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Abstract

The search for new materials with definite physical properties like homogeneity and

high mechanical durability is one of the topics of the highest interest of the modern tech-

nology and industry. Therefore, there still remains a wide field for scientific investigations

for developing new methods of material producing and improving existing techniques.

In the frame of metal production, Continuous Casting is the most cost- and energy-

efficient method to mass-produce semi-finished metal products with consistent quality

in a variety of sizes and shapes. It transforms molten metal into solid in a continuous

process and is the most efficient way to solidify large volumes of metal into simple shapes

for subsequent processing. Most basic metals are presently mass-produced using such

process, including over 750 million tons of steel, 20 million tons of aluminium and 1

million tons of copper, nickel and other metals in the world each year.

In the majority of cases, properties of the cast metal are predicted with the conditions

of their melting and solidification, thus defining these conditions is a key for achieving re-

quired qualities in the material. Magnetic fields are a powerful tool for continuous casting

to provide expedient flow pattern in the molten material, with prospects for controlling

the microstructure of solidifying metal. Use of the magnetic fields is widely used because

it allows for a completely contactless influence on the melt and a direct control of the

flow intensity through changing electrical parameters and by varying the design of elec-

tromagnetic (EM) field. Effective stirring of the liquid metal is provided, which brings

to intense heat and mass transfer, then homogenization of temperature field and chemical

components in the liquid volume. It is easy to notice that efficient stirring of the melt is

a key component of the casting process, affecting both the quality of the produced metal

and its cost.

This work was intended to the investigation of melt flow behaviour under the influence

of electromagnetic stirring (EMS), when transient and not standard conditions occur along

the casting line: application of AMF on the first solidification area generates two toroidal

vortices within the liquid metal, similar to each other in terms of amplitude, velocity and

energy. However, when cooling process is too fast or intense, the solidification front

shifts upward dramatic variation in the dimension and velocity of the two vortices occurs;

transition to a unique, large eddy modifies stirring conditions thus intense motion cannot

be achieved anymore. Main goal of this thesis was to experimentally study the effect

of low-frequency pulsed magnetic field (PMF) on Galinstan eutectic alloy, to optimize

the stirring effect even during the transition of vortices and increase the rate of equiaxed



structure within the solidifying metal. Application of AMF was initially investigated

with with the use of numerical model: experimental activity was carried on in parallel

to validate simulation results and to understand conditions when the transition happened;

relative position between melt and the inductor was changed to simulate shifting of the

solidification front. Once shape and velocity of initial vortices dramatically changed,

their characteristic rotation frequency was calculated and PMF with the same frequency

was applied, to achieve resonance between mechanical (eddies velocity) and electrical

(inductor’s feeding current) parameters. Motion of melt flow was quantified with velocity

of vortices and it was measured thanks to Ultrasound Doppler Velocity (UDV) meter;

average standard deviation and fast Fourier transform (fft) of pulsed component of velocity

were finally calculated.

This thesis consists of Abstract, 4 Chapters, including Conclusions and References.

Chapter 1 gives a description of the Continuous Casting process, including limits

and advantages for quality improvement of final products; stirring methods and finally

objectives of this investigation are described.

Chapter 2 includes detailed theoretical background for dealing with the stirring pro-

cess, thus electromagnetic, thermal fields and hydrodynamic equations.

In Chapter 3 numerical and experimental activities with the application of AMF are

described, plus the first results from the simulation.

Chapter 4 deals with optimization of the stirring effect, thus starts from previous

results to properly apply PMF; results from PMF application are described at the end of

the Chapter.





Sommario

La ricerca di materiali sempre nuovi e con proprietà fisiche specifiche, quali buona

omogeneità ed elevata resistenza meccanica, rappresenta ora un campo di forte interesse

sia in ambito sperimentale che industriale. Per questo motivo, la ricerca scientifica sta

cercando di sviluppare metodi sempre nuovi per la produzione dei diversi materiali, o di

migliorare le tecnologie esistenti.

Il processo di Colata Continua (in inglese Continuous Casting) rappresenta il metodo

più economico ed efficiente per la produzione di metalli semi-lavorati, caratterizzati da

buona qualità, di diverse dimensioni e forme. Esso trasforma il metallo durante un pro-

cesso continuo di solidificazione e costituisce perciò il metodo più efficace per solidificare

grandi quantitativi di metallo in forme semplici, finalizzate ad una successiva lavorazione.

Ogni anno nel mondo, grandi quantità di metallo di uso comune vengono prodotte sulla

base di tale processo; si possono contare 750 milioni di tonnellate di acciaio, 20 di allu-

minio ed 1 milione di rame, nickel, oltre a numerosi altri materiali.

La conoscenza delle condizioni di fusione e solidificazione consente, nella maggior

parte dei casi, di predirre con buona accuartezza le proprietà del prodotto finito. Ottenere

determinate qualità e proprietà dello stesso significa quindi conoscere a fondo le con-

dizioni di lavorazione del materiale. Uno degli strumenti più influenti nel processo di

colata consiste nell’impiego di campi magnetici, con lo scopo di generare mescolamenti

di comportamento opportuno nel metallo fuso, quindi controllare la sua struttura micro-

cristallina in fase di solidificazione. I campi magnetici consentono anche l’interazione

col metallo senza alcun contatto ed un controllo diretto dell’intensità del mescolamento

tramite opportuna variazione dei parametri elettrici. Grazie alle proprietà conduttive del

metallo stesso, l’azione del mapo magnetico produce un effetto di stirring che omoge-

nizza temperatura e proprietà chimiche nel liquido. Uno stirring efficace ed efficiente

costituisce quindi la chiave per produrre metalli di buona qualità ed a basso costo.

Obiettivo di questo lavoro di tesi è quello di analizzare il comportamento del met-

allo fuso influenzato dal processo di stirring elettromagnetico durante la colata continua,

in condizioni operative non standard. l’applicazione di un campo magnetico alternato

(AMF) in fase di primo raffreddamento dà origine nel metallo liquido a due vortici di

forma toroidale simili tra loro, in termini di ampiezza, velocità ed energia. Con condizioni

“non standard” ci si riferisce ad un processo di raffreddamento troppo veloce o intenso,

tale per cui il fronte di solidificazione tende a muoversi verso l’alto, determinando una

variazione di dimensione e velocità dei due vortici prodotti; si verifica quindi il passaggio



ad un unico vortice più ampio, tale da variare le condizioni nelle quali avviene lo stir-

ring, e spesso renderele peggiori. Questo lavoro si propone di studiare le conseguenze

dell’applicazione di un campo magnetico pulsato, a bassa frequenza, sulla lega eutettica

GalInStan, allo scopo di ottimizzare gli effetti di mescolamento anche in fase di tran-

sizione da due ad un singolo vortice, aumentando comunque i grani equiassici nel prodotto

finito. Il primo step consisteva nello studio dei risultati derivanti dall’applicazione di un

campo alternato (AMF) sul setup sperimentale: simulazioni al calcolatore ed attività sper-

imentali sono state svolte in parallelo, per validare la correttezza dei loro risultati; quindi

si è valutato quando si è svolta la transizione. Il movimento del fronte di solidificazione

nel setup sperimentale è stato simulato tramite variazione della posizione relativa tra in-

duttore e metallo fuso. Al variare dei due vortici, è stata calcolata la loro frequenza

caratteristica di rotazione, quindi si è applicato un campo magnetico pulsato. La medes-

ima frequenza è stata poi scelta per la corrente di alimentazione dell’induttore, allo scopo

di ottenere un effetto di risonanza tra velocità dei vortici (grandezza meccanica) e la cor-

rente stessa (grandezza elettrica). Le diverse componenti di velocità dei vortici sono state

misurate tramite sonda ad Effetto Doppler (UDV); la componente pulsata della velocità

è stata invece analizzata tramite calcolo della sua deviazione standard e della trasfomata

veloce di Fourier.

Questa tesi contiene un Sommario iniziale e 4 Capitoli, incluse Conclusioni e Bibli-

ografia.

Il Capitolo 1 fornisce una descrizione generale del processo di Colata Continua, anal-

izzando limiti e vantaggi della stessa, specialmente in termini di miglioramento della

qualità del prodotto finale; in conclusione vengono descritti i metodi di stirring e gli obi-

ettivi di questo lavoro.

Il Capitolo 2 descrive la teoria alla base dello studio del processo di stirring elettro-

magnetico; si tratta di campi elettromagnetici, termici ed equazioni idrodinamiche.

Nel Capitolo 3 vengono descritti i risultati dell’applicazione del campo magnetico

alternato (AMF).

Il Capitolo 4 tratta nel dettaglio del processo di ottimizzazione adottato per l’applicazione

del campo pulsato (PMF) per lo stirring; i relativi risultati vengono descritti al termine

del Capitolo.
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Chapter 1

The Continuous Casting Line

1.1 Ingot forming and solidification process

Continuous casting, also called strand casting, is the process whereby molten metal

is solidified into a semifinished billet, bloom or slab on a continuous basis. It is the

most cost and energy efficient way to solidify large volumes of metal into simple shapes

for subsequent processing and rolling in the finishing mills. In fact, in relation to other

casting processes, continuous casting generally has a higher capital cost, but lower oper-

ating cost. Casting process was born in the middle of the 19th century, when Sir Henry

Bessemmer received a patent for casting metal between two counter-rotating rollers. Its

definitive application in commercial processes started though in the 1950s only, because

earlier attempts suffered from technical difficulties such as breakouts and sticking of the

solidifying metal on walls of the casting line. After overcoming this set of problems (for

example, breakouts have been solved with vertically oscillating the mold), continuous

casting has evolved to achieve yield, quality and cost efficiency. It allows lower cost pro-

duction of metal sections with better quality, thanks to the continuous and standardized

production of a product, as well as providing increased control over the process through

automation. Prior to the introduction of continuous casting, molten metals were poured

into stationary moulds to form ingots.

Continuous casting is used most frequently to cast steel but aluminium, copper and

nickel are continuously casted in smaller quantities as well. It is distinguished from other

solidification processes due to its steady state nature, relative to an outside observer who

take the laboratory frame as reference; molten metal solidifies against the mould wall

while it is simultaneously withdrawn from the bottom of the mould at a rate which main-

tains solid-liquid interface in a constant position with time. Best working conditions can

be achieved when all the steps of the process operate in steady-state manner. During the

1



1.1. INGOT FORMING AND SOLIDIFICATION PROCESS

Fig. 1.1: Scheme of the Continuous Casting line

continuous casting process, molten metal flows from a ladle, through a tundish, into the

mould (Fig.1.1): after being melted in furnaces, metal is tapped into the ladle, where it

undergoes specific treatments, such as alloying and degassing, and it arrives at the cor-

rect temperature. The casting machine hosts two ladles in the same moment: the former,

filled with molten metal, is transported in the on-cast position for feeding the casting

machine from its top; the latter is made ready for the off-cast position and is switched

to the casting position when the first ladle is empty. From the ladle, hot metal is trans-

ferred via refractory shroud (pipe) to a holding bath called tundish. The tundish allows

a reservoir of metal for feeding the casting machine while switching the two ladles, thus

behaving as a buffer of hot metal, as well as smoothing out flow, regulating metal feed to

the moulds and cleaning the metal. Tundish flow pattern, in fact, is designed to allow for-

eign particles in molten metal to be removed, avoiding short circuits and excessive surface

turbulence. Nozzles are necessary for this purpose and for controlling the flow. Molten

metal is finally drained from the tundish to the top of an open-base copper mould, where

the primary water cooling process happens: the mould, with a range from 0.5 to 2 [m],

depending on the casting speed and section size, is water-cooled to solidify the molten

metal directly in contact with it. It also oscillates vertically to prevent molten metal to

stick to the mould walls. Furthermore, a lubricant is added to the metal in the mould for
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preventing sticking and to trap any slag particle, including oxide particles or scale, and

bring them to the top of the pool and form a floating layer of slag. The shroud, used for

pouring molten metal from the tundish to the mould, is set so that hot metal exits it below

the surface of the slag layer in the mould and is thus called submerged entry nozzle (SEN).

Some continuous casting layouts feed several moulds from the same tundish. Once in the

mould, a thin, solid shell of metal next to the mould walls solidifies before reaching the

middle section of the casting line (the middle section is called strand) and exits the base

of the mould into a spray chamber. The bulk of metal within the walls of the strand is still

molten. The strand is supported by closely spaced, water-cooled rollers which support the

walls of the strand against the ferrostatic pressure of the still-solidifying liquid within the

strand. Large amounts of water are sprayed on the strand as it passes through the spray

chamber in combination with radiation cooling, to increase the rate of solidification; the

spray flow rates are adjusted to control strand surface temperature. This is the secondary

cooling process. Final solidification of the strand may take place after the strand has ex-

ited the spray-chamber. It is here that the design of continuous casting machines may

vary: curved apron configuration is adopted for the majority of steel casting; the strand

exits the mould vertically or on a nearly vertical curved path and the rollers gradually

curve the strand towards the horizontal as it travels through the spray-chamber. Note that

moulds, in a curved apron casting line can be straight or curved, depending on the basic

design of the machine. Vertical design is used to cast aluminium and few other metals for

special applications; the strand stays vertical as it passes through the spray-chamber. The

last configuration, the horizontal casting, is used occasionally for both non-ferrous alloys

and steel. The mould axis is horizontal and the flow of steel is horizontal from liquid, to

thin shell to solid; no bending is present. In this type of machine, either strand or mould

oscillation is used to prevent sticking in the mould. After exiting the spray-chamber, the

strand is processed with straightening and withdrawl rolls, taking advantage of its hot

condition for achieving a pre-shape (Fig.1.2); the strand is cut into predetermined lengths

by mechanical shears or by travelling oxyacetylene torches, it is marked for identification

and finally taken either to a stockpile or to the next forming process. In many cases the

strand may continue through additional rollers and other mechanisms which may flatten,

roll or extrude the metal into its final shape. Casting machines are designed to be billet,

bloom or slab casters. Just a final note to strip casting, which has been pioneered for steel

and other metals in low-production markets in order to minimize the amount of rolling

required.
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Fig. 1.2: Final section of curved apron casting process. Water is sprayed on hot metal during
secondary cooling, forming steam.

1.1.1 Chrystal growth and dendrites formation

Controlling the solidification process of metal is essential along the casting line; in

fact, the formation of nino-sized crystallites from molten metal determines its solidifi-

cation structure, thus quality of the final cast product. Solidification means the trans-

formation from liquid phase to the solid one; the initial stage of this transformation is

called nucleation and it refers to the moment when nuclei, solid particles, generate from

the liquid phase. At the thermodynamic freezing temperature, the probability of forming

stable, sustainable nuclei is extremely small; therefore, solidification begins when liquid

cools just under nominal solidification temperature because energy associated with the

crystalline structure of the solid is less than the energy of the liquid. Energy difference

between liquid and solid phase is the “free energy” per unit volume; it generates the un-

stable thermal condition necessary for activating the solidification process. Atoms start to

cluster together and a solid-liquid interface is generated on the surface of particles they

make; their free surface is associated with a certain energy, depending of particles’ di-

mension (volume and surface) and influencing particle’ stability during its growth: when

particle’s radius overcomes the critical radius, it becomes a nucleus and it starts collect-

ing further atoms growing in solid, stable particles called crystals. Then they attach and

cluster forming grains. Crystals increase in size by the progressive addition of atoms and

grow until they impinge upon other adjacent growing crystal; their final individual size

depends on the number of nucleation points. Grains evolve into compact grains or den-

drites and the structure of both of them depends from thermal and flow conditions in the

solidification zone, defining the following crystallographic structure of the solid.
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Crystal growth, in the both cases of compact grains and dendrites, can develop into

two major types of grain structures:

• equiaxed grains, made of crystals growing almost equally in all directions. They

are common adjacent to a cold mold wall; and

• columnar grains; they are long, thin, coarse grains, created when metal solidifies

rather slow in the presence of a steep temperature gradient. Columnar grains grow

almost perpendicular to mold’ surface.

Dendritic solidification

The term dendrite comes from Greek word dendron, which means tree. In metallurgy,

dendrites have a characteristic tree-like branching structure; their shape is produced by

faster growth along energetically favourable crystallographic directions and their growth

has strong consequences in regard to material’s mechanical, electrical and chemical prop-

erties. Dendritic crystalline growth occurs when the liquid-solid interface moves into a

super cooled liquid whose temperature falls in advance of interface while heat is being

removed. When the solidification process starts, heat of fusion is released at the interface,

rising its temperature above the both liquid and solid; temperature drop on the direction

from the interface into the solid is generated, thus temperature gradient inverts because

of the heat flow direction. When temperature falls in the liquid in advance of the inter-

face, the latter becomes unstable and solid particles then find favourable conditions for

rapidly advancing through the liquid phase, generating the characteristic tree-like branch-

ing structure (difference between columnar Fig.1.3 and equiaxed Fig.1.4 grains can be

noticed in pictures below).

Fig. 1.3: Dendrites characteristic tree-like branching structure. Their columnar shape can be no-
ticed in all of the images.
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Fig. 1.4: Equiaxed dendrites. Their four branches have almost the same dimension.

Dendrite’s generation represents the best way for grains to consume the heat of fusion

and the faster this process happens, the more dendrites brunch. Their microstructural

length scale is determined by balance between surface energy and temperature gradient

in the liquid at the interface. Specifically, fast cooling determines the formation a higher

number of nuclei and smaller dendrites’ dimension, due to bordering growing crystals;

smaller dendrites generally lead to higher ductility of the product. Slower cooling process

produces bigger dendrites.

1.1.2 Limits of the casting line

Initial solidification is governed by conduction of heat through the mould but the heat

flow is complicated by thermal stress, which bends the shell, and nucleation undercooling,

which accompanies the rapid solidification and controls the initial microstructure. Fur-

ther solidification is governed mainly by conduction and radiation across the interfacial

gap between the solidifying shell and the mould. This gap consists mainly of mould flux

layers, which move down the mould at different speeds. It is greatly affected by contact

resistances and shrinkage and bending of metal shell, which may create an air gap. These

phenomena must be controlled during the shell growth because of their influence on de-

fects in the final cast product, like crack formation in the mould due to thermal stress and

mould friction. Furthermore, strong deformations occur after the strand exits the mould,

because of strong temperature fluctuations, which can produce strong change in the duc-

tility and strength of metal, plus crack propagation. The final step of the solidification and

cooling process produces macrosegregation and large composition differences of the final

product could arise.

Quality of the final cast product is strongly influenced by a few limits and natural
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behaviour of the solidifying metal, which must be taken into account along the casting

process (Fig.1.5):

• composition variation within a solidified product is known as segregation. Segre-

gation in an alloy is a result of solute rejection at the solidification front followed

by its redistribution by diffusion and mass flow. It can also be produced by density

changes due to phases transformations, temperature and compositional changes. In

few other cases, smelting and refining operations do not completely eliminate all of

the impurities which are usually contained inside liquid metals chosen for casting

processes; it is possible for them to be trapped inside the liquid metal; this leads to

segregation of solute elements in finished casting too. Depending on the extension

of composition variation, this defect is classified as macrosegregation, relative to

grain scale, or microsegregation, relative to the product scale. The former is due

to the accumulation of rejected solute by transport over long distances through the

casting or to motion of growing crystals from their nucleation sites from gravity

or turbulence and long-range capillary flow of liquids during the final stages of the

cooling process. It corresponds to large composition difference between the sur-

face and the centre of the casting, which cannot be affected by diffusion, as the

distance is too large. Hot working procedure breaks down the cast macrostructure

enabling the composition to be evened out. Microsegregation (also known as in-

terdenditic segregation or coring) results from accumulation of the rejected solute

between growing crystals and its failure due to either inadequate time to diffuse

into the main body of residual liquid; microsegregation of alloying elements and

impurities effects strength and ductility. It occurs over short distances over micron

length scale. Homogenization, which involves heating the material just below the

non-equilibrium solidus and holding it there for a few hours, reduces microsegre-

gation by enabling diffusion to bring the composition back to equilibrium. Notice

that segregation is influenced by the mass movement of precipitated phases, due to

the difference in density compared with their parent liquid; metal crystals growing

independently in the melt tend to sink and produce a corresponding upward dis-

placement of solute enriched liquid. Gravity effects segregation process too: crys-

tals which form freely in the liquid often have a different density from that liquid;

as a result, they may either rise towards the surface of the casting or settle towards

the bottom.

• breakouts have already been mentioned and they represent the main difficulty that

may occur during the solidification of metal. The solid shell of the strand breaks
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and allows the still-molten metal within to spill out and foul the machine. In most

industrial environments this event is very costly as it leads to a shutdown of the

strand and typically requires to stop the production for removing the spilled mate-

rial and replacing the damaged machinery. A breakout is usually due to the shell

wall being too thin to support the liquid column above it. This condition is due to

different causes often related to heat management: improper cooling water flow into

the mould or strand zone may lead to inadequate heat removal from the solidifying

metal and cause the solid shell to thicken too slowly. If metal withdrawal rate is

too fast, the shell may not have time to solidify to the required thickness even with

stronger cooling sprays. Furthermore, when the incoming liquid metal is too hot,

its final solidification point may occur further down the strand at a later point than

expected; if this point is below the straightening rolls, the shell may break from

stresses applied during straightening. Breakouts can also be the result of excessive

turbulence within the mould, which may produce irregular shell pattern, that grows

abnormally, or may reduce shell strength. A common event is for the shell to stick

to the surface of the mould and tear; modern control systems applied to the cast-

ing line typically detect this fact and slow the caster down temporarily to let the

wall refreeze while it is still supported in the mould. Anyway, should the incoming

metal be severely overheated, failing in a breakout again is almost certain; in this

case it may be preferable to stop the caster than to risk a breakout. Additionally,

possible contamination of the metal in the initial charging step could determine the

generation of a thin film between the mould wall and the metal, limiting cooling

efficiency and increasing the risk of breakouts.

• contamination of metal before or during the continuous casting produces serious

problems to the process and in most case the rejection of the final cast product. Ox-

idation is maybe the most common way through which hot metal may become dirty

and it occurs rapidly at molten metal temperature (up to 1700 [◦C] for steel); inclu-

sions of gas, slag or undissolved alloys may be also present. Prevention from oxida-

tion consists in isolating metal from the atmosphere as much as possible: exposed

liquid metal surfaces are covered by synthetic slag in ladle, tundish and mould. The

same slag layer may also trap any inclusion that is less dense than the liquid metal,

such as gas bubbles, oxides or undissolved alloys; in that case, items produced from

badly contaminated liquid are typically quarantined or sold as bad-quality products.

• Another problem that may occur is carbon boil - oxygen dissolved in the steel reacts

with carbon inside metal and generates bubbles of carbon monoxide. The reaction
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Fig. 1.5: Main defects of the casting process

is extremely fast and violent and it generates large amounts of hot gas. When steel

is the cast metal, oxygen is removed by “killing” it, through the addition of sili-

con or aluminium to steel and the consequent reaction which forms silicon oxide

(silica) or aluminium oxide (alumina); a perfect quantity of silicon or aluminium is

fundamental for achieving good quality of the final product. Computational fluid

dynamics and other fluid flow techniques are being extensively used in the design

of new continuous casting operations, in the tundish especially, to ensure that in-

clusions are removed from the hot metal and finally ensure that all the hot metal

reaches the mold before it cools down too much. Slight adjustments to the flow

conditions within the tundish or the mold mean the difference between the high and

low rejection rates of the product.

• Argon injection into the nozzles is adopted top prevent clogging; resulting bubbles

from the injection strongly affect flow pattern of molten material, both in the nozzle

and in mold. Inclusions could be then collected inside the metal and they could be

entrapped into the solidifying shell, leading to serious defects on the surface of the

final product. In the end, quality of the final cast product is strongly influenced by

velocity of the injected gas: the higher velocity, the higher risk for metal to entrap

gas inclusions in the solidifying shell.

• hot cracking (also known as hot tears) produces failures in the casting that occur as

the casting cools. This happens because the metal is weak when it is hot and the

residual stresses in the material can cause the casting to fail as it cools. Proper mold
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design prevents this type of defect. Hot spots are areas on the surface of casting that

become very hard because they cooled more quickly than the surrounding material.

This type of defect can be avoided by proper cooling practices or by changing the

chemical composition of the metal.

1.1.3 Influence of intensive melt flow on the solidifying structure

The principle of casting line is based on a solidification process which includes to-

gether a solid-plus-liquid (mushy) zone, formed between the solid skin and liquid pool.

Once metal solidifies, three different resulting patterns can be recognized for its internal

structure (see Fig.1.6): a) pure metals are characterized by chill grains on the external

surface and columnar grains which grow towards the centre; b) alloys are made of a small

layer of chill grains, then columnar grains and finally a core of equiaxed grains; c) com-

pletely equiaxed structure can be achieved by heterogeneous nucleation of grains using

nucleation agents. Tha chill zone is named so because it occurs at the walls of the mold

where the wall chills the material; here is where the nucleation phase and solidification

process takes place. As more heat is removed, grains grow towards the centre of the

casting.

Fig. 1.6: Different solidification patterns of the cast product. Above: horizontal section, orthogo-
nal to the length of the cast metal; below: vertical section

Size and shape of grains of the cast are crucial parameters: thin, long columns are

perpendicular to the casting surface and they are undesirable because of their anisotropic

properties; on the other hand, equiaxed grains have isotropic properties and smaller size.
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They mean finer structure, higher ductility and more uniform grain distribution, thus im-

proving the homogeneity of material properties and its mechanical qualities. In the ab-

sence of grain-refining additions to a melt or of heterogeneous nucleation, equiaxed grains

can only originate in a casting from primary dendrite fragments. Microstructure of the

solidified metal can be influenced with the application of intense motion to the liquid,

in order to interfere with its flow pattern. Temperature and chemical components ho-

mogenization can be obtained in the liquid volume, plus intensification of heat and mass

transfer. Furthermore, strong motion forces the solid-plus-liquid mixture to stay fluid for

much higher solid fractions, affecting both shape and dimension of growing grains; it pro-

duces dendrite fragmentation and grain multiplication, which lead to the transition from

columnar to equiaxed grains and a substantial reduction in their size. Fragmentation is not

a fracture but a local remelting process [35]; stress produced by turbulences change the

local equilibrium at the solid-liquid interface and dendrite side arms detach from the main

trunk generating further nucleation points (Fig.1.7 and 1.8). Molten metal flow also rises

the temperature of molten steel at solidification interfaces and accelerates re-melting of

the dendrites, thus making it possible to solidify metals at lower temperatures compared

with in conventional practice. The intensity of fluid motion must be carefully balanced:

if the velocity is not sufficiently high, the growth of columnar dendrites does not stop;

once started, turbulences must be applied continuously, especially in the lower levels of

the strand. A liquid-solid mixture once in motion remains in fluid even when it contains

up to 60% solids; but if it stops moving, its viscosity increases rapidly and the mixture

behaves as a solid. Extraordinary amounts of power would be required to set in motion

the mixture again. On the other hand, if fragmentation is too strong, too small dendrites

broken arms and no equiaxed grains can be generated; weak cast materials are produced,

with undesired mechanical properties which can lead to rejection of cast products. In spe-

cific cases (pure metal processes or turbine blades production), dendrite fragmentation is

not desired because of branched crystals too fragile in the solidified metal.

Fig. 1.7: Simple scheme of dendrite fragmenta-
tion mechanism

Fig. 1.8: Fragmentation is not a fracture but a
local remelting
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1.2 Methods of stirring for grain refinement

Intensive melt flow in continuous casting is always produced from stirring action on

molten material. This solution leads to the microstructure and composition homogeniza-

tion of the cast product, affecting its inner and surface quality. Industrial experience has

shown that stirrer design and operating conditions have a strong influence on metallurgi-

cal quality. Thus, different technologies of stirring (Fig.1.9) for grain refinement can be

distinguished:

Mechanical Stirring
Mechanical stirring is achieved using augers, impellers or multiple agitators that are

attached to a rotating shaft. The advantage of mechanical stirring is that torque and ro-

tational speed can be recorded during stirring and used in real time for determining the

fluid viscosity as well as for process control. Mechanical stirring can be subdivided into

active and passive techniques according to how shear is induced in the melt. Stirring with

propellers is one of the most common method; the impeller always includes two or more

blades, specifically designed for generating toroidal vortices inside the liquid. The im-

peller is driven by an electric motor; it is commonly set in the central axis of the cast and

its rotating velocity can be regulated while a constant torque is usually desirable in stirring

applications. Japanese experiments [25] show that impeller diameter plays a significant

role on mixing patterns inside the melt: larger diameter generates vortices on a deeper

position, making the mixing more effective.

Mechanical stirring spread in many industrial and experimental applications for re-

ducing gas contents inside solidified metals; desulfurization for example is a fundamental

process for steel and it is achieved with the help of mechanical stirring; in some experi-

mental activities, stirring action is combined with the injection of different materials like

powder or plastics [24]. Even if the structure of actual mechanical stirrers is getting more

compact and simple, many delicate components are still necessary for the apparatus; the

propeller is drawn inside the fluid, thus the two of them keep directly in contact during the

whole stirring process, affecting purity of the solidified product. Really intense motion is

generated with such a kind of stirring and large volumes can be processed.

The combination of mechanical stirring with vertical semi-continuous casting process

[36] showed that fine structure and uniform distribution of particles can be achieved with

high rotational speed and high castiong temperature but these stirring conditions also lead

to transverse cracks on the billet surface.
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Stirring with vibrations

Either sonic or ultrasonic vibrations produced by mechanical vibration elements can

be applied during solidification to refine the microstructure. Such vibration is normally

provided via magnetostrictive or piezoelectrive transducer. Contact between molten metal

and transducer probe (normally made of titanium) is provided via a high-temperature

material coupling (typically ceramic based). Some disadvantages are that it can only be

applied to small volumes, extremely powerful machines must be used instead; the high-

temperature coupling material may dissolve with time when immersed in the liquid metal

where it may also contaminate the melt.

Low frequency (i.e. in the range of [Hz]) or ultrasonic vibrations (i.e. in the range of

[kHz]) can be applied: experimental activities [46] demonstrated that the former consider-

ably reduces surface cracks and, in combination with water cooling systems, it produces

more uniform cooling, increases the amount of nucleation and the sphericity of grains.

The latter has been combined and applied after mechanical stirring to agitate the insolu-

ble solid nanoparticles and promote more nucleation. Recent experimental activities [37]

tested the Multi-frequency Multimode Modulated (MMM) technology in the challenge

of increasing stirring efficiency and degassing; the goal of this technology is to fully agi-

tate the whole vibrating system thanks to the combination of sonic and ultrasonic driving,

which produces multimode vibrations which are uniform and repeatable.

Stirring by gas injection

Stirring by means of gases does not apply any mechanical movement directly to the

fluid but motion is achieved thanks to gas injection inside the melt (argon is usually the

gas chosen for this process). Gas is blown through nozzles fixed on the top or bottom

position of the melt and more than one blowing tube can be present. This solution does

not allow rapid neither exact control of flow velocity but strong motion can be generated.

Big volumes of material can be stirred but contamination of the cast is very easy, because

of pipes inside the liquid which could interact with it and because of possible gas bub-

bles being trapped inside the solidified material, which strongly decrease its quality. Gas

stirring has also a cooling effect on the melt and increases the rate of oxidation. A study

form ABB [38] puts in evidence that gas stirring technology is made of different moving

tools (in the same way of mechanical and vibrating stirring) which reduce reliability of

the process: the gas supply line must be connected to the ladle, automatically or manu-

ally, and disconnected after treatment; connections and joints in the supply lane may leak

and the flow meter will give false information. Therefore it is necessary to inspect the

system to make sure the required stirring action is delivered. Furthermore, the presence
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of a gas plug in a ladle lining always represents a potential risk; any break through is very

costly and increases the risk of personal injuries. On the other hand, stirring through gas

injection plays a significant role in steelmaking processes, in the ladle especially, thanks

to its strong mixing action.

Fig. 1.9: Different methods of stirring

Electromagnetic stirring
Electromagnetic stirring (EMS) is based on the concept the electric motor: when the

coil surrounding molten material is fed by an alternating current (single-phase or three-

phase usually), the produced magnetic field penetrates inside the liquid metal and induces

electric current inside of it (it is also called eddy current); interaction between magnetic

field and induced currents produces a certain distribution of electromagnetic force, which

determines liquid metal motion with a certain flow pattern. Therefore, it is easy to notice

how the stirring device makes the role of the stator of an electric motor while liquid metal

represents the rotor. Generated force is named Lorentz force (see equation 2.7) and it

depends from four main factors:

• intensity of the supply current

• number of windings forming the coil

• frequency

• system’s design.

Low frequency (i.e. few [Hz]) is always applied for generating deep-penetrating field and

assure more uniform fluid’s motion; on the other hand, other electrical and geometrical

parameters strongly depend from stirring desired pattern and fluid’s velocity which wants

to be provided. Supply current directly influences velocity of the fluid, which is usually

included in a range of 0.1÷ 1 [m/s].
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Three possible stirrer configurations in a continuous casting machine are present, ac-

cording to the position and the required effects on the cast product (Fig.1.10):

• mold-electromagnetic stirrer (M-EMS) is usually installed in the immediately lower

part of the mold for stirring the liquid metal at the very beginning of its solidifica-

tion. It improves surface, sub surface and inner strand quality. M-EMS is either of

round or square design and it can be installed internally or externally; it provides

rotating magnetic field.

In many industrial applications, in order to achieve flexible control of stirring speed

in the mould meniscus, dual coil M-EMS has been developed; it consists of two

independent EMS. The upper one is meant for flow control in the meniscus while

the lower EMS performs the stirring of main metal in the mould. Such a design of

dual M-EMS widens the opportunities for using the EMS technique under various

conditions of continuous casting of metals.

• strand-electromagnetic stirrer (S-EMS) produces a stirring force that pushes the

liquid steel horizontally along the cast product width and generates a butterfly type

flow pattern in the liquid metal; travelling magnetic field is produced (Fig.1.11).

It is placed at a certain distance from the meniscus where metal solid fraction is

rapidly increasing. Low frequency ensures of the stirrer force through the strand.

Stirrer device design determines transverse stirring effect, which is usually used in

combination with M – EMS. Strand – EMS can be of either linear or rotary type; it is

installed behind support rollers or into them; in this last case, bigger roller diameter

is required and stirring action is less effective. Linear stirrer is easy to install and

protect against heat radiation and possible breakouts, therefore it is really common.

Strand-stirrer removes superheat effectively.

• final-electromagnetic stirrer (F-EMS); there is equally strong interest in using

EMS to stir far below the mold in the final solidification zone of a continuous

casting strand. However, conventional EMS systems have proven to be somewhat

ineffective when applied in this region. As a potential solution, there recently has

been considerable interest in applying modulated Lorentz forces in an effort to de-

velop distributed vigorous stirring in the final zone. F-EMS is generally installed

in combination with mold-EMS or strand-EMS to reduce and cut peaks in centre

segregation. F-EMS is particularly efficient when casting high carbon or high alloy

steel grades. With the use of F- EMS, solidification structure of the cast product

is improved due to the increase in the ratio of the equiaxed structure. Shrinkage
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Fig. 1.10: Types of EM stirrers along the continuous casting line

and central segregation are reduced, enhancing the quality of the cast product at

the end of its solidification process. Final electromagnetic stirrer provides rotating

magnetic field.

Fig. 1.11: Strand electromagnetic stirrer: location and design

All of the previous EM stirring systems are equipped with a transformer, frequency con-

verter and a controller, to guarantee power supply and manage the electrical parameters

like current, voltage and frequency; the frequency converter is specifically designed for

operating with low frequencies involved with the stirring equipment.

The main element of each electromagnetic stirrer is represented by its coil, usually

made with copper or aluminium; EM stirrers for continuous casting lines also include

magnetic core to guide magnetic field lines, a shielding and cooling system for protecting

the device from hot temperature of molten metal. It is easy to notice that electromag-

netic stirrers have simple and compact design which permits no direct contact with the

liquid, this is a significant advantage, considering the aggressiveness of liquid metals.

The magnetic field acts as a non intrusive stirring device, thus not affecting purity of the
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cast material. No moving parts are present, making the system more reliable, reducing its

maintenance costs and increasing leaning life of the casting line. Induction systems al-

ways assure low energy consumption, thus high efficiency; the high initial cost of stirrer’s

installation and immediate price of current are always supplied by an attractive pay-back

time. Great flexibility has recently been achieved thanks to the development of solid-

state power converters. EM stirring process can be easily and instantaneously controlled:

intensive melt flow is always produced and flow pattern can be modified by changing

magnitude and frequency of the supply current to the coil. Thanks to different inductors’

design, different kinds of magnetic fields can be generated inside the melt (Fig.1.12), thus

affecting its motion:

a. travelling magnetic field (TMF) moves along the same direction of the casting line

and is generated by three-phase inductor surrounding molten material. Resulting

Lorentz force produces a unique, toroidal vortex inside the melt, whose dimension

can be varied with the change of the supplied current. Intensity of the flow and

its direction can be controlled precisely while intensive heat and mass transfer are

absent in the central zone of melt volume.

b. rotating magnetic field (RMF) is produced by single or three-phase stirrers when

their inductor is made of single groups of coils fixed around the casting line. Two

main flow patterns are generated inside molten metal: the first, and the principal

one, is melt’s rotation around its axis while two secondary toroidal vortices are

generated next to the top and the bottom of stirrer device.

Fig. 1.12: Flow patterns produced by different magnetic field solutions (a. travelling magnetic
field; b. rotating magnetic field; c. alternating magnetic field). In every picture it is possible to
recognize 1- flowing molten metal, 2- inductor and 3- flow pattern of the liquid. No magnetic field
lines have been represented while induced currents are in evidence with + or • symbols
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c. alternating magnetic field (AMF) is generated by a coil around the fluid and motion

of liquid metal is represented by two toroidal eddies which have almost the same

average velocity and energy but opposite directions; the two vortices are symmet-

rical to the centre of the inductor. At the difference of other configurations, AMF

assures intensive heat and mass transfer between vortices, in the central zone of

melt volume. The intensity of the flow can be controlled only while flow pattern is

obviously fixed for each magnetic field solution.

1.2.1 Stirring with AMF or PMF: objectives of this investigation

Investigation setup chosen for this thesis adopted AMF for stirring liquid metal, Gal-

IStan in this specific case. AMF is the most applied stirring solution for continuous cast-

ing, thanks to the production of more intense motion compared with other methods, its

strong possibility to increase equiaxed ratio of dendrites and intensive heat transfer, which

brings to high homogenization of and thermal properties. This solution can also be easily

and rapidly controlled. The inductor is always fixed at the beginning of the casting line,

Fig. 1.13: Mould-EMS generating AMF.

below the mould but immediately before first cooling step, where the meniscus generates

(Fig.1.13). This area (named meniscus area) significantly affects the quality of CC ingot

and its surface especially [40], thus the final product. As already stated, standard con-

figuration is not influenced from the solidification front and two similar toroidal eddies

are produced in a symmetrical position with the coil; frequency of the current feeding the

stirrer is low (i.e. less than 10 [Hz]) and sinusoidal current is almost always adopted. Pre-

vious studies on this symmetrical configuration [23] demonstrated that motion of melt can

be significantly increased with pulsed magnetic field (PMF) solution instead of AMF: am-

plitude and rotating frequency (characteristic frequency, fch) of vortices were calculated,
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thus alternated current was substituted with pulses with the same frequency of eddies

(pulsed frequency, fp); each pulse was made anyway with sinusoidal waves with fch and

lasted for half of the pulsed period, Tp. Main aim of this investigation was to achieve

strong interaction between electromagnetic and mechanical parameters, thus resonance
of current supplied to the coil with the two toroidal eddies. In this case, higher efficiency
of the stirring process was evidently obtained, which can lead to two main consequences:

1. more intense motion of the liquid metal with the same amount of supplied electrical

power;

2. same intensity of motion with less supplied electrical power.

PMF solution interacted with pulsed component of velocity of the flow and the inves-

tigation also demonstrated that strong motion of melt was achieved not with resonance

frequency fp only but with the application of a frequency around resonance too (Fig.1.14

shows in the red circle resonance consequences when frequency was around fp).

Fig. 1.14: Investigation results for PMF application. Diagram on the right shows the intensity of
pulsed component of velocity over frequency variation of current. Pulsed current can be noticed
above the stirring system.

Main objective of this thesis was to carry on with the previous investigation and apply

PMF solution instead of AMF in the case of not standard stirring conditions (Fig.1.15):

global knowledge of meniscus area is fundamental to optimize the action of stirrer on

molten metal and the meniscus is commonly located at the same height of solidification

zone; in some industrial casting applications thought, movement of meniscus can occur,

thus relative position between melt and inductor is not symmetric anymore and strong

asymmetry between toroidal eddies can be observed too. This working condition brings

to a transition from two similar vortices in amplitude and velocity, to the generation of
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Fig. 1.15: Schematic representation of two-to-one transition.

a couple of vortices in which one of them is much bigger and energetic than the other;

two-to-one transition is due to two main causes:

• strong asymmetry between melt and the surrounding inductor. This condition is

the topic of this investigation and is determined from strong cooling rate, which

increases speed of solidification.

• decrease in the ratio height/diameter of melt, thus movement of relative position

of metal liquid phase respect to the coil.

Fig. 1.16: Causes of the transition. Curve a refers to velocity profile in symmetrical conditions,
curve b is the one after symmetry is lost.

This thesis focused on the region where stirrer is located in order to investigate conse-

quences of the transition on melt flows and the possibility to optimize stirring action in

such conditions. Firstly, if the transition happened was investigated, then when it oc-

curred was analysed, with the objective to apply PMF with the same frequency of bigger

vortex and achieve resonance condition, thus higher efficiency even during the shift of
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solidification front. Simulation of the transition was carried out with a 6-turns inductor

surrounding melt with cylindrical shape; relative movement between the two of them was

realized with shifting upward the coil, while axial component of flows velocity was mea-

sured to quantify motion of melt. Chosen molten metal for the investigation was GalIn-

Stan. AMF was initially applied during inductor’s movement, then the transition was

analysed and finally optimization of the stirring effect was achieved with the application

of PMF.
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Chapter 2

Theoretical background

2.1 Electromagnetic systems and their numerical mod-

elling

The present work deals with liquid metals flows, driven by electromagnetic forces.

These kind of flows are often observed in various metallurgical processes of different

scale: from experimental centimetre-sized installations for melting of high-purity alloys,

up to industrial furnaces with several meter in diameter. All of the previous systems share

the fact that melt moves in closed domain, with no inlets and outlets and this domain

keeps a relatively stable form for the considered period of time. When an alternating

harmonic electric current i(t) = Imax sin(ωt + φ) feeds the inductor, energy is supplied

to the system and generates fluid’s motion. Magnetic field is induced by the current into

the melt and spreads according to Maxwell’s equations:

∇ · E =
ρe
ε

(Gauss’ law) (2.1)

∇ · B = 0 (Gauss’ law for magnetism) (2.2)

∇× E = −∂B
∂t

(Faraday’s law) (2.3)

∇× B = µ

(
J + ε

∂E
∂t

)
(Ampere’s law) (2.4)
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where µ = µrµ0 is the product of relative permeability of the material and the permeabil-

ity of free space and ε = εrε0 is the permittivity. All of the equations above have thus be

Fig. 2.1: Scheme of an axisymmetric induction system

taken into account in their general case, where ρe is the total electric charge density; from

now on, the specific case of no free electric charges in the domain ρe = 0 will be taken

into account and equation (2.1) becomes ∇ · E = 0. The following expressions will be

written in free space. The set of Maxwell’s equations is completed by:

∇ · J = 0 (Charge conservation) (2.5)

J = σ(E + v× B) (Ohm’s law) (2.6)

fEM = J× B (Lorentz force) (2.7)

and by constitutional equations:

J = σE (2.8)

D = ε0E (2.9)
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B = µ0H (2.10)

The divergence of magnetic induction field B is always equal to zero (2.2) and therefore

a magnetic vector potential A can be introduced:

B = ∇× A (2.11)

Using Faraday’s law (2.3), electric field intensity can now be expressed as:

∇× E = −∇× ∂A
∂t

(2.12)

Integrating this expression, leads to:

E = −∂A
∂t
−∇ϕ, (2.13)

where the last term on the right represents the integration constant and a new scalar term

is introduced - the electric vector potential ϕ. The equation for vector potential A can

be achieved by substituting equations number (2.11), (2.13) and (2.3) into the equation

number (2.6) and by neglecting displacement current J� ε0
∂E
∂t

:

∂A
∂t

= λm∇2A−∇ϕ+ v×∇× A (2.14)

Here the magnetic vector potential was derived using the Coulomob gauge ∇ · A ≡ 0,

i.e. in divergence-free form and therefore using the nabla formalism the next expression

is correct: ∇×∇× A = ∇(∇ · A) −∇2A = −∇2A. Parameter λm = 1/µ0σ is called

magnetic diffusivity. The last term of (2.14) is usually negligible because of its insignif-

icance in the examinated flows. Displacement current is negligible in the hypothesis of

slow varying and periodic fields with frequency up to 10 [kHz]; more precisely, deciding

whether displacement current can be neglected or not depends from the wavelength of

electrical quantities in the frequency domain: in the case it is large compared to physi-

cal dimensions of the problem, displacement current can be neglected. In this condition,

we talk about quasi-stationary fields and most of the electrical engineering issues can be

described with quasi-static phenomena. When ∂D/∂t ≈ 0, Ampere’s law (2.4) can be

written as:

∇×H = J (2.15)
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and A formulation can be derived for quasi-stationary magnetic fields in time-domain:

∇×
(

1

µ0

∇× A
)

+ σ
∂A
∂t

= J (2.16)

Taking into account Coulomb gauge condition∇ · A = 0, the equation above becomes:

∇2A− µ0σ
∂A
∂t

= −µ0J (2.17)

and the resulting equation is function of magnetic vector potential A only.

In a phasorial domain partial derivative ∂A
∂t

= jωA; thus, Ampere’s equation (2.17)

can be rewritten as:

∇2A− jωµ0σA = −µ0J. (2.18)

In the most general case displacement current is not negligible from equation (2.4), thus

magnetic vector potential and its properties can be substituted in equation (2.4):

∇×∇× A = µ0J + µ0ε0
∂D
∂t

(2.19)

∇ (∇ · A)−∇2A = µ0D + µ0ε0
∂D
∂t
. (2.20)

The use of constitutional equation and substitution of (2.13) inside (2.20) brings to:

∇ (∇ · A)−∇2A = µ0J− µ0ε0∇
∂V

∂t
− µ0ε0

∂2A
∂t2

; (2.21)

assuming Lorentz condition∇ · A = −µ0ε0
∂V
∂t

:

∇2A− µ0ε0
∂2A
∂t2

= −µ0J. (2.22)

Using constitutional equation and substitution of (2.12) inside Gauss’ law (2.1) brings to:

∇2V − µ0ε0
∂2V

∂t2
= − ρ

ε0

; (2.23)

Equations (2.22) and (2.23) take the name of non homogeneous wave equations; In ad-

dition to Lorentz condition, they are equivalent to the set of the four Maxwell equations

and they are valid anywhere. It is finally possible to notice the appearance of an unknown

function, multiplied by µ0 and ε0, on the left side, while the known source appears on the

right side.
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Considerable magnetic field penetrates into the melt in the depth of skin layer only;

the skin depth shows how deep the magnetic field diffuses into the conducting medium

and it depends on λm coefficient and on frequency of the electromagnetic field:

δem =

√
1

πfσµrµ0

(2.24)

Combinig Faraday’s law (2.3) and Ohm’s law (2.6) together, induction equation can be

obtained:

∂B
∂t

= λm∇2B +∇× (v× B) (2.25)

If the last term of the equation vanishes (the conductor motion is suppressed), the induc-

tion equation takes the same form of the diffusion equation and it can be shown that a

magnetic field diffuses inwards by a distance of under (2λmt)
1/2 in a time t.

Lorentz force is extremely important for the conducting melt convection and motion

inside stirrers of casting lines and in crucibles; it will be explained more in detail. Equa-

tion number (2.7) can be written using Ampere’s law (2.4):

FEM =
1

µ0

(∇× B)× B, (2.26)

which can be decomposed into a pressure term and a driving part:

FEM = +
1

µ0

(B · ∇)B−∇(
B2

2µ0

) (2.27)

The first term of the right side in the above expression is the melt driving part (rotational)

and can be written using index notation as ∂mij/∂xj , where mij = (1/µ0)BiBj is the

Maxwell tensor. The latter term represents the electromagnetic pressure, which, in form

of gradient, can be included into the modified pressure in Navier-Stokes equation. This

electromagnetic pressure therefore can change pressure equilibrium only and can cause

free surface deformations in liquid domain.

If the magnetic field is harmonic B = Bc cos(ωt) + Bs sin(ωt), then the electromag-

netic force can be decomposed into a mean (average) part and an oscillating part, where

oscillating frequency is twice the electromagnetic field frequency. It can be illustrated on

EM pressure term from the equation (2.27):

B2

2µ0

=
1

4µ0

(Bc
2 +Bs

2 + (Bc
2 −Bs

2) cos(2ωt) + Bc · Bs sin(2ωt)) (2.28)

The mean part is responsible for the motion of the flow in its core while the oscillating

part introduces surface instabilities and waves to the melt flow. However, the oscillating
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part should be taken into account if the field frequency is very low only (about several

Hz), because of inertia impeding the melt to respond to alternating forces at higher fre-

quencies, which are typical for induction heaters. Some simulation experiments show

that, for induction stirring problems, the flow is no longer sensitive to the oscillating part

of Lorentz force when the applied magnetic field frequency exceeds approximately 5÷10

[Hz]. Free surface deformation under the influence of electromagnetic pressure of (2.27)

can be calculated with the help of the following equation:

ρgz + γK +
B2

2µ0

= const, (2.29)

where first term on the left side represents hydrostatic pressure and K = 1/R1 + 1/R2 is

equal to the curvature of the free surface.

The magnetic Reynolds number, which is defined as

Rem = µ0σvL, (2.30)

usually has a value of Rem < 1 in typical metallurgical applications involving liquid

metal flows. Therefore, the magnetic field distribution in the melt has mainly diffusive

character and the magnetic field lines are not deformed by the motion of the conducting

liquid. This allows us to neglect the fluid motion in electromagnetic calculations.

When the system is axisymmetric (what is really common for EM stirring and induc-

tion crucible furnaces), equation (2.14) can be solved with numerical methods in 2D cylin-

drical coordinates. Vector A has one component only - tangential - while Az = Ar = 0

and ∇ϕ is zero:

µ0σ
∂Aθ
∂t

=
1

r

∂

∂r

(
r
∂Aθ
∂r

)
+
∂2Aθ
∂z2

− Aθ
r2

(2.31)

The field values, derived from (2.11):

Bz =
1

r

(
r
∂Aθ
∂r

)
Br = −∂Aθ

∂z
(2.32)

Also, using (2.6) and (2.13):

Jθ = −σ∂Aθ
∂t

(2.33)

Finally, non-zero Lorentz force components:

Fr = JθBz Fz = −JθBr (2.34)

where it is possible to observe that current density is made of one component only.
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In the case of harmonic analysis, the solution variable Aθ can be written as the sum-

mation of real and imaginary part Aθ = Are cos(ωt)Aim sin(ωt). Therefore, current den-

sity will be:

Jθ,re = ωσAim Jθ,im = ωσAre (2.35)

The time-average magnitude of the Lorentz force and Joule heat density can be obtained

from the results of the numerical analysis as:

Fr =
1

2
(Jθ,reBz,re + Jθ,imBz,im) Fz = −1

2
(Jθ,reBz,re + Jθ,imBz,im) (2.36)

Q =
J2
re + J2

im

2σ
(2.37)

These values appear then in the hydrodynamic and energy equations as source terms.

2.2 Fluid flow features and actual turbulence models

Incompressible fluid flow is defined by the laws of conservation of mass and momen-

tum. These laws are expressed in terms of partial differential equations:

∇ · v = 0 (2.38)

ρ
∂v
∂t

+ ρ (v∇) v = −∇p+ µ∆v + ρg + f (2.39)

where ~g is gravity acceleration, ρ is the fluid density and µ is the dynamic viscosity; v
is the velocity of the fluid. The last two terms on the right represent forces responsible

for the movement of the fluid. Density in liquid metals usually depends on temperature

as ρ = ρ0(1 − β(T − T0)), where β is the thermal expansion coefficient and T0 some

reference temperature. This is particularly true in the case of small temperature deviation.

Furthermore, considering that ρ0~g is constant in the whole domain (and it can also be

considered as a part of the operating pressure p in form of ρ0gz), the corresponding term

in (2.39) becomes −ρ0~gβ(T − T0). This is called buoyancy force. More famous Navier-

Stokes equation can be derived as a particular form of momentum equation (2.39) and, for
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incompressible fluids, it can be written as:

∂vi
∂t

+ vj
∂xi
∂xj

= − 1

ρf

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi, i = 1, 2, 3 (2.40)

where ν = µ/ρ is the kinematic viscosity and indices take the values 1, 2 and 3, which

correspond to x, y and z directions. Using the rate of strain 2Sij = ∂vi/∂xj + ∂vj/∂xi,

Navier-Stokes equation becomes:

∂vi
∂t

+ vj
∂xi
∂xj

= − 1

ρf

∂p

∂xi
+

∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ fi (2.41)

where gravitation and EM force are typical forces acting on the fluid during induction

processes. Electromagnetic force can be expressed as FEM = 0.5<e(J × B), where J is

the induced current density and B is the intensity of external magnetic field. Using Ohm’s

law, electromagnetic force can be estimated as:

fem ∼ σvB2 (2.42)

In the absence of the external forces, dimensionless Grashof number becomes an impor-

tant parameter in order to put in evidence the ratio between buoyancy and viscous forces:

Gr =
ρ0gβ(T − T0)L3

µ
(2.43)

in typical induction applications its order of magnitude is about 104, much lower than

the critical value of 108, when natural convection becomes turbulent. Dimensionless

Reynolds number is introduced to estimate the ratio between inertial and viscous forces:

Re =
ULρ

µ
=
UL

ν
(2.44)

In the case of inertial effects great enough than viscous effects, Reynolds number is above

2000-3000 and the flow is assumed to be turbulent; velocity fluctuates at every point of

the flow field. In that case, instantaneous velocity can be expressed in terms of a mean

value and a fluctuating component:

v = v̄ + v′ (2.45)

where v̄ is the mean component of velocity in x-direction and v′ is the fluctuating compo-

nent along x again. The time-average of fluctuating component is zero:

1

δt

∫ δt

0

v′dt = 0, (2.46)
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where δt is a proper interval of time, chosen for making the expression true and so that

transient effect does not affect this integration. After the substitution of (2.45) in momen-

tum equations (2.39), time averaging leads to additional terms like this:

σRx = − ∂

∂x

(
ρv′xv

′
x

)
− ∂

∂y

(
ρv′xv

′
y

)
− ∂

∂z

(
ρv′xv

′
z

)
(2.47)

where σR is Reynolds stress term. These terms can not be calculated directly and, there-

fore, they introduce new unknowns into the momentum equation. They are assumed to be

equivalent of a viscous stress term with an unknown coeffcient:

−ρv′iv′j = µt

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.48)

This approach to turbulence modelling allows to combine diffusion terms in the original

equation (2.39) if the effective viscosity is defined as the sum of laminar and turbulent

viscosities:

µef = µ+ µt (2.49)

The solution of turbulence problem provides an estimation of the turbulent viscosity for

Navier-Stokes equation. It is a partial differential equation, boundary and initial condi-

tions should be included to the model. Two kinds of fluid boundaries will be described, the

ones that will be taken into account during the following simulations: smooth solid wall

and free surface of the fluid. Wall means that no fluid may pass through it and therefore

normal velocity to the boundary must be equal to the velocity of the wall:

v · n = VS · n (2.50)

where VS is the velocity of the wall and n is surface normal vector. Tangential velocity

component on the wall must be zero because of viscosity of the fluid (no-slip boundary

condition). On the other hand, free surface of the fluid allows existence of tangential

velocity component and it can be expressed with the boundary condition:

v× n = VS × n (2.51)

Several ways has been developed for modelling the turbulent flow. The most simple case

is to set constant turbulent viscosity, which is much larger than molecular viscosity.

k − ε model is more advanced and thus it is the most spread in engineering appli-

cations; it has been then modified in many different ways to adapt it to various flow

conditions. In standard k − ε model, turbulent viscosity is calculated with the help of the
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following expression:

µt = Cµρ
k2

ε
(2.52)

where k is the turbulent kinetic energy, ε is the dissipation rate of turbulent kinetic energy

and Cµ = 0.09 is a constant term. Two differential transport equations can be described

for k and ε:

ρ
∂k

∂t
+ div(ρvk) = ∇

(
µt
σk
∇k
)

+G− ρε (2.53)

ρ
∂ε

∂t
+ div(ρvε) = ∇

(
µt
σε
∇ε
)

+ C1ε
ε

k
G− C2ερ

ε2

k
(2.54)

The three terms on the right side of the equations are, respectively, the diffusion, genera-

tion and dissipation terms, where G is responsible of the generation of kinetic energy of

the turbulence:

G = µt

(
∂vi
∂xj

+
∂vj
∂xi

)
∂vi
∂xj

(2.55)

where the semi-empirical coefficients:

C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3. (2.56)

The solution of these turbulence equations allows to calculate effective viscosity and ther-

mal conductivity:

µef = µ+ Cµρ
k2

ε
(2.57)

λef = λ+
µtcp
Prt

(2.58)

where cp is the specific heat and Prt is a turbulent Prandtl number. The dimensionless

Prandtl number shows the ratio of impulse and heat diffusivity. In laminar flows its value

is calculated with following expression:

Pr =
µcp
λ

(2.59)

Turbulent Prandtl number used in (2.58) has a constant value which varies in the standard

model from 0.7 up to 1.0 depending on numerical realization. Several modifications of

32



2.2. FLUID FLOW FEATURES AND ACTUAL TURBULENCE MODELS

this basic model have been developed; they usually differ in either the Cµ term or in the

source term of the dissipation equation. One of them is the Renormalized-Group (RNG)

model, where the expression for turbulent viscosity (2.52) is replaced with the following

differential equation:

d

(
ρ2k
√
εµ

)
= 1.72

ν̂√
ν̂3 − 1 + Cν

dν̂ (2.60)

where ν̂ = µef/µ and Cν ≈ 100. In the case of high Reynolds number this equation gives

the same result as (2.52). An option to take into account the effect of rotation in the mean

flow is also provided by the RNG model, so that, these and several other features the RNG

more accurate than k − ε model for some specific classes of flows.

The k−ω model is another widely spread turbulence model, which is based on trans-

port equations for the turbulence kinetic energy k and the specific dissipation rate ω,

which is defined as the ratio between ε and k. These equations are similar to those of the

k − ε model. Coefficient α∗ is introduced, which damps the turbulent viscosity causing

low-Reynolds-number correction:

α∗ = α∗∞

(
α∗0 +Ret/Rk

1 +Ret/Rk

)
(2.61)

where

Ret =
ρk

µω
, Rk = 6, α∗0 =

βi
3
, βi = 0.072 (2.62)

In the case of high-Reynolds-number flow α∗ becomes 1.

The combination of k − ω model in the inner part boundary layer and k − ε model

in the outer part is called shear-stress transport (SST) k − ω model. This last one in-

cludes modified turbulent viscosity formulation to take into account transport effects of

the principal turbulent shear stress. A cross-diffusion term in the ω equation has then been

included, plus a blending function to ensure that model equations behave appropriately in

both the near-wall and far-field zones.

All of these two-equations turbulence models belong to one class, which is based on

the RANS approach and, therefore, have some common advantages and disadvantages

when applied in the induction field. Their positive sides are the good prediction of flow

pattern even on relatively coarse meshes and short time required for achieving steady-

state solution. On the other hand, because of Reynolds time-averaged equations, they all

include assumptions about isotropy of the turbulence and stability of the flow (at least

when boundary conditions are time-constant). These two last conditions are not always

applicable, especially in the case of rotating flows (i.e. EM stirring).
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2.3 Energy balance in turbulent flows

Energy equation for the single-phase flow has the following form:

∂

∂t
(ρE) +∇ · (v(ρE + p)) = ∇ · (λef∇T + (¯̄τef · v)) +Q (2.63)

where the first two terms on the right side of the equation are responsible for conductive

energy transfer and viscous dissipation. ¯̄τef is called deviatoric stress tensor:

¯̄τef = µef

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
µef

∂vi
∂xj

δij (2.64)

Energy E is:

E = h− p

ρ
+
v2

2
(2.65)

and λef is the effective conductivity (λ+λt are material and turbulent thermal conductiv-

ities). Enthalpy h in incompressible flow is:

h =

∫ T

Tref

cpdT +
p

ρ
(2.66)

Last term Q in (2.63) is the density of heat sources, which is represented by Joule heat in

the case of induction processes.

Turbulent motion of the fluid greatly increases energy transfer in the normal direc-

tion to the averaged flow streamlines. Correct estimation of its contribution is vital for

final results of temperature distribution. The estimation of its quantitative value is closely

correlated with the estimation of the turbulence intensity (which is the main task of any

turbulence model). The effective thermal conductivity λef directly depends on turbu-

lent viscosity and turbulent Prandtl number Prt in the case of k − ε turbulence model.

While turbulent viscosity distribution is the product of turbulence modelling, Prt is a

user-defined constant. Values between 0.7 and 1 are usually taken for it. An analytical

expression for estimating turbulent Prandtl number is often adopted and it is given by the

ratio of eddy diffusivity for momentum transfer εM and heat transfer εH :

Prt =
εM
εH

(2.67)

Considering, that turbulent viscosity is usually several times higher than molecular one,

the value of this dimensionless number has important influence on resulting effective ther-

mal conductivity and, therefore, on heat transfer and temperature distribution predicted

by k − ε turbulence model. The concept of eddy diffusivity looses its meaning in the
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case of three-dimensional or/and recirculating flows, thus restricting the application of

Prandtl number to the two-dimensional boundary layers. But even there number’s mean-

ing is significantly reduced when liquid metals are the subject of modelling: relatively

high molecular thermal conductivity of metals makes the influence of Prt negligible and

it can be taken as unity.

LES method implements the same approach of effective thermal conductivity with the

important difference that sub-grid viscosity, which replaces turbulent viscosity, is much

smaller and, hence, the value of Prt has less influence on modelling results. Addition-

ally, due to the transient modelling approach, main contribution to the heat exchange is

resolved directly as convective energy transfer. The finer the mesh becomes, the lower

gets the term representing heat conduction by molecular viscosity and sub-grid turbu-

lence. The same rules are applied for transport of scalar quantities in the flow, like alloy

additives, with the condition of them being fine enough and not influencing flow pattern.

2.4 Thermal fields

In electromagnetic systems, several sources of heat exist, like Joule heat and magnetic

hysteresis. The three heat transfer principles are briefly explained as follows:

Conduction is a process where heat is transmitted between bodies having physical

contact. Fourier’s equation describes this phenomenon:

C
∂T

∂t
+∇ (−λ∇T ) = Q, (2.68)

where T is the temperature, c thermal capability, λ the thermal conductivity andQ thermal

source volumetric density. Since λ is assumed constant, (2.68) can be rewritten as:

∇2T − c

λ

∂T

∂t
= −Q

λ
, (2.69)

which is similar to (2.22) and can also be solved in the same way. For instance, Q can be

written as Joule’s effect source by Q = J2/σ.

Convection occurs when a fluid has a contact with a heated solid body; hotter particles

of the fluid rise up because of their lower density and they are replaced by cooler ones,

with higher density, generating a constant motion of the fluid. Forced convection can

also be produced; in this case the circulating process is not driven by density difference

between particular sections of the fluid but convection is artificially driven by e.g. fun or
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a pump. Heat is transmitted from the body to the fluid according to:

λ
dT

ds
= −h(T − Ta), (2.70)

where h stands for the heat transfer coefficient by convection, T is the temperature of the

heated element and Ta the temperature of the fluid far from the element.

Every element with temperature higher than zero [K] emits radiation through electro-

magnetic waves; this phenomenon is called radiation. In this case heat transfer from a

body at the temperature T to a second body at temperature Ta follows the equation:

λ
dT

ds
= −εγ

(
T 4 − T a4

)
, (2.71)

where ε is the emissivity of the body and γ represents Stefan Boltzmann constant.

Generally talking, these three heat transfer phenomena act together and combined in a

heating setup, excpet from vacuum spaces, where radiation only takes place.

2.5 GalInStan usage in research laboratory

GalInStan is an eutectic1 metal alloy, which has been successfully used during exper-

imental activities described in this thesis, for reproducing thus investigating liquid metal

behaviour during continuous casting process. This metal alloy is really interesting for

its benign properties (non-toxic metal) and for its low melting temperature, which allow

experimental activities with its liquid at room temperature (see Table 2.1). In the frame

of magneto and thermofluid research, many important Universities choose GalInStan for

their experiments and cooling applications; from the experience gained in these institu-

tions, instructions and observations about its usage have then been described.

GalInStan is a low-temperature, liquid metal alloy, made of 68% Gallium [Ga], 20%

Indium [In] and 12% Tin [Sn] by volume, though exact composition could vary because

its patent belongs to the German company Geratherm Medical AG. Unlikely many met-

als, GalInStan is chemically compatible with a wide variety of metals, plastic, rubbers

and glasses at low temperatures. It also has more attractive cooling and handling prop-

erties than those of Hg, Pb (lead) and Pb alloys. GalInStan and its variant alloys have

potential uses in electrical engineering, energy research engineering, medicine and other

applications. Universities of California and Princeton have been conducting various mag-

netohydrodynamic experiments [19] with relevance to basic physics and fusion reactor

1an eutectic system is a homogeneous solid mix made of two or more chemical species whose melting
temperature is lower than the one of each substance making the system. The name comes from Greek and
it means “easy to melt”.
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GalInStan: Gallium, 68% Indium, 20% Tin, 12%

Property Notation Unit Value

colour silver

odour odourless

boiling temperature ϑ ◦C > 1300

melting temperature ϑ ◦C +4

density ρ kg/m3 6440

dynamic viscosity µ Pa · s 0.0024

surface tension γ N/m 0.718

electrical conductivity σe S/m 3.46 · 106

speed of sound in the medium Vc m/s 2730

solubility insoluble

Table 2.1: GalInStan general properties; 20◦[C] temperature reference

cooling since 2002. One of the main drawbacks to Gallium and its alloys is price, which

can vary widely with word market demand and it is a major constraint in the design of

experiments. When GalInStan is exposed to air, it slowly oxidises to form Ga2O3 con-

tamination. Furthermore, most liquid metal do not easily “wet” new surfaces; a primary

reason is surface oxides on the metal. Ga and GalInStan easily wet glass surfaces at room

temperature but in practice do not readily wet metal surfaces. GalIStan is not chemically

reactive like liquid Ga and is compatible with most metals and plastics, which makes

handing easier. Notable exceptions of incompatible metals include aluminium, which is

readily attacked at room temperature, and copper, which is attacked over long times at

elevated temperatures (> 100 [°C]). GalInStan is a chemically benign metal alloy and its

components all have very low vapour pressures at elevated temperatures, on the order

of 10-9 [atm] at 538 [°C] and virtually zero at room temperature. Therefore, this alloy

spills do not evolve respirable metal vapours. In order to check what kind of reactions

GalInStan alloy would form at room temperature with ambient air, computer simulations

have been realized: they showed that significant quantities of Ga2O3 are not produced
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while In2O3 and SnO2 are very little. Only trace amounts of GaN would be produced.

Thanks to its non-toxic properties, GalInStan is also strongly used to replace mercury in

miniature devices.

Table (2.1) summarizes main properties of GalInStan metal. Exact value of its melting

temperature is still unknown: some articles declare lower values, like -19 [°C], while few

others confirm the one in table. Anyway GalInStan melting point is much lower than its

components’; Gallium melts at 29.76 [°C] while Indium and Tin over 100 [°C]. Speed of

sound is a fundamental parameter for proper setting of flow velocity measurement system

(UDV); detailed description is present in the following section.

2.6 Velocity measurement of liquid metal flow

Ultrasonic Doppler Velocimeter (UDV) has been part of the setup of the experimental

activities carried on for this thesis work; it was used for determining flow parameters of

molten GalInStan. Doppler ultrasound technique, was originally applied in the medical

field and dates back more then 30 years. As the name implies, its operating principles are

based on the Doppler effect, i.e. on changing the frequency of the ultrasonic wave emitted

and received by the sensor by the wave is reflected by the microparticles distributed in the

fluid. The particle drift velocity within the ultrasonic beam is determined by difference

between the frequencies of the emitted and reflected waves, thus finding the Doppler fre-

quency in the received signal. This method is widely used for finding the flow parameters

in low-melting liquid metals and model fluids [23].

In the experiment described, a DOP3010 Ultrasonic Doppler velocimeter (Signal Pro-

cessing SA, Switzerland) was adopted; in this device, traditional Doppler ultrasound tech-

nique has been extended with the use of pulsed emissions (Fig.2.2): instead of emitting

continuous ultrasonic waves, an emitter periodically sends a short ultrasonic burst; when

burst reaches the particle, an echo is generated (scattering effect2) when the particle is

much smaller than wave length, and each echo is then continuously collected by the ul-

trasonic beam, while main energy continues it propagation. Travelling time of the echo

2Ultrasonic waves generated by the transducer are confined in a narrow cone. As they travel in this cone
they may be reflected or scattered when they meet a particle having a different acoustic impedance. The
acoustic impedance is defined by the product of the density of particle’s material and its sound velocity
Z = ρ · c. If size of the particle is bigger than wave length, the ultrasonic waves are reflected and refracted
by the particle. In such a case the direction of propagation and the intensity of the ultrasonic waves are
affected. But if the size of the particle is much smaller than the wave length an other phenomena appears,
which is named scattering. In such a case, a very small amount of the ultrasonic energy is reflected back to
the transducer (backward scattering). The intensity and the direction of propagation of the incoming waves
are practically not affected by the scattering phenomena. Ultrasonic Doppler velocimetry needs therefore
particles smaller than the wave length.
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form particle to the transducer is the key element for calculating depth of the particle in

the fluid:

depth =
c

2 ·∆t
, ∆t = tt − te (2.72)

where c is sound velocity of the acoustic wave in the liquid, tt the moment when the echo

reaches the transducer while te the time when burst is emitted. ∆t is the travelling time.

As already stated, ultrasonic bursts are emitted periodically and, following each emission,

echo signal is sampled at a fixed delay after the emission. From equation (2.72) above,

this delay defines the depth. If the particle moves between successive emissions, sampled

values taken at a certain time Ts will change over the time. Depending of the shape of the

emitted signal, these values may form a sinusoidal wave. Its frequency is named Doppler

frequency (fd) and is directly linked to particle’s velocity, given by Doppler equation:

υ =
fd · c

2 · fe · cos δ
(2.73)

where fe is the emitted frequency of the emitted burst and δ is the angle between trans-

ducer’s direction and particle’s velocity direction (Doppler angle). In a real fluid system,

Fig. 2.2: General scheme of the Ultrasound Doppler Velocimeter (UDV) system.

particles are randomly distributed inside the liquid, thus giving a random echo signal;

specific algorithms have been developed to extract global velocity information and they

are based on the high degree correlation existing between different emissions. Pulsed

Doppler ultrasound produces and instantaneous and complete velocity profile but, as the

information is available periodically only, this technique suffers from the Nyquist condi-

tion. Maximum velocity from each pulse repetition frequency (fprf ) is:

υmax =
fprf · c

4 · fe · cos δ
(2.74)
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which determines

depthmax =
c

2 · fprf
(2.75)

as maximum measurable depth. During the experimental activities carried out for thesis,

the sensor (8 [mm] in diameter) was placed directly into the fluid through the free surface

to a depth of 1 - 2 [mm] and fixed in that position throughout the entire activity. Frequency

of the signal transmitted by the sensor was 1428 [Hz] at the speed of sound in the melt

equal to 2730 [m/s]. Measured velocity components had a negative value if the flow

parallel to the signal beam was directed toward the sensor and a positive one if particles

in the fluid were moving away from the sensor.
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Chapter 3

Numerical model

3.1 Finite Element Analysis

In the solution of complex engineering problems, application of conventional analyt-

ical methods may be impossible or impractical. Analysis and design of electrical equip-

ment is a difficult task due to several aspects, like complex geometry, non-linear char-

acteristics of materials, interaction with thermal and mechanical phenomena, dynamic

phenomena. Therefore, the first step of each analysis must be an accurate selection of

which aspects are taken into account and which not: this initial step takes the name of

modelling. A clear example is the choice between static and dynamic analysis. Choosing

a proper numerical method for solving the problem represents the second step and it is

called discretisation; in this case, an example is the choice between a system of ordinary

or partial differential equations (PDE). In the following description of this dissertation,

we will refer to FEMethod only, which is one of the most common. The third and final

step is the computation of additional results and the analysis of the solution; in the case

of clearly wrong or not satisfying results, the analysis must be repeated with different

parameters.

3.1.1 PDE solution

Usually, direct solution of PDE is possible for simple cases only or under restrictive

assumptions. Therefore, numerical methods are often the only practicable alternative for

solving detailed and realistic models. The main objective of a numerical model is to solve

PDEs on a discrete set of points of the solution domain; in order to do so, the domain in

which the solution wants to be solved is divided into subdomains, having the discretiza-

tion points as vertices. Distance between two adjacent vertices is the mesh size. Time is
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also subdivided into discrete intervals and the interval between two consecutive instants at

which the solution is calculated is called time step. PDE is approximated, or discretized,

in order to achieve a system of algebraic equations where unknowns are the solution val-

ues at the discretization points; the set of algebraic equations can be solved with iterative

techniques. After the discretization, it is necessary to check if the approximation gave an

appropriate result. For a successful solution, numerical scheme must be stable, conver-

gent and consistent. The scheme is stable if the solution stays bounded during solution

procedure. It is convergent if numerical solution gets closer and closer to the real solution

as mesh size and time-step tends to zero. The scheme is consistent if truncation error

(error introduced by finite approximation of derivatives) tends to zero as well.

Let us call Φ the unknown PDE function: it must not only fulfil the solution inside

region R - the calculation domain - but it also must satisfy certain conditions on S, R’s

boundary. Therefore, the choice of boundary conditions has an important influence in the

final solution.

Three different kinds of boundary conditions can be imposed:

• Dirichlet condition is assigned by fixing a determined value of the potential on a

given boundary curve. In this way, the curve is characterized by a constant value of

potential; thus, equipotential lines result tangential to such a boundary

Φ(r) = f(r) r on S (3.1)

• Neumann condition is assigned by fixing the normal derivative of the potential on

a given boundary curve. In other words, the line crosses the boundary in a known

way and the following condition is satisfied:

∂Φ(r)

∂n
= g(r) r on S (3.2)

• Mixed boundary condition represents a combination of the two previous cases.

PDE can be solved, thanks to the finite element method, by following two different ap-

proaches: the Variational approach and the Weighted residual approach. Their applica-

tion to a PDE system produces the same set of equations to solve, but in the Variational

approach, a function to be minimized (typically the energy of the system) is required,

while the Weighted residual approach starts instead from the differential equations of the

system. In the most general case they can be written as:

L (Φ)− f = 0, (3.3)
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where L is a linear operator (∇2 for example), f is a known function (typically the source,

referring to (2.22) and (2.23), and Φ the unknown function. The exact solution of the

problem can be approximated by assuming that it varies according to a set of known

functions, each one of them multiplied by an unknown coefficient:

Φn = ϕ0 +
n∑
j=1

ajϕj. (3.4)

These approximate function coefficients can be determined by solving a set of equations,

in the way it will be explained later. Function ϕ0 is usually specified in order to satisfy

Dirichlet boundary condition.

Introducing the so called residual Rn

L (Φn)− f = Rn, (3.5)

the residual function R varies in the domain Ω. Coefficients aj are calculated by orthog-

onalization of residual Rn to a certain set of n weighting functions wi, i.e. by zeroing the

inner product:

〈Rn, wi〉 =

∫
Ω

RnwidΩ = 0 i = 1, 2, ..., n (3.6)

where a possible choice is wi = ϕi, i.e. weighting function equal to approximation

function. This procedure takes the name of Galerkin method. Substitution of (3.4) and

(3.5) in (3.6) produces a set of n simultaneous linear algebraic equations that can be

solved taking into account boundary conditions.

3.1.2 ANSYS Mechanical APDL

The software used to carry out part of the analysis is ANSYS© Mechanical APDL. It

does not permit to perform structural analysis only or solve mechanical issues in general,

but it also allows thermo-structural and electro-thermal tasks.

The model in analysis is considered to be axisymmetric, i.e. every phenomenon is

supposed to be identical on each semi-plane; the 3D view of the whole body is obtained

by rotation of one semi-plane around z symmetry axis. With reference to a magnetostatic

problem, for every 2D axisymmetric model the following conditions can be achieved by

adopting a cylindrical coordinate system (r, ϕ, z):

• current density is made of the ϕ component only: J = (0, Jϕ, 0); let us observe that

Jϕ component is function of r and z coordinates;
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• magnetic vector potential A has one component only and it is parallel to vector J
again: A = (0, Aϕ, 0). As J, Aϕ varies with r and z;

• thanks to the definition of magnetic vector potential (2.14), flux density vector B is

made of two components along (r, z) plane:

B =

(
∂Aϕ
∂z

, 0,
1

r

∂

∂r
(rAϕ)

)
. (3.7)

2D harmonic analysis has been adopted, it calculates the effect of alternating current (AC)

or voltage excitation on electromagnetic devices and moving conductors. Between these

effects, the following are included:

• eddy currents,

• skin effect (eddy currents in current conductors carrying an impressed current),

• power loss due to eddy currents,

• forces and torque,

• two contacting bodies with dissimilar mesh.

Permanent magnets are not allowed in harmonic analysis because material hysteresis ef-

fects are neglected.

Anyway, for low-saturation cases a linear time harmonic analysis can be run in the

condition of assumed constant permeability properties. In moderate to hight saturation

cases, an analyst is most interested in obtaining global electromagnetic force, torque and

power losses in a magnetic device under sinusoidal steady state excitation, but less con-

cerned with the actual flux density wave form. Under such circumstances, an approximate

nonlinear time harmonic procedure may be pursued: it can predict time averaged torque

and power losses with good accuracy and yet at much reduced computational cost to the

transient time-stepping procedure.

The basic principle of this analysis is to replace the DCB−H curve with a fictitious or

effective B−H curve based on the energy equivalence method. With the effective B−H
curve, a nonlinear transient problem can be reduced to a nonlinear time-harmonic one;

in this nonlinear analysis, quantities of the field are all sinusoidal at a given frequency,

in a way that is close to the linear harmonic analysis, except that a nonlinear solution is

computed. Let us observe that, given a sinusoidal power source, for a nonlinear transient

analysis the magnetic flux density B has a non-sinusoidal waveform, while it is assumed

sinusoidal in a nonlinear harmonic analysis; even if it is not a true waveform, it rather
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represents an approximation to the fundamental time-harmonic of the real flux density B

waveform. The time averaged global force, torque and losses, which are determined by

the approximated fundamental harmonic of fields, are the subsequent approximations of

the real values.

The kinds of elements were used in the simulation:

• PLANE 13: 2D element. Quadrilateral four-nodes or triangular three-nodes. It is

defined up to four degrees of freedom per node: magnetic vector potential, dis-

placements, temperature or time-integrated electric potential;

Fig. 3.1: ANSYS plane element number 13

• PLANE 53: 2D element. Quadrilateral eight-nodes or triangular six-nodes. Up to

four DOF for each node: magnetic vector potential, time-integrated electric poten-

tial, current or electromotive force drop.

Fig. 3.2: ANSYS plane element number 53
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3.1.3 FLUENT

Hydrodynamic calculations were performed with the commercial FLUENT© soft-

ware, which uses control volume method for solving two- and three-dimensional prob-

lems on structured and unstructured meshes. The main idea under this numerical method

is that equations to be solved describe the numerical fluxes between mesh cells by inte-

grating the governing equations in numerical cells:∮
ρφv · d ~A =

∮
Dφ∇φ · d ~A+

∫
V

SφdV (3.8)

where Dφ is the diffusion coefficient of the scalar term φ, ~A is the surface area vector and

Sφ is the source term of φ scalar quantity per unit volume. Therefore, conservation laws

are fulfilled in each local volume when solution is converged. Discretization of (2.68) in

each computational cell gives:

N∑
f

ρfφfvf · ~Af =
N∑
f

Dφ(∇φ)n · ~Af + SφV (3.9)

where f is cell’s face,N is the number of cell faces and subscript n refers to the magnitude

of the ∇φ normal to face f . Values of solution variables are stored in element centres,

and it is necessary to obtain face values for convection terms in the discrete equations.

This interpolation can be performed in several ways, which differ in speed of calculations

and accuracy. The simplest first-order upwind scheme, for example, assumes that face

value φf is equal to that in the centre of the cell (φc), which is located upstream relative

to normal velocity v. Second-order upwind scheme is more accurate; face values are

computed using the equation:

φf = φc +∇φ · ~r (3.10)

where φc and ∇φ are respectively the value in the upstream cell centre and its gradient,

but ~r is the displacement vector pointed from the cell centre to the face centre. Central-

differencing discretization scheme provides improved accuracy for the LES turbulence

model. It calculates the face values as follows:

φf =
1

2
(φc0 + φc1) +

1

2
(∇φ0 · ~r0 +∇1φ · ~r1) (3.11)

where indices 1 and 2 refer to cells adjacent to face f .

Pressure values are also stored in cell centres but the face values are required for

momentum equation. The linear interpolation does not work properly when large pressure
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gradient is present due to body forces acting on the fluid.

Pressure-velocity coupling scheme defines how pressure correction is performed in

order to satisfy the continuity equation.

3.2 AMF application

3.2.1 Investigation setup and electromagnetic model

This thesis work has been carried out focusing on a limited section of the continuous

casting line: the region immediately below the mould, where an initial stirring effect is

applied and first water-cooling process starts the solidification of molten metal. Mould-

electromagnetic stirrer has been taken into account and the first part of the investigation

adopted an alternated-magnetic field (AMF) solution, so that two toroidal eddies were

achieved with almost the same amplitude, energy and velocity inside the liquid. Both

electromagnetic and hydrodynamic analysis have been carried out almost in parallel for

this application and the main goal in this first setup was to investigate:

1. if the variation in the relative position between inductor coil and cast material, thus

the movement of its solidification front, generated the transition from two-to-one

toroidal vortices; the transition was supposed to happen when one of them is much

bigger and energetic than the other.

2. when the transition happened; therefore, relative position between the inductor and

melt could be determined when the transition occurred and consequent observations

related to PMF application could have been stated.

As already asserted, GalInStan melt was chosen for the entire investigation thanks to its

non-toxic properties and low melting temperature (see Table 2.1); any other kind of metal

could be chosen, but GalInStan is liquid at room temperature and it allowed the experi-

mental activities to be carried on with no additional heating systems for the metal, simu-

lating properly stirrer interaction with melt during the real casting process. Furthermore,

low melting temperature strongly advantaged measurement of the flow parameters.

Investigation setup included a cylindrical container made of Plexiglass in which the

melt was placed; thickness of the vessel had no influence on the investigation, apart from

the dissipation of heating produced by induced currents inside GalInStan melt. Height of

the cylinder is almost the double of cylinder’s radius (Table 3.1). For the experimental

activities, a cover has been specifically designed for fixing UDV probe inside the metal

during velocity measurements in transient conditions; the cover has not been taken into
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Fig. 3.3: Scheme of the investigation setup: 1- UDV transducer on the top of melt; 2- melt’s vessel;
3- copper, 6-windings inductor; 4- GalInStan melt. Inside molten metal the two toroidal vortices
can be noticed, generated from the interaction with the AMF.

account during numerical simulations. Initial configuration of the setup included a cop-

per, 6-turns inductor surrounding the container and uniformly distributed over the height

of the melt; horizontal axis of melt corresponded to the one of the coil. Such a sym-

metrical geometry has then been named Inductor Position Zero or Symmetry Position.

Geometry of the inductor has been optimized for maximizing power transferred to the

melt; its water-cooling system was not taken into account during the simulation and con-

stant electrical and thermal parameters have been fixed for the inductor, supposing that

its working temperature corresponded to 40 [°C]. It is common for numerical simulations

to avoid modelling water-cooling system, with the advantage of achieving a more simple

model, but the electrical resistivity of the coil is then evaluated in a range of temperature

of 40 ÷ 60 [°C]. The entire set of geometrical properties of the model has been reported

in Table (3.1).

All of these data were then adopted to reproduce the electromagnetic numerical model

in ANSYS© Mechanical APDL: thanks to the characteristics of the investigated system,

2-D axisymmetric model was developed; windings of the coil were represented with their

transversal section only, as a circle, with no taking into account the natural slope that each

turn had. Inductor’s design was made so that the first and the last turn of the coil corre-

sponded respectively to melt’ surface and its bottom. Rectangular section was defined for

the domain, its dimensions were sufficient for a proper evaluation of the magnetic field

all around the inductor. Air properties have been associated for both this region and the
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Inductor unit

number of windings 6

material copper

further characteristics water-cooled

radius [mm] 61

winding radius [mm] 4

distance between windings [mm] 12.4

Melt’s vessel

shape cylindrical

material plexiglass

further characteristics plexiglass cover for fixing UDV probe

external radius [mm] 38.5

thickness of the wall [mm] 7.5

thickness of the bottom [mm] 1.5

total height [mm] 98

GalInStan melt

shape cylindrical

material GalInStan

internal radius [mm] 23

external radius [mm] 31

total height [mm] 70

Table 3.1: Geometrical dimensions and main characteristics of the numerical model.
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Fig. 3.4: Representation of numerical model main dimensions. Centre point of the turns was taken
into account for each measure related to the inductor. Air box had a rectangular shape and no
water-cooling system was modelled for the coil.
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one between GalInStan melt and the superior border of the container.

Melt’s movement downward along the real casting line was simulated with changing

the relative position between melt and inductor: during the experimental activities in the

laboratory, a platform allowed the vessel to be moved downward, while the inductor was

kept on a fixed position. In numerical simulations, the relative movement was achieved

with the definition of a new vertical

shifting variable = +12.4 [mm]
which moved the inductor upward while fixing melt’s position. Not a transient, continu-

ous movement was produced but 7 fixed positions of the inductor have been investigated

in the numerical model. It moved from a bottom position, Symmetry, to the top position,

in which the last turn of the inductor was on the same level of melt’ surface (Fig.3.5);

this last configuration was named Inductor Position 6 (the coil shifted upward of shift ×
6 = +74.4 [mm]) and it is the last one investigated in the frame of this thesis. Geometry

of air domain was naturally extended during inductor’s shifting. For each position, elec-

tromagnetic and hydrodynamic solution was calculated in steady state regime. Materials

associated to each region have been represented in Fig.(3.6) and electrical and magnetic

properties were defined only; no dependence form temperature was taken into account,

thus constant values for them were fixed. This made the model more simple reducing

computational time for calculating the solution. Approximation with constant values did

not produce any important computational error, especially because melt’s temperature

did not vary that much during laboratory experiments. The same properties were fixed

for the air box above GalInStan melt and for air defining the domain, even if they have

been coloured in slightly different ways to practically simplify the treatment of the model.

Table (3.2) shows the set of electrical parameters applied to each region; no magnetic ma-

terials are present in the model, thus relative magnetic permeability µr = 1 for everything.

Copper’s electrical resistivity is commonly approximated to 2 · 10−8[Ω · m] to consider

overtemperature working condition of the inductor; 1.68 · 10−8[Ω · m] is its electrical

resistivity at 20 [°C]. Great care was taken in GalInStan melt parameters choice, small

variations of its electromagnetic resistivity σe produce strong variations of final simula-

tion results. One white line can be noticed inside melt’s region, next to its right border,

and inside the air box: it was necessary to generate finer mesh for a more detailed analy-

sis of electromagnetic quantities. Finer mesh is fundamental where quantities and fields

rapidly change or where more accurate results want to be achieved. In this model, smaller

mesh elements were chosen:

• inside coil’s turns and in the surrounding region, for a more accurate investigation

of the behaviour of the magnetic field and of its isolines;
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Fig. 3.5: Different configurations of the numerical model with the inductor shifting vertically; each
position of the coil has been achieved with the definition of a shifting variable = +12.4 [mm]. The
first picture (top-left) shows the symmetrical geometry, while in the second one the inductor moved
to Position number 6. The last picture represents the inductor on its maximum top position.
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Fig. 3.6: Representation of different regions in the numerical model

Region Colour Material electrical resistivity [Ω ·m]

inductor green copper const., σe = 2 · 10−8

melt red GalInStan const., σe = 0.435 · 10−8

vessel yellow plexiglass -

air (domain) blue air or vacuum -

air box light-blue air or vacuum -

Table 3.2: Physical properties of materials in numerical model.

• in a 8 [mm] - thick layer inside melt’s region and the air box, in order to take into

account skin effect inside GalInStan melt. Alternating current feeding the inductor

produced a distribution of induced current inside the melt which is more concen-

trated on the external region of it, next to its border; this consequence must always

be taken into account in numerical models, with finer mesh where concentration of

current is higher, after the calculation of skin depth.

Sinusoidal current was supplied to the coil during the first step of this investigation, thus

AMF was produced; its amplitude was IRMS = 200[A], with the frequency of fAC =
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150[Hz]. Resulting skin depth was:

δac =

√
1

πfacµrµ0σ
≈ 27[mm]

It is possible to notice that relatively low frequency determined a skid depth which cov-

Fig. 3.7: Mesh chosen for electromagnetic numerical simulation. Finer mesh can be noticed.

ered most of GalInStan melt volume (27 [mm] over 31 [mm] of melt’s radius); anyway,

finer mesh (Fig.3.7) was chosen on a smaller section of the melt to reduce computational

time, with a general decrease of the number of elements, and because global number of

elements allowed to produce precise computational results for both the electromagnetic

and hydrodynamic investigation.

Thanks to geometrical characteristics of the model, mapped mesh was adopted inside

GalInStan melt region, air box and plexiglass vessel containing molten metal; rectangular

elements have been defined with lower number of elements inside the container, because
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no electromagnetic investigation was carried out inside of it. On the other hand, auto-

matic mesh, thus triangular elements, has been adopted for the domain and inside regions

defining turns of the inductor. Most uniform mesh possible was defined.

3.2.2 From electromagnetic to hydrodynamic solution

From a general point of view, electromagnetic simulation on ANSYS© Mechanical

APDL was carried on with the aim of analysing induction effects inside GalInStan melt:

while the inductor vertically moved upward for simulating casting effect, 7 fixed position

of it have been investigated, each one of them in the harmonic regime. As already stated,

sinusoidal current was applied. For each position, Lorentz Force (2.7) and magnetic field

distribution were calculated and their

• time average value and

• volume density distribution

have been evidenced; therefore, no global distribution was evaluated inside melt but elec-

tromagnetic results have been divided for each element’s volume. Time average distri-

bution came directly from the harmonic solution. No transient solution was necessary

because electromagnetic time constant was much smaller than the hydrodynamic one.

An initial verification of electromagnetic results over Inductor Position Zero was

based on previous studies [7, 22, 23] on the same experimental setup, to confirm that

Lorentz force distribution and amplitude inside GalInStan melt were correct: when the

coil was symmetrical to the molten material, symmetrical distribution of forces over x-

horizontal axis was achieved and their maximum value was noticed in the middle of melt’s

volume. Radial component of Lorentz forces was produced but a vertical component was

also present in very small regions inside the melt, corresponding to its top and bottom

corners; such a behaviour was determined by the shape of magnetic field lines, which

are almost vertical everywhere inside the melt, while they bend in correspondence to the

previously stated zones (Fig.3.8). Flow pattern of the two toroidal vortices generated by

the stirring effect was mainly influenced by Lorentz force vertical component. Magnetic

field lines are perfectly vertical when inductor’s length is much higher than melt’s height

(e.g. infinite-length inductors).

Electromagnetic solution was then manually exported to ANSYS FLUENT© and hy-

drodynamic behaviour of the flow was investigated for each position of the inductor in

steady state condition: calculated Lorentz force distribution in the harmonic electrical

regime became the starting point for calculating the flow pattern inside the melt. In the
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Fig. 3.8: Lorentz force volume density distribution [N/m3] on the left and magnetic field distri-
bution [A/m] on the right, inside GalInstan melt. Lorentz force amplitude range is between 10−8

(blue darts) and 0.5 · 10−4 (red darts); magnetic field amplitude range is between 7 · 103 (blue
darts) and 1.2 · 104 (red darts)

construction of FLUENT© numerical model, stirring effects inside melt’s volume only

were investigated; the cylinder of molten material was again modelled with a 2-D axisym-

metric geometry but no other elements were useful for the simulation, so neither air nor

the inductor have been taken into account. Refined mesh for hydrodynamic calculation

was necessary and resulting number of mesh elements inside EM and fluid models was

different: user define function (udf) was written to transport Lorentz forces in FLUENT©

numerical model and guarantee the same distribution they had inside melt region of the

Mechanical APDL model.

The main objective of hydrodynamic simulation consisted in the investigation of shape

and velocity distribution of the two toroidal eddies during the movement of the inductor.

In order to do that, steady state solution was calculated again, avoiding initial transient

effects; standard k − ε model was chosen instead of k − ω. The former is valid for fully

turbulent flows only and eddy viscosity is determined from a single turbulence length

scale, so the calculated turbulent diffusion is that which occurs only at the specified scale,

whereas in reality all scales of motion will contribute to the turbulent diffusion. Complex

flows involving severe pressure gradient and separation are weakly performed; it adopts

gradient diffusion hypothesis to relate Reynolds stresses to the mean velocity gradients

and the turbulent viscosity. The latter allows for a more accurate near wall treatment

with an automatic switch from a wall function to a low-Reynolds number formulation
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based on grid spacing. It demonstrates superior performance for wall-bounded and low

Reynolds number flows and it shows potential for predicting transition. k − ω performs

significantly better under adverse pressure gradient conditions, thus it is appropriate for

complex boundary layer flows. It can be noticed that k−ε formulation perfectly suited the

model under investigation, thanks to an homogeneous pressure distribution inside the melt

and absence of significant velocity gradients. Furthermore, neither LES was adopted nor

Volume of Fluid (VOF): while the former can be applied to 3-D models only, the latter is

suitable for k−ω algorithm and in the analysis of the behaviour of two or more immiscible

fluids. VOF solves a single set of momentum equations and tracks the volume fraction

of each of the fluids throughout the domain. It has been widely applied in steady and

transient tracking of liquid-gas interface when strong variations of it occurred; the most

clear example can be found in the investigation of the meniscus for Induction Crucible

Furnaces [39]. In the analysed system for this thesis, internal pressure inside the melt was

so low that no significant meniscus was evidenced; the main reason for that can be found

in small amplitude of the current supplied to the coil. Mathematical calculations were

then verified with the experimental activities and no superficial variations of melt were

noticed, apart from its oscillations.

Boundary conditions were fixed along all of the edges of melt region and they have

been summarized in Table 3.3. It is well known that viscous flows locally keep the same

velocity of the surface in contact with them; stationary wall, no slip, condition was chosen

for bottom and side borders of melt, to factor the effect that a solid wall had on the flow

into the calculations. No tangential component of velocity was defined for the fluid along

these edges. On the other hand, stationary wall, but specified shear boundary condition,

was applied to the free surface of the melt together with impermeability conditions; air

pressure was the only constraint to verify whether Lorentz force significantly modified

this surface and the two internal vortices had different internal characteristics even in

symmetrical position of the coil. Axis boundary condition was obviously fixed to the

remaining edge. Solution approach was based on pressure-velocity coupling and their

relationship was calculated using COUPLED algorithm; the intense vorticity of the flow

was taken into account by interpolating pressure in the calculation by PRESTO! scheme.

No changes in the shape of the free surface under the effect of the magnetic field were

taken into account. COUPLED algorithm enables full pressure-velocity coupling, solving

the momentum and pressure-based (2.39) continuity equations together. It obtains a more

robust and efficient single phase implementation for steady-state flows. PRESTO! avoids

interpolation errors and pressure gradient assumptions on boundaries; this scheme suits

for problems with strong body forces and hight Rayleigh number flows (e.g. natural

58



3.2. AMF APPLICATION

Fig. 3.9: Boundary conditions on GalInStan melt region.

Line Boundary condition

side edge stationary wall, no slip

bottom stationary wall, no slip

symmetry axis axis

free surface stationary wall, specified shear

Table 3.3: Summary of fixed boundary conditions for GalInStan melt.

ventilation). Significant computational cost is though required.

After hydrodynamic solution was calculated, time average velocity distribution was

evidenced inside GalInstan melt; therefore, first simulation results were checked for ex-

cluding any evident error: for symmetrical position of the inductor (Inductor Position

Zero), two toroidal eddies were definitely achieved, with almost the same energy, ampli-

tude and velocity (Fig.3.10); specific shear boundary condition on the free surface par-

tially influenced liquid’s behaviour in a way that it allowed the generation of superficial

fluctuations and local velocity increased next to the free surface. Orthogonal velocity

vectors to the bottom and side edge were absent, thus the application of other boundary

conditions was correct (Fig.3.11).
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Fig. 3.10: Average velocity distribution, isosurfaces; check of hydrodynamic solution. Two
toroidal vortices are evident in pictures, as expected, with almost the same amplitude. Veloc-
ity range goes from 2[mm/s] to 39[mm/s]. Boundary conditions applied to bottom and side
edge, correctly produce zero local velocity of the flow next to them.

Fig. 3.11: Average velocity distribution, vectors; check of hydrodynamic boundary conditions. No
velocity vectors are orthogonal to bottom or side edge.
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3.2.3 Steady state solution: from Inductor Position Zero to Inductor

Position 6

In this section, numerical model results will be shown. Electromagnetic and hydro-

dynamic simulations were coupled with the aim of investigating flow pattern inside the

melt and the analysis of the transition from two-to-one vortices was carried on during

inductor’s upward movement. In order to do that, Lorentz force distribution in harmonic

regime was firstly calculated, then time average velocity of liquid was displayed; both of

them were calculated in steady state regime and for each position of the coil. With the aim

of recognizing the transition though, the following results will show significant solutions

only and not all of inductor’s positions will be displayed.

For Lorentz force:

• amplitude

• distribution

were analysed, to evaluate its maximum magnitude and validate the shape of resulting

vortices inside the liquid. For velocity of the melt:

• global distribution

• magnitude and highest velocity zones

• axial component of velocity along melt’s vertical axis

• axial component of velocity next to the wall

were analysed. All of these results were necessary to put in evidence resulting flow pat-

tern inside GalInStan melt and how the two vortices behaved. As already stated, AMF

application to cylindrical crucibles produces strong motion and mixing effect in the cen-

tral region of melt, along the border between the two eddies; velocity axial component

was therefore evaluated along two patterns, to quantify mixing effect inside the most sig-

nificant region for melt’s motion. The first pattern was created along symmetry axis of

the melt, while the second one was fixed along the wall of the crucible, more precisely 4

[mm] far from its border (Fig.3.12). This gap was necessary to simulate real experimental

setup and take into account UDV probe physical dimensions: its diameter corresponded

to 8 [mm] and produced a measurement pattern which was not exactly close to cylinder’s

wall. In this way, influence of the wall on melt’s velocity was also skipped, thus natural

turbulence was analysed. Chosen reference system along the pattern went from the free
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Fig. 3.12: Patterns for axial velocity measurement inside GalInStan melt. Both pattern along the
axis and next to the wall have been evidenced.

surface of melt to its bottom. Tangential component of velocity to the reference was the

most significant for this investigation, thus it was the only one displayed.

The following pictures (Fig.3.13-3.17) show numerical simulation results and, with

the aim of investigating two-to-one vortices transition, they could be commented like

that: two toroidal eddies were achieved in Symmetry Position of the inductor; they had

almost the same energy, dimension and velocity as direct consequence of a symmetrical

distribution of Lorentz force. Strong motion was generated in the central region of the

melt, thus intensive heat and mass transfer was produced. Free surface boundary condi-

tion partially influenced turbulences development in the top of the crucible. Global range

of average velocity inside GalIStan melt went from 2 [mm/s] to 39 [mm/s] and maximum

velocities of the flow corresponded to around 20 [mm/s] along the axis and 25 [mm/s]

along wall pattern. Symmetrical distribution of Lorentz force was not present anymore

when simulation moved the inductor to Position 1: maximum of Lorentz force moved

upward too, increasing amplitude of the lower vortex and decreasing the upper one. Ve-

locity of the flow next to the wall reduced more in the lower vortex than for the top one

but the opposite thing happened for velocity along the axis. Such a difference was more

evident as the inductor shifted to its top position. Pictures below clearly show

axial velocity component achieved from simulation results for different positions of the

inductor: wall velocity was strongly influenced by the presence of plexiglass vessel and
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Fig. 3.13: Inductor Position Zero: simulation results. Lorentz force volumetric density (left) is
included in a range of [10−8 ÷ 0.5 · 10−4][N/m3]. Average velocity of the flow (right) in a range
of [2÷ 39][mm/s].
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Fig. 3.14: Inductor Position 1: simulation results. Lorentz force volumetric density (left) is in-
cluded in a range of [10−8÷ 0.5 · 10−4][N/m3]. Average velocity of the flow (right) in a range of
[2÷ 37][mm/s].
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Fig. 3.15: Inductor Position 3: simulation results. Lorentz force volumetric density (left) is in-
cluded in a range of [10−8÷ 0.5 · 10−4][N/m3]. Average velocity of the flow (right) in a range of
[2÷ 35][mm/s].
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Fig. 3.16: Inductor Position 4: simulation results. Lorentz force volumetric density (left) is in-
cluded in a range of [10−8÷ 0.4 · 10−4][N/m3]. Average velocity of the flow (right) in a range of
[2÷ 29][mm/s].
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Fig. 3.17: Inductor Position 6: simulation results. Lorentz force volumetric density (left) is in-
cluded in a range of [10−8÷ 0.2 · 10−4][N/m3]. Average velocity of the flow (right) in a range of
[2÷ 16][mm/s].
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Fig. 3.18: Axial velocity component along the wall for different positions of the inductor.

Fig. 3.19: Axial velocity component along the axis for different positions of the inductor.
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rapidly decreased the more the coil shifted upward; axial velocity along the axis globally

decreased too but its shape was mostly conserved. Simulation results from Position 3 and

Position 6 empathise the initial behaviour of the system: the more the inductor got close

to its top position, the more Lorentz force vectors pointed towards melt’s bottom surface

and the more its amplitude decreased. Therefore, lower vortex continuously increased

while the upper vortex increased in their dimensions. Average velocity decreased for both

of them. Maximum velocity along the wall reached 6 [mm/s] for the both eddies in last

position, while lower vortex measured 8 [mm/s] along the axis.

Experimental activity on the same setup was carried out in parallel with simulations

to validate numerical results: Lorentz force was not taken into account during practical

activity while axial velocity of the flow was measured using the UDV probe; it was fixed

on the top of plexiglass vessel thus the same measuring patterns adopted for simulations

were achieved (Fig.3.20). Velocity along the pattern was measured in 80 points and the

resulting curve was the average between around 1200 curves; this number was chosen to

achieve uniform behaviour in the final curve. All of them have been measured after the

system reached its steady state regime and, thanks to transient hydrodynamic simulation,

interval of time necessary for the flow to reach steady state regime was calculated around

40 [s]. Axial velocity measured experimentally along the wall did not fit the simulated

Fig. 3.20: Experimental setup for validation of simulation results (left) and velocity magnitude
over time [mm/s] for steady state regime calculation (right).

one in a good way, in the bottom section of melt especially: such a gap was probably

due to the same presence of the vessel, thus both the amplitude and maximum velocity of

vortices were influenced. Peak velocity of the lower vortex measured during experimen-

69



3.2. AMF APPLICATION

tal activities was 33.19 [mm/s], while simulations produced 23.30 [mm/s] for the same

parameter. Furthermore, the two vortices had the same velocity, amplitude and energy in

simulations; lower vortex measured to be bigger and faster in experiments. The global

shape of velocity along the wall was acceptable (Fig.3.21). Therefore measure for Induc-

tor Position Zero was achieved only. Good results were produced from velocity along

the axis (Fig.3.22-3.24): Symmetrical position of the inductor showed two similar vor-

tices in both simulated and measured curve and small variations in shape depended from

internal instabilities of the flow. Measured shape of the lower vortex significantly fits

with the calculated curve even if vortex velocity on the top region was really difficult to

measure properly; for all of the inductor positions, measured curves had a flat behaviour,

corresponding to most of the upper vortex amplitude. One small part of each curve only

properly corresponded to the simulated ones. Null measured velocity in the initial part

of depth was maybe affected by presence of UDV probe, which was drawn for 2-3 [mm]

within the melt to achieve good measurement of inside the liquid metal; vortices on the

top region of melt kept in contact with the probe and their velocity was thus strongly

reduced.

Fig. 3.21: Comparison between simulated and measured axial velocity along the wall. Experiment
maximum measured velocity: 33.19 [mm/s]; simulation maximum velocity: 23.30 [mm/s].

Final remarks must be dedicated to solution’s method of the numerical model: com-

parison between simulated and measured velocities confirmed that the choice of k − ε

model was right, especially if compared with the k − ω; average velocity distribution

achieved with k − ω model showed significant concentration of turbulences and higher

velocity of vortices in a small region confined next to melt’s corners (Fig.3.25). Velocity
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Fig. 3.22: Comparison between simulated and measured axial. Inductor Position Zero. Experi-
ment maximum measured velocity: 22.04 [mm/s]; simulation maximum velocity: 20.47 [mm/s].

Fig. 3.23: Comparison between simulated and measured axial. Inductor Position 3. Experiment
maximum measured velocity: 22.84 [mm/s]; simulation maximum velocity: 21.19 [mm/s].
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Fig. 3.24: Comparison between simulated and measured axial. Inductor Position 6. Experiment
maximum measured velocity: 13.82 [mm/s]; simulation maximum velocity: 14.48 [mm/s].

distribution was really low in a big, central region of the liquid, thus amplitude of the

two toroidal eddies resulted extremely reduced and global behaviour of simulated axial

velocity was different from measured one, both in shape and magnitude. Convergence to

solution was achieved with number of iterations which was twice than the one for k − ε
and peak of simulated axial velocity along the axis was much lower (around 8 [mm/s]

over 20.47 [mm/s] for k − ε model).

Fig. 3.25: Average velocity distribution achieved with k − ω model. Melt region is on horizontal
position, axis of the cylinder appears below.
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Fig. 3.26: Axial velocity along the wall (left) and along the axis (right) achieved with k−ω model.

Fig. 3.27: Residual behaviour over number of iterations for k − ω model (left) and k − ε (right).
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Chapter 4

PMF application

4.1 Procedure of optimization for PMF application

4.1.1 Analysis of results from AMF application

Good correspondence between numerical and experimental results gave the possibility

to properly continue with the investigation of the transition from simulated curves. Two

main criterion where then chosen:

1. if the transition happened. From a general point of view, transition from two-to-

one vortices was fixed to happen in the case amplitude of the lower vortex did not

increase anymore during coil’s upward movement. In the opposite way, amplitude

of top eddy reduced significantly; its amplitude and velocity were evaluated to un-

derstand if they were significant again for the inductor in Position 6.

2. when the transition happened. In the case transition was verified, amplitude of the

lower vortex was much bigger than the upper one and their dimensions were then

calculated to fix PMF parameters.

In a more specific way, adopted convention to establish when the transition happened was

that amplitude variation of the lower vortex became smaller than 5%; velocity curves for

different inductor positions were adopted to achieve this goal. Variations of amplitude

were not calculated referring to the symmetrical configuration but according to the two

subsequent steps of inductor’s movement, thus the following formula was adopted:

∆a% =
Ap+1 − Ap

Ap
∗ 100

where Ap+1 is the amplitude of lower vortex at Inductor Position p+ 1 and Ap represents

the same amplitude with the inductor in the previous position. From the investigation of
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amplitude variation, it was found that was definitely taking place between Inductor Posi-

tion 3 and Inductor Position 4, when coil overcame almost half of melt’s height (Fig.4.1).

A big relative gap was noticed between the two positions and, from Inductor Position

4 amplitude of the lower vortex was not supposed to change in a significant way any-

more. Therefore, from previous results, procedure of optimization of PMF application

started and the following investigation was based on the analysis of three positions of the

inductor: Symmetry Position, Inductor Position 3 and Inductor Position 6; all of them

represented significant moments of vortices and their velocity behaviour, for the transi-

tion especially. Geometrical parameters of eddies were the initial data for calculation of

the characteristic frequency fch of vortices in each position, thus the evaluation of pulsed

frequency fp to fix for pulsed current feeding the inductor. As already stated, this in-

vestigation wanted to prove that resonance could be achieved not with pulsed frequency

only but with the application of a range of frequencies around that one too; further in-

vestigations were carried out with the application of pulsed frequency far away from fch,

to make evident that resonance could not be achieved in those conditions, but the same

stirring effect registered with AMF only.

Fig. 4.1: Percentage of amplitude variation over inductor’s movement.

4.1.2 Current signal for PMF application

Optimization of PMF application was carried out with experimental activities only.

No simulations were created because transient and too complex numerical models would

have been necessary, thus high computational time. Pulsed signal was therefore manually

calculated, then it was implemented in the generator.

Main characteristics of pulsed current were fixed starting from the evaluation of di-

mensional parameters of vortices during inductor’s movement; global length of each eddy
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Parameter notation unit I.P. Zero I.P. 3 I.P. 6

eddy size, radial rr [mm] 7.75 7.75 7.75

eddy size, axial rz [mm] 17.5 25.5 26.5

length Lch [mm] 79.3 104.3 106.6

velocity vch [mm/s] 22.5 18 6.85

revolution period Tch [s] 3.52 5.8 15.56

frequency fch [Hz] 0.28 0.17 0.064

pulsed frequency fp [Hz] 0.3 0.2 0.1

Table 4.1: Characteristic parameters of melt flows in three main positions of the inductor. Rela-
tionship between parameters of vortices and electromagnetic quantities can be noticed.

Lch and characteristic velocity vch were initially analysed, thus characteristic frequency

as the inverse of characteristic period Tch. The notation was adopted by the authors of

Ref. [23] and formulas for achieving characteristic frequencies were the following:

Lch = 2π · rr + rz
2

; vch =
Vmax,wall + Vmax,axis

2
;

Tch =
Lch
Vch

; fch =
1

Tch

Precise value of each characteristic frequency was obviously impossible to fix for the

signal, therefore pulsed frequency was approximated with more suitable values for exper-

imental activities (last line of (Table 4.1)). Figure 4.2 shows what the applied current was:

pulses alternated with null signal with the same time ratio and each pulse was generated

starting from the sinusoidal wave adopted for AMF application. Let us call Tp the revolu-

tion period of pulsed current; it was the sum of an interval of time during which the signal

was zero (T0) and a pulse time (Tact):

Tact + T0 = Tp; Tp =
1

fp

Each pulse was fixed to last for the same time of null signal, thus ratio:

Ψ =
Tact
T0

= 1
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Fig. 4.2: Pulsed current was generated starting from sinusoidal wave adopted in AMF application.
Each pulse was built with a specific number of sinusoidal waves, depending on the value of pulsed
frequency.

and pulses were made with a sequence of sinusoidal waves, whose frequency was fAC =

150 [Hz]. Specific number of sinusoidal waves inside each pulse depended from chosen

pulsed frequency. Experimental activity of PMF application was carried on with using

current generator provided by ELOTHERM SMS Group, which allowed to modify shape,

frequency and amplitude of the output signal by transistor circuits. RMS value of pulsed

current was calculated from the energy equivalence: energy absorbed by the inductor

during AMF application (alternated current) was fixed to be equal to the one of PMF

conditions

EAC = PAC ·∆tAC = Pp ·∆tp = Ep

where ∆tAC was the considered interval of time in the case of sinusoidal wave, while

∆tp was the same interval when pulsed signal was taken into account. P = r · I2
RMS

represented the electric power. Therefore, amplitude of pulsed current was:

Ip,RMS =

√
∆tAC
∆tp

· I2
AC,RMS = 282[A]

The range of applied frequencies for pulsed signal included both expected resonance fre-

quencies and those values which were not supposed to produce resonance condition. In

order to produce a precise experimental investigation, all of the different frequencies of

pulsed current were applied to all inductor positions:

• fp = [0.1, 0.2, 0.3, 0.5, 1, 2, 4, 5][Hz] range of applied pulsed frequencies
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• I.P. = [0, 1, 2, 3, 4, 5, 6] set of inductor positions

In this way, behaviour of the flow under pulsed conditions was completely analysed.

4.2 Experimental results

Equation (2.45) already evidenced that instantaneous velocity is made of mean value

and pulsed component; main aim of experimental activities with PMF was to evaluate

turbulence intensity of the flow for different frequencies of supplied current, thus quantify

influence of resonance during two-to-one transition. In order to do that, pulsed component

of axial velocity along the axis was taken into account and two characteristics of this

velocity were calculated:

• average standard deviation

• fast fourier transform (fft)

All of inductor’s positions were tested and results from the application of pulsed signal

were always compared with the steady state ones, following the same pattern that authors

of Ref. [22, 23] adopted.

In the case of standard deviation analysis, results for all of the pulsed frequencies

were summarized in a unique diagram for each position, to put in evidence increase in

turbulence intensity with the application of different electrical parameters. Application

of steady state signal produced an horizontal row, fixed on a unique deviation value, due

to the fact that instantaneous velocity corresponded to its average value only, and pulsed

component was absent; on the other hand, application of pulsed signal could not produce a

continuous curve but standard deviation was characterised by a discrete set of points only,

which quantified intensity of turbulence in the flow with that specific value of fp. Follow-

ing schemes include experimental results from significant positions only, thus extreme

and mid positions of the inductor. The analysis started with taking into account results

form previous studies on the same experimental setup, when the inductor was in Sym-

metry Position: application of fp = 0.1[Hz] and its close values significantly increased

standard deviation, if compared with the same in AMF conditions. Confirmation of reso-

nance effect came from diagrams in following inductor’s positions: the set of frequencies

far from the characteristic one produced flat behaviour of average standard deviation for

both Inductor Position 3 and Inductor Position 4 (Fig.4.4 and 4.5 respectively), close and

below steady signal row; the more fp pulsed frequency got close to vortices characteristic
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frequency, the higher deviation was. A big gap could be noticed between points repre-

senting application of PMF and steady signal. Resonance condition produced deviation

values corresponding to almost twice of AMF. The same trend was noticed for inductor

on its top position (Fig.4.6), even some unexpected points were achieved for fp > 1[Hz];

behaviour for fp = [2, 3][Hz] can be explained with difficulties in the registration of re-

sults, due to position of the inductor itself, while standard deviation for fp = [5][Hz]

must be interpreted with the interaction between that pulsed current and melt flows even

in unusual conditions. Globally, expected behaviour of standard deviation was correctly

achieved with the variation of pulsed frequency during inductor’s shifting.

Fig. 4.3: Average standard deviation over fp pulsed frequency for Inductor Position Zero. This
graph was taken from previous investigations on the same experimental setup.

Fast Fourier Transform was then applied to pulsed component of axial velocity for

validating previous results from standard deviation: in that case qtiplot was adopted and

results for PMF application were not taken from previous studies but they have been

calculated during experimental activities too. Every single pulsed frequency was tested

for each position and expected resonance frequencies were represented in fft diagrams,

basing on Table 4.1. PMF application was again compared with steady state condition.

Starting from the analysis in Symmetry Position, it was noticed a peak of amplitude for

pulsed frequency values close to characteristic frequency of vortices: relative amplitude

of fft for pulsed velocity reached 2000 initial position of the inductor but it was three times

more for its mid height, Inductor Position 3, and almost 3500 for the top position. The

peak was much more evident if compared with fft for AC current (blue dots in Fig.4.7,

4.8, 4.9); in the case of steady state signal, no predominant frequency components were

present, therefore all of the frequency components had the same energy.
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Fig. 4.4: Average standard deviation over fp pulsed frequency for Inductor Position 3. Orange
row refers to AMF application, blue dots to PMF application.

Fig. 4.5: Average standard deviation over fp pulsed frequency for Inductor Position 4.
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Fig. 4.6: Average standard deviation over fp pulsed frequency for Inductor Position 6.

Finally, experimental activities represented further validation of resonance effect with

PMF application. Superficial behaviour of melt was directly observed and registered: it

was noticed that motion of melt on its surface was much intense when fp pulsed frequency

of the signal was close to the characteristic frequency of vortices, and obviously when

pulsed current was applied instead of AC one. This last comparison also evidenced the

difference between intermittent superficial waves in PMF application and stable, much

less intense waves in the case of AMF.

Fig. 4.7: Fast Fourier Transform of pulsed component of axial velocity along the axis for Inductor
Position Zero and fp = 0.3[Hz]. It was compared with steady state AC conditions.
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Fig. 4.8: Fast Fourier Transform of pulsed component of axial velocity along the axis for Inductor
Position 3 and fp = 0.2[Hz]. It was compared with steady state AC conditions.

Fig. 4.9: Fast Fourier Transform of pulsed component of axial velocity along the axis for Inductor
Position 6 and fp = 0.1[Hz]. It was compared with steady state AC conditions.

83





Chapter 5

Conclusions and final remarks

This thesis work was carried out at the ETP, Hannover Institute of Electroheating, in

the frame of the application of low-frequency pulsed Lorentz force for electromagnetic

stirring of molten metals. Both numerical simulations and experimental activities were

carried out in parallel, on the base of previous studies on the same experimental setup.

Main goal of this investigation was to optimize stirring effects on molten metal with the

use of pulsed magnetic field (PMF) in substitution to the more classical alternate magnetic

field (AMF) for Continuous Casting, in non standard conditions.

GalInStan melt was chosen for the investigation. The initial step consisted in analysing

steady state application of AMF: when the inductor was in symmetrical position with melt

volume, two toroidal eddies with similar velocity, amplitude and energy were generated,

as expected; the same set of electromagnetic quantities was applied while relative position

between inductor and the melt was changed. The inductor, a 6-turns, copper coil, moved

upward and great variation of vortices properties was produced. A unique, more energetic

eddy was generated and the transition from two-to-one vortices happened when the in-

ductor overcame almost half of melt’s height (it was previously named Inductor position

3. In order to quantify flow intensity inside the melt, axial component of their velocity

was measured both along the axis and next to the border of the liquid, because they repre-

sented the most significant data. Each step of numerical investigation was validated with

experimental activities in the same conditions and good correspondence between their

results was found. For hydrodynamic simulation, k − ε model was adopted and axial ve-

locity form numerical results was extremely close the experimental one, for each position

of the inductor. On the other hand, k−ω algorithm was abandoned because its strong con-

centration of velocity distribution next to melt volume corners. UDV probe was chosen

for experimental measurements of velocity inside molten metal.

Once the transition was identified, optimization of PMF application started: charac-
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teristic properties of vortices in non symmetrical position of the inductor were calculated

to achieve resonance effect between mechanical quantities of the melt (flow velocity)

and electromagnetic parameters (current feeding the coil). Pulsed current was fixed with

the same characteristic frequency of vortices and intensity of flow motion was analysed

again. Average standard deviation of pulsed component of axial velocity was calculated,

and its fast Fourier transform as well, for each position of the inductor and each frequency

in the range of pulsed ones. Expected results were achieved again: from the evaluation

of standard deviation it was found that pulsed velocity component increased its value of

two times when frequency of supplied current was close around the characteristic one of

vortices; really low motion was therefore achieved when pulsed frequency was far away

and the same results as for AMF application were thus noticed. Fast Fourier transform

validated the previous results and a peak in the amplitude of pulsed velocity component

was evident for the same pulsed frequencies as the characteristic ones. Finally, strong

motion of GalInStan melt was verified with direct observation during experimental activ-

ities: AMF application was noticed to produce small and low-intensity superficial oscil-

lations of the liquid, with casual frame; on the other hand, pulsed frequency of current

was evident to produce big waves on melt’ surface, which shifted towards central point

with fixed rhythm and higher speed. Resonance between motion of the flow and feeding

pulsed current was definitely achieved with proper choice of electromagnetic parameters,

thus stronger intensity of motion than the one with classical AMF application.
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