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Abstract 

A Multi-Objective shape Optimization analysis was applied to a civil S-duct intake, 

for reducing total pressure losses and flow distortions. 

 

The parameterization of the geometry was set up with Free Form Deformation 

method and it was enhanced with respect to a previous investigation. Duct 

deformation depends on 36 variables. 

NSGA-II genetic algorithm was implemented in the optimization loop to manage 

the design vector and improved duct performances. 

More than 600 geometries were tested within 3D CFD simulations; duct efficiency 

was defined through two functions that have been improved during the 

optimization: Pressure Recovery and Swirl angle. 

 

The analysis gave an enhancement of 19% for pressure recovery coefficient and 

a reduction of 13% for swirl distortion. 

New geometry configurations were investigated and the results were compared 

to those of a prior project. 
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Chapter 1 

Introduction 

Aircraft gas turbine engine is mainly composed by an intake, a gas generator and 

a nozzle; it generates a high enthalpy flow that is accelerated, producing the 

necessary thrust for flying an entire airplane. A proper functioning of each of these 

elements is crucial for the propulsion. 

This project focuses on the first component mentioned, the intake, and the 

improvements achievable by changing its shape. 

The intake is a duct designed to convey air to the compressor, with low flow 

distortions and a suitable Mach number for stable operations; it decelerates the 

stream and increases its static pressure. Unfortunately, this pressure recovery 

implies an adverse gradient along the duct that leads to flow separation on walls, 

causing losses and non-uniformities. 

1.1 Context and Background 

S-duct intakes are a particular type of inlet for modern aircraft propulsion systems. 

They present the typical cross section growth for subsonic diffusers, associated 

with a curved centerline; mainly due to the double bend, these channels are 

affected, not only by a wide region of flow separation, but also by secondary 

streams (vortices). Wellborn’s studies (1) show how those irregularities 

compromise engine performances and flow uniformity at the compressor 

Aerodynamic Interface Plane (AIP). 

Despite these disadvantages, S-duct represents a flourishing topic for 

experimental and computational researches and it is used in modern aircraft gas 

turbine engines. 
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Briefly considering military applications, this kind of intake has been adopted in 

advanced missiles and combat aircrafts, because it suits the design features of 

this sector. The current trend is to reduce mass, size, fuel consumption and 

observability, increasing reactivity and engine operations range, hence shortened 

S-intakes perfectly satisfy these goals. As the engine is integrated within the 

airframe under the fuselage, weight and length reductions are expected, hence 

the airplane is more compact and the costs are reduced as well. 

 

Figure 1.1 Example of UAVs: Salty Dog 501 X47-B. 

 

Furthermore, this configuration leads to shield the compressor from a direct 

observation of radar waves and to preserve the whole structure. Tangible 

examples of successful applications of S-duct are the Unmanned Aerial Vehicles 

(UAVs), such as Salty Dog (Fig.1.1), the military General Dynamics Falcon F-16 

(Fig.1.2) and McDonnell-Douglas F-18.  

 

Figure 1.2 Example of General Dynamics Falcon F-16. 

 

Regarding civil applications, there are several commercial aircrafts that made use 

of highly convoluted intakes, such as the Lockheed Tristar L-1011 and the Boeing 
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727. They combine three engines, one of them is placed at a different height in 

the rear part of the plane; its S-duct inlet is situated within the tail (Fig.1.3). 

 

Figure 1.3 Example of Lockheed Tristar L-1011. 

 

Nowadays S-duct inlets studies are mostly connected with the promising 

Distributed Propulsion (DP), an advanced concept of propulsion systems, to 

which this thesis and the previous ones carried on at Cranfield are closely related. 

1.2 Distributed Propulsion for Civil Application 

The main topics for civil aircraft design refer to energy consumption and the 

environment; through the Subsonic Fixed Wing project (2), NASA recognized four 

technology aims that have to be improved for achieving higher performances. 

These goals concern the reduction of emissions, noise and fuel consumption and 

the improvement of flight range (3). For these reasons, the American agency has 

studied a new propulsion vehicles concept: Distributed Propulsion (Fig.1.4) that 

was concretely developed only in the 1990s. 

Until the Fifties, great part of the airplanes have been conceived using the 

classical configuration: two or four engines placed under the wings or on the 

fuselage, to reduce aerodynamics interactions with vehicle functioning. 

Distributed Propulsion indeed, expects to couple the airframe and the propulsion 

system, using several smaller and compact propellers integrated in the wings, so 

that the plane fully benefits from this innovative design. In a more specific 

definition from (2): “ DP in aircraft application is the spanwise distribution of the 
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propulsive thrust stream such as … the efficiencies are mutually maximized to 

enhance the vehicle mission”. 

 

Figure 1.4 A practical application of Distributed Propulsion. 

 

The main improvements obtained through this design are: the reduction of noise, 

nacelle viscous drag, flow separation and weight, the perfecting of engine fuel 

efficiency and the easily replacement of small engines. Those are the reasons 

why this new type of installation perfectly fits the SFW NASA goals and 

represents the future in aeronautical propulsion. 

 

Furthermore, recent researches conducted by Boing (4) are focusing on the 

achievable advantages of Boundary Layer Ingestion (BLI) in planes that combine 

Blended Winged Body (BWB) and DP. 

 

Figure 1.5 Experimental model of Boing BWB-450. 

 

BLI implies that an aft placed engine ingests part of the low momentum boundary 

layer of the fuselage, in order to reduce fuel consumption; in this configuration, 

the propellers are no more set on pylons but they are embedded in the airframe, 
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almost removing nacelle losses (5) and (6). BWB considers the aircraft as a single 

body where “the fuselage is also a wing, an inlet for the engines and a pitch 

control surface” (4), gained substantial benefits in terms of aerodynamic 

efficiency, emissions, noise and payload. An example is the experimental model 

Boing BWB-450, shown in Fig.1.5. 

1.3 Objectives and Expectations 

As mentioned, DP technology requires S-duct intakes, but their shapes cause 

pressure and velocity distortions distributions, negatively affecting compressor 

operations. Thus, recently experimental and computational projects have 

emerged to accurately predict intake aerodynamics, trying to make the flow as 

uniform as possible. Cranfield University is focusing on this topic through PhD 

and MSc students’ researches that were particularly important for the 

development of this thesis (7), (8), and (9). 

 

The primary aim of the project is to reduce flow distortions and losses within the 

S-duct through a shape optimization process. This is a multi-objective analysis 

based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II), which tries to 

minimize two functions at the same time: total pressure losses and swirl angle at 

the duct outlet. 

Following a previous investigation on S-ducts (7), the baseline geometry 

parameterization was enhanced, doubling the variable vector size and increasing 

project fidelity level; later it was tested and validated with literature results. Then 

two optimization simulations were run with different ranges variation of variable 

vector, bringing solver convergence and maximum shape deformation to the limit. 

Consequently, new geometries were analyzed and compared with the results of 

a former study. 

 

This work is expected to provide a better comprehension of the flowfield within 

the S-shaped inlet; not always a high fidelity analysis contributed to improve the 

results, but surely they will be more in line with the physical phenomenon, 

properly describing flow losses and distortions.  
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This project aims to be a contribution for future developments, together with those 

of the last year, extending the knowledge about shape design for an appropriate 

engine operation in DP propulsion systems and providing a range of useful data 

for practical applications. 

1.4 CFD and MOOP 

Physical observations and experimental tests are not always possible and usually 

expensive. Computational Fluid Dynamics (CFD) is a software largely used by 

engineers and researchers to adequately simulate and predict flow behavior, 

solving Navier-Stokes equations. CFD helps to analyze the three-dimensional 

stream within the S-ducts. In the current work, ANSYS (10) license of Cranfield 

University was used on ASTRAL cluster that allows parallel processing. (11) 

 

The mathematical side of the simulation consists in a Multi-Objective 

Optimization Problem (MOOP). MOOP tries to enhance two or more objective 

functions, changing the design parameters and finding trade-off solutions. A 

genetic algorithm was chosen and implemented in the analysis. 

The entire analysis were automated in a loop process, written in and controlled 

by Python scripts, described in Appendix B. 



Chapter 2 

Literature Review 

First of all, this section explains the main characteristics of a subsonic flow in an 

S-duct intake. Secondly, it introduces a general overview of theoretical and 

experimental researches that have been fundamental in the resolution and 

design of this project. Most relevant and useful parameters will be underlined 

during this presentation. 

 S-duct Flowfield Physics 

S-duct is affected by different types of non-uniformities, mainly caused by its 

bended shape: total pressure, swirl angle and total temperature distortions. The 

latter will not be considered in this thesis analysis, because it does not concern 

civil application. 

The word distortion includes both spatial changes that magnitude changes. There 

are several type of swirl, but the one that principally affects an S-duct is 

composed by two counter rotating vortex, clearly visible at AIP. 

Total pressure distortions are related to boundary layer separation, which occurs 

after the second bend, generating a wide low-momentum region. Moreover, it 

should be considered the classical pressure losses due to the cross-section 

growth of subsonic diffuser. 

 

Pressure recovery and swirl angle are the parameters chosen for describing flow 

characterization, described in the following sections.  
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2.1.1 Swirl 

In a cylindrical flow, the velocity vector could be divided into its tangential and 

axial components, respectively 𝑉𝜃 and 𝑉𝑧, or in its radial and circumferential 

components; the latter is also known as swirl and it causes the whirling motion of 

the stream. 

The first goal function is the swirl angle, defined as: 

 

∝= 𝑎𝑟𝑐𝑡𝑎𝑛(𝑉𝜃/𝑉𝑧)     (2.1) 

 

It is considered positive if it has the same rotation direction of the compressor. 

As Fig.2.1 shows, the swirl physically represents the angular deviation between 

the local velocity vector and the normal vector, both referred to the AIP plane. 

 

Figure 2.1 Velocity components in determining the Swirl (12). 

 

In aeronautics, there are four different types of swirl that could affect a flow within 

an S-pipe and these are briefly described below: paired, bulk, cross-flow and 

tightly-wound swirl. 

 

Tightly-Wound vortex: It is also known as inlet-ground vortex for its 

characteristic of attaching to airplane surfaces or to the ground. This type of swirl 

is highly energetic, compact: it is generated by several mechanisms such as tip 

vortices, leading-edge extensions and near-static operations in ground proximity, 

as shown in Fig.2.2 and Fig.2.3. 
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Figure 2.2 Tightly-Wound vortex attached to the ground (12). 

 

Figure 2.3 Tightly-Wound vortex attached to airplane surfaces (12). 

 

Cross-flow swirl: This kind of swirl is conceptually identical to the paired one, 

except for the presence of a uniform velocity in cross-flow direction. Usually, it 

can be observed in lift fans or in turboshaft and turboprop with bifurcated intake 

ducts. 

 

Bulk swirl: The bulk swirl occurs when the entire flowfield spins in one direction 

about the compressor axis; if flow rotates in the same direction of the engine it is 

called co-rotating swirl, otherwise it is named counter-rotating swirl. 

This distortion is defined as “the circumferential mean value of the flow angle for 

each constant radius R” (12). 

Bulk swirl can be generated internally or externally to the duct, but the former 

circumstance is more important for the project; it occurs when the “inlet flow 

experienced a non-axisymmetric total-pressure gradient, normal to angle plane, 
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which combines with static-pressure gradient of the S-bend flow” (7). Fig.2.4 

displays how the sideslip flow separation at the inlet causes a wide low-energy 

region that starts to rotate. Its intensity mainly depends on geometric parameters 

and flow conditions. 

 

Figure 2.4 Bulk swirl distortion (12). 

 

Paired Swirl: This is the most common and relevant type of swirl that takes place 

in a bent duct. If the vortexes have the same magnitude, the swirl is called twin 

swirl, otherwise simply offset paired swirl. There are two different explanations 

for this phenomenon, one based on pressure gradient and the other one based 

on vorticity. 

Basically, the latter is due to the fact that flow vorticity vector is turned by the duct 

shape, inducing flow rotation along a third direction. 

Fig.2.5 shows the second justification in detail. Firstly, considering an ideal 

situation, a flow in a bent duct experiences an increasing static pressure related 

to the increasing radius of turn, in order to balance centrifugal forces, and a 

conforming reduction of flow velocity. Since the flow is non ideal, boundary layers 

must be taken in account: velocity distribution varies from zero at the walls to its 

maximum in flow core; the flowfield is subjected to a non-uniform momentum 

distribution. The high velocity core is deflected towards the outside part of the 

bend, while the low-momentum fluid near the walls, which cannot cross an 

adverse pressure gradient region, slips around the walls towards the inside part 

of the bend. The combination of the high and low velocity streams causes two 

paired of counter-rotating vortexes. 
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Figure 2.5 Paired swirl formation based on pressure gradient theory. 

2.1.2 Total pressure losses 

As mentioned, the duct presents different separate regions: a small one on the 

walls caused by the cross-section growth, and the other one generates by duct 

bends; the wider are these regions, the greater are total pressure losses. 

Moreover, the latter region blocks a large part of the duct, increasing flow velocity, 

shear stresses and producing additional losses (see Fig.2.6). Also vortices are a 

source of pressure losses, in fact they convey the low-energy region towards the 

center, reducing both magnitude and uniformity pressure distribution. 

Reducing these losses is the second goal function of the thesis; for this purpose, 

it was chosen the Pressure Recovery (PR) coefficient at the AIP: 

 

𝑃𝑅 = 𝑃𝑡,𝑜𝑢𝑡/𝑃𝑡,𝑖𝑛        (2.2) 

 

PR is the ratio between inlet and outlet total pressure values. Obviously, it 

provides just an area-averaged evaluation and it does not indicate exactly where 

these events are located, but this coefficient suits for a general comprehension 

of flow behavior. 

For minimizing the losses, the right coefficient used is Cp, simply defined as: 

 

𝐶𝑝 = 1 − 𝑃𝑅         (2.3) 
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2.1.3 Flow separation 

Flow separation is a common aerodynamics phenomenon that occurs in diffusing 

channel; it is due to the boundary layer detachment off the walls, because the 

flow experiences an adverse pressure gradient in increasing cross-section area. 

This separation causes a reverse flow and vortices formation, as visible in Fig.2.6. 

  

Figure 2.6 Flow separation within an S-duct (1). 

 

In diffusing S-intake, flow detachment is placed right after the first bend and it 

occupies a wide downstream region, as proved by Wellborn’s experiments (1). It 

is generated, not only by the growing area, but also by the curved centerline. 

 

Figure 2.7 3-D separation surfaces in an S-duct (1). 

 

Fig.2.7 displays separation region in S-ducts; clearly it is a 3D complex 

singularity, described with stream-surfaces. From literature, the flow presents two 

symmetrical negative bifurcations from an upstream saddle point, converging into 

a spiral node. Then, positive bifurcations surround other two negative ones. 
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This symmetrical configuration is highly instable, but it perfectly represents flow 

lines behavior. 

 Prior Observations on S-duct 

As mentioned in Chapter 1, S-duct intake represents a flourishing topic both for 

military and civil applications; in the last decades, several researches have been 

performed to better understand flowfield characterization in order to reduce flow 

distortions and improve duct performances. 

The first projects were based on experimental researches; recently, the 

progresses in computational analysis allow to simulate the flow with mathematical 

models, facilitating S-duct studies. 

2.2.1 Experimental Researches 

In 1943, Weske (13) conduced the first experiment on duct with elbows; the 

project analyzed velocity distributions and pressure drops in elliptical and circular 

cross-section shapes. The tests were performed at different flow velocities, 

between 100 and 300 𝑓𝑡/𝑠, proving how the most important parameters that 

influence pressure drops are the curved centerline and the ratio between inlet 

and outlet radius. 

In 1972 for the first time, Bandson’s project (14) showed the presence of the two 

counter-rotating vortexes at AIP plane, responsible of the low total pressure 

section. He also analyzed several parameters (static and total pressure, shear 

stresses…) and their variations in the separate region. Moreover, Anderson (15) 

demonstrated how these vortices are inviscid, hence they depend on a non-

uniform inlet velocity profile, as mentioned in swirl theory. 

 

The most relevant experimental research was performed by Wellborn (1) in 1993; 

he tested compressible flows within an S-ducts at NASA Lewis Research Centre, 

providing several data, about aerodynamic parameters and flow separation 

mechanism, that were useful for the following CFD projects. The duct shape will 

be presented later in Chapter 4, as it is the starting point for the current thesis. 
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The experiment facility is shown in Fig.2.8. Firstly, it involves a Settling Chamber 

for conditioning and making the flow more uniform, thanks to screens and 

meshes; then, the flow is accelerated in the Contraction Nozzle and stabilized 

within a short straight passage. Finally, it enters the S-duct, Test Section, where 

it is analyzed; later it is conveyed towards the Exhaust Region. 

 

Figure 2.8 Facility Scheme of Wellborn (1). 

 

All flow measurements were conducted on five planes perpendicular to the center 

line, with a total of 220 static pressure taps, located at constant angle of 10°, 90°, 

and 170°; the stream presented a constant Mach number equal to 0.6 and a 

Reynolds number of 2.6 x106. 

The experiment showed flowfield complexity; in correspondence of the first bend, 

a large separate region takes place, evolving in a vortex on the symmetry plane 

and in two counter-rotating vortices at the AIP plane. These secondary flows 

cause the huge total pressure drop. Moreover, Wellborn underlined that the flow 

is still symmetric and how the boundary layer is extremely separate from duct 

walls. 

Fig.2.9 displays static pressure trend along the duct for three circumferential 

positions. Pressure drop is clearly visible near section C. 

Instead, Fig.2.10 shows total pressure contours distribution in the five reference 

planes. It is visible the boundary layer detachment towards duct core; low-

momentum region starts in plane C and it evolves like in plane E, occupying great 

part of the cross-section. 
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Figure 2.9 Static pressure trends for three position (1). 

 

Figure 2.10 Total pressure contours on the five planes (1). 

 

The two vortices continually convey low momentum fluid towards the center, 

decreasing both pressure and velocity magnitude that their distributions. 
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2.2.2 Computational Researches 

Nowadays, CFD tools are relevant for the design phase; they have been 

improved throughout the years and now they are able to accurately predict flow 

behavior and validate experimental data. Several projects were useful in defining 

the best mesh, turbulence model and CFD settings for a proper flow simulation. 

Smith’s work [] was precious in analyzing the difference between O-grid and H-

grid and how well these grids predict distortions intensity and location. He 

suggested to use a hybrid mesh, with the O-grid near the wall and the H-grid in 

the center. 

For steady phenomena, Delot’s (16) project is one of the most recent and 

important studies about S-duct (2006). She based her experimental work on 

Wellborn’s geometry, scaling it up, visible in Fig.2.11. 

 

Figure 2.11 Facility Scheme of Delot’s experiment (16). 

 

Moreover, she carried out several computational tests for defining the best set up 

that best reproduce real flow. She compared several meshes, solver codes and 

turbolence models; the project stated that Fluent solver best matches the 

separate region and well predicts low pressure region, even though it presents 

some discrepancies in PR coefficient, which is too high with respect to the real 

one. Unfortunately, it is impossible to accurately predict pressure recovery and 

flow distortions at the same time. 
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Fiola‘s research (17) tested the geometry with Fluent solver and four types of 

turbulence, concluding that the k-w SST model best suits PR prediction along the 

centerline; since this project concern with minimizing pressure losses, k-w SST 

turbulence model was chosen. 

Other several researches were carried out in the last years for a better 

comprehension of flow psychics and for improving its performances, such as the 

insertion of vortex generator devices and unsteady simulations (18). 

2.2.3 Optimizations 

Recently, optimization processes were applied to S-duct intake for enhancing its 

characteristics; in particular, two projects performed at Cranfield were 

fundamental for this thesis. 

These simulations modifying duct shape, perturbing control points positions; this 

concept will be presented later in Chapter 4.  

 

Rectangular Cross-Section: Furlan’s study (19) investigated the flow within a 

rectangular cross-section. The optimization aim was to minimize the parameters: 

Cp,loss and DC60. 

The first is an area-averaged total pressure coefficient, while the second is a 

distortion factor for flow distortions at the outlet. 

The results are displayed in the Fig.2.12: the optimized geometry presents a 

bottom bump that allows distortions reductions. It reduced the coefficients 

respectively of 58% and 54%. 

 

Figure 2.12 Furlan’s results: baseline (left), optimized (right) (19). 
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Circular Cross-section: this study was performed by Guglielmi (7) and it is the 

starting point of this and other two thesis (8), (9). It will be described later, as it is 

used for comparing the results of the current project. 

Briefly, it used two objective functions: 1-PR and 𝛼; it analyzed in detail three 

types of geometries: best pressure recovery, best swirl angle and a trade-off 

solution. Fig.2.13 and Fig.2.14 show Pressure Recovery distributions and swirl 

distribution in the optimized configurations, with respect to the baseline. The 

improvements achieved are clearly visible. 

 

Figure 2.13 PR distributions: baseline (left) and best PR (right) geometries (7). 

 

Figure 2.14 Swirl distributions: baseline (left) and best PR (right) geometries (7). 

 



Chapter 2: Literature Review 

19 

 

Other two important projects were performed at Cranfield. The first one (9) is 

about a multi-objective optimization with surrogate models, trained on Guglielmi’s 

data; it investigated about surrogate prediction capability in S-duct application. 

The second one (8) is about an unsteady analysis of the first project results with 

different meshes; in particular, it stated how a medium mesh gives results that 

are similar to a fine mesh ones, and that there are no great differences between 

the half and the entire duct. 

 

Following these encouraging results, this project deals with an improved multi-

objective optimization, doubling the decision variables for increasing flow physics 

knowledge and exploring new geometry configurations. 



 



Chapter 3 

Multi-Objective Optimization 

This Chapter briefly describes the main features and peculiarities of an 

Optimization process. Most of the real problems, from Engineering to Economy 

and Logistic, rarely concern a single objective function because of Nature’s 

complexity: there are multiplex conflicting targets preventing univocally define 

which the best solution is. Hence, the role of the Designer is to make a reasonable 

choice, considering projects requirements. In the Aeronautical field these 

decisions might regard the efficiency of an engine, the losses or consumption of 

an airplane or the structural strength of the fuselage. 

 The Problem and its Loop 

In Mathematics, an Optimization problem consists in finding the optimal set(s) of 

decision variables that minimizes or maximizes a goal function, given a defined 

domain and its relative constrains. Actually each optimization problem could be 

mutated into a minimization problem, due to the fact that the maximum of a 

function 𝑓(𝑥) is merely the minimum of the function – 𝑓(𝑥). 

A Multi-Objective Optimization Problem (MOOP) is generally described by the 

relations below: 

 

Find           𝑥̅ = 𝑥1, … , 𝑥𝑛      (3.1) 

    that minimize   𝑓𝑗(𝑥̅)       ∀𝑗 = 1, … , 𝐽     (3.2) 

subject to: 𝑔𝑙 ≥ 0     ∀𝑙 = 1, … , 𝐿     (3.3) 

      ℎ𝑘 = 0     ∀ℎ = 1, … , 𝐾    (3.4) 
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Vector 𝑥̅ represents the variables vector, also called Decision Variables; its size 

should be adequate for a complete and simple description of the problem. 

𝑓𝑗 are the Objective Functions, which are the goals to minimize, depending on the 

former variables. 

The Problem is also subjected to constraints, expressed by Constraints 

Functions, as 𝑔𝑙 inequality expression or ℎ𝑘 equality expression. These 

constraints bound and reduce the solution range, delimiting the decision space in 

Feasible and Infeasible regions, as shown in Fig.3.1. 

 

Figure 3.1 Solution range and possible Constraints. 

 

In literature, there are different methods to solve MOOP: from Descend Methods 

as Fletcher-Reeves and Newton’s proposal, with a differentiable objective 

function, to Direct Search Methods, like Simplex or Grid, that do not require 

derivatives information. Each method has its pros and cons, for examples the 

former are able to find the optimum rapidly, but they can stick in local minima. 

 

Hereafter there is a brief description of an optimization approach, as displayed in 

Fig.3.2. The scheme is composed by two main blocks: Optimization Algorithm 

and Calculation Model. It will be analyzed in details in Chapter 4.  
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Figure 3.2 Scheme of an Optimization Problem. 

 

The first is the mathematical method chosen for solving the problem. The input 

are the objective functions, depending on the variable vector, and the method 

calculates a new set of variables that are used by the model to re-evaluate the 

goals. 

Whereas, taking in input the variables, the second allows to calculate the 

objective functions values. The model can be either a simple expression or a 

complex series of mathematical equations, such as CFD for fluid dynamics 

analysis or Patran for finite element methods. The blocks constitute a loop and 

its iterations go on till a definite convergence criterion or a maximum iteration 

number. 

 Solutions of a MOOP 

It is easy to minimize a single objective function and rank its solutions: set 𝑥̅𝑎 is 

better than set 𝑥̅𝑏 if 𝑓(𝑥̅𝑎) <  𝑓(𝑥̅𝑏); as mentioned, this is not possible in a MOOP. 

There are conflicting targets that prevent to univocally define for all objectives 

which the best solution is. It is necessary to introduce two specific concepts: 

Dominance and Pareto Front. 

3.2.1 Concept of Dominance and Pareto Front 

Given two solutions, the Dominance is defined as follow: 

A solution 𝑥̅𝑎 dominates a solution 𝑥̅𝑏 if both following statements are verified: 
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 The solution 𝑥̅𝑎 is not worse than 𝑥̅𝑏 in all the j objectives, which means 

𝑓(𝑥̅𝑎) <  𝑓(𝑥̅𝑏), for ∀𝑗 = 1, … , 𝐽. 

 The solution 𝑥̅𝑎 is strictly better than 𝑥̅𝑏 in at least one objective, which 

means 𝑓(𝑥̅𝑎) <  𝑓(𝑥̅𝑏). 

 

Therefore, solution 𝑥̅𝑎 is the dominant or non-dominated and 𝑥̅𝑏is the non-

dominant or dominated solution. 

Figure 3.3 should help in explaining this concept. 𝑓1 and 𝑓2 are the objective 

functions, the first has to be maximized while the second minimized. Comparing, 

solution 1 is better than solution 2 because it enhances both goals, so solution 1 

dominates solution 2. On the other hand, solution 5 dominates solution 1, 

because at least solution 5 is better than 1 in one objective, that is 𝑓1. 

 

Figure 3.3 Set of solutions for Dominance concept. 

 

At the end of all iterations, the best possible solutions are the non-dominated; 

these form and lay on the Pareto Front. Given a dominant set of solution P, is 

impossible to enhance an objective of one of its element without worsening the 

others. 

All Pareto Front solutions are equally optimal for the Problem. In Fig.3.3 the front 

is composed by solutions 3, 5, and 6. 
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3.2.2 Advanced Methods 

Nowadays, advanced methods like Genetic Algorithms (GA), Simulating 

Annealing (SA) and Tabu Search (TS) are the best methods to solve a MOOP. 

They are able to accurately describe and get close to the real front; they give the 

analyst a proper framework of trade-off solutions, solving more goals at the same 

time (Fig.3.4). Whereas, classical methods converge slower than the former, 

mainly because they transform MOOP in single-objective problem, finding only 

one optimal solution at each iteration. 

 

Figure 3.4 Advanced Process (20). 

 

Last but not least, engineers have the task and duty to reasonably choose one of 

the optimal solutions found and complete the design; this choice depends on 

economical and physical constraints, project requirements or preferences. 
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 Evolutionary Algorithms 

As mentioned, the classical method main problems concern: slow solver 

convergence, high probability to stick in local minima, low efficiency on parallel 

machines and dependence on the initial solution. 

In the last two decades, Evolutionary or Genetic Algorithms (EA or GA) have had 

a key role in efficiently solving MOOPs of different fields, hence they are one of 

the most used and acknowledged methods. 

GAs peculiarity are synthetized in the list below: 

 

 Global algorithms: they hardly stick in local minima. 

 

 Direct methods: GAs evaluate the function in a point, they do not need any 

information about derivative objectives; they are slower than descent 

algorithms, but they can be used with all types of functions, even with not 

differentiable ones. 

 

 Pseudo-stochastic methods: at each iteration, the new solutions set 

depends both on random and deterministic operations. 

  

 Non-dependence on the starting point: the method do not depend on the 

random initial solutions. It is able to find the right research directions for 

minimizing the objectives. 

 

 Parallelization: it is possible to solve the problem quickly on a parallel 

machine, because GAs work with multiple solutions at the same time.  

 

Obviously, they are based on natural evolution systems; each iteration is called, 

generation, the solutions are named individuals, the whole set of solutions is the 

population and the goal functions are named fitness. Following the scheme of 

Fig.3.5, the method starts with a random generation, called Generation 0, then 

all solutions objectives are calculated and finally a fitness value is assign to each 

individual. All individuals take part in the creation of the new generation, but as in 

nature, those with the best fitness values have greater chance to survive during 
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the evolution. Generation after generation, the algorithms tends to get closer to 

the real Pareto Front and, theoretically, the last solution should lie on the Front. 

 

A genetic algorithm can act in three different ways to generate a new set of 

solution, applying Selection, Cross-Over and Mutation operators. 

 

Figure 3.5 Flowchart of a generic Genetic Algorithm.  

3.3.1 Genetic Operators 

Selection. This operator randomly chooses two solutions, the parents, which 

are used by the next operators to generate two new individuals, called offsprings. 

Actually this choice depends on the fitness value assigned to each solution: those 

with a better fitness have a greater chance to be chosen. In theory, this method 

allows to create a better generation than the previous one, also maintaining the 

same size. 
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There are different types of selection operators, as proportionate, ranking or 

tournament (21). 

 

Cross-Over. Together with the mutation, the cross-over creates the offsprings 

randomly exchanging part of parents’ information; the genetic material is not lost, 

just recombined. There are different methods for cross-over operation that can 

be found in literature, like single-point, double-point or non-homologous. 

Mutation. This statistical operator maintains the genetic diversity of a 

generation; for each offspring, a small part of the information is randomly 

modified. It permits the code to escape from local minima, but it does not 

guarantee the offspring to be better than its parent. 

 

Figure 3.6 Genetic operators: Selection, Cross-over and Mutation. 

 

The three operators are shown in Fig. 3.6; they are performed in sequence till a 

new generation is created that will be evaluated by the calculation model, hence 

the loop has been closed.  

  Non-Dominated Sorting Genetic Algorithm 

The mathematical side of this optimization is represented by the Non-Dominated 

Sorting Genetic Algorithm, developed by Goldberg in 1989 and improved by Deb 

in 2001 (21). It is one of the most popular and implemented genetic algorithm. 



Chapter 3: Multi-Objective Optimization 

29 

 

This method works, not only with the already mentioned operators, but also with 

other three mechanisms: elitarism, preservation of genetic diversity and Pareto 

ranking. 

The NSGA sorts a population P on the dominance concept and classifies the 

individuals in different fronts: all points of a specific front are equally important, 

as mentioned in Section 3.2.1 and visible in Fig.3.7. A highest fitness value is 

assigned to the front (front 1) that is closer to the real Pareto Front: the higher is 

this value, the greater is the probability to survive. That is Pareto ranking. 

 

Figure 3.7 Pareto Ranking.  

 

Then, to preserve genetic diversity, NSGA assigns a higher value to those 

individuals which are in less populated area; in this way, it guarantees that 

isolated solutions have better chance to survive in order to achieve a continuous 

Pareto front. This step is called crowding comparison methods (21). 

Finally the last mechanism is elitarism: if some solutions are particularly better 

than the others, these are passed to the next generation without being modified. 

 

 

The algorithm used in this project is NSGA-II, a variant of the NSGA. It generates 

an offspring generation Q from the parent generation P and then it sorts the two 

generations together with the methods mentioned above. Obviously half of the 

elements must be discarded to go back to the initial generation size. This is 

shown in Fig.3.8. 
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Figure 3.8 NSGA-II creation of a generation. 

 

The code has a high computational cost, due to the large amount of calculations 

required, but thanks to its structure, it is possible to preserve genetic diversity in 

Pareto Front search. 

Summarizing, the NSGA-II of this project has these particular features: 

- Selection: tournament selection. 

- Cross-over: Simulated Binary Cross-over (SBX) 

- Classical Ranking 

- Crowding: for two solutions with the same ranking. 

These are described in detail in (7). 

3.4.1 Code Validation 

This version of NSGA-II has been already tested by Guglielmi on two of the most 

studied optimization test functions from Deb and Schaffer (21); the test phase is 

an important step, because it helps to understand what it is expected from the 

simulations and how efficiently the code performs. 

 

Test 1: SCH1 

Firstly, NSGA-II was tested on a single variable problem, with two objective 

functions to minimize: 

𝑓1(𝑥) =  𝑥2      (3.5) 

𝑓2(𝑥) = (𝑥 − 2)2     (3.6) 

−10 ≤ 𝑥 ≤ 10     (3.7) 
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In Fig.3.9 are displayed Deb’s Pareto Front and Guglielmi’s one after 40 

generations; clearly, the code works properly providing almost a continuous 

solution.  

 

Figure 3.9 SCH1 Pareto Front of Deb (left) and NSGA-II (right) after 40 generations.  

 

Figure 3.10 SCH2 Pareto Front of Deb (left) and NSGA-II (right) after 40 generations. 

 

Test 2: SCH2 

Secondly, it was chosen to test the algorithm on a minimizing problem that 

presents a separate Front: 

 

 

(3.8) 

 

 

(3.9) 

(3.10) 

 



Chapter 3: Multi-Objective Optimization 

32 

 

Both simulations results are displayed in Fig.3.10; these simple tests prove 

genetic algorithm capability and its potential in multi-objective optimization 

problems. 



Chapter 4 

Methodology 

Optimization processes are able to significantly enhance S-duct performances, 

as mentioned in Chapter 2; in particular, NSGA-II genetic algorithm was applied 

to a previous project. It provided remarkable results, leading to this further high 

fidelity analysis. 

The objective functions are the Pressure recovery coefficient and the swirl angle 

at the Aerodynamic Interface Plane (AIP). Both coefficients should be minimize 

during the simulations, but the algorithm capability is not always predictable 

because it depends on the specific problem that is investigated. 

This Section describes the tools used in the project: the geometry, the 

optimization methodology, the objective functions and the Fluent solver settings. 

Guglielmi’s research was a really useful starting point for defining a standard 

approach to the problem.  

4.1 Geometry 

The geometry used is the one presented by Delot (16) in 2006, designed at 

ONERA, French Center of Aerospace Research. It is shown in Fig.4.1. As 

mentioned, this is a scaled up version of Wellborn’s duct of 1992 (1). 

The centerline is defined by two circular arcs that lie on y-z plane, both with a 

radius of  𝑅 = 665𝑚𝑚 and a subtended angle of 𝜃𝑚𝑎𝑥/2 = 30°. The baseline 

presents an offset and all its cross-sections are circular and perpendicular to the 

curved centerline. 

 

S-duct centerline is mathematically described by the following equations: 
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(4.1) 

 

(4.2) 

 

 

(4.3) 

 

 

In these equations, R is the duct curvature, θ is the arc angle. 

 

Figure 4.1 S-duct representation(1). 

 

The increasing duct radius, instead, is described by the relation below: 

 

(4.4) 

 

Fig.4.2 is useful for defining the most important geometry parameters. 

The inlet has a radius r1, the outlet has a radius r2 and a ratio A2/A1 of 1.52. The 

duct presents an upstream straight part of  4xd1 and a downstream straight part 

of 3xd2; this is done to ensure uniform inlet conditions and to guarantee that the 

outlet conditions do not have any influence on the upstream flow. 
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Figure 4.2 S-duct scheme. 

 

The geometry parameters are summarized in the two tables below: 

Table 4.1 S-duct geometric parameters. 

Parameter 𝐕𝐚𝐥𝐮𝐞 

𝜃𝑚𝑎𝑥 60° 

R 415.16 mm 

r1 66.5 mm 

r2 82 mm 

Offset 324.5 mm 

Lenght 658.47 mm 

Table 4.2 S-duct non-dimensional parameters. 

Non-dimensional Parameter 𝐕𝐚𝐥𝐮𝐞 

A2/A1 1.52 

Offset/Length 0.48 

R/r1 6.24 

Offset/d1 2.44 

 

The position of a point inside the duct is specified by the polar angle ϕ, as it is 

the angle measured from the y axis over a cross section (Fig4.3). 
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Figure 4.3 S-duct cross section and ϕ angle (1). 

4.2 Optimization Loop 

Chapter 3 introduced the optimization problem and its loop. It consists in two main 

blocks: the algorithm and the calculation model. 

The first takes as input the objective functions, depending on the variable vector, 

and it gives in output a new set of variables. The second allows to calculate the 

new objective functions value, taking as input those variables. 

The algorithm used is NSGA-II, previously described. 

The objective functions are evaluated through a fluid dynamics analysis with CFD 

Fluent solver (10). Fig.4.4 displayed the classical scheme, also applied in this 

project (7). 

 

Figure 4.4 Optimization loop scheme. 

 

The first step is the parameterization of the geometry, defining variable vector 

size and control points location. Secondly, the geometry and its mesh are created 
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in ICEM. Then, the 3D model is imported in Fluent solver, the simulation is set up 

and run. Finally, the objective functions are evaluated from simulation results, 

and provided to genetic algorithm, closing the loop. 

Great part of the process is automatized, thanks to (7)’s Python scripts. A detail 

description of the code is in Appendix B. 

The right branch of the scheme in Fig.4.4 is described in the following 

paragraphs. 

4.3 Objective functions 

As previously described, flowfield behavior in S-duct intakes is very complex and 

it depends on several factors. One of project aim is to reduce the AIP distortions 

and make the stream as uniform as possible, improving duct performances by 

changing its shape. 

There are multiplex parameters that can evaluate intake efficiency. Among them, 

it was decided to base the optimization process on total pressure losses and swirl 

angle, as in (7) project. Hereafter, there is a brief description of the mathematical 

expressions used for calculate these goals. 

4.3.1 Pressure losses 

Total pressure losses are induced by real flow behavior and, especially, by flow 

separation and vortices, as described in Chapter 2. Pressure Recovery 

parameter describes these pressure drops. It is calculated with an area-averaged 

method, later defined for swirl angle (Fig.4.5). 

Its mathematical expression is: 

 

𝑃𝑅 = 𝑃𝑡,𝑜𝑢𝑡/𝑃𝑡,𝑖𝑛      (4.5) 

 

where 𝑃𝑡,𝑜𝑢𝑡 is total pressure value at the outlet and 𝑃𝑡,𝑖𝑛 is total pressure value 

at the inlet. 
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PR coefficient should be maximized for reducing pressure losses within the duct. 

The optimization problem is designed to minimize the goals, so the first objective 

function is defined as: 

 

𝑓0 = 1 − 𝑃𝑅      (4.6) 

 

in fact, minimizing 𝑓0 is equal to minimizing pressure losses, hence maximizing 

PR value, as desired. 

4.3.2 Swirl 

The second objective function is swirl angle; the minimization of this parameter 

allows to decrease flow distortions at the duct outlet, which is also the compressor 

inlet. As for the former coefficient, swirl is calculated with an area-averaged 

process, explained through Fig.4.5. 

 

Figure 4.5 Area-averaged scheme. 

 

The outlet cross-section is divided into five circle of the same area; then, swirl 

parameter is calculated for each section and, finally, the five swirl values are 

averaged, obtaining the final AIP swirl. 

Swirl angle is defined with: 

 

∝= 𝑎𝑟𝑐𝑡𝑎𝑛(𝑉𝜃/𝑤)     (4.7) 
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where 𝑉𝜃 is the radial velocity, defined as: 

 

𝑉𝜃 = 𝑢 sin 𝜃 − 𝑣 cos 𝜃     (4.8) 

 

where u, v, and w are velocity components along the x, y, and z axis. 

So, the second objective function is the area-averaged swirl: 

 

𝑓1 =∝       (4.9) 

4.4 Parameterization 

 

The first step and one of the most important aspects of an optimization analysis 

is geometry parameterization. It should be a flexible and simple method, allowing 

efficient modification of the shape of the S-Duct. 

Within this process, the model is described by few geometric parameters 

(decision variables), not by all its points; this allows to consequently reduce 

computational costs. 

As in (7), Free-Form Deformation (FFD) method is applied. A geometry is 

surrounded by a rectangular control volume, a proper number of control points is 

chosen and put externally on the volume. If the control points move, also the 

geometry will move and will be deformed. The position of each deformed 

geometry point is described by a weighted sum of the control points position, 

thanks to Bezier functions. Mathematically: 

 

(4.10) 

 

q is the position of a deformed point, B terms are the B-spline blending function 

and P coefficients are the specific control points. 
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4.4.1 Control Points 

In this project, the number of control points, and hence the number of variables, 

was enhanced with respect to (7), (9). 

The deformation depends on 80 control points and 36 variables. 2 control points 

are located in the x direction, 4 on the y direction, and 10 on the z direction, visible 

in Fig.4.6. For simplicity, only some points are shown in the picture, with the 

corresponding numeration. 

 

Figure 4.6 Control Points. 

 

Theoretically, variables number should be 80𝑥3 = 240, but thanks to some 

simplifications and considerations, this number was reduced to 36: 

- the points cannot move in the z direction because of manufacturing 

constraints. 

- the points on the symmetry plane cannot move in the x direction, to prevent 

asymmetric flow. 

- 16 points at the inlet and outlet are fixed as a result of manufacturing 

constraints and the presence of the compressor. 

- 16 points between the inlet and outlet cannot move in the y direction in 

order to guarantee tangential conditions, and to ensure the first 

derivative’s continuity. 

Then, it was decided to further limit some of the points, because they are too far 

from duct surfaces, hence: 

- sections 3 and 4: the upper volume may move, the other points are fixed. 

- sections 5 and 6: the middle volume may move. 
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- sections 7 and 8: the lower volume may move. 

 

This new configuration was designed to more intelligently analyze the flow. It is 

also geometrically more efficient than the previous, because the deformation only 

considers control points in close proximity to the S-duct surface, and permits to 

full exploration of the S-Duct’s profile with 4 points in the y direction. 

This parameterization was used to run two simulations with 50 and 80 mm ranges 

of variation. 

4.4.2 Constraints 

In theory, control points variation is not a fixed parameter, but it was put a limit on 

it for two main reasons. 

First of all, optimized geometries can present outer bumps, which interfere with 

other geometrical constraints. This could especially happen in Distributed 

Propulsion civil applications, where the engine is embedded in the fuselage. 

 

Secondly, a previous analysis by (7) stated that a variation greater than 80 mm 

always produce solver divergence or leads to a too high time-cost flow simulation, 

due to flow complexity. 

Between 40 and 80 mm, the solver could diverge from time to time, but it is one 

of the aims project to investigate new and different geometry configurations, 

pushing the deformation to its maximum. For these reasons it was chosen 

Simulation A is set with a 50 mm variation range, while Simulation B with a 80 

mm one, as the most extreme case to analyze. Obviously, solver divergence is 

expected. 

4.5 CFD Overview 

4.5.1 Mesh description 

After importing duct geometry, mesh-generation step follows. Solving the 

continuous non-linear fluid-dynamics equations is not possible. So it is necessary 
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to approximate the domain with nodes (points), connected in a cells network, and 

the equations are solved algebraically (10). 

Mesh or discretization quality influences both time required for solving those 

equations, that results reliability. 

Briefly, there are two types of meshes: structured and unstructured mesh 

(Fig.4.7). 

The former is defined by a regular connectivity, such as hexahedra in 3D 

problems. This mesh improved solver convergence because volumes are aligned 

with streamlines, but is very difficult to build above complex domain. 

The latter is defined by an irregular connectivity, easily adaptable on complex 

geometries. Usually the cells are tetrahedral. The main problem of this mesh is 

that requires a lot of memory space. 

  

Figure 4.7 Examples of Unstructured (left) and Structured (right) mesh. 

 

As mentioned, the work in (7) is able to import .dat files for each geometry in 

ICEM and to build its corresponding mesh with an automated procedure, thanks 

to Python scripts. ICEM is controlled by a .rpl file, containing all the necessary 

steps. Automatizing the process is fundamental for optimizations problems. 

 

Baseline geometry domain was changed and simplified in order to reduce 

computing time and speed up the simulations. (Fig.4.8) 

Firstly, it was decided to simulate only half geometry, cutting the duct on its 

symmetry plane. This is possible because the flow is axisymmetric. Moreover that 

project proved how there are not relevant differences between half or entire duct. 
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Secondly, the domain was reduced to  2/3 x d1 upstream and all flow parameters 

at the distance of 2/3 x d1 were saved in a .dat file, named InletProfile. These 

conditions are used as inlet conditions for the new configuration. 

 

Figure 4.8 New geometry domain. 

 

Penin’s sensitivity study (22) stated to use an H-O hybrid mesh, as explained in 

Chapter 2. For Guglielmi’s research, it was chosen a medium mesh of 3.2 x 106 

nodes, later simplified in a mesh of 1.1 x 106 nodes. (Fig.4.9) 

 

Figure 4.9 H-O grid at AIP (left), half geometry mesh on symmetry plane (right). 

 



Chapter 4: Methodology 

44 

 

4.5.2 Fluent Setting Description 

The flow was simulated with ANSYS Fluent solver, after importing the mesh 

created before. All the settings used in this project derive from (7) analysis, 

because they gave optimal results. 

These setting are presented below: 

 

 CFD model: RANS model was applied. These equations are commonly 

used for describing turbolent flows with well-known properties. It solves 

simplified time-averaged Navier-Stokes equations, achieving considerable 

results in few time. 

 

 Air model: the flow is considered compressible, with an ideal density gas 

configuration. For describing the viscosity, Sutherland model is applied. 

 

 Turbulence: k-w SST model is set. For Delot and Penin’s considerations, 

this model is the one that better describe separate region in the duct; it 

was chosen because one of the objectives is related to pressure losses 

and boundary layer detachment. Then, compressibility effect, viscous 

heating and curvature correction were selected with this model. 

 

 Solver: Pressure-based solver was set. A flow with an inlet Mach number 

of 0.6 is considered compressible and the solver suits this inlet condition. 

The flow was solved coupling momentum and continuity equations, while, 

for the solution gradients, Green-Gauss Node-based method was used.  

 

 Initialization: Full Multi Grid (FMG) was chosen to accelerate solver 

convergence, initializing the simulations from a good solution. 

 

 Iterations: After an iteration sensitivity study, it was chosen to run all 

simulation for 1500 iterations at second order of accuracy, as a 

compromise between convergence and time-cost. The residual drops are 

about 10-6 for continuity, velocity, k, energy, omega. Moreover, massflow, 

Mach number and helicity were check during this phase. 
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 Parallel Processors: The simulations run on Astral, a cluster of parallel 

processors available at Cranfield University. In theory, one duct simulation 

takes about 50 minutes on 16 processors. 

 

 Boundary Conditions: These derives from Delot’s experiments, 

described in the table below: 

Table 4.3 Boundary Condition for the simulations. 

Boundary Conditions 

Parameter 𝐕𝐚𝐥𝐮𝐞 

Inlet total Pressure 88.744 Pa 

Inlet total Temperature 286.2 K 

Inlet static Pressure 69.575 Pa 

Outlet static Pressure 78.982 Pa 

 

From the values above, it is possible to calculate the following flow 

parameters: 

Table 4.4 Flow Parameters. 

Derived  Flow Parameters 

Parameter 𝐕𝐚𝐥𝐮𝐞 

Inlet Mach number 0.6 

Massflow 2.43 kg/s 

Outlet Mach number 0.37 

 



 



Chapter 5 

Analysis and Discussion of the 
Results 

This Chapter presents and discusses the results obtained throughout this project. 

The main tasks were flow distortions and pressure losses reductions within the 

S-duct, thanks to the use of a multi-objective optimization method, combined with 

the genetic algorithm NSGA-II. The purpose is to produce a flow as uniform as 

possible at the compressor inlet plane. 

The three-dimensional flow was simulated with ANSYS-Fluent solver. The 

objective functions of the two simulations and the baseline are presented and, 

when possible, compared between them and with former studies. Then the most 

interesting Pareto Front ducts are described in detail and related to the ones of a 

previous project. 

5.1 Baseline Analysis 

The first and most important step of a numerical simulation is to validate the 

model used, in order to make consistent the upshots and conclusions achieved. 

The baseline geometry was simulated, with ANSYS Fluent solver as previously 

described, and its results were compared with Delot’s measurements (16). 

Firstly, considering the AIP pressure recovery distribution, Fig.5.1 shows how the 

model of the thesis is coherent and suitably predicts the experimental data. 

Besides Delot measured a value of the area-averaged pressure recovery equal 

to 𝑃𝑅 = 0.9711, while the baseline carried out in this work presents a value of 

𝑃𝑅 = 0.9691, with a percentage difference of 0.2%. Therefore it can be assumed 



Chapter 5: Analysis and Discussion of the Results 

48 

 

that the pressure trends obtained in the following simulations are reliable and 

affected by a negligible error. 

 

 

 

 

Secondly, as Delot observed, flow distortion validation is more complicated 

because of the difficulty in measuring flow parameters; from literature, Penin’s 

research (22) proved how the k-w SST turbulence model, the one applied in these 

simulations, accurately predicts the location of flow separation region and the 

intensity of the two counter rotating vortices that occur in the duct. Since flow 

distortion depends on both pressure recovery and flow separation, the model is 

considered validated and verified. 

Table 5.1 includes the objective functions values obtained for the current 

baseline; these are used as reference parameters for the optimized geometries 

to evaluate the improvement achieved during the optimization process. 

 

Table 5.1 Values of the baseline objective functions. 

Baseline Results 

Pressure Recovery PR 𝒇𝟎 =  𝟏 − 𝑷𝑹 𝒇𝟏 = 𝜶 [𝒅𝒆𝒈] 

0.9691 0.03095 3.3978 

 

The following figures prove that the testing baseline is also consistent with 

Wellborn’s experiments and predictions (1). 

Fig.5.2 clearly shows flow velocity vectors on the AIP plane, with the two rotating 

vortices caused by the double bend. It can be also appreciate the symmetrical 

Figure 5. 1 Baseline PR contours comparison between: Delot experiment (left), Delot 
simulation (center) and this thesis simulation. 
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flow behavior, because, as predicted, there is no rotation on the symmetry plane 

(𝑥/𝑟 = 0). 

 

Figure 5.2 Close-up of velocity vectors at AIP.  Figure 5.3 Flow distortion contours at AIP. 

 

Fig.5.3 instead presents the intensity distribution of the swirl α for half duct, 

reminding the simplification applied in the project in Section 4. 

 

Figure 5.4 Axial velocity contours on symmetry plane. 

 

Finally, Fig.5.4 and Fig.5.5 respectively illustrate the axial component of the 

velocity and static pressure distributions on the symmetry plane; the separate 
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region is distinctly visible after the first bend and it extends for great part of the 

duct, while pressure distribution strongly changes along the entire duct. 

 

Figure 5.5 Static pressure distribution on symmetry plane. 

5.2 Results Optimization 

The main results achieved throughout the multi-objective optimization method are 

shown and described in this section. The project carries on Guglielmi’s work, 

modifying and intensifying the way in which the geometry could change. 

It is important to remind the readers some settings and parameters used in the 

analysis. Two simulations, named A and B, were performed with different values 

of the maximum variation of the control points, respectively 50 mm and 80 mm 

(𝑆𝐹 = 50 and 𝑆𝐹 = 80). The design vector is made up by 36 variables, indeed 36 

degrees of freedom, on which is based the duct deformation. The size of the 

generations was reduced from 60 to 40 individuals, mainly due to the time 

required for 3D geometries testing: the overall process, both considering ANSYS-

Fluent and Python elaborations, takes three days for just a single generation of 

40 ducts. 

Even though the correlation between the number of individuals per simulation 

and the number of variables used may not seem so adequate, the aerodynamic 
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improvements and the results achieved are considerate relevant and in agree 

with those of previous investigations. 

5.2.1 Simulation A 

Generation 0 

As mentioned before in Section 3, the NSGA-II algorithm (coded in Python) 

randomly creates the first generation, named Generation 0, in order to not over 

constrain the decisional space of the variable vector; this generation constitutes 

also the starting point for the following ones. Once all the geometries are 

available, they are run and analyzed with Fluent solver and later post processed. 

The figure below displays the objective functions of these 40 ducts, compared to 

the baseline, called Datum. 

 

Figure 5.6 Objective functions values of Generation 0 and the baseline. 

 

In Fig.5.6 are highlighted two solutions, 0_3 and 0_26, that belong to the very first 

Pareto Front and are worthy of attention. The former individual presents the best 

pressure recovery, with a value of 𝑓0 = 0.0243, equal to an improvement of 

22.44% compared to the Datum; unfortunately, its swirl coefficient (𝑓1 = 3.55°) is 

higher than the baseline of about 4.47%. On the other hand, both pressure 

recovery (𝑓0 = 0.026) and swirl (𝑓1 = 2.96°) coefficients for solution 0_3 are better 

than baseline ones, with a progress of 15.57% and 12.83% respectively. 

 



Chapter 5: Analysis and Discussion of the Results 

52 

 

Even though these geometries have the best PR and swirl angle of the whole 

Simulation A, they will not be analyzed because this thesis focuses, where 

possible, on simultaneously enhancing both objective values. Moreover these 

individuals belong to Generation 0 that is random and its results do not include 

the NSGA-II code procedure. 

 

Optimized Generations 

The following generations are generated thanks to the genetic algorithm: the 

optimization process takes as input the objective values of each individual of 

Generation 0 to create the new 40 geometries for Generation 1; as before, these 

are run in Fluent and then post processed to calculate the new objective functions 

values. These steps were repeated until Generation 8, which is the ninth and last 

generation analyzed in this work. In total Simulation A tested 360 ducts. 

 

As predicted by Guglielmi, from time to time a 𝑆𝐹 > 40 can lead to solver 

divergence; this happened in two individuals of the last generation here 

presented. This fact together with the time required for the simulations, were the 

main reasons that persuaded to interrupt the optimization process after nine 

generations. 

 

Figure 5.7 Objective functions values of Simulation A (close-up) and the baseline. 

 

Fig.5.7 shows a close-up of the whole process progression compared to the 

baseline. 
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The picture above may seem not very clear because the point-ducts are 

extremely overlaid, however the general trend of Simulation A is evident. The 

algorithm tends to reduce better and more accurately pressure losses than flow 

distortions. The Pareto Front is composed by few easily identifiable individuals, 

located in the left-bottom corner of Fig.5.7. 

Briefly, Fig.5.8 highlights those ducts and their respective generations that 

simultaneously belong to the front and better improve both objective functions. 

These are the geometries, post processed in Section 5.5, with best pressure 

recovery (5_16), best swirl distortion (1_28) and the trade-off solution (4_32). 

 

Figure 5.8 Best generations and ducts of Simulation A. 

 

Table 5.2 Comparison between the best geometries and the Datum. 

Optimal Solutions 

Individual 𝒇𝟎 =  𝟏 − 𝑷𝑹 𝒇𝟏 = 𝜶 [𝒅𝒆𝒈] 

 Value % improvement Value % improvement 

Baseline 0.03095 - 3.3978 - 

Best PR (5_16) 0.02505 + 19.03 % 3.3657 + 0.95 % 

Best swirl (1_28) 0.02673 + 13.61 % 2.9764 + 12.40 % 

Trade-off (4_32) 0.02506 + 18.56 % 3.2827 + 3.39 % 
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In Table 5.2 are summarized the results and the percentage changes of the three 

ducts compared to the Datum. Again, it is noticeable how the genetic algorithm 

allows to mainly upgrade the objective functions of about 𝑓0 = 19.03% and 𝑓1 =

12.40 %. 

To better understand the development and improvements of the optimization 

method, Fig.5.9 presents all generations in series, excluding the first one. Again 

here are highlighted the best results of Simulation A and their positions with 

respect to the Datum. 

 

Equally to Guglielmi’s analysis, the last generations (6, 7 and 8) did not upgrade 

the Pareto Front with new individuals, but the outcomes remained closer to the 

front, from a general point of view. This trend will be analyzed in details in section 

5.3. 

 

 



Chapter 5: Analysis and Discussion of the Results 

55 

 

Figure 5.9 Optimization progression shown generation by generation. 
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5.2.2  Simulation B 

Generation 0 

Following the same scheme of Simulation A, the results of the random generation 

are hereafter presented and compared with the Datum (Fig.5.10). Initially, due to 

the greater 𝑆𝐹 = 80 of control points, some geometries of Simulation B show 

better results than Simulation A. The majority of individuals present a greater 

improvement in pressure recovery coefficient than swirl angle, as happened for 

the former system. 

 

Figure 5.10 Close-up of Generation 0 in Simulation B. 

 

Through this configuration it was possible to achieve an enhancement of the 

objective functions equal to 𝑓0 = 22.63% and 𝑓1 = 12.94%. It is important to 

remember that Generation 0 do not contain the progresses of the genetic 

algorithm, so for this reason, its individuals cannot be examined. 

 

Optimized Generations 

In Fig.5.11 the whole evolution of Simulation B is displayed; it was possible to run 

the optimization just till Generation 4, so a total of 5 generations and 160 ducts 

were analyzed. The solver led to flow divergence faster than the previous 

configuration (A), but it was predictable and expected. 
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Figure 5.11 Objective functions values of Simulation B (close-up) and the baseline. 

 

From the picture above, clearly none of the geometries present an upgrading in 

swirl angle. Actually, this coefficient tends to worsen, with regard to the Datum, 

as the algorithm progresses. Nevertheless the code continues to work properly 

in reducing pressure losses, like it occurred formerly for Simulation A. 

  

Since Simulation B does not improve both goals simultaneously (indeed flow 

distortion are always higher than the baseline value) and does not reach better 

results than A, the ducts obtained from this second model will not be considered; 

only those geometries already mentioned will be examined and compared with 

the baseline. 

5.3 Observations on Simulation A 

In section 5.2.1 it was mentioned how overall the results of Simulation A keep 

getting closer to the Pareto Front and how the code improved more pressure 

recovery than swirl angle. This trend is noticeable in Fig.5.12 and Fig.5.13 where 

the mean values of the two objective functions and their standard deviations are 

displayed along the whole process. 

Visibly the mean value of the first goal 1 − 𝑃𝑅 continues to decrease during the 

optimization, while the second ∝ tends to increase (Fig.5.12). It is a further 

evidence that NSGA-II algorithm works better on reducing pressure losses than 

flow distortion; this fact depends, not only on the type of optimization method, but 
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also on the type of physical problem that it is simulating through that algorithm. 

[Appendix B] 

 

Figure 5.12 Mean values of objective functions during Simulation A. 

 

Figure 5.13 Standard deviations of objective functions during Simulation A. 

 

Fig.5.13 displays the standard deviations (SD) for both objectives during 

Simulation A. Standard deviation measures the dispersion of a set of data from 

its mean; a low SD value indicates that data are getting closer to their mean value. 

From the graphs, both standard deviations decrease, but it is possible to affirm 

that pressure losses coefficients deviate less from the mean than swirl angles do, 

as the magnitude of the former is twice lower. 

  

Both figures point out the general trend of the optimization. Due to the genetic 

algorithm, all the results tend to get nearest to each other and to be less 

dispersed, hence it is evident that NSGA-II is moving to the optimal solutions; the 
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code better recovers pressure recovery coefficient than swirl distortion, as 

previously described through simulations evolution. 

5.4 Comparison with Previous Researches 

In this section the chosen ducts belonging to the Pareto Front are compared with 

Delot experiments and with the results of a former research, carried on by 

Guglielmi (7). The outcomes are displayed in Fig.5.14 and Table 5.3. 

Both projects based the parameterization on Free Form Deformation model 

(FFD) and the evaluation of objective functions on fluid dynamics simulation, 

thanks to Fluent solver. 

 

Figure 5.14 Comparison between Pareto Fronts of a former and the current simulation. 

 

As it can be seen, the figure above presents the results in term of best PR, best 

swirl angle and the trade-off solution, with respect to their mutual baselines. The 

fronts are quite far from each other, so the new model offers the opportunity to 

investigate and explore different shapes. The outcomes of this project are less 

performing than Gugliemi’s ones; the latter gained a maximum reduction of 

pressure losses of about 45.97% and of 34.06% for swirl distortion, while the 

former respectively of 19.03% and 12.40%. Again, the improvement of pressure 

recovery coefficient is higher than the one of swirl angle. 
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Despite these data, it can be assert that the simulations run in this thesis are valid 

and notable. First of all the current work doubled the number of variables, so its 

results are more reliable and properly describe the flow within the S-duct. 

Not always a higher fidelity project brings to better values of the objective 

functions, but it gets closer to the real phenomenon of the stream. 

 

Table 5.3 Comparison between the best geometries of current and Guglielmi’s simulation. 

Optimal Solutions 

 Current Guglielmi 

 𝒇𝟎 =  𝟏 − 𝑷𝑹 𝒇𝟏 = 𝜶 [𝒅𝒆𝒈] 𝒇𝟎 =  𝟏 − 𝑷𝑹 𝒇𝟏 = 𝜶 [𝒅𝒆𝒈] 

 Value % Value % Value % Value % 

Baseline 0.03095 - 3.3978 - 0.02297 - 3.4185 - 

PR 0.02505 +19.03 3.3657 +0.95 0.01241 +45.97 2.3296 +31.85 

swirl 0.02673 +13.61 2.9764 +12.40 0.01305 +43.2 2.2542 +34.06 

Trade-off 0.02506 +18.56 3.2827 +3.39 0.01287 +43.97 2.2881 +33.07 

 

Secondly, in support of what has just been said, a comparison with Delot’s 

experiments and simulations must be done. Both projects validated the baselines 

and the model thanks to the tests at ONERA base, which carried out a 𝑃𝑅 =

0.9711; this work differs from that value by 0.21% and Guglielmi’s one by 0.61%. 

Again this fact demonstrates how this model better approximates and describes 

the real flow, and this is the reason why its results may be considered solid and 

trustworthy. 

5.5 Optimized Geometries 

This section focuses on those three geometries that present the best pressure 

recovery, best swirl angle and the trade-off solution of the project and that are 

coherent with experimental data. As mentioned, all the S-ducts here post 

processed belong to Simulation A. 
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5.5.1 Best Pressure Recovery 

It was found how solution 5_16 produces the minimum total pressure losses 

coefficient, hence the best value of the first objective function 𝑓0. 

In Fig.5.15a and Fig.5.15 are respectively displayed its pressure recovery and 

swirl distortion contours at the AIP plane (left), both compared to the baseline 

(right). 

 

Figure 5.15 a) Pressure Recovery b) Swirl Distortion of best PR solution and the Datum. 

 

The geometry gets a percentage improvement of 19.03% on pressure losses, 

with 1-PR=0.02505 value. The change, clearly visible in Fig.5.15a, is due to the 

greater uniformity in pressure distributions and to the particular shape of the 

separate regions, with a wider homogenous bottom-central area. This results at 

the AIP, which is the duct-outlet, depends on the evolution of the flow within the 

new inlet silhouette, as shown in Section 5.5.4. 

Unfortunately individual 5_16 does not provide such a refinement in flow 

distortion, in fact ∝= 3.3657 with a progress of 0.95% on the baseline value 

(Fig.5.15b), however it is noticeable a change in its profile contours: vortices are 

less intense but occupy a wider part of the duct cross-section than in the baseline. 

5.5.2 Best Flow Distortion 

The best solution, in terms of reduced flow distortion, is individual 1_28. As 

mention before, it improves the swirl angle of 13.61%, while the pressure recovery 
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of 15.57%. Distributions of these objective functions at the AIP are shown in 

Fig.5.16a and Fig.5.16b. 

 

Figure 5.16 a) Pressure Recovery b) Swirl Distortion of best flow solution and the Datum. 

 

It is important to remember that the objective functions are calculated through an 

area-average method. Even if at a first sight, duct 1_28 seems similar to the 

baseline in PR and swirl shape distributions, but the absolute values of the goals 

are distinctly reduced. Drawing a comparison also with individual 5_16 and 4_32, 

it can be seen in the contours size how the current geometry provides a smaller 

and less intense separate region, as predictable from swirl data. 

Again, duct 1_28 points out how the genetic algorithm improves more pressure 

recovery coefficient than swirl angle and how PR values of the individuals are 

more alike to each other than those of flow distortion.  

5.5.3 Trade-off Solution 

Solution 4_32 is the trade-off solution; it is an easy compromise choice between 

the two ducts analyzed above, because few individuals belong to the Pareto Front 

and decrease both objectives at the same time. 

Below are shown the pressure recovery and swirl distortion contours. As 

expected from Generation 4 chart, the improvement of 𝑓0 (18.56 %) is higher than 

the second 𝑓1 (3.39 %) in this individual. 
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Figure 5.17 a) Pressure Recovery b) Swirl Distortion of best trade-off solution and the Datum. 

 

It is also evident from Fig.5.17a and Fig. 5.17b how the AIP profiles are closer to 

those of solution 5_16 than 0_3. It has a homogeneous separate region at the 

bottom but a wider separate layer on the walls, while the vortices are less intense 

but larger than the Datum. The results of this solution are visibly in line with those 

of the other two individuals. 

5.5.4 Symmetry Plane Observations 

Hereafter are displayed the symmetry planes of the chosen geometries, their flow 

axial velocity distributions and static pressure distributions, compared to the 

baseline. As it can be seen in Fig.5.18, the new ducts present a double curvature 

on the top and a little bump on the bottom after the second bend. These changes 

in the duct profile support the reduction of flow distortion and pressure losses. 

 

Total pressure losses are strongly related with the extension of separate region. 

From the pictures above, all the optimized solutions display a smaller low velocity 

area than the baseline, in particular the smallest happens in the best PR 

individual, and a more uniform flow at the outlet; this leads to an improvement of 

the pressure recovery coefficient, as proved and expected by the simulations. 
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Figure 5.18 Axial velocity contours on symmetry plane: baseline (top left), best PR (top right), 
best swirl (bottom left) and trade-off (bottom right). 

 

Thanks to the new shapes, also the static pressure is more homogenous and 

higher in the new configurations than in the baseline (Fig.5.19). 

 

The pictures shown below demonstrate how, due to little silhouette modifications, 

noticeable improvements of the objective functions are achievable. The 

simulation carried out similar profiles, in which the upper double-bump is slightly 

unalike than the previous researches, while the bottom bump is coherent. The 

flow tends to be more uniform in terms of pressure distribution and with a 

separate region less extended along whole the duct, in particular at the AIP plane 

as desired.  
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Figure 5.19 Static pressure contours on symmetry plane: baseline (top left), best PR (top right), 
best swirl (bottom left) and trade-off (bottom right). 



 



Chapter 6 

Conclusions 

The project regarded an S-duct intake shape optimization using the NSGA-II 

genetic algorithm, to reduce flow distortions and losses at compressor inlet. 

The main objectives were to: 

 Improve geometry parameterization, increasing the variables number, in 

order to enhance project fidelity level. 

 Bring solver convergence and maximum shape variation to the limit, 

exploring different possible silhouettes and scenarios. 

 To validate and compare the results with a former study. 

 

For the thesis, Delot’s S-duct geometry was chosen and parameterized with Free 

Form Deformation method, using 36 variables. The geometry is deformed in a 

manner similar to that of former studies: inlet, outlet and also their nearby area 

were fixed as before, moreover only those volumes and the respective control 

points around the duct could move. This approach gives more importance to 

points that are nearest the duct. 

  

Thanks to previous researches, some simplification were made to reduce 

computational time: only half 3D ducts were analyzed because of flow 

symmetrical behavior, and the inlet domain was reduced. A coarse H-O mesh of 

1.1 x 106 nodes, the k-w SST turbulence model and a RANS methodology were 

applied on ANSYS Fluent to simulate the flowfield. 

The baseline geometry was compared and validated with Delot’s experiments. 
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The optimization process is coded in Python, the same used by Gugliemi and 

Chiereghin; it is made by several subroutines and scripts that allows to save time, 

automatizing great part of the loop. 

The mathematical side of this optimization is composed by NSGA-II genetic 

algorithm; Furlan’s former studies demonstrated how this algorithm is able to 

achieve quickly consistent results in aerodynamic optimization problems. The 

objective functions chosen were swirl angle and pressure recovery coefficient, 

as, in literature, these are considered the ones that most influence flow uniformity 

at AIP. 

 

Two simulations were carried out with different variation ranges, respectively 50 

and 80 mm; Simulation B stopped due to solver non-convergence, so only 

Simulation A individuals were noteworthy and showed relevant improvements in 

both objective functions. After 9 generations and 360 ducts, three geometries with 

the best pressure recovery coefficient, the best swirl angle and the trade-off were 

analyzed in detail. The first leads to a decreasing of 19.03% in pressure losses, 

while the second of 12.40% in swirl distortion, with respect to the baseline. 

All the analyzed geometries present a greater enhancement in PR than in swirl 

angle; probably this is caused either by the code either by physical nature of this 

problem. 

 

Objectives improvements depend on slight baseline shape variations; as shown 

before, the geometries present an unalike upper double-bump before the bend 

and a small bottom bump right after the bend. These shape alterations lead to a 

substantial reduction of flow separation and pressure losses not only at the outlet, 

but also in the whole duct 

 

Finally, the results were compared with the ones of a previous project. The 

outcomes of this thesis are less performing, but more in line with Delot’s 

experiments and simulations. Moreover doubling the variables number, this high 

fidelity work is more reliable and properly describe the real phenomenon of the 

flow within the S-duct. 
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The project showed satisfactorily the changes of a different kind of 

parameterization, a new geometries examination in an unlike domain region and 

the improvements achievable in aerodynamic performances of S-duct intakes.  

 

6.1 Recommendations for Future Researches 

From the outcomes obtained and the considerations made throughout this 

project, some suggestions are proposed for further studies. 

Firstly, it is recommended to enhance the number of individuals per generation. 

To run properly the simulations with a genetic algorithm and to improve the 

results, the quantity of individuals should be adequate to the variable vector size, 

at least doubled or tripled; this can lead to a better code progression. 

As mentioned, the simulations trends were to generate even more geometries 

closer to the front, but the best results were rapidly achieved thanks to the first 

generations. Proceeding a greater number of iterations is a further 

recommendation, in order to add new elements to Pareto Front and to make it 

more continuous. 

Undoubtedly a different and more accurate parameterization should be 

implemented to describe totally the flowfield behavior and analyze innovative duct 

shapes. 

 

Then, it is suggested to perform this problem with different optimization 

algorithms, judging which process is more reliable and valid in the aerodynamic 

field; actually a colleague is going to execute the same problem with Tabu 

Search, developed at Cranfield University. Moreover the analysis could present 

a combination of two different algorithms in the optimization loop: a genetic one 

to reach easily a proper Front and then a non-genetic one that converges faster 

to the optimum. 

 

Finally, different objective functions should be processed, fully concluding flow 

investigations, and experimental tests will be useful in confirming the results of 

all the projects carried on in the last years. 
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As mentioned in Chapter 2, the flow at the AIP is characterized by strong non-

uniformities that negatively affect engine performances and stability; these 

phenomena reduce compressor operating range and, in the worst cases, can 

cause surge or stall. There are several types of distortions, but those that are 

most related to this thesis are swirl and total pressure ones. 

A.1 Total pressure 

Total pressure distortions mainly depend on boundary layers separation, caused 

by S-duct shape; the flow presents wide region of low momentum that reduce 

compressor operating margin. These distortions are divided, according to their 

dimension and spatial distribution, in radial and circumferential patterns on the 

cross-sectional area, as displayed in Fig.A.1 (23); pressure non-uniformity always 

decreases engine stability range, but the most dangerous one is full-span 

distortion, as it causes the maximum loss in compressor stall pressure ratio, when 

its circumferential extension is 𝛽 = 60°, for all shaft speeds, Fig.A.2. For lower β, 

it is noticeable how the higher is shaft speed, the higher is its influence on stall 

pressure ratio. 

 

Figure A.1 Effects of total pressure distortion on compressor stability. 
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Figure A.2 Circumferential distortion extension effects on loss in stall pressure ratio.  

A.2 Swirl 

Swirls could affect the compressor in different ways, for example: 

 

I. Cross-flow swirl leads to a non-axisymmetric fan loading, especially in 

Vertical Take-Off and Landing (VTOL) applications. The advancing blades, 

which rotate in the same relative flow direction, are subjected to a counter-

rotating swirl, while the retreating blades to a co-rotating swirl. Hence the 

blades presents different loads that could cause vibrations and structural 

damages, compromising the whole engine. In Fig.A.3, it is shown how the 

engine Equilibrium Running Line is split in two for this situation. 

 

II. Swirl in general implies a deflection of velocity vector from the axial direction; 

if this deflection is sufficiently wide, it will lead to compressor blades stall. 

The stall is a phenomenon that occurs when boundary layer separates from 

blade airfoil profile (either from suction or pressure side), due to large positive 

and negative angles of attack and substantial total pressure losses arise. 
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Figure A.3 Fan Characteristic at constant RPM. 

  

Figure A.4 Rotating stall scheme. 

 

As shown in Fig.A.4, if the incident angle of relative flow is greater than 𝑖 stall 

angle, the stall appends limiting mass flow through the blades. The stream is split 

up between the adjacent passages, increasing flow incident angle at the blade 

above and leading also the latter towards stall; indeed the blade below 

experiences a reduction of the incident angle and it is pushed away from stall 

condition. This phenomenon is known as rotating stall because it propagates from 

one blade to another. In a relative reference system, the stall is moving in the 

opposite direction of blades rotation, while in an absolute reference system the 

stall has the same rotational direction of the rotor, but at half the speed. 
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Then, rotating stall can propagate itself in full span stall flow, increasing total 

pressure losses. 

Stall mechanism is dangerous for engine operations. It is an unsteady event that 

causes blades vibration and drives them into resonance, mechanically stressing 

machine structure; additionally, all non-uniformities make the formation of stalling 

cells more common, consequently reducing fan efficiency, operative margin and 

durability, as formerly said for total pressure distortions. 
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The algorithm applied and the main settings were described in Chapter 3 and 4. 

Fig.B.1 shows the overall optimization loop scheme, with Python scripts for 

NSGA-II, geometry and mesh generation, calculation model on Fluent and post 

processing. Great part of this loop is automated, except for the objective functions 

evaluation. Hereafter are presented the most important steps. 

 

Figure B.1 Optimization scheme (7). 
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 Optrun: This script is the starting point of the optimization and controls the 

entire loop. All numerical parameters are specified: number of individuals 

per generation, variables vector size, number of objective function and 

number of constraints. It also runs OptKernel and Fobjective (in 

ObjFunction_Eval) scripts. 

At the end of each generation, it updates a file .h5 that stores all the useful 

data, from decision variables, to individuals and to goal functions. 

 

 (Opt)Kernel: Here it is implemented the NSGA-II code, taking the 

objective function as input and providing the parameters for the next 

generation as output. It contains several subroutines for selection, cross-

over, mutation and crowding. 

Only once, there is a check in the number of the current iteration: if it is so, 

it switch to GeometryGen. 

 

 GeometryGen: This subroutine is made up by several Python scripts and 

produces the geometries, as .dat files, from the variable vector. For each 

individual, it creates a .rpl file and an .inp file, respectively containing 

commands for ICEM and Fluent, in order to easily generate the domain 

and process the flow, as mentioned in Chapter 4. 

A script, called WriteAstral, produces a .sub file used in the next step to 

control Astral. 

 

 Astral: The 3D S-duct simulations are run thanks to Astral cluster; it is 

controlled by a submission file .sub where there is a list of instructions: 

firstly, it creates each geometry and its mesh with .rpl file in ICEM, then it 

sets up Fluent solver with .inp file and finally it runs the simulations. 

Unfortunately, it is required to manually copy .dat .sub .rpl .inp files in an 

Astral directory for every iteration. 

Astral gives in output the essential results (AIP/sym/wall.dat) for goals 

evaluating. This is the most time-expensive step, as it takes about three 

days to process 40 ducts. 

The procedure is displayed in Fig.B.2. 
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Figure B.2 Geometry and mesh generation with .rpl and .inp files.  

 

 CUDataPro: Again, it is necessary to manually copy the results on Python 

directory; this scripts allows to post process the outgoing .dat files from 

Astral and create a set of parameters that describe the flowfield. 

 

 ObjFunction_Eval: Taking the parameters above, it calculates the 

objective functions values of each ducts. Then, it calls OptKernel that 

performs NSGA-II, generating a new variables vector; the latter is passed 

to Geometrygen, which creates new geometries, so the loop has finally 

been closed. 
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