samples. We chose to use samples
made up by a quite large number of subjects (500) and a relatively large
number of items (30). It’s obvious the term large must be read relatively to
context.

All the models assume random effects for the subject parameters, i.e.
the γ coefficients: in literature it is common practice when dealing with 2PL
models and we are interested on the item properties, the α and β coefficients,
rather than the subject abilities, the γ vector. The difference between the
likelihood function of Steps 1. and 2. above lies on the L1 penalty introduced
in the second one: the model underlying Step 1. is the one presented in
Section 4.2.1 while Steps 2.(a) and 2.(b) use the one proposed in Section 4.2.2.
The choice of using an L1 penalty bears from two considerations:

• the 2PL estimation is gruelling even using numerical algorithms;

• only a limited subset of the β coefficients is really significant which
implies the 2PL model is too complex while the 1PL does not fit the
data well enough. The L1 penalty should allow to focus on the non-one
β parameters.

We carry out the selection of the L1 tuning parameter using the Akaike and
Bayesian information criteria. Among the objective of this thesis is studying
which of the two criteria selects the best λ, that is the one which identifies
the greatest number of β coefficients truly equal to one.
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5. Simulation Study

The α and β estimator properties which we want to study are their
bias and their mean square error. We want to see which is the best tuning
parameter selection method too.

5.1 Simulation Structure

The results presented in this thesis have been achieved via simulation using
R, version 3.2.2 (R Core Team 2014). The simulation code is reported in
Appendix. This section illustrates the simulation process, in particular Sec-
tion 5.1.1 explains the sampling procedure and Section 5.1.2 the estimation
algorithm.

5.1.1 Sample Generation

The simulation has been run through 500 samples, each of which has been
sampled from the same set of coefficients. The sample size has been fixed to
500 subjects (i.e. S = 500) and 30 items (i.e. I = 30) and every subject-
item couple (i.e. ysi) is the realization of a Bernoulli random variable indexed
by a parameter which is the inverse-logistic of the linear predictor, that is
πsi = eηsi

1+eηsi . The α vector is the realization of a uniform random variable,
the γ array has been sampled from a standard normal variable while the β
coefficients have been arbitrarily chosen: half of them were set to 1, another
quarter were set to 0.5 and the last quarter were set to 1.5.

5.1.2 Estimation Procedure

For each sample we carried out the following steps:

1. Fix a grid of λ values;

2. Maximize the penalized log-likelihood presented in (4.8) for each λ
value;

3. Save the λ values which minimize either the AIC or the BIC;

The grid of λ values must be the same for all the datasets. This thesis has
used 200 equispaced values from 0 to 200. Step 2 has been carried out using
two external packages, TMB and lbfgs which use is explained in the following
sections.

lbfgs Package

Package lbfgs (Coppola et al. 2014) is a general optimisation package which
does not belong to the basic version of R but it must be installed from
the CRAN. We chose it rather than other built-in packages mainly for the
following considerations:
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• it manages L1 penalizations through the specification of the tuning
parameter without further coding;

• the L1 penalization can be applied to any subset of the parameter
vector;

• it makes use of the gradient even when L1 penalization are used.

The last one and other considerations made us using the TMB package which
purpose and usage are explained in the next section. Further information
about lbfgs usage can be found in the user manual from the CRAN reposi-
tory or from the help accessible from R.

TMB Package

TMB is a package which purpose is offering a simple interface between R and
C++ and managing random effect models via Laplace approximation (Kris-
tensen et al. 2015). With this package the likelihood maximization steps
are:

1. write a C++ model template, i.e. a .cpp file;

2. compile the template from R;

3. load the compiled file from R;

4. create an object from the loaded environment with the observed data
and the compiled function;

5. optimize the function contained in the created object with any opti-
mizer in R.

The template described in Step 1 is a C++ file containing the instruction
to compute the function which has to be optimized. R built-in functions,
such as density functions, can be used within the template. The compilation
of the template from R is handled by the method compile of this package.
Step 3 is carried out by the built-in dyn.load method but it should be called
on dynlib(<file_name>): the method dynlib adds the platform dependent
dynamic libraries extensions so the code can be used cross-platform.
Step 4 is carried out by the function MakeADFun. It needs the following
arguments:

• a list containing all the workspace objects used by the template, i.e.
the number of items, the number of subjects and the observed data;

• the parameters of the function, i.e. α, β and γ vectors;

• the name of the template file (without the extension);
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• the name of the workspace object which contains the random effect
that will be marginalized through the Laplace approximation, that is
the γ vector.

The created object contains both the Laplace approximation of the marginal
likelihood function and its analytical gradient computed using automatic
differentiation. We carried out Step 5 with the package lbfgs which has
already been presented. There are two great advantages of using TMB: first
the Laplace approximation is automatically computed starting from the inte-
grand function and it is implemented in C++; secondly the gradient is available
analytically and therefore lbfgs can completely exploit its power.

Further information about TMB usage can be found in Kristensen et al.
(2015).

5.2 Simulation Results

In the previous section we have illustrated the simulation setup we have
followed, here we present and analyse the results we have collected from
such simulation.

5.2.1 Single Sample Analysis

A random subset of the generated samples has been taken into account to
check the log-likelihood, AIC and BIC trends. An example is reported in Fig-
ure 5.1. It can be seen the negative maximized log-likelihood and the number
of non-zero estimates have opposite trends as function of λ: the former is
increasing while the latter is decreasing. The AIC and BIC trends, which are
linear combination of the previous two, are decreasing and then increasing.
These observations match the theoretical expectations: the larger λ value
the greater the shrinkage the fewer the number of non-zero-coefficients and
the lower the likelihood of the chosen parameter set. Due to their trend the
AIC and the BIC have an absolute minimum, the λ value corresponding to
such value is the one used to estimate the model.

5.2.2 Aggregated Results

Section 5.1.2 has presented the procedure used to select the best λ value
given a specific sample. The algorithm identifies two values: the one which
minimizes the AIC curve and the one which minimizes the BIC curve. The
estimates computed with such λ values are the model estimates. This para-
graph analyses their properties via the computation of some statistics like
the observed bias and standard deviation and with the assistance of some
plots.

We started our analyses from the inspection of the cumulative bias and
standard deviation of the estimates. The former is the cumulative mean bias
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λ

(a) Negative log-likelihood.

λ

(b) Number of non-zero parame-
ters (p).

λ

(c) Negative AIC.

λ

(d) Negative BIC.

Figure 5.1: Example of Likelihood, p, AIC and BIC profiles.

of the coefficients, that is B̄θ =
∑p

i=1 B̄(θi), the latter is the square root of

the cumulative variance of the coefficients, that is σ̄θ =
√∑p

i=1 σ
2
i . Table 5.1

reports this two statistics for each coefficient group: the first three columns
contain the quantities of the α coefficients when they have been estimated
via maximum likelihood, with the λ value selected via AIC and BIC while
the latter three contain the same quantities referred to the β coefficients.

α β

MLE AIC BIC MLE AIC BIC

B̄θ 3.39 3.40 3.34 0.18 1.15 3.49
σ̄θ 0.57 0.56 0.56 0.76 0.66 0.61

Table 5.1: Cumulative Bias and Standard Deviation of the estimators of α
and β.

We observe bias and standard deviation of the estimators of the α coef-
ficients are more or less the same through the three scenarios: the penalty
applied to the likelihood regards the β coefficients only so the α statistics are
more or less constant through the different scenarios. On the other hand the
β coefficients bias and standard deviation are not flat and they are somehow
inverse proportional: the maximum likelihood method reaches the smallest
bias but has the greatest standard deviation, on the other hand, the BIC
reaches the smallest standard deviation but the greatest bias.
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Of course the aggregated measure is not informative of the single compo-
nents of the estimator. This is done graphically using box plots. Figures 5.2
and 5.3 report respectively the box plot of the estimates of the α and β coef-
ficients we obtained with maximum likelihood, AIC and BIC penalizations.

We see the estimators for α are biased and no method seems to be able
to correct the problem. The estimators for β on the other hand are influ-
enced by the chosen method. Figure 5.3a shows that the estimates from the
maximum likelihood estimator are unbiased and their variance is more ore
less constant. Figure 5.3c shows that the estimates from the BIC have dif-
ferent behaviors: the coefficients which true value is 1 are unbiased and their
variance is very small while the significant ones are biased and their variance
seems greater than the one of the estimates obtained from the maximum
likelihood procedure. The AIC is a compromise: in Figure 5.3b all the boxes
pass through zero and their size is placed between the size of the maximum
likelihood and BIC ones.

From the previous consideration we have seen the main impact on the
estimates involve their bias so we have done a further focus on it. Figure 5.4
reports the average bias of the α coefficients and Figure 5.5 reports the same
statistics computed for the β coefficients.

The three methods are almost equivalent when we want to estimate the
α coefficients but they are quite different when dealing with the β coeffi-
cients: the BIC reaches the smallest bias for the non significant β while the
maximum likelihood estimates are the best one to estimate the significant
ones. The AIC estimates are always a middle point between the maximum
likelihood and the BIC ones but for the non significant β. This must be
imputed to the different penalty used by the two criteria: the AIC uses a
less strong penalty than BIC thus it selects smaller λ values so the distance
between the AIC estimates and the maximum likelihood ones is smaller than
the distance between the BIC estimates and the maximum likelihood ones.

Among our objectives we wanted to understand which of AIC and BIC
is the best method to identify the non-significant β coefficients. Table 5.2
reports the average bias of the number of non-zero estimated coefficients for
the three methods. From this table and Figures 5.5b and 5.3 we can say

MLE AIC BIC

Bias 15 8.92 −0.65

Table 5.2: Bias of the number of non-zero coefficients (p).

the BIC is the best method to be used to identify which coefficients are
significant and which are not. From Figure 5.3 we see the BIC boxes of
the bias of the non significant coefficients are collapsed on 0 and Figure 5.5b
shows the average bias of such coefficient is minimized by the BIC line. In the
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end Table 5.2, which reports the bias of the number of non-zero coefficients
reaches its minimum in correspondence to the BIC column.

Summing up the analysis we conclude by saying the penalization of the β
coefficients reduces the bias and variance of the non-significant β coefficients
but this makes the same indexes a bit worse for the significant ones. The
best value of the tuning parameter to identify the non significant coefficient is
selected by the BIC while the AIC one is less good at screening the coefficients
but introduces less bias.

Of course these are only preliminary results and more research is needed
in order to investigate the behavior of different estimators in different con-
figurations, with different values of I, S and the true number of β values not
equal to 1.
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(c) BIC estimates.

Figure 5.2: α estimates box-plots.
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(b) AIC estimates.
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(c) BIC estimates.

Figure 5.3: β estimates box-plots.
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Figure 5.4: α coefficients bias.
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Figure 5.5: β coefficients bias.
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Conclusions

In this thesis we have review the Item-Response Theory and two of its model,
the 1PL and the 2PL. The first one can be estimated due to its link with
the generalized linear models and the logistic regression in particular while
the 2PL model estimation is more gruelling because even using numeric al-
gorithms and huge amount of data the parameter estimates do not converge.
Our purpose is exploring a new way to estimate the 2PL model.

After reviewing likelihood methods and IRT models in Chapters 1 and
4, we focused on penalization methods for 2PL models with subject specific
random effects. The aim was to compare standard marginal likelihood with
penalized versions of it, making a compromise between 1PL and 2PL models.

To this aim we have considered a simulation through a set of 500 samples
each of which has been extracted from the same model. For each sample
we have estimated the 2PL model with random effects with and without
penalizations on the likelihood function. We carried out the selection of
the tuning parameter using the Akaike and Bayesian information criteria.
Among our purposes we wanted to detect which of the two methods should
be used to get the best selection of significant coefficients.

The analysis of the collected results makes us reckon the use of a penalty
on the marginal likelihood is useful to select which coefficients are really
significant and in such sense the BIC selects the best value of the tuning
parameter, that is the penalization level. On the other hand we have not
detected any particular gain in the estimates bias and just a little shrinkage
of their standard deviation.

Of course these are only preliminary results and more research is needed
in order to investigate the behavior of different estimators in different con-
figurations with different values of I, S and the true number of β values
not equal to 1. Further investigation is needed, for instance, because we
have observed a strange bias for the estimators for α independently on the
estimation procedure.

The shrinkage applied on the β coefficients introduces bias on the other
parameters thus identifying which β coefficient are really in the model and
then estimating the restricted model with maximum likelihood is an inter-
esting procedure which could be considered.
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We have used AIC and BIC criteria in order to select the best value of the
tuning parameter but other procedures, such as the cross validation, should
be inspected. It could be interesting to change the penalty function as well
trying, for instance, the ridge and the elastic net penalties.

Finally it is worthy inspecting the inferential properties of the model
as well. For instance, a simulation study of the empirical coverage level of
the Wald confidence intervals for components of the parameter should be
considered.
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Listing A.1: Used functions.
1 # +----------------------------------------+ #
2 # | > Likelihood functions | #
3 # +----------------------------------------+ #
4 p.range = function(p, eps =2.22e-15) {
5 out = p;
6 out[p<eps] = eps;
7 out[p>(1-eps)] = (1-eps);
8 return(out);
9 }

10

11

12

13 tilde_ell_s = function(gamma ,alpha ,beta ,y) {
14 # penalized log likelihood for the s-th subject/

category
15 etas = alpha+beta*gamma
16 ps = p.range(plogis(etas))
17 sum(y*log(ps)+(1-y)*log(1-ps)) -0.5* gamma^2
18 }
19

20

21

22 marg2PL_Laplace = function(param ,data) {
23 # param is (alpha ,beta -1), of dimension 2*I
24 # data is Kx(I+1) where:
25 # - the rows are the distinct configurations
26 # - the first I columns represents y for the

items
27 # - last column has the frequencies of the

configurations
28 I = ncol(data) -1
29 K = nrow(data)
30 freq = data[,I+1]
31 y = data[,1:I]
32 alpha = param [1:I]
33 beta = param [-(1:I)]+1
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34 out = 0
35 for (k in 1:K)
36 {
37 app = nlminb(0,function(x) -tilde_ell_s(x,alpha ,

beta ,y[k,]))
38 # cat(app$par ,app$objective ,"\n",sep=" ")
39 pk = p.range(plogis(alpha+beta*app$par))
40 jkk = sum(beta ^2*pk*(1-pk))+1
41 # print(jkk)
42 # print(optimHess(app$par ,tilde_ell_s ,alpha=alpha

,beta=beta ,y=y[k,]))
43 out = out+freq[k]*(- app$objective -0.5* log(jkk))
44 }
45 out
46 }
47

48

49

50 marg2PL_Laplace_grad = function(param ,data) {
51 # param is (alpha ,beta -1), of dimension 2*I
52 # data is Kx(I+1) where:
53 # - the rows are the distinct configurations
54 # - the first I columns represents y for the

items
55 # - last column has the frequencies of the

configurations
56 I = ncol(data) -1
57 K = nrow(data)
58 freq = data[,I+1]
59 y = data[,1:I]
60 alpha = param [1:I]
61 beta = param [-(1:I)]+1
62 out = rep(0,2*I)
63 for (k in 1:K) {
64 app = nlminb(0,function(x) -tilde_ell_s(x,alpha ,

beta ,y[k,]))
65 gammatilde = app$par
66 pk = p.range(plogis(alpha+beta*gammatilde))
67 jkk = sum(beta ^2*pk*(1-pk))+1
68 jkalpha = beta*pk*(1-pk)
69 jkbeta = beta*gammatilde*pk*(1-pk)-(y[k,]-pk)
70 ellalpha = y[k,]-pk
71 ellbeta = gammatilde *(y[k,]-pk)
72 jkkalpha = beta ^2*pk*(1-pk)*(1 -2*pk)
73 jkkbeta = beta ^2* gammatilde*pk*(1-pk)*(1 -2*pk)+2*

beta*pk*(1-pk)
74 jkkk = sum(beta ^3*pk*(1-pk)*(1-2*pk))
75 dgam.dalpha = -jkalpha/jkk
76 dgam.dbeta = -jkbeta/jkk
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77 out [1:I] = out[1:I]+freq[k]*( ellalpha -(0.5/ jkk)*(
jkkalpha+dgam.dalpha*jkkk))

78 out[-(1:I)] = out[-(1:I)]+freq[k]*( ellbeta -(0.5/
jkk)*( jkkbeta+dgam.dbeta*jkkk))

79 }
80 out
81 }

Listing A.2: Datasets generation.
1 # +----------------------------------------+ #
2 # | > Data generation | #
3 # +----------------------------------------+ #
4 # string manipulation library
5 library(stringr);
6

7 # number of random datasets
8 N = 500;
9

10 # set the random generator seed
11 set.seed (777);
12

13 # set parameters
14 I = 30;
15 S = 500;
16

17 # file names
18 data.dir = "data/";
19 names.full = rep(NA , N);
20 names.comp = rep(NA , N);
21

22 # data generation log file
23 LOG_FILE = paste(data.dir ,"data -generation.log", sep=

"");
24 # clear the file
25 cat(as.character.Date(Sys.time()), "\n\n", file=

LOG_FILE);
26 # should the coefficients be printed?
27 print.param = TRUE;
28

29 # generate the parameters
30 ## generate alphas from U(0,1)
31 alphas = runif(I);
32 ## use the following betas
33 betas = c(rep(1,I/2), sample(c(0.5, 1.5), I/2,

replace = TRUE));
34 ## generate gammas from N(0,1)
35 gammas = rnorm(S);
36
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37

38 for(n in 1:N) {
39 # generate data with the given parameter set
40 data = gendata.M(gammas ,alphas ,betas);
41 # compress the data
42 mat = compress(data);
43

44 # write the dataset , full version
45 names.full[n] = paste(data.dir , str_pad(n, width=3,

pad =0), "-full.data.csv", sep="");
46 write.csv(data , names.full[n], quote=FALSE , row.

names=FALSE);
47 # write the dataset , compressed version
48 names.comp[n] = paste(data.dir , str_pad(n, width=3,

pad =0), "-compressed.data.csv", sep="");
49 write.csv(mat , names.comp[n], quote=FALSE , row.

names=FALSE);
50

51 # write the log file
52 cat("Dataset number", n, "\n", file=LOG_FILE ,

append=TRUE);
53 cat("Full matrix file:", names.full[n], "\n", file=

LOG_FILE , append=TRUE);
54 cat("Compressed matrix file:", names.comp[n], "\n\n

", file=LOG_FILE , append=TRUE);
55 cat("----------------------------------------\n\n",

file=LOG_FILE , append=TRUE);
56 }
57

58 if(print.param) {
59 cat("\nalphas = c(",paste(alphas ,collapse=", "),")\

n\n", file=LOG_FILE , append=TRUE);
60 cat("betas = c(",paste(betas ,collapse=", "),")\n\n"

, file=LOG_FILE , append=TRUE);
61 cat("gammas = c(",paste(gammas ,collapse=", "),")\n\

n", file=LOG_FILE , append=TRUE);
62 }
63

64 cat("\n\nFile generation completed .\n\n");
65 cat("\nFull matrix files :\nc(\"", paste(names.full ,

collapse="\", \""), "\")\n\n", sep="");
66 cat("\nCompressed matrix files :\nc(\"", paste(names.

comp , collapse="\", \""), "\")\n\n", sep="");

Listing A.3: TMB template source code.
1 #include <TMB.hpp >
2 template <class Type >
3 Type objective_function <Type >:: operator () () {
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4 /* data section */
5 DATA_INTEGER(I);
6 DATA_INTEGER(S);
7 DATA_MATRIX(y);
8

9

10 /* Parameter section */
11 PARAMETER_VECTOR(alpha);
12 PARAMETER_VECTOR(beta);
13 PARAMETER_VECTOR(gamma);
14

15 using namespace density;
16

17 Type nll =0.0; // Negative log likelihood
function

18

19 nll -= sum(dnorm(gamma ,Type (0),Type (1),true));
// gamma 's ~ N(0,1)

20

21 // nll from y
22 for(int s=0;s<S;s++) {
23 for(int i=0;i<I;i++) {
24 Type eta = alpha(i) + gamma(s)*(1+ beta(i));
25 Type prob = exp(eta) / (1 + exp(eta));
26 nll -= dbinom(y(s,i),Type (1),prob ,true);
27 }
28 }
29

30 return nll;
31 }

Listing A.4: AIC and BIC selection of the tuning parameter.
1 # +----------------------------------------+ #
2 # | > Simulation parameters | #
3 # +----------------------------------------+ #
4 # string manipulation library
5 library(stringr);
6

7 full.files = paste("data/", list.files(path="./data/"
, pattern="*full*"), sep="")[ -(1:45)];

8

9 comp.files = paste("data/", list.files(path="./data/"
, pattern="*compressed*"), sep="")[ -(1:45)];

10

11 SIM = length(full.files); # number of random data -
sets

12

13
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14 # lambda sequence length
15 N = 200;
16 #lambda = c(0, exp(seq(from=0, to=5, length.out=N-1))

);
17 lambda = seq(from=0, to=200, length.out=N);
18

19 # coefficients smaller than eps are considered 0
20 eps = 1e-12;
21

22 # simulation starting time
23 t0 = Sys.time();
24

25 library(TMB)
26 library(lbfgs)
27

28

29

30 # +----------------------------------------+ #
31 # | > Simulation | #
32 # +----------------------------------------+ #
33 pb = txtProgressBar(max=SIM*N, style =3);
34 for(sim in 1:SIM) {
35

36 # read the data
37 data = read.csv(full.files[sim], header=TRUE);
38 mat = read.csv(comp.files[sim], header=TRUE);
39

40 # number of subjects/items
41 S = NROW(data);
42 I = ncol(data);
43

44 # create f and df/d\theta
45 compile("MML.cpp")
46 dyn.load(dynlib("MML"))
47 ### MML part
48 parameters = list(alpha =rep(0,I), beta=rep(0,I),

gamma = rep(0,S))
49 obj = MakeADFun(data=list(I=I, S=S,y=as.matrix(data

)),parameters=parameters ,
50 DLL="MML",random=c("gamma"))
51 obj$env$tracemgc = FALSE
52 obj$env$inner.control$trace = FALSE
53 #obj$env$silent = TRUE
54

55 # prepare output structure
56 out = data.frame(lambda=lambda , p=NA , nll=NA, AIC=

NA , BIC=NA);
57 # compute the zero -searching starting point
58 start = lbfgs(obj$fn , linesearch_algorithm="

56



A. Source Code

LBFGS_LINESEARCH_BACKTRACKING",
59 epsilon =10^-5,
60 obj$gr ,
61 obj$par ,
62 invisible =1) $par;
63 # compute AIC and BIC for each lambda value
64 for(i in 1:N) {
65 mle = lbfgs(obj$fn , linesearch_algorithm="

LBFGS_LINESEARCH_BACKTRACKING",
66 epsilon =10^-5,
67 obj$gr ,
68 start , #obj$par ,
69 orthantwise_c=lambda[i],
70 orthantwise_start=I,
71 orthantwise_end =2*I,
72 invisible =1);
73 # print(mle);
74 out$p[i] = sum(abs(mle$par)>eps);
75 out$nll[i] = obj$fn(mle$par);#mle$value;
76 out$AIC[i] = 2 * (out$nll[i] + out$p[i]); #+ 2*p[

i]*(p[i]+1)/(S*I-p[i]-1); # corrected AIC
77 out$BIC[i] = 2 * out$nll[i] + out$p[i] * log(S*I)

;
78

79 setTxtProgressBar(pb, (sim -1)*N+i);
80 }
81

82 # save:
83 ## - number of non -zero parameters profile plot
84 svg(paste(c("./ output",paste(str_pad(sim , width=3,

pad =0), "-p.svg", sep="")),collapse="/"));
85 plot(out$lambda , out$p , type="o", pch=18, cex=0.7,

main=paste(sim ,"Number of non -zero parameters",
sep=") "), xlab=expression(lambda), ylab="p");

86 dev.off();
87 ## - negative log -likelihood profile plot
88 svg(paste(c("./ output",paste(str_pad(sim , width=3,

pad =0), "-nll.svg", sep="")),collapse="/"));
89 plot(out$lambda , out$nll , type="o", pch=18, cex

=0.7,
90 main=paste(sim ,"Negative penalized log -

likelihood",sep=") "), xlab=expression(
lambda), ylab="Negative Log -Likelihood");

91 dev.off();
92 ## - negative AIC profile plot
93 svg(paste(c("./ output",paste(str_pad(sim , width=3,

pad =0), "-naic.svg", sep="")),collapse="/"));
94 plot(out$lambda , out$AIC , type="o", pch=18, cex

=0.7, main=paste(sim ,"Negative AIC",sep=") "),
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xlab=expression(lambda), ylab="AIC");
95 dev.off();
96 ## - negative BIC profile plot
97 svg(paste(c("./ output",paste(str_pad(sim , width=3,

pad =0), "-nbic.svg", sep="")),collapse="/"));
98 plot(out$lambda , out$BIC , type="o", pch=18, cex

=0.7, main=paste(sim ,"Negative BIC",sep=") "),
xlab=expression(lambda), ylab="BIC");

99 dev.off();
100

101 ## - the output
102 write.csv(out , paste(c("./ output",paste(str_pad(sim

, width=3, pad=0),"-out.csv", sep="")),collapse=
"/"), quote=FALSE , row.names=FALSE);

103

104

105 cat("\n");
106

107 dyn.unload(dynlib("MML"))
108 }
109 close(pb);

Listing A.5: Model estimation with maximum likelihood, AIC and BIC.
1 # +----------------------------------------+ #
2 # | > Summary elaboration | #
3 # +----------------------------------------+ #
4 # string manipulation library
5 library(stringr);
6 # input file list
7 full.files = paste("data/", list.files(path="./data/"

, pattern="*full*"), sep="");
8 # comp.files = paste("data/", list.files(path ="./ data

/", pattern ="* compressed *"), sep ="");
9 # output file list

10 out.files = paste("output/", list.files(path="./
output/", pattern="???-out.csv"), sep="");

11 N = length(out.files);
12

13 # simulation parameters
14 ## sample size
15 S = 500;
16 I = 30;
17 ## true values:
18 ### generate alphas from U(0, 1)
19 alphas = c(0.687857406679541 , 0.492192608769983 ,

0.345115572912619 , 0.995049911551178 ,
0.695267170201987 , 0.0107000356074423 ,
0.345015853410587 , 0.172049480024725 ,
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0.949360669590533 , 0.249192638555542 ,
0.732790308073163 , 0.660289179766551 ,
0.580316918902099 , 0.594781526131555 ,
0.866271492093801 , 0.103902629809454 ,
0.418307674117386 , 0.867522824788466 ,
0.352356912568212 , 0.389825357589871 ,
0.380464274203405 , 0.642305639572442 ,
0.521597083192319 , 0.177710808347911 ,
0.029990678653121 , 0.773581623332575 ,
0.486535674193874 , 0.558618906186894 ,
0.989597225794569 , 0.701965618645772);

20 # set.seed (777);
21 # alphas = runif(I);
22 ### use the following betas
23 betas = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5, 1.5, 0.5, 1.5,
1.5, 0.5, 0.5, 1.5, 0.5, 0.5);

24 ### number of non -zero parameters
25 p = sum(betas !=1);
26

27 # output structure
28 ## best AIC chooice
29 aic = data.frame(sim =1:N, lambda.opt=NA , p=NA, nll=NA

, AIC=NA);
30 aic[,paste("alpha" ,1:I,sep="")] = NA;
31 aic[,paste("beta" ,1:I,sep="")] = NA;
32 ## best BIC chooice
33 bic = data.frame(sim =1:N, lambda.opt=NA , p=NA, nll=NA

, BIC=NA);
34 bic[,paste("alpha" ,1:I,sep="")] = NA;
35 bic[,paste("beta" ,1:I,sep="")] = NA;
36 ## MLE chooice
37 mle = data.frame(sim =1:N, p=NA, nll=NA);
38 mle[,paste("alpha" ,1:I,sep="")] = NA;
39 mle[,paste("beta" ,1:I,sep="")] = NA;
40 ## centered alphas
41 # alphas.centered = data.frame(MLE=rep(-alphas , I*N),

AIC=rep(-alphas , I*N), BIC=rep(-alphas , I*N));
42 ## centered betas
43 # betas.centered = data.frame(MLE=rep(1-betas , I*N),

AIC=rep(1-betas , I*N), BIC=rep(1-betas , I*N));
44

45

46 eps = 1e-6;
47 pb = txtProgressBar(max=N*4, style =3);
48 for(n in 1:N) {
49 # read the n-th input
50 data = read.csv(full.files[n]);
51 # read the n-th output
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52 out = read.csv(out.files[n]);
53 aic.opt = which.min(out$AIC);
54 bic.opt = which.min(out$BIC);
55

56 # create f and df/d\theta
57 compile("MML.cpp")
58 dyn.load(dynlib("MML"))
59 ### MML part
60 parameters = list(alpha =rep(0,I), beta=rep(0,I),

gamma = rep(0,S))
61 obj = MakeADFun(data=list(I=I, S=S,y=as.matrix(data

)),parameters=parameters ,
62 DLL="MML",random=c("gamma"))
63 obj$env$tracemgc = FALSE
64 obj$env$inner.control$trace = FALSE
65 #obj$env$silent = TRUE
66

67 # compute the zero -searching starting point
68 start = lbfgs(obj$fn , linesearch_algorithm="

LBFGS_LINESEARCH_BACKTRACKING",
69 epsilon =10^-5,
70 obj$gr ,
71 obj$par ,
72 invisible =1) $par;
73 setTxtProgressBar(pb, 1+4*(n-1));
74

75 # MLE choice
76 hat = lbfgs(obj$fn , linesearch_algorithm="

LBFGS_LINESEARCH_BACKTRACKING",
77 epsilon =10^-5,
78 obj$gr ,
79 start , #obj$par ,
80 orthantwise_c =0,
81 orthantwise_start=I,
82 orthantwise_end =2*I,
83 invisible =1);
84 mle[n, -(1:3)] = hat$par;
85 mle$p[n] = sum(abs(hat$par)>eps);
86 mle$nll[n] = obj$fn(hat$par);
87 # alphas.centered$MLE [1:I+(n-1)*I] = alphas.

centered$MLE [1:I+(n-1)*I] + unlist(mle[n ,3+1:I]);
88 # betas.centered$MLE [1:I+(n-1)*I] = betas.

centered$MLE [1:I+(n-1)*I] + unlist(mle[n,3+I+1:I])
;

89 setTxtProgressBar(pb, 2+4*(n-1));
90 start = hat$par;
91

92 # AIC choice
93 hat = lbfgs(obj$fn , linesearch_algorithm="
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LBFGS_LINESEARCH_BACKTRACKING",
94 epsilon =10^-5,
95 obj$gr ,
96 start , #obj$par ,
97 orthantwise_c=out$lambda[aic.opt],
98 orthantwise_start=I,
99 orthantwise_end =2*I,

100 invisible =1);
101 aic[n, -(1:5)] = hat$par;
102 aic$lambda.opt = out$lambda[aic.opt];
103 aic$p[n] = sum(abs(hat$par)>eps);
104 aic$nll[n] = obj$fn(hat$par);
105 aic$AIC[n] = 2 * (aic$nll[n] + aic$p[n]);
106 # alphas.centered$AIC [1:I+(n-1)*I] = alphas.

centered$AIC [1:I+(n-1)*I] + unlist(aic[n,5+I+1:I])
;

107 # betas.centered$AIC [1:I+(n-1)*I] = betas.
centered$AIC [1:I+(n-1)*I] + unlist(aic[n,5+I+1:I])
;

108 setTxtProgressBar(pb, 3+4*(n-1));
109

110 # BIC choice
111 hat = lbfgs(obj$fn , linesearch_algorithm="

LBFGS_LINESEARCH_BACKTRACKING",
112 epsilon =10^-5,
113 obj$gr ,
114 start , #obj$par ,
115 orthantwise_c=out$lambda[bic.opt],
116 orthantwise_start=I,
117 orthantwise_end =2*I,
118 invisible =1);
119 bic[n, -(1:5)] = hat$par;
120 bic$lambda.opt = out$lambda[bic.opt];
121 bic$p[n] = sum(abs(hat$par)>eps);
122 bic$nll[n] = obj$fn(hat$par);
123 bic$BIC[n] = 2 * bic$nll[n] + bic$p[n] * log(S*I);
124 # alphas.centered$BIC [1:I+(n-1)*I] = alphas.

centered$BIC [1:I+(n-1)*I] + unlist(bic[n,5+I+1:I])
;

125 # betas.centered$BIC [1:I+(n-1)*I] = betas.
centered$BIC [1:I+(n-1)*I] + unlist(bic[n,5+I+1:I])
;

126 setTxtProgressBar(pb, 4+4*(n-1));
127

128 }
129

130 save.image(file = "big -simulation -summary.RData");
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