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Abstract

The Air Traffic Flow Management (ATFM) problem has the goal of planning flights
within a set of constraints representing both capacity limits of the air space and airline
company needs, consisting in a delay and a preference assigned to each trajectory;
several mathematical linear programming models exist to solve this problem, and the
main issue is their size, since they may contain up to millions of variables for real
instances. As a consequence, the computational effort required to solve the model to
optimality is huge, and not suitable for practical use.
This thesis presents a heuristic method based on Kernel Search. The goal of Kernel
Search is to solve the model using only an initial subset of variables, called kernel, and
dividing the remaining variables into small groups called buckets, ordered by "promising
impact on the solution", that is computed from variable information obtained through
the resolution of the linear relaxation of the problem. Each iteration of the Kernel
Search method consists in solving a small subproblem given by variables from the kernel
and from a single bucket, whose size allows to solve it to optimality in a small amount
of time; furthermore, in this thesis, Machine Learning techniques have been used in the
process of defining the "quality" of each variable, in order to see if such modification
in the bucket defining procedure can lead to more efficient or effective methods. The
developed algorithms have been implemented and tested on real instances obtained
from European data repositories, showing their ability to find optimal or very close to
optimal solutions.
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Chapter 1

Introduction

In the world, hundreds of thousands flights are operated every day, transporting both
people and goods from a point of the Earth to another, thus it is imperative to regulate
the traffic inside the airspace, taking into account physical and legislative limits, such
as the flight level range, traffic capacity assigned to a specific air space as determined
by institutions, etc. An airline company must evaluate all these information to propose
a flight plan, taking into account that different trajectories lead to different flight
times and to different costs, which are determined by the variable fuel cost (depending,
among others, on time of flight) and by the overflight taxes that might be applied by
some countries.
Depending on the adopted business model, each company has its specific metrics to
determine a preferred trajectory: some evaluate more the time of arrival (preference to
minimize the delay), others might prefer to avoid paying too many overflight taxes,
even if that means scheduling a delay on the arrival time.
The needs of scheduling and assigning flight plans that are both coherent to the
constraints previously defined, and acceptable by airline companies, have found an
answer in the mathematical approach to this problem, called ATFM (Air Traffic Flow
Management) problem, which aims to assign a flight plan to each flight, respecting all
constraints, while maximizing the preferences of airline companies.

The goal of this thesis is to implement a heuristic algorithm to solve the mathe-
matical model associated to the ATFM problem, called Kernel Search, which consists
in iteratively solving a sequence of subproblems obtained by ranking the variables
according to the resolution of the relaxation of the problem. In particular, such in-
formation is used to sort variables in decreasing "promising impact on the solution",
so that they are divided in small groups called buckets. The first group is picked and
fixed as a starting point, and the model is solved using only variables that belongs to
the fixed bucket and one extra bucket at a time, obtaining small problems that are
manageable in terms of computational resources required.
The mathematical model for ATFM considered in this thesis is taken form literature
and consists of a path formulation that uses binary decision variables associated to
assignment of a realistic trajectory to each flight.
The first part of the Kernel Search based algorithm, which solves the relaxation of
the full model, is faced through a dynamic column insertion algorithm, taken from
literature.
Different versions of the Kernel Search approach have been developed in this thesis.
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2 CHAPTER 1. INTRODUCTION

As for the standard procedure, the relevance of each variable is established from its
value and reduced cost, without considering the features of the flight and the trajectory
described by the variable itself. Another approach proposed in this thesis is to integrate
Machine Learning techniques in the standard algorithm schema, to provide a different,
and possibly more accurate and effective, determination of "promising variables". In
particular, clustering is used to classify variables based on trajectory, in order to
identify similarities and provide a different sorting, leading to different subgroups of
variables that limit redundancy in the buckets. Moreover, decision tree classification is
also used, on each single bucket, as a filter that further discriminates between variables
that are worth to be included or not in the submodel, based on the features of both
variables and current solution.
The algorithms proposed in this thesis have been implemented and compared to the
results obtained through dynamic column insertion and a rounding algorithm to get a
solution of the integer problem, in order to determine if the Kernel Search algorithm
finds better solutions than such rounding procedure. In this case, it is also necessary
to determine if the required higher computational cost, specifically time of execution,
can be effectively sustained in the resolution of the ATFM problem in practice.

1.1 Content and contributions
The second chapter describes tools and technologies used during the thesis project.

The third chapter describes in detail the ATFM problem, giving also some related
literature and information on the mathematical model that will be considered by
this thesis, and on existing methods for its resolution.

The fourth chapter describes the design of the Kernel Search procedure for the
ATFM problem. In particular, it discusses parameter tuning and describes the
implementations realized to fit the procedure for the ATFM problem, which
represent a first contribution of this thesis.

The fifth chapter proposes Machine Learning integrations into the standard Kernel
Search procedure, which lead to original implementations that feature clustering
and decision tree filters.

The sixth chapter describes results obtained through tests of the proposed versions
of the Kernel Search procedure on real-world instances, with a focus on differences
between the standard and the Machine Learning implementations of the Kernel
Search procedure. Results represent a further computational contribution of the
thesis.

The seventh chapter summarizes up all the work done, and provides conclusive
remarks.

1.1.1 Text highlighting
For this document, the following norms have been chosen:

• class, methods, package names and programming language keywords are high-
lighted as keyword;

• mathematical elements, such as sets and variables, are highlighted in cursive;
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• foreign language terms (non-English words), acronyms, or terms belonging to
technical language are highlighted in cursive, only when their meaning is explained,
following occurrences will not be highlighted;

• bibliography references are represented by a blue number closed by square
parenthesis, for example [1].





Chapter 2

Tools and Technologies

In this chapter, the main tools and technologies used in this thesis are described, giving
details about the role each one played in the development of this project.

2.1 Linear Programming
A mathematical programming model is used to solve optimization problems. It involves
a measure to optimize, a set of constraints representing the feasible region of the
problem, and a set of variables that model decisions of the problem; a mathematical
programming model can be written as:

min cTx (2.1)
s.t. Ax ≥ b (2.2)

x ≥ 0 (2.3)

where x ∈ Rn (or Zn), c ∈ Rn, A ∈ Rm×n and b ∈ Rm (having n = number of decision
variables, and m = number of constraints).
Expression 2.1 is called objective function, 2.2 is the set of constraints and 2.3 indicates
the domain of variables.
Linear Programming models are a special class of mathematical programming models,
and involve, as the name suggests, linear equalities/inequalities for both the objective
function and the set of constraints. A mathematical programming model is formed
by the following elements (examples are given with reference to the ATFM model
elements):

• sets: they group the elements of the system, for example F is the set of flights,
P is the set of trajectories, and D is the set of delays;

• objective function: an expression involving decision variables, the goal is to
maximize or minimize this quantity, e.g. to minimize the total delay or to
maximize the sum of preferences;

• decision variables: elements unknown to the system, e.g., in the case of ATFM, y
variables (indexed by flight, trajectory and delay) determine a real flight plan for
a specific flight, while z variables (indexed only by flight) indicate if such flight
is unplanned. Each variable denotes a column of the model, the one collecting
the coefficients associated to the variable itself in the constraint matrix A of

5



6 CHAPTER 2. TOOLS AND TECHNOLOGIES

expression 2.2. The determination of value for all decision variables that satisfies
all constraints constitutes a feasible solution of the problem;

• constraints: a set of equalities/inequalities that describe restrictions regarding
decision variables, each constraint denotes a row of the model, i.e., a row of the
coefficient matrix A; for example, the constraint "Flight 4 must have exactly 1
flight plan or be unplanned" can be expressed as:∑︂

p∈P,d∈D

y4pd + z4 = 1

• parameters: the known elements of the model, such as the capacity of each sector,
the preference for each flight and the delay coefficient for each variable.

A linear programming model can be of one of the following types:

• LP (Linear Programming) models involve real-valued decision variables;

• ILP (Integer Linear Programming) models involve decision variables of integer
type;

• BILP (Binary Integer Linear Programming) models involve decision variables
of boolean type. It’s a particular case of ILP where decision variable values are
restricted to only 0 and 1;

• MILP (Mixed Integer Linear Programming) models involve decision variables of
both real and integer type.

2.2 Methods for linear and integer linear program-
ming

In this section, methods to solve mathematical programming models are described.
Only methods involved in this thesis are illustrated, together with the off-the-shelf
software library that allows to use such methods.

2.2.1 Simplex method
The simplex method is used to solve continuous models, i.e. LP models. It requires
the problem LP to be in standard form, which is min{cTx : Ax = b, x ≥ 0}, and a
feasible basis B, the procedure is the following:

1. write the LP canonical form with respect to B, the canonical form explicitly
express basic variables and the objective function using only non-basic variables:
z = zB + cN1 + · · ·+ cN(n−m)

xBi
= bi − aiN1

− · · · − aiNn−m
(i = 1 . . .m)

where:

zB is the objective function value given by the basis B ;

bi is the value of basic variable i ;

Bi is the index of the i -th basic variable (i = 1 . . .m);

Nj is the index of the j -th non-basic variable (j = 1 . . . n−m);
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cNj
is the reduced cost, which is coefficient of the j -th non-basic variable in the
objective function, with respect to the basis B ;

−aiNj
is the coefficient of the j -th non-basic variable in the constraints that makes
explicit the i -th basic variables;

2. if cj ≥ 0 ∀j then B is an optimal basis, terminate;

3. if ∃h : ch < 0 and aih ≤ 0 ∀i then the problem is unlimited, terminate;

4. insert in B any variable with negative reduced cost (xh : xh < 0), and remove
from B the variable xBt , where t = arg min

i=1...m
{ bi
aih

: aih > 0};

5. repeat all steps until the optimum solution is found, or the problem is known to
be unlimited.

2.2.2 Relaxation of a model
Each model can be solved in its original formulation, or it can be solved in a different
version called relaxation. The linear relaxation of a model keeps all the elements of the
initial formulation, but all variable types are changed to real; note that, by definition,
no change is made for LP models.
The relaxation is used because a complete real-valued model is easier to solve than its
integer counterpart. Its solution is used by many algorithms, since its value represents
a lower bound for the original problem, as a starting point to obtain a solution of the
original problem that is more likely to be close to the optimal value.

2.2.3 Dynamic Column Insertion
Dynamic column insertion is an algorithm used to solve linear programming models, it
is used mainly when the model to solve is too big, in terms of number of variables, to
be solved in its totality. This algorithm can give the optimal solution of LP models
and, hence, of the linear relaxation (described in §2.2.2) of any model. Note that this
does not mean a solution of the original problem with integrality constraints will be
found, but the optimal solution of the relaxation can be used as a starting point for
other algorithms to obtain a feasible integer solution.
The dynamic column insertion schema is as follows:

1. find a feasible solution to the original problem, this can be obtained by a greedy
algorithm for example;

2. initialize the model taking into consideration only variables (columns) from the
initial solution, obtaining the initial restricted LP problem;

3. until (stop condition) do:

(a) solve the relaxation just defined;

(b) compute all reduced costs for both columns in the model and columns that
are not included in the model;

(c) select one or more columns whose reduced cost, is negative, that means they
can bring an improvement in the objective function value;

(d) add such columns to the model;
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(e) stop condition: there is not any column with a negative reduced cost, the
last solution is optimal.

There are different variants of this algorithm, which involve different features to manage
the size of the intermediate restricted models such as a limit on the number of columns
inserted at each iteration, and the application of an aging mechanism: when a column
of the model is not selected in the solution (its value is 0) for k (parameter) consecutive
iterations, then this column is removed from the restricted model.
A dynamic column insertion algorithm for the ATFM problem has already been
implemented in [18], together with a rounding algorithm to determine a good feasible
integer solution.

2.2.4 Branch & Cut

Branch & Cut is an exact method to solve an ILP (or MILP/BILP) model starting
from a solution of the relaxation of the model. It does so by exploring all possible
solutions in a tree style. The initial problem constitutes the root, and the initial bound
is set equal to the optimal solution value of the linear relaxation. Subset of solutions
are generated with a branching operation, adding a constraint that splits the current
node (called parent) in different nodes (called children); for example, in BILP models,
a constraint may be based on the variable x1, having a child contain all solutions where
x1 = 0 and a second child with all solutions where x1 = 1.
Before actually exploring a node, a check with the current best solution is performed:
if the node potentially contain a better solution (based on the bound given by the
solution of the relaxation of the original problem with the additional constraints given
by the node) then it is explored. If the relaxation provides a feasible integer solution
better than the incumbent one, the bound is updated: all nodes whose bound is worse
than the current best solution are discarded and will never be explored. This procedure
is guaranteed to find the optimal solution (within the set of variables involved). The
procedure also adds cutting planes, which are constraints that affect only fractional
solutions, leaving integer solutions unchanged, thus allowing to produce bounds that
are strictly closer to the best integer of solution of the current node.

2.2.5 IBM ILOG CPLEX Optimization Studio

IBM ILOG CPLEX Optimization Studio is a software, property of IBM, centered on
decision optimization technology, which consists mainly in the use of optimization
engines to solve mathematical programming problems. One of the most important
solvers is CPLEX, that implements, among others, the simplex method (described in
§2.2.1).
In particular, for this thesis, the CPLEX Callable C API is used (whose documentation
is available at [8]), that allows to create, manipulate and solve a linear programming
model inside a C++ program; specifically, the C API has been chosen over the C++
API because it does not require the instantiation of a dedicated class to work with the
library, and macros to simplify the use are available in [9].

2.3 Kernel Search
Kernel Search is a matheuristics method, described in [19], to obtain heuristic solutions
for MILP problems. Kernel Search is first introduced to solve the multidimensional
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knapsack problem, but later contributions ([19], [16] and [15]) show that this approach
is applicable also to problems that do not necessary model item choices.
The principle is to solve a relaxation of the problem, with any method, and, based on
this result, to determine an initial subset of good variables, while sorting the remaining
such to have the best variables in the first positions of this sort. The set obtained
is then partitioned into small subsets called buckets; to obtain the solution of the
problem, the solver is called multiple times on smaller problems, determined by the
union of the initial subset and one bucket at the time.
The Kernel Search method, as it is described in [19], is divided into two main phases,
initialization and expansion:

• initialization goal is to solve the relaxed problem, determine the initial set of good
variables, called kernel, sort remaining variables and divide them into buckets;

• expansion is about creating and solving subsequent subproblems, each one formed
by kernel variables and variables that belongs to the bucket i, where i is the
number of the current subproblem; the first subproblem gives a solution value that
is used as a feasible bound for next iterations; more specifically, each subproblem
(except the first one that has no additions) has the same constraints as the
original problem, with two additional constraints:

1. at least one bucket variable must be in the basis, that means the bucket
must contribute to the new solution;

2. the objective function value must be better than (or equal to) the best
objective function value found so far; in conjunction with the previous
constraint, this consider solutions with the same objective function value,
but with different variables, feasible, as long as the bucket participates in
the swap of variables.

Each time a subproblem has a solution, that means it is an improving solution,
the bound is updated, and bucket variables involved in the solution (with a
non-zero value) are added to the kernel; subproblems are solved under some kind
of restrictions, such as time or CPU usage limits.

Parameters and choices to be made when implementing a Kernel Search matheuristics
are the following:

• type of relaxation: can be a linear relaxation, a dynamic column insertion
relaxation, a Lagrange relaxation, etc.;

• kernel: which variables form the initial kernel;

• sorting algorithm: how to determine the quality of a variable, and, based on that,
perform the sorting of all variables;

• bucket size: strictly related to the subproblems size, a high value can put in the
same bucket many good variables, but it will take more time to solve the related
subproblem; on the opposite side, a too small value may not include enough
variables to obtain a good solution, because a combination of different variables
to perform a swap in the solution may be required;

• subproblems restrictions: determine under which conditions the subproblems
have to work in order to find a solution;
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• kernel update: which variables are added to (or removed from) the kernel at each
iteration;

• stop condition: when to terminate the algorithm, for example, stop after a fixed
number of iterations, after a fixed amount of time or after a better solution has
not been found after a given number of consecutive iterations.

The basic Kernel Search uses as sorting method the reduced cost of variables: the lower
it is, the higher is the probability it will improve the current solution; this version has
many analogies with dynamic column insertion: both methods are based on an initial
set of variables (the kernel and the starting feasible solution), and provide the solution
to the model by solving subproblems, whose variables are determined by the reduced
cost values. The main difference is given by the fact that in the Kernel Search, buckets
are created in the initialization phase, and are not changed, so they are built statically.
On the other hand, dynamic column insertion re-computes all reduced costs at each
iteration, thus having a dynamic determination of variables to enter in the model.

2.4 Machine Learning techniques

In this section, the Machine Learning techniques used in this thesis for integration
into Kernel Search are described. Basic concepts and standard functioning of such
techniques are illustrated here.

2.4.1 KMeans

KMeans is a specific clustering algorithm, which is a Machine Learning technique,
that consists in grouping a set of objects in different subsets, called clusters, each of
them containing similar objects, as described in [2]. It is the most common form of
unsupervised learning, that features the lack of pre-classified examples (differently from
supervised learning, where pre-classified examples are used to train the algorithm).
Clustering algorithm are different from each other for the type of similarity used, and
for the algorithm used to build, add, and expand clusters.
KMeans is a flat clustering algorithm, meaning that the number of clusters is assigned
from the beginning and never change, and it assumes examples to be classified are
real-valued vectors. The algorithm starts from a random partition of objects into
clusters, and, for each cluster, the algorithm aims to minimize the distance between
examples and the centroid of the cluster (the center point); labels are assigned based
on the distance between the example and the centroids of the current clusters. The
following step consists in recalibrating centroids values using the means of examples
that belongs to the same cluster as the new position; this process is repeated until
centroids stabilize.

2.4.2 Decision Tree

Decision Tree is a Machine Learning technique that allows to learn functions that are
representable as trees (described in [2]). It can be viewed as a series of if-then rules,
which reduce to if-then-else rules in the case of a binary tree, this feature makes
decision trees very understandable by a human interlocutor.
Elements composing a decision tree are the following:
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• an inner node represents an attribute of any type, such as the delay of a flight of
the day of the week;

• a branch indicates a possible value (or range of values) the attribute of the parent
node can assume, for example delay > 5 or day of the week = Saturday;

• a leaf node assigns a classification, e.g. of type Yes/No.

Decision Trees are included in the category of supervised learning: training is performed
on pre-classified examples and, based on example labels, branch rules are created,
building the actual tree.

2.5 Technological and development tools

In this section, tools used to manage the project and interact with it are described.
Basic definitions are provided, together with the description of the role that each tool
plays in the thesis.

JSON

JSON (JavaScript Object Notation) (logo in Figure 2.1) is an open standard file format,
structured in the following way:

• the file content in included inside graph parenthesis, { };

• the content is saved as a pair key: value. The key is generally a string or
a number, while value can be almost everything, from a single value to list of
different values and types, and could also be another key-value pair, hence
giving the option to have nested keys;

• each pair is separated by the following one with the comma ( , ) and a line break
(the comma is omitted in the last value of the group).

In this thesis, this format is used to store instances for the ATFM problem, to save
the result of the clustering procedure, and to track the delay value constraint for the
maximization of preference version of the problem.

Figure 2.1: JSON logo.
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C++
C++ (logo in Figure 2.2) is a programming language, documented in [6], created as an
extension of the C language. It involves Object Oriented Programming features, but it
is multi-purpose, because it has many different characteristics, that belongs also to the
worlds of generic and functional programming. The main strengths of this language are
performance and efficiency. Instead of having a garbage collector like many languages,
it leaves memory management to the programmer, who has the possibility (and the
goal) to optimize memory usage by allocating (and deallocating) memory at the best
moment.
It is the main programming language used to develop this project, because there is
a CPLEX library available for C++ (as mentioned in §2.2.5), together with many
other libraries to manage different aspects of this work, such as file manipulation
(input/output), JSON parsing and optimized data structures.

Figure 2.2: C++ logo.

CMake
CMake (logo in Figure 2.3) is a software available at [7] for build automation, testing,
packaging and installation of software using a compiler-independent method, with few
dependency. One of them consists in simply having a C++ compiler on the system; it
is used mainly because it is the chosen way to build and execute the previous parts of
this project, where each part has its specific CMake build directory, allowing to run
single parts easily.

Figure 2.3: CMake logo.

Python
Python (logo in Figure 2.4) is an interpreted programming language, documented in
[22], that features dynamic typing, resulting in a very versatile language, particularly
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used for scripting and for the quick development of applications, where the programmer
does not need to manage every single detail like in C++, allowing to focus more on the
program logic. The use of this language is greatly increased in the last years, mainly
because of the huge variety of libraries available, combined with the expressiveness of
its syntax; such libraries cover many different fields, and the one regarding this thesis is
Machine Learning, which is covered mainly by the scikit-learn library (documented
in [23]), together with the numpy library (documented in [20]) that provides improved
data structures for mathematical computations.

Figure 2.4: Python logo.

Visual Studio Code
Visual Studio Code (logo in Figure 2.5) is an IDE (Integrated Development Environ-
ment), which provides many tools to support software development, such as syntactic
code analysis, compilation, execution, testing and debugging, that are acquired through
different extensions that can be downloaded. One important extension used in this
thesis is Remote Explorer, which allows to connect remotely via SSH (Secure SHell) to
the machines of Servizio di Calcolo, Torre Archimede, Dipartimento di Matematica
(Università degli Studi di Padova), that are the computers used to execute the project.
It is worth mentioning that Visual Studio Code will not work on Windows OS for this
project, because for Microsoft environments the CPLEX Callable C API is recognized
by the system only through Microsoft Visual Studio, that must be used to compile
and execute the C++ parts of the project (Python parts are not using the CPLEX
library so there are no restrictions).

Figure 2.5: Visual Studio Code logo.

GitHub
GitHub is an internet hosting service for software development and version control
using Git, which is a distributed open source VCS (Version Control System), used
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to manage software projects: GitHub is available at [14]. The environment in which
each project is controlled by this system is called repository ; it is the platform where
the repository of this thesis is stored. Such repository contains also all previous work
related to the ATFM problem, developed by both researchers and other students.



Chapter 3

The ATFM problem

In this chapter, the ATFM problem is described in detail, discussing its importance in
the current scenario and the role of a linear programming model to solve it. We will also
provide details about existing solution approaches proposed by the scientific literature.

3.1 Managing the Air Traffic Flow

The ATFM problem involves many actors, everyone providing different type of prefer-
ences and constraint when scheduling flight plans:

• institutions provide the subdivision of the air space into sectors, set their capaci-
ties, and approve flight plans;

• airlines show preferences for certain routes and time of departure and arrival, and
manifest the intention of performing a flight, giving to the institutions related
information;

• economical and political status of different countries can influence the choice for
a flight plan, for example a country can deny a specific air company the crossing
of its air space, or set an overflight tax;

• people indirectly influence flight plans, because flights are performed to satisfy
their need to move, or to receive goods coming from other places of the world.
An excessive delay, for example, may discourage travellers to take again the same
flight, and the related air company may review its preference metrics, choosing a
different flight plan.

The main actor is formed by the institutions, because they set the majority of con-
straints, which are hardly negotiable, forcing air companies to eventually give up the
most preferred flight plan in favor of one with less preference or more delay. We consider
the pre-tactical phase of flight plan scheduling, that happens a couple of days before
the actual day of operation, considering a prediction of actual sector capacities. Other
planning phases, not considered in this thesis, are the strategic one, which precedes the
pre-tactical one and takes traffic demand and a rough approximation of capacities into
account, and the tactical one (up to a few hours before operations), which takes into
account every event that may disrupt the plan formulated in the pre-tactical phase,
for example weather condition.

15
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In this thesis, the European air space is analyzed, and the planning is viewed from
the perspective of Eurocontrol, responsible of the ECAC (European Civil Aviation
Conference) area; the database available for this project is based on Eurocontrol
repositories and contains all information on flights occurred in Europe during summer
2016.

3.2 Literature review

During time, various models for the ATFM problem have been proposed: the easier
ones allow to determine the optimal plan for one single airport, called SAGHP (Single-
Airport Ground-Hondilng Problem). Later, they have been extended such as to consider
a group of airports instead, this models refer to MAGHP (Multi-Airport Ground-Holding
Problem), as described in [1]. Models just defined do not take into consideration the
air space, and the only possible action is to delay flight departure, keeping aircraft
inside the airport for more time (ground holding).
In 1987, Odoni [21] proposed a model that uses binary variables to track sector
occupation by a specific flight at a specific time.
Five years later, in 1992, Helme formulated in [17] a model that formulates the problem
as a MMCFP (Multicommodity Minimum Cost Flow Problem) considering, in addition
to ground holding, the airborne holding technique: it allows to delay flight arrival by
keeping the aircraft in flight near the destination airport.
In 1998, a model is proposed in [4] by Bertsimas and Patterson, which allows to
change the flight speed, thus avoiding to keep the aircraft in place (ground holding and
airborne holding). This is done by considering trajectories as the sequence of crossed
sectors over time; it also consider sequences of two "continuous flights": so it takes
into account aircraft that perform stopovers.
In 2000, the same authors presented in [5] a new model that allows to redirect flights
over different trajectories when the current trajectory would cross congested regions,
within the goal to minimize the total delay.
In 2011, Bertsimas, Lulli and Odoni proposed in [3] a model that combines all previous
features (ground holding, airborne holding, speed control and flight rerouting) giving,
within the context of flight rerouting, more alternative sectors for each flight. This
combination defines a model that is flexible and expressive, allowing to obtain reasonable
running times also for large-size instances.
Recently, in 2017, Fomeni, Lulli and Zografos formulated in [11] a model reguarding the
optimization of TBO (Trajectory Based Operation). The main feature of this approach
is to consider compromises between airspace users needs, that aim to optimize their
operations, and the performance optimization of the whole system. In this model, each
trajectory is represented by sequences of points in four dimensions (latitude, longitude,
flight level and time); trajectories are obtained by minimizing the deviation from the
optimal preferred route. As said before, this model considers airspace user needs, so it
takes into account preferences of involved airline companies.
A new model considering trajectories and preferences assigned to them by each flight is
proposed in [10] by De Giovanni, Lancia and Lulli. This thesis makes references to such
model, so its features are described later, with more details, in §3.3.2. Moreover, in
§3.4, solution methods based on the model presented in [10] are illustrated accurately,
as they constitute the base of this thesis.
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3.3 An assignment-based linear programming formu-
lation

We assume the following information is available:

• division of air space into sectors;

• capacity limits for each sectors;

• flights to be planned;

• scheduled time of departure;

• scheduled time of arrival;

• possible trajectories for each flight;

• possible delay;

• preferences for each trajectory (defined in §3.3.1).

All this data suggest constraints within the problem, as well as coefficients to compute
the total amount of delay and/or preference of all scheduled flights. Having the pairs
(flight - flight plan) as decision variables, we can formulate the ATFM problem
using a mathematical model, specifically a linear programming model, because all
constraints can be expressed as linear equalities/inequalities, with binary decision
variables, hence a BILP model, since every flight plan can or cannot be assigned to
a flight, having all variables in the model of boolean type, representable just by 0 or
1 values. The mathematical model that uses these definitions (presented in [10]) is
described later in §3.3.2, in two different versions: the minimization of delay (that does
not consider air company preferences) and the maximization of preferences.

3.3.1 Determination of preferences
The issue is given by the fact that this mathematical approach requires the preference
values from air companies for each possible trajectory in the model, and most of the
time the metrics used to determine a favorite flight plan are confidential. However,
some information on preferences can be extracted thanks to the availability of historcal
data on flown trajectories. In particular, a Dbscan clustering (presented in [10]) has
been performed to all known trajectories, to group them by similarity; outliers may be
caused by a special event, so they are not to be considered, and thus they are removed.
This clustering gives classes that will be used by a decision tree in a further step, that
takes as parameters:

• day of the week;

• day of the week with respect to the year;

• time slot;

• airline;

• airline type (low-cost or legacy);

• airplane type.
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The training phase has been performed on trajectories known from historical data,
then the tree classifier is applied to the clusters obtained previously, in the following
way: for each leaf of the classifier the number of trajectories classified for each cluster
nc
i is computed, then these values are normalized such that each leaf contains the

probabilities for a trajectory to belong to a specific cluster, nc
i =

nc
i∑︁

c
nc
i
.

Finally, the preference value for a flight f with plan p is defined as:

Gf
p = n

c(p)
i(f)

where c(p) is the cluster of plan p, and i(f) is the tree classification of flight f.

3.3.2 Mathematical model
A linear programming model requires different elements in order to be built, the
elements for the ATFM problem, used by the model proposed in [10] are the following:

Sets

F set of flights to schedule;
T set of natural numbers corresponding to time slots, a time slot has a fixed

duration (for example, with a time slot equal to 5 minutes, the number
t = 2 ∈ T corresponds to the time slot starting 10 minutes after time 0);

S set of air space sectors;
B(f) set of possible departure delays for the flight f, expressed in number of time

slots;
P(f) set of flight plans available for flight f.

Parameters

Gf
p is the preference of flight f for the plan p, it is a number in the range [0, 1];

STDf is the time slot corresponding to the departure time of flight f, without
considering any delay;

STAf is the time slot corresponding to the arrival time of flight f, without consid-
ering any delay;

Dp is the flight duration of plan p, expressed in number of number slots;
R is the maximum total delay accepted for the maximization of preferences

problem;
Cs(t) is the capacity of sector s at time t ∈ T, expressed as number of flights

per unit of time (commonly one hour) that enter such sector (this is the
ECAC definition for capacity); if the time slot value is different from this
unit, then the capacity at time t is associated with all flights within k time
slots, where k ∗ (time slot duration) = unit of time, starting from time slot
t (that means all time slots corresponding to the interval [t, t+ 1]);

Aps(t) is a boolean-valued parameter whose value is equal to 1 if a flight plan p
∈ P(f), f ∈ F affects the capacity of sector s ∈ S after t ∈ T time slots
from departure, otherwise its value is 0; practically, the value is equal to 1
if the flight plan p schedules to enter the sector s in the time slot u ∈ {t,
t+1, t+2, ... , t+k−1}, where k is the number of time slots contained in
the capacity time interval.
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Decision variables

y represent a chosen flight plan p for flight f with delay d ; it is of boolean
type because a flight plan is or is not assigned.

yfpd =

⎧⎪⎨⎪⎩
1 if flight f ∈ F uses the plan p ∈ P(f) with a delay of d ∈ B(f)

time slots
0 otherwise

z represent flights with no flight plans assigned, that means such flight will
be unplanned. This has a remarkable penalty on the solution, but the
introduction of unplanned flights allows the use of many heuristics, that in
some steps may require to have some flight unplanned in order to improve the
current solution. Having all flights unplanned constitutes a starting solution,
the worst possible, but it is a solution obtained with no computational cost,
so the model will always have a solution.

zf =

{︄
1 if flight f is unplanned
0 otherwise

The model used to solve the minimization of delay, as presented in [10], is the following:

min
∑︂
f∈F

(Mzf +max(0, STDf +
∑︂

p∈P (f)

∑︂
d∈B(f)

(d+Dp)y
f
dp − STAf )) (3.1)

s.t. zf +
∑︂

p∈P (f)

∑︂
d∈B(f)

yfpd = 1 (3.2)

∑︂
f∈F

∑︂
p∈P (f)

∑︂
d∈B(f)

Aps(t− STDf − d)yfpd ≤ Cs(t) ∀s ∈ S, t ∈ T (3.3)

yfpd ∈ {0, 1} ∀f ∈ F, p ∈ P (f), d ∈ B(f) (3.4)

zf ∈ {0, 1} ∀f ∈ F (3.5)

Below there are the descriptions of the model constraints:

3.2 each flight must have exactly one flight plan assigned, or it must be unplanned;

3.3 each assigned flight plan must not go above the fixed capacity of any sector;

3.4 the domain of y variables is boolean (values {0, 1});

3.5 the domain of z variables is boolean (values {0, 1}).

For the maximization of preferences version, the objective function 3.1 is moved to
the set of constraints, and the objective function is changed to maximize the sum of
all preferences for chosen flight plans, with a penalty for unplanned flights, all other
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constraints remain unchanged, the model is the following:

max
∑︂
f∈F

(−Mzf +
∑︂

p∈P (f)

∑︂
d∈B(f)

Gf
py

f
dp) (3.6)

s.t.
∑︂
f∈F

(Mzf +max(0, STDf +
∑︂

p∈P (f)

∑︂
d∈B(f)

(d+Dp)y
f
dp − STAf )) ≤ R (3.7)

zf +
∑︂

p∈P (f)

∑︂
d∈B(f)

yfpd = 1 (3.8)

∑︂
f∈F

∑︂
p∈P (f)

∑︂
d∈B(f)

Aps(t− STDf − d)yfpd ≤ Cs(t) ∀s ∈ S, t ∈ T (3.9)

yfpd ∈ {0, 1} ∀f ∈ F, p ∈ P (f), d ∈ B(f) (3.10)

zf ∈ {0, 1} ∀f ∈ F (3.11)

The constraint 3.7 fixes a limit to the total delay, otherwise the model could select
the preferred route for each flight just by choosing the most preferred trajectory for
each one with a different assigned delay to respect other constraints; the amount
of maximum delay R can be set as a parameter, but it is typically based on the
minimization of delay value.
Both models assign a penalty for unplanned flights, this penalty is equal to a constant
M, whose value is:

• equal to the number of flights to schedule for the minimization of delay;

• equal to the number of flights to schedule multiplied by the maximum total delay
allowed for the maximization of preferences.

The value of M is large enough to determine, just looking at the solution value, if
there is any unplanned flight, because:

• for the minimization of delay, each delay number correspond to a fixed time
slot, with a limit such that the delay does not go to the next day; under these
conditions, a solution planning all flights has a value which is lower than the
number of flights, so just one unplanned flight will make the solution having a
value higher than the amount of flights to schedule;

• for the maximization of preferences, each preference is a number in the range
{0, 1}, so the theoretical maximum preference is equal to the number of flights, a
single unplanned flight has a higher penalty with opposite sign, so solutions with
unplanned flights will be constituted by a negative number.

Practically, in our project, instead of solving the maximization of preferences, we create
the model to solve the minimization of the opposite of preferences, changing sign to the
solution at the end to obtain the correct result; in this way the solver always deals with
a minimization problem, thus requiring one less parameter to determine the objective
function verse based on the type of problem.

3.4 Methods to solve the model
Many methods have been implemented to solve the ATFM problem, formulated by
the model presented in §3.3.2, in this section, two methods are presented: dynamic
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column insertion and Local Search.
Dynamic column insertion (proposed in [18]) is presented because parts of its imple-
mentation, that is detailed in [18], are used for the Kernel Search, and its final results
are used to compare the solution provided by the methods implemented in this thesis.
In [18], this approach is called column generation, but it is a dynamic column insertion,
so any further mention to this algorithm will use the proper name (dynamic column
insertion).
Local Search (described in [12]) is presented because it features Machine Learning
techniques that will be used in Machine Learning Kernel Search implementations: more
specifically, the decision trees implemented in [12] are taken without any modifications,
and adapted for use in the Kernel Search procedure.

3.4.1 Dynamic column insertion and integer-rounding heuristic
The dynamic column insertion procedure has been applied in conjunction with a
rounding algorithm to solve the ATFM problem, this approach is proposed in [10] and
described in detail in [18]. A general description and important parts for the purpose
of this thesis are now described.
This method is used to solve to optimality the relaxation of the problem, and it is
based on the general dynamic column insertion procedure (described in §2.2.3), with
some modifications:

• the initial solution is given by a greedy algorithm, or it is provided by a file. This
last one is generally the case for the maximization of preferences problem, where
the solution of the minimization of delay is used;

• each iteration adds a maximum of 1500 column to the model, to avoid dealing
with a large-sized problem that will require a lot of time to be solved, while
inserting a good amount of new variables;

• after each iteration, all columns that are not in the solution for two consecutive
iterations are discarded from the model, i.e. there is a mechanism of aging, with
a parameter k equal to 2;

• a limit ε has been added, with a negative value close to 0, if the solution value
between two consecutive iteration is lower than this limit, then the algorithm
stops; this will handle possible numeral errors and it guarantees termination: in
fact, after a final solution is found, there could still be columns with negative
reduced costs.

After obtaining the optimal solution of the relaxed problem, a solution to the original
problem can be found using the final restricted problem given by the dynamic column
insertion, working on a reduced set of variables: the chosen algorithm is Branch & Cut,
described in §2.2.4.
The drawback of this algorithm is that it is not guaranteed to find the optimal solution
of the original integer problem on a restricted set of variables, in particular it is possible
to do not even obtain a feasible integer solution. The Branch & Cut method is executed
using as stop condition the limit of the gap between the current solution and the best
bound available set to of 0, 01%, in order to reduce the amount of time spent exploring
nodes for a minimal improvement in the solution value.
If no solution is found with the Branch & Cut, then another heuristic algorithm is
proposed in [18] to obtain a feasible solution: fractional variables are grouped by
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corresponding flight, and such groups are sorted based on increasing cardinality, in
order to schedule first flights with less alternatives; groups are sorted internally by
value in the relaxation, if more variables have the same value, then the precedence is
given to the one with the best objective value coefficient. Given the available capacity,
obtained from the congestion rate of plans related to integer variables, variables in each
group are tested for insertion, if it fails, then the best fractional variable is selected,
with a possible violation of some capacity constraints.

3.4.2 Local Search
A second approach to solve the ATFM problem is the local search developed in [12].
Local Search indicates a class of algorithm aiming at improving the current solution by
exploring similar solutions, called neighbours, thus avoiding to check for every possible
solution; a crucial aspect of these algorithm is the neighbourhood definition, given the
current solution.
In the algorithm proposed in [12], the solution space is made of models restricted to a
small subset of variables, evaluated by solving the models themselves. As a consequence,
the effective neighbours are obtained from the current restricted model by adding a
further subset of variables that are considered "good", that means they are likely to
bring an improvement in the solution. The size of such subsets is experimentally set
to 10.000, value that is used in a similar heuristic applied for the ATFM problem,
described in [13].
The local search scheme is integrated with Machine Learning techniques, specifically
with two different decision trees, one for the minimization of delay, the other for the
maximization of preferences. The goal of these decision trees is to classify all variables
with respect to the solution of the current restricted model, returning the probability of
each of them to be a good addition in the model. Trees have been trained on instances
of reduced size, using as initial solution the greedy algorithm used also for the dynamic
column insertion procedure.
The decision tree for the minimization of delay is shown in Figure 3.1. Features to
determine the quality of each variable, used to produce such tree, are the following:

• delay: the delay of current variable, indicated by its third index;

• similarity: how similar is the variable to the one currently present in the solu-
tion for the same flight, similarity is computed by list of traversed sectors, in
conjunction with the entry and exit times for each sector;

• congestion rate: the congestion rate of the air space, given by the insertion of
the variable in exam and the removal of the one currently in the solution.
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Figure 3.1: Decision Tree for the minimization of delay [12].

For the maximization of preferences, the result of minimization of delay has been used
as a starting solution of dynamic column insertion, setting the maximum delay equal
to the minimum delay obtained, increased by 10%.
The decision tree for the maximization of preferences is shown in Figure 3.2. Features
to determine the quality of each variable, used to produce such tree, are the following:

• delay: the delay of current variable, indicated by its third index;

• similarity: how similar is the variable to the one currently present in the solu-
tion for the same flight, similarity is computed by list of traversed sectors, in
conjunction with the entry and exit times for each sector;

• preference: the objective function coefficient of the variable.
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Figure 3.2: Decision Tree for the maximization of preferences [12].

More specifically, to generate a new neighbour a set of flights from which picking
variables is chosen. To this end, a random flight is selected, together with interacting
flights; such interaction is given by the potential overlapping : two flights interact with
each other if the interval between planned departure and arrival times is partially
shared, and if at least one pair of trajectories (one for the first flight, one for the
second) shares a sector. Once the set of flights had been identified, each variable has
a probability of being picked equal to its probability of being good, according to the
parameter of the leaf reached after the decision tree classification.
After the set of variables has been identified, the model including current variables and
such subset is solved, variables selected in the new solution (with value equal to 1) are
kept, updating the current solution status, and the previous steps are repeated until a
fixed number of iterations (given as parameter) is reached; the procedure proposed in
[12] also features a Simulated Annealing scheme: a new neighbour is accepted with a
probability called temperature, defined by the so-called cooling schedule that defines
the initial temperature and how it change through iterations; also the difference of
values between current and new solution is combined with the temperature to compute
the actual probability to accept the incoming neighbour.
Furthermore, the last iterations feature an intensification phase: instead of choosing
flights by potential overlapping, flights are chosen by effective overlapping, which
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considers only trajectories present in the current solution (trajectories assigned to a
flight plan); in this way the number of flights to consider is reduced, so there are more
variables for each flight. This is used in the later stages of the algorithm where a
good solution has already been obtained, allowing to refine it by producing some small
adjustments on a limited set of interacting flights.





Chapter 4

Standard Kernel Search
implementations

In this chapter, the basic Kernel Search approach proposed for the ATFM problem is
discussed. In particular, we will describe the design and the implementation of the basic
components, related to the solution of the problem relaxation and the basic definition of
kernel and buckets. These components will be shared by further extensions of kernel search,
including the implementation based on trajectory grouping, described in this chapter, and
the ones using Machine Learning approaches, that will be described in the next chapter.

4.1 Applicability to the ATFM problem

The Kernel Search algorithm has been applied to the single source capacitated facility
location problem in [15]. This problem consists in assigning each customer to a facility.
A facility can serve more customers, as long as its capacity can satisfy their needs.
Choosing to use a facility results in a cost to open it and the objective function
minimizes the cost to open facilities while satisfying all customers. There are many
analogies with the ATFM problem:

• each flight represents a customer to be served by a trajectory (plan);

• each trajectory can be used by more flights (each facility can serve more cus-
tomers), as long as the capacity constraints are satisfied;

• each assignment has a cost in the objective function;

• each unplanned flight (unserved customer) has a penalty in the objective function,
whose goal is to plan all flights (serve all customers) while minimizing costs (total
delay), or maximizing flight preferences.

The main difference is that the capacity of a trajectory (facility) is not directly related
to the trajectory itself, but to further entities, sectors, which are shared by more
trajectories. Nevertheless, given the features of the ATFM problem, in comparison
with the single source capacitated facility location problem, the Kernel Search approach
seems to be reasonable.

27
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4.2 Relaxation of the problem

The first step of the Kernel Search procedure is to solve a relaxation to obtain infor-
mation about variables. The relaxation through dynamic column insertion (described
in §3.4.1) has been chosen, for the following reasons:

1. it is a fast enough procedure that finds the optimal relaxed solution. In our
implementation, it takes less than 25 minutes, with the exception of the two
critical instances represented by flight planning on 27th and 28th August;

2. using the same relaxation method allows to perform a direct comparison between
Kernel Search and the rounding algorithm used in [18] (and mentioned in §3.4.1),
because the starting point is the same;

3. there is no need to implement a new relaxation method, as adapting dynamic
column insertion to the Kernel Search will require minor adjustments;

4. the linear relaxation, which is the standard choice for the Kernel Search, cannot
be directly solved with off-the-shelf solvers, because these solvers would use
the model with all variables, changing only their domain from boolean to real;
there are different millions of variables in the complete instances, and solving a
complete relaxation to optimality would require too much time.

The existing dynamic column insertion approach proposed and implemented in [10]
and [18] has been adapted easily to be used by the Kernel Search, the following
modifications has been adopted:

• variables that compose the initial solution are saved in a map, using their name
as keys; the map exists only to check if a variable belong to the initial solution,
and the access to a map using a known key takes constant time;

• the procedure has two further maps to track variables in the model (described in
§4.4.2), each time the model is modified by inserting or removing variables, the
maps are updated;

• all names of variables that constitute the initial kernel are saves in a list;

• all remaining variables are inserted in list as instances of the class Variable
(described in §4.4.2), in order to allow sorting;

• the rounding procedure described in §3.4.1 has been cut off because of no use for
the Kernel Search.

4.3 Kernel Search basic elements

This section provides the description of all elements required to define the Kernel
Search algorithm, as it is described in §2.3. Parameters are discussed, as well as any
choice that has been made, making reference also to provisional implementations and
parameter values (obtained after calibration through test on some problem instances).
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4.3.1 Kernel definition
Following the Kernel Search basic schema described in [19], the kernel is initialized
with all selected variables in the relaxation. The number of such variables is on average
equal to the number of flights to plan plus 800, which corresponds to the number of
fractional variables. In the first implementation this was the kernel definition, but this
subset of variables does not guarantee to produce an integer feasible solution, resulting
in the first subproblem to have no solution. The first adopted adjustment is to add z
variables, which model unplanned flights, that are related to flights having variables
with fractional values; this set guarantees a feasible solution, because the solution
formed by integer variables in the relaxation and z variables for fractional variables
always exists.
A better kernel initialization would use variables leading to a model that does not
need unplanned flights to be feasible, so to always start with a good integer solution.
The idea to find such subset is already implemented in the dynamic column insertion
algorithm of [10] and [18], because it uses as starting point an integer solution which is
provided as input or created using a greedy algorithm. Since there is no guarantee it
contains a good subset of variables, that are more likely to be selected by solutions
close to the optimal one, this group of variables is added as an extension of the original
kernel formed only by positive variables of the relaxation: note that in this definition
there is not any z variable, unless it is present in the starting or in the final solution of
the dynamic column insertion.
Using this approach, the size of the kernel is up to 60.000-70.000 variables, and this size
is considered too big, even if very small compared to the original problem that contains
millions of variables. In fact, preliminary computational experience set the desired
size of kernel and bucket below 50.000, in order to solve subproblems able to find the
optimal solution in a small amount of time. Indeed, the set of positive variables and
the set of variables that belong to the initial solution share many elements. In fact,
with relation to tested instances, on average, the number of variables that belongs only
to the initial solution is:

• 7.400 for minimization of delay and for maximization of preferences only when
the starting solution is given by input, that corresponds to the integer solution
of minimization of delay obtained using the rounding algorithm;

• 8.300 for maximization of preferences when a starting solution is not provided,
but it is generated using the greedy algorithm; specifically, on most instances
this number is pretty much equal to the previous case, but for others, like the
27th and 28th August instances, it goes up to 10.000.

In the worst case scenario, the kernel size is around 45.000, on average it is 40.000,
which is below the maximum size established to have a limited subproblem size, so
this kernel definition has been implemented.
Regardless of the Kernel Search implementation, the kernel has been built in the same
way, in particular, with the same set of variables using the same sorting criterion:
variables are sorted based on their features in the solution of the relaxation, first by
decreasing value, and then by increasing reduced cost for variables with the same
value. This choice has been made to uniform the first subproblem execution, because a
different order will result in a different execution time, and may lead to different results
in case the respective problem goes on timeout; the current kernel internal sorting is
not guaranteed to be the best sorting in any way, it is just to obtain coherent results
between different implementations.
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4.3.2 Bucket size
Following the basic Kernel Search procedure, the suggested bucket size is the kernel
size, so it corresponds to the number of positive variables in the relaxation, for a total
subproblem size of approximately twice the number of flights to plan for the relative
instance. Each instance contains 28.000-32.000 flights, so the subproblem size would
be 56.000-64.000, that goes over the desired size, without even considering the kernel
extension that includes also variables from the dynamic column insertion starting
solution.
Before excluding any a priori size, the Kernel Search has been implemented to take the
bucket size as parameter, having a special value that indicates the size to be equal to
the kernel size, in order to easily perform executions on different sizes. The following
sizes have been tested on all implementations of the Kernel Search algorithm (described
in next sections):

• 10.000;

• 20.000;

• number of positive variables in the relaxation.

Results show, with few exceptions for the maximization of preferences, that the
reduction of bucket size does not affect negatively the objective function value; as for
the exceptions, the difference in value is in the order of 10−3, so we decided to consider
a bucket size of 10.000.

4.3.3 Subproblems creation and execution
After building the kernel and the buckets, the initialization phase of Kernel Search
procedure is finished, and the expansion phase starts. Before initializing any subproblem,
the empty model is created with all constraints, so there is no need to create a new
problem for each subproblem, but it is sufficient to modify the set of variables included
in such model.
The first subproblem is formed only by kernel variables, and does not contain any
additional constraint. The goal of this subproblem is to give an initial solution,
whose value will be the starting upper bound for next iterations. For this reason, the
kernel subproblem is the most important among all subproblems to solve, and so it is
reasonable to execute it with less restrictions compared to other subproblems. The
chosen restriction is only about execution time and different timeouts have been tested:

• 10 minutes;

• 20 minutes;

• 30 minutes;

• 1 hour (this has been tried only for 27th and 28th August instances).

Timeouts below 30 minutes are enough for most instances to obtain the optimal
solution in the minimization of delay. For the maximization of preferences version
of the problem, instead, many instances do not return a feasible solution for lower
timeouts: in 30 minutes these instances does not find the optimal solution, but they
still provide a good value, so this is the chosen timeout, because it represents a good
compromise between result and execution time.
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After the kernel subproblem is solved, the kernel is updated (details are in §4.3.4),
by eventually removing variables from both the model and the kernel. Constraints
of the problem and remaining variables are not modified in this process, allowing
bucket subproblems to be created easily. The bucket subproblems are created and run
following the bucket order:

1. variables that belong to bucket i are inserted in the model;

2. an additional constraint is added to the model: the objective function value must
be greater than (or equal to) the best solution value obtained so far (initially it
is the kernel solution value);

3. an additional constraint is added to the model: at least one bucket variable must
appear in the solution (with a value equal to 1).

With the two additional constraints, the feasible solution of each subproblem can be of
two types:

1. a solution with a better objective function value, which is an effective improve-
ment;

2. a solution with the same objective function value, but involving different variables.

Infeasibility is modelled with a special solution value:

• −1 for the minimization of delay, because such problem does not have any
negative objective function coefficient, so negative solutions do not exist;

• +1 for the minimization of the opposite of preferences (the transformation of the
maximization of preferences), because any solution that plans all flights has a
negative objective function value, while a solution that features unplanned flights
has a positive value in the order of millions of units, so small positive solutions
do not exist.

Subproblems are run under a time constraint and different timeouts have been tested:

• 5 minutes;

• 10 minutes;

• 15 minutes;

• 20 minutes;

• 30 minutes.

Results show that the first couple of subproblems takes more time to find the optimal
solution, while later iterations take only few seconds: in order to find a balance between
the total execution time and the quality of the result, the timeout for subproblem has
been fixed to 10 minutes, because additional time is giving minor improvement. More
specifically, the improvement is in the order of 10−3 for the maximization of preferences,
while it do not affect the minimization of delay executions, with the exception of 27th
and 28th August instances.
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Figure 4.1: Kernel update after iteration with a bucket.

4.3.4 Kernel update
After each iteration, the kernel is updated in order to include new variables and prepare
all structures for the next iteration; furthermore, a mechanism of aging is introduced
to remove unused variables and keep the kernel within a reasonable size. The complete
procedure is the following:

1. reset the aging counter for all kernel variables that appear in the solution;

2. add to the kernel all bucket variables that appear in the solution;

3. increase the aging counter by 1 for all other kernel variables;

4. remove from the model all bucket variables with a value equal to 0 in the solution;

5. remove kernel variables with the aging value higher then the fixed limit from
both the model and the kernel;

6. remove the two specific subproblem constraints.

In all implementations, the considered value of aging is equal to 2 for y variables and
it is equal to 1 for z variables: the value 2 has been indicated by [16] as a good value
to keep the kernel size limited while not immediately discarding variables that may
reappear in future solutions; z variables, on the other hand, are removed instantly
when they are not used, because they represent unplanned flights, with a huge penalty
in the objective function, so, once a flight is planned, it is very unlikely to return in an
unplanned state in order to obtain a better solution.
Each step that modifies variables in the model also updates the related structures, that
keeps track of variable names and indexes in the model (described in §4.4.2).

Figure 4.1 illustrates the kernel update procedure after solving a subproblem formed
by the kernel and a bucket: variables with cells in grey appear in the solution with a
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positive value, i.e. such variables contribute to the last solution, which is improved with
respect to the previous one (or it has the same value). The aging counter for variables
in the current solution is set to 0, according to the definition of this procedure. Bucket
variables that appear in the solution (in Figure 4.1 it is the case of variable y.13.0.1)
are inserted into the kernel with aging counter initialized at 0: inserted variables are
highlighted as a green cell in Figure 4.1.
Kernel variables that are not selected in the current solution, represented in Figure 4.1
with a white cell, have the respective aging counter increased by 1. Variables with the
counter equal to 2 are removed from the kernel: in Figure 4.1 removed variables are
marked with a red cross.
If the subproblem does not find a feasible solution, then the kernel remains unchanged,
and bucket variables are simply removed from the model, together with the specific
subproblem constraints.

4.3.5 Stop conditions

There can be three different stop conditions for the Kernel Search procedure:

1. a total timeout of the procedure is reached;

2. a fixed number of consecutive non-improving iteration is observed;

3. a fixed number of iteration is performed.

In the implementations for the ATFM problem, the following stop conditions have
been set:

1. total timeout of 2 hours for the expansion phase, so the time starts when the
kernel subproblem is created;

2. after an unfeasible solution is returned from a subproblem. According to the
principle of Kernel Search, variables are sorted such as to have the best ones in
the first buckets, so, once a bucket does not improve a solution, it is very unlikely
that a bucket with "worse" variables can bring a better result;

3. no limit is set to the number of iterations, so, if the procedure keeps improving
and does not reach the timeout, it can examine all buckets, but such limit can
be provided as a parameter.

The current stop conditions have been set in order to limit the duration of execution,
because without any stop condition in some instances the procedure runs for around
20 hours, mostly on non-improving or unfeasible subproblems.

4.4 Standard Kernel Search implementation

The standard Kernel Search implementation is realized completely with the C++
programming language, according to the basic elements described above, using existing
code where possible. All structures and functions are briefly described, giving infor-
mation about their behaviour, while also pointing which elements are reused and how
they are adapted to the Kernel Search procedure.
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4.4.1 Interaction with CPLEX
The CPLEX Callable API (documented in [8]) are used through a set of macros defined
by other people working at this project in the past years, available in [9], the most
used macros are:

• DECL_ENV(env) initializes a CPLEX environment and assigns it to the variable
env;

• DECL_PROB(env, prob) initializes an empty CPLEX problem in the environment
env and assigns it to the variable prob;

• CHECKED_CPX_CALL(functionName, env, funcArgs): runs the CPLEX func-
tion functionName with parameters funcArgs, in the environment env. This is
generally to be used for functions that returns the effective result by side effect,
modifying a reference of a given parameter; the actual value returned by these
functions is a status code that indicates eventual errors, this macro automatically
checks the status code for errors (it does not handle them).

For all functions that do not return a status code, but instead return the proper result,
the macro CHECKED_CPX_CALL has not been used, but the function is called directly,
and its result is assigned to a variable.

4.4.2 Classes and auxiliary elements
In order to better manage the information required by the Kernel Search procedure,
the class Variable has been created. It represents, as the name indicates, a variable of
the model, it stores its name, value in the relaxation, and reduced cost in the relaxation.
The standard OOP (Object Oriented Programming) conventions have been adopted,
so:

• attributes are declared as private;

• get methods allow to read an attribute;

• set methods allow to modify an attribute;

• all read-only methods are marked with const.

The comparison operators have been defined, in order to easily implement the sorting
algorithm:

• two variables are equal if all their attributes are equal;

• given two variables var1 and var2, var1 ≥ var2 if the value of var1 is greater
than the value of var2 ; in case such value is equal, then var1 ≥ var2 if the
reduced cost of var1 is lower than (or equal to) the reduced cost of var2 ;

• all other comparison operators (<, >, ≤) have been redefined according to the
definition above.

This class has a static method, sortVariables(vector<Variable>& vars), that
implements the merge sort algorithm for a list of variables, using as comparison
operator ≥, so the resulting sorted list contains all variables, in the following order:

1. variables with value equal to 1 in the relaxation;
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2. variables with fractional value in the relaxation, sorted by decreasing value;

3. variables with value equal to 0 in the relaxation, sorted by increasing reduced
cost.

The kernel is implemented as an unordered map that maps each kernel variable to its
aging value. Since for kernel variables only the name is required, only this information
is saved, so kernel elements are pairs (varName, aging); if a variable name does not
exist in this map, then it is not a kernel variable (or it was a kernel variable but at the
current state it was removed).
In order to manage the kernel update schema described in §4.3.4, an auxiliary element
varToIndex has been added: it is an unordered map that connects each variable name
to the corresponding index in the current CPLEX problem, the index is -1, or the map
entry is missing, for variables that do not belong to the current model; this map is
required to connect each kernel variable to the corresponding position in the CPLEX
model (recall that the kernel is always part of the subproblem, so its variables are
always in the model), this index is used to remove the correct kernel variable from the
model according to the aging parameter.
Also the reverse map is implemented, indexToVar: this is an ordered map that connects
each index of the current model to the corresponding variable name. If an index does
not exist, or it maps a variable named "NULL", then this is not a valid index of the model.
This map is required to connect results of CPLEX functions to the corresponding
variables, for example CPXgetx returns all variable values as a list, ordered by index in
the model, and CPXdelsetcols removes a set of variables from the model, returning a
list containing the new index of each variable, sorted by old index value.
Variables that are not in the initial kernel are implemented as a single list of Variable
objects, once they are sorted the corresponding information about value and reduced
cost is not used anymore, so the type is changed such to have a list of variable names,
in order to reduce the amount of memory occupied by data.

4.4.3 Functions
In order to create subproblems, the corresponding variables must be added to the
current model. This is done by modifying the existing functions that add all y variables
and all z variables:

• addSingleYVar adds a variable modelling a flight plan with the provided name
to the model. It requires the variable name, the CPLEX problem and environ-
ment, the two tracking maps, and all information about the problem (problem
type, maximum delay, objective function and constraint coefficients, constraints
involved);

• addSingleZVar adds a variable modelling an unplanned flight with the provided
name to the model. It requires the variable name, the CPLEX problem and
environment, the two tracking maps, and all information about the problem
(problem type, maximum delay, objective function and constraint coefficients,
constraints involved);

• the two functions above are used by the function addColumn that, performing a
case distinction on the first letter of the variable name (y or z ), calls the right
function.

The following functions constitute the implementation of the standard Kernel Search:
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• initFromRelax checks if the relaxation of current instance has already been
performed. In this case, this function reads the corresponding files to initialize
the kernel and the variable list, and performs the sorting of variables;

• columnGen performs the dynamic column insertion relaxation. It takes, in
addition to all parameters required by the proper procedure, the two tracking
maps, a reference to a list in which saving kernel variables, and two references to
save the execution time and the objective function value. It returns the list of all
variables not added in the kernel.

• saveVariableInfo saves the list of non-kernel variables into a file, in order to
avoid repeating the relaxation. This file is used on repeated runs of the same
instance, and for other Kernel Search versions that implements a different sorting
algorithm;

• createBuckets initializes the kernel with all corresponding variables and assigns
to each one the aging value 0, and creates all buckets by dividing the sorted
variable list into lists of size 10.000 (the chosen bucket size);

• createKernelProblem uses the existing functions to create all constraints of the
model, and adds to it all kernel variables;

• solveSubProblem solves a subproblem within the given timeout (30 minutes for
the kernel problem, 10 minutes for all other subproblems), returning the objective
function value and the execution time;

• createSubProblem adds all variables that belong to the upcoming bucket to the
model, and create the two specific subproblem constraints;

• updateKernel extracts information about the obtained solution (this function is
called only if a feasible solution is found) and, based on that, resets the aging
counters for variables appearing in the solution, increases the counter by 1 for
variables with value equal to 0, adds to the kernel bucket variables that appear in
the solution, removes from the kernel and from the model variables that reached
the aging limit, and removes from the model all bucket variables that do not
contribute to the solution;

• removeAllBucketVars removes all bucket variables from the model, this function
is called instead of updateKernel in case of non-feasible solutions, eventually
allowing to continue with the procedure (it is not the case of the current stop
condition);

• removeBucketConstraint removes the two subproblem specific constraints 1
and 2. They are always removed, and they will be replaced in the next iteration
with new constraints;

• saveToFile saves all results into different files, allowing to store data in organized
csv (Comma-Separated Values) tables.

4.4.4 Algorithm
The standard Kernel Search algorithm implemented is here provided, divided in its two
phases (expressed as pseudo-code that can be matched easily with functions defined in
§4.4.3).
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Parameters

• instanceName: the path to the specific instance file;

• maxDelay: indicates the maximum delay allowed, a negative number indicates a
minimization of delay problem, otherwise this value will be used for the specific
maximization of preferences constraint;

• problemParams: includes different parameters used for the creation of the prob-
lem, such as the unique max delay and the unique delay step (it is grouped here
to avoid having a list of parameters too long for functions);

• CplexVars: includes the CPLEX variables regarding the environment and the
problem;

• maps: includes the two maps indexToVar and varToIndex, initialized as empty;

• bucketSize: the size of each bucket. As discussed in §4.3.2, it has a value equal
to 10.000;

• aging: determines how many iterations unused variables remain in the kernel, it
has a value equal to 2;

• subProbTimeout: the timeout assigned to each subproblem (excluding the first
kernel subproblem), its value is 600 seconds, that corresponds to 10 minutes.

The initialization phase is defined as following:

begin
if a relaxation has already been executed then

variables , kernelVarNames = initFromRelax(instanceName ,
maxDelay)

else
variables , kernelVarNames = columnGen(instanceName , maxDelay ,

problemParams , maps)
save kernel variables into file
sortVariables(variables)
saveVariableInfo(instanceName , maxDelay , variables)

end �
The expansion phase is defined as following:

begin
kernel , buckets = createBuckets(variables , kernelVarNames ,

buckSize)
createKernelProblem(CplexVars , kernel , maxDelay , problemParams ,

maps)
bestSol = solveSubProblem(CplexVars , 1800) // 30 minutes ,

timeout for kernel problem
if bestSol == "unfeasible solution" then

bestSol = +∞
counter = 0
repeat

currentBucket = buckets[counter]
createSubProblem(CplexVars , bestSol , currentBucket , maps)
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newSol = solveSubProblem(CplexVars , subProbTimeout)
if newSol <= bestSol then

bestSol = newSol
updateKernel(CplexVars , kernel , currentBucket , maps , aging)

else
removeAllBucketVars(CplexVars , currentBucket)

removeBucketConstraint(CplexVars)
counter = counter + 1

until (stop condition)
saveToFile(instanceName , maxDelay , bestSol)

end �
4.5 Kernel Search with trajectory groups
The trajectory groups Kernel Search is a different version of the procedure, that uses
all functions of the standard algorithm defined previously, with the exception of the
sorting criterion, so it defines buckets differently from the canonical sorting of variables.
Variable ordering is defined in this way:

1. all trajectories are divided into groups, and each group contains trajectories that
refers to flights with the same pair "origin-destination" ;

2. inside every group, each trajectory is replaced by the list of variables that refers
to such trajectory: for example the trajectory 24 will be replaced by [y.2_24_0,
y.5_24_5, y.6_24_1, . . . ];

3. variables in each group are sorted internally by increasing reduced cost (the
same order used by the standard implementation, but applied to single groups
separately). Value is not considered because all variables involved in this stage
have a value equal to 0;

4. groups are sorted based on the average reduced cost of their first 6 elements (6 is
a number arbitrary fixed based on the average number of variables contained in
each group);

5. buckets are built one at the time using a round robin schema on groups: the first
variable is the best variable of the first group (that will be removed from the
group), the second one is the best variable of the second group, and so on. Once
the last group is reached, the procedure starts again from the first group, until
the bucket has been built;

6. buckets are built until there are variables available to be picked.

This order makes good flight plans for each "origin-destination" pair available in the
first buckets, differently from the standard implementation that could have good flight
plans regarding only few "origin-destination" pairs, because the number of such plans
can be similar to a complete bucket size. Instead, the proposed method guaantees
that more fligths, related to several differentiated "origin-destination" pairs, can be
potentially improved, even if the expected improvement per flight may be smaller.
Trajectory groups sorting has been implemented using the Python programming
language, because it shares many steps with the version of Kernel Search that involves
clustering (see §5.1), and the ordering inside each group of variables is implemented
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using the Python built-in function for list, list.sort(), applied to the list of variables,
in order to do so the class Variable (described in §4.4.2) has been implemented also
in Python, with the same exact attributes and methods. Communication with the
C++ program is made through files: the C++ part of the initialization phase provides
the variables file, the Python program reads it, performs the sorting, and saves the
new order on another file, that will be read by the C++ part of the expansion phase.

4.5.1 Functions

Since the entire implementation of the trajectory groups sorting is made with Python,
the only C++ function added is initFromGroups, it initializes the list of variables
using the Python output file (exactly like initFromRelax, but it opens a different file).
The following functions has been realized in Python for the trajectory groups sorting
implementation:

• getVariables reads the variables file that corresponds to the current instance
and type of problem (minimization of delay or maximization of preferences),
saving all variables into a list of Variable;

• commonTrajectories divides all trajectories into groups based on common flights:
if two trajectories are used by the same flights, then they share the same "origin-
destination" pair;

• connectTrajToVars creates a dictionary that maps each trajectory to the list of
variables that use it (that have such trajectory as their second index);

• convertToVars transforms a list of trajectories into a list of variables, by substi-
tuting each trajectory with the list of variables that use it;

• sortGroups performs variable sorting within each group;

• prioritizeGroups sorts all groups, putting in first position groups with the best
(lowest) average of reduced cost, computed on the first 6 variables of each group;

• createBuckets performs the round robin procedure to create a list of list of
variable names, each list is a bucket;

• saveVariables saves the list of buckets in a file.

4.5.2 Algorithm

The trajectory groups Kernel Search algorithm implemented is here provided, divided
in its two phases (expressed as pseudo-code that can be matched easily with functions
defined in §4.5.1).

Parameters

• instanceName: the path to the specific instance file;

• maxDelay: indicates the maximum delay allowed, a negative number indicates a
minimization of delay problem, otherwise this value will be used for the specific
maximization of preferences constraint;
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• problemParams: includes different parameters used for the creation of the prob-
lem, such as the unique max delay and the unique delay step (it is grouped here
to avoid having a list of parameters too long for functions);

• CplexVars: includes the CPLEX variables regarding the environment and the
problem;

• maps: includes the two maps indexToVar and varToIndex, initialized as empty;

• bucketSize: the size of each bucket, it has a value equal to 10.000;

• aging: determines how many iterations unused variables remain in the kernel, it
has a value equal to 2;

• subProbTimeout: the timeout assigned to each subproblem (excluding the first
kernel subproblem), its value is 600 seconds, that corresponds to 10 minutes.

The initialization phase is identical to the standard implementation (see §4.4.4), so its
pseudo-code is omitted.
After this phase, the execution flow passes control to a Python program, which performs
variable ordering (the outer repeat-until loop is a detail about the implementation of
createBuckets):

begin
trajGroups = commonTrajectories(instanceName)
variables = getVariables(instanceName , maxDelay)
trajToVar = connectTrajToVars(variables , instanceName)
varGroups = convertToVars(trajGroups , trajToVar)
varGroups = sortGroups(varGroups)
varGroups = prioritizeGroups(varGroups)

// Start of createBuckets pseudo -code
allBuckets = ∅
repeat

currentGroup = 0, insertedVars = 0
currentBucket = ∅
repeat

if size(varGroups[currentGroup]) != 0 then
// pop() removes the first element of the list returning

it
currentBucket = currentBucket ∪

varGroups[currentGroup ].pop()
insertedVars = insertedVars + 1
currentGroup = next group index (the first one if this is

the last)
else // empty groups are removed

remove varGroups[currentGroup]
until (insertedVars == bucketSize or varGroups == ∅)
allBuckets = allBuckets ∪ currentBucket

until (varGroups == ∅)
// End of createBuckets pseudo -code

saveVariables(allBuckets , instanceName , maxDelay)
end �
The expansion phase is defined as follows (differences with the standard implementation
are highlighted in red):
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begin
kernelVarNames = names contained in the kernel file
variables = initFromGroups(instanceName, maxDelay)
kernel , buckets = createBuckets(variables , kernelVarNames ,

buckSize)
createKernelProblem(CplexVars , kernel , maxDelay , problemParams ,

maps)
bestSol = solveSubProblem(CplexVars , 1800) // 30 minutes ,

timeout for kernel problem
if bestSol == "unfeasible solution" then

bestSol = +∞
counter = 0
repeat

currentBucket = buckets[counter]
createSubProblem(CplexVars , bestSol , currentBucket , maps)
newSol = solveSubProblem(CplexVars , subProbTimeout)
if newSol <= bestSol then

bestSol = newSol
updateKernel(CplexVars , kernel , currentBucket , maps , aging)

else
removeAllBucketVars(CplexVars , currentBucket)
removeBucketConstraint(CplexVars)
counter = counter + 1

until (stop condition)
saveToFile(instanceName , maxDelay , bestSol)

end �





Chapter 5

Kernel Search using Machine
Learning

In this chapter, the proposed integration of Machine Learning techniques to boost the
Kernel Search procedure is described in detail, with focus on both theoretical idea and
practical implementation.

5.1 Integrating clustering into Kernel Search

Clustering is applied to objects with the goal of dividing them into different groups,
where each group contains similar objects. Different types of clustering are already
implemented and executed on the procedure that generates instance files for the ATFM
problem proposed and described in [10], [12] and [18]. KMeans (see section §2.4.1)
is chosen because it is simple, and it perfectly fits the type of data involved in the
procedure.

5.1.1 Idea and application

The ideal data type for the KMeans algorithm is formed by multi-dimensional vectors,
because clustering labels are assigned based on the distance between centroid vectors
and each object vector, recomputing centroids after each iteration, until they stabilize.
The idea is to use clustering to group similar trajectories together, and to create buckets
using trajectories from different groups, but in the current state trajectories are simply
an integer number, representing their corresponding identifiers. The procedure is im-
plemented using the Python programming language, using the library scikit-learn,
available at [23], that provides all procedures and structures to operate with Machine
Learning techniques.
A trajectory is described with a list of triplets (sectorID, entryTime, exitTime)
that indicates crossed sectors, with the number of time slots giving information about
both geographical and temporal position of such trajectory. Trajectories are trans-
formed into matrices of numSectors rows and totalTimeSlots columns (numSectors
is the number of overall sectors used by the instance, totalTimeSlots is the total
number of time slots considered for the current instance), where:

43



44 CHAPTER 5. KERNEL SEARCH USING MACHINE LEARNING

cell(s, t) =

{︄
1 if the trajectory is inside sector s at time slot t
0 otherwise

This is a sparse matrix, where the number of non-zero values is equal to the number of
time slots used by the current trajectory, that is sensibly lower than the total number
of time slots available. It is important mentioning that all trajectory descriptions are
normalized on time, such that the starting time slot is 0 for every trajectory, in order
not to have duplicates just because the starting times are different.
The existing clustering has not been executed globally for all trajectories, but multiple
clusterings are run on each "origin-destination" group. The trajectory groups imple-
mentation (§4.5) gives exactly the same subdivision, but the number of trajectories
involved is much lower, because the previous clustering had the goal of grouping all
similar trajectories into a single one, represented by the centroid of each cluster, that
are the trajectories used by instances; this fact forces to choose a different number
of clusters to obtain a good separation: if the number is greater than the amount of
trajectories involved, each trajectory will have its own cluster; on the other hand, a
too small number will group different trajectories into the same label. The number

of clusters established is nClusters = ⌊
√︂

number of trajectories
2 ⌋, which is the value

suggested in [18] and [10], but note that the actual number of clusters will be different
because the number of clusters is a parameter that depends on the number of trajecto-
ries. Moreover, the KMeans parameters used are the default parameters for KMeans
in the scikit-learn library.
Clustering is executed once per instance, and the results are saved in a JSON file, in
order to avoid repeating it for repeated executions of the same instance, or for execution
of a different solution method, even because the clustering is independent from the
type of the problem (minimization of delay or maximization of preferences). After the
clustering has been performed for each "origin-destination" group, trajectories will be
identified by:

• identifier : the number of the trajectory as in the instance file;

• group: the identifier of the "origin-destination" group in which the trajectory is
included;

• label : the specific cluster in which the trajectory is included.

Labels have value from 0 to nClusters[group], so the group information is necessary
to distinguish between two trajectories that belongs to different groups, but with the
same label.
Once the clustering procedure terminates, trajectories are replaced by corresponding
variables in the model, using the same function of the trajectory groups implementation
(connectTrajToVars), but keeping label information that will be copied on each
variable; then groups are sorted internally by increasing reduced cost, and externally
by the average reduced cost on the first 6 elements. Finally, the round robin procedure
is started, with a modification: if a variable with the same "origin-destination" and
label is already inserted in the current bucket, then this variable is skipped, and will be
inserted in the next bucket (with the exception given by the scenario where no other
variable can be inserted, then this check is ignored, which specifically occurs for the
last buckets).
Notice the similarity with the trajectory groups implementation: in fact, the groups
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Figure 5.1: Difference between trajectory groups (left) and clustering (right) bucket creation.

identified by the trajectory groups procedure (§4.5) can be viewed as a particular case
of the clustering implementation where each trajectory has a different cluster label, so
every trajectory is different from all others, and the check does not prevent any variable
from being picked. This difference is illustrated in Figure 5.1 that shows the creation
of a bucket from the list of variables sorted according to the "origin-destination" group
and to their respective reduced cost: in green picked variables, in red variables that
are discarded because of the label check.
Notice that in both cases variables inserted in the first round are identical, because

there are not other variables of the same group already in the bucket, so the check
returns true. On the other hand, the check starts filtering variables after the first
iteration, and discards variables that share a similar trajectory.

5.1.2 Classes and auxiliary elements

In order to manage the extra information of labels, the class ClusterVarResult has
been implemented, it has the following attributes:

• originDest: the identifier of the corresponding "origin-destination" group;

• variable: the current variable, of type Variable (defined in §4.4.2);

• label: integer representing the cluster label of the trajectory used by the variable.
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The comparison operators have been implemented in order to consider only the
variable attribute, so to have compatibility with the sorting algorithms already
implemented; this specific implementation completely adapt ClusterVarResult to
existing functions, that now will be called on list of ClusterVarResult instead of list
Variable, so no other auxiliary element is required.

5.1.3 Functions
The following functions have been defined for the clustering implementation:

• getTrajectories returns a list of matrices containing trajectory descriptions,
each matrix is defined as in §5.1.1;

• executeClustering performs KMeans clustering on the list of trajectory de-
scriptions for each distinct "origin-destination" group;

• saveClustering saves the lists of clustered trajectories into a file (each list
represents a distinct "origin-destination" group);

• loadClustering reads the file of the existing clustering result and creates the
list of trajectories, divided by "origin-destination", with label information;

• createClusterBuckets is identical to the definition of createBuckets for the
trajectory group implementation, with the addition of the filter to check for the
same "origin-destination" group and label in the current bucket (and the escape
rule to avoid non-termination).

Because of the similarity with the trajectory groups method and the clustering imple-
mentation (in particular with the consideration of trajectory groups as a special case
of clustering), the following functions have simply been renamed:

• the C++ function initFromGroups has been renamed to initFromCluster;

• the Python function sortGroups has been renamed to sortClusters.

5.1.4 Algorithm
The clustering Kernel Search algorithm implemented is here provided, divided in its
two phases (expressed as pseudo-code that can be matched easily with functions defined
in §5.1.3).

Parameters

• instanceName: the path to the specific instance file;

• maxDelay: indicates the maximum delay allowed, a negative number indicates a
minimization of delay problem, otherwise this value will be used for the specific
maximization of preferences constraint;

• problemParams: includes different parameters used for the creation of the prob-
lem, such as the unique max delay and the unique delay step (it isgrouped here
to avoid having a list of parameters too long for functions);

• CplexVars: includes the CPLEX variables regarding the environment and the
problem;
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• maps: includes the two maps indexToVar and varToIndex, initialized as empty;

• bucketSize: the size of each bucket, it has a value equal to 10.000;

• aging: determines how many iterations unused variables remain in the kernel, it
has a value equal to 2;

• subProbTimeout: the timeout assigned to each subproblem (excluding the first
kernel subproblem), its value is 600 seconds, that corresponds to 10 minutes.

The initialization phase is identical to the standard implementation (see §4.4.4), so its
pseudo-code is omitted.
After this phase, the execution flow passes control to a Python program, which performs
variable ordering (the outer repeat-until loop is a detail about the implementation of
createClusterBuckets, in red the differences with the trajectory groups implementa-
tion are highlighted):

begin
if clustering has been already performed then

trajClusters = loadClustering(instanceName)
else

trajGroups = commonTrajectories(instanceName)
trajDescriptions = getTrajectories(instanceName)
trajClusters = executeClustering(trajGroups, trajDescriptions)
saveClustering(trajClusters)

variables = getVariables(instanceName , maxDelay)
trajToVar = connectTrajToVars(variables , instanceName)
varGroups = convertToVars(trajClusters , trajToVar)
varGroups = sortClusters(varGroups)
varGroups = prioritizeGroups(varGroups)

// Start of createClusterBuckets pseudo -code
allBuckets = ∅
repeat

currentGroup = 0, insertedVars = 0
currentBucket = ∅
repeat

if size(varGroups[currentGroup]) != 0 then
// clusterCheck returns true if and only if a similar

variable has not been inserted yet
// escapeRule is set to true if and only if for one

entire cycle I didn ’t insert any variable
if clusterCheck(varGroups[currentGroup]) or escapeRule then

// pop() removes the first element of the list
returning it

currentBucket = currentBucket ∪
varGroups[currentGroup ].pop()

insertedVars = insertedVars + 1
currentGroup = next group index (the first one if this is

the last)
else // empty groups are removed

remove varGroups[currentGroup]
until (insertedVars == bucketSize or varGroups == ∅)
allBuckets = allBuckets ∪ currentBucket

until (varGroups == ∅)
// End of createClusterBuckets pseudo -code
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saveVariables(allBuckets , instanceName , maxDelay)
end �
The expansion phase is identical to the trajectory groups implementation (see §4.5.2),
so its pseudo-code is omitted.

5.2 Integration of classification techniques into the
Kernel Search

The classification features implemented by the decision trees described in §3.4.2 have
been reused in the Kernel Search procedure, without any modification, with the goal
of using them as an additional tool to refine buckets dynamically, adjusting their
composition based on the current solution status.

5.2.1 Idea and application
As a byproduct of classification, decision trees provide, for each variable, a measure of
the probability of being a good insertion in the current solution. Buckets are composed
by 10.000 variables each, where the first buckets contain the best variables, even if
only few of such variables will be actually part of a better solution. The decision tree
acts as a filter that keeps only "the best of all good variables", by fixing a probability
threshold, and removing all variables whose probability of being good is below such
limit.
Decision trees for both preference maximization and delay minimization have already
been implemented in [12], using the C++ language, as two different functions written as
a series of if-else statements. This structure constitutes exactly the direct translation
of a decision tree, whose main characteristic is to be easily understandable. Since
these functions only provides a value used by the filter, they can be applied to any
Kernel Search implementation, by reducing the bucket size before the creation of the
corresponding subproblem.

5.2.2 Classes and auxiliary elements
The decision tree filter requires information about the current solution, in order to
obtain the required features for each variable. Functions that provide such values have
already been implemented in the class Data, available from [12] (only important parts
for the Kernel Search implementation will be mentioned). Class Data has the following
attributes:

• one attribute for each characteristic of the problem parameters (list of preferences,
max delay, instance name, number of flights etc.);

• capacity indicates the capacity of each sector over time;

• all_vars contains all possible variables of the model;

• current_solution indicates variables with positive value in the current solution;

• prev_solution indicates variables with positive value in the previous solution;

• current_capacity indicates sector capacities, computed taking into account
flight plans currently selected by the solution.



5.2. INTEGRATION OF CLASSIFICATION TECHNIQUES INTO THE KERNEL SEARCH49

Class Data has the following methods:

• var_at returns the variable information given the variable characteristic (flight,
trajectory, delay);

• initSolEmpty creates an empty solution by leaving all flights unplanned (it
selects all z variables);

• updateSolFromResult reads the current solution to update internal attributes
coherently;

• updateStats updates current capacities of all sectors;

• congestionRate returns the congestion rate of sectors affected by the insertion
of the flight plan given as parameter;

• routeComparison returns the percentage of similarity between two flight plans
given as parameters.

Most of Data functions work using flight plans, that are implemented in the class
Route, available from [18], [10] and [12] (only important parts for the Kernel Search
implementation will be mentioned). Class Route has the following attributes:

• flight is the identifier of the flight;

• plan is the identifier of the trajectory;

• delay is the number of delay time slots assigned;

• occupations indicates, as a list of pairs (sector-time), all sectors affected by
the flight plan.

This class only has constructor methods. Functions working with Route objects have
been implemented in the Data class already described.
In order to use the just listed methods, the following adjustments are required in the
Kernel Search procedure:

• an object of type Data, containing information about all possible variables,
is built before the creation of the kernel problem, and it is initialized using
initSolEmpty;

• an additional map, flightToVar, has been added, it connects each flight identi-
fiers to the variable currently selected in the model; in order to make this tracking
effective, this map is an extra parameter for the function updateKernel;

• the method updateSolFromResult has been changed, now it requires only the
flightToVar map to update the current solution status, other attributes of the
class Data, such as the index of each variable inside the model, are not modified
because they are not used in the Kernel Search procedure (indexes are already
tracked with the indexToVar and varToIndex maps).
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5.2.3 Functions

The following functions have been defined for the decision tree implementation:

• getTreeProb returns the probability of a variable begin a good insertion into
the current solution by calling the existing decision tree functions, it requires the
list of features and the type of problem (to choose the right tree);

• buildFeatures creates the list of features given the variable name and the
information about current solution (Data object);

• getAllVarProbs performs the decision tree classification for all bucket variables
given as parameter;

• pickDtFromBucket calls previous functions to build features and compute prob-
abilities, and removes from the bucket all variables that are below a fixed limit.

5.2.4 Algorithm

As said above, the decision tree filter can be applied to any implementation before the
creation of bucket subproblems. Below, the focus on such part of the expansion phase
is given, modifications from previous implementations are highlighted in red.

Parameters

• instanceName: the path to the specific instance file;

• maxDelay: indicates the maximum delay allowed, a negative number indicates a
minimization of delay problem, otherwise this value will be used for the specific
maximization of preferences constraint;

• problemParams: include different parameters used for the creation of the problem,
such as the unique max delay and the unique delay step (it isgrouped here to
avoid having a list of parameters too long for functions);

• CplexVars: includes the CPLEX variables regarding the environment and the
problem;

• maps: includes the two maps indexToVar and varToIndex, initialized as empty.
Additionally, it includes the new map flightToVar required for the decision tree
procedure;

• bucketSize: the size of each bucket, it has a value equal to 10.000;

• aging: determines how many iterations unused variables remain in the kernel, it
has a value equal to 2;

• subProbTimeout: the timeout assigned to each subproblem (excluding the first
kernel subproblem), its value is 600 seconds, that corresponds to 10 minutes;

• data: information about the current solution, it is the object of type Data.
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begin
// Expansion phase

...
repeat

currentBucket = buckets[counter]
currentBucket = pickDtFromBucket(currentBucket, maxDelay, data)
createSubProblem(CplexVars , bestSol , currentBucket , maps)
newSol = solveSubProblem(CplexVars , subProbTimeout)
...

until (stop condition)
saveToFile(instanceName , maxDelay , bestSol)

end �





Chapter 6

Computational results

In this chapter, the results of the execution of Kernel Search algorithm, in all the variants
proposed in this thesis, are presented, and compared to the results obtained by the dynamic
column insertion relaxation with rounding algorithm presented in literature.

6.1 Experiment setup
All Kernel Search executions have been run on the machines of Servizio di Calcolo,
Torre Archimede, Dipartimento di Matematica (Università degli Studi di Padova),
which have the following specifications:

• operating system: Ubuntu 18.04.6 LTS;

• kernel: Linux 4.15.0-194-generic;

• CPU: Intel(R) Core(TM) i7-8700 3.20GHz;

• RAM: 31 GB;

• IBM CPLEX Optimization Studio: version 12.8.

The use of CPLEX version 12.8, instead of the newer version adopted in [10], provides
higher computational times for the column insertion procedure, leading us to set a
timeout of 2 hours for this procedure.
Before presenting results, it is important to define the notation used to present data:

• Date refers to the date of the corresponding instance. We consider the same
instances used in [18];

• Round refers to the rounding algorithm used to obtain an integer solution,
described in [18] and mentioned in §3.4.1;

• KS means "Kernel Search". It refers to the implementation of the section where
the acronym appears (for example, it means "Standard Kernel Search" in the
section devoted to the standard implementation);

• DT x% means "Decision tree filter with threshold x%", so, for example, "Clus-
tering DT 50%" refers to the clustering implementation with the decision tree
probability threshold fixed to 50% (excludes from each bucket all variables having
a probability lower than 50%);
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Date Type Kernel % Gap (30 min) Kernel % Gap (60 min)
27 Aug Delay 14,94 1,72
28 Aug Delay 0,65 0,46
27 Aug Pref 1,58 0,41
28 Aug Pref 0,2 0,16

Table 6.1: Comparison with different timeouts on the kernel subproblem for critical instances.

• % Gap is the percentage ratio of the difference with respect to the dynamic
column insertion relaxation value;

• times are expressed as number of seconds elapsed from the beginning of the
algorithm to the end, it is not the time to find the best solution (recall that an
equal solution is feasible and does not stop the procedure). A more accurate
performance over time analysis is performed in 6.6. More specifically, rounding
algorithm times do not consider the time spent on the dynamic column insertion
relaxation, and Kernel Search times start with the expansion phase: relaxation
and sorting are not considered, but in each specific section the time spent on
sorting will be reported.

Furthermore, the following consideration must be taken into account: the two instances
related to days 27th and 28th August will be referred to as "critical instances", because
there are known issues with values and times of such instances (also with other methods,
not only Kernel Search); in many tables in this chapter, these instances will have values
much different from values of other instances. The easiest fix to this issue would be
to assign a higher timeout to such problems. Changing the algorithm parameters for
specific instances is not a good practice, but it was made to show that with additional
time the procedures provide good results even in this cases. As displayed by Table
6.1, a timeout of 1 hour brings significant improvement on the solution of the kernel
problem: this is mostly noticeable on the minimization of delay of 27th August instance,
in fact, the gap difference is higher than 10%. For other instances presented in Table
6.1, the improvement is smaller, but it is still noticeable within the gap approximation
at 2 decimals.

6.2 Filtering effect of the decision tree
In this section, we provide generic results about the effectiveness of the decision trees
in filtering hopefully good variables. Statistics consolidate different implementations of
the kernel search, and we remark that we will not provide, in this section, information
about the overall impact of filters on the quality of the solution obtained, nor on the
efficiency of the kernel search implementation, with or without such filters, which will
be discussed in §6.4.1 and §6.5.1.
Consolidated statistics are here presented with reference to different thresholds to the
probability of a variable being good (used to select or not a variable in the bucket, see
§5.2):

• all variables with probability higher than 50% are selected;

• all variables with probability higher than 70% are selected;

• all variables with probability higher than 20% are selected.
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Date 0-10% 10-20% 20-30% 30-40% 40-50%
8 July 0 569 2250 0 0
26 Aug 0 521 2232 0 0
27 Aug 0 532 2324 0 0
28 Aug 0 503 2228 0 0
29 Aug 0 575 2281 0 0
30 Aug 0 538 2302 0 0
31 Aug 0 544 2318 0 0
1 Sept 0 542 2381 0 0
2 Sept 0 502 2273 0 0
9 Sept 0 520 2353 0 0

Table 6.2: Decision tree probability distribution for the minimization of delay on the first
bucket obtained with clustering sort (from 0 to 50%).

Date 50-60% 60-70% 70-80% 80-90% 90-100%
8 July 31 0 2053 4577 0
26 Aug 37 0 2205 4496 0
27 Aug 31 0 2227 4478 0
28 Aug 37 0 2273 4472 0
29 Aug 37 0 2126 4471 0
30 Aug 40 0 2150 4487 0
31 Aug 36 0 2208 4426 0
1 Sept 30 0 2175 4402 0
2 Sept 43 0 2154 4519 0
9 Sept 34 0 2142 4476 0

Table 6.3: Decision tree probability distribution for the minimization of delay on the first
bucket obtained with clustering sort (from 50 to 100%).

A fixed threshold has not been established, because there was not much time left to
test execution on other values, also this filters were tested only on the trajectory groups
and clustering implementations (standard implementation was left out); the probability
distribution for variables in the first bucket are shown in Table ??, 6.3, 6.4 and 6.5, as
well as Figure 6.1 : ranges of probabilities are displayed, and each interval is read as
(start, end], for example, the range 10-20% includes all variables whose probability is
strictly greater than 10% and lower than (or equal to) 20%.
The time spent on filtering buckets is negligible (a total of few seconds for a complete
execution with more than 400 buckets), so it is not considered. The distribution of
probability computed by decision tree on the first bucket obtained is illustrated only
for buckets obtained with the clustering sorting (trajectory groups sorting have an
average difference of a couple of units, that is negligible when considering a total of
10.000, so they are not reported), using as current solution the result of the kernel
problem: Tables 6.2, 6.3, 6.4, 6.5 show the values on each instance, and the diagram in
Figure 6.1 displays the average for the minimization of delay. For the minimization
of delay (see Tables 6.2 and 6.3), most filters keep more than 60% of the variables.
Removing variables classified with a low probability is the goal of this implementation,
and it shows that the sorting actually puts many good variables in the first bucket:
by removing bad variables, subproblems will require less time to be solved and the
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Figure 6.1: Distribution of decision tree probabilities for minimization of delay on the first
bucket built with clustering based sorting.

application of filters on this problem is expected to maintain the same results while
reducing the execution time, or to even improve results because the new amount of
variables avoid reaching the time limit for subproblems. If the result is worse than the
one obtained without applying any filter, then that means bad variables discarded by
the decision tree were actually good for the current solution, and so the tree didn’t
discriminate correctly variable probabilities, or the filter limit was set too high. For
the maximization of preferences (see Tables 6.4 and 6.5), most filters keep only a
couple of hundreds variables; for this reason, the diagram that displays the average is
omitted. Less variables means less time to solve the subproblem, but a little amount
of variables, even in the best case scenario, can bring only minimal improvement, so
many iterations will be needed to notice a considerable difference in the objective
function value, assuming the procedure didn’t stopped early because it didn’t improve;
if no improvement is made with respect to the unfiltered version of the method, it
means that variables classified with a low probability value actually would have been
picked for the subproblem solution. If, instead, the application of filters brings better
results, then it means the majority of variables in the first buckets is useless, and the
sorting criterion does not put effectively the best variables in the first buckets for the
maximization of preferences.
Details about the filtering results are found on trajectory groups (§6.4.1) and clustering
(§6.5.1) sections.

6.3 Standard Kernel Search

Below, the results for the standard implementation (described in §4.4) are shown,
in comparison with the results obtained with the rounding algorithm (described in
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Date 0-10% 10-20% 20-30% 30-40% 40-50%
8 July 9851 15 0 27 7
26 Aug 9869 18 0 17 4
27 Aug 9847 18 0 22 9
28 Aug 9839 24 0 18 4
29 Aug 9841 23 0 25 5
30 Aug 9862 16 0 18 3
31 Aug 9858 21 0 13 5
1 Sept 9850 25 0 11 6
2 Sept 9861 18 0 23 5
9 Sept 9860 20 0 18 6

Table 6.4: Decision tree probability distribution for the maximization of preferences on the
first bucket obtained with clustering sort (from 0 to 50%).

Date 50-60% 60-70% 70-80% 80-90% 90-100%
8 July 30 1 27 7 0
26 Aug 28 1 27 6 0
27 Aug 27 1 27 10 0
28 Aug 37 0 24 6 0
29 Aug 30 0 27 10 0
30 Aug 35 0 22 5 0
31 Aug 31 2 22 6 0
1 Sept 40 0 30 1 0
2 Sept 28 0 23 4 0
9 Sept 25 0 20 8 0

Table 6.5: Decision tree probability distribution for the maximization of preferences on the
first bucket obtained with clustering sort (from 50 to 100%).
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Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 7 0,24 86 0,01
26 Aug 11 0,05 405 0,02
27 Aug 350 0,97 3600 9,64
28 Aug 66 0,34 3629 0,64
29 Aug 13 0,25 2019 0,02
30 Aug 25 0,22 3000 0,04
31 Aug 16 0,5 3622 0,05
1 Sept 12 0,07 2258 0,05
2 Sept 4 0,13 53 0,01
9 Sept 12 0,86 74 0,01

Table 6.6: Comparison between rounding algorithm and standard Kernel Search for the
minimization of delay.

§3.4.1). We recall that no filtering technique based on decision tree is considered for
this implementation. The displayed time does not take into account the cost of sorting
all variables, because it starts when the first subproblem is created: such time has
a value of a couple of seconds. The standard implementation for the minimization
of delay already brings good results with respect to the relaxed objective function
value. In fact, Table 6.6 shows that the gap is below 0, 1% for all instances, with the
exception of critical ones, especially 27th August, but, as illustrated in Table 6.1, just
a higher timeout of the kernel problem will translate into an objective function value
close to the value found by the rounding algorithm. The maximum time spent by
this Kernel Search implementation is one hour, which is below the timeout chosen as
stop condition: it means the algorithm did not find an improving solution in a certain
iteration, and so it terminated.
As an observation, on some instances the procedure went really fast, taking about one
minute, but even in such cases the algorithm is slower than the rounding algorithm,
which was expected: in fact, the goal of the Kernel Search implementations is to find
better results by spending more time. Where the gap is very small (0,01), the solution
is almost optimal, in same cases it is optimal, for example the relaxation value for
the 8th July instance is 5771, 14, while the Kernel Search objective function value is
5772, which is optimal because all objective function coefficients are integer, this is
the best value obtainable by using only integer variables. Also for the maximization
of preferences (see Table 6.7), the standard implementation provides good results,
in particular only the first critical instance presents a worse value; this version of
the problem is solved with a larger amount of time (on average), because all kernel
subproblems, with the exception of the instance relative to the 2nd of September, go
on timeout, and so does the majority of the first bucket subproblems; this is due to
the nature of the problem, because there is the maximization of the objective function
value, but it has an additional constraint on the total delay, which is set to be close to
the minimization of delay value, so much more time is spent to solve this problem.

6.4 Trajectory groups Kernel Search
Below, the results for the trajectory groups implementation (described in §4.5) are
shown, in comparison with the results obtained with the rounding algorithm (described
in §3.4.1). The displayed time does not take into account the cost of the sorting
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Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 48 0,09 2400 0,05
26 Aug 20 0,53 3001 0,04
27 Aug 75 0,96 2400 1,55
28 Aug 31 0,82 2400 0,23
29 Aug 48 0,04 2401 0,03
30 Aug 54 0,15 2400 0,08
31 Aug 22 0,68 3001 0,03
1 Sept 21 0,58 4166 0,05
2 Sept 23 0,56 1106 0,02
9 Sept 31 0,07 2249 0,02

Table 6.7: Comparison between rounding algorithm and standard Kernel Search for the
maximization of preferences.

Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 7 0,24 717 0,01
26 Aug 11 0,05 736 0,02
27 Aug 350 0,97 3685 0,80
28 Aug 66 0,34 3655 0,36
29 Aug 13 0,25 1914 0,00
30 Aug 25 0,22 2397 0,02
31 Aug 16 0,5 3502 0,02
1 Sept 12 0,07 2712 0,05
2 Sept 4 0,13 638 0,01
9 Sept 12 0,86 531 0,01

Table 6.8: Comparison between rounding algorithm and trajectory groups Kernel Search
for the minimization of delay.

algorithm, because it starts when the first subproblem is created: such time has an
average value of 40 seconds. This implementation takes more time than the standard
one, as displayed in Table 6.8: more specifically the time difference is remarkable in
instances where the standard implementation terminates in less than 2 minutes, other
instances on average take a similar amount of time.
Compared to standard Kernel Search, trajectory groups provides better results: in
particular, also critical instances values are close to the rounding algorithm results
(without the timeout change), and for 7 out of 10 instances the gap with the relaxation
value is below 0,02%; in this cases the result could be the optimal integer solution, or a
solution with a difference of literally one or two units. On maximization of preferences
(see Table 6.9), instead, trajectory groups provides the same results as the standard
implementation (considering gap approximation at 2 decimals), with the exception of
the second critical instance where the gap is a little better, but it takes less time to
terminate: on some instances the partial sorting done by the trajectory groups method
puts all good variables in the first bucket, where for the standard implementation such
variables would be divided in different buckets, thus requiring more iterations (i.e more
time) to find the same solution.
Overall, this method is better in any way than the standard one: it provides better
results, while times are better or equal, with the exception of very low times on
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Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 48 0,09 2400 0,05
26 Aug 20 0,53 2400 0,04
27 Aug 75 0,96 2400 1,55
28 Aug 31 0,82 2400 0,20
29 Aug 48 0,04 2401 0,03
30 Aug 54 0,15 2400 0,08
31 Aug 22 0,68 2400 0,03
1 Sept 21 0,58 2400 0,05
2 Sept 23 0,56 1108 0,02
9 Sept 31 0,07 2318 0,02

Table 6.9: Comparison between rounding algorithm and trajectory groups Kernel Search
for the maximization of preferences.

minimization of delay that in this methods transforms from a couple of minutes into
around 10 minutes, which is still way below the timeout limit.

6.4.1 Integration with the decision tree filter

The three different decision tree filters described in §6.2 have been applied to the
trajectory groups implementation. Instead of providing a direct comparison with
the rounding algorithm, such executions are compared to the unfiltered version of
trajectory groups. For the minimization of delay, the gap (displayed in Figure 6.2)
is the same when the filter is applied, with the exception of critical instances, so, by
looking at just the results, no improvement is made on this version of the problem, but,
considering performances, the method returns the same result in less time. Looking
more specifically at execution times, illustrated in Figure 6.3, the application of any
filter translates into a reduced Kernel Search time, without impacting the result: even
just removing variables below 20% probability of being good, which are on average 500
for the first iteration, is enough to reduce the total time by a considerable amount of
seconds; this means the decision tree worked as intended: it removed bad variables
to speed up execution times, without affecting the final result. Variables with a bad
classification may be used to just perform swaps in the solution, without improving it,
so without filter the method was continuing to operate this variable swaps to satisfty
the specific bucket constraints, without effectively improving the solution; without these
variables, swaps could not be performed, the subproblem does not find an equivalent
feasible solution, and so the overall procedure terminates. For the maximization
of preferences, filters improve the results, but by a minimal amount, in the order of
0, 005%, also differences between individual filters do not clearly identify which filter is
better, as shown in Figure 6.4.
The trend observed in minimization of delay is inverted for the maximization of
preferences, filters lead to greater execution times (see Figure 6.5), because few variables
are picked (recall that on average 9.800 out of 10.000 bucket variables have a probability
below 10%), resulting in much faster subproblems: with this little amount of new
variables inserted, the solution of each subproblem (especially the firsts) is found
without reaching the timeout limit, so the procedure can continue with a more refined
bound for many additional iterations. This also confirms the hypothesis about the
sorting applied on the maximization of preferences: improvements are made even after
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Figure 6.2: % gap comparison of trajectory groups method with different filters (minimiza-
tion of delay).

Figure 6.3: Time comparison of trajectory groups method with different filters (minimization
of delay).



62 CHAPTER 6. COMPUTATIONAL RESULTS

Figure 6.4: % gap comparison of trajectory groups method with different filters (maximiza-
tion of preferences).

Figure 6.5: Time comparison of trajectory groups method with different filters (maximization
of preferences).
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Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 7 0,24 745 0,01
26 Aug 11 0,05 745 0,02
27 Aug 350 0,97 3718 0,72
28 Aug 66 0,34 3678 0,36
29 Aug 13 0,25 2497 0,02
30 Aug 25 0,22 2385 0,02
31 Aug 16 0,5 3000 0,02
1 Sept 12 0,07 2491 0,05
2 Sept 4 0,13 613 0,01
9 Sept 12 0,86 529 0,01

Table 6.10: Comparison between rounding algorithm and clustering Kernel Search for the
minimization of delay.

many iterations, meaning the decision tree discriminates correctly variables. The issue
is that the first buckets mostly contains bad variables, because improvements happen
also in the last buckets that should not contain good variables, according to the sorting
criterion, that clearly does not identify the correct set of variables to build the first
buckets, even if the first iterations bring the biggest improvements (as shown in the
performance analysis presented in §6.6).

6.5 Kernel Search with clustering

Below, the results for the clustering implementation (described in §5.1) are shown,
in comparison with the results obtained with the rounding algorithm (described in
§3.4.1). The displayed time does not take into account the cost of the sorting algorithm,
because it starts when the first subproblem is created: such time has an average value
of 220 seconds (less than 4 minutes).
In addition to the sorting time, the first time the instance is run the clustering must
be performed, this operation adds on average extra 20 minutes (18-19 minutes for all
instances, with the exception of critical instances that take 25 minutes) to the full
procedure. As shown in Table 6.10, the minimization of delay, on average, requires the
same amount of time as the trajectory groups implementation, also solutions found are
identical, with the exception of 29th August instance, which takes more time and stops
with a worse result, while for the 28th August instance it performs slightly better. For
the maximization of preferences, results obtained are comparable to the ones obtained
through the trajectory groups implementation, as displayed in table 6.11. Also the
time spent on execution is the same, with a difference of some seconds that can be
appointed to the specific machine. The two sorting algorithms (trajectory groups and
cluster based) produce different buckets, yet the obtained result is the same, the final
solution simply has a different set of selected variables, or the gap in the objective
function value is so little that the approximation at 2 decimal does not express such
difference.
Overall the clustering implementation is not to be considered the best method, because
it provides almost the same results as the trajectory groups implementation, but it
has additional 20 minutes of clustering for each unique instance, and the sorting takes
also more time than the sort on trajectory groups.
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Date Round Time (s) Round % Gap KS Time (s) KS % Gap
8 July 48 0,09 2400 0,05
26 Aug 20 0,53 2401 0,04
27 Aug 75 0,96 2400 1,58
28 Aug 31 0,82 2400 0,20
29 Aug 48 0,04 2400 0,03
30 Aug 54 0,15 2401 0,08
31 Aug 22 0,68 2401 0,03
1 Sept 21 0,58 2400 0,05
2 Sept 23 0,56 1107 0,02
9 Sept 31 0,07 2296 0,02

Table 6.11: Comparison between rounding algorithm and clustering Kernel Search for the
maximization of preferences.

6.5.1 Integration with the decision tree filter
The three different decision tree filters described in §6.2 have been applied to the
clustering Kernel Search implementation. Instead of providing a direct comparison
with the rounding algorithm, such executions are compared to the unfiltered version
of clustering Kernel Search. The same trend that is observed in the application of
filters in the trajectory groups implementation is represented by diagrams in Figures
6.6 and 6.7: minimization of delay maintains the same gaps with the exception of
critical instances, but the 20% and 70% filters finds the optimal solution for the 29th

August instance (obtaining the same result as trajectroy groups). The difference in
such instance is given by the fact that with the 50% filter and without filter the first
subproblem goes on timeout before returning the solution with gap equal to 0. Also,
the time analysis is the same as trajectory groups: the decision tree worked as intended,
maintaining the same results while reducing the total execution time. Also for the
maximization of preferences, the same behaviour of trajectory groups is observed in
Figures 6.8 and 6.9: minimal improvements are done at the cost of higher execution
times, because many subproblems with few variables are executed, so the clustering
based sorting does not put correctly the best variables in the first buckets.

6.6 Performance analysis
In previous sections, data were presented in comparison with the rounding algorithm
results, and, in case of the decision tree filters, with the corresponding unfiltered
implementation. In this section, the evolution of the objective function value, expressed
as the percentage gap with the relaxation value, is analyzed with respect to the time
spent, and with respect to the number of total iterations performed; the following
conventions are adopted:

• the performance of each method is displayed as the average percentage gap
value among all instances. Due to the nature of critical instances, they are
not considered for this analysis, because their gap is so different to completely
influence the average gap value;

• executions that terminate before the scale limit (both for times and iterations)
have their last value propagated to the limit: for example, if an instance terminates
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Figure 6.6: % gap comparison of clustering Kernel Search method with different filters
(minimization of delay).

Figure 6.7: Time comparison of clustering Kernel Search method with different filters
(minimization of delay).
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Figure 6.8: % gap comparison of clustering Kernel Search method with different filters
(maximization of preferences).

Figure 6.9: Time comparison of clustering Kernel Search method with different filters
(maximization of preferences).
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Figure 6.10: Average % gap over time (elapsed seconds) for the minimization of delay.

in 7 seconds with 2 iterations and returns a gap of 0, 01%, then it is considered
as if it has the same gap after 30 seconds, 4 minutes or after 5 iterations, 30
iterations, and so on. This is done to avoid having only few instances that
contribute to the average on higher times/iterations, that would otherwise be
confusioning: assume the only instance that takes more than 300 seconds is the
one that has a final gap of 3%, while the average of all instances after 270 seconds
is 0, 5%, by considering only this instance for the time 300 seconds the curve
would register an increase in the gap (and so, a worse solution value) with more
time spent, which is absurd, because the Kernel Search method can only improve
or maintain the objective function value;

• for the same reason described above, the graphics on execution time start with
a value that is shared by all instances, i.e. the time spent to solve the hardest
kernel problem, while for iterations the axis simply starts from 1.

In addition to that, maximization of preferences methods display two different starting
points, whose gap difference is 0, 0003%, that could be appointed to the single machine
performance, that stopped the execution of the first subproblem on the fixed timeout
of 30 minutes, but with literally one less simplex iteration. For the minimization of
delay, the standard implementation has the worst performance, that is formed by
a flat line, as visible in Figure 6.10, showing that the method found a solution and
never improved it. On the other hand, all trajectory groups implementations (with
all decision tree filters) and the clustering method with filters at 20% and 70% have
the best performance over time, with some differences before 2.100 seconds, but such
difference is negligible. The average gap difference with the clustering method and the
clustering with a decision tree filter at 50% can be appointed to the solution obtained
for the instance relative to the planning of 29th August, that was already discussed in
§6.5.1, the difference is of one integer point.
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Figure 6.11: Average % gap over time (elapsed seconds) for the maximization of preferences.

Considering the extra time required to execute clustering, the best method for the
minimization of delay is trajectory group, with a time limit of 2.400 seconds (40
minutes), with any decision tree filter. About the maximization of preferences, whose
performance over time are displayed in Figure 6.11, without any decision tree filter
the best method is standard Kernel Search, the difference is not noticeable with the
gap approximation at 2 decimals, in fact it is negligible: it is in the order of 0,001%;
this diagram shows that a decision tree applied to the standard implementation might
be the best choice (because it is the best unfiltered method), but further test are
required to verify this claim. The best results are obtained by the trajectory groups
implementation, with a decision tree filter of 70% applied, after 3000 seconds (50
minutes), which is chosen to be the best method, considering the extra time required
by clustering.
The same evolution that happened in the time analysis is represented for the iteration
analysis: for the minimization of delay, the standard implementation stops improving
after the first iteration, while all other methods find the best solution after the second
iteration, with the exception of trajectory groups with a decision tree filter of 50%, that
stops improving at the third iteration. This is illustrated in Figure 6.12: flat lines show
that the respective method didn’t find any other improving feasible solution. Together
with the previous time analysis, the best method is trajectory groups, without any
filter, or with a 20% or 70% decision tree filter applied, with a limit of 2 iterations.
Similar to the gap evolution over time, for the maximization of preferences, unfiltered
implementations do not make any improvement over successive subproblems (as shown
in Figure 6.13), with the exception of the standard method that provides the best
result at the second iteration. All methods that involve a decision tree filter keep
improving until reaching a number of iterations equal to 200, which corresponds to
a potential total number of 200 ∗ 10.000 = 2.000.000 examined variables, but most
of them had been removed by buckets through the filter; this differences in gap after



6.6. PERFORMANCE ANALYSIS 69

Figure 6.12: Average % gap over iteration for the minimization of delay.

Figure 6.13: Average % gap over iteration for the maximization of preferences.
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such number of iterations is negligible, in the order of 0, 001%. Given the extra time
required for clustering, and the previous time analysis, the best method is trajectory
groups Kernel Search, with a decision tree filter of 70% and an iteration limit of 200;
to obtain a good result (not the best) in less time, the iteration limit could be fixed at 3.

This analysis shows that the procedure is spending time and iterations without
producing any considerable improvement, stop conditions can be improved to save
computational time:

• a limit to the number of iterations can be set at 2 for minimization of delay and at
200 for maximization of preferences, without losing anything on the result value;
alternatively, the maximization of preferences limit can be set to 3 iterations, in
order to obtain a good result in a faster time, because improvements made in
successive iterations are minimal;

• the total time limit can be set to 40 minutes for the minimization of delay, and
to 50 minutes for the maximization of preferences; combined with the previous
iteration limit, the procedure can end before this timeout, once it reached the
limit number of iterations.

To sum up, the overall best Kernel Search implementation to solve the ATFM problem
is trajectory groups, with or without any decision tree filter (with the exception of
the 50% filter if the limit at 2 iterations is set) for the minimization of delay, and
with a decision tree filter of 50% for the maximization of preferences: clustering
implementations, on the other hand, require a minimum of 20 additional minutes, and
do not even provide better results.



Chapter 7

Conclusions

In this chapter, final remarks are presented, focusing on the results provided by the pro-
posed implementations of the Kernel Search matheuristic for the ATFM problem, and,
in particular, on the role of the integrated Machine Learning tchniques. Possible future
improvements are also outlined.

We considered the ATFM problem and a solving procedure based on the ILP model
proposed in [10] and described in §3.3.2. This model is very large and existing literature
proposes dynamic column insertion to solve its continuous relaxation and a rounding
heuristic based on Branch & Cut, to obtain near optimal integer solutions.
The thesis proposes procedures based on Kernel Search to improve existing gaps, that
are already good, with respect to the bound given by the relaxation value. Different
implementations have been proposed, which represent the methodological contribution
of this thesis. In particular:

• basic Kernel Search (described in §4.4) implements the Kernel Search as described
in [19], [16] and [15], by adapting the proposed algorithm to the ATFM problem;

• trajectory groups Kernel Search (described in §4.5) uses an alternative sorting
algorithm to determine "good variables": it consists in grouping all trajectories
and related decision variables by "origin-destination", and each group is sorted
internally by increasing reduced cost. Finally, groups are sorted by the average
reduced cost of the first six elements, and buckets are built using a round robin
schema;

• clustering Kernel Search (described in §5.1) takes the trajectory groups imple-
mentation, and adds a clustering filter to it. In particular, a KMeans clustering
is executed for each "origin-destination" group on a normalized description of
flight trajectories; cluster labels are used in the round robin insertion to avoid
picking variables with equal labels (within the same "origin-destination" group)
for the same bucket, thus guaranteeing more diversity in each bucket;

• each of the previous implementations can be integrated with a decision tree filter
(described in §5.2), that further reduces the size of each bucket. Decision trees
taken from previous works on ATFM are used to compute the probability of each
bucket variable to provide improvements with respect to the current solution,
and filters discard from buckets all variables whose probability of being good is
below a fixed threshold.

71



72 CHAPTER 7. CONCLUSIONS

Tests have been executed on real-world instances: results show that the Kernel Search
approach brings better result than the existing approaches, for all presented imple-
mentations. In particular, the integration of a decision tree filter drastically reduces
execution times for the minimization of delay, without affecting the solution value; for
the maximization of preferences, the filter brings better results at the cost of higher
computational times.
Concerning clustering, as integrated in the Kernel Search, results show that this ad-
dition does not seem to bring improvement in the solution value with respect to the
implementation that does not use it. Furthermore, this integration requires, on average,
further 23 minutes (20 for clustering and 3 for buckets creation), which turns to be an
additional computational cost that brings negligible advantages in terms of quality of
the obtained solutions.

7.1 Possible improvements of the procedure
Results presented in the previous chapter show that the Kernel Search implementations
can be improved with additional stop conditions to save computational time, also there
could be improvement to the returned result, according to the following observations:

• decision tree filters work as expected for the minimization of delay, while for the
maximization of preferences they show that few good variables are available after
the first iteration, so that a possible improvement is to analyze the solutions
given in the last iterations, identifying variables in the solution, especially in
relation with variables included in the first bucket, understand their features, and
redefine the sorting criteria for the maximization of preferences, as to effectively
have the best variables in the first buckets.
It is reasonable to have different sorting criteria for different problems, because
the preference for a trajectory does not consider the delay, that appears only in
one constraint. Since it is not included as coefficient in the objective function,
the delay is not impacting the reduced cost, and so variables with a high delay
are put at the same level with variables related to the same flight and plan, but
with a lower delay; it is thus likely that this variables with high delay will not
be inserted into the solution because they would violate the maximum delay
constraint. On the other hand, the decision tree has the delay as one of its
features, and recognizes that only few variables of the first bucket can be a good
insertion. As a consequence, the possible improvement for the sorting criteria
could be to take into account the delay assigned to each variable. Summarizing,
the design of the sorting procedure should take the following considerations,
related to each variable, into account:

– value: this feature has no impact, because all variables with a non-zero
value are already inserted in the kernel;

– reduced cost: order variables by "promising impact on the solution" (this is
the sorting criterion already implemented);

– delay: for the maximization of preferences, in case of equal reduced cost,
give precedence to the variable with lower delay; this does not apply to the
minimization of delay, because in such problem the delay appears in the
objective function and so the reduced cost is already affected by that;

• for further improvement, we observe that all kernel subproblems, with one
exception, go on timeout for the maximization of preferences, and even in this
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case such problems provide a good gap: a way to improve the result could be
to set a higher timeout for the first iteration, in order to allow kernel problems
finding their optimal solution, so to provide the best possible bound for the
following subproblems.

7.2 Is Machine Learning worth the effort?
According to our computational experience, the Kernel Search integrating clustering
provided worse results with respect to the one including trajectory groups. The dif-
ference is negligible but, in any case, the important information is that additioanl
clustering does not seem to provide improvements, and has a time difference of 20
minutes for executing the clustering and 3 more minutes to sort variables. Clustering
is executed once per instance, thus avoiding to repeat it when running an already
processed instance, but even in this case, the sorting time is always sustained, resulting
in overall higher execution times. On the other hand, the trajectory groups sorting
takes less than a minute, and provides slightly better results, so that the proposed
clustering technique does not seem to be a good choice to integrate Kernel Search for
solving the ATFM problem.
The decision tree filters, instead, bring better results with almost no additional compu-
tational cost, because once trees are trained, they can be used on any instance to reduce
the actual size of subproblems. Solutions are not improved for the minimization of
delay, but overall execution times are reduced. Improvements on the objective function
value have been observed only for the maximization of preferences, because filters
remove all bad variables, that are usually the majority of the first buckets variables,
thus avoid spending computational time on subproblems with a very low probability
of yielding an improvement. This Machine Learning technique seems to be a good
integration to the Kernel Search algorithm for solving the ATFM problem, because it
brings improvement by removing bad variables, thus allowing the execution of more
subproblems in less time. It can potentially be better if applied to a better sorting
criterion that puts many good variables in the first buckets (in particular, for the
maximization of preferences).

7.3 Final Remarks on Kernel Search
In a direct comparison with the rounding algorithm described in [18] and mentioned in
§3.4.1, the Kernel Search algorithm takes, in all its implementations, more time, but
always have a better results (with the exception of critical instances, as discussed in
chapter 6), which is the purpose of this work: we allow to spend more time than the
existing rounding procedure, as to find better solutions. The standard Kernel Search
implementation, which is already giving good results (actually excellent results, for
the maximization of preferences), has been further improved with different sorting
methods (trajectory groups and clustering based) and, in order to reduce execution
times on each subproblem, the bucket size has been reduced dynamically by applying
a filter, based on the classification performed by a decision tree. Results obtained by
this final methods are close to the optimal relaxed solution, which means they are also
close to the optimal integer solution, and in some cases they are the exact optimal
solution, making Kernel Search a good choice to obtain an excellent approximated
solution to the ATFM problem.
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