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Abstract

La tesi si focalizza sul progetto e sull’analisi di un motore sincrono a magneti permanenti
(PM) a cinque fasi, caratterizzato da 20 cave e 18 poli. Nel design del motor è stata utilizzata
una configurazione ad avvolgimento concentrato a cave frazionarie (FSCW) con quattro strati,
al fine di mitigare le armoniche indesiderate della forza magnetomotrice (MMF) e ottenere
un motore con bassa oscillazione di coppia (∆τ = 1.31%).

Il focus principale della tesi è la progettazione di un motore adatto per applicazioni fault-
tolerant. Sono stati studiati tre tipi distinti di guasti - circuito aperto di una fase, circuito aperto
di due fasi non adiacenti e circuito aperto di due fasi adiacenti - attraverso simulazioni e analisi.
I risultati sperimentali rivelano un deterioramento delle prestazioni del motore all’aumentare
della gravità del guasto, come ad esempio un significativo incremento dell’oscillazione di
coppia dovuta all’assenza di una o più fasi. Nonostante il deterioramento delle prestazioni, il
motore dimostra di poter funzionare continuamente in condizioni di guasto. Tuttavia, sono
necessari miglioramenti significativi sia nel design che nelle strategie di controllo per ulteriori
miglioramenti delle prestazioni.

La ricerca esamina anche le prestazioni del motore sotto l’iniezione di terza armonica di
corrente (THI) e analizza gli impatti dei vari scenari di guasto. I risultati mostrano un
aumento della coppia del +0.6% per la modalità rms e del +15.2% in modalità picco con THI.
Tuttavia, l’aumento della coppia è bilanciato da un aumento del +15.9% nelle perdite joule.
Il confronto con un motore ad avvolgimento concentrato con 20 cave, 4 poli e cinque fasi
rivela una prestazione superiore del motore FSCW in condizioni nominali, con una coppia
media più elevata e una minore oscillazione di coppia. Tuttavia, il motore ad avvolgimento
concentrato possiede prestazioni migliori del motore FSCW in funzionamento con THI.

In generale, anche se l’avvolgimento concentrato offre una migliore prestazione con THI,
l’aumento della coppia ottenibile non è sostanziale. Pertanto, il FSCW emerge come una
soluzione valida per applicazioni multifase e fault-tolerant, con una densità di coppia superiore
a quattro volte quella della macchina con avvolgimento concentrato.





1 Introduction

Electric motors play a pivotal role across diverse domains, including industrial, commercial,
and residential sectors, by efficiently converting electrical energy into mechanical power
through electromagnetic field interactions. Within the realm of electric motors, a diverse
range of types and configurations exits in order to meet the specific needs and performance
demands. Common types of electric motors include both DC motors, divided into brushed
and brushless variants, and AC motors, which include induction and synchronous motors,
with synchronous motors incorporating externally excited configurations or non-excited
configurations, such as permanent magnet or reluctance motor.

Traditionally, AC motors have been categorized based on the number of phases, with single-
phase and three-phase configurations being prevalent. However, the widespread adoption of
power electronic converters has elevated three-phase AC motors as the predominant solution
for variable-speed applications. Nonetheless, in the last decades the potential of multiphase
machines has emerged as a promising alternative [34].

Multiphase motors represent a significant advancement in electric motor technology, offering
enhanced performance and versatility compared to traditional single-phase or three-phase
motors. These motors utilize more than three phases of electrical power, enabling to achieve
superior performance compared to their single-phase or three-phase counterparts. Their ability
to distribute power across multiple phases allows for smoother operation, reduced harmonic
content, and improved control, making them well-suited for a wide range of applications,
including aerospace, automotive, renewable energy, and industrial automation [7, 15].

In recent years, advancements in semiconductor technology, control algorithms, and motor
design have further bolstered the performance and applicability of multiphase motors. These
advancements have enabled multiphase motors to deliver higher torque output, smoother
operation, and superior fault tolerance, making them an attractive choice for demanding
applications where reliability and performance are crucial [20].

1.1 Thesis objective

The objective of this thesis is to design, analyze, and simulate a multiphase motor for a
fault-tolerant test bench. Specifically, the primary aim is to assess the fault-tolerant capability
of the motor under three different scenarios: one-phase open-circuit fault, open-circuit fault
of two nonadjacent phases and open circuit of two adjacent phases. To achieve the primary
objective of the thesis, an exhaustive analysis of various motor typologies is conducted,
encompassing considerations such as the number of phases and winding configuration.

In addition, to ensure an effective and simple control strategy, the machine modeling for each
of these fault scenarios has to be carried out.
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1 Introduction

Furthermore, the thesis aims to simulate and validate torque enhancement through third
harmonic injection. A significant emphasis is also placed on comparing different types of
machine windings in order to evaluate their respective performances. This comparative
analysis, conducted using specialized electromagnetic simulation software, aims to determine
which winding configuration offers superior performance in terms of efficiency, torque, and
fault tolerance.

1.2 Thesis structure

The thesis is organized into several distinct sections, each focusing on a specific aspect of the
motor analysis.

Initially, the thesis provides an introduction to multiphase machines, offering an in-depth
exploration of their advantages, drawbacks, and diverse topologies.

Following this introduction, the thesis undertakes a rigorous investigation into the fundamental
theoretical aspects of a specific type of machine, namely the fractional slot concentrated
winding machine (FSCW). Subsequently, it delves into the analysis and formulation of
optimization criteria during the pre-design process, aiming to maximize performance and
efficiency.

After establishing the theoretical background, the machine modeling is carried out, wherein a
mathematical approach is utilised in order to construct an accurate representations of the
motor. The objective of the machine modeling is to enable a robust control strategy that can
effectively manage the machine’s operation, including fault conditions, while also ensuring
simplicity of implementation.

Subsequently, the thesis advances to the development of the machine’s design. Utilizing rep-
resentative empirical formulas that capture internal phenomena, it conducts an approximate
preliminary sizing of the machine.

Finally, the thesis culminates with the simulation and analysis of results, where the efficacy
and validity of the proposed solutions are rigorously evaluated, including comparisons with
theoretical results.
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2 Multiphase machines

The origins of multiphase variable-speed drives can be traced back to the late 1960s, with the
introduction of inverter-fed AC drives. At that time, the operation of three-phase inverters
in a six-step mode led to the challenge of low-frequency torque ripple. Therefore, increasing
the number of machine phases emerged as a viable solution to mitigate this issue, leading
to significant advancements in the development of five-phase and six-phase variable-speed
drives supplied by both voltage source and current source inverters. Indeed, the increase
in the number of phases of the machine appeared as the best solution to the problem, as
the lowest frequency torque ripple harmonic in an m-phase machine is caused by the time
harmonics of the supply of the order 2m ± 1 and its frequency is 2m times higher than the
supply frequency [34].

While the significance of multiphase machines in addressing torque ripple has somewhat
diminished with the advent of pulse-width modulation (PWM) techniques in voltage-source
inverters, other historical advantages remain relevant, such as improved fault tolerance and
more effective power distribution across the phases [34].

2.1 Types of multiphase machines

Multiphase machines share fundamental characteristics with their three-phase counterparts.
The types of multiphase machines parallel those of three-phase machines, including induction
and synchronous variants. Typically, three-phase machines employ a distributed stator winding
to achieve near-sinusoidal MMF distribution and are powered by sinusoidal currents. Despite
efforts to achieve sinusoidal MMF distribution, some spatial harmonics are unavoidable even
in multiphase machines [34].

In terms of stator winding design, multiphase machines offer greater flexibility. This versatility
allows for either near-sinusoidal or quasi-rectangular MMF distributions through the use of
distributed or concentrated windings across all types of AC machines. However, achieving a
near-sinusoidal MMF distribution becomes progressively challenging as the number of phases
increases. Indeed near-sinusoidal MMF distribution requires use of more than one slot per
pole per phase (q > 1). For instance, a five-phase four-pole machine requires a minimum of
40 slots, while a seven-phase four-pole machine needs at least 56 slots. Machines attempting
to achieve near-sinusoidal MMF distribution by adjusting the number of slots are referred to
as machines with sinusoidal MMF [34].

Both concentrated and distributed stator winding designs exhibit strong magnetic coupling
between stator phases. In permanent magnet synchronous machines, a concentrated winding
design (q = 1) yields behavior similar to the one of brushless DC machines. In addition to the
two previously mentioned stator winding designs, a third type has emerged as a viable option
in the last decade, the so-called modular or fractional-slot concentrated-winding (FSCW)

5



2 Multiphase machines

design, mainly used in conjunction with PM machines. Modular or FSCW designs aim to
minimize stator phase coupling, enhancing fault tolerance. Spatial flux distribution in these
machines, including brushless DC machines, is shaped by magnets, requiring stator current
supply to match spatial flux distribution for optimal performance.

In designing the stator winding of an m-phase machine, a symmetrical multiphase system is
achieved when the spatial displacement between any two consecutive stator phases equals
α = 2π/m. This symmetry is always present when the number of phases is an odd prime
number. However, when the number of phases is an even number or an odd number that is not
a prime number, a different approach to stator winding is necessary. This involves creating
k windings, each with a subphases, where m = a · k. Typically, a equals 3 (although 5 is
also possible) and k = {2,3,4,5 . . . }. In such cases, the spatial displacement between the first
phases of the two consecutive subphase windings is α = π/m, resulting in an asymmetrical
distribution of magnetic winding axes in the machine’s cross-section, leading to what are
known as asymmetrical multiphase machines. In such multiphase machines, there are k
neutral points, typically isolated for operational reasons [34].

2.2 Advantages and disadvantages of multiphase machines

The advantages of multiphase machines over their three-phase counterparts vary depending
on the stator winding design. However, some benefits apply universally across all stator
winding configurations [34]:

• lower per phase current compared to the three-phase counterpart. Indeed, by distributing
power across a greater number of inverter legs, a lower-rated semiconductor switches
can be utilised for a given machine’s output power;

• enhanced fault tolerance capability due to the larger number of phases, ensuring
independent flux and torque control;

• despite the number of phases, only two currents are required for the flux/torque control
of an AC machine;

• low torque ripple due to increase of number of phases m.

On the other hand, multiphase machines necessitate the utilization of customized m-phase
inverters tailored for variable-speed applications. While these inverters play a crucial role in
driving multiphase motors efficiently, the integration of power electronics introduces additional
complexity, limited standardization, and higher costs.

Additionally, there is limited standardization in the design and implementation of multiphase
motors compared to more established single-phase and three-phase motor technologies.

Furthermore, machines with sinusoidal winding distribution offer additional advantages,
including lower harmonic content of the MMF leading to reduction in noise emitted by the
machine and improved efficiency compared to a three-phase machine and the independent
control of multimotor multiphase drive systems using a single power electronic converter
supply [34].

Regarding FSCW (Fractional-Slot Concentrated Winding) machines, notable benefits in
choosing this design configuration are:

6
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• high power density and elevated efficiency;

• reduced end-winding lengths, leading to a decrease in the axial length of the machine
and copper losses. This reduction occurs because the coil pitch yq is set to unity [36];

• reduced mutual coupling between phases;

• even lower torque ripple thanks to a low periodicity between the number of slots and
the pole pairs;

• high slot fill factor can be achieved with specific coil winding technology;

• improved flux-weakening capabilities;

However, their benefits come at a cost of the generation of excessive rotor losses, particularly
during high-speed operation, due to large spatial harmonic components [7].

7
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2.3 Selection of the number of phase

Given the advantages described in Section 2.2, namely high power density, lower torque ripple,
and superior fault-tolerant capabilities observed in FSCW motors compared to counterparts
with concentrated and distributed windings, the FSCW configuration has been considered as
a viable configuration to be analyzed in this work. Additionally, the concentrated winding
motor has been chosen as a comparative model to evaluate the performance of the FSCW
configuration.

When selecting the number of phases, it is crucial to emphasize that an increase in the
number of phases results in a substantial reduction of torque ripple, thereby enhancing motor
performance [24, 25]. Furthermore, due to the improved distribution of winding, joule losses
decrease proportionally with the increase in the number of phases [49], as depicted in Table
2.1. However, even though the magnetic motive force (MMF) space harmonic content of
a five-or seven-phase winding is lower than that of a three-phase winding, the rotor loss
reduction achieved by increasing the number of phases is lower than expected [27].

In addition, it is essential to acknowledge that this comes with an increase in the complexity
of the machine and, despite the fact that the space harmonic content of the MMF is lower
in a five-phase or seven-phase winding compared to a three-phase winding, the reduction
in rotor losses achieved by increasing the number of phases in a FSCW configuration is
not significantly lower [27]. Hence, a decision has been made to opt for a five-phase motor
configuration, as it guarantees a good balance between simplicity and improved performance
compared to its three-phase counterpart.

Table 2.1 – Reduction in stator Joule loss by increasing the number of phases m

Phase number m 5 6 9 12 15 ∞
Joule loss reduction (%) 5.6 6.7 7.9 8.3 8.5 8.8

Table 2.1 presents the reductions in stator joule losses achievable with multiphase windings
compared to an equivalent machine wound with a three-phase winding of the same pitch. The
reduction in Joule losses is attributed to the fact that machines with an increasing number
of phases benefit from the reduction in the amplitude of higher harmonic orders, thereby
decreasing the joule losses in the stator.
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3 Theoretical background

This chapter provides a comprehensive examination of the MMF distribution for a Fractional-
Slot Concentrated Winding. Additionally, it elaborates the methodology for evaluating the
winding factor and delineates the necessary requirements for a feasible winding configura-
tion.

3.1 Theory of Fractional slots concentrated winding

Fractional slot winding occurs when the number of slots per pole and per phase q is not equal
to a whole number and therefore it can be expressed as a fraction between two non divisible
natural numbers [14]:

q = Q

2p · m
= z

n
(3.1)

Two types of fractional slot winding exist, one where q > 1 and the other where q < 1. The
former generally leads to a distributed winding with short-pitch coils, and as such it will not
be viewed in more detail in this work. When q < 1, if the coil pitch calculated in terms of the
number of slots is yq = Q/2p is close to unity, meaning that q ≈ 1/m, this results in tooth
coils spanning precisely one tooth between two slots. Consequently, this type of tooth coil
winding is named fractional slot concentrated winding (FSCW) and is often used in machines
with a Permanent Magnet Rotor [14, 38].

It’s important to emphasize that when q < 1 and q ̸≈ 1/m, this results in distributed winding
systems, instead of fractional slot concentrated winding systems. For instance, in a winding
with m = 7, Q = 21 and 2p = 4, the number of slots per pole and per phase q = 3/4
leads to a double-layer fractional distributed slot distributed winding, while, in a winding
with m = 7, Q = 7 and 2p = 6, the number of slots per pole and per phase is equal to
q = 1/6 ≈ 1/m = 1/7 and therefore this leads to a double-layer fractional slot concentrated
winding [14].

In general fractional slot concentrated winding can be design with a single-layer or a double-
layer, although more advanced designs exist [5, 18]. Single-layer fractional slot concentrated
winding translates in having only one coil in each slot, while double-layer fractional slot
concentrated winding translates in having two coils in each slot. It is always possible to
achieve double-layer winding once the winding feasibility is met. Conversely, single-layer
winding is only possible according to the some constraints [26].

Certain fractional slots concentrated winding configurations, like q = z/m or q = 1/m, where
the denominator n is an integer multiple of m, are less common due to resulting asymmetries
in the magnetic field. This asymmetry leads to varying impedance and current consumption
in each phase of a symmetric multi-phase system [14].
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3 Theoretical background

In fractional slot concentrated winding, the fundamental harmonic that is able to couple
with the flux generated by the permanent magnets of the rotor and therefore is producing
a torque, is the synchronous or main harmonic. Conversely from distributed winding, the
synchronous harmonic is equal to the number of pole pairs ν ′ = p. In FSCW, specific numbers
of harmonics are present based on the winding system. Both even and odd harmonics can
exist due to the unique geometric arrangement and distribution of slots and coils [38].

3.1.1 Analysis of MMF distribution in FSCW Stators

In FSCW machine the harmonic wave contained in the field excitation curve with the longest
wavelength is generally not the working harmonic and is therefore often referred not as the
fundamental harmonic wave but as the longest sub-harmonic wave. In order to generate a
constant torque, the pole number and the speed of the working harmonic must match the
pole number and the speed of the rotor field. All harmonics that do not have the same pole
number and speed of the rotor field are responsible for producing iron losses and cogging
torque. The harmonic waves faster than the working harmonic ν < p are called ’sub-harmonic
waves’, while the harmonic waves with shorter wavelengths ν > p are called ’harmonics’.
Generally the sub-harmonic waves are the predominant cause of high iron losses in FSCW
machine. [14]

The velocity, or in better word the spinning frequency, of a generic MMF harmonic wave is
directly proportional to the order of the harmonic. Consequently, sub-harmonics exhibit lower
frequencies compared to the main harmonic, although their amplitudes increase as the order
of the sub-harmonic decreases, leading to higher rotor losses [43]. This is due to the fact that
the amplitude of the MMF is inversely proportional to the harmonic order. For instance, in
the case of a three-phase FSCW machine with a 9-slot 8-pole configuration and a double-layer
winding, the sub-harmonics present are the 1st and the 2nd, while the main harmonic is the
4th. The MMF amplitude of the 1st harmonic is divided by 1, and that of the 2nd by 2, while
the 4th is divided by 4. Therefore, when everything is normalized with respect to the main
harmonic (4th), and the winding factor is the same for all harmonics, the amplitude of the
first sub-harmonic is four times higher than the main one. The sub-harmonics typically have
lower winding factors than the main harmonic, which partially mitigates the issue.

In FSCW, each coil of the stator is wound around a single tooth, resulting in a winding span
of 2π

Q . When considering only a single coil of the machine winding, it can be demonstrated
that the spatial MMF distribution assumes the shape of a square pulse with a width equal to
2π/Q mechanical radians. This distribution, depicted in Fig. 3.1, varies over time and space
and can be represented by the following equation:

M(θs,t) =


(
1 − 1

Q

)
ncij under the tooth

− 1
Qncij elsewhere

(3.2)

Where M represents the Magnetomotive Force in Ampere-turns, θs denotes the stator
peripheral angle in mechanical radians, nc is the number of turns in the coil, and ij represents
the instantaneous current in Ampere flowing through the phase j winding where the coil is
located [22]. The spatial MMF distribution of a single coil is depicted in Fig. 3.1 and the
symbol ⊙ indicates a flow of current into the paper, while the symbol ⊗ indicates a flow of
current out of the paper.
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2π
t− 1

Qncij

(
1 − 1

Q

)
ncij

2π
Q

θs(rad)

M(θs,t)

Figure 3.1 – MMF distribution of a single coil.

The spatial distribution of Magnetomotive Force (MMF) for a phase winding is determined
by superimposing the Magnetomotive Forces of all its coils. Because of the periodic nature
of winding, the MMF for each phase winding consists of periodic square pulses and can be
represented by a Fourier series of harmonics [22].

Every winding system is composed of t primary windings, where the periodicity of the winding
system is determined by the greatest common divisor of Q and p, denoted as:

t = GCD(Q,p) (3.3)

Each set of t identical sub-windings encompasses Q′ = Q/t slots and p′ = p/t pole pairs.
However, in fractional-slot windings, this is not always holds true. There may be instances
where the sequence of the number of coils per coil group within the primary winding repeats
twice, but with opposite directions of rotation[38]. For instance, considering a FSCW three-
phase machine with a 12-slot and 10-pole configuration, utilizing a double-layer winding.
In this case, since t = 1, it is possible to demonstrate there is only one primary winding.
However, there are two identical sub-windings with different coil polarity.

Since the primary winding spans 2π/t mechanical radians within the stator, a coil pair in the
primary winding is defined as two coils displaced by π/t within the stator. The polarities of
the coils determines the resultant Magnetomotive Force of the coil pair. Indeed, if the coils
have the same polarity, the spatial MMF distribution of the coil pair has only odd number
harmonics and is the same as the one depicted in Fig. 3.2. The Fourier series describing this
spatial MMF distribution contains only sinusoidal waves, because it is an odd function and is
represented solely by sine functions in the Fourier series expansion:

Mcoil(θs,t) =
∞∑

ν=1,3,5,...

4ncij

νπ
sin
(

νπ

Q

)
cos(νθs − ωt) (3.4)

The magnitude of the MMF a generic harmonic order ν for a single coil pair is equal to:

M̂coil,ν = 4ncij

νπ
sin
(

νπ

Q

)
(3.5)
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2π
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)
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Q
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Q

π
t

θs(rad)

M(θs,t)

Figure 3.2 – MMF distribution of a coil pair with same polarity

Conversely, if the polarities of the coils are opposite, the MMF produced by the coil pair
is the same as represented in Fig. 3.3. The Fourier series describing the MMF of coils with
opposite polarities consists of cosine waves. However, its representation is not straightforward.
Therefore an analytical equation is not provided.

It is possible to evaluate the harmonic content of a the MMF produced by a m-phase
motor with FSCW and Q number of slots and 2p number of poles [23]. For instance, by
superimposing the effects of each coil in a winding system with 20 slots, 18 poles, 4 layers,
and five phases, it is possible to evaluate the distribution of the MMF produced by the
winding itself, as depicted in Fig. 6.15a. After that, it’s possible to analyze the signal via
Fourier transformation.

It is important to note that analytical formulas are available for specific groups of FSCW
machines, based on the fraction number (3.1) discussed previously [22].

It is therefore possible to obtain the analytical description of the MMF distribution as a
function of spatial coordinate θs and time t, thus it is possible to write:

Mwinding(θs, t) =
∞∑

ν=1
M̂winding,ν cos(νθs) cos(ωt) (3.6)

Where M̂winding,ν is the amplitude of the ν-th harmonic in the Fourier series and it is equal
to:

M̂winding,ν = 2
√

2
π

NI

ν
kw,ν (3.7)

The amplitude of the ν-th harmonic depends on the rms value of the injected current in
the stator winding I. The total sum of the MMF wave produced by a m-phase system for a
generic harmonic order ν is:

Mν(θs,t) =
∞∑

ν=1

√
2m

π

NI

ν
kw,ν cos(νθs − ωt) (3.8)
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t
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2π
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t
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Figure 3.3 – MMF distribution of a coil pair with opposite polarity.

The amplitude of the resultant MMF is:

M̂ν =
√

2m

π

NI

ν
kw,ν (3.9)

3.1.2 Winding factor

The winding factor kw of a winding system is the ratio between the magnitude of the vector
of the electromotive force (EMF) of the analyzed machine and the magnitude of the vector
in the case concentrated winding, therefore with a full-pitch winding and q = 1. The winding
factor converts a winding originally distributed along the circumference with Ns turns into
a concentrated winding with kwNs effective turns [14]. Several methods exist in order the
evaluate the winding factor. For instance, it is possible to draw the star of slot of the winding
and evaluate the winding factor as the ratio of the vector sum of the EMF, produced by
the fed-in current coils, and the sum of the magnitude of the vectors [10]. Another viable
method is to evaluate the winding factor via Fourier analysis of the Magneto motive force.
Additionally, a novel matrix-based technique can be employed to evaluate the winding factor.
A detailed explanation of this method is provided subsequently.

The electromotive force and torque produced by a machine are intricately linked to the
winding factor. Consequently, a primary objective during the design phase is to maximize
the winding factor value, in order to ensures high performance of the machine.
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3 Theoretical background

Figure 3.4 – Analytical distribution of MMF for a 20-slots, 18-poles, 4-layer, five-phase machine

Star of slot

The star of slot serves as a powerful tool for visualizing and analyzing the winding system
of electric motors. It is a graphical representation used to depict the phasors of the main
harmonic of the electromotive force (EMF) induced in each individual conductor or coil side
within the stator slots of an electric motor. Utilizing the star of slots enables the selection of
the optimal coil pitch and the determination of factors such as the distribution factor and
pitch factor [12].

1
2

3

4

5

6

7

8

9

αph

Figure 3.5 – Star of slot of a 3-phase, 9 slots and 8 poles winding with a double-layer.

The star of slot is characterized by Q/t spokes, each formed by t phasors, where Q is the
number of slots and t is the electrical periodicity of the machine. The angle between EMF
phasors of two slots is given by αe

s = pαs, where αs represents the slot angle in mechanical
radians. Additionally, the angle between two adjacent spokes is equal to:

αph = 2πt

Q
(3.10)

Once the graphical representation of the star of slots is created, it is possible to divide the
entire circumference into different sectors. The number of sectors depends on the value of
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3.1 Theory of Fractional slots concentrated winding

m, accounting for both positive and negative sectors of a phase. Thus, the total number of
sectors equals 2m. Between each positive and negative phase sector there is an angle of 180◦.
Once the sectors are delineated on the star of slots, it becomes feasible to position a phase
coil within a specific slot based on whether the spoke falls within the range of the phase
sector.
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Figure 3.6 – Star of slot for 20-slot 4-pole, five-phase machine

For instance, the star of slots of a 20-slot 4-pole, five-phase machine is depicted in Fig. 3.6.
Here, it is evident that in slots 1 and 11, the positive coils of phase-a are placed, while in slots
6 and 16, the positive coils of phase-a are located. By employing this method and applying
it to all phase sectors, the complete winding arrangement of the machine is derived. It is
noteworthy to mention that while the aforementioned method holds true for distributed and
concentrated windings, it is not the case for Fractional Slot Concentrated Windings FSCW.
With FSCW, the allocation of the coils remains the same, but it is necessary to return the
coil after one slot, since the coil pitch is equal to one. Therefore, if the positive phase coil of
phase-a is placed in slot 1, its return must be placed in slot 2. Conversely, if the negative
phase coil of phase-a is placed in slot 6, its return must be placed in slot 7.

3.1.3 Single-layer winding

The single-layer winding is a special sub-case of the double-layer winding. It is feasible to
convert a double-layer to a single-layer winding. When the following criteria are fulfilled:

• the coil pitch yq has to be odd;

• if the machine periodicity t is even, the transformation is always possible. However,
when the machine periodicity t is odd, the transformation is feasible only if the number
of spokes Q/t is even [10].

With even periodicity, it can be demonstrated that there are t phasors per spoke, alternating
between even and odd numbers. Consequently, one phasor per spoke (e.g., the even-numbered
phasor) can be removed, while the other (e.g., the odd-numbered phasor) is doubled. This
adjustment results in a new star of slots configuration along with the final winding arrangement.
Despite the changes, the winding factor of the main harmonic remains unchanged from the
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3 Theoretical background

double-layer winding, while the machine’s periodicity, corresponding to the number of phasors
per spoke, is halved.

On the other hand, when the winding has odd periodicity and an even number of spokes Q/t,
each phase possesses an even number of spokes, ensuring an equal distribution of phasors
over the North and South poles. In this configuration, it can be demonstrated that adjacent
phasors are alternately odd-numbered and even-numbered. By removing the even-numbered
phasors, each phase remains balanced thereby achieving the single-layer winding configuration.
In this case, the main winding factor of the single-layer winding increases compared to that
of the double-layer winding, as each phase exhibit a lower number of phasors out of phase.
Despite this change, the machine periodicity remains unchanged [10].

For a single-layer winding system, evaluating the winding factor is not straightforward, as
there is no existing analytical equation to perform this evaluation. It is therefore necessary
to use a different approach. In [39] a general method to calculate the winding factor by
only considering stator parameters has been developed. The method is based on the matrix
representation of a winding and requires the knowledge of the number of slots Q, phases m
and layers nlayer. Additionally, it requires knowledge of the spatial distribution of a single
phase, which refers to how the coils of that phase are arranged within the stator winding.

In order to utilize the approach described in [39], the connection matrix Dw with dimension
of m × Q · nlayer has to be calculated.

Dw = 1
nlayer

×


D1,1

wk
D1,2

wk
. . . D1,Qs

wk

D2,1
wk

D2,2
wk

. . . D2,Qs
wk...

... . . . ...
Dm,1

wk
Dm,2

wk
. . . Dm,Qs

wk

 (3.11)

The single element Di,u
wk

represents the connection status between phase i and u-th slot, where
i = {1, . . . , m}, u = {1, . . . , Q} and k = {1, . . . , nlayer}. The value of each element Di,u

wk
is

equal to:

• 0 if there is no conductor of phase i in the u-th slot and k-th layer;

• +1 if there is a forward conductor of phase i in the u-th slot and k-th layer (⊙);

• −1 if there is a return conductor of phase i in the u-th slot and k-th layer (⊗).

In the matrix-based approach, only the first row is considered of Dw, therefore a simplified
matrix of a generic phase is used, since the phases are balanced.

The connecting matrix can be constructed using the corresponding star of slots, and the
entire process can be automated.

For instance, the star of slot for the main harmonic of a 3-phase 12 slots and 10 poles winding
with single-layer is displayed in Fig. 3.5. By observing which number of spokes are contained
in the phase sectors, it is possible to allocate the right value to the element in the connection
matrix.

Dw = 1
1 ×

 1 −1 0 0 0 0 −1 1 0 0 0 0
0 0 −1 1 0 0 0 0 1 −1 0 0
0 0 0 0 1 −1 0 0 0 0 −1 1

 (3.12)
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Figure 3.7 – Star of slot for 12-slot 10-pole, three-phase machine

Conversely, the connection matrix in the case of a double-layer winding is as follows:

Dw = 1
2×

 1 1 −1 0 0 0 0 0 0 0 0 1
0 0 0 1 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 0

−1 −1 1 0 0 0 0 0 0 0 0 −1
0 0 0 −1 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 0


(3.13)

Afterwards, the winding factor is computed following the steps described in [39].

3.1.4 Double-layer winding

For a double-layer winding, both the matrix-based approach described previously and existing
analytical equations are viable methods for calculating the winding factor [38].

In a FSCW system with double-layer, it is possible to evaluate the total winding factor as
the product of the pitch factor kp,ν and the distribution factor kd,ν . The general formula for
evaluating the winding factor is as follows [38]:

kw,ν = kp,νkd,ν = sin
(

ν

p

yq

yp

π

2

) sin
(

ν
ν∗ qag̃ π

Q′

)
− cos

(
ν
ν∗ g̃π

)
sin
(

ν
ν∗ qbg̃

π
Q′

)
Q′

m sin
(

ν
ν∗ g̃ π

Q′

) (3.14)

Where:

• yp = Q/2p is the pole pitch computed in number of slots and yq is the coil pitch, also
computed in number of slots. Usually it is equal to the unity in FSCW.

• t = G.C.D. (Q, p) is the periodicity of the machine.
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• Q′ = Q/t and p′ = p/t are the numbers of slots and poles of the primary winding,
respectively.

• g∗ is the smallest natural number for which the following expression is equal to an
integer number.

g̃ = 1 + g∗Q′

p′ (3.15)

• qa and qb are the integers that are adjacent to the value of Q′/2m.

• ν∗ = t which is the smallest order number of the harmonics generated by or induced
within a single phase.

If ν/p is an odd number the formula (3.14) can be simplified in (3.16).

kw,ν = sin
(

ν

p

y

yp

π

2

) sin
(

νqπ
pyp2

)
nq sin

(
νπ

pnyp2

) (3.16)

As previously mentioned in 3.1, when considering FSCW, only specific numbers of harmonic
can be present. The following formula (3.17) evaluates the number of harmonics for a m-phase
fractional slot concentrated winding:

ν̃ = p

(
1 + 2mg

n

)
(3.17)

Where n is the denominator of the equation (3.1) while g is an integer number equal to
g = {0, ± 1, ±2, ±3, . . .}.
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3.1.5 Four-layer winding

Increasing the number of layers in a slot from 2 to 4 to achieve a four-layer winding is always
feasible. However, the adoption of a four-layer winding may not be advantageous for every
combination of slots and poles. In order to be convenient, it is necessary that each phase
includes at least two spokes within a single sector of the star of slots. Since the number of
spokes per phase is Q/(mt) and each phase has two sectors, the adoption of a four-layer
winding becomes both feasible and convenient when:

Q

2mt
> 1 (3.18)

When the formula 3.18 is not satisfied, the adoption of the 4-layer winding is unfavorable.
This is due to the reduction of the main winding factor and the absence of mitigation of
sub-harmonic waves.
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(b) Winding layout of phase A

Figure 3.8 – 20-slot 18-pole, 2-layer winding, five-phase machine

In the star of slot for the 4-layer winding, the phases sectors are double the ones of the star
of slot for the double-layer, as depicted in Fig. 3.9a. The first positive and negative sectors
are denoted by (+) and (−), respectively, while the second positive and negative sectors are
denoted by (++) and (−−), respectively. The second sector is shifted of the angle αsh4. In
order to maximize the winding factor of the main harmonic ν ′ = p, the shifting angle αsh4
has to minimized [5].

Two different approaches are present when choosing the shifting angle αsh4, based on whether
Q/t is even or odd:

• Q/t even: when the ratio Q/t is an even number, the number of spokes in the positive
and negative sectors is the same and therefore all positive and negative sectors of all
phases contain the same number of spokes. In order to maximize the winding factor
the shift angle has to be equal to the angle between two spokes, therefore αsh4 = αph.

• Q/t odd: when Q/t is an odd number, the number of spokes in the positive sectors
differs by 1 with respect to the spokes number in the negative sector. Therefore it is
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(b) Winding layout of phase A

Figure 3.9 – 20-slot 18-pole, 4-layer winding, five-phase machine

possible to have two different shifting angles. The first possibility is to have a shifting
angle equal to the angle between two spokes, hence αsh4 = αph. With this configuration
the number of spokes in the first positive sector (+) is equal to the number of spokes in
the second positive sector (++). The same is true also for the two negative sectors of
the same phase.
On the other hand, it is possible to have a shifting angle equal to half the angle between
two spokes, hence αsh4 = αph/2. Conversely, with this configuration the number of
spokes in the first positive sector (+) is not equal to the number of spokes in second
positive sector (++). The same is true also for the two negative sectors of the same
phase. Compared to the first one, this second case maximize the winding factor of the
main harmonic ν ′ = p, since the spokes of the coils connected in series are closer respect
to the previous case.

For a 4-layer winding, the formula express in (3.14) is no longer capable of evaluating the
winding factor, since it is valid only for a 2-layer winding. It is therefore necessary to use the
matrix-based approach described in Sec. 3.1.3.

In Fig. 3.10 the full winding layout for 20-slot 18-pole, 4-layer winding, five-phase machine is
depicted.

3.1.6 Winding feasibility

In a FSCW m-phase winding only certain combinations of slots Q and poles 2p are feasible.
In order to obtain a symmetric fractional slot concentrated winding system, n must not be
divisible by the number of phases m, as previously discussed in Section 3.1. Therefore the
following expression can be obtained [30]:

2p

n
= integer, with n ̸= {m, 2m, 3m,...} (3.19)

20



3.1 Theory of Fractional slots concentrated winding

1

2

3

4
56

7

8

9

10

11

12

13

14
15 16

17

18

19

20

Figure 3.10 – Winding layout, 20-slot 18-pole, 4-layer winding, five-phase machine

3.1.7 Cogging torque

In PMs motor the interaction between the permanent magnets of the rotor and the anisotropy,
due to the presence of the teeth of the slotting, generate an undesired torque, named cogging
torque. The selection of a specific combination of slots and poles has a direct impact on
the cogging torque. It is possible to evaluate the number of periods of the cogging torque
waveform during a rotation of a slot pitch via the following formula:

Np = 2p

GCD (Q, 2p) (3.20)

By maximizing Np its is possible to minimize the cogging torque [8].

Magnetic pull

In electrical machines, radial forces along the air gap arise from interactions between magnets,
coils current, and steel in the stator and rotor. Uneven distribution of these forces can
lead to unbalanced rotating magnetic pulling forces, leading to the formation of noise and
vibration in the machine. In order to address this, machines can be designed with force
asymmetry. Alternatively, a simpler approach involves selecting pole and slot combinations
with periodicities in the winding layout. This compensates opposing forces, preventing a
net radial force. The machine winding periodicity t = GCD(Q,p) evaluates the number of
repeated pattern in the winding. When t > 1 a balanced distribution of magnetic forces
is achieved [22]. Nevertheless, not all winding with a winding periodicity equal to the
unit have unbalanced distribution of magnetic forces. Indeed, it is possible to achieve a
machine without an unbalanced magnetic pull if the phase disposition of the winding is
symmetrical t′ = GCD(Q,p) > 1. In other words, the winding has to have symmetries of the
coil arrangements without considering the current sign.
For instance, with a three-phase motor having 12 slots and 10 poles, the winding periodicity
is equal to t = GCD(Q,p) = 1. However the phase disposition is symmetrical since t′ =
GCD(Q,p) = 2, therefore the radial forces form both halves of the motor compensate each
other.
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3 Theoretical background

3.2 Optimal slot-pole number combination

In order to obtain a high performing winding system, the winding factor of the main harmonic
has to be sufficiently high. It is possible to achieve a high winding factor if the coil span is as
close as possible to the pole pitch yp = 2π/2p. In fractional slot concentrated winding the coil
span is equal to the coil pitch yq = 2π/Q, therefore the following expression can be derived
[30]:

Q ≈ 2p (3.21)

By rearranging the expression (3.21) it is possible to obtain that q ≈ 1/m, as previously
described in Section 3.1.

It is possible to identify the optimal number of slots and poles combinations by evaluating
the winding factor kw,ν for the synchronous main harmonic (ν ′ = p) and by selecting only
the winding-systems with q ≈ 1/m.

3.2.1 Winding Performance Index

In a m-phase motor, with m > 5, it is possible to enhance the torque via stator Harmonic
Current Injection (HCI) [7, 34]. Therefore, when selecting the optimal slot-pole number
combination it is essential also to evaluate the winding factor kw,ν of the third main harmonic
ν = 3ν ′ = 3p.

In order to identify the optimal winding configuration, it is essential to introduce the Winding
Performance Index (WPI) [22]. The WPI serves as an evaluative measure for determining
the most efficient winding layout in relation to its torque density. In three-phase machines,
optimal torque production is achieved by selecting the winding layout characterized by the
highest main harmonic winding factor kw,p. However, this optimization process becomes
considerably more intricate in multiphase machines employing the stator Harmonic Current
Injection technique for torque enhancement. The average torque for a m-phase, 2p poles
PM synchronous symmetrical machine, with m odd prime number, operating under the HCI
technique is equal to:

Tdq = m

2 p
∑

ν

iq,νλpm,ν (3.22)

where the harmonic order is ν = 1,3, . . . and ν < m, while the harmonic current of ν-th order
in the q-axis is iq,ν . The magnitude ratio of the ν-th harmonic current to the fundamental
is typically equal to the corresponding ratio of the phase-to-neutral back-EMF harmonics.
Therefore:

iq,ν

iq,1
= eν

e1
∝ kw,νpBg,ν

kw,pBg,1
(3.23)

The distribution of PM flux density in the air-gap is directly influenced by the rotor topology.
In this work, only machines with surface-mounted permanent magnets are analyzed, therefore
the PM flux density exhibits a square wave form. Assuming a slot-less stator, the rectangular
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Figure 3.11 – Flux density distribution

PM flux density depicted in Fig. 3.11 can be mathematically represented using a Fourier
series as:

Bpm(t, θs) =
∞∑

ν=1,3,5...

B̂pm,ν cos(νθs − ωt) (3.24)

where B̂pm,ν is the magnitude of the ν-th spatial harmonic component of the PM flux density,
given by:

B̂pm,ν = 4Bpm
νπ

sin (ναe
m) (3.25)

An electrical angle of the magnet of 2αe
m = 180◦ has been assumed to maximize both the

fundamental and the third harmonic, for HCI operation. Therefore, the ratio of the third
harmonic flux density to the fundamental flux is equal to:

B̂pm,3

B̂pm,1
=

4Bpm
π sin (3αe

m)
4Bpm

3π sin (αe
m)

= 1
3 (3.26)

Since the flux linkage of the ν-th harmonic λ̂ν is also proportional to the winding factor kw,ν

and to the peak flux density B̂pm,ν , the winding performance index can be defined as:

WPI =
m−2∑
ν=1

(
kw,νp

kw,p

Bmax,ν

Bmax,1

)2

(3.27)

An investigation is conducted to determine the best slot-pole configurations for 5-phase
machines with 4-layer winding. Specifically, configurations with a number of slots Q < 25
and with a number of poles 2p < 28 are investigated. The performance of the winding is
quantified by the Winding Performance Index, hence it relies on the values of the winding
factors of the first and third harmonics.

In [1, 42] a comparative analysis of different slot and pole combinations for a five-phase
FSCW machine suggests that increasing the number of rotor poles positively influences the
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3 Theoretical background

efficiency and torque density of the machine. However, this is achieved at the expense of
an increase in the dc-link voltage requirement. Notably, the 20-slot/14-pole combination
demonstrates superior flux distribution and lower core losses. Conversely, the 20-slot/18-pole
combination exhibits lower torque ripple, both under healthy operating conditions and in
fault scenarios.

Table 3.1 – Optimal slot/pole combination for 5-phase 4-layer winding

2p Q q t t′ Np kw,p kw,3p WPI

4 5 1/4 1 1 4 0.559 0.559 0.3472

6 5 1/6 1 1 6 0.559 0.559 0.3472

8 10 1/4 2 2 4 0.559 0.559 0.3472

12 10 1/6 2 2 6 0.559 0.559 0.3472
15 1/4 3 3 4 0.559 0.559 0.3472

14 15 3/14 1 1 14 0.9321 0.4878 0.8952

16 15 3/16 1 1 16 0.9321 0.4878 0.8952
20 1/4 4 4 4 0.559 0.559 0.3472

18 15 1/6 3 3 6 0.559 0.559 0.3472
20 2/9 1 2 9 0.9635 0.7074 0.9839

20 25 1/4 5 5 4 0.559 0.559 0.3472

22 20 2/11 1 2 11 0.9635 0.7074 0.9839
25 5/22 1 1 22 0.9497 0.6156 0.944

24 20 1/6 4 4 6 0.559 0.559 0.3472
25 5/24 1 1 24 0.9649 0.7162 0.988

26 20 2/13 1 2 13 0.8692 0.1242 0.7572
25 5/26 1 1 26 0.9649 0.7162 0.988

28 25 5/28 1 1 28 0.9497 0.6156 0.944

From the Table 3.1, it is possible to demonstrate that for a 5-phase FSCW system with 4
layers, two optimal configurations exist: 20 slots and 18 poles, and 20 slots and 22 poles.
Both configurations are feasible and exhibit balanced distribution of magnetic forces, as well
as very high values of the winding factor for the first and third harmonics.

It is possible to compare the harmonic content of the MMF and the winding factor of the
20-slot and 18-pole configuration, as depicted in Fig. 3.12a and Fig. 3.12b. From the results,
it is evident that as the number of layers increases, so does the performance of the machine,
as indicated by the lower harmonic content in the MMF. However, it is worth noting that
there is a slight decrease in the winding factor of the main harmonic with the increase in the
number of layers. Nevertheless, this decrease is counterbalanced by an even higher decrease
in the winding factor for sub-harmonic and non-main harmonic waves.
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3.2 Optimal slot-pole number combination

(a) MMF magnitude (b) Winding factor

Figure 3.12 – Comparison of single-layer (1L), double-layer (2L) and four-layer winding (4L) for 20-slots,
18-poles, five-phase machine

In the appendix, tables containing values of the winding factor for three-phase, five-phase
and seven-phase windings with double and 4-layer winding are provided.
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4 Design

In this chapter, the desing process of a general machine is outlined. Subsequently, a specific
design approach is undertaken for two distinct configurations: firstly, the design of a FSCW
five-phase machine with a 4-layer winding, with 20 slots and 18 poles; and secondly, the
design of a concentrated winding machine with 20 slots and 4 poles.

4.1 Idealized electric machine

In order to perform a preliminary design of the machine some simplification have to be
made. The real electric machine is therefore schematized with a simplified model, where the
anisotropies, the non-linearities of the ferromagnetic material, and all the parameters not
strictly necessary disappear, as depicted in Fig. 4.1b. For instance, the permeability of the
iron is considered equal to µFe = ∞ [12].

ias

ics

ibs

ias

ics

ibs

De

Q

(a) Real machine

θm

r

θs

θr

Ks(θs)

Bs(θr)

Ds

(b) Idealized machine

Figure 4.1 – 20-slot 18-pole, 4-layer winding, five-phase machine

The rotor becomes a simple cylinder for which the air gap is smooth. The angular position of
the rotor relative to the stator is indicated by θm. The angular coordinate referred to the
stator axis is indicated by θs. The angular coordinate referred to the rotor axis is indicated
by θr.

The rotor is tasked with producing a magnetic induction field in the air gap. The rotor is
responsible for generating a magnetic flux in the air gap. A sinusoidal distribution of flux in
the air gap, centered on the rotor axis, is assumed, where:

Bg(θr) = B̂g cos(θr) (4.1)
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The distribution has radial direction, positive value when the induction vector points from
the rotor to the stator.

The total current in the stator winding is schematized by a linear distribution of current on
the inner circumference of the stator. This distribution is also referred to as electrical load.
In the stator reference frame, it is indicated by:

Ks(θs) = K̂s cos(θs − αi) (4.2)

The angle αi represents the phase of the current. The positive sign indicates current from the
sheet towards the reader ⊙, while negative sing indicates current from the reader towards
the sheet ⊗.

The peak electric load is given by:

K̂s = mkwNsÎs
πDs

(4.3)

where m is the number of phase, ks the winding factor, Ns the number of conductors per
phase, Ds the inner stator diameter while Îs is the peak stator current.

It is possible to refer both the flux distribution and the electric distribution to the same
reference frame, therefore obtaining:

Bg(θs) = B̂g cos(θs − θm) (4.4)

with θs = θr + θm.

4.1.1 Electromagnetic force density

The current density Ks(θs) and the magnetic flux density Bg(θs) are perpendicular to each
other. Applying the Lorentz force, the electromagnetic force density fem(θs) is obtained, with
units of N/m2.

fem(θs) = Ks(θs)Bg(θs) (4.5)
= K̂s cos(θs − αi)B̂g cos(θs − θm) (4.6)
= K̂sB̂g [cos(θs − αi) cos(θs − θm)] (4.7)

= K̂sB̂g
2 [cos(2θs − αi − θm) + cos(θm − αi)] (4.8)

The developed average force density is given by:

< fem > = 1
2π

2π∫
0

f(θs)dθs

= K̂sB̂g
4π

2π∫
0

[cos(2θs − αi − θm) + cos(θm − αi)] dθs
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4.1 Idealized electric machine

The first term in the integral is a periodic quantity, so its average value is zero. The second
term is a constant with respect to the integration variable and can be taken out of the integral
sign. Therefore the following value is obtained:

< fem >= K̂sB̂g
2 cos(θm − αi)

The maximum value of the force density is found when cos(θm − αi) = 1, or when θm = αi.
With the notation adopted, this corresponds to having the electrical load distribution produced
by the stator superimposed on the magnetic induction distribution produced by the rotor
[12].

4.1.2 Electromagnetic torque

The electromagnetic torque is obtained by multiplying the force density by the air-gap surface
area, and then by the inner radius of the stator, resulting in:

Tem = π

4 D2
s LstkK̂sB̂g (4.9)

where Lstk is the axial length of the machine.

The equation (4.9) is the fundamental relationship for the design of rotating electrical
machines. It relates:

• the electromechanical torque of the machine, which is usually a design specification;

• the required volume, measured at the air gap, where the electromagnetic conversion
takes place;

• the two loads of the machine: the magnetic load B̂g and the electrical load K̂s.

It is observed that the dimensions of the machine are dependent on the torque it must
generate. There is no dependency on the rotational speed, and consequently, not on the power
either. Machines with the same power rating may exhibit vastly different sizes if they operate
at different speeds.

Furthermore, it is observed that the machine’s dimensions become smaller as the magnetic
and electrical loads increase. However, an increase in these loads is accompanied by higher
losses, necessitating an improvement in the cooling system accordingly [9].
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4.2 Design specifications

Since the motor is intended for use in a test bench, a relative low-power motor has been
designed to meet general operational requirements. The design parameters have been selected
with the aim of achieving efficiency and cost-effectiveness without specific constraints. The
design specifications for the PM synchronous motor are arbitrarily chosen and are summarized
in Table 4.1.

Description Symbol Value Unit

Power Pn 10 kW
Speed n 1000 rpm
Frequency f 150 Hz
Voltage Vn 400 V
Overload current IOL 1.25In A
Number of phase m 5 -
Number of slot Q 20 -
Number of pole 2p 18 -

Table 4.1 – Design specifications

4.2.1 Preliminary calculations

The design for a general motor is based on the value of the output nominal torque TN. The
nominal speed of the motor in rad/s is equal to:

ωm = ωe
m
p

= 2πf

p
= 104.72 rad/s (4.10)

The nominal torque is equal to:

TN = PN

ωm
= 95.5 Nm (4.11)

Regarding the winding connection, a star connection has been chosen in order to avoid the
circulation of 5-th harmonic currents when the motor is fed by the 5-phase inverter. The
winding voltage, considering a star voltage of V = 325 V and considering a drop voltage of
∆V = 5% due to restive component, results in E = 309 V.

4.2.2 Considerations on the permanent magnet

The magnet used for the PMs is sintered neodymium (NeFeB) magnet N42H. The specification
data from the magnet data sheet A.2 are summarized in Table 4.2. The reference temperature
is set equal to Tref = 20 ◦C.

The relative permeability of the permanent magnet is the ratio of the residual magnetic flux
density and the intrinsic coercivity field:

µrec = B∗
rem

µ0H∗
cB

= 1.057 (4.12)

30



4.2 Design specifications

Description Symbol Value Unit

Residual magnetic flux density B∗
rem 1.3 T

Coercivity Field H∗
cB 979 kA/m

Intrinsic Coercivity Field H∗
cJ 1353 kA/m

Maximum Energy Density BH∗
max 330 kJ/m3

Temperature Coefficient for B∗
rem ∆Brem/∆T -0.12 %/K

Temperature Coefficient for H∗
cJ ∆HcJ/∆T -0.57 %/K

Maximum Temperature Tmax 150 ◦C
Electrical Resistivity ρ∗

pm 0.150 Ω m

Table 4.2 – Permanent magnet specification

For the permanent magnet, data are calculated at the working temperature, which can be
cautiously assumed to be close to Tw = 120◦. Therefore, by defining the thermal gradient
as ∆T = Tw − Tref, it is possible to evaluate the residual magnetic flux density at working
temperature Tw as:

Brem = B∗
rem

(
1 + ∆Brem

∆T
(Tw − Tref)

)
= 1.144 T (4.13)

The correspondent coercivity field at the working temperature is therefore equal to:

HcB = Brem
µ0µrec

= 861.3 kA/m (4.14)

The magnetic field at the knee is estimated from the value of the intrinsic coercivity field
HcJ and results in the following:

|Hknee| ≈ HcJ = H∗
cJ

(
1 + ∆HcJ

∆T
(Tw − Tref)

)
= 581.8 kA/m (4.15)

The corresponded flux density at the knee point is:

Bknee = Brem + µrecµ0Hknee = 0.371 T (4.16)

In order to continue the design process, it is necessary to evaluate the air gap flux density B̂g.
The relationship linking the magnetic flux density at the air gap Bg and the residual magnetic
flux density of the magnet Brem with the geometry of the air gap g′′ and the thickness of the
magnet tm is as follows:

Bg
Brem

= 1
1 + µrecg′′

tm

(4.17)

By observing (4.17), it becomes apparent that excessively increasing the thickness of the
magnet tm relative to the air gap g′′ offers minimal advantages, as depicted in Fig. 4.2.
Beyond a certain ratio, the incremental gain in magnetic flux density is negligible. Therefore,
a good approach is to select the air gap flux density with a balance between flux density
magnitude Bg and magnet thickness tm. This ensures optimal performance without over
sizing the magnet.
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Figure 4.2 – Flux density ratio Bg/Brem as a function of the magnet width tm/(µrecg
′′)

Therefore, is advantageous to adopt an air gap flux density in the follwing range:

Bg0 ≈ (0.75 − 0.8)Brem (4.18)

Since the motor has to be used in conjunction with the third harmonic, a cautionary value of
Bg = 0.75 · Brem is chosen. Therefore the air gap flux density is equal to:

Bg = 0.75 · Brem = 0.858 T (4.19)

From the demagnetization curve of the magnet, the flux density corresponds to:

Hm = Bpm − Brem
µrecµ0

= −215.3 kA/m (4.20)

where Bpm ≈ Bg.

In order to avoid irreversible demagnetization of the magnets, it is required to stay away from
the the knee of the characteristic of demagnetization, even when the motor is working at the
overloaded point. A safety margin of ksic = 2 is chosen at the nominal operating point, when
the motor is supplied with the rated current In. When the motor is fed with the overload
current IOL the safety margin is equal to k′

sic = 1.25. It is possible to define ∆Hn as the
field variation due to the nominal load, ∆HOL as the field variation due to the overload, and
∆Hsmagn as the magnetic field variation that leads to the demagnetization of the magnet,
since the knee of the magnetization characteristic is reached. In other words, the distance
between no load operation and irreversible demagnetization is divided into four parts. It is
possible to define the margin coefficient as:

ksic = ∆Hsmagn
∆Hn

(4.21)

The field variation that leads to the demagnetization of the magnet is:

∆Hsmagn = Hknee − |Hm| = 366.5 kA/m (4.22)
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Using equation (4.21), it is possible to evaluate the field variation due to the nominal load:

∆Hn = ∆Hsmagn
ksic

= 146.6 kA/m (4.23)

At this point is possible to evaluate the flux density variation at the air gap due to the
armature reaction.

∆B = µrecµ0∆Hn = 0.195 T (4.24)

Sizing of the magnet

In this subsection the electric load K̂s, the interior diameter of the stator, and the thickness of
the magnet are calculated. The air gap is set to g = 0.5 + 0.3 = 0.8 mm, considering the teeth
to magnets distance and the carbon fiber composite sleeve thickness. Then, precautionary
Carter coefficient and no load saturation coefficient are assumed equal to kcart = 1.05 and
ksat = 1.15, respectively. Therefore a figurative air gap of g′′ = kcartksatg = 0.966 mm is
obtained. It is possible to evaluate the thickness of the magnet by using the formula in
(4.17):

tm = µrecg
′′

Brem
Bg

− 1
= 3.05 mm (4.25)

In section 3.2.1 the coverage of a single magnet over the pole pitch τp has been assumed
equal to 2αe

m = 180◦. Therefore the mechanical angle of the single permanent magnet is
αm = 180/p = 20◦. Considering only the flux generated by the fundamental harmonic,
therefore the magnetic flux density at the air gap is:

B̂g,1 = 4
π

Bg sin αe
m = 1.092 T (4.26)

The the air gap density of the third harmonic component is equal to:

B̂g,3 = 4
3π

Bg sin(3αe
m) = 0.34 T (4.27)

4.2.3 Sizing estimation

Utilizing the equation (4.9) it is possible to express the specific torque of a generic motor
as a function of the geometrical values Ds, Lstk, of the peak electric load K̂s and the peak
magnetic flux density at the air gap B̂g.

TN = π

4 D2
s LstkB̂gK̂s (4.28)

In FSCW machine it’s advantageous to have a larger stator inner diameter Ds and a reduced
stack length Lstk, since it minimizes the length of the winding and therefore the copper losses.
By setting the ratio between the inner diameter of the stator Ds and the axial length of the
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stack Lstk equal to Lstk/Ds = 0.4, and by expressing the variation of magnetic flux density
at the air gap due to the armature effect as

∆B = µ0
K̂sDs

2p

1
g′′ + tm

µrec

(4.29)

it is possible to build a system of three equations:

TN = π
4 D2LstkB̂gK̂s

∆B = µ0
K̂sDs

2p
1

g′′+ tm
µrec

Lstk
Ds

= 0.4

(4.30)

The system final results are: 

Ds = 160 mm

Lstk = 64.5 mm

K̂s = 67.4 kA/m

(4.31)

In this specific case, K̂s has a relative high value but it is still in the suggested range of:

K̂s = 30 − 100kA/m (4.32)

4.2.4 Stator design

Since the number of slots is a fix parameter, it is possible to evaluate the tooth pitch:

ps = πDs
Q

= 25.13 mm (4.33)

The maximum magnetic flux density at the air gap due to the interaction between the nominal
current and the permanent magnet is equal to:

Bmax = Bg + ∆B = 1.053 T (4.34)

With a deliberately set value of magnetic flux density in the tooth of Bt = 1.65 T and an iron
package factor of kpack = 0.98, it is possible with the Gauss theorem to evaluate the tooth
width:

wt = ps
Bmax

Btkpack
= 16 mm (4.35)

The peak fundamental flux per pole is equal to:

Φ̂p = B̂g
DsLstkkpack

p
= 1.252 mWb (4.36)
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Then, since the value of the winding voltage is equal to E ≈ 310 V, it is possible to estimate
the number of conductors per phase:

Ns = E
π√
2kwΦpf

≈ 772 (4.37)

The number of conductors per phase is set to Ns = 768, in order not to have fractional values.
Considering the winding factor equal to kw = 0.9635, the induced voltage is the equal to:

E = π√
2

kwΦpfNs = 308.7 V (4.38)

Therefore it is possible to evaluate the nominal current by using the definition of peak electric
loading (4.3).

In = K̂s√
2

πDs
mkwNs

= 6.48 A (4.39)

By choosing npp = 1 parallel path, the number of effective conductors in a slot is:

Nc = Nsmnpp
Q

= 192 (4.40)

The number of effective conductors in a slot is defined also as Nc = nlayernturn, where
nlayer = 4 is the number of the layer in the winding and nturn = 48 is the number of turn
in a coil. Assuming a stator current density equal to Js = 5.5 A/mm2, the section of the
conductor is equal to:

Sc = In/npp
Js

= 1.178 mm2 (4.41)

Therefore the section occupied by the copper is:

SCu = NcSc = 226.2 mm2 (4.42)

In [3], a novel core structure called joint-lapped core is introduced for a permanent magnet
motor. This innovative manufacturing method allows the core to be easily deformed into a
shape conducive to winding, enabling precise wire alignment and achieving high winding fill
factor kfill. Therefore in FSCW it is possible to achieve winding fill factor of kfill = 0.75. As a
consequence, the utilization of this method enables to reach high efficiency in FSCW.

It is possible then to evaluate the slot area as:

Sslot = SCu
kfill

= 301.6 mm2 (4.43)

The dimensions of the slot can be approximated by considering it as a trapezoid. A general
and indicative equation for calculating the height of the trapezoidal surface is utilized:

h2
s +

(
Ds − wt

Q

π

)
hs −

(
Sslot

Q

π

)
= 0 (4.44)

The result of the calculations is hs = 24.25 mm. The slot geometrical results are summarized
in Table 4.3.
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Table 4.3 – Dimensions of the slot

Description Symbol Value Unit

Slot height hs 24.25 mm
Tooth width wt 16 mm
Slot opening width wso 1.6 mm
Slot opening height hso 1.2 mm
Wedge height hwed 2.2 mm

wt

hso

hwed

hs

wso

Figure 4.3 – Slot of FSCW machine

The flux per pole at the air gap surface is equal to:

Φp = Bg
πDs
2p

Lstkkpack = 1.514 mWb (4.45)

The flux in the back iron is equal to half the flux at the air gap surface, therefore Φbi = Φp/2.
By assuming a flux density in the back iron equal to Bbi = 1.6 T, the height of the back iron
is equal to:

h′
bi = Φbi

BbiLstkkpack
= 7.5 mm (4.46)

Since he slot of the machine possesses a squared shape [3], the slot height does not maintain a
constant value. Therefore the overall distance from the end of the tooth to the outer diameter
is hbi = 9.25 mm. Then it is possible to calculate the stator outer diameter as:

De = Ds + 2hs + 2hbi = 227 mm (4.47)

Since the stator current generates a high pole flux density, it is feasible to incorporate iron-free
segments in the rotor. This modification not only reduces the amount of iron used in the
machine but also optimizes iron utilization, leading to improved efficiency. For simplicity, the
part of the motor between the rotor diameter and the iron-free segments is referred to as the
circular crown. Essentially, it serves the same purpose as the back iron. The height of the
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circular crown hcrown between the rotor diameter and the iron-free segments is determined
by imposing an average flux density of Bcrown = 0.8 T.

hcrown = Φbi
BcrownLstkkpack

= 15 mm (4.48)

The peak fundamental concatenated flux of the permanent magnet is equal to the peak
fundamental flux per pole Φ̂p multiplied by the effective number of conductors per phase
kw,1Ns/2, resulting in:

Λp = Λm = kw,p
Ns
2 Φ̂p = 0.463 Vs (4.49)

By evaluating the torque via the d − q formula:

T = 5
2pΛpmÎN = 95.47 Nm (4.50)

it can be observed that the design of the machine meets the previously determined require-
ments.

The Table 4.5 is provided in order to summarize the design results obtained for the FSCW
motor.

Table 4.4 – Variables summary for FSCW 20-slot 18-pole, five-phase motor

Description Symbol Value Unit

Power Pn 10 kW
Speed n 1000 rpm
Frequency f 150 Hz
Voltage Vn 400 V
Nominal current In 6.48 A
Number of phase m 5 -
Number of slot Q 20 -
Number of pole 2p 18 -
Air gap length g 0.8 mm
Stator inner diameter Ds 160 mm
Stator outer diameter De 227 mm
Stack length Lstk 64.5 mm
Slot height hs 24.25 mm
Tooth width wt 16 mm
Slot opening width wso 1.6 mm
Slot opening height hso 1.2 mm
Wedge height hwed 2.2 mm

4.2.5 Concentrated winding design

Following the previous design process for the FSCW motor featuring 20 slots and 18 poles
described in Section 4.2.3, a motor with 20 slots and 4 poles can be designed. This motor
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utilizes concentrated winding and maintains identical specifications to its predecessor. Notably,
the winding fill factor assumed for calculations deviates from that of the FSCW, adopting a
standard value of kfill = 0.35. Presented below is a table summarizing the machine data.

Table 4.5 – Variables summary for concentrated winding 20-slot 4-pole, five-phase motor

Description Symbol Value Unit

Power Pn 10 kW
Speed n 1000 rpm
Frequency f 33.333 Hz
Voltage Vn 400 V
Nominal current In 6.45 A
Number of phase m 5 -
Number of slot Q 20 -
Number of pole 2p 4 -
Air gap length g 0.8 mm
Stator inner diameter Ds 130 mm
Stator outer diameter De 237 mm
Stack length Lstk 260 mm
Slot height hs 27 mm
Tooth width wt 13 mm
Slot opening width wso 2.5 mm
Slot opening height hso 2 mm
Wedge height hwed 3.75 mm

The power density of the 20-slot, 4-pole machine with concentrated winding is noticeably
lower compared to that of the 20-slot, 18-pole FSCW (Fractional Slot Concentrated Winding)
machine. Specifically, the power density of the FSCW machine is more than 4 times higher
than that of the concentrated winding, to be precise, 4.4 times higher. The notable difference in
power density can be attributed to the FSCW design’s capability to accommodate a greater
number of poles, thereby necessitating a reduced air gap surface to achieve comparable
torque output. Furthermore, the diminished flux per pole characteristic of FSCW machines
contributes to a reduction in back iron height.
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In this chapter, the modeling of the control system is conducted. A generalization of the
methodology to model an m-phase machine is performed, covering also faulty cases. Addi-
tionally, the control strategies for the machine under normal operating conditions, focusing
on Maximum Torque Per Ampere (MTPA) and Third Harmonic Injection (THI), are ex-
plored. The latter strategy, Third Harmonic Injection (THI), is specifically aimed at torque
enhancement.

5.1 Modeling

When modeling a multiphase machine, a mathematical transformation is applied to the
physical model, ensuring that the number of variables remains consistent before and after
the transformation. This transformation results in m new stator current components for an
m-phase machine.

In machines with sinusoidal-field distribution, standard modeling assumptions are applied,
resulting in only the first harmonic of inductance terms existing in the phase-variable
model. The Clarke’s decoupling transformation produces a set of m equations. Among these
equations, the first pair, α − β, is identical to the corresponding equations for a three-phase
machine. The last equation, or the last two equations for even phase numbers, corresponds
to the zero-sequence equation, similarly to a three-phase machine. In between, there are
(m − 3)/2 pairs of equations (or (m − 4)/2 for even number of phases), introducing (m − 3)/2
pairs of new variables known as x − y components. Conceptually, the form of these x − y
equations resembles the zero-sequence component, since the impedance for x − y stator
current components essentially reflects the stator winding leakage impedance. Assuming the
machine is supplied with purely sinusoidal voltages and the field is sinusoidal as well, no x − y
voltage components are present. Consequently, this absence extends to the stator current
x − y components as well [34].

Decoupling transformation matrices are available also for asymmetrical multiphase machines,
leading to similar results for symmetrical machines. In the unique scenario where an m-phase
winding is formed by employing k individual subphase windings, each with k isolated neutral
points, the total number of equations and variables decreases to (m − k) after transformation.
This reduction occurs since zero-sequence components are unable to flow in any of the
star-connected k windings.

For concentrated winding machines, the initial physical-variable model differs, necessitating
the inclusion of higher harmonics in the inductance terms. Decoupling transformation results
in (m − 1)/2 pairs of equations, which are then subject to rotational transformation to obtain
the final d − q model.
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5 Modeling and control

Conversely, for FSCW permanent magnet synchronous machines, the modeling closely follows
the approach used for machines with sinusoidal field distribution, expect for the absence of
mutual inductance terms within the stator winding due to the winding design [34].

5.2 Five-phase machine modeling

In a generic symmetrical m-phase machine, it is always possible to simplify its representation
by employing a system of m concentrated windings distributed spatially at intervals of γ = 2π

m
radians. In figure 5.1 the simplified model of a five-phase machine is provided, where the
displacement between two phases is equal to γ = 2π

5 .

a
γ

b

γ

c

γ

d

γ

e

γ

Figure 5.1 – Simplified five-phase machine model

Each simplified phase winding j of the machine can be mathematically expressed as the
summation of the voltage drop due to the winding resistance Rjij and the rate of change of
flux linkage with respect to time dλj

dt , as formulated in equation (5.1).

vj = Rjij + dλj

dt
(5.1)

Where λj(ij) = Lj(ij)ij is the flux linkage of the j-th phase winding and the variation of
flux with respect to time is the induced emf: dλj

dt = ej .

Hence, for a five-phase machine, with phase winding spatially shifted of γ = 2π
5 , it is possible

to write the following expression:

vas = Rasias + dλas
dt

(5.2)

vbs = Rbsibs + dλbs
dt

(5.3)

vcs = Rcsics + dλcs
dt

(5.4)

vds = Rdsids + dλds
dt

(5.5)

ves = Resies + dλes
dt

(5.6)

40



5.2 Five-phase machine modeling

In permanent magnet synchronous motor, if the effect of the saturation is neglected, the
phase flux λj can alternatively be expressed as:

λj = λpm + λji (5.7)

where λji is the contribute given by the self and mutual inductance, respectively Ljj and Mjk.
For instance, for the phase a the following expression can be written:

λai = Laaia + Mabib + Macic + Madid + Maeie (5.8)

Given the star connection of the machine, it follows that the summation of the five currents
equals zero ia + ib + ic + id + ie = 0. It is reasonable to assume that the mutual and self
inductance are equal for every phase, given the motor’s isotropic nature, therefore Ljj = Ls
and Mjk = M . Moreover it is possible to rearrange λai as:

λai = (Ls − M)ia (5.9)

Adopting a matrix notation of the expressions in (5.6), the 5-phase system is represented
as:

Vs = Rs · Is + dΛs
dt

(5.10)

where flux matrix Λs is equal to:

Λs = Lss · Is (5.11)

The vector of currents, voltages and fluxes are represented as:

Is = [ias,ibs,ics,ids,ies] (5.12)

Vs = [vas,vbs,vcs,vds,ves] (5.13)

Λs = [λas,λbs,λcs,λds,λes] (5.14)

The matrix Rs is a n × n diagonal matrix containing the values of each phases. Since it is
reasonable to assume that the phase resistance Rj is uniform across all phases, leading to the
simplification where Rj = Rs for every phase, the resistance matrix can be written as:

Rs =


Rs 0 0 0 0
0 Rs 0 0 0
0 0 Rs 0 0
0 0 0 Rs 0
0 0 0 0 Rs

 (5.15)

Due to conservation of energy, Lss is a symmetrical matrix:

Lss =


Laa Mab Mac Mad Mae
Mba Lbb Mbc Mbd Mbe
Mca Mcb Lcc Mcd Mce
Mda Mdb Mdc Ldd Mde
Mea Meb Mec Med Lee

 (5.16)
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Adopting the same logic used to obtain (5.9), it becomes feasible to reformulate the inductance
matrix as:

Lss =


Ls M M M M
M Ls M M M
M M Ls M M
M M M Ls M
M M M M Ls

 (5.17)

When modeling the concentrated winding machine and the FSCW machine, both the funda-
mental and third harmonic components of the winding functions are considered. Therefore, it
is possible to express the Fourier series of the winding function for phase j as [41]:

Nj(φ) = 4
π

Ns
2p

(
cos(φ) − 1

3 cos(3φ)
)

= Ns,1 + Ns,3 (5.18)

The self Ls and mutual M inductances of the stator winding phases can be computed by
using the corresponding winding functions as:

Ls = µ0rl

g
πN2

s,1 + µ0rl

g
πN2

s,3 = Ls,1 + Ls,3 (5.19)

M = cos
(4π

5

)
Ls,1 + cos

(
34π

5

)
Ls,3 (5.20)

5.2.1 Transformation

Applying the general Clarke transformation to a five-phase machine enables the conversion
of quantities from the stator reference s frame to the orthogonal α − β reference frame.
This transformation facilitates a more compact representation of the system’s variables and
simplifies the analysis and control of the machine.

α

β

d

q

a

b

c

d
e

θdq

Figure 5.2 – α − β and d − q reference frame
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5.2 Five-phase machine modeling

In Fig. 5.2, the simplified model of a five-phase machine is depicted alongside the α − β and
d − q reference frames. It is important to note that, since the analyzed machine has five
phases, the Clark transformation produces a five-dimensional orthogonal space. Therefore,
for simplicity, only a two-dimensional representation of the five-dimensional orthogonal space
is considered.

The specific Clark matrix for a symmetrical five-phase system is [32]:

C = 2
5


1 cos(γ) cos(2γ) cos(3γ) cos(4γ)
0 sin(γ) sin(2γ) sin(3γ) sin(4γ)
1 cos(3γ) cos(6γ) cos(9γ) cos(12γ)
0 sin(3γ) sin(6γ) sin(9γ) sin(12γ)
1
2

1
2

1
2

1
2

1
2

 (5.21)

where γ = 2π
5 is the displacement in radians between the phases. Since the Clark matrix is

orthogonal, it is possible to evaluate the inverse of the matrix as:

C−1 = 2
5CT (5.22)

Evaluating the inverse of a matrix as the transposed original matrix leads to a simplification in
the control algorithm and lower computational cost. Indeed, it is well known that computing
the inverse of a matrix is computationally expensive and may introduce numerical instability,
particularly for large matrices.

Applying the Clark matrix transformation to the current vector in the stator reference frame
s yields the following transformed current vector:

vα

vβ

vx

vy

v0

 = 2
5


1 cos(γ) cos(2γ) cos(3γ) cos(4γ)
0 sin(γ) sin(2γ) sin(3γ) sin(4γ)
1 cos(3γ) cos(6γ) cos(9γ) cos(12γ)
0 sin(3γ) sin(6γ) sin(9γ) sin(12γ)
1
2

1
2

1
2

1
2

1
2




vas
vbs
vcs
vds
ves

 (5.23)

After that is possible to define the Park or d − q matrix as:

P =


cos(θdq) sin(θdq) 0 0 0

− sin(θdq) cos(θdq) 0 0 0
0 0 cos(3θdq) sin(3θdq) 0
0 0 − sin(3θdq) cos(3θdq) 0
0 0 0 0 1

 (5.24)

where θdq the angle of rotation between the α − β reference frame and d − q reference frame,
as depicted previously in fig. 5.2.

The matrix product of the Clark and Park transformations results in a matrix that converts
quantities from the stator reference frame (s) to the d − q frame. This transformation is
defined as [41]:

T = 2
5


cos(θdq) cos(θdq − γ) cos(θdq − 2γ) cos(θdq − 3γ) cos(θdq − 4γ)

− sin(θdq) − sin(θdq − γ) − sin(θdq − 2γ) − sin(θdq − 3γ) − sin(θdq − 4γ)
cos(3(θdq)) cos(3(θdq − γ)) cos(3(θdq − 2γ)) cos(3(θdq − 3γ)) cos(3(θdq − 4γ))

− sin(3(θdq)) − sin(3(θdq − γ)) − sin(3(θdq − 2γ)) sin(3(θdq − 3γ)) − sin(3(θdq − 4γ))
1
2

1
2

1
2

1
2

1
2


(5.25)
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Applying the Clark-Park matrix transformation, also known as the dq transformation, to
the current vector in the stator reference frame (s) yields the following transformed current
vector: 

vd
vq
vd3
vq3
v0

 = T


vas
vbs
vcs
vds
ves

 (5.26)

Where vd and vq represent the voltages of the fundamental harmonic in the d − q reference
frame, while vd3 and vq3 denote the voltages of the third harmonic.

(a) Current in stationary reference frame (b) Current in rotating reference frame dq

Figure 5.3 – Current in healthy case

By considering only perfect sinusoidal operation and thus taking into account only the
fundamental component of the flux and current, it is possible to derive the torque in the dq
reference frame as follows [33]:

Tdq = 5
2p (λdiq − λqid) (5.27)

with λd and λq equal to: {
λd = λpm + Ldid

λq = Lqiq
(5.28)

Since the machine is a surface permanent magnet motor, λd = λpm while λq = 0, and the
control in Maximum Torque Per Ampere (MTPA) gives id = 0 and iq = in the expression
(5.27) becomes [33]:

Tdq = 5
2pλpmin (5.29)

If in the expression (5.27) the third harmonic of the flux and current is also considered, then
it yiedls:

Tdq = Tdq1 + Tdq3 = 5
2p (λpm,1iq,1 + λpm,3iq,3) (5.30)

Therefore, from a theoretical perspective, if the value of the first harmonic current remains
unchanged, the addition of the third harmonic component leads to an increase in torque.
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5.3 Fault modeling

5.3 Fault modeling

In electrical drives, various types of faults can occur, including both inverter and machine
faults. Among these, the most prevalent are short circuit and open circuit faults. Short-circuit
faults can manifest in phases, in inverter switches, or inter-turns within the machine while
open-circuit faults may involve inverter switches, phases, or lines within the system [20], as
depicted in fig. 5.4 .
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open-circuit phase fault

inter-turn short-circuit fault

Figure 5.4 – Fault types in a five-phase drive [20]

The primary cause of electrical faults in industrial drives is often attributed to power
electronics failures, which are mostly unpredictable [15]. Nonetheless, early detection of
certain machine faults, such as damaged connections or inter-turn winding faults, can be
achieved by observing the resulting unbalanced stator resistances. These imbalances can be
identified in the initial stages using diagnostic methods, allowing for detection before they
evolve into eventual open- or short-circuit faults [50].

In the thesis, only open-circuit faults (OCF) are studied. This is because, aside from power
failures in power electronics, open circuits in windings are the most common and frequent
faults [15]. However, it is important to note that in the case of short-circuit faults, fault-
tolerant is achievable only if the machine is designed with a modular structure [4, 6] or with
tooth coil winding arrangement [13]. This is due to the fact that it is necessary to have
limited or zero mutual coupling between phases in order to prevent the propagation of faults
to healthy phases.

When OCF occours, post-fault operation of multiphase drives is subject to certain limits to
preserve system integrity. During normal operation, stator currents maintain steady-state
RMS values, defined by the rated value of the drive (Ipre

n ). However, after the loss of n phases
due to open-circuit faults (OCF), the RMS value and waveform of stator currents can become
heterogeneous. Two different approaches exist to limit post-fault currents [20]:

• limit 1 : Post-fault currents are limited to their pre-fault RMS rated values (Ipost
n =

Ipre
n ). This ensures safety by preventing device ratings from being exceeded and reducing

thermal stress after the fault;
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• limit 2 : Post-fault currents can exceed pre-fault RMS rated values (Ipost > Ipre) while
maintaining pre-fault copper losses (P post

Cu = P pre
Cu ). Although this allows for higher

torque production, it may increase thermal stress and pose risks to motor insulation.
For instance, in a five-phase motor, after an open-circuit fault occurs in one phase, the
current must be increased by a factor of 1.382 to maintain the same torque output as
under nominal conditions [28, 40].

The decision to adopt limit 1, which maintains post-fault currents at pre-fault RMS rated
values, serves to enhance the operational safety of the machine. This choice prioritizes the
longevity and reliability of the system by minimizing the risks associated with electrical
overstress and thermal damage.

5.3.1 One-phase open-circuit fault

In this section the modeling of a generic five-phase machine under a one-phase open-circuit
fault is analyzed. For simplicity permanent open-fault in the a-phase is considered, therefore
the current in a-phase is considered to be zero ia = 0.

a

b
c

d
e

γ
2

γ
2

c

d

b

e

Figure 5.5 – Open-circuit fault in phase-a

With only four out of five phases capable of producing an effective MMF across the machine,
the modeling and spatial distribution of the phases must be adjusted according to the type
of fault. Consequently, the following constraints are established: [13]:

• each intact phase maintains identical current amplitude;

• the principle of symmetry has to be preserved after the fault;

• the total sum of currents in the remaining healthy phases must be zero.

In [13], the approach of injecting a third time-harmonic current is proposed to further reduce
the fourth-order torque harmonic to zero. However, it’s noteworthy that this additional
current harmonic contributes to torque harmonics of both second and fourth orders, necessi-
tating a corresponding adjustment in the fundamental current harmonic. In this study, the
aforementioned method is not employed. Instead, a Reduced-Order Transformation Matrix is
introduced, facilitating a simpler control approach for the motor.

In the specific case of the a-phase fault, the remaining healthy phases must be symmetrical
with respect to the faulted phase. Therefore, since only the fundamental harmonic of flux-
density distribution is considered [13], phases B and E are shifted of γ/2 for symmetrical
purposes, as depicted in Fig. 5.5. The same principle applies even when faults occur in phases
other than a-phase.
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Since only the fundamental harmonic of flux-density distribution is considered, the components
contributing to electromechanical energy conversion are mapped onto the α − β plane.
Conversely, the components with no contribution to the torque production are distributed
into the zero-sequence subspace, defined as a sub-space orthogonal to the torque-producing
subspace [51]. Therefore, it is possible to simplify the Clarke and Park transformations and
express the stator phase currents as functions of the direct id and quadrature iq currents,
resulting: 

ias
ibs
ics
ids
ies

 =


1 0

cos(γ) sin(γ)
cos(2γ) sin(2γ)
cos(3γ) sin(3γ)
cos(4γ) sin(4γ)


[
cos(θdq) − sin(θdq)
sin(θdq) cos(θdq)

] [
i∗
d

i∗
q

]
(5.31)

where γ = 2π/5 for a five-phase machine, while θdq is the angle of rotation between the α − β
reference frame and d − q reference frame.

As previously explained, since there has to be a mirror principle in when the faults occurs
[21], the currents in the healthy phases should be sinusoidal, and they are inter-related based
on their spatial symmetry about the fault phase. Therefore, the current behavior of the
remaining healthy phases can be expressed as follows:

ibs = I cos(θdq − γ/2)
ics = I cos(θdq)
ids = I cos(θdq)
ies = I cos(θdq + γ/2)

(5.32)

From equation (5.32) it is evident that during fault-tolerant operation, the phasors of c-
phase and d-phase remain unchanged, while those of b-phase and e-phase are shift by −γ/2
and γ/2, respectively. Using normal decoupling transformation matrices results in coupling
currents. Hence, to achieve Field-Oriented Control (FOC) during fault-tolerant operation,
the transformation matrices need to be redefined.

When an open-circuit fault occurs, the corresponding phase current becomes zero, reducing
the motor’s degrees of freedom to three. Two degrees of freedom can be allocated to a subspace
defined as α − β, while the remaining degree goes to another subspace defined as z. These
sub-spaces must be orthogonal, and their bases must also be orthogonal to each other. The
variable in the z subspace is termed the generalized zero-sequence variable. It is possible
therefore to build an the following reduced-order transformation matrix [51]:

Cpost =



cos(0.5γ)
2.618

sin(0.5γ)
1.381

sin(γ)
3.618

1
4

cos(2γ)
2.618

sin(2γ)
1.381

sin(4γ)
3.618

1
4

cos(3γ)
2.618

sin(3γ)
1.381

sin(6γ)
3.618

1
4

cos(4.5γ)
2.618

sin(4.5γ)
1.381

sin(9γ)
3.618

1
4


(5.33)
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Cpost =



cos(0.5γ)
2.618

cos(2γ)
2.618

cos(3γ)
2.618

cos(4.5γ)
2.618

sin(0.5γ)
1.381

sin(2γ)
1.381

sin(3γ)
1.381

sin(4.5γ)
1.381

sin(γ)
3.618

sin(4γ)
3.618

sin(6γ)
3.618

sin(9γ)
3.618

1
4

1
4

1
4

1
4


(5.34)

while the inverse transformation matrix is equal to:

C−1
post =


cos(0.5γ) sin(0.5γ) sin(γ) 1
cos(2γ) sin(2γ) sin(4γ) 1
cos(3γ) sin(3γ) sin(6γ) 1

cos(4.5γ) sin(4.5γ) sin(9γ) 1

 (5.35)

The Park matrix is then reduced to a 4 × 4 matrix, therefore yielding:

P =


cos(θdq) sin(θdq) 0 0

− sin(θdq) cos(θdq) 0 0
0 0 1 0
0 0 0 1

 (5.36)

(a) Current in stationary reference frame (b) Current in rotating reference frame dq

Figure 5.6 – Open-circuit fault in phase-a

5.3.2 Open-circuit fault of two nonadjacent phases

When the motor experiences double-phase faults, it is reduced to having only two degrees
of freedom, which can be mapped in α − β space using the transformation matrix. Let’s
now assume that the nonadjacent-phase open-circuit faults occur in phase-b and phase-e. As
previously discussed in section in 5.3.1, in order to achieve disturbance-free operation, the
healthy phase currents must adhere to specific constraints [16].

Therefore, for the specific case of nonadjacent-phase open-circuit faults occurring in phase-b
and phase-e, the current in phase-c and phase-d should mirror each other with respect to the
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Figure 5.7 – Open-circuit fault in phase-b and phase-e

axis of phase-a. Thus, it is necessary to implement a phase shift of −γ/2 for phase-b and γ/2
for phase-d, as illustrated Fig. 5.7. In addition, the sum of healthy phase currents should be
zero due to the star-connected windings.

Therefore, it is possible to express the current behavior of the remaining healthy phases as
[16]: 

ias = I (id cos(θdq) + iq sin(θdq))
ics = 0.618 · I (id cos(θdq − 1.5γ) + iq sin(θdq − 1.5γ))
ids = 0.618 · I (id cos(θdq + 1.5γ) + iq sin(θdq + 1.5γ))

(5.37)

where the coefficient 0.618 is evaluated from [13]:

−1
2 cos

(
γ − 4π

5

)
. (5.38)

It is notable that phase-c and phase-d currents have the same amplitudes, but reduced since
multiplied by 0.618. While phase-a current remains in the same position and its amplitude
enlarges to 1.382 times.

Therefore, from equation (5.37), it is possible to express the Clark transformation as [16]:

Cpost =

1.079 cos(0) 1.746 cos(1.5γ) 1.746 cos(−1.5γ)
1.079 sin(0) 0.553 sin(1.5γ) 0.553 sin(−1.5γ)

1
3

1
3

1
3

 (5.39)

While the inverse matrix transformation is as follows:

C−1
post =

0.618 cos(0) 0.618 sin(0) 1
cos(1.5γ) sin(1.5γ) 1

cos(−1.5γ) sin(−1.5γ) 1

 (5.40)

Also here we can see that the inverse of the inverse original matrix C−1
post is not equal to the

original matrix Cpost.

The Park matrix is then reduced to a 3 × 3 matrix, therefore it is equal to:

P =

 cos(θdq) sin(θdq) 0
− sin(θdq) cos(θdq) 0

0 0 1

 (5.41)
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(a) Current in stationary reference frame (b) Current in rotating reference frame dq

Figure 5.8 – Open-circuit fault in phase-b and phase-e

5.3.3 Open-circuit fault of two adjacent phases

In this section the adjacent-phase open-circuit faults is assumed to occur in phase-c and
phase-d. In order to achieve the disturbance-free operation, the healthy phase currents should
in phase-b and phase-e need to satisfy the mirror symmetry principle with respect to the
axis of phase-a.

a

b
c

d
e
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γ
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e

Figure 5.9 – Open-circuit fault in phase-c and phase-d

Therefore, it is necessary to implement a phase shift of γ for phase-b and γ for phase-e, as
illustrated Fig. 5.9. In addition, the sum of healthy phase currents should be zero due to the
star-connected windings.

Hence,the current behavior of the remaining healthy phases is equal to [16]:
ias = I (id cos(θdq) + iq sin(θdq))
ibs = 0.618 · I (id cos(θdq + 2γ) + iq sin(θdq + 2γ))
ies = 0.618 · I (id cos(θdq − 2γ) + iq sin(θdq − 2γ))

(5.42)

By rearranging the expression (5.42) it is possible to obtain the Clark transformation matrix:

Cpost =

0.667 cos(0) 0.412 cos(2γ) 0.412 cos(−2γ)
0.667 sin(0) 2.342 sin(2γ) 2.342 sin(−2γ)

1
3

1
3

1
3

 (5.43)
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While the inverse matrix transformation is as follows:

C−1
post =

 cos(0) sin(0) 1
0.618 cos(2γ) 0.618 sin(2γ) 1

0.618 cos(−2γ) 0.618 sin(−2γ) 1

 (5.44)

The reduced order Park matrix is a 3 × 3 matrix, expressed as follows:

Cpost =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1



(a) Current in stationary reference frame (b) Current in rotating reference frame dq

Figure 5.10 – Open-circuit fault in phase-c and phase-d
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5.4 Control

In this section, the Maximum Torque Per Ampere (MTPA) control strategy is employed.
MTPA control aims to maximize the torque generated by the motor while minimizing the
current drawn from the power supply. This optimization is achieved by adjusting the stator
currents to align the resultant magnetic field vector with the rotor flux vector. Specifically,
for a surface permanent magnet synchronous motor, this alignment occurs when only the
quadrature current is present, leading to iq = in and id = 0 [33].

5.4.1 Third harmonic injection

For a general m-phase machine, where m is an odd prime number, with a single neutral
point in the star-connected stator winding, (n − 3) additional degrees of freedom exit. These
degrees of freedom can serve for various purposes like torque enhancement via stator current
harmonic injection or multimotor drive systems with independent control having a single
inverter supply. It’s essential to note that these additional degrees of freedom can be allocated
for only one purpose at a time. For instance, if a fault-tolerant strategy is implemented in a
five-phase concentrated winding machine utilizing the third stator current harmonic injection,
and a fault occurs, the strategy necessitates the discontinuation of the stator current harmonic
injection [34].

In this section the utilization of extra degree of freedom for the Third harmonic injection is
analyzed (HCI) or (THI). The main principle behind this method is to increase the average
torque by aligning higher rotor harmonic flux, generated by the permanent magnets, with
the corresponding stator harmonic flux induced by the current. By utilizing the expression
(5.30), it is possible to derive a general equation (5.45) of the torque for a surface permanent
magnet motor.

Tdq =
m−3∑
ν=1

Tdq,ν =
m−3∑
ν=1

m

2 pλpm,νiq,ν (5.45)

In a five-phase motor, the torque equation is simplified to (5.30), as only the third harmonic
of the current can be injected into the stator winding. The injection of the third harmonic
current can thus be represented as the combined influence of both the fundamental harmonic
and the third harmonic component of the current. Considering only now a sinusoidal shape
of the current, this results in:

i(θ) = I1 sin(θ) + I3 sin(θ) (5.46)

where I1 and I3 are the peak values of the first and third harmonics, respectively.

Two distinct approaches exist for injecting the third harmonic current into the stator coil:
RMS and peak mode. The RMS method ensures that the root mean square (RMS) value
of the current during Third Harmonic Injection (THI) remains equal to the nominal value.
Consequently, this approach maximizes the torque per joule losses, as the latter remain
constant. On the other hand, the peak mode pushes the output inverter current to the highest
possible value. As a result, under peak mode, the resulting current during THI is limited to
the peak value current experienced during normal operating conditions [29].
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Figure 5.11 – Current under THI rms mode

During both modes, the ratio a between the first and the third harmonic current is constant
and is equal to the ratio between the respective induced electromotive force [47].

r3 = I3
I1

= E3
E1

= kw,3pBg,3
kw,pBg,1

(5.47)

This is done in order to maximize the torque density [48]. For the specific case of the 20-slot
18-pole FSCW with double layer the ratio is equal to a = 0.2447. While for the distributed
winding the ratio is equal to a = 1/3.

Figure 5.12 – Current under THI peak mode
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In the RMS mode, the rms current can be expressed as:

In =
√

I2
rms,1 + I2

rms,3 =
√

I2
rms,1 + r2

3I2
rms,1 (5.48)

Thus, by defining the peak value of the first harmonic as:

I1 = r1In (5.49)

we can determine the ratio between the peak of the first harmonic current and the total peak
current r1, from the equation (5.48), as:

r1 = 1√
1 + r2

3

(5.50)

For the FSCW machine, this calculation yields r1 = 0.9713, while for the distributed winding
machine, r1 = 0.9487. In a general form, considering only the sinusoidal component, the
current distribution is defined as:

i(θ) = r1Ipeak sin(θ) + r1r3Ipeak sin(θ) (5.51)

When evaluating the ratios r1 and r3 during peak mode, a different approach is employed.
The method involves finding the maximum of the current i(θ) as a function of r1, while r3 is
set to the respective value, as described previously. The objective is to ensure that the peak
of the combined first and third harmonic current waveform is equal to peak value during
normal conditions Ipeak =

√
2In. Therefore, it is possible to express the following functions:

i(θ) = r1 sin(θ) + r1r3 sin(θ) < 1 (5.52)

Due to the trigonometric nature of the function, an analytical solution for the maximum
value of r1 may not be feasible. Therefore, a numerical approach is necessary to search for
the maximum value of r1 within a specified range. With this iterative approach, the ratio of
the first harmonic is equal to r1 = 1.126 for the FSCW machine, while r1 = 1.061 for the
distributed winding machine.

It is noteworthy to emphasize that the RMS mode ensures consistent joule losses, given the
absence of variation in the rms value of the current. Conversely, the peak mode substantially
increases the peak value of the first harmonic current, consequently leading to an expected
increase in torque [29].
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6 Simulation

The machine is analyzed using Finite Element Method Magnetics (FEMM) in quasi-steady-
state operation, with current supplied by imposing the current vector in a synchronous d − q
reference frame with the rotor. Due to planar symmetry, a 2D geometry was implemented.
Consequently, the electromagnetic problem is of 2D magnetostatic type.

Finite Element Method Magnetics (FEMM) is a finite element package for solving 2D planar
and axisymmetric problems in low frequency magnetics and electrostatics. The software utilizes
the Finite Element Method (FEM), a numerical technique used to solve partial differential
equations governing physical phenomena. In the context of electric motor simulation, FEM
method discretizes the motor geometry into small elements, allowing for the numerical solution
of Maxwell’s equations within each element. This approach enables to accurately capture
the electromagnetic fields generated within the motor, including flux distribution and torque
production.

In this chapter, simulations are conducted for various winding configurations of the Fractional-
Slot Concentrated Winding (FSCW) motor. Specifically, simulations are performed for FSCW
motors with 1-layer, 2-layer, and 4-layer windings. Additionally, an analysis of the concentrated
winding configuration is included in the study.

Emphasis is primarily placed on the analysis and simulation of the FSCW 4-layer winding
configuration throughout this chapter. Consequently, unless explicitly stated otherwise, all
analyses and simulations presented herein pertain specifically to the FSCW 4-layer winding.

6.1 Simulation steps

In modeling electric motors with the Finite Element Method (FEMM), several key steps
are involved, such as: geometry definition, material properties assignment, mesh generation,
boundary condition specification, solver configuration, and analysis with post-processing.

Geometry definition

The motor geometry, including the stator, rotor, windings, and other components is defined
with the geometrical specifications evaluated in Chapter 4. The geometry serves as the basis
for creating the finite element mesh.
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(a) 20-slot 18-pole, five-phase machine (b) 20-slot 4-pole, five-phase machine

Figure 6.1 – Motor geometry

Material properties

The allocation of material properties to the various components of the motor, such as magnetic
permeability, conductivity, and losses is essential for the simulation. These properties govern
the electromagnetic behavior of the materials and are critical for accurate simulation results.
Specifically, the following materials have been defined:

• Air from FEMM material library;

• Cu with electrical resistivity ρCu at Twork = 120 ◦C;

• N42H with electrical resistivity ρpm and coercivity field HcB at Twork = 120 ◦C;

• M-19 Steel Iron from FEMM material library, with electrical resistivity ρFe at Twork =
120 ◦C and a thickness of 0.36 mm.

Mesh generation

FEMM automatically generates a finite element mesh based on the motor geometry, dis-
cretizing the domain into small elements. Since the density and quality of the mesh can
significantly impact the accuracy and computational efficiency of the simulation, mesh valued
across the analyzed domain have manually selected:

• Air at air gap: mesh size of 0.25;

• Cu in the slot: mesh size of 3;

• Permanent magnets: mesh size of 1;

• Stator and rotor steel: mesh size of 2.5.

Since the highest field gradients take place in the air gap, the mesh was predominantly refined
in the this region [11].
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(a) 20-slot 18-pole, five-phase machine (b) 20-slot 4-pole, five-phase machine

Figure 6.2 – Mesh density

Boundary conditions

The specification of boundary conditions is crucial to model the external influences on
the motor. These boundary conditions play a crucial role in simulating realistic operating
conditions. Specifically, in order to achieve tangential induction at the outer edge of the
rotor, homogeneous Dirichlet boundary conditions Az = 0 is imposed along the the external
circumference of the motor [11].

Solver configuration

The FEMM solver settings are configured, including convergence criteria, time-stepping
parameters and other simulation-specific parameters. During the simulation, the AC Newton
solver with solving step of 10−8 has been utilized.

Analysis and post-processing

The simulation and analyze of the results utilizes post-processing tools provided by FEMM,
including visualization of magnetic flux density distributions, calculation of torque and power
output, and evaluation of efficiency and losses.

6.1.1 Computation on the solved structure

Once the field problem is solved, the z-axis component of the magnetic vector potential
Az(x, y) is known in each point within the domain. Therefore it is possible to evaluate the
magnetic flux and the induced EMF. Particular care has to be kept to the coil distribution in
the stator slots.
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Magnetic flux

The magnetic flux associated with the j-th phase stator winding is given by:

Λj,s = 2pLFe
nc
npp

Q∑
q=1

kjq
1

Sslot

∫
Sslot

Az dS (6.1)

where LFe = Lstkkpack is the active length of the rotor, nc and npp are the number of
conductors in the slot and the number of parallel path, respectively. The number of slots is
Q while the number of poles is 2p. Finally, kjq is the coefficient that considers whether the
conductors in the q-th slot belongs to the j-th phase and their orientation.

The coefficient kjq varies depending on the winding type and on the orientation of the coil.
For a single-layer winding kjq is equal to:

• kjq = 0: if the coil side in the q-th slot does not belong to the j-th phase;

• kjq = +1: if the coil side in the q-th slot belongs to the j-th phase and its orientation is
positive with respect to the z-axis direction (⊙);

• kjq = −1: if the coil side in the q-th slot belongs to the j-th phase and its orientation is
negative with respect to the z-axis direction (⊗).

For a double-layer winding kjq is equal to:

• kjq = 0: if the coil sides in the q-th slot do not belong to the j-th phase;

• kjq = +0.5: if only one coil side in the q-th slot belongs to the j-th phase and its
orientation is positive with respect to the z-axis direction;

• kjq = −0.5: if only one coil side in the q-th slot belongs to the j-th phase and its
orientation is negative with respect to the z-axis direction;

• kjq = +1: if both coil sides in the q-th slot belong to the j-th phase and their orientation
is positive with respect to the z-axis direction;

• kjq = −1: if both coil sides in the q-th slot belong to the j-th phase and their orientation
is negative with respect to the z-axis direction.

For a four-layer winding kjq is equal to:

• kjq = 0: if the four coil sides in the q-th slot do not belong to the j-th phase;

• kjq = +0.25: if only one coil side in the q-th slot belongs to the j-th phase and its
orientation is positive with respect to the z-axis direction;

• kjq = −0.25: if only one coil side in the q-th slot belongs to the j-th phase and its
orientation is negative with respect to the z-axis direction;

• kjq = +0.5: if two coil sides in the q-th slot belong to the j-th phase and their orientation
is positive with respect to the z-axis direction;

• kjq = −0.5: if two coil sides in the q-th slot belong to the j-th phase and their orientation
is negative with respect to the z-axis direction;
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6.1 Simulation steps

• kjq = +0.75: if three coil sides in the q-th slot belong to the j-th phase and their
orientation is positive with respect to the z-axis direction;

• kjq = −0.75: if three coil sides in the q-th slot belong to the j-th phase and their
orientation is negative with respect to the z-axis direction;

• kjq = +1: if all four coil sides in the q-th slot belong to the j-th phase and their
orientation is positive with respect to the z-axis direction;

• kjq = −1: if all four coil sides in the q-th slot belong to the j-th phase and their
orientation is negative with respect to the z-axis direction.

It is advantageous to construct the slot matrix kslot in order to depict the winding arrangement
and the corresponding values of kjq. This matrix serves as a convenient representation of
the winding configuration and facilitates the calculation of magnetic flux linkage during the
simulation process.

For instance, the first half of slot matrix kslot for a 20-lots and 18-poles five-phase machine
having 4-layer winding is:

kslot =


0.75 −0.25 0 0 0 0 0 0 −0.25 0.75

0 0 0 0 −0.25 0.75 −0.75 0.25 0 0
−0.25 0.75 −0.75 0.25 0 0 0 0 0 0

0 0 0 0 0 0 0.25 −0.75 0.75 −0.25
0 0 0.25 −0.75 0.75 −0.25 0 0 0 0


(6.2)

Induced EMF

For a synchronous machine, the permanent magnet or excited rotor generates an air-gap
magnetic flux that links with the stator winding. The movement of the rotor induces an
electromotive force (EMF) in the stator windings proportional to the rate of change of the
flux linkage. It is possible to define the induce EMF in the stator winding of the generic j-th
phase as product between the rotational speed ωe

m and the peak magnetic flux Λj :

Ej,s = 1√
2

ωe
mΛj,s (6.3)

By rotating the rotor of a fixed step and solving the corresponding field equations, the
magnetic flux distribution can be precisely determined, enabling the mapping of induced
electromotive force [11].

Torque

The torque calculation involves integrating Maxwell’s stress tensor along a surface containing
the rotor. Due to the two-dimensional nature of the problem, this integration simplifies to
integrating the stress tensor along a line, denoted as lg, positioned in the middle of the air-gap.
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The obtained result is then multiplied by the active length of the rotor, LFe. Considering a
2p poles machine, the torque is expressed as:

T = Ds − g

2
LFe
µ0

2p

∫
lg

BrBθ dl (6.4)

Here, Br represents the radial component of the flux density (normal to the line lg), Bθ
denotes the azimuthal component of the flux density (tangential to the line lg), Ds is the inner
stator diameter, g is the air gap length and µ0 denote the vacuum magnetic permeability.
Since the simulation has been carried out on whole motor domain, the number of poles 2p is
utilized.

Due to numerical considerations inherent in the finite element method, the torque calculation
may vary based on the integration line’s position and the number of integration points chosen.
To enhance accuracy, instead of directly integrating along lg, it’s preferable to compute the
average torque value over the entire air-gap surface Sg. This leads to the torque formula:

T = LFe
µ0g

2p

∫
lg

rBrBθ dl (6.5)

where, r represents a dummy radius variable used in the integration process.

Alternative methods for calculating the torque using the finite element method are outlined
in [11].

6.1.2 No load simulation

To compute the no-load flux linkage, the permanent magnet is magnetized using the B-H
curve, therefore HcB, while the stator winding is open-circuited, hence a null conductivity is
assumed. Stator and rotor laminations are characterized by the B-H curve of the magnetic
material used in the simulation, in this case M-19 Steel. [11]. In Fig. 6.3 the B-H non-linear
curve of the M-19 Steel is depicted.

Figure 6.3 – B-H curve M-19 Steel
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Initially, it is necessary to identify the initial position of the d-axis of the synchronous
reference system and evaluating the mechanical angle, measured with respect to the positive
horizontal semi-axis, at which the flux linked to phase a is maximum. This occurs when the
d-axis aligns with the α = a axis of the stator-fixed reference system.

After the new reference frame d is identified, an open-circuit simulation is carried out by
rotating the rotor for an entire pole pitch θm = 360◦/p. The simulation step in electrical
angle is equal to θe

m = 1◦, therefore θm = 1◦/p.

(a) FSCW 20-slot 18-pole (b) Concentrated winding 20-slot 4-pole

Figure 6.4 – No load simulation flux lines for different five-phase machines

Using the expressions (6.1) and (6.3) it is possible to map the magnetic flux distribution and
the induced EMF, respectively.

It is possible to determine the fluxes linked with the five phases, as depicted in Fig. 6.5a.
These fluxes exhibit a sinusoidal shape with a peak value of Λ = 0.469 Vs, in alignment with
the analytically estimated fundamental value of Λpm = 0.463 Vs. By applying the abcde/dq
transformation, it is possible to derive the fluxes linkage in the synchronous reference frame,
Fig. 6.5a. According to the theory, since the analyzed machine is a surface-mounted permanent
magnet motor, only the d-axis of the flux is present Λd, which coincides with the magnet’s
flux Λpm.

In reality the d-flux and q-flux experience residual oscillation with the dominant harmonic
being the 20-th order, as depicted in Fig. 6.5b. For the d-axis, the residual oscillation around
the mean value amounts to approximately 0.04%, therefore negligible.

During no-load operation, the only torque contribution originates from cogging torque caused
by the interaction between the permanent magnets and the stator teeth, as depicted in Fig.
6.7a. This torque naturally does not contribute to the continuous motion of the machine,
given its zero mean value according to simulation results.

Subsequently, the analysis computes the radial force acting on the rotor due to the attraction
between the permanent magnets and the ferromagnetic core. Its estimated average value of
Favg = 1.003 Nm is obtained from results.

Finally, the distribution of the air-gap flux density along the entire circumference is evaluated,
as depicted in Fig. 6.8a. The air gap flux density is expressed as a function of the mechanical
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(a) Flux linkage distribution (b) Flux linkage in d − q reference frame

Figure 6.5 – No load simulation results

(a) Induced EMF distribution (b) Fourier analysis of single phase

Figure 6.6 – No load simulation results

(a) Cogging torque (b) Radial force

Figure 6.7 – No load simulation results
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angle θm measured relative to the positive horizontal semi-axis, and with a configuration
having angular position of θm = 0◦. The results reveal a slightly distorted square wave, due to
the small slot opening wso of the analyzed FSCW machine [3]. Furthermore, it is noteworthy
that only odd prime harmonics of the fundamental wave ν = p (1,3,5) are present in the
harmonic content, fig. 6.8b. This observation aligns with theoretical expectations, given the
rectangular shape of the PM’s magnetic flux waveform.

(a) Radial air gap flux density distribution (b) Fourier analysis of air gap flux density

Figure 6.8 – No load simulation results

(a) FSCW 20-slot 18-pole (b) Concentrated winding 20-slot 4-pole

Figure 6.9 – Stator flux lines for different five-phase machines under 1st harmonic

Upon observation of Fig. 6.10a and 6.10b, it becomes evident that, in the Fractional Slot
Concentrated Winding configuration, the flux generated by the 3rd harmonic current produces
a 7 pole pair flux, differently from the intended 27 pole pairs. In contrast, this phenomenon is
not observed in the concentrated winding machine, where the 3rd harmonic current generates
a 2 pole pair flux. Consequently, this different results in superior torque enhancement during
Third Harmonic Injection (THI).
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(a) FSCW 20-slot 18-pole (b) Concentrated winding 20-slot 4-pole

Figure 6.10 – Stator flux lines for different five-phase machines under 3rd harmonic

6.1.3 Harmonic content in the air gap

To analyze the harmonic content of the air gap flux density produced by the stator windings,
and consequently the MMF, a new simulation has been conducted. The procedure follows
the same steps outlined in 6.1.1. The test is performed for a single step angle, specifically at
θm = 0◦, similarly to the air gap flux density distribution test under no load conditions.

The harmonic content analysis is conducted considering different harmonic components in the
stator current: specifically, the 1-st harmonic or fundamental, the 3-rd, and the combination
of 1-st and 3-rd harmonics.

(a) MMF distribution (b) Fourier analysis

Figure 6.11 – Harmonic content in the air gap, 1st harmonic current

The obtained results are subsequently compared to theoretical results evaluated in Section
3.1, as depicted in Fig. 6.12 and 6.11. From the results, it is possible to notice a nearly
perfect alignment between the theoretical-analytical results and the experimental ones. This
observation is crucial as it verifies the reliability of the general matrix-based approach
described in Section 3.1.3.
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(a) Air gap flux density distribution (b) Fourier analysis

Figure 6.12 – No load simulation results, 1st harmonic current

(a) MMF distribution (b) Fourier analysis

Figure 6.13 – No load analytical results, 3rd harmonic current

(a) Air gap flux density distribution (b) Fourier analysis

Figure 6.14 – No load simulation results, 3rd harmonic current
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(a) MMF distribution (b) Fourier analysis

Figure 6.15 – No load analytical results, 3rd harmonic current

(a) Air gap flux density distribution (b) Fourier analysis

Figure 6.16 – No load simulation results, 3rd harmonic current
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6.1.4 Mapping

To determine the electrical angle corresponding to maximum torque production, the rotor is
rotated by a fixed step for an entire pole pitch (τp), while the stator currents remain constant
over time. This study enables to evaluated the torque produced by the machine as a function
of the rotor position, as showed in Fig. 6.17. It can be observed that the maximum torque
occurs when the electrical angle is equal to θe

m = 90◦. This aligns with theory, as injecting
quadrature current iq enables the motor to achieve maximum torque.

Figure 6.17 – Mapping of the Torque
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6.1.5 Results under MTPA

Once the maximum torque is determined, the behavior of the machine under Maximum
Torque Per Ampere (MTPA) conditions can be assessed. This study allows for the calculation
of the average torque value over one full electrical rotation of the rotor. Additionally, the
oscillation of torque, known as torque ripple, can be computed. The average torque under
nominal healthy condition is equal to Tavg = 95.3 Nm, therefore almost identical to the
analytical value used in sec. 4.2.3.

(a) FSCW 20-slot 18-pole (b) Concentrated winding 20-slot 4-pole

Figure 6.18 – MTPA simulation flux lines for different five-phase machines

In the case of a non-saturated machine, the torque ripple is directly influenced by the harmonic
content of the machine winding. This is because non-main harmonic waves produces by the
stator winding interact with the permanent magnet flux at different speeds compared to the
fundamental frequency. The torque ripple, displayed in fig. 6.20, has an oscillating behaviour
with a dominant harmonic of the 20-th order. The torque ripple is calculated to be τ = 1.31%
of the average torque Tavg. The low torque ripple is attributed to the utilization of the 4-layer
winding configuration, which significantly restricts its harmonic content.

(a) Air gap flux density distribution (b) Fourier analysis

Figure 6.19 – MTPA simulation results
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In Fig. 6.19a, the flux linkage of the machine is depicted. Unlike the sinusoidal distribution
observed during the no-load test, the flux distribution is non-sinusoidal. This occurs due to
the interaction between the armature winding and the magnetic field generated by the rotor,
resulting in the induction of an electromotive force (EMF) within the armature winding itself.
Finally, the fluxes in the d − q reference frame are evaluate via matrix transformation, Fig.
6.19b.

The MTPA test was also conducted for FSCW machines with both 2-layer and 1-layer winding
configurations. From Fig. 6.20, it is evident that as the number of layers increases, the torque
ripple decreases while the average torque increases. Indeed the torque ripple for FSCW with
single-layer and double-layer is τ = 2.95% and τ = 1.88%, respectively. The Table 6.1 is
provided for a comprehensive comparison between different winding typologies for the FSCW
machine. From the table, it is evident that the torque ripple between the concentrated and
FSCW machines exhibits a considerable difference. Specifically, the concentrated winding
configuration demonstrates higher torque ripple.

Configuration Average torque (Nm) Torque ripple (%)

4L FSCW 95.28 1.31
2L FSCW 93.67 1.88
1L FSCW 90.05 2.95

Concentrated 91.07 14.67

Table 6.1 – Comparison of torque and torque ripple results with different winding configurations

Figure 6.20 – Torque of FSCW machine with different number of layers

6.1.6 Results under THI

As explained in Section 5.4, it is possible to enhance the torque by injecting third harmonic
current into the stator windings over time. Two possible modes of THI are available: rms and
peak. Therefore, two separate simulations are then carried out to evaluate the increase in the
average torque value under MTPA condition. It is observed that the increase due to peak
third harmonic injection yields a higher torque value compared to the nominal case and to
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the rms THI case. This is because the injection of third harmonic allows for an increase in
the fundamental current value, upon which the torque depends, although they come at the
cost of higher RMS value and therefore higher losses (+15.9% for FSCW motor while +9.2%
for concentrated winding motor).

(a) 20-slot 18-pole, FSCW 4-layer winding ma-
chine

(b) 20-slot 4-pole, 1-layer concentrated winding
machine

Figure 6.21 – Torque under THI

The average torque value under rms mode is Tavg,rms = 95.88 Nm (a +0.6% increment),
whereas under the peak mode, it is Tavg,peak = 109.74 Nm (a +15.2% increment) under peak
mode. Consequently, for the purpose of torque enhancement, the peak mode demonstrates
significant advantages, as depicted in Fig. 6.21a.

Regarding torque ripple, it is noticeable that it increases in both cases of THI, as there is an
increment in the harmonic content of the stator flux. Indeed, in both modes, there is a torque
ripple with a dominant harmonic of the 10-th order, while the 20-th order is also present.
The torque ripple under rms mode is ∆τ = 1.75%, while under peak mode is ∆τ = 1.68%.
However, despite this increase, the absolute value of the torque ripple remains very low.

Overall, neither the peak nor rms modes are deemed viable solutions for enhancing the torque
in FSCW machine. While the rms mode fails to substantially increase the torque, the peak
mode, although effective in boosting the torque, results in elevated losses and even higher
harmonic content.

A more effective solution would involve solely increasing the fundamental component of the
current, although this approach would not be considered torque enhancement per se.

However, the aforementioned observations do not entirely hold true for a machine with a
concentrated winding configuration. Indeed, by observing the results in the Fig. 6.21b, a
substantial increase in torque can be noticed. The average value of torque under nominal,
rms and peak mode are Tavg = 91.07 Nm, Tavg,rms = 93.65 Nm and Tavg,peak = 110.99 Nm
respectively. Hence there is an increase of +2.83% under rms mode, and +21.87% under
peak mode. A more substantial increase in torque is observed, as the third harmonic in the
concentrated winding is capable of producing a magnetic field with a dominant harmonic
three times the fundamental ν = 3p, unlike in the FSCW, as depicted in Fig. 6.10a and
6.10b.
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Figure 6.22 – Torque under healthy and faulty cases

It is important to underline that, even in this case, there is an increase in the torque ripple.
However, the torque ripple is greater in relative value due to the concentrated winding’s higher
harmonic content. Moreover, contrarily to the FSCW, the concentrated winding configuration
does not have number of poles close to the number of slots. Nevertheless, the concentrated
winding machine under THI demonstrates considerable greater performance although, some
of the drawbacks associated with THI persist.

Configuration Average torque (Nm) Torque ripple %

4L FSCW (peak) 109.74 1.68
Concentrated (peak) 111 17.76

4L FSCW (rms) 95.88 1.75
Concentrated (rms) 93.65 16.48

Table 6.2 – Torque comparison under THI

The reults of the simulation for the MTPA control strategy under THI are summerised in
Table 6.2.

6.1.7 Results under faulty conditions

In Section 5.3, a comprehensive model analysis has been carried out for three different
faulty conditions: one-phase open-circuit fault, open-circuit fault of two nonadjacent phases,
open-circuit of two adjacent phases.

Subsequently, simulations are conducted to analyze the steady-state behavior of the torque
for the 4-layer FSCW motor under each of these faulty cases, in order to evaluate the average
torque and torque oscillation. Then a comparison with the nominal case has been conducted,
as depicted in Fig. 6.22.

From the results depicted in figure 6.22, it can be observed that the developed torque decreases
from the nominal value for the different fault scenarios. This is attributed to the control
strategy employed, which aims to maintain a peak current equal to the nominal value. It can
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indeed be demonstrated that when a fault occurs, it is possible to achieve an average torque
value equal to the nominal value by increasing the current.

Regarding the torque ripple, it is observed that it increases considerably in the case of a
fault, while it worsens drastically when two faults occur. This is due to the fact that the
motor is controlled to create an optimized flux shape with the remaining healthy phases,
without however being able to produce a flux waveform equal to that of the nominal case
without faults. The torque ripple is therefore attributed to the introduction of harmonics by
the remaining healthy phases, caused by a shifting in the spatial arrangement of the phases
themselves.

In conclusion, it can be stated that the motor control under faulty conditions has good
performance, however, its operation may be considered acceptable only for short periods of
time. This is due to the persistent presence of torque ripple, which remains constant or may
worsen with an increase in current, aiming to reach the nominal torque value.

The simulation results are summarized in the Table 6.3.

Configuration Average torque (Nm) Torque ripple %

4L FSCW (1F) 68.43 30.16
4L FSCW (2NAF) 42.34 44.98
4L FSCW (2AF) 26.48 90.63

Table 6.3 – Torque comparison under faulty conditions

6.2 Losses

Various types of losses contribute to the dissipation of energy during the operation of electric
motors, thereby decreasing motor efficiency. This section focuses on the evaluation of copper
losses and core losses, excluding mechanical losses attributed to ventilation or friction from
the analysis.

6.2.1 Copper losses

Copper losses in electric motors refer to the dissipation of energy in the form of heat due
to the inherently presence of electrical resistance in the motor conductor windings. Indeed,
when an electric current flows through a conductor, it interacts with the lattice structure
of the material, resulting in collisions between electrons and lattice atoms. These collisions
hinder the flow of electrons, therefore creating an electrical resistance. According to Ohm’s
law, the resistance R causes a dissipation of electrical energy proportional to the square of
the current I2 flowing through the conductor, as described by the following formula:

P = RI2 (6.6)

The dissipated energy is primarily manifested as thermal energy due to the increased kinetic
energy of the lattice atoms and charge carriers. This phenomenon, known as Joule heating,
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leads to a rise in temperature within the conductor, contributing to the conversion of electrical
energy into thermal energy.

Minimizing copper losses is therefore essential for improving the efficiency of electrical
machines, as less power is wasted as heat and more power is converted into useful mechanical
power.

The Joule power losses of the coils and their corresponding resistances are determined using
classical analytical relationships, since the coils are modeled as equivalent conducting bars
and the simulations are carried out with stationary current (steady-state simulation) [11].
The non-uniform current distribution in the winding due to the source frequency is evaluated
with the rotating losses, although it is almost negligible due to the small conductor diameter
dc employed in the machine winding.

In order to evaluate analytically the copper losses, it is crucial to calculate the length of the
end winding lew. In this work half turn of the end-winding is modelled using a rectangular
shape featuring curved edges, therefore the following geometrical equation is used for the
evaluation of the end winding length [52]:

lew = 2τc − 4rend + 2πrend + 4lex (6.7)

where τc represents the average coil pitch, rend the radius of the rounded corners and lex the
distance from the end section of the motor to the rounded corners.

In the case of a four-layer FSCW, the calculation of τc utilizes the same expression as that
for the two-layer FSCW [52]. This is because the average coil length of the first and second
layers in the four-layer FSCW is equivalent to the coil length of the two-layer winding. The
equation is as follows:

τc = 2πrcoil
Q

− ws
2 = 22.5 mm (6.8)

where ws represents the distance between two teeth at the midpoint of the tooth height, and
it is equal to:

ws = π(Ds + hs)
20 − wt = 12.9 mm (6.9)

and the radius of the center of the coils rcoil is calculated as:

rcoil = Ds
2 + hs

2 = 92.125 mm (6.10)

Given the absence of specific parameters, it is presumed that lex = ws/2 = 6.45 mm and
rend = ws/2 = 6.45 mm. Therefore the equation (6.7) becomes:

lew = 2τc + 2πrend = 85.5 mm (6.11)

Therefore, for the FSCW the the total length of the windings lc is given:

lc = lstk + lew = 150 mm (6.12)
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The stator winding material chosen is copper (Cu), with a corresponding resistivity at the
operating temperature Twork = 120 ◦C equal to:

ρCu = ρ∗
Cu(1 + α∆T ) = 0.0252 Ω mm2

m (6.13)

where ρ∗
Cu = 0.018 is the copper resistivity at the reference temperature of T ∗ = 20 ◦C and

α = 0.004 K−1 is the temperature coefficient of the material

The stator winding resistance is:

Rs = ρCu
lcNs
Sceq

= 2.46 Ω (6.14)

with Sceq = Scnpp. The copper loss are equal to:

PJoule = 5RsI
2
n = 517.4 W (6.15)

Regarding the 20-slot 4-pole concentrated winding machine, the following expression is used
for evaluating the end-winding length [9]:

lew = 1.6τp = 2.5Ds
p

= 162.5 mm (6.16)

The total length of the windings lc is equal to:

lc = lstk + lew = 422.5 mm (6.17)

The corresponding stator winding resistance is:

Rs = ρCu
lcNs
Sceq

= 1.88 Ω (6.18)

with Ns = 304 and Sceq = 1.723 mm2 The copper loss are equal to:

PJoule = 5RsI
2
n = 574.3 W (6.19)

6.2.2 Core losses

Traditionally, core losses in electrical machines are determined by post-processing the magnetic
field solution, employing either empirical equations or statistical laws. Notably, various
methods are utilized for predicting these losses, with the famous Steinmetz formula from the
early twentieth century standing out as a prominent example [45]. The Steinmetz equation
provides a simplified but reasonably accurate empirical equation for estimating core losses
in electrical machines, especially in situations where detailed magnetic field analysis is
impractical or computationally expensive. Although the Steinmetz equation is extensively
utilized, it may not comprehensively account for all complexities of core loss behavior in
every instance. Therefore, a more accurate empirical method is employed to evaluate machine
losses, the so called "Traditional Technique" [19]. In essence, it’s a more precise version of the
Steinmetz method.

74



6.2 Losses

The total power loss, PFe, per unit volume dissipated in a ferromagnetic strip lamination,
with thickness t, conductivity σ, and periodically magnetized with fundamental frequency f ,
can then be expressed as the sum of hysteresis loss Ph, classical eddy-current loss Pe, and
excess loss Pex.

PFe = Ph + Pcl + Pex =
νmax∑
ν=1

(
chνfsB

2
m + ccl(νfsBm)2 + cex(νfsBm)1.5

)
(6.20)

Where Bm denotes the amplitude of the ν-th harmonic of the flux density waveform obtained
through the time-stepping Finite Element Method (FEM) solution, and νmax represents
the total number of harmonics considered. Given that the simulation is conducted as a 2D
magneto static problem, the field is assumed to be two-dimensional, therefore independent of
the coordinate parallel to the machine’s shaft (z-direction). Consequently, Bm represents the
magnitude of the flux density, defined as Bm =

√
B2

x + B2
y.

The classical eddy-current term Pcl is derived from Maxwell’s equations under the assumption
of a uniform flux distribution in the z-direction, hence:

ccl = σπ2d2
c/6 (6.21)

where dc and σ are, respectively, the diameter and electrical conductivity of the conductor.
Through measurements conducted with Epstein frames, core rings, or single-sheet tester
setups, it is possible to determined experimentally the coefficients ch and cex.

From equation (6.20), it can be observed that the total losses exhibit a dependence approxi-
mately proportional to the square of the magnetic flux density B2. Since the flux concentration
is inversely proportional to the stacking factor kpack, it is expected that the flux concentration
would result in an increase in losses within the lamination by a factor of 1/(kpack)2. However,
the decrease in iron per unit volume is directly proportional to the stacking factor kpack, since
there’s less iron available to generate losses. This effect introduces a compensating factor of
kpack. Thus, to incorporate the stacking factor into the loss calculation, the loss formula is
simply divided by the stacking factor. During the simulation a stacking factor kpack = 0.98 is
assumed.

As the rotor moves past the stator, the time depended flux predicted by the finite element
model exhibit a non-sinusoidal behavior due to the inclusion of all effects of the motor’s
geometry. If the stator steel is characterized only by linear material properties, the losses
can be systematically decomposed into elements occurring at different frequencies, which are
then combined together to derive the total loss. Despite the non-linearity of the material
properties, a commonly employed approximation technique for estimating core losses involves
decomposing these losses into multiple components occurring at various time harmonics, as
expressed in the equation (6.20).

In addition to core losses, a magnet loss model is introduced to evaluate the iron losses related
to the permanent magnets. Magnet loss computation follows the methodology described in
[31]. This approach involves neglecting the reaction field of the eddy currents. The current
density Jpm within the magnet’s cross-section is expressed as:

Jpm = −σpm
dA

dt
+ Jc (6.22)
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Here, Jc represents a constraint current density chosen to ensure the total current within the
cross-section of each magnet equals zero, and σpm denotes the electrical conductivity of the
permanent magnet material. The loss is subsequently obtained by integrating J2

c /σpm over
the volume of each magnet.

Following a similar approach to core losses, it proves advantageous within the computational
script to decompose the magnetic vector potential A into a series of harmonics. The losses
are computed for each harmonic individually and then summed to determine the total loss.
At each harmonic, the current density Jpm can be represented as:

Jpm = −σpmjωA + Jc (6.23)

In order to perform the computation of the total losses, the centroid location and size of each
element within a laminated region are recorded. As the rotor’s position changes, the finite
element mesh is altered. However, the element centroids from the original mesh remain fixed
points in the lamination geometry, where the field is assessed in each incremental analysis,
regardless of remeshing. Subsequently, the flux density is evaluated at every stored element
centroid for each rotor position, effectively establishing a history of flux density versus time for
every element within the laminated regions. Special attention is required for points situated
within the rotor. The initial centroid positions need to be rotated by the same angle as the
rotor to ensure that the rotor field is consistently evaluated at the same points in successive
runs. Additionally, the resulting field evaluations must be rotated to ensure that the field at
rotor points is consistently represented within the same rotor-fixed reference frame.

Moreover, careful consideration is given to evaluating performance across a sufficiently broad
range of angles. Notably, fractional slot concentrated windings, such as the one examined
in this work, exhibit sub-harmonics with significant magnitude. Consequently, a wide angle
range must be considered to capture the effects of winding sub-harmonics on rotor losses.
Specifically, for the 20-slot 18-pole FSCW machine, the losses must be assessed over a 360◦

rotor motion. This ensures that the rotor magnets are fully exposed to the complete stator
winding waveform, encompassing even the lowest sub-harmonic of 1-st order.

Once finite element runs have been executed over a suitably large arc, MATLAB’s built-in
Fast Fourier Transform (FFT) function is employed to convert the essentially time series of
flux densities at each element centroid into amplitudes of various harmonics of flux density.
The contributions from all harmonics for all elements are then summed to obtain the total
core and proximity effect losses [37].

6.2.3 Core loss data

In the model it has been used the steel M −19 with a layer thickness of t = 0.36 mm, therefore
having a gauge equals to 29 (0.014 ′′). From [37], it is possible to extract an approximation fit
of the data for 29-gauge M − 19 from 50Hz to 600 Hz. Therefore the coefficients ch and cex
for the formula (6.20) are equal to:

ch = 143 W
m3 T2 Hz (6.24)
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cex = 0.53 W
m3 T2 Hz2 (6.25)

It is assumed that the magnet’s orientation direction is axially, therefore it is possible to
evaluate the resistivity of the magnet ρpm at the working temperature Twork with the following
second-order polynomial fitting curve [44]:

ρpm = c · (T (◦C))2 + b · (T (◦C)) + a = 1.653 Ω mm2

m (6.26)

For the NdFeB magnet used in the simulation, a concentration of Dysprosium less than 4%
is assumed. Therefore the coefficient values of the polynomial fitting curve are: a = 1.520,
b = 1.765 · 10−3, c = −5.468 · 10−3.

Given that core and magnet losses are dependent on the machine velocity, they have been
evaluated for various speeds, ranging from nmin = 100 rpm to the maximum achievable speed
nmax, as depicted in Fig. 6.23a and in fig. 6.23b.

Flux weakening operation

Flux weakening, also known as field weakening, is a technique employed in the control of
electric motors, particularly in variable speed applications. The objective of flux weakening is
to extend the speed range of the motor beyond its base speed nb by reducing the magnetic
flux in the motor’s magnetic circuit, therefore along the d-axis.

The maximum mechanical speed during flux weakening operation is:

ωmax = VN
(Λpm − LdIn) p

(6.27)

To calculate the direct-axis inductance Ld and quadrature-axis inductance Lq inductances of
the machine, the magnets are deactivated and replaced with air. The analyse is performed
considering only the direct component of the current id. Given the surface permanent magnet
nature of the machine, the rotor exhibits isotropy, thus resulting in Ld and Lq being equal.

The direct-axis inductance is calculated using the method of linked fluxes, despite the existence
of several other calculation methods [11].

L′
d = Λd

Id
= 45.25 mH (6.28)

It is also possible to evaluate the leakage inductance relative to the end winding is calculated
as [9]:

Lσew = µ0lewn2
csq

22pλew = 0.016 mH (6.29)

with λew = 0.35. It is possible to observe the the leakage inductance relative to the end
winding is almost negligible.

The total inductance on d-axis is therefore equal to:

Ld = L′
d + Lσew = 45.25 mH (6.30)
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The maximum speed is:

ωmax = VN
(Λpm − LdIn) p

= 664.73 rad/s (6.31)

nmax ≈ 6300 rpm (6.32)

Regarding the concentrated winding machine, the end winding leakage inductance is equal
to:

Lσew = µ0lewn2
csq

22pλew = 1.65 mH (6.33)

With ncs = 76. The inductance on d-axis is equal to:

L′
d = Λd

Id
= 88.12 mH (6.34)

Therefore the total inductance on d-axis is:

Ld = L′
d + Lσew = 89.77 mH (6.35)

The maximum mechanical speed during flux weakening operation is:

ωmax = 1
p

VN
Λpm − LdIn

= 135.2 rad/s (6.36)

with Λpm = 2.02 Vs the permanent magnet flux. The maximum speed in rpm is:

nmax ≈ 1300 rpm (6.37)

From the values of the maximum speed, it is possible to observe that the FSCW machine has
better flux weakening properties [7].
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6.2.4 Total losses and performances

Once the core losses for different speed values are evaluated and the joule losses are also
known, the efficiency of the two simulated and compared machines, namely the FSCW 20-slot
18-pole, five-phase machine and the concentrated winding 20-slot 4-pole, five-phase machine,
can be assessed.

(a) FSCW 20-slot 18-pole (b) Concentrated winding 20-slot 4-pole

Figure 6.23 – Rotating losses as a function of the mechanical speed

In Figure 6.24, the core and joule losses for the nominal speed n = 1000 rpm are depicted.
Although the joule losses are slightly lower in the FSCW machine, the presence of high
rotor losses is more than three times higher than that in the concentrated machine. Overall,
therefore, the FSCW machine is slightly less efficient than its concentrated counterpart
(92.7% vs. 93.6%). The lower joule losses of the FSCW machine are attributed to the reduced
end-windings, although the advantages in this regard seem almost negligible.

Figure 6.24 – Total losses comparison

It is important to note that in the evaluation of efficiency, mechanical losses have been
neglected, as no straightforward method exists to evaluate these losses.
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Additionally, it is possible to graphically visualize the core losses across the machine domain
for the two motors, as depicted in Fig. 6.25a and Fig. 6.25b. As expected, according to [37], the
permanent magnets exhibit the highest loss density. This is attributed to the high resistivity
of permanent magnets, particularly at the operating temperature of Twork = 120 ◦C.
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Figure 6.25 – Rotating losses as a function of the mechanical speed
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7 Conclusion

A comprehensive experimental and theoretical analysis was conducted, focusing primarily
on Fractional Slot Concentrated Winding (FSCW) machines as a solution for fault-tolerant
applications. Various winding typologies, including single, double, and 4-layer windings, were
studied extensively. It was observed that the 4-layer winding, when applicable, yielded superior
performance compared to the other two configurations, primarily due to lower MMF harmonic
content. This translated into higher average torque and lower torque ripple, consistent with
theoretical expectations and simulation results.

Furthermore, the FSCW machine was compared with a distributed winding machine to assess
its overall performance, including under Third Harmonic Injection (THI). The results validated
the theoretical studies, demonstrating that THI can indeed improve torque performance.
However, it was observed that while the distributed winding machine exhibited increased
performance under THI compared to FSCW, the overall effectiveness of the THI strategy was
questioned. This is because although THI led to a slight increase in torque, it also resulted in
higher MMF harmonic content, leading to significant worsening of torque ripple.

The primary objective of the thesis was to design a motor suitable for a fault-tolerant test
bench. To achieve this goal, an experimental analysis was conducted, focusing on three
different open-phase fault scenarios: one-phase open-circuit fault, open-circuit fault of two
nonadjacent phases, and open-circuit fault of two adjacent phases.

During the fault analysis, the current limit was set to the pre-fault value to enable a fair
comparison, as it ensured that the joule losses remained constant. The results revealed a
deterioration in motor performance as the severity of the faults increased, particularly evident
in the significantly higher torque ripple observed due to the absence of one or more phases.
Despite these challenges, the motors demonstrated resilience to faults, albeit with reduced
performance levels compared to normal operating conditions.

Lastly, it is noteworthy to highlight that the concentrated winding machine exhibited slightly
higher efficiency than its FSCW counterpart, especially during THI operation. This can be
attributed to the concentrated winding machine having lower iron losses, attributed to its
better MMF harmonic content and the absence of sub-harmonics. However, when comparing
the machines, it becomes apparent that the power density of the FSCW is significantly higher,
approximately 4.4 times greater. This substantial advantage of the FSCW underscores its
viability not only for fault-tolerant applications but also for scenarios where high power
density is crucial, such as in applications where the volume of the machine is a limiting
factor.

Furthermore, with the adoption of the 4-layer winding configuration, the FSCW demonstrated
higher average torque and lower torque ripple, further emphasizing its superior performance
in various operating conditions.
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7.1 Possible further development

Further development opportunities for the FSCW include exploring the adoption of a V-
shaped Interior Permanent Magnet (IPM) or a hybrid reluctance rotor configuration. This
advancement has the potential to yield higher performance levels, including increased power
rating, enhanced torque output due to saliency effects, and improved overall efficiency.
Additionally, such rotor configurations could mitigate eddy current losses in the permanent
magnets and reduce iron losses under open-circuit fault conditions. Moreover, a reduction in
the air gap could be achieved, contributing to improved motor performance [17, 22].

Since it has been demonstrated that increasing the number of layers from 4 to 6 yields almost
negligible benefits [35], attention can be redirected towards other areas for development. One
such area involves the implementation of specialized winding arrangements aimed at further
reducing harmonic content, thereby promoting smoother operation and minimizing torque
ripple. A notable example is the special three-layer winding, studied in [18]. Additionally,
configurations involving an increased number of slots, such as the dual winding approach [2], or
variations in the number of turns per slot [46], present promising avenues for further research
and development. These approaches hold potential for significantly reducing harmonic content
and improving the overall performance of electric machines, particularly in terms of torque
quality and efficiency.

Another potential improvement involves implementing multiphase motors with a higher
number of phases. By increasing the number of phases beyond three, it becomes possible to
utilize higher-order harmonic currents for torque enhancement. This approach can lead to
lower torque ripple and reduced joule losses, resulting in better power distribution across the
machine [34].

Finally, an extensive study could be conducted on fault-tolerant applications, as the current
analysis in this work has focused solely on open-circuit faults. Therefore, there is potential
for further research into machine modeling and control strategies for short-circuit faults as
well. This comprehensive investigation could provide valuable insights into enhancing the
robustness and reliability of multiphase during different types of faults [13, 16].

Regarding concentrated winding configurations, it is also possible to increase the number of
phases and utilize distributed winding arrangements instead. This approach ensures better
MMF harmonic content, as distributed winding allows for the reduction of non-main harmonic
waves.

82



8 Acknowledgements

Five and a half years ago, I embarked on a journey filled with experiences, both in terms
of knowledge and personal growth. This journey has been nothing short of remarkable, not
solely for the knowledge gained or the milestones that I have might achieved, but for the
extraordinary people I’ve had the privilege to meet, interact with, and share experiences
alongside.

During this journey, I have always been supported and helped by my family, who enabled me
to fully dedicate myself to my studies while providing unwavering support. Therefore, I would
like to express my gratitude to my father, Giovanni, for imparting numerous life lessons and
always being there to answer my questions and satisfy my curiosity. Additionally, I want to
thank my sister, Maria Elena, for sharing with me a beautiful childhood filled with fantastic
memories, for helping me through difficult times along my journey, and for her contagious
laugh, always present during the meals. However, I want to give special thanks to my mother,
Fiorina, who from the moment I was born, believed in me and my abilities against all odds
and adversities. Throughout these twenty-four years, she has been my rock and my source of
inspiration. Her unwavering support and boundless love have been the guiding force behind
my achievements.

I would like to thank Pietro, Daniele, Leonardo, Edoardo, Francesco, Jacopo, Niccolò, Matteo,
and Simone for their spontaneity, for welcoming me into their family like a brother, and
for the evenings spent together playing, drinking, and having fun. Thanks to them, I have
experienced beautiful and unforgettable moments. In addition, I would like to thank the
friends from the extended group, who brought vitality to the original group, significantly
shaping it and allowing for healthy growth and maturation. Therefore I thank: Angela, Sofia,
Clara, Gabriela, Giorgia, Emma, Roberta, Francesca, Giacomo, Tommaso, Michele, and
Pietro. I need also to thank Lorenzo, my brother, who has grown up with and togheter we
shared a lot of moments.

During the universty I had the opportunity of knowing

83





A Appendix

A.1 Fractional slot concentrated winding factor

A.1.1 Winding factor table for three-phase winding system

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3 0.866 0.866 * 0.866 0.866 * 0.866 0.866 * 0.866 0.866 * 0.866 0.866 *
6 - 0.866 * 0.866 1.7321 * 1.7321 0.866 * 0.866 1.7321 * 1.7321 0.866 *
9 - 0.6169 0.866 0.9452 0.9452 0.866 0.6169 0.4924 * 0.4924 0.6169 0.866 0.9452 0.9452 0.866
12 - - * 0.866 0.933 * 0.933 0.866 * 1.7321 0.5 * 0.5 1.7321 *
15 - - * 0.7109 0.866 * 0.9514 0.9514 * 0.866 0.7109 * 0.4864 0.2486 *
18 - - - 0.6169 0.9452 0.866 1.1595 0.9452 * 0.9452 1.1595 0.866 0.9452 0.6169 1.7321
21 - - - 0.5384 0.6501 * 0.866 0.8897 * 0.9531 0.9531 * 0.8897 0.866 *
24 - - - - 0.583 * 0.7598 0.866 * 0.933 0.9495 * 0.9495 0.933 *
27 - - - - 0.525 0.6169 0.695 0.7664 0.866 0.8773 0.9153 0.9452 0.9539 0.9539 0.9452
30 - - - - - * 0.7525 0.7109 * 0.866 1.0274 * 1.1001 0.9514 *

Table A.1 – Winding factor kw,p for three-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3 * * * * * * * * * * * * * * *
6 - * * * * * * * * * * * * * *
9 - 0.5343 * 0.8186 0.8186 * 0.5343 * * * 0.5343 * 0.8186 0.8186 *
12 - - * * 0.9012 * 0.9012 * * * 0.9659 * 0.9659 * *
15 - - * 0.6762 * * 0.9049 0.9049 * * 0.6762 * * 0.7567 *
18 - - - 0.5343 0.9309 * * 0.8186 * 0.8186 * * 0.9309 0.5343 *
21 - - - 0.5249 0.6338 * * 0.8674 * 0.9293 0.9293 * 0.8674 * *
24 - - - - 0.578 * 0.7533 * * 0.9012 0.9413 * 0.9413 0.9012 *
27 - - - - 0.5171 0.5343 0.6844 0.7548 * 0.864 0.9014 0.8186 0.9394 0.9394 0.8186
30 - - - - - * 0.7484 0.6762 * * * * * 0.9049 *

Table A.2 – Winding factor kw,p for three-phase system with 4-layer
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A.1.2 Winding factor table for five-phase winding system

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28

5 0.5878 0.9511 0.9511 0.5878 * 0.5878 0.9511 0.9511 0.5878 * 0.5878 0.9511 0.9511 0.5878
10 - 0.5878 * 0.9511 * 0.9511 * 0.5878 * * * 0.5878 * 0.9511
15 - 0.4008 0.5878 0.7323 * 0.9511 0.98 0.98 0.9511 * 0.7323 0.5878 0.4008 0.2561
20 - - 0.4484 0.5878 * * 0.88 0.9511 0.9755 * 0.9755 0.9511 0.88 *
25 - - 0.3623 0.4742 0.5878 0.6738 0.7584 0.8311 0.8906 0.9511 0.9668 0.9823 0.9823 0.9668

Table A.3 – Winding factor kw,p for five-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28

5 0.9511 0.5878 0.5878 0.9511 * 0.9511 0.5878 0.5878 0.9511 * 0.9511 0.5878 0.5878 0.9511
10 - 0.9511 0.3633 0.5878 * 0.5878 0.3633 0.9511 * * * 0.9511 0.3633 0.5878
15 - 0.83 0.9511 0.5129 * 0.5878 0.83 0.83 0.5878 * 0.5129 0.9511 0.83 0.6412
20 - - 0.88 0.9511 * 0.3633 0.1394 0.5878 0.7939 * 0.7939 0.5878 0.1394 0.3633
25 - - 0.7813 0.8618 0.9511 0.6653 0.416 0.1082 0.2147 0.5878 0.7291 0.8482 0.8482 0.7291

Table A.4 – Winding factor kw,3p for five-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28

5 * * * * * * * * * * * * * *
10 - * * * * * * * * * * * * *
15 - 0.3812 * 0.6965 * * 0.9321 0.9321 * * 0.6965 * 0.3812 0.7794
20 - - 0.4429 * * * 0.8692 * 0.9635 * 0.9635 * 0.8692 *
25 - - 0.3559 0.4658 * 0.6619 0.745 0.8163 0.8748 * 0.9497 0.9649 0.9649 0.9497

Table A.5 – Winding factor kw,p for five-phase system with 4-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28

5 * * * * * * * * * * * * * *
10 - * * * * * * * * * * * * *
15 - 0.4878 * 0.3015 * * 0.4878 0.4878 * * 0.3015 * 0.4878 *
20 - - 0.7841 * * * 0.1242 * 0.7074 * 0.7074 * 0.1242 *
25 - - 0.6597 0.7276 * 0.5618 0.3512 0.0914 0.1813 * 0.6156 0.7162 0.7162 0.6156

Table A.6 – Winding factor kw,3p for five-phase system with 4-layer
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A.1 Fractional slot concentrated winding factor

A.1.3 Winding factor table for seven-phase winding system

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 0.4339 0.7818 0.9749 0.9749 0.7818 0.4339 * 0.4339 0.7818 0.9749 0.9749 0.7818 0.4339 * 0.4339
14 - 0.4339 * 0.7818 0.901 0.9749 * 0.9749 0.901 0.7818 0.6235 0.4339 0.3807 * 0.2225
21 - 0.2926 0.4339 0.5591 0.6751 0.7818 * 0.9239 0.9749 0.9898 0.9898 0.9749 0.9239 * 0.7818
28 - - 0.3282 0.4339 0.5287 * * 0.7818 0.8414 0.901 0.9379 0.9749 0.9875 * 0.9875

Table A.7 – Winding factor kw,p for seven-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 0.9749 0.4339 0.7818 0.7818 0.4339 0.9749 * 0.9749 0.4339 0.7818 0.7818 0.4339 0.9749 * 0.9749
14 - 0.9749 * 0.4339 0.2225 0.7818 * 0.7818 0.2225 0.4339 0.901 0.9749 0.8827 * 0.6235
21 - 0.7302 0.9749 0.9106 0.7302 0.4339 * 0.4052 0.7818 0.9106 0.9106 0.7818 0.4052 * 0.4339
28 - - 0.7992 0.9749 0.9379 * * 0.4339 0.1057 0.2225 0.5022 0.7818 0.8909 * 0.8909

Table A.8 – Winding factor kw,3p for seven-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 0.7818 0.9749 0.4339 0.4339 0.9749 0.7818 * 0.7818 0.9749 0.4339 0.4339 0.9749 0.7818 * 0.7818
14 - 0.7818 0.1931 0.9749 0.6235 0.4339 * 0.4339 0.6235 0.9749 0.2225 0.7818 0.832 * 0.901
21 - 0.8197 0.7818 0.1225 0.4631 0.9749 * 0.2423 0.4339 0.7652 0.7652 0.4339 0.2423 * 0.9749
28 - - 0.8414 0.7818 0.2797 0.1931 * 0.9749 0.7992 0.6235 0.0948 0.4339 0.7169 * 0.7169

Table A.9 – Winding factor kw,5p for seven-phase system with double-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 * * * * * * * * * * * * * * *
14 - * * * * * * * * * * * * * *
21 - 0.2852 * 0.5451 0.6582 * * 0.9008 * 0.965 0.965 * 0.9008 * *
28 - - 0.3261 * 0.5254 * * * 0.8361 * 0.9321 * 0.9813 * 0.9813

Table A.10 – Winding factor kw,p for seven-phase system with 4-layer
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A Appendix

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 * * * * * * * * * * * * * * *
14 - * * * * * * * * * * * * * *
21 - 0.5709 * 0.7119 0.5709 * * 0.3168 * 0.7119 0.7119 * 0.3168 * *
28 - - 0.7544 * 0.8853 * * * 0.0998 * 0.474 * 0.8409 * 0.8409

Table A.11 – Winding factor kw,3p for seven-phase system with 4-layer

Q\2p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 * * * * * * * * * * * * * * *
14 - * * * * * * * * * * * * * *
21 - 0.3557 * 0.0532 0.2009 * * 0.1051 * 0.332 0.332 * 0.1051 * *
28 - - 0.7124 * 0.2368 * * * 0.6767 * 0.0803 * 0.6071 * 0.6071

Table A.12 – Winding factor kw,5p for seven-phase system with 4-layer

iv



A.2 Sintered neodymium magnets

A.2 Sintered neodymium magnets

The sintered neodymium magnets used for the permanent magnet are of the N42H grade.
The characteristics of this neodymium magnet have been obtained from the extensive catalog
offered on the website of the company Arnold Magnetic Technologies Corporation. The
datasheet of the N42H magnet is provided on the following page.
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Sintered Neodymium-Iron-Boron Magnets

Characteristic Units C // C ⊥

Reversible Temperature Coefficients (1)

     of Induction, α(Br) %/ºC

     of Coercivity, α(Hcj) %/ºC

Characteristic Units min. nominal max. Coefficient of Thermal Expansion (2) ΔL/L per ºCx10-6 7 -1

Gauss 12,800 13,000 13,200 Thermal Conductivity kcal/mhrºC 5.3 5.8

mT 1280 1300 1320 Specific Heat (3) cal/gºC

Oersteds 12,000 12,300 12,600 Curie Temperature, Tc ºC

kA/m 955 979 1003 psi

Oersteds 17,000 MPa

kA/m 1,353 Density g/cm3

MGOe 40 42 43 Hardness, Vickers Hv

kJ/m3 318 330 342 Electrical Resistivity, ρ µΩ • cm
Notes: (1) Coefficients measured  between   20  and 120 ºC

(2) Between 20 and 200 ºC. Values are typical and can vary.
(3) Between 20 and 140 ºC

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size.
Demagnetization curves show nominal Br and minimum Hci.
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.
Additional grades are available.  Please contact the factory for information.
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These are also referred to as "Neo" or NdFeB magnets.  They offer a 
combination of high magnetic output at moderate cost.  Please contact Arnold 
for additional grade information and recommendations for protective coating.  
Assemblies using these magnets can also be provided.
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