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Chapter 1

Introduction

Nowadays, it is a renowned fact that the Universe shows an accelerating expansion. This
feature can be explained theoretically by introducing in the spacetime equations a small positive
cosmological constant Λ. However, within the framework of High Energy Theoretical Physics
and, in particular, of String Theory, which is the at the moment the only self-consistent theory
of quantum gravity, it is a real dilemma to find out a mechanism which can introduce such a
positive cosmological constant. To solve this problem, it should be useful to study the vacua
of low-energy effective theories of String Theory, namely Supergravity theories. While it is
fairly simple to generate vacua with a positive cosmological constant in minimal supergravity
models (which are generically difficult to lift to full stringy backgrounds), but there are almost
no examples of locally stable classical de Sitter vacua in extended models and also unstable ones
are quite rare. One possible way out is to consider quantum corrections. For instance a positive
cosmological constant could be generated by such corrections to a classical Minkowski vacuum.
Understanding when de Sitter critical points are obtainable in supergravity models with a clear
relation to string theory is especially interesting in connection with the recent conjecture [1] that
theories with positive energy critical points belong to the swampland, i.e. to the set of models
that do not admit a consistent ultraviolet completion in a quantum gravity theory. Finding even
a single counter-example would be enough to disprove the conjecture, while better understanding
the conditions underlying the lift of the value of the cosmological constant in effective theories
of string theory would help making the conjecture more robust.

There is another important aspect that makes quantum corrections of extended supergravities
interesting. General relativity is not renormalizable (it exhibits divergences at two-loop [2]) and
its coupling to matter generically makes the situation worse, by introducing divergencies already
at one-loop in the perturbative expansion. However, when we consider supergravity theories
with extended supersymmetry, a very interesting feature comes out: these models are finite up
to higher loop orders. To be more precise, it is well known that N = 4 Supergravity is finite
up to three loops and it is believed that N = 8 Supergravity is also finite at least to seven
loops [3], although it might reveal to be finite at all orders. In particular, explicit calculations
in recent years have revealed the existence of hidden properties: in fact, infrared and ultraviolet
cancellations exhibit remarkable features, which are not only related to supersymmetry.

Thus, even though N = 8 and N = 4 models can not be used to obtain realistic phenomenol-
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6 CHAPTER 1. INTRODUCTION

ogy, understanding the conditions for their perturbative behaviour might help us understand if
there are still options available to build (perturbatively) finite quantum field theories of gravity,
or if the only option is to resort in string theory. One point we would like to stress is that, so far,
all these higher loop orders calculations have been made in the context of ungauged supergrav-
ity theories, where the background can be naturally taken to be flat and one can use standard
perturbation theory about Minkowski spacetime. Also supersymmetry is fully preserved in the
vacuum. However, supersymmetry can be broken spontaneously if we deform the theory by
gauging a subgroup of its global symmetries, also breaking some of the global symmetries, by
introducing new terms in the supersymmetry transformations and in the Lagrangian. The re-
sulting gauged supergravities still admit Minkowski vacua, which break partially or completely
supersymmetry. It is therefore interesting to study if the cancellations present in ungauged
supergravity models occur also in these models, in order to better understand if some hidden
symmetries play a role in these cancellations.

A recent paper following these lines [4] has shown that in N = 8 supergravities with arbitrary
gauging there are no ultraviolet divergences in the one-loop effective potential and, in addition,
there is no example of one-loop stable supersymmetry breaking vacuum with positive or vanishing
vacuum energy. However, the N = 8 theories are very constrained by supersymmetry, thus it is
even more interesting to study one-loop corrections in gauged N = 4 supergravities, where, in
addition to the choice of the gauging, the number of matter multiplets is arbitrary, in order to
better understand these hidden features.

Radiative corrections to the cosmological constant coincides with the value of the scalar
potential evaluated at the vacuum. It can be shown [5] that one-loop corrections to the scalar
potential can be written in terms of even powers of the supertrace of the mass matrices:

V (φc) = V0 +
Λ4

32π2
STrM0 +

Λ2

32π2
STrM2 +

1

64π2
STrM4

(
log

M2

Λ2
− 1

2

)
, (1.1)

where V0 is the classical potential, Λ is an ultraviolet cut-off and we defined the supertrace of
mass matrices as

STrM2n ≡
∑
i

(−1)2Ji(2Ji + 1)m2n
i

=
∑
k

(−1)2Jk(2Jk + 1) TrM2n
k ,

(1.2)

where i covers the whole spectrum of the theory under consideration, Ji and mi are the spin
and the mass of the corresponding particle and k = 0, 1

2 , 1,
3
2 is the spin of particles, whose

mass matrix is Mk. In particular, the second line applies to an arbitrary theory with gravitinos,
gauge bosons, spin-1

2 fermions and scalars. From (1.1) we can read how M0, M2 and M4 control
quartic, quadratic and logarithmic divergences of the one-loop effective potential, respectively.
Finite corrections to the potential are managed by higher powers of the mass matrix. It is a
well-known result that in any theory with exact supersymmetry all supertraces vanish on any
Minkowski vacuum [6]. Therefore, we will require that supersymmetry is completely broken on
the vacuum.

STrM0 is always field independent and it counts the number of bosonic degrees of freedom
minus the number of fermionic degrees. Then, it vanishes in any supersymmetric theory, where
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supersymmetry is realized linearly and even if it is spontaneously broken at the vacuum. But,
in principle, there are no other reasons for which the supertraces of the quartic and quadratic
mass matrix vanish. In the paper [4], it is shown using the general formalism of N = 8 gauged
supergravities that the supertraces of the quadratic and the quartic mass matrices vanish at all
classical four-dimensional Minkowski vacua with completely broken N = 8 supergravity:

STrM2 = STrM4 = 0 . (1.3)

This makes quantum corrections to the potential finite and make possible to generate a small
cosmological constant. The paper also takes into account the higher powers of the mass matrix.
Under few restrictions on the gauging, which include all the known gaugings that lead to classical
vacua with fully broken supersymmetry on a flat background, it is shown that

STrM6 = 0 , STrM8 > 0 (1.4)

and, as a consequence, that the effective one-loop potential is negative definite, which correspond
to Anti-de Sitter vacua.

Following this work, we are going to study radiative corrections to classical vacua with vanish-
ing cosmological constant which completely break supersymmetry in the case of four-dimensional
half-maximal supergravity with arbitrary gaugings and different couplings of matter.

Since in N = 4 we have a free parameter n, which is the number of matter multiplets, in
principle one may expect that N = 4 calculations are more difficult than N = 8, which is
totally fixed by supersymmetry. Thus, we start this work with the hope that some unexpected
feature might simplify the whole calculations and higher power supertraces can be studied in the
general case. The results from the N = 8 tell us that quantum corrections to the potential in
N = 4 supergravities are finite in those cases which can be obtained as truncations of maximal
supergravity to half-maximal one. We will give more details at the end of this work, when all
the machinery will have been built and presented. Indeed, until now there does not exist in the
literature the complete Lagrangian for the N = 4 supergravities with general gauging. Thus, in
order to solve a part of the problem presented above, we need to provide a series of interaction
terms which have never been written. The final result of this work is that the quadratic divergence
of one-loop effective potential vanishes for any gauging and any number of matter multiplets.

We are going to present how this thesis is organized.

In the second chapter, we will show how effective potential is linked to the traces of the even
powers of mass matrices, displaying the well known computations by Coleman and Weinberg [5]
in the most general case. The mechanism introduced in this famous paper is presented in the
case of a general non-renormalizable Yang-Mills theory. The final result will be generalized to
theories containing higher-spin particle with a very simple argument.

In the third chapter, the N = 4 supergravity is presented: we show which is the field content of
the theory, how these fields can be organized, supersymmetric field variations and some relevant
terms of the Lagrangian. In extended supergravity theories (N > 2) the scalars parametrize some
coset manifold, therefore in this chapter we will also introduce the formalism which is useful to
describe this type of sigma models.
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The fourth chapter contains a general review about how to gauge extended supergravity in
various dimensions, by introducing the so-called embedding tensor. Internal consistency of the
gauging and the preserving of supersymmetry require the embedding tensor to satisfy certain
constraints which are both linear and quadratic. Then we present the pure-bosonic Lagrangian,
which has already been found out in [7]. At this point we will introduce the T -tensor, whose
irreducible components properties will be widely studied in appendices C and D. Fermion mass
matrices will be composed out of these tensors. Finally, a series a consistency relations between
scalar potential (which enters the theory when we gauge it) and T -tensor components will be
pointed out. A large use of group theory will help us to do all these calculations, which may
take weeks otherwise.

In the last chapter, the mass matrices of all the particles entering the theory will be written.
We will also evaluate the supertrace of quadratic mass matrix and we will find out that it turns
to be zero for arbitrary gaugings and number of matter multiplets n. This is the original result
of this work: we would have expected that it might vanish in those cases which are truncations
of N = 8 supergravities, but in principle there are no reasons this trace to be zero.

Most of the calculations which appear in the thesis imply the presence of multi-indices tensors
with their own symmetry properties. Thus, although they are mechanical, to face them by hand
will take a very long time and oversights are always lurking. Fortunately, the program Cadabra [8]
came to the aid and we made a large use of it.



Chapter 2

Radiative corrections to effective
potential

One-loop correntions to the vacuum energy in a general theory with scalars, spin-1
2 fermions

and gauge bosons were computed first by Coleman and E. Weinberg in [5]. In the present chapter
we will present the general ideas of this computation, which will lead to a general formula in
terms of the mass matrices of the particles which are present in the theory. The main definitions
and the general formalism of generating functions, which we rely on, is reviewed in appendix A.
We will give the general idea of the calculations, then present a sample computation in scalar
QED and finally reviewed the general method.

In this work we are interested in quantum corrections to the pseudo-moduli space of a su-
persymmetric theory, i.e. the space of non supersymmetric vacua. Associated to this we find
massless scalar modes X, whose masses are not protected by any symmetry at the quantum
level. Therefore, we expect these fields to acquire a mass when we take into account quan-
tum corrections. At tree-level, the pseudo-moduli vacuum expectation value 〈X〉 labels physi-
cally inequivalent degenerate states and determines tree-level masses of the particles. The gen-
eral result of Coleman-Weinberg computations can be explained schematically [9]: when we
quantize the bosonic harmonic oscillator, the energy of the ground state gets a contribution
1
2~ω = 1

2~
√
k2 +m2, while it gets the same contribution with an opposite sign for each fermionic

mode. We sum over all particles and their spin states and introduce a cut-off Λ for momenta.
Thus we have terms which diverge quadratically and logarithmically, which are proportional
respectively to the quadratic and quartic supertrace of mass matrices, i.e. the sum of traces of
mass matrices times the number of spin states number of each particle (with a sign minus for
fermion masses). Finite corrections are proportional to higher powers of these supertraces: these
tell us whether quantum corrections are positive or negative, that is whether they generate de
Sitter or anti-de Sitter vacua when coupled to gravity.

2.1 Effective potential and loop expansion

Let us consider a general theory whose Lagrangian we denote with L(φr, ∂φr), where the
r-index stands for a generic set of Lorentz and internal indices of the fields. Then the classical

9
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field configuration is set by extremizing the classical action

I[φr] =

∫
d4xL(φr, ∂φr) . (2.1.1)

The Lagrangian generically contains kinetic terms of the fields, some interaction term and a
scalar potential, which is a particular case of self-interacting terms that concerns only scalar
fields. The relevance of the scalar potential becomes already clear at semi-classical level, since
it determines the vacuum of the theory: by definition the vacuum is the state which minimizes
the energy and has to be maximally symmetric. In particular, we are interested in vacua with
vanishing cosmological constant

Λ = 0 , (2.1.2)

which are Poincaré invariant. Lorentz invariance, in particular, requires that expectation values
of fermionic and bosonic fields are zero (the same holds in maximally symmetric vacua):

〈ψ〉 =
〈
ψ̄
〉

= 〈Aµ〉 = 0 . (2.1.3)

Translation invariance requires that fields are constant on the vacuum, or equivalently have zero
momentum in Fourier space. Thus the vacuum of the theory is totally fixed by the value of
〈φ〉, for which the scalar potential is on its minimum (we are not considering boson and fermion
condensates 〈AµAµ〉 6= 0 or

〈
ψ̄ψ
〉
6= 0 ).

This non-vanishing expectation value may produce spontaneous symmetry breaking: i.e. we
define a new scalar fields which vanish expectation value on the vacuum

φ′ = φ− 〈φ〉 , (2.1.4)

and rewrite the action I[φr] in terms of φ′. If I[φr] was manifestly invariant under the linear
action of some symmetry, it is possible that the new action is not, that is the symmetry is no
longer realized linearly. However 〈φ〉, which minimizes scalar potential, determines only the
classical vacuum of the theory: the true vacuum receives can be found if we take into account
radiative corrections, because at quantum level the potential achieves additional terms, as we are
going to show. In some theories, classical scalar potential is not present, or it does not produce a
non-vanishing scalar expectation value. The idea of Coleman and Weinberg [5] was that quantum
corrections may produce SSB (spontaneous symmetry breaking) in theories for which the semi-
classical (tree) approximation does not indicate such breakdown. The simplest realistic model
in which this phenomenon occurs is the electrodynamics of scalar massless mesons: SSB occurs
at quantum level and the theory becomes that of a massive vector interacting with a massive
scalar meson. We will deal with this theory in the following section. Although it is simple, the
example mentioned shows all the main features of calculations in a generic non-abelian theory
(either renormalizable or not), which will follow in a natural way by generalization to more fields
and with fermions.

In appendix A we show how to construct the quantum action in terms of the so-called classical
field

φc(x) =
〈Ω+|φ(x) |Ω−〉J
〈Ω+|Ω−〉J

, (2.1.5)
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which has the form

Γ[φc] =

∫
d4x

[
−Veff(φc) +

Z(φc)

2
∂µφc∂

µφc + (higher order derivative) + (other fields)

]
,

(2.1.6)
where Veff(φc) is the new effective potential

Veff(φc) = V (φc) + quantum corrections . (2.1.7)

In particular, the effective potential can be written as the sum of proper vertices functions

Veff(φc) = i
∑
n

1

n!
iΓ̃(n)(0, . . . , 0) , (2.1.8)

where Γ̃(n)(p1, . . . , pn) are 1-particle irreducible connected Green’s functions in Fourier space,
with n external scalar lines.

The scalar vacuum expectation value 〈φ〉 is determined by

dVeff

dφ

∣∣∣∣
φc=〈φ〉

= 0 , (2.1.9)

with the further requirement that it is a minimum, in order to have stability of the vacuum state.

The idea of the original paper [5] was to calculate the effective potential in loop expansion,
which can be demonstrated to be equivalent to ~ expansion:

V (φc) = tree graphs + one closed loop graphs + O
(
~2
)
. (2.1.10)

Let us introduce ~ in a new Lagrangian L′(φ, ∂φ, ~), as it appears in the definition of the gener-
ating functional (A.3),

L′(φ, ∂φ, ~) =
L(φ, ∂φ)

~
, (2.1.11)

and expand it in powers of ~. The power of ~, H, associated with any graph is

H = I − V , (2.1.12)

where I is the number of internal lines and V the number of vertices in the graph. The propagator
is, indeed, the inverse of the differential operator occurring in the quadratic term of L′, while
the vertices carry a factor ~−1 (there are no propagators due to external lines attached to proper
vertices). The number of loops L is the number of unconstrained momenta, i.e.

L = I − V + 1 , (2.1.13)

because each vertex carries a δ4 in the momentum space (at each vertex four-momentum has to
be conserved) and we have to exclude the conservation of over-all momentum. Therefore

H = L− 1 . (2.1.14)

This expansion is unaffected by the shift of the fields because the parameter ~−1 multiplies the
total Lagrangian density.
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2.2 Sample computations - Massless scalar electrodynamics

We will show how computations work in the following simple case, which captures the main
features of this procedure appearing also in more complicated models.

Let us consider the Lagrangian density of massless scalar electrodynamics

LSQED = −1

4
(Fµν)2 + (Dµϕ)† (Dµϕ)− λ

3!

(
ϕ†ϕ

)2
, (2.2.1)

where ϕ is a complex scalar, Dµ is the gauge covariant derivative

Dµ := ∂µ − ieAµ , (2.2.2)

Aµ is the gauge boson field and Fµν is its field strength

Fµν := ∂µAν − ∂νAµ . (2.2.3)

Let us write the complex field ϕ in terms of two real fields φ1 and φ2

ϕ :=
φ1 + iφ2√

2
, (2.2.4)

and rewrite (2.2.1) in terms of these new fields:

LSQED = −1

4
(Fµν)2 +

1

2
(∂µφ1 − eAµφ2)2 +

1

2
(∂µφ2 − eAµφ1)2 − λ

4!

(
φ1

2 + φ2
2
)2

. (2.2.5)

If we quantize the photon field in Landau gauge, the Feynman rules for this model are

=
i

k2 + iε
, (2.2.6)

k
µ ν = − i

k2 + iε

(
ηµν −

kµkν
k2

)
, (2.2.7)

φ1

φ2

φ1

φ2

= −i λ
3
, (2.2.8)

µ

φ1 (φ2)

ν

φ1 (φ2)

= 2ie2ηµν , (2.2.9)

φi

φi

φi

φi

= −i λ . (2.2.10)
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We will not consider vertices between φ1, φ2 and Aµ,

φ1 φ2

µ

(2.2.11)

because they depend on the momentum of one of the two scalars. Indeed, we are working
with external scalars with zero momenta, therefore the momenta of the photon and of the re-
maining scalar running around the loop are opposite and the contraction of internal momentum
(coming from the vertex) with photon propagator in Landau gauge is zero.
The effective potential can only depend on φ2

c := φ2
1 +φ2

2. Then we can calculate graphs with φ1

external lines only and replace φ1
2 with φ2

c in the final result.

By symmetry considerations, we know that only graphs with an even number of external lines
are not zero. To the lowest order the only 1PI connected graphs contributing are the vertices,
thus

V (φc) =
λ

4!

(
φ1

2 + φ2
2
)2

+ O(~) . (2.2.12)

The effective potential at one-loop contains all the interactions of the scalars (quadratic, quartic,
septic, and so on, with one loop), as it can be read from (2.1.8), and we have an infinite series
of polygonal graphs:

+ + + + + · · · =
n∑
i=0

y

n

1

,

where internal lines can be either vectors or scalars, and external lines are scalars only.

The first vacuum diagram gives always the contribution

iΓ(0) =

∫
d4k

(2π)4 =
1

8π2

∫ Λ

0
dkk3 =

Λ4

32π2
, (2.2.13)

which is a field independent result. We have to multiply it for the number of bosonic degrees
of freedom. Fermions contribute with a minus sign, due to fermionic loop. However this is a
constant correction, thus in ordinary Yang-Mills field theories with a Minkowski background can
be eliminated by redefining the scalar potential. Nevertheless, in the following chapters we will
deal with supergravity theories and this arguments is no longer valid. Supersymmetry comes to
the aid: indeed, as we said this correction only depends on the spectrum of the theory and in
supersymmetric theories bosonic and fermionic degrees of freedom are always equal, no matter
whether the vacuum breaks SUSY or not. Therefore, in what follows we will always ignore this
term.

There are three types of graphs to compute: those with either φ1, φ2 or Aµ running around
the polygonal loops. Thus the proper vertices are
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iΓ(2n) =
1

2n

(2n)!

2n



y

φ1

n

1

+

y

φ2

n

1

+

y

A

n

1



=
1

2n

(2n)!

2n

∫
d4k

(2π)4

1

(k2 + iε)n

[
λn +

(
λ

3

)n
+ 3

(
2e2
)n]

,

(2.2.14)

where the 1/2n is the symmetry factor due to the internal lines of the diagrams (the number of
symmetries of a polygon with n non-oriented sides is 2n) and (2n)!/2n are the permutations of
external lines, except for the exchange of scalars at the same vertex. Coefficients 1/3 and 2 of
the second and third types of graphs respectively come from the vertices, while a coefficient 3 of
the third type comes from the trace of Lorentz indices on n photon propagator numerators:

Tr

(
ηµν −

kµkν
k2

)n
= 3 , (2.2.15)

which is the number of degrees of freedom of a massive vector.

Now we write the potential in powers of ~

V (φc) =
λ

4!
φ4
c + ~V1(φc) + O

(
~2
)
. (2.2.16)

Remembering relation (2.1.8), at one loop the three types of graphs give

V1(φc) = i
∞∑
n=1

φ2n
c

∫
d4k

(2π)4

1

2n

1

(k2 + iε)n

[(
2λ

3

)n
+ 3

(
e2
)n]

, (2.2.17)

Let us solve explicitly the integral for the first term in the right hand side, since the second
follows trivially. The first steps are a Wick rotation and the exchange of momentum integral and
summation:

V1(φc) =
1

2

∫
d4kE

(2π)2

∞∑
n=1

(−1)n+1

n

(
2λφ2

c

3k2
E

)n
+ O

(
e2
)
, (2.2.18)

where we recognize the Taylor expansion of the logarithm:

V1(φc) =
1

2

∫
d4kE

(2π)2 log

(
1 +

2λφ2
c

3k2
E

)
+ O

(
e2
)
. (2.2.19)

Now we introduce an ultraviolet cut-off Λ:

V1(φc) =
1

16π2

∫ Λ

0
dk k3 log

(
1 +

2λφ2
c

3k2

)
+ O

(
e2
)

= Λ2 λφ
2
c

48π2
+
λ2φ4

c

144

(
log

(
2λφ2

c

3Λ2

)
− 1

2

)
+ O

(
e2
)
,

(2.2.20)

where we have thrown away terms that vanish as Λ goes to infinity.

Including O
(
e2
)
terms, the final expression is

V1(φc) =
Λ2

32π2

(
2λ

3
+ 3e2

)
φ2
c+

λ2

144π2
φ4
c

(
log

2λφ2
c

3Λ2
− 1

2

)
+

3e4

64π2
φ4
c

(
log

e2φ2
c

Λ2
− 1

2

)
. (2.2.21)
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2.3 Effective potential in general theories

We are going to compute one-loop corrections to the effective potential of the most general
gauge field theory. We always keep in mind the renormalizable interaction, but what we are
going to say is also valid in general. The final expression can be obtained in terms of traces
of certain matrices constructed from the coupling constants of the theory. In particular, these
are tree-level mass matrices of the fields which are functions of vacuum expectation values of
the scalars. The Lagrangian density involves a set of real spinless boson fields φi, a set of Dirac
fields ψi and a set of gauge bosons Aaµ, where i and a are the indices of the representations of
the gauge group.

The interactions of the scalars are quartic self-interactions, Yukawa couplings with fermions
and minimal gauge-invariant couplings with vector fields. If we choose Landau gauge, the only
diagrams contributing to radiative corrections are polygon graphs with either spinless bosons,
fermions or gauge bosons running around the loops. Ghost fields do not directly couple at one
loop with spinless fields. The effective potential will be the sum of the classical potential and
quantum corrections from boson and fermion loops

V = V0 + ~ (Vs + Vf + Vg) , (2.3.1)

with an obvious notation for subscripts.

Let us start with the scalar interactions. The Lagrangian density in this case is

Ls = −V0(φ) , (2.3.2)

then the Feynman rule becomes

φi

φa

φj

φb

= −i δ4V0

δφiδφjδφaδφb
, (2.3.3)

where, for convention, the scalars i, j are externals and a, b are those running around the loops.
For each vertex there are two fields attached φi and φj : if i = j the factor 2 coming from the
derivatives is compensate by the factor 1/2 due to the indistinctness of the two bosons at the
same vertex. Thus, in the calculations that follow, we have to consider the matrix V, defined by

Vab :=
δ2V0

δφaδφb
, (2.3.4)

which is real and symmetric and it is a function of the scalar fields φi. Proper vertices are

iΓ(2n) =

y

n

1

=
1

2n
(2n)!

TrVn

(k2 + iε)n
. (2.3.5)
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Furthermore there exists an orthogonal matrix O, such that OTO = I and OTVO = D is
diagonal. The one-loop correction becomes

Vs(φc) = i

∫
d4k

(2π)4

∞∑
n=1

1

2n

1

(k2 + iε)n
TrVn . (2.3.6)

Using the properties of the trace we can do the calculation using the diagonal matrix D, instead
of V. In this way it is easy to sum and integrate and then come back to V:

Vs(φc) =
Λ2

32π2
TrV(φc) +

1

64π2
Tr

(
V(φc)

2 log
V(φc)

Λ2

)
− 1

128π2
TrV(φc)

2 . (2.3.7)

The term of the Lagrangian density which contributes to the correction due to gluon fields is

Lg =
1

2

∑
ab

M2
ab(φ)AaµA

µb , (2.3.8)

whereM2
ab(φ) is a symmetric and real matrix (the position of the indices a and b is meaningless).

Its general form is

M2
ab(φ) = gagbT

a
ijT

b
jkφiφk , (2.3.9)

where T aij and T
b
ij are the generators of infinitesimal transformations of the gauge group, ga and

gb are the coupling constants (in the general case, if the gauge group is not simple, they can be
different). The Feynman rule for the vertex is

µ, a

φc

ν, b

φc

= iM2
ab (φc) (2.3.10)

and computations are straightforward:

iΓ(2n) =

y

n

1

=
3

2n
(2n)!

Tr
(
M2
)n

(k2 + iε)n
, (2.3.11)

Vg(φc) =
3Λ2

32π2
TrM2(φc) +

3

64π2
Tr

(
M2(φc)

2 log
M2(φc)

Λ2

)
− 3

128π2
TrM2(φc)

2 . (2.3.12)

It is identical to the previous case, except for the coefficient 3 overall coming from the Lorentz
traces of propagators. Let us just notice that the degrees of freedom of a massive bosons are
three. This aspect will soon assume a fundamental role.

The last case we are considering is the most general Yukawa coupling:

LY = −
∑
ij

mij(φ)ψ̄iψj , (2.3.13)



2.3. EFFECTIVE POTENTIAL IN GENERAL THEORIES 17

where m(φ) is a matrix in Dirac space and internal space. In particular, we can decompose it as

mij(φ) = Aij(φ)I + iBij(φ)γ5 , (2.3.14)

where γ5 = iγ0γ1γ2γ3 is the hermitian Dirac fifth gamma matrix, A and B are hermitian
matrices in the internal space. Thus, we can diagonalize them by a unitary transformation and
calculations are the same as in the previous case. The Feynman rules are

k
i j =

i

/k
δij , (2.3.15)

(2.3.16)ψi ψ̄j

φc

= −imji (φc) . (2.3.17)

(2.3.18)

Since the fermion propagators are massless, only graphs with an even number of internal fermions
contribute to the sum. Indeed, using (2.3.14), hermiticity of A and B and the commutation rules
{γµ, γ5} = 0 we have

Tr

[
. . .m

1

/k
m

1

/k
. . .

]
= Tr

[
. . .mm†

1

k2
. . .

]
, (2.3.19)

and
Tr

[
1

/k
γ5

]
= Tr

[
1

/k

]
= 0 , (2.3.20)

where the trace runs over both internal and Dirac indices. The polygonal loops of fermions have
oriented sides, thus we do not have reflection symmetry any more. A factor 1/2 comes from the
sum over the even terms only, thus

iΓ(2n) =

y

2n

1

=
1

2n
(2n)! Tr

(
m

1

/k

)n
(2.3.21)

and the final contribution to the potential is

Vf (φc) = − Λ2

32π2
Trmm† − 1

64π2
Tr

[(
mm†

)2
log

mm†

Λ2

]
+

1

128π2
Trmm† , (2.3.22)

where an overall minus sign comes from fermion loops. This sign is the main difference with
respect to the bosonic case: fermion loops can compensate the bosonic radiative corrections.
If we are considering Majorana fermions, instead of Dirac, we recover reflection symmetry of
polygonal loops and an overall 1/2 factor has to be added.
We can also consider Weyl fermions

ψL,R = PL,Rψ , (2.3.23)



18 CHAPTER 2. RADIATIVE CORRECTIONS TO EFFECTIVE POTENTIAL

where ψ is a Dirac fermion and PR and PL are the chiral projectors:

PL,R =
I∓ γ5

2
. (2.3.24)

It is possible to decompose m(φ) (2.3.14) in an alternative way:

m(φ) = mL(φ)PL + mR(φ)PR . (2.3.25)

If we are considering one loop contribution of Weyl spinors, only one of these two terms is not
null, because of the projectors. Then the trace over Dirac indices gives an overall factor

Tr PL = Tr PR = 2 , (2.3.26)

which are the degrees of freedom of a Weyl spinor.

It can be noted that all calculations we have done are also valid in a non-renormalizable
theory, since we have not used this assumption in the calculations. Furthermore, when we sum
(2.3.7), (2.3.12) and (2.3.22) (for Weyl fermions) the final result can be written as

V (φc) = V0 +
Λ4

32π2
STrM0 +

Λ2

32π2
STrM2 +

1

64π2
STr

(
M4 log

M2

Λ2

)
− 1

128π2
STrM4 , (2.3.27)

where STrM2n(φc) is the supertrace over internal indices of mass matrices:

STrM2n = TrVn − 2 Trm2n
H + 3 TrM2n , (2.3.28)

where the notation adopted is an obvious simplification of the previous one and H denotes the
helicity of the Weyl fermion. The result is very general, indeed we can include particles with
higher-spin, like gravitinos. In the general case the supertrace is defined as

STrM2n =
∑
i

(−1)2Ji (2Ji + 1) TrM2n
Ji , (2.3.29)

where Ji are the spins of the particles (2Ji + 1 its degrees of freedom) and M2
Ji

their mass
matrices. In (2.3.27), we also included the contribution of vacuum diagrams STrM0 (2.2.13),
which counts the degree of freedom of the theory:

STrM0 = ns − 2nf + 3nv , (2.3.30)

where ns, nf , nv are the number of scalars, fermions and vectors entering the theory.

We can justify this general formula as mentioned in the introduction of this chapter, that is
summing over momenta and spin configurations of bosonic and fermionic harmonic oscillators
ground states.

V1(X) =
∑

(−1)F

∫
d3k

(2π)3

1

2

√
k2 +m2

i (X) , (2.3.31)

where (−1)F is +1 for bosons and −1 for fermions and we are summing over all particles and
their spin states. Although we present this formula from qualitative physical consideration, it
can be proved [10] in a rigorous way. We introduce a cut-off Π for the three-momentum k.

V1(X) =
∑ (−1)F

(2π)2

∫ Π

0
dk k2

√
k2 +m2

i

=
∑ (−1)F

32π2

[
k
√
k2 +m2

i (2k
2 +m2

i )−m4
i log

(√
k2 +m2

i + k

)] ∣∣∣∣Π
0

=
∑ (−1)F

32π2

[
2Π4 + 2m2

iΠ
2 +

1

2
m4
i

(
log

m2
i

4Π2
+

1

2

)]
,

(2.3.32)
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where in the last step we have take the limit Π� mi.

Thus, we can notice that the structure of this schematic quantum correction is exactly the
same as (2.3.27), because the sum over spin states gives the coefficient 2Ji + 1. Nevertheless,
numerical coefficients are different. However this is an expected feature since in the formula we
have just written appears a three-momentum cut-off, while in (2.3.27) Λ is a four-momentum
cut-off in euclidean space. Coefficients of polynomial terms in Π (or Λ) and mi depend on the
regularization scheme that we have chosen and the relation between two different schemes is
usually non-trivial. The only coefficient, which does not depend on the regularization scheme, is
that ofm4

i logm2
i and, indeed, it coincides in the two formulae. The coefficients of the other terms

are meaningless: we are considering theories coupled with gravity which are not renormalizable,
then all the divergences have to disappear. That is the supertraces of quadratic and quartic mass
matrix must be zero, in order the theories to be self-consistent.
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Chapter 3

D=4 N=4 Supergravity

N = 4 pure supegravities in four dimensons were constructed in the seventies [11–14], and
within the following dacade the coupling of vector multiples to these theories and some of their
gaugings were worked out [15–19]. In the following chapter, we will present the field content of
the theory and the ungauged version of N = 4 supergravity in D = 4, with an arbitrary number
n of vector multiples. In particular, we will focus on few terms, that are crucial for the study of
mass terms in gauged theories.

3.1 D=4 N=4 Supergravity fields content

The fields content of N = 4 pure supergravity in four dimensions can be organized in the
so called gravity multiplet, which contains the metric gµν (or equivalently the vierbein eaµ, with
a flat space-time index), four gravitinos ψiµ, six massless vectors Amµ , four spin-1/2 fermions χi

and one complex scalar τ , where i = 1 . . . 4 is a complex SU(4)-index and m = 1 . . . 6 is a real
SO(6)-index (as it will be clarified in the following sections). The only N = 4 matter multiplet
available is the vector multiplet [20, 21], which contains a massless gauge field, four massless
spin-1/2 fermions and six real scalars. We are going to consider n vector multiplets, thus the
fields will be organized as follows: the gauge fields Aaµ (a = 1 . . . n is a real SO(n)-index), the
fermions λia and the scalars φa[ij].

Spin-0 Spin-1
2 Spin-1 Spin-3

2 Spin-2
Gravity multiplet 2 4 6 4 1
Matter multiplet 6 4 1 0 0

The Lagrangian of the ungauged theory is totally fixed by supersymmetry and, in particular,
the bosonic Lagrangian is highly constrained by the structure of an underlying global symmetry
group G = SL(2,R) × SO(6, n). In the rest of this section, we will present how the global
symmetry group G determines the ungauged Lagrangian.

21
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3.2 Scalar sectors

The scalars τ and φa[ij] are described by non-linear sigma models, i.e. they are coordinates
of non-compact Riemannian differiential manifolds, target spaces, with dimensions 2 and 6n,
respectively:

Ls.kin = −e
2
gst∂µφ

s∂µφt − e

2
gxy∂µφ

x∂µφy , (3.2.1)

where s = 1, 2 and x = 1 . . . 6n are curved indices of the two scalar manifolds, gst and gxy are
their metrics and φx, φs some coordinates. The consistent coupling of the scalar fields to vectors
and fermions, for a given amount of supersymmetry, requires restrictions on the scalar manifolds
and additional structures defined on it. In particular, combined scalar-fermion and scalar-vector
couplings with extended supergravity promote the isometry group of scalar manifolds to a global
symmetry of the field equations of motion and Bianchi identities. Furthermore, the target spaces
have to be homogeneous and symmetric in the case of theories with large enough supersymmetry,
N > 2 [22]: namely, they are coset spaces of the form G/H with G semisimple and H its maximal
compact subgroup. In D = 4, N = 4 supergravity scalar fields are described by

SL(2,R)

SO(2)
× SO(6, n)

SO(6)× SO(n)
. (3.2.2)

It is convenient to formulate these sigma-models G/H in terms of a G-valued matrix repre-
sentative L (φ) (φ’s are coordinates of scalar manifold) and a left-invariant current

J = L−1dL ∈ g , (3.2.3)

where g ≡ Lie(G). Under a left multiplication by g ∈ G, L (φ) is in general carried into another
coset with representative element L (φ′) = L (g ∗ φ) (where g∗ denotes a non-linear action of g
on φ):

gL (φ) = L
(
φ′
)
h , (3.2.4)

where h ∈ H and φ′ are functions of g and φ.

J can be decomposed according to

J = Q+ P , Q ∈ h , P ∈ k , (3.2.5)

where h ≡ Lie(H) and k denotes its complement, the set of the coset generators, i.e. g = h ⊥ k.
The generators algebra satisfies

[h, h] ⊂ h , [h, k] ⊂ k , [k, k] ⊂ h , (3.2.6)

where the first condition comes from the fact that H is a group and the third is the definition
of symmetric coset spaces. The second is a consequence of an appropriate choice of the basis of
generators.

Let us show how P and Q transform under the action of a global G transformation on the
left and a local H compensation on the right:

J
(
φ′
)

= L−1
(
φ′
)

dL
(
φ′
)

= hJ (φ)h−1 + hdh−1 , (3.2.7)
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thus
P
(
φ′
)

= hP (φ)h−1, Q
(
φ′
)

= hQ (φ)h−1 + hdh−1 , (3.2.8)

showing that Q is a composite connection which acts as a gauge field under H. The current P on
the other hand transforms in the adjoint representation of H and it is a vielbein on G/H. Since
Q is the H-connection, it has to be carefully inserted in the covariant derivative of fermionic
fields, which transform linearly under the local H symmetry, and scalar field matrices L:

DL ≡ dL− LQ = LP . (3.2.9)

The vielbein P can be used to construct H-invariant interaction terms of the action between
scalars and fermions and builds the G-invariant kinetic term

Ls.kin = −e
2

TrPµP
µ , (3.2.10)

where
Pµ = Jµ −Qµ = L−1∂µL−Qµ . (3.2.11)

The local H-symmetry is not a gauge symmetry associating with propagating gauge fields (Q
is a composite connection), but simply takes care of the redundancy in parametrizing the coset
space G/H:

# of scalars = dim
G

H
= dimG− dimH . (3.2.12)

In order to construct the full supersymmetric action of the theory, it is most convenient to
formulate the theory in terms of manifestly H-invariant objects:

M = L∆LT , (3.2.13)

where ∆ is a constant H-invariant positive definite matrix (for both our coset spaces ∆ is simply
the identity matrix). Thus the Lagrangian (3.2.10) can be written as

Ls.kin =
1

k
Tr ∂µM∂µM−1 , (3.2.14)

with a proper normalization constant 1/k.

3.2.1 SL(2)/SO(2) scalar sector

Let us now apply the general procedure to the scalars entering our theory. We start from the
SL(2)/SO(2), which is the simplest non-trivial coset space.

We can work in the fundamental representation of SL(2) and choose the following basis of
generators:

sl(2) = {σ1, iσ2, σ3} = {
(

0 1
1 0

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
} . (3.2.15)

The isotropy algebra is
so(2) = {J} = {−iσ2} , (3.2.16)

while its orthogonal complement is spanned by symmetric traceless matrices:

k = {K1,K2} = {σ1, σ3} . (3.2.17)
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Let us define the solvable parametrization by writing the decomposition sl(2) = so(2)⊕ S, with
S a solvable subalgebra which consists of the following upper-triangular generators:

S = {σ3, σ+}, σ+ = σ1 + iσ2 . (3.2.18)

This defines the solvable parametrization φs = (ϕ, χ), in which the coset representatives have
the following form:

V = eχσ
+
eϕσ

3
=

(
1 χ
0 1

)(
eϕ 0
0 e−ϕ

)
. (3.2.19)

The vielbein and connection one-forms are

V−1dV = P sKs +QJ , (3.2.20)

where
P 1 = dϕ , P 2 =

e−2ϕ

2
dχ , Q =

e−2ϕ

2
dχ , (3.2.21)

and the metric reads
ds2 = 2dϕ2 +

1

2
e−4ϕdχ2 . (3.2.22)

The matrix M for this model can be computed from (3.2.13) with ∆ = I2, and it is mostly
compact expressed in terms of the complex scalar field

τ = χ+ ie2ϕ , (3.2.23)

with Im τ > 0, giving rise to

Mαβ =
1

Im τ

(
|τ |2 Re τ
Re τ 1

)
, (3.2.24)

where α, β = +,− are SL(2)-indices. The first term of kinetic Lagrangian (3.2.1) take the form

e−1Ls1.kin =
1

8
∂µMαβ∂

µMαβ = − 1

4 Im τ2
∂µτ

∗∂µτ = −∂µϕ∂µϕ−
1

4
e−4ϕ∂µχ∂

µχ , (3.2.25)

where Mαβ is the inverse matrix of Mαβ :

Mαβ =
1

Im τ

(
1 −Re τ

−Re τ |τ |2
)
. (3.2.26)

The SL(2) symmetry action on Mαβ

M → gMgT , g =

(
a b
c d

)
∈ SL(2) (3.2.27)

acts on τ as a Möbius transformation τ → aτ+b
cτ+d .

When we will couple SL(2)/SO(2) scalars with fermions, it will be crucial to introduce a
SL(2)-covariant notation. Namely, it is necessary to introduce a complex SL(2)-vector Vα,
which carries under local U(1) a charge +1:

Vα =

(
ψ
φ

)
. (3.2.28)

The redundant degree of freedom of Vα is fixed by requiring the following equation to be valid:

Mαβ = Re
(
VαV

∗
β

)
. (3.2.29)
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Thus it easy to show the following relations are valid:

Im τ =
1

φφ∗
, |τ | = |ψ|

|φ|
, (Imψ∗φ)2 = |ψ|2|φ|2 − (Reψ∗φ)2 = 1 , (3.2.30)

which is, by convention1, Imψ∗φ = 1, which is a SL(2)-invariant request. Furthermore, it is
easy to prove that

Re τ =
ψ∗

φ∗
− i

φφ∗
=
ψ

φ
+

i

φφ∗
. (3.2.31)

The symmetric real positive defined matrix Mαβ can be written as2

Mαβ = VαV
∗
β + iεαβ , (3.2.32)

and its inverse is

Mαβ = εαγεβδMγδ . (3.2.33)

Consistently, we define an upper SL(2)-index as follows:

Vα = εαβVβ . (3.2.34)

It can be noted that Mαβ acts on Vα similarly to a metric:

MαβV
α = iVβ . (3.2.35)

The U(1)-connection and the vielbein are

Qs = − i
2
εαβVα∂sV

∗
β , Ps =

i

2
εαβVα∂sVβ , (3.2.36)

which are imaginary and complex quantities, respectively. Straightforwardly, covariant deriva-
tives are

DsVα = (∂s −Qs)Vα = PsV
∗
α , DsV

∗
α = (∂s +Qs)V

∗
α = P ∗s Vα , (3.2.37)

and

DsMαβ = PsV
∗
αV
∗
β + P ∗s VαVβ . (3.2.38)

The metric of the scalar manifold is

gst = 2P ∗(sPt) , (3.2.39)

while the Maurer-Cartan equations become

D[sPt] = 0, P ∗[sPt] = −∂[sQt] . (3.2.40)

3.2.2 SO(6,n)/SO(6)×SO(n) scalar sector

We choose the metric of SO(6, n) to be

ηMN = ηMN = diag (−1,−1,−1,−1,−1,−1, 1, . . . , 1) , (3.2.41)

1This convention accords to the one adopted in [16] and [7], provided that in the former we substitute φ→ iφ.
2For the epsilon tensor εαβ we use ε+− = ε+− = 1 which yields εαγεβγ = δβα.
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where M,N = 1 . . . 6 + n and M,N = 1 . . . 6 + n are SO(6, n) and SO(6) × SO(n) indices,
respectively, in the fundamental representations. We recall that SU(4) is the covering group of
SO(6), thus at the level of the present work can be considered as the same, SO(6) ≈ SU(4).

The scalar coset is described by representatives L that transform under global SO(6, n) from
the left and local composite SO(6)× SO(n) ≈ SU(4)× SO(n) from the right:

L→ gLh, L
M

M = (L m
M , L a

M ) =
(
L

[ij]
M , L a

M

)
, (3.2.42)

where g ∈ SO(6, n), h = h (φx) ∈ SO(6)×SO(n) and indices are those introduced in section 3.1.
Thus, M can be decomposed into the fundamentals 6 of SO(6) and n of SO(n), or equivalently
into the 6 (the antisymmetric part of 4× 4) of SU(4) and n of SO(n).

L
[ij]

M is subject to the pseudo-reality constraint

LMij =
(
L ij
M

)∗
=

1

2
εijklL

kl
M , (3.2.43)

and the normalization of the map L m
M → LijM is fixed such that

L m
M LNm = −L m

M L m
N = L ij

M LNij . (3.2.44)

Using the symmetry properties of L ij
M matrix, it is straightforward to show that

L ik
(M LN)jk =

1

4
δijL

kl
(M LN)kl ,

1

2
εmnklL

ik[NLjlP ] = −δ(i
[mL

[N
n]lL

j)lP ] . (3.2.45)

L
M

M is a SO(6, n)-matrix, thus its inverse can be defined as follows:

L−1 = ηLT η ,
(
L−1

) M

M
= ηMNηMNL

N
N , (3.2.46)

that is

L M
N L

M
M = δ

M
N . (3.2.47)

Following the normalization prescription (3.2.44), we find

L M
n L m

M = δmn ⇒ L M
ij L kl

M = −δk[iδ
l
j] , L M

a L b
M = δab . (3.2.48)

In terms of
(
L ij
M , L a

M

)
, the orthogonality condition for SO(6,n) matrix L M

M becomes

− L ij
M LNij + L a

M L a
N = ηMN , (3.2.49)

where ηMN is the constant tensor introduced in (3.2.41).

This coset space can be also parametrized by a symmetric positive defined matrix MMN . For
SO(6, n)/SO(6)× SO(n), the invariant matrix in (3.2.13) is ∆ = δMN and M = LLT :

MMN = +L ij
M LNij + L a

M L a
M . (3.2.50)

MMN acts on L M
M similarly to the metric ηMN :

MMNL
ijM = −L ij

N , MMNL
aM = L a

N . (3.2.51)
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We denote its inverse M−1 = ηMη by

MMN = ηMP ηNQMPQ . (3.2.52)

The vielbein on the coset space and the composite SU(4)×SO(n)-connection are determined
from

L−1∂xL = P a[ij]
x Ta[ij] +Q ab

x Tab +Q i
x jT

j
i , (3.2.53)

where
(
Tab, T

j
i

)
are the generators of the Lie algebra su(4)×so(n) and Ta[ij] denotes generators

of the coset part of the Lie algebra so(6, n). More precisely,

P
M

xN = L M
N DxL

M
M , P

M
xN = −P M

x N , (3.2.54)

are the vielbein on SO(6, n)/SO(6) × SO(n) scalar manifold. The vielbeins are covariantly
constant with respect to the full covariant derivative:

DxP
aij

y = ∂xP
aij

y − ΓzxyP
aij

z −Q a
xb P

bij
y −Q i

xk P
akj

y −Q j
xk P

aik
y = 0 . (3.2.55)

The metric of the scalar manifold is given by

gxy =
1

2
P

M
xN P

N
yM = P aij

x P a
y ij , (3.2.56)

and the differential equations satisfied by the coset representatives are

DxL = LPx , DxL
M

M = L
N

M P
M

xN , (3.2.57)

DxL
−1 = −PxL−1 , DxL

M
M = −L M

N P
N

xM , (3.2.58)

which in components read

DxL
a

M = P aij
x LMij , (3.2.59)

DxL
ij

M = P aij
x L a

M , (3.2.60)

DxL
M
a = P aij

x L M
ij , (3.2.61)

DxL
ijM = P aij

x L M
a . (3.2.62)

What follows from these equations is the relation

DxMMN = 2
(
L a
M LNij + L a

N LMij

)
P aij
x . (3.2.63)

The inverse of the vielbein is defined via

P
M

xN P
x P
O = δ

M
O δ

P
N − η

MP ηNO , P aij
x P xbkl = δabδ

[i
k δ

j]
l . (3.2.64)

The kinetic term for these scalars is

Ls2.kin =
1

16
∂µMMN∂

µMMN . (3.2.65)

We also define a scalar dependent completely antisymmetric tensor

MMNPQRS = εmnopqrL
m

M L n
N L o

P L p
Q L q

R L r
S

= −2iεijpsεklqtεmnruL
ij

[M L kl
N L mn

P L pq
Q L rs

R L tu
S] ,

(3.2.66)

which will be useful to express in a compact way the scalar potential, when gauging the theory
(ambiguous indices are SO(6) in first line and SU(4) in the second).
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3.3 Vector sector and 2-forms

In four dimensions there is a duality between 1-forms and 1-forms, such that these appear
in pairs of which only the first half enters in the Lagrangian and carries propagating degrees of
freedom, while the second half is defined as their on-shell duals [23].

In N = 4 D = 4 supergravity multiplets carry 6 + n vector fields which show up in the
Lagrangian, but it is only together with their 6 + n duals that they are in the fundamental
representation (2,6 + n) of SL(2)×SO(6, n) ⊂ Sp(12 + n, 12 + n). Let us define the symplectic
form Ω preserved by Sp(12 + n, 12 + n) introducing a composite index M = (α,M)

ΩMN = εαβηMN , ΩMN = εαβηMN . (3.3.1)

The existence of this symplectic form is a general feature of four-dimensional gauge theories.
Every decomposition AMµ =

(
AΛ
µ , AµΛ

)
such that

ΩMN =

(
ΩΛΣ ΩΛ

Σ

Ω Σ
Λ ΩΛΣ

)
=

(
0 I
−I 0

)
(3.3.2)

provides a consistent split into an equal number of electric AΛ
µ and magnetic AµΛ vector fields.

That is the ungauged theory can be formulated such that the electric fields AΛ
µ appear in the

Lagrangian while their dual magnetic fields AµΛ are only introduced on-shell. Such a decom-
position is called a symplectic frame. Every two symplectic frames are related by a symplectic
rotation.

For the vector fields of the theory one can choose a symplectic frame such that the subgroup
SO(1, 1) × SO(6, n) is realized off-shell. The electric vector fields AM+

µ ≈
(
Amµ , A

a
µ

)
form a

vector under SO(6, n) and carry charge +1 under SO(1, 1). Their magnetic duals AM−µ carry
a SO(1, 1) charge −1. Together they constitute an SL(2) vector AMα

µ =
(
AM+
µ , AM−µ

)
. The

kinetic term of the vectors is 3

e−1Lv.kin = −1

4
Im τMMNF

M+
µν FµνN+ +

1

8
Re τηMNε

µνρσFM+
µν FN+

ρσ , (3.3.3)

where FM+
µν = 2∂[µA

M+
ν] is the abelian field-strength of AM+

µ .

As said above, only FM+
µν enters the Lagrangian, but FM−µν appears in the equations of motion.

To express the latter it is also useful to define the following combination of the electric field
strength:

GM+
µν ≡ FM+

µν ,

GM−µν ≡ e−1ηMNεµνρσ
∂Lkin

∂FN+
ρσ

= −1

2
εµνρσ Im τMMNηNPF

P+
µν − Re τFM+

µν .

(3.3.4)

The equations of motion for the electric vectors in the lowest order in the fields take the form
∂[µG

M−
νρ] = 0 (the full field equations receive higher-order terms in the fermions). Introducing

3Space-time metric has signature (−,+,+,+) and Levi-Civita is a proper space-time tensor, i.e. ε0123 = e−1,
ε0123 = −e.
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consistently by hand FM−µν = GM−µν (these will be equations of motion for 2-forms in the gauged
theory), GMα

µν and FMα
µν are on-shell identical and SL(2)× SO(6, n) is a global symmetry group

of equation of motions.

In the ungauged theory, 2-forms are only introduced on-shell, according to our description,
and they are dual to the scalars. We introduce them because they will be fundamental when
we will gauge the theory. 2-forms transform in the adjoint representation of SL(2) × SO(6, n)

and since the group has two factors there are also two kinds of 2-form fields, namely B[MN ]
µν and

B
(αβ)
µν . Indeed, due to the non-linear couplings of the scalar fields, discussed in 3.2, it turns out

that field strengths of 2-forms F [MN ]
µνρ and F (αβ)

µνρ are dual to Noether-currents associated with the
symmetry generated by generators of the group, which can be written more compactly as

(tαβ) δ
γ = δδ(αεβ)γ and (tMN ) Q

P = δQ[MηN ]P , (3.3.5)

respectively for the two factors:

F [MN ]
µνρ = eεµνρσj

σ[MN ], F (αβ)
µνρ = eεµνρσj

σ(αβ) . (3.3.6)

The apparent mismatch between the number (dimG− dimH) of physical scalars and the num-
ber of 2-forms is explained by the fact that not all the Noether-currents j[MN ] and j(αβ) are
independent: it follows from the structure of the coset space sigma-model that L−1 (jt)L ∈ k

for the currents associated with (3.2.10). This implies dimK linear constraints between the field
strengths of 2-forms.

3.4 Fermionic sector

All the fermions carry a representation of H = U(1)×SU(4)×SO(n), as we said above. The
U(1) acts on the fermions as a multiplication factor with a complex phase exp(iqλ(x)), where
the charges are

qψ = −1

2
, qχ = +

3

2
, qλ = +

1

2
. (3.4.1)

Furthermore, all fermions are chiral and conventions about chirality are linked to our previous
choice about the sign of Imψ∗φ (3.2.30):

γ5ψ
i
µ = +ψiµ , γ5χ

i = −χi , γ5λ
ai = +λai . (3.4.2)

The most commonly adopted convention about the normalization of kinetic terms and the
one we choose is

e−1Lf.kin = −ψ̄µiγµνρDνψ
i
ρ −

1

2
χ̄iγ

µDµχ
i − λ̄aiγµDµλ

ai , (3.4.3)

where

Dµλ
i
a = ∇µλia +Q b

µa λ
i
b +Q i

µj λ
j
a −

1

2
Qµλ

i
a , (3.4.4)

Dµψ
i
ν = ∇µψiν +Q i

µj ψ
j
ν +

1

2
Qµψ

i
ν , (3.4.5)

Dµχ
i = ∇µχi +Q i

µj χ
j − 3

2
Qµχ

i , (3.4.6)

with ∇µ being the Lorentz and space-time covariant derivative and Q b
µa = Q b

xa ∂µφ
x, Q j

µi =

Q j
xi ∂µφ

x and Qµ = Qs∂µφ
s.
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3.5 The ungauged Lagrangian and supersymmetry transforma-
tion laws

The complete ungauged Lagrangian, up to four-fermions terms, can be found in the paper [16],
imposing fMNP = 0. Most of the conventions adopted in this work match perfectly with those
used by Bergshoeff, Koh and Sezgin.

We are going to concentrate only on those terms which are relevant for our analysis.

LD=4
N=4,ungauged = Lkin + Lferm.scal + LPauli + L4−ferm , (3.5.1)

in particular,
e−1Lkin =

1

2
R+ Ls1.kin + Ls2.kin + Lf.kin + Lv.kin , (3.5.2)

where R is the Ricci scalar for the metric gµν .

LPauli contains terms of the type F f̄1γf2L, where F is the abelian field strength, L a scalar
manifold representative, fi are generic fermions and γ is a generalized gamma matrix. L4−ferm

contains interaction terms of four fermions. Both these sectors of the Lagrangian are not relevant
for our analysis.

e−1Lferm.scal = s1χ̄iΓ
µΓνψ i

µ Pν + s2λ̄
a
i Γ

µΓνψµjP
aij

ν + h.c. , (3.5.3)

and we have to set numerical coefficients s1 and s2.

Once fixed the normalization of kinetic terms of all the fields, coefficients of supersymmetry
variations follow trivially, by requiring that the variation of the Lagrangian vanishes up to bound
terms. Supersymmetric variations are

δeaµ = ε̄iγaψµi + h.c. , (3.5.4)

δψiµ = 2Dµε
i +

1

4
iV∗αL

ij
M GMα

νρ γ
νργµεj + fermion bilinears (3.5.5)

= 2Dµε
i − 1

2φ
L ij
M FM+

νρ γνργµεj + fermion bilinears ,

δAµMα = 2εαβVβL
M

ij ψ̄ i
µ ε

j − εαβVβLijM χ̄iΓµεj + iεαβVβL
M
a λ̄ai Γ

µεi + h.c. , (3.5.6)

δχi = 2Pµγ
µεi +

1

2
iVαL

ij
M GMα

µν γ
µνεj + fermion bilinears , (3.5.7)

= 2Pµγ
µεi +

1

φ∗
L ij
M FM+

µν γµνεj + fermion bilinears ,

δλia = 2iP ij
µa γµεj −

1

4
VαLMaG

Mα
µν γ

µνεi + fermion bilinears (3.5.8)

= 2iP ij
µa γµεj +

i

2φ∗
LMaF

M+
µν γµνεi + fermion bilinears ,

δVα = V∗αε̄iχ
i , (3.5.9)

δL a
M = −2iL ij

M ε̄iλ
a
j + h.c. , (3.5.10)

δL ij
M = 2i

(
ε̄[iλj]a −

1

2
εijklε̄kλal

)
L a
M . (3.5.11)
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In fermion variations, we used the definitions (3.3.4), properties of scalar representatives shown
in sections 3.2.1 and 3.2.2, and the gamma matrix identity

1

2
iεµνρλγ

µν = −γρλγ5 . (3.5.12)

It will be useful to consider the supersymmetry variation of the scalars L M
M in terms of

coordinate-fields φx:

δφx =
1

2
gxyP

N
yM L M

N δL
M

M = −2iP xaij ε̄iλ
a
j . (3.5.13)

The coefficients s1 and s2 of scalar-fermion couplings were fixed by imposing that terms of the
forms χ̄ /P /Dε and λ̄ /P /Dε vanish in the supersymmetric variation of LD=4

N=4,ungauged: these terms
are generated by varying ψiµ field in Lferm.scal and χi, λia fields in Lf.kin. The result is4

s1 = +
1

2
, s2 = +i . (3.5.14)

4As we said, ungauged Lagrangian can be found in [16], but we have shown how to fix the coefficients s1 and
s2 because they do not coincide with those of the paper.
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Chapter 4

Gauged N=4 supergravities

In this chapter gauged versions of N = 4 supergravity in four dimensions are presented.
Firstly, we give an overview on the standard procedure to gauge supegravity theories, which
is valid in general for arbitrary dimensions and number of supercharges [24], always keeping in
mind the particular case D = 4 and N = 4. Then, in section two, we give the explicit form of
linear and quadratic constraints and the bosonic sector of N = 4 D = 4 gauged Lagrangian is
presented [7]. In the third section, mass matrices of fermions are constructed requiring the closure
of supersymmetry algebra for various terms. The last sections introduces some consistency
relations quadratic in fermion mass matrices with the scalar potential and its first derivatives.

4.1 Gauging supergravities: general overview

In order to avoid unusual indices, we switch convenctions for the present section. We denote
the global symmetry group of the supergravity theory as G and we will promote G0 ⊂ G to a
local symmetry. We will always stay G-covariant and denote with M,N, . . . and α, β, . . . the
indices of the fundamental and adjoint representations of G, respectively. It is quite surprising to
note that in even dimensions G is realized only on-shell and this construction can accommodate
gaugings of a subgroup G0 ⊂ G that are not among the off-shell symetries of the ungauged
Lagrangian.

Under the action of the non-abelian global symmetry group G, the bosonic fields of ungauged
supergravity transform as

δL
M

M = Λα (tα) N
M L

M
N , (4.1.1)

δAMµ = −Λα (tα) M
N ANµ , (4.1.2)

with Λα, α = 1, . . .dimG, constant parameters. In addition, the ungauged theory shows a
standard abelian gauge symmetry U(1)nv , where nv is the dimension of the representation Rv

of G, according to which vectors transform like:

δAMµ = ∂µΛM (x) . (4.1.3)

We want to promote G0 ⊂ G to a local symmetry, therefore, we have to select a subset of the
generators algebra g = LieG. We denote these generators by XM and introduce the standard

33
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covariant derivative
∂µ −→ Dµ ≡ ∂µ − gAMµ XM , (4.1.4)

where g is the gauge coupling constant. A general set of nv generators in g can be described as

XM ≡ Θ α
M tα ∈ g , (4.1.5)

by means of a constant tensor Θ α
M , the so-called embedding tensor, which completely encodes

the embedding of the gauge group G0 into the global G and may be totally characterized group-
theoretically. The dimension of the gauge group is given by the rank of the matrix Θ α

M , which
for the moment is simply a constant (nv × dimG) matrix. Deformed equations of motion remain
manifestly G-covariant, provided that Θ α

M transforms under G according to the structure of
its indices. The embedding tensor will always appear together with the coupling constant g, we
have introduced above.

At this point, the theory should be invariant under the standard combined transformations

δL
M

M = gΛM (x)X P
MN L

M
P , (4.1.6)

δAMµ = ∂ΛM (x) + gANµ X
M

NP ΛP (x) = DµΛM (x) , (4.1.7)

where X P
MN ≡ Θ α

M (tα) P
N . But if we keep Θ α

M arbitrary, this does not happen. Indeed,
consistency requires that the generators (4.1.5) close into a subalgebra of g. This translates
into a set of non-trivial constraints on the embedding tensor, which are quadratic in Θ α

M .
Furthermore, we will see how generators have to satisfy also some linear constraints. Every
solution of this set of constraints will give rise to a consistent supersymmetric Lagrangian with
a local gauge symmetry (4.1.6).

The set of quadratic constraints is very generic, since they do not depend on the dimensions
of space-time and number of supercharges of the theory. They state that the tensor Θ α

M is
invariant under the action of generators (4.1.5) of the local gauge symmetry. Due to the index
structure, which are in two different representations, Θ α

M is almost never G-invariant. But
consistency of the gauged theory requires that Θ α

M has to be invariant under the action of the
subgroup G0. Thus, we need to require that

δPΘ α
M = Θ β

P (tβ) N
M Θ α

N + Θ β
P f α

βγ Θ γ
M = 0 , (4.1.8)

where f γ
αβ are structure constants of G. Contracting this result with a generator tα of G, we

obtain the equivalent form
[XM , XN ] = −X P

MN XP , (4.1.9)

hence gauge invariance of the embedding tensor implies the closure of the generators (4.1.5) into
an algebra. However, constraint (4.1.8) is stronger than the algebra closure: indeed, equations
(4.1.9) implies a relation upon symmetrization in indices M and N (the left hand side trivially
vanishes, while the right hand side does not), which goes beyond the simple closure.

As we said, Θ α
M have to satisfy another linear constraint, which is implied by the closure

of supersymmetry. Contrary to quadratics, linear constraints depend strongly on the number of
space-time dimensions and supercharges considered. In half-maximal theories in four-dimensions,
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vector fields transform in the bi-fundamental (2, ) of SL(2)× SO(6, n) as shown in chapter 3.
The embedding tensor a priori transforms in the tensor product of fundamental and adjoint
representation, which decomposes according to

(2, )⊗
(
(3, •)⊕

(
1,

))
= 2 · (2, )⊕

(
2,

)
⊕
(
2,

)
⊕ (4, ) . (4.1.10)

Supersymmetry restricts the embedding tensor to (2, ) ⊕
(
2,

)
, i.e. forbits the last two con-

tributions in (4.1.10) and poses a linear constraint among the two terms in the (2, ) represen-
tation [25].

In general, the linear representation constraints schematically take the form

PΘ = 0 . (4.1.11)

4.1.1 Covariant field strengths and linear constraints in D=4

Apart from the minimal coupling induced by (4.1.4), the field strengths of the vectors need to
be modified in order to capture the non-abelian nature of G0 and write down covariant couplings
to the fermion fields.

The standard ansatz for the non-abelian field strengths is

FMµν = 2∂[µA
M
ν] + gX M

[NP ] ANµ A
P
ν , (4.1.12)

but we will show that it is not sufficient. The structure constants XM (4.1.5) can be written as

X P
MN = X P

[MN ] + ZPMN , (4.1.13)

with ZPMN = X P
(MN) , which is in general non-vanishing. Quadratic constraints (4.1.9) reduce

to
ZPMNXP = 0 , (4.1.14)

and proper structure constants X P
[MN ] fails to satisfy the Jacobi identities:

X P
[MN ] X R

[QP ] +X P
[QM ] X R

[NP ] +X P
[NQ] X R

[MP ] = −ZRP [QX
P

MN ] , (4.1.15)

which can be satisfied upon contraction with a generator XR, as a consequence of (4.1.14).
Equation (4.1.15) implies that standard FMµν (4.1.12) turns out to be not fully covariant:

δFMµν = −gΛPX M
PN FNµν + 2gZMPQ

(
ΛPFQµν −AP[µδA

Q
ν]

)
, (4.1.16)

of which only the first term would correspond to a standard homogeneous covariant transfor-
mation. We can notice that unwanted terms are proportional to ZMNP , thus the combination
FMµνXM is fully covariant. But conceivable covariant kinetic terms constructed from this object
such as Tr

[
FMµνXMFµνNXN

]
can not be smooth deformations of the standard kinetic term in

ungauged theories, e.g. in D > 4 space-time dimensions:

Lstd
v.kin = −1

4
eMMNF

M
µνF

µνN , (4.1.17)

where FMµν is the abelian field strength and MMN is the scalar matrix (3.2.13).
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This problem is linked to the choice of staying G-covariant, with a redundant description in
terms of nv vectors while G0 has dimensions smaller than nv. Indeed, AMµ can be splitted into
Amµ , transforming in the adjont of G0, and Aiµ, transforming in some representation of G0: with
respect to this splitting

ZmPQ = 0 and ZiPQ 6= 0 , (4.1.18)

creating the problem manifest in (4.1.16).

The covariant ansatz intertwines 1-forms and 2-forms BMN
µν = B

(MN)
µν and defines the full

covariant field strengths as [26] [27]

HM
µν = FMµν + gZMPQB

PQ
µν . (4.1.19)

The non-covariant term in (4.1.16) can then be absorbed by postulating the following transfor-
mation laws

δAMµ = DµΛM − gZMPQΞPQµ , (4.1.20)

δBMN
µν = 2D[µΞMN

ν] − 2Λ(MHN)
µν + 2A

(M
[µ δA

N)
ν] , (4.1.21)

where ΞMN
µ labels the tensor gauge transformations associated with the 2-forms. These gauge

2-forms BMN
µν can not be added random, since the number of bosonic and fermionic degrees of

freedom is balanced by supersymetry. Rather, these have to be (a subset of) 2-forms that are
already present in the unguaged supergravity (which are dual to the scalars). The index structure
of B(MN)

µν shows that they generically appear in some representation of G which is contained in
the product (Rv ⊗ Rv)sym. In turns, this constrains the tensor ZPMN , which in its indices (MN)

should project only onto those representations filled by the 2-forms in the ungauged theory. As
ZPMN is a function of the embedding tensor Θ α

M ,this leads to a linear constraint of the type
(4.1.11) on Θ α

M .

Let us restrict to the case of D = 4 dimensions and remember that 2-forms are dual to scalars
and transform in the adjoint representation, as shown above in section 3.3:

(Rv ⊗ Rv)sym = Radj ⊕ . . . , (4.1.22)

and the remaining representations are excluded. Actually, in four dimensions G ⊂ Sp(m,m),,
i.e.

(tα) P
[M ΩPN ] ≡ (tα)[MN ] = 0 . (4.1.23)

where ΩMN is the symplectic matrix of Sp(m,m) which raise and lower M,N, . . . indices, as
ΘMα = ΩMNΘ α

N , ecc. Multiplying the previous equation by the embedding tensor Θ α
M , we

obtain the first linear constraint on the generators X P
MN :

X Q
M [N ΩP ]Q = 0 , (4.1.24)

which tells that symplectic form ΩMN is invariant under gauge transformation and a gauge
transformation can not change the previously chosen symplectic frame (the choice of electric and
magnetic 1-forms). Moreover

ZPMN = X P
(MN) =

1

2
Θ α
M (tα) P

N +
1

2
Θ α
N (tα) P

M

= −1

2
ΘPα (tα)MN +

3

2
X(MNL)Ω

PL .

(4.1.25)
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If the embedding tensor satisfies the linear constraint

X(MNL) = 0 , (4.1.26)

the 2-forms appear always under the projection

ZPMNB
MN
µν = −1

2
ΘPαBµνα with Bµνα = (tα)MN B

MN
µν . (4.1.27)

Thus, condition (4.1.26) is a sufficient (and also necessary) condition in onder to preserve super-
symmetric degrees of freedom. This result was firstly found in [28].

It will be important to mention for future purpose that the new full covariant field strength
HM
µν (4.1.19) does not satisfy the standard Bianchi identities, but rather its deformed version

D[µH
M
νρ] =

1

3
gZMNPH

NP
µνρ , (4.1.28)

where HMN
µνρ denotes the properly covariantized field strength of the 2-forms.

4.1.2 Lagrangians of gauged theories

Now we describe how to obtain a Lagrangian that is compatible with the new local symmetry
(4.1.20) as a deformation of the ungauged Lagrangian. The first trivial step is to covariantize all
derivatives and substitute abelian field strengths with the new non-abelian full covariant ones.

Since the construction of the deformation is manifestly G-covariant, the gauged theories in
even dimensions generically carry the full G-representation of forms, rather then only electric
half. Let us always keep in mind the case of 1-forms in four dimensions. Magnetic fields do not
possess kinetic terms, but only appear in covariant derivatives, in new field strengths and in new
topological terms which are required by gauge invariance: e.g.

Dµ ≡ ∂µ − gAMµ Θ α
M tα = ∂µ − gAΛ

µΘ α
Λ − gAµΛΘΛα , (4.1.29)

where we have split the 2m-dimensional irreducible linear representation AMµ =
(
AΛ
µ , AµΛ

)
of the

symmetry group G, with AΛ
µ the electric half which appears off-shell in the ungauged theory and

AµΛ the magnetic-half which appears only on-shell. In principle, this might lead to inconsistent
additional field equations. However, it turns out that various contributions from kinetic and
topological terms precisely combine into first-order field equations for the additional fields. Then,
these fields do not constitute additional degrees of freedom but are on-shell duals of the fields
of the ungauged theory. This highlights the importance of the covariantization of topological
terms. In D = 4, it follows from the variation of Bµνα that

gΘΛα

(
HµνΛ + eεµνρσ

∂Lkin

∂HΛ
ρσ

)
, (4.1.30)

which reproduce the covariant version of duality equations for 1-forms. Like-wise, variation
with respect to magnetic vector fields induces the duality equations between scalars and 2-forms
(3.3.6). Therefore, in gauged theories, duality equations arise as true field equations of motion
projected with the matrix ΘΛα. In particular, in the limit g → 0, all dual fields disappear from
the action and duality equations decouple.
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At this point the deformed Lagrangian

L′ = Lung [∂ → D,F → H] + Ltop (4.1.31)

is no longer supersymmetric, due to extra terms which arise from the variation of vector fields
in the covariant derivatives and from modified Bianchi identities (4.1.28) in the new Lagrangian.
Anyway, it can be shown that, in linear order of the gauge constant g, these extra terms can be
compensated by the introduction of fermionic masses of the type:

e−1Lf.mass = gAijψ̄
i
µγ

µνψjν + gBAiχ̄
Aγµψiµ + gCABχ̄

AχB + h.c. , (4.1.32)

where ψiµ and χA denote spin-3
2 and spin-1

2 , respectively, with i, j, . . . and A,B, . . . labelling
respective representations of H, maximal compact subgroup of G. Aij , BAi and CAB have to
be linear in the embedding tensor and depend on scalar fields, whose coset space representatives
are the only objects relating representations of G and H, since transform according to (3.2.4).
More precisely they are composed out of irreducible components of the T -tensor, which is the
embedding tensor dressed with the scalar group matrix L, evaluated in the fundamental and in
the adjoint representations of G:

T
β

N = Θ α
M L M

N L
β
α . (4.1.33)

The T -tensor inherits all the information about Θ, but it is scalar dependent and transforms un-
der H. Every G-irreducible component of Θ branches into one or more H-irreducible component
of T , which can be used to build up the fermionic mass tensors Aij , BAi and CAB.

The T -tensor has to satisfy the linear constraint

PT = 0 , (4.1.34)

which now holds for any value of the scalar fields on which T depends. Turning this argument
around, this shows the origin of linear representation constraints from supersymmetry. The
supersymmetry violating term at order g can be cancelled by the variation of additional fermionic
mass terms (4.1.32) if and only if the tensor T

β

M can be built from the representations of proper
fermionic mass tersors. It can be proved that, in D = 4, supersymmetry imposes precisely the
same linear constraints found from purely bosonic considerations, such that no further restriction
descends from compatibility with supersymmetry.

In order to cancel completely supersymmetry-violating terms in linear order of g, such as Dµεi

contributions descending from (4.1.32) by varying gravitinos, we have to introduce fermion-shifts
in fermionic supersymmetry transformations (schematically):

δψiµ = δ0ψ
i
µ + gAijγµεj , (4.1.35)

δχA = δ0χ
A − gBAiεi , (4.1.36)

where δ0 denotes the properly covariantized supersymmetry transformations of the ungauged
theory.

Finally, supersymmetry in second order g2 of the deformation requires the appearance of a
new scalar potential

Lpot = −g2eV , (4.1.37)
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in order to cancel g2 contributions descending from supersymmetric variations (4.1.35) and
(4.1.36) of the Lagrangian sector (4.1.32). Consistent cancellation of all supersymmetry varia-
tions at order g2 requires a number of non-trivial algebraic identities to be satisfied by fermionic
mass tensors Aij , BAi and CAB. In particular, one needs the traceless condition (schematically)

BAiBAj −AikAjk ≈
1

N
δijV , (4.1.38)

with N the number of supersymmetries and the scalar potential V , which is the so-called super-
symmetric Ward identity. This condition is quadratic in the embedding tensor, hence the only
way it can be satisfied without imposing additional constraints on the gauging is as a conse-
quence of the quadratic constraints (4.1.9). Indeed, in general, these consistency relations can
be obtained by (4.1.9) upon dressing the latter with the scalar matrices L and breaking it into
its H-irreducible parts.

4.2 Bosonic Lagrangian and field equations

Let us switch back to our previous D = 4, N = 4 indices conventions. The pure bosonic
Lagrangian were constructed in [7]. Now we give a general review of the results of this article.
As shown in section 4.1.1 the gauge group generators in the vector field representation, with
the composite index M = (M,α) introduced in (3.3.1), have to satisfy equations (4.1.24) and
(4.1.26), which read

X Q
M[N ΩP]Q = 0 , X Q

(MN ΩP)Q = 0 . (4.2.1)

In order to be solution of these constraints, generators X P
MN = X Pγ

MαNβ can be written as

X Pγ
MαNβ = −δγβf

P
αMN +

1

2

(
δPMδ

γ
βξαN − δ

P
Nδ

γ
αξβM − δ

γ
βηMNξ

P
α + εαβδ

P
NξδN ε

δγ
)
, (4.2.2)

where ξαM and fαMNP are the irreducible components of the embedding tensor which survive
the linear constraints, as said above after decomposing the Θ α

M in its irreducible parts (4.1.10).
ξαM and fαMNP = fα[MNP ] have to be treated as objects which transform in the bi-fundamental
of SL(2)× SO(6, n) and in the fundamental of SL(2) and three-fold antisymmetric vector rep-
resentation of SO(6, n), respectively.

SL(2) and SO(6, n) generators can be read in (3.3.5) and the covariant derivative takes the
form

Dµ ≡ ∇µ − gAMα
µ Θ NP

Mα tNP − gAMα
µ Θ βγ

Mα tβγ , (4.2.3)

where ∇µ is the Lorentz and space-time covariant derivative. The two components Θ NP
Mα and

Θ βγ
Mα further decompose into the irreducible representations of G0 just founded.

According to the decomposition

X Pγ
MαNβ = Θ QR

Mα (tQR) P
N δγβ + Θ δε

Mα (tδε)
γ
β δPN , (4.2.4)

fαMNP and ξαM tensors constitute the two components of the embedding tensor as follows

Θ NP
Mα = f NP

αM +
1

2
δ

[N
M ξ P ]

α , (4.2.5)

Θ βγ
Mα =

1

2
ξδM ε

δ(βδγ)
α . (4.2.6)



40 CHAPTER 4. GAUGED N=4 SUPERGRAVITIES

Working out the quadratic constraint (4.1.9) on X P
MN

[XM, XN] = −X P
MN XP (4.2.7)

in terms of ξαM and fαMNP yields the following set of constraints:

ξ M
α ξβM = 0 , (4.2.8)

ξ P
(α fβ)PMN = 0 , (4.2.9)

3fαR[MNf
R

βPQ] + 2ξ(α[Mfβ)NPQ] = 0 , (4.2.10)

εαβ
(
ξ P
α fβPMN + ξαMξβN

)
= 0 , (4.2.11)

εαβ
(
fαMNRf

R
βPQ − ξ R

α fβR[M [P ηQ]N ] − ξα[MfβN ][PQ] + ξα[P fβQ][MN ]

)
= 0 . (4.2.12)

The deformation of the theory is consistent if and only if these conditions, which guarantee the
closure of the gauge group, are satisfied, as explained above. They are covariant under the global
symmetry group SL(2)× SO(6, n): given one particular solution one can create another acting
with a G transformation. Trivial solutions are the purely electric gaugings, according to which
only electric vector fields AM+

µ enter the Lagrangian:

ξαM = 0 , (4.2.13)

f−MNP = 0 , (4.2.14)

and the constraint (4.2.10) simplifies to the Jacobi identity

f+R[MNf
R

+PQ] = 0 , (4.2.15)

where indices are contracted by ηMN metric of SO(6, n), instead of the ordinary Cartan-Killing
form, and f+MNP = f Q

+MN ηQP are the structure constants of the gauge group. This N = 4,
D = 4 gauged supergravities were firstly found out by Bergshoeff, Koh and Sezgin [16], and the
general deformation have to reproduce the Lagrangian of this article, provided that we impose
(4.2.13), (4.2.14) and

f+MNP → −fMNP , (4.2.16)

where fMNP are the structure constants used in the article.

The following combination of the generalized structure constants occurs regularly:

f̂αMNP = fαMNP − ξα[MηP ]N −
3

2
ξαNηMP . (4.2.17)

We give the full covariant field strengths of 1-form and of 2-form up to terms of order g:

HMα
µν = 2∂[µA

Mα
ν] − gf̂

M
βNP ANβ[µ APαν] +

g

2
εαβΘ M

β NPB
NP
µν +

g

2
ξ M
β Bαβ

µν , (4.2.18)

HMN
µνρ = 3∂[µB

MN
νρ] + 6εαβA

α[M
[µ ∂νA

βN ]
ρ] + O(g) , (4.2.19)

Hαβ
µνρ = 3∂[µB

αβ
νρ] + 6ηMNA

(αM
[µ ∂νA

β)N
ρ] + O(g) . (4.2.20)

Only the electric field strength HM+
µν enters the Lagrangian, but the magnetic and the 2-form

field strengths appear in the equations of motion.
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It is useful to covariantize the combination of the electric field strength defined in (3.3.4):

GM+
µν ≡ HM+

µν ,

GM−µν ≡ e−1ηMNεµνρσ
∂Lkin

∂HN+
ρσ

= −1

2
εµνρσ Im τMMNηNPH

P+
µν − Re τHM+

µν .

(4.2.21)

We have to insert GMα
µν , instead of HMα

µν , in the covariant variations in order to find a formulation
entirely in terms of the electric vector fields in the limit g → 0. Then, the gauge transformations
of the vector and covariant variations of the 2-forms gauge fields

∆BMN
µν = δBMN

µν − 2εαβA
[Mα
[µ δA

N ]β
ν] and ∆Bαβ

µν = δBαβ
µν + 2ηMNA

M(α
[µ δA

Nβ)
ν] (4.2.22)

are

δAMα
µ = DµΛMα − g

2
εαβΘ M

β NPΞNPµ +
g

2
ξ M
β Ξαβµ , (4.2.23)

∆BMN
µν = 2D[µΞMN

ν] − 2εαβΛ[MαGN ]β
µν , (4.2.24)

∆Bαβ
µν = 2D[µΞαβν] + 2ηMNΛM(αGNβ)

µν , (4.2.25)

where the ΛMα, ΞMN
µ = Ξ

[MN ]
µ and Ξαβµ = Ξ

(αβ)
µ are the gauge parameters of the group.

We can now present the bosonic Lagrangian of the gauged theory

Lbos = Lb.kin + Ltop + Lpot . (4.2.26)

It consists of a bosonic kinetic term

e−1Lb.kin =
1

2
R+

1

16
DµMMND

µMMN +
1

8
DµMαβD

µMαβ

−1

4
Im τMMNH

M+
µν HN+

µν +
1

8
ηMNε

µνρσHM+
µν HN+

ρσ ,

(4.2.27)

a topological term for the vector and tensor gauge fields

e−1Ltop =− g

2
εµνρσ[

ξ+MηNPA
M−
µ AN+

ν ∂ρA
P+
σ −

(
f̂−MNP + 2ξ−NηMP

)
AM−µ AN+

ν ∂ρA
P−
σ

− g

4
f̂αMNRf̂

R
βPQ AMα

µ AN+
ν APβρ AQ−σ +

g

16
Θ+MNPΘ M

− QRB
NP
µν B

QR
ρσ

− 1

4

(
Θ−MNPB

NP
µν + ξαMB

+α
µν

) (
2∂ρA

M−
σ − gf̂ M

αQR AQαρ AR−σ

)]
,

(4.2.28)

and a scalar potential

e−1Lpot = −g2V

= −g
2

16
fαMNP fβQRSM

αβ

[
1

3
MMQMNRMPS +

(
2

3
ηMQ −MMQ

)
ηNRηPS

]

+
g2

36
fαMNP fβQRSε

αβMMNPQRS − 3

16
g2ξαM ξβNM

αβMMN .

(4.2.29)
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It has to be noted that in the case of purely electric gaugings, topological terms are identically
zero.

The explicit action of the covariant derivative (4.2.3) on the scalar matrices is

DµMαβ = ∂µMαβ + gAMγ
µ ξ(αMMβ)γ − gAMδ

µ ξεM εδ(αε
εγMβ)γ , (4.2.30)

DµMMN = ∂µMMN + 2gAPαµ Θ Q
αP (M MN)Q . (4.2.31)

Under general variations of vectors and covariant variations of 2-form gauge fields, the bosonic
Lagrangian varies as [28]

e−1δLbos =
1

8
g
(
Θ−MNP∆BNP

µν + ξαM∆B+α
µν

)
εµνρσ

(
HM−
ρσ − GM−ρσ

)
+

1

2
δAM+

µ

(
gξβMM+γD

µMβγ +
g

2
Θ N

+MP MNQD
µMQP − εµνρσηMNDνG

N−
ρσ

)
+

1

2
δAM−µ

(
gξβMM−γD

µMβγ +
g

2
Θ N
−MP MNQD

µMQP + εµνρσηMNDνG
N+
ρσ

)
+ total derivatives ,

(4.2.32)

which encodes the gauge field equations of motion of the theory at linear order in the fields (other
sectors of the gauged Lagrangian give higher order contributions, which are not relevant for the
present and future analysis). As anticipated in sections 3.3 and 4.1.2, variation of the 2-forms
yields a projected version of the duality equation HM−

µν = GM−µν , between electric and magnetic
vector fields: HMα

µν and GMα
µν are on-shell identical. By varying the electric vectors, one obtains

a field equation for the electric vectors themselves which contains scalar currents as a source
term. Finally, the variation of the magnetic vectors gives a duality equation between scalars and
2-forms: this is straightforward once introduced the modified Bianchi identity for GM+

µν = HM+
µν ,

which reads
D[µH

M+
νρ] =

g

6

(
Θ M
− PQH

PQ
µνρ + ξ M

α H+α
µνρ

)
. (4.2.33)

Thus we found that the tensors fαMNP and ξαM do not only specify the gauge group but also
organize the couplings of the various fields. They determine which vector gauge fields appear in
the covariant derivatives, how the field strengths have to be modified , which magnetic vectors
and 2-forms enter the Lagrangian and how they become dual to electric vectors and scalars via
equation of motion.

4.3 Fermion mass matrices and fermionic shifts

4.3.1 T-tensor irreducible components

Fermion mass matrices are composed out of irreducible components of the T -tensor, i.e.
of the embedding tensor dressed with scalar group representative. Then, our first step has
the identification of the U(1) × SO(n) × SU(4)-irreducible part of these new tensors. Let us
concentrate first on the simplest component of the embedding tensor, that is ξαM . SO(6, n)-
indexM can be contracted either with L M

a or L M
ij . While SL(2)-index can be contracted either
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with Vα or its complex conjugate, which fix the U(1)-phase to be +1 or −1, respectively. It will be
useful to introduce both T-tensor components and partially dressed embedding tensor, where only
SO(6, n) are contracted. We introduce the compact notations

(
RSL(2),RSO(n),RSU(4)

)
for the

latter and
(
RSO(n),RSU(4)

)
qU(1)

for the former in order to identify the representations for the two
compact components of SO(6, n) and three-components of the H group, when the U(1)-charge
is also fixed. We will label the SO(n) representations with Young tableaux.

Partially-dressed embedding tensors and corresponding representations are

(2, ,1) Eαa ≡ ξαML M
a , (4.3.1)

(2, •,6) Eαij ≡ ξαML M
ij , (4.3.2)

and the various components of the T -tensor

( ,1)+1 Ea ≡ VαξαML
M
a , (4.3.3)

( ,1)−1 E†a ≡ (Vα)∗ξαML
M
a , (4.3.4)

( ,1)+1 Eij ≡ VαξαML
M

ij , (4.3.5)

( ,1)−1 E†ij ≡ (Vα)∗ξαML
M

ij . (4.3.6)

Now we consider the fαMNP = fα[MNP ] component of Θ M
α , which is slightly more complex

because of the structure of the three SO(6, n)-vector indices which are completely antisym-
metrized. When we dress this tensor with three L M

ij , it transforms in the H-representation(
2, •, (6⊗ 6⊗ 6)asym

)
, (4.3.7)

where 10 is the symmetric part of 4⊗ 4 representation product.

If we contract fα[MNP ] with two L M
ij tensors and a L M

a matrix, the SU(4)-indices of the
partially dressed embedding tensor transform in (6⊗ 6)asym representation:

(6⊗ 6)asym = 15 , (4.3.8)

where 15 is the traceless part of 4 ⊗ 4 representation product. Hence we can classify the
irreducible parts of partially dressed fαMNP as follows:

(2, •,10) F ij
α ≡ f NP

αM L M
kl L ik

N L jl
P , (4.3.9)(

2, •,10
)

Fαij =
(
F ij
α

)∗
= f P

αMN L M
ik L N

jl L kl
P , (4.3.10)

(2, ,15) F j
αai = f P

αMN L M
a L N

ik L jk
P , (4.3.11)(

2, ,6
)

Fαabij = fαMNP L
M
a L N

b L P
ij , (4.3.12)(

2, ,1
)

Fαabc = fαMNP L
M
a L N

b L P
c . (4.3.13)

Irreducible components of T -tensor are obtained contracting the just defined tensors with Vα

or (Vα)∗, and we will denote them with a † when they transform with a −1 charge under U(1)

and without it when have charge +1: e.g. F ij ≡ VαF ij
α , F †ij ≡ (Vα)∗F ij

α , Fij ≡ VαFαij , ecc.
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For completeness, let us note that 6 ' 6 and 15 ' 15 due to the pseudo-reality constraint
(3.2.43): for example

E ij
α =

(
Eαij

)∗
=

1

2
εijklEαkl , (4.3.14)

F i
α j =

(
F j
αi

)∗
=

1

4
εilmkεjnokf

P
αMN L M

a L N
lm L no

P =

=f P
αMN L M

a L N
jk L jk

P = −F i
αaj = −δimδnj F m

αan .

(4.3.15)

In appendix D we present some useful relations between partially dressed components of the
embedding tensor, or equivalently between irreducible components of T -tensor. In appendix C
we express the quadratic constraints (4.2.8)-(4.2.12) in terms of T -tensor components.

4.3.2 Fermion shift matrices and consistency relations at linear order

Let us introduce the sector of the Lagrangian which contains Yukawa interactions, that is
fermionic mass matrices:

e−1Lf.mass =gM ij
1 ψ̄µiΓ

µνψνj + gM ij
2 ψ̄µiΓ

µχj + gM j
2ai ψ̄

i
µ Γµλaj+

+gM ij
3 χ̄iχj + gM j

3ai χ̄
iλaj + gM ij

3ab λ̄ai λ
b
j + h.c. ,

(4.3.16)

where the tensors M have to be linear combinations of irreducible components of T -tensor:

M ≈
∑

E +
∑

F, or M ≈
∑

E† +
∑

F † , (4.3.17)

and from symmetry properties of fermion bilinears we have M ij
1 = M

(ij)
1 , M ij

3 = M
(ij)
3 and

M ij
3ab = M

(ij)
3(ab) +M

[ij]
3[ab] . As explained in section 4.1.2, fermion shifts have to be introduced

in supersymmetry variations of the spinors in order to cancel terms which contain Dµε
i at order

g1, coming from the gravitino variations in the Lagrangian sector of fermion masses (4.3.16):

δψiµ = · · ·+ αgM ij
1 γµεj , (4.3.18)

δχi = · · ·+ βgM ji
2 εj , (4.3.19)

δλia = · · ·+ γgM i
2aj ε

j . (4.3.20)

The coefficients α, β and γ have to be fixed. In order to find their values, we have to study
supersymmetric variations at order g for terms with the structure gMf̄γDε, with f one out of
the three types of fermion and which only originate from kinetic terms and fermion masses:

e−1δLf.mass = 2gM ij
1 ψ̄µiγ

µνδψνj − gM ji
2 χ̄iγ

µδψµj − gM i
2aj λ̄

a
i γ

µδψjµ + h.c.+ . . .

= 4gM ij
1 ψ̄µiγ

µνDνεj − 2gM ji
2 χ̄iγ

µDµεj − 2gM i
2aj λ̄

a
i γ

µDµε
j + h.c.+ . . . ,

(4.3.21)

and

e−1δLf.kin = −ψ̄µiγµνρDνδψ
i
ρ −

1

2
χ̄iγ

µDµδχ
i − λ̄aiγµDµδλ

ai + h.c.

= −2αgψ̄µiγ
µνM ij

1 Dνεj −
β

2
gχ̄iγ

µM ji
2 Dµεj − γgλ̄aiγµM i

2aj Dµε
j + h.c.+ . . . ,

(4.3.22)



4.3. FERMION MASS MATRICES AND FERMIONIC SHIFTS 45

where we used the gamma matrix property

γµνργρ = 2γµν . (4.3.23)

Therefore the numerical coefficients are

α = 2, β = −2, γ = −4 . (4.3.24)

Now we are going to fix the gravitinos mass matrix M ij
1 . Group theoretically, the fermion

bilinear ψ̄iµγµνψνj transforms in the(
•,4
)

+ 1
2
⊗sym

(
•,4
)

+ 1
2

=
(
•,10

)
+1

, (4.3.25)

thusM ij
1 transforms in the (•,10)−1, i.e. the only T -tensor component that transforms according

to this representation is F †ij :
M ij

1 = aF †ij , (4.3.26)

where a is a constant to be fixed. In order to set the value of a, we recall the paper by Bergshoeff,
Koh and Sezgin [16]: we restrict M ij

1 to the case of purely electric gaugings (4.2.13), (4.2.14),
(4.2.15) remembering the change of conventions (4.2.16) and

φ→ iφ . (4.3.27)

M ij
1

∣∣∣∣
Elec

= aε+−V−
∗f NP

+M L M
kl L ik

N L jl
P → aiφ∗f NP

M L M
kl L ik

N L jl
P , (4.3.28)

hence1

a =
1

3
. (4.3.29)

Before working out consistency constraints that completely fix the mass matrices once M ij
1

is known, let us have a group theoretically look at the structure of the other mass matrices
as we have just done for M ij

1 . We decompose the representations of bilinear fermions in their
irreducible parts and predict the form of the matrices except for numerical coefficients. Let us
start with mixing terms between spin-3

2 and spin-1
2 fermions:

ψ̄µiγ
µχj :

(
•,4
)

+ 1
2
⊗
(
•,4
)
− 3

2
= (•,6)−1 ⊕

(
•,10

)
−1

, (4.3.30)

ψ̄iµγ
µλaj : (•,4)− 1

2
⊗
(
,4
)
− 1

2
= ( ,1)−1 ⊕ ( ,15)−1 , (4.3.31)

thus it follows that

M ij
2 = b1F

ij + b2E
ij , (4.3.32)

M j
2ai = b3F

j
ai + b4δ

j
iEa . (4.3.33)

The most interesting case is the matrix M ij
3 .

χ̄iχj :
(
•,4
)
− 3

2
⊗sym

(
•,4
)
− 3

2
=
(
•,10

)
−3

, (4.3.34)

1There is a sign minus with respect to the gravitinos mass matrix of Schön and Weidner [7], which would lead
to inconsistencies in the relations that we will find at linear order.
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which implies
M ij

3 = 0 , (4.3.35)

because there is not a component of T -tensor which transforms with a charge +3 under U(1).
We will see how consistency relations give the same result for M ij

3 .

Finally, the remaining two matrices:

χ̄iλaj : (•,4)+ 3
2
⊗
(
,4
)
− 1

2
= ( ,1)+1 ⊕ ( ,15)+1 , (4.3.36)

λ̄ai λ
b
j :

(
,4
)
− 1

2
⊗sym

(
,4
)
− 1

2
=
(
,6
)
−1
⊕
(

,10
)
−1
⊕
(
•,10

)
−1

. (4.3.37)

There are no components of T -tensor transforming in the for SO(n) and the only two-indices
tensor transforming trivially under SO(n) is the Cartan-Killing metric of SO(n):

M j
3ai = c1F

† j
ai + c2δ

j
iE
†
a , (4.3.38)

M ij
3ab = c3F

ij
ab + c4δabF

ij . (4.3.39)

In order to express linear and quadratic consistency relations and match results with paper [7],
it is convenient to introduce the following rescaled mass matrices:

M ij
1 =

1

3
Aij1 , (4.3.40)

M ij
2 = +

1

3
Aij2 , (4.3.41)

M j
2ai = −iA j

2ai , (4.3.42)

M ij
3 = Aij3 , (4.3.43)

M j
3ai = iA j

3ai , (4.3.44)

M ij
3ab = −A ij

3ab , (4.3.45)

where Aij1 = F †ij and Ā1ij ≡
(
Aij1

)∗
= Fij , as we just found out.

We rewrite (4.3.16) and the fermion supersymmetry variations in terms of this new matrices:

e−1Lf.mass =
1

3
gAij1 ψ̄µiΓ

µνψνj +
1

3
gAij2 ψ̄µiΓ

µχj − igA j
2ai ψ̄

i
µ Γµλaj+

+ gAij3 χ̄iχj + igA j
3ai χ̄

iλaj − gA
ij

3ab λ̄ai λ
b
j + h.c. ,

δψiµ = 2Dµε
i +

i

4
V∗αL

ij
M GMα

νρ γ
νργµεj +

2

3
gAij1 γµεj + bilinear fermions ,

δχi = 2Pµγ
µεi +

i

2
VαL

ij
M GMα

µν γ
µνεj −

4

3
gAji2 εj + bilinear fermions ,

δλia = 2iP ij
µa γµεj −

1

4
VαLMaG

Mα
µν γ

µνεi + 2igA i
2aj ε

j + bilinear fermions .

(4.3.46)

Consistency relations for the fermion mass matrices are needed in order to have supersymmetry
closure for terms proportional to ψ̄µγµνε, ψ̄µε, λ̄γµε and χ̄γµε at linear order in g. Therefore we
will have four relations: the closure for ψ̄µγµνε term fixes b1 and b3, ψ̄µε fixes b2 and b4. c1 and
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c2 are set by both λ̄γµε and χ̄γµε terms, while the former also establishes the value of c3 and c4.
M ij

3 is set at zero by χ̄γµε.

We are going to present individually the sectors of the Lagrangian whose supersymmetric
variations at order g give rise to the terms mentioned above. First consider the fermion kinetic
terms:

e−1δLf.kin = −ψ̄µiγµνρDνδψ
i
ρ −

1

2
χ̄iγ

µDµδχ
i − λ̄aiγµDµδλ

ai + . . .

= gψ̄µiγ
µνεj

(
−4

3
DνA

ij
1

)
+ gχ̄iγ

µεj

(
2

3
DµA

ji
2

)
+ igλ̄ai γ

µεj
(
−2DµA

i
2aj

)
+ . . .

(4.3.47)

Then we look at fermion masses:

e−1δLf.mass =
1

3
gAij2 ψ̄µiγ

µδχj + igĀ i
2a jψ̄µiγ

µδλaj + 2gAij3 χ̄iδχj+

+igA j
3ai λ̄

a
j δχ

i − igĀ i
3a jχ̄iδλ

aj − 2gA ij
3ab λ̄ai δλ

b
j + · · · =

=gψ̄µiγ
µγνεj

(
2

3
Aij2 P

∗
ν − 2Ā i

2a kP
akj

ν

)
+

+gχ̄iγ
µεj

(
4Aij3 P

∗
µ + 2Ā i

3a kP
akj

µ

)
+

+igλ̄ai γ
µεj
(

4A ik
3ab P b

µ jk + 2A i
3aj Pµ

)
+ . . .

(4.3.48)

The gravitinos variation at order g gives a contribution proportional to Dε, which has just been
compensated by introducing the fermion-shifts.

Moreover the two scalar-fermion interaction terms generate contributions for each of the term
considered.

e−1δLferm.scal =
1

2
ψ̄µiγ

νγµδχiP ∗ν +
1

2
χ̄iγ

µγνδψiµPν+

+iψ̄µjγ
νγµδλai P

aij
ν + iλ̄ai γ

µγνδψµjP
aij

ν + . . .

=gψ̄µiγ
νγµεj

(
−2

3
Aji2 P

∗
ν

)
+ gχ̄iγ

µεj

(
−2

3
Aij1 Pµ

)
+

+gψ̄µiγ
νγµεj

(
2Ā j

2a kP
aki

ν

)
+ igλ̄ai γ

µεj
(
−4

3
Ā1jkP

aik
µ

)
+ . . . ,

(4.3.49)

where we used the gamma matrices identity

γµγνγµ = −2γν . (4.3.50)

Finally, the last contributions comes from the variation of vectors in the covariantized scalar
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kinetic terms:

δ

(
1

16
DµMMND

µMMN

)
=− 1

4
gDµMMNδA

µPαθ
(M

αPQ MN)Q + . . .

=− 1

2
gδAµPαP aij

µ θαPQM

(
−L M

a L Q
ij + L Q

a L M
ij

)
+ . . .

=gψ̄µi εj

(
4F
† [i
ak P aj]k

µ − E†aP aij
µ

)
+

+gχ̄iγ
µεj

(
−2F

[i
ak P aj]k

µ +
1

2
EaP

aij
µ

)
+

+igλ̄ai γ
µεj
(
−δijFabklP bkl

µ − 1

2
δijEklP

akl
µ

)
+ . . .

(4.3.51)

δ

(
1

8
DµMαβD

µMαβ

)
=

1

4
g
(
δA Mγ

µ ξ(αMMβ)γ − δA Mδ
µ ξεM εδ(αε

εγMβ)γ

)(
PµV∗αV∗β + h.c.

)
+ . . .

=− 1

2
igδAMα

µ V∗αξβMV∗βPµ + h.c.+ . . .

=gψ̄µi εj
(
2EijP ∗µ

)
+ gχ̄iγ

µεj

(
−E†ijPµ

)
+ igλ̄ai γ

µεj
(
δijE

†
aPµ

)
+ . . .

(4.3.52)

Now consistency relations can be extrapolated:

DµA
ij
1 = A

(ij)
2 P ∗µ − 3Ā

(i
2a kP

akj)
µ , (4.3.53)

4

3
A

[ij]
2 P ∗µ − 4Ā

[i
2a kP

akj]
µ = +E†aP

aij
µ − 4F

† [i
a k P

akj]
µ − 2EijP ∗µ , (4.3.54)

4Aij3 P
∗
µ + 2Ā i

3a kP
akj

µ =
2

3
Aij1 Pµ −

2

3
DµA

ji
2 + 2F

[i
ak P aj]k

µ − 1

2
EaP

aij
µ + E†ijPµ , (4.3.55)

4A ik
3ab P b

µ jk + 2A i
3aj Pµ = 2DµA

i
2aj +

4

3
Ā1jkP

aik
µ + δijFabklP

bkl
µ +

1

2
δijEklP

akl
µ − δijE†aPµ .

(4.3.56)

Actually, these are eight consistency constraints if we consider separately the two types of scalar:

Dµ = Dµφ
xDx +Dµφ

sDs . (4.3.57)

From (4.3.53) we read the symmetric part of matrix Aij2 :

A
(ij)
2 = F ij , (4.3.58)

while (4.3.54) fixes the antisymmetric part2

A
[ij]
2 = −3

2
Eij . (4.3.59)

A combination of (4.3.53) and (4.3.54) projected on the SO(6, n)/SO(n)×SO(6) scalar manifold
also completely defines the second mixing mass matrix:

A j
2ai = F j

ai −
1

4
δijEa . (4.3.60)

2It has to be noted that the relative sign between symmetric and antisymmetric parts is different from [7].
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Spin-1/2 fermions mass matrices can be find out using (4.3.55) and (4.3.56). As we anticipated
by group theoretical considerations, equation (4.3.55) tells us that

Aij3 = 0 . (4.3.61)

A j
3ai mass matrix is equivalently determined by either (4.3.55) or (4.3.56):

A j
3ai = F † j

ai −
3

4
δjiE

†
a . (4.3.62)

Finally, considering (4.3.56) on SO(6, n)/SO(n)×SO(6) scalar manifold and after projecting
with an inverse of the vielbein P xbjk , it can be shown that

A ij
3ab = F ij

ab +
1

3
δabF

ij . (4.3.63)

4.4 Quadratic closure relations

We have to require that supersymmetry variations close also at order g2. In particular, if we
consider terms proportional to ψ̄µγµε, χ̄ε and λ̄ε at second order, we find consistency relations
which are quadratic in the mass matrices (as sketched in section 4.1.2). In particular, these
terms come from the supersymmetric variations of the fermion masses (4.3.46) and of the scalar
potential sector:

e−1δ (Lf.mass) =g2ψ̄µiγ
µεj
(

4

3
A ik

1 Ā1jk −
4

9
A ik

2 Ā2jk − 2A k
2aj Ā

i
2 k

)
+ h.c.

+g2χ̄iε
j

(
−8

9
A ki

2 Ā1kj + 2A k
2aj Ā

i
3a k

)
+ h.c.

+ig2λ̄ai εj

(
8

3
A i

2ak A
jk

1 + 4A ik
3ab Ā j

2b k −
4

3
A jk

2 A i
3ak

)
+ h.c. ,

(4.4.1)

and

δ (Lpot) = −g2δeV − g2eδV

= −g2
(
−ψ̄µiγµεi + h.c.

)
eV − g2e

∂V

∂φx
δφx − g2e

(
∂V

∂Vα
δVα + h.c.

)
,

(4.4.2)

where we used the vielbein variation (3.5.4). Recalling the scalar variations (3.5.9) and (3.5.13),
the quadratic consistency constraints read

1

9
A ik

2 Ā2jk +
1

2
A k

2aj Ā
i

2a k −
1

3
A ik

1 Ā1kj =
1

4
δijV , (4.4.3)

2A k
2aj Ā

i
3a k −

8

9
A ki

2 Ā1kj = δij
∂V

∂V∗α
Vα , (4.4.4)

8

3
A i

2ak A
jk

1 + 4A ik
3ab Ā j

2b k −
4

3
A jk

2 A i
3ak = 2iP x ij

a

∂V

∂φx
. (4.4.5)

For consistency, these relations have to be a linear composition of quadratic constraints in
terms of T -tensor components. Indeed, it is easy to verify that on the left hand side of (4.4.3)
only the trace component survives: we can express the A matrices in terms of partially dressed
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embedding tensor and use the quadratic constraints (D.1), (D.9), (D.13) and (D.23). The scalar
potential in terms of partially dressed embedding tensor and scalar matrices reads

V = Mαβ

(
3

8
EαaEβa −

2

9
FαijF

ij
β − 1

2
F j
αai F

i
βaj

)
+

4

9
iεαβFαijF

ij
β , (4.4.6)

and it can be easily verified that this result coincides exactly with (4.2.29), by using properties
of scalar representatives. The equation (4.4.3) is the so-called supersymmetric Ward identity.

Similarly, (4.4.4) and (4.4.5) are also consequences of the quadratic constraint. However, they
show precise relations between fermion mass matrices and the first derivative of the potential.
Let us stress important feature: quadratic constraints impose that traceless components of the
left hand side of (4.4.4) is zero. Furthermore, they require that the symmetric part in i, j of the
left hand side of (4.4.5) is identically zero, because the right hand side is vanishing. Thus, we
can split (4.4.5) into:

8

3
A

(i
2ak A

j)k
1 + 4A

(ik
3ab Ā

j)
2b k −

4

3
A

(jk
2 A

i)
3ak = 0 (4.4.7)

and
8

3
A

[i
2ak A

j]k
1 + 4A

[ik
3ab Ā

j]
2b k −

4

3
A

[jk
2 A

i]
3ak = 2iP x ij

a

∂V

∂φx
. (4.4.8)

We are interested in vacuum configurations. This means that the vacuum expectation values
of the scalars are such that

∂V

∂φx

∣∣∣∣
〈φx 〉

= 0 , (4.4.9)

for any x = x, s, where 〈φx 〉 is the vacuum expectation value of the scalar fields. In particular,
when considering Minkowski vacua (that is with zero cosmological constant Λ = 〈V 〉 = 0),
equations (4.4.3), (4.4.4) and (4.4.5) become

1

9
A ij

2 Ā2ij +
1

2
A j

2ai Ā
i

2a j −
1

3
A ij

1 Ā1ij

∣∣∣∣
〈φx 〉

= 0 , (4.4.10)

2A j
2ai Ā

i
3a j −

8

9
A ij

2 Ā1ij

∣∣∣∣
〈φx 〉

= 0 , (4.4.11)

8

3
A i

2ak A
jk

1 + 4A ik
3ab Ā j

2b k −
4

3
A jk

2 A i
3ak

∣∣∣∣
〈φx 〉

= 0 . (4.4.12)

Let us characterize group theoretically these conditions. The condition (4.4.10), which gives
Minkowski vacua, has zero charge under U(1) transformations and it is a singlet of SO(n)×SO(6).
The condition (4.4.11) is also a singlet of SO(n)×SO(6) but has a non-trivial charge under U(1):
under the action of H it transforms according to the representation

(•,1)+2 , (4.4.13)

which means that it is a complex condition on scalars. Equation (4.4.12) is a constraint on the
antisymmetric part of the indices i, j, because (4.4.7) holds thanks to the quadratic constraint.
The representation of U(1)× SO(n)× SO(6), according to which (4.4.8) transforms, is

( ,6)0 , (4.4.14)

and, since 6 and are both real, we have 6n real conditions on the scalar.



Chapter 5

Mass matrices and supertraces

In chapter 2 we explained how quantum corrections to the potential are linked to the traces
of mass matrices of the different fields in the theory we are considering. In particular, divergent
corrections depend on the traces of quadratic and quartic mass matrices and finite corrections
are related to the traces of higher even powers of these matrices. In this chapter, we are going to
define a general method to identify mass matrices for various fields, with arbitrary spin. Then,
we will give the explicit forms of the bosons and fermions entering the Lagrangian of N = 4,
D = 4 supergravity theories. Finally, we will check that all the machinery we have shown until
now gives

STrM2 = 0 , (5.0.1)

not only for those cases which are truncations of N = 8 supergravities, but for any number of
vector multiplets and any gauging.

5.1 Mass matrices - General overview

The computation of supertrace mass formulae requires the knowledge of the spectrum of
quadratic fluctuations at the maximally symmetric critical points described by the equations
(4.4.10)-(4.4.12). In general, the matrices determining such spectrum can be computed by lin-
earizing the field equations of motion. But this needs further speculations in order to determine
the mass matrix of the spin-1

2 fermions, for which we will give a detailed analysis in the following
and in the next section.

As we showed in the previous chapters, bosons fields can be expressed in different, but equiv-
alent ways. In order to avoid multi-indices structures and, as a consequence, the possible over-
counting of field when taking traces, we believe it is more convenient to express mass matrices in
the following representations of the fields: we consider the 6n+ 2 coordinate fields φx = φx, φs

of target manifolds for the scalars and AMα
µ for electric and magnetic vectors, instead of the

alternative (
Aaαµ , Aijaµ

)
≡
(
L a
M , L ij

M

)
AMα
µ , (5.1.1)

used in [29] for maximal supergravity in four dimensions.

51
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Trivially,
(

1√
2
χi, λ

i
a

)
is the spin-1

2 fermion multiplet (the structure of the indices is such that
the multiplet has defined chirality). Gravitinos are redefined:

ψ̃iµ = ψiµ + αγµζ
i , (5.1.2)

where α is a numerical coefficient and ζi are linear combinations of spin-1
2 fermions such that

mass mixing terms between spin-1
2 and spin-3

2 vanish and which are massless on vacua completely
breaking supersymmetry and are the so-called goldstinos.

Let us recall that kinetic terms of bosons entering the N = 4 supergravity Lagrangian are not
canonical, as it can be immediately seen from (3.2.1) and (3.3.3). Then a closer look tells us that
mass matrices do not coincides with those of equations (2.3.4) and (2.3.8), but we need to give
a correction. The right way of identifying bosonic squared mass matrices is to write linearized
equations of motion, that is for a generic field ϕI :

�ϕI = M2 I
b Jϕ

J + higher order terms , (5.1.3)

where M2
b is the bosonic quadratic mass matrix.

Similarly, for fermionic degrees of freedom, proper mass matrices Mf are defined by

/∂ϕI = Mf
IJϕJ , (5.1.4)

and their squares are

M2 I
f J = Mf

IKMfJK , (5.1.5)

where MfIJ =
(
Mf

IJ
)∗.

5.2 Mass matrices in half-maximal supergravities

5.2.1 Scalar fields

We need only to consider the following sector of the Lagrangian

e−1Ls = −1

2
gx yDµφ

xDµφy − g2V (φx ) , (5.2.1)

because other terms give higher order contributions in the fields which are not relevant for the
present analysis, as we explained above. We have to stress some considerations: in the ungauged
theories there is not a scalar potential, thus one cannot have supersymmetry breaking Minkowski
vacua. When we gauged the theory, the scalar potential necessarily appears to preserve the
invariance under properly covariantized supersymmetric variations, thus scalar expectation values
on the vacuum can lead to spontaneous supersymmetry breaking.

Let us denote by 〈φx 〉 the scalar vacuum expectation values. As previously discussed, we
are interested in Minkowski vacua that completely break supersymmetry. We expand the scalar
potential in powers of φx around the expectation value 〈φx 〉, which has to be a solution of
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equations (4.4.10)-(4.4.12):

V (φx ) =

∞∑
n=0

1

n!
D(x1

· · ·Dxn)V

∣∣∣∣
〈φx 〉

φ̃x1 · · · φ̃xn

= 〈V 〉+
∂V

∂φx

∣∣∣∣
〈φx 〉

φ̃x +
1

2
D(x1

Dx2)V

∣∣∣∣
〈φx 〉

φ̃x1 φ̃x2 + . . .

=
1

2
D(x1

Dx2)V

∣∣∣∣
〈φx 〉

φ̃x1 φ̃x2 + . . . ,

(5.2.2)

where we have defined φ̃x = φx − 〈φx 〉 and in the third line we have imposed the Minkowski
vacua and critical points conditions. We can write

e−1Ls = −1

2
gx yDµφ̃

xDµφ̃y − 1

2
D(x1

Dx2)V

∣∣∣∣
〈φx 〉

φ̃x1 φ̃x2 + higher order terms , (5.2.3)

and the Euler–Lagrange equations are

DµD
µφ̃x = gx yD(yDz )V φ̃

z . (5.2.4)

Therefore, the scalar mass matrix is

M
2 x
0 y = gx zD(zDy )V

∣∣∣∣
〈φx 〉
≡
(
Mx

y Mx
t

M s
y M s

t

)
, (5.2.5)

where

Mx
y = gxzD(zDy)V

∣∣∣∣
〈φx 〉

, (5.2.6)

Mx
s = gxyDyDsV

∣∣∣∣
〈φx 〉

, (5.2.7)

M s
x = gstDtDxV

∣∣∣∣
〈φx 〉

, (5.2.8)

M s
t = gsuD(uDt)V

∣∣∣∣
〈φx 〉

. (5.2.9)

To give the explicit form of this matrices is a mere computational task, once we recall the explicit
form of the scalar potential in terms of the partially-dressed embedding tensors (4.4.6) and use
derivative relations of these tensors, shown in appendix C. We will not give here the explicit
form, which is very long and not illuminating.

5.2.2 Vector fields

We have already written the equations of motion for vector fields in (4.2.32), but now we
have to pay attention to some details. Let us consider first the kinetic part only, which can be
rewritten in a more useful and compact way:

e−1 δLbos|kinetic = δAM+
µ

(
−1

2
εµνρσηMNDνG

N−
ρσ

)
+ δAM−µ

(
1

2
εµνρσηMNDνG

N+
ρσ

)
= δAMα

µ MαβMMNDνG
νµNβ + . . .

= δAMα
µ MαβMMNDνH

νµNβ + . . . ,

(5.2.10)
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where in the last step we have used the on-shell equality between the 2-forms GµνMα and HµνMα.

As it can be seen from (2.3.8) or equivalently from the equations of motion (4.2.32), the mass
term for gauge bosons comes from the covariant kinetic terms of scalar fields and, to be more
precise, from terms of order g2:

e−1Ls.kin =
1

16
DµMMND

µMMN +
1

8
DµMαβD

µMαβ

(g2)
=

1

8
AµMαANβµ

(
ηPRηQSΘαMPQΘβNRS −MPRMQSΘαMPQΘβNRS

)
+

+
1

4
AµMαANβµ

(
2ξα[MξβN ] −MαβM

γδξγMξδN

)
.

(5.2.11)

Therefore, the squared mass matrix M2M
1 N of the electric and magnetic electric fields is

M2Mα
1 Nβ = MMPMαγ

(
1

4
MQSMRTΘγPQRΘβNST −

1

4
ηQSηRTΘγPQRΘβNST+

+
1

2
MγβM

δεξδP ξεN − ξγ[P ξβN ]

)
.

(5.2.12)

This is a 12 + 2n×12 + 2n matrix. Since 6 +n vectors are not physical, when diagonalizing such
matrix we should find 6 + n null eigenvalues at least.

5.2.3 Fermionic fields

Kinetic terms of fermionic fields are standard, but we have to pay attention to numerical
factors, which are different for the three types of fermions entering the Lagrangian.

The complex feature of this calculation is the presence of mass mixing terms between spin-3
2

and spin-1
2 fermions. Indeed, as we said before, it is necessary to introduce new gravitino fields

in order to diagonalize the fermions mass matrix. This is the so-called Super-Higgs Mechanism:
for ordinary global symmetries, the Goldstone theorem states that for every broken generator
there is a massless scalar particle in the spectrum. When global symmetry is gauged, the Higgs
mechanism describes how these massless modes are eaten by gauge bosons, which become mas-
sive. In supersymmetric theories, fermionic generators are broken and in non-supersymmetric
vacua a massless fermions enter the spectrum, the so-called goldstinos. If supersymmetry is local,
gravitinos play the role of gauge fields and on these vacua they eat goldstinos, such that they
acquire ±1

2 polarizations and become massive.

In order to diagonalize the mass matrix we define:

ψ̃iµ = ψiµ +
1

6
γµζ

i , (5.2.13)

where ζi are the goldstinos, which are a proper combination of spin-1
2 fermions:

ζi = A−1ij
1 A2jkχ

k − 3iA−1ij
1 A k

2aj λ
a
k . (5.2.14)

The mass terms for gravitinos become

(ge)−1Lψ.mass =
1

3
Aij1 ψ̄µiγ

µνψνj +
1

3
Aij2 ψ̄µiγ

µχj + iA i
2a jψ̄

i
µγ

µλaj + h.c.

=
1

3
Aij1

¯̃
ψµiγ

µνψ̃νj −
1

9
Aij1 ζ̄iζj +

2

9
Aij2 ζ̄iχj +

2

3
iA i

2a j ζ̄iλ
j
a .

(5.2.15)
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Linearized equations of motion for gravitinos then become:

γµνρDνψ̃
i
ρ =

2

3
Aijγµνψ̃νj , (5.2.16)

and the squared mass matrix of gravitinos is

M2 i
3
2
j =

4

9
Aik1 A1jk . (5.2.17)

Let us stress a fundamental feature: A−1ij
1 have to exist, i.e. all its four eigenvalues, which

coincide to the masses of gravitinos, have to be different from zero. That is the vacua, with
which we are dealing, completely break supersymmetry. Indeed, the supersymmetric variations
of the fermions are proportional to shift matrices A1 and A2 and requiring A1 to be invertible is
equivalent to say that it does not exist a fermion variation εi such that

Aij1 εj = 0 . (5.2.18)

For ordinary fermions the form of the mass matrix is more complicated. In order to take
into account the different coefficients of the two kinetic terms, we have to consider the fermion
multiplet (

1√
2
χi

λai

)
, (5.2.19)

the mass matrix of which takes the form

M 1
2

=

(
0

√
2iA j

3ai√
2iA i

3aj −2A ij
3ab

)
+

(
4
9A
−1kl
1 A2kjA2li −2

√
2

3 iA−1klA j
2bk A2li

−2
√

2
3 iA−1klA2kjA

i
2bl −2A−1klA j

2ak A
i

2bl

)
, (5.2.20)

where the second term comes from the interactions in (5.2.15) containing goldstinos.

The goldstinos will be null eigenvectors of this matrix, hence they will not contribute to the
supertrace formulas. We note that (5.2.20) contains the inverse of gravitinos shift and this can
bring some problems in the computation of the traces. But we are going to present a clever
method to compute the traces of even powers of this matrix using only the original matrix

M 1
2

=

(
0

√
2iA j

3ai√
2iA i

3aj −2A ij
3ab

)
, (5.2.21)

provided that a suitable factor, which is proportional to the trace of the corresponding power of
the mass matrix of gravitinos, is subtract from the final result [4]. The argument uses the fact
that the term we added to the spin-1

2 mass matrix is fully projected in the goldstino directions
in order to make their masses vanish. Let us give some more details. First, we diagonalize the
gravitino mass matrix by means of a unitary matrix U , such that A1 = UTDU and D is diagonal
whose entries are the gravitino masses mA > 0, where A = 1, . . . 4. The eigenvectors of A1 can
be constructed by applying the matrix U to the orthonormal real basis of eigenvectors of D,
which we write as eiA = δiA. Indeed, the vectors VA = U−1eA satisfy

2

3
A1ijV

j
A = mAVAi , (5.2.22)

where there is no sum on index A on the right hand side and VAi =
(
V i
α

)∗. As follows from
(5.2.14), the goldstino directions are given by(

Aik2
−3iA k

2a i

)
VAk , (5.2.23)
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which are eigenvectors of the original spin-1
2 mass matrix with eigenvalue −2mA, where mA is

the corresponding gravitino mass. This can be shown using quadratic constraints and equation
(5.2.22):

M 1
2

(
Aik2

−3iA k
2a i

)
VAk = −2mA

(
A2ik

−3iA i
2ak

)
V k
A . (5.2.24)

Also, recalling that vacua has vanishing cosmological constant (4.4.10), we can show that gold-
stino is a null eigenvector of M 1

2
:

(
M 1

2
−M 1

2

)( Aik2
−3iA k

2a i

)
VAk = 2mA

(
A2ik

−3iA i
2ak

)
V k
A . (5.2.25)

By construction
(
M 1

2
−M 1

2

)
is fully projected on the goldstino directions and therefore orthog-

onal directions are null eigenvectors for such matrix. This implies that when we compute the
sum of the eigenvalues of M2n

1
2

, we can actually compute the trace of M2n
1
2

and subtract from the

result 22n times the trace of gravitinos mass matrix to the same power. Explicitly

TrM2
1
2

= TrM2
1
2

− 4 TrM2
3
2

. (5.2.26)

5.3 Supertrace of quadratic mass matrix

We are now in position that allows us to compute the quadratic supertrace

StrM2 = TrM2
0 − 2 TrM2

1
2

+ 3 TrM2
1 − 4 TrM2

3
2

= 0 . (5.3.1)

In particular, we will show that it is zero, which proves that there are no quadratic divergences
in fully broken half-maximal supergravity at one-loop level.

These traces have no free index, thus they are SO(6)×SO(n) singlets. Obviously the charge
for U(1) phase transformations is zero: adopting the conventions of chapter 4, we can say that
the supertrace transforms according to (•,1)0. Moreover it will be shown that these traces
can be expressed in terms of linear combination of fully contracted quadratic partially dressed
embedding tensors.

In order to simplify the supertrace formula, we can use the quadratic constraint, the condi-
tion that imposes V = 0 and the critical point conditions DV = 0. However, since StrM2 is
quadratic in the irreducible components of the embedding tensor and it transforms in the trivial
representation of H, the only useful quadratic constraint is (D.2), with SL(2)-indices contracted
with Mαβ , such that the U(1) charge is zero:

MαβEαijE
ij

β = MαβEαaEβa . (5.3.2)

The critical point conditions (4.4.11) and (4.4.12) transform according to (•,1)+2 (and its com-
plex conjugate) and ( ,6)0 respectively. Therefore they will be useless for the present analysis.
Nevertheless, the vanishing cosmological constant condition transforms in an appropriate way:

3

8
EαaEβaM

αβ − 2

9
FαijF

ij
β Mαβ − 1

2
F j
αai F

i
αaj M

αβ +
4

9
iFαijF

ij
β εαβ = V = 0 . (5.3.3)
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Let us start from
TrM2

0 = M
2 x
0 x = Mx

x +M s
s . (5.3.4)

Using derivative properties of partially dressed embedding tensors (appendix C) and scalar ma-
trices (3.2.37) and (3.2.38), we obtain a linear combination of terms proportional to quadratic
partially dressed embedding tensors and to

gxyPxaijP
kl

yb = δabδ
[k
i δ

l]
j , gstPsP

∗
t = 1 . (5.3.5)

Thus we immediately obtain the trace in terms of Eα• and Fα• only:

Mx
x =

9

2
EαaEβaM

αβ + 2F j
αai F

i
βaj M

αβ + 5FαabijF
ij

αab Mαβ +
3

4
nEαaEβaM

αβ

− 2nF j
αai F

i
βaj M

αβ +
8

3
inFαijF

ij
β εαβ ,

(5.3.6)

and
M s

s =
3

2
EαaEβaM

αβ − 8

9
FαijF

ij
β Mαβ − 2F j

αai F
i

βaj M
αβ . (5.3.7)

Consider now the trace of the mass matrix of the gauge bosons:

TrM2
1 = M2M

1 M =
1

4
MαβMMN

(
MPRMQSΘαMPQΘβNRS − ηPRηQSΘαMPQΘβNRS

)
+MMNMαβξαMξβN .

(5.3.8)

We will now use the relations (3.2.49) and (3.2.50), i.e. we expand scalar matrices MMN and
ηMN in terms of representatives of SO(6, n). To express the trace in terms of the T -tensor
irreducible components it is a matter of distributing, substituting and recalling properties in
appendix C. We found

TrM2
1 =

7

2
EαaEβaM

αβ − 2F j
αai F

i
βaj M

αβ + FαabijF
ij

αab Mαβ +
1

4
nEαaEβaM

αβ . (5.3.9)

The trace of gravitinos mass matrix squared is the simplest one:

TrM2
3
2

=
4

9
Aij1 A1ij =

4

9
FαijF

ij
β Mαβ − 4

9
iFαijF

ij
β εαβ . (5.3.10)

Finally, the trace of spin-1
2 fermions mass matrix is

TrM2
1
2

= TrM2
1
2

− 4 TrM2
3
2

, (5.3.11)

where, from equation (5.2.21), the explicit form of the first term is

TrM2
1
2

= 4A j
3ai A

i
3aj + 4A3abijA

ij
3ab

= −4F j
αai F

i
βaj M

αβ + 9EαaEβaM
αβ + 4FαabijF

ij
βab Mαβ

+
4

9
nFαijF

ij
β Mαβ +

4

9
inFαijF

ij
β εαβ .

(5.3.12)

The final step is to sum properly all these traces:

STrM2 = 4(n− 1)V = 0 , (5.3.13)

where we used the condition about vanishing cosmological constant (5.3.3). In particular, it can
be highlighted how this result depends neither on which are the generators of the gauge group
and nor on the number of the vector multiplets when we impose the condition 〈V 〉 = 0. This is
a non-trivial result.
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Chapter 6

Summary and conclusions

In this work, we began the study of one-loop effective potential in the half-maximal super-
gravity theories in four dimensions. The potential at one-loop can be expressed in terms of the
supertraces of even powers of the mass matrix. Therefore, first we had to find out some proper
terms of the Lagrangian, which gave us the exact form of the mass matrix of the entire spec-
trum. Then, we obtained a wide series of identities of the dressed embedding tensor, which are
not known until now. In particular, in section 4.3.1 we found out group theoretically which are
the irreducible components of the T -tensor and defined the partially dressed embedding tensors.
These components allowed us to re-do many calculations of the paper [7] in a quicker way. More-
over, we showed how this machinery determines the handing down of quadratic constraints to
T -tensor components and how mass matrices and their traces can be easily written down from
it. Finally, we showed that there is no quadratic divergence of one-loop effective potential in
half-maximal supergravities, no matter which are the generators of gauge group or the matter
coupling.

Unfortunately, we were not able to go further with calculations because of the number of typos
we encountered in starting this work. Until now we learned that in N = 4 gauged supergravities
the one-loop effective potential has not quartic and quadratic divergences. Using the formalism
we built up, it will be possible to extend the calculation to higher even powers of mass matrix.
It will be interesting to study the behaviour of the supertrace of quartic mass matrix. We have
no evidence to argue about the finiteness of one-loop potential. Thus, in principle we can not
expect this supertrace to be zero in general.

However, the result for N = 8 gauged supergravities is well-known, as well as is known how
to halve maximal supergravities in four dimensions [30]:

E7(7) ⊃ SL(2)× SO(6, 6) , (6.1)

where E7(7) is the global symmetry group of the N = 8, D = 4 supergravities and SL(2) ×
SO(6, 6) is the global symmetry group of half-maximal ones, with n = 6 matter multiplets.
It can be shown that not all N = 4 supergravities with n = 6 are related to the N = 8 via
truncation. Indeed, in order to require this, the irreducible component of the embedding tensor
fαMNP has to satisfy additional quadratic constraints:

fαMNP f
MNP

β = 0 , εαβfα[MNP fβQRS] = 0 . (6.2)
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Imposing these further constraints to be valid necessarily implies that quartic mass matrix has
vanishing supertrace. However, if this supertrace will be not identically zero, we should find
which conditions on the gaugings could turn this to be zero. Equations (6.2) are obviously a
subset of these.

Finally we will have to study properties of supertrace of higher powers, e.g. positivity of
STrM6 or, when it vanishes, STrM8, in order to study whether a small cosmological constant
could be generated at quantum level or not. In particular, it will be interesting to know if
the corrections to the potential are always negative, or positive. Probably the increasing of
calculations amount will need new techniques to evaluate these traces, or we will be forced to
analyse only known gaugings, which are simpler than the general formalism with embedding
tensor. Then, the following step might be to analyse the effective potential of both N = 8 and
N = 4 supergravities at two-loops, in order to make more clear the vanishing mechanism of
higher loop divergences, if any, also in gauged supergravities.
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Appendix A

Functional methods and the effective
potential

We are going to introduce briefly some of the formalism that we used in the chapter 2.

A classical field theory is described by a Lagrangian density L(φr, ∂φr) and the classical field
configuration can be found by extremizing the classical action functional defined by

I[φr] ≡
∫

d4xL(φr, ∂φr) . (A.1)

From now on, let us suppress the index r and consider only a real scalar field to simplify the
notation. The general case can be trivially obtained from what follows. Let us introduce a source
term in the Lagrangian

L(φ, ∂φ)→ L(φ, ∂φ) + φ(x)J(x) ,

I[φ]→ I[φ] +

∫
d4xφ(x)J(x) .

(A.2)

Now we can define the generating functional Z[J ] of Green’s functions

Z[J ] ≡
∫

Dφ ei(I[φ]+
∫

d4xφ(x)J(x))/~ =
〈
Ω+
∣∣Ω−〉

J
, (A.3)

which is the transition amplitude from the vacuum state in the far past to the vacuum state in
the far future in the presence of a source J(x) of the field φ(x).

eiW [J ]/~ ≡ Z[J ] (A.4)

defines the connected generating functional W [J ]. Indeed, we can expand it in Taylor series

W [J ] =
∑
n

1

n!

∫
d4x1 . . . d

4xnG
(n)(x1, . . . , xn) J(x1) . . . J(xn) , (A.5)

where G(n)(x1, . . . , xn) are connected Green’s functions with n external lines. We also define the
classical field

φc(x) ≡ δW [J ]

δJ(x)
=
〈Ω+|φ(x) |Ω−〉J
〈Ω+|Ω−〉J

. (A.6)

It is possible to invert this relation and to express J(x) in terms of φc(x). By means of a
functional Legendre transformation we define the quantum effective action

Γ[φc] ≡W [J(φc)]−
∫

d4xJ(x)φc(x) , (A.7)
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which does not depend on J(x).

It is easy to verify that
δΓ[φc]

δφc(x)
= −J(x) , (A.8)

which will be useful in what follows. We also expand the effective action in Taylor series

Γ[φc] =
∑
n

1

n!

∫
d4x1 . . . d

4xnΓ(n)(x1, . . . , xn)φc(x1) . . . φc(xn) , (A.9)

and it can be shown that Γ(n)(x1, . . . , xn) are 1 particle irreducible connected Green’s functions
with n external lines. We alternatively expand the effective action in powers of momentum of
the field and we obtain

Γ[φc] =

∫
d4x

[
−V (φc) +

Z(φc)

2
∂µφc∂

µφc + (higher order derivative)

]
, (A.10)

where V (φc) is the effective potential function. By comparing these two different expansions,
it can be noted that the nth derivative of V (φc) is the sum of all 1PI graphs with n vanishing
external momenta (φc is constant). Indeed, the sum of Feynman graphs with n external lines
correspond to i−times the Fourier transformation of the Green’s functions Γ̃(n)(p1, . . . , pn), also
called proper vertices:

(2π)4 Γ̃(n)(p1, . . . , pn) δ4

(
n∑
i=1

pi

)
=

∫
d4x1 . . . d

4xn e
i(x1p1+···+xnpn) Γ(n)(x1, . . . , xn) , (A.11)

where δ4 is due to translational invariance and Γ̃(n)(p1, . . . , pn) are evaluated with no propagators
on the external lines. Thus, by equating expansions (A.9) and (A.10) with pi = 0 ∀i (φc(x) = φc)
it is easy to find

V (φc) = i
∑
n

1

n!
iΓ̃(n)(0, . . . , 0) . (A.12)

This is important in the study of spontaneous symmetry breaking. Let us suppose that our
Lagrangian density has an internal symmetry. SSB occurs if the field φc develops a vacuum
expectation value 〈φ〉 which does not respect the symmetry, even when the source J(x) vanishes

δΓ

δφc

∣∣∣∣
φc=〈φ〉

= 0 . (A.13)

Vacuum state has to be Poincaré invariant, i.e. Lorentz invariant 〈ψ〉 = 〈Aµ〉 = 0, where ψ and
Aµ are fermion and gauge fields respectively, and translationally invariant

dV

dφc

∣∣∣∣
φc=〈φ〉

= 0 . (A.14)

In order to require stability, the stationary point has to be a minimum of the effective potential.
To explore the properties of the SSB theory we define a new field with vanishing expectation
value φ′ = φ− 〈φ〉, which corresponds to the classical field φ′c = φc − 〈φ〉.



Appendix B

Fermion identities and conventions

For space-time flat metric mostly positive convention is chosen:

ηµν =

(
−1

I

)
, (B.1)

and the Levi-Civita is a totally antisymmetric proper space-time tensor such that

ε0123 = e−1 , ε0123 = −e . (B.2)

As usual gamma matrices satisfy

{γµ, γν} = 2ηµν , (γµ)† = ηµνγν , γ5 = iγ0γ1γ2γ3 . (B.3)

Vector indices of SU(4) are raised and lowered by complex conjugation. However, for fermions
we need the matrix

B = iγ5γ2 , (B.4)

for example to define χi = B
(
χi
)∗, in order to ensure that χi transforms as a Dirac spinor when

χi does. The complex conjugate of chiral spinors has opposite chirality, e.g. χi is right-handed.
For χ̄i =

(
χi
)†
γ0, we define χ̄i = (χ̄i)

∗B.

Right-handed spinors can be described by Weyl-spinors χα, and left-handed ones then turn to
conjugate Weyl-spinors χα̇. Here α and α̇ are (conjugate) SL(2,C) vector indices. In the chiral
representation of the gamma matrices are

γµ =

(
0 σµ

σµ 0

)
, (B.5)

and

γ5 =

(
I 0
0 I

)
, B =

(
0 ε
−ε 0

)
. (B.6)

where ε is the two-dimensional epsilon-tensor and σµ = (I,−→σ ), σµ = ηµνσ
µ = (−I,−→σ ) contains

the Pauli matrices. We find right-handed spinors to have the form χ = (χα, 0)T , while left-handed
ones look like χ = (0, χα̇)T . For example, if χi are the fermions of the gravity multiplet, we have
χi =

(
0, χiα̇

)T and its complex conjugate is given by χi = (χαi , 0)T where the Weyl-spinors are
related by χαi = εαβ

(
χi
β̇

)∗
.
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The charge conjugation matrix satisfies

B = BT = B−1 = B∗ , (B.7)

and
BγµB = γµ

∗ . (B.8)

Adopting the convention (η1η2)∗ = η1
∗η2
∗, where ηi are generic Grassmann variables, this

machinery yields

λ̄iχj = χ̄jλi =
(
λ̄iχj

)∗
=
(
χ̄jλi

)∗
, (B.9)

λ̄iγ
µχj = −χ̄jγµλi =

(
λ̄iγµχj

)∗
= −

(
χ̄jγµλi

)∗
, (B.10)

λ̄iγ
µνχj = χ̄jγ

νµλi =
(
λ̄iγµνχj

)∗
=
(
χ̄jγνµλi

)∗
, (B.11)

λ̄iγ
µνρχj = −χ̄jγρνµλi =

(
λ̄iγµνρχj

)∗
= −

(
χ̄jγρνµλi

)∗
, (B.12)

and similar relations with an upper and a lower indices.



Appendix C

Useful properties of T-tensor

In the section 4.3.1 we introduced the irreducible parts of partially dressed components of
the embedding tensor Eα• and Fα• (with • a irreducible set of SO(n)× SU(4) indices) and the
irreducible components of T -tensor. However, when we dress the tensor fαMNP with SO(6, n)

representative matrices L M
• , we do get reducible tensors. Hence, first we have to decompose

these tensors in the their irreducible part. In the second part of this appendix we will provide
expressions of either SL(2)/SO(2) or SO(6, n)/SO(n)× SO(6) covariant derivative of T -tensor
as a linear combination of its components.

C.1 Irreducible components of F•

In the following, we will only deal with Fα•, but what we are going to say is easily generalizable
for F• (and F

†
• ).

When we dress the tensor fαMNP with L M
ij (and L M

a ) matrices, we obtain in principle
tensors with two, four, or six SU(4)-indices. The former transforms trivially according to the 6,
hence it is irreducible: while the latter two are not.

Let us first consider the tensor

F kl
α•ij ≡ f P

αMN L M
• L N

ij L kl
P , (C.1)

where • can be either a SO(n)-index in the fundamental or SU(4)-indices in 6 representation.
Group theory tells us that this object transforms in the (6⊗ 6)asym = 15, thus it can be written
as a linear combination

F j
α•i ≡ f

P
αMN L M

• L N
ik L jk

P , (C.2)

which is traceless. Indeed

F kl
α•ij =

1

4
εijmnε

klopf N
αM P L

M
• L mn

N L P
op

= 4f P
αMN L M

• L N
[im L

[km
P δ

l]
j] − f

P
αMN L M

• L N
ij L kl

P

= 4F
[k

α•[i δ
l]
j] − F

kl
α•ij ,

(C.3)
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where in the first step we have used pseudo-reality condition (3.2.43). Rearranging left and right
sides, we obtain what we expected

F kl
α•ij = 2F

[k
α•[i δ

l]
j] . (C.4)

Now, we have to consider terms with six SU(4)-indices

F mn
αijkl ≡ f P

αMN L M
ij L N

kl L mn
P , (C.5)

which can be interpreted as a particular case of the tensor shown above, with • = ij. Then,
without lost of generality we can restrict to tensors of the form

F l
αijk ≡ f P

αMN L M
ij L N

km L lm
P . (C.6)

Group theoretically (6⊗ 6⊗ 6)asym = 10 ⊕ 10 and then F l
αijk is a linear combination of F ij

α

and Fαij defined in (4.3.9) and (4.3.10) respectively:

F l
αijk =

1

4
εiji1i2ε

lmi3i4f M
α NP L

i1i2
M L N

km L P
i3i4

= −f P
αMN L M

ij L N
km L lm

P + 2 + 2f P
αMN L M

[im L N
kn L mn

P δlj] + 2f P
αMN L M

k[i L N
j]m L lm

P

= −F l
αijk + 2Fαk[iδ

l
j] + 2F l

αk[ij] ,

(C.7)
where we proceed as in the previous case. Then

F l
αk[ij] =

1

4
εi1i2k[iεj]mi3i4f

MNP
α L i1i2

M L i3i4
N L lm

P

=
1

2
εijkof

P
αMN L M

mn L lm
N L on

P − f P
αMN Lk[iLj]mL

lm
P − 1

2
εijmof

P
αMN L M

kn L lm
N L on

P

=
1

2
εijkmF

lm
α − F l

αk[ij] +
1

2
F l
αk[ij] −

1

2
Fαk[iδ

l
j] ,

(C.8)
where, in the first step, we used the symmetry property

T[ijklm] = 0 ⇒ ε[ijklεm]nop = 0 , (C.9)

and in the second we recover the symmetry property (3.2.45). The final result is

F l
αijk = −2

3
δl[iFαj]k +

1

3
εijkmF

lm
α . (C.10)

C.2 Derivative properties

Let us focus on derivative relations between T -tensor components or partially dressed fαMNP ,
ξαM .

SL(2)/SO(2) covariant derivative Ds turns E• (F•) tensors into E
†
• (F

†
• ), and vice versa. This

is straightforward to prove recalling the properties (3.2.37):

DsE• = PsE
†
• , DsE

†
• = P ∗sE• , (C.1)

DsF• = PsF
†
• , DsF

†
• = P ∗s F• . (C.2)
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Studying properties of Eα• under the action of SO(6, n)/SO(n)×SO(6) covariant derivative Dx

is simple as well:
DxE

a
α = P aij

x Eαij , DxE
ij

α = P aij
x Eαa , (C.3)

where we used derivative conditions (3.2.59)-(3.2.62) on SO(6, n)/SO(n)×SO(6) representatives.
While Dx action on Fα• tensors shows a more complicated feature:

DxF
ij

α = f NP
βM L M

a

(
1

2
εklmnL

ik
N L jl

P

)
P amn
x − 2f P

βMN L M
a L N

kl L
(jl

P P ai)k
x

= −3F
(i

αa k P
akj)

x = −3F
(i

αak P aj)k
x ,

DxF
j

αai = F j
αmni P

mn
xa + F jk

αab P b
x ik − Fαabik P bjk

x

=
2

3
F jk
α Pxaik −

2

3
Fαik P

ik
xa + F jk

αab P b
x ik − Fαabik P bjk

x ,

DxF
ij

αab = FαabcP
cij

x + f P
αMN Dx

(
L M
a L N

b

)
L ij
P

= FαabcP
cij

x + 2F ij
α[akl P kl

xb]

= FαabcP
cij

x − 4F
[i

α[ak P
j]k

xb] .

(C.4)
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Appendix D

Quadratic constraints on T-tensor

In section 4.1 we have shown that the embedding tensor has to satisfy some quadratic con-
straints in order to obtain a theory which is invariant under the local action of a subgroup G0 of
the global symmetry group G. In four dimensional half-maximal supergravities this constraints
can be read as a set of quadratic constraints on the irreducible components fαMNP and ξαM .

These irreducible tensors split into one or more irreducible components of T -tensor and
quadratic constraints are handed down to these new tensor. In what follows, we will give with ev-
ery quadratic constraint on partially dressed embedding tensor, its corresponding representation
under the action of SL(2)× SO(n)× SO(6).

Let us consider the simplest quadratic constraint (4.2.8):

ηMNξαMξβN = 0 , (D.1)

and using the decomposition (3.2.49) for the SO(6, n) metric, it straightforwardly translates into
a quadratic constraint on partially dressed embedding tensors Eαa and Eαij :

(3, •,1) EαaEβa = EαijE
ij
β . (D.2)

Things get more complicated when we consider the remaining constraints (4.2.9)-(4.2.12), but
we can make our life a little bit better by making extensive use of symmetry properties and
Clebsch-Gordon decomposition of tensor products of representations.

The second constraint reads

ηPQξαP fαPMN = 0 , (D.3)

where free-indices M, N are antisymmetric. Thus we can dress them with either L M
ij L N

kl ,
L M
ij L N

a or L M
a L N

b . Let us remember that the SU(4) representation product

6⊗asym 6 = 15 , (D.4)

which is the traceless part of 4⊗4. Then, without lost of generalityM, N indices can be dressed
directly with L [M

ik LjkN ], instead of L M
ij L N

kl (these kind of tricks simplify a lot the amount of
computations needed to obtain the final results). Finally, with a little effort and the combined
use of properties of scalar manifold representatives (sec. 3.2.2) and partially dressed embedding
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tensor (app. C) we find the three independent constraints:

(3, •,15) E(αaF
j

β)ai =
2

3
E(αikF

jk
β) − 2

3
E jk

(α Fβ)ik , (D.5)

(3, ,6) E(αbFβ)abij = −2E(α[ikF
k

β)j] , (D.6)(
3, ,1

)
E(αcFβ)abc = E ij

(α Fβ)abij . (D.7)

This procedure is almost identical for the fourth constraint (4.2.11)

εαβ
(
ηPQξαP fβQMN + ξαMξβN

)
= 0 , (D.8)

which differs only for the symmetry of SL(2)-indices and has a extra terms, that is very simple
to treat:

(1, •,15) εαβ
(
EαaF

j
βai + EαikE

jk
β

)
=

2

3
εαβ

(
EαikF

jk
β − E jk

α Fβik

)
, (D.9)

(1, ,6) εαβ
(
−2Eα[ikF

k
βj] + EαaEβij

)
= εαβEαbFβabij , (D.10)(

1, ,1
)

εαβ (EαaEβb + EαcFβabc) = εαβE ij
α Fβabij . (D.11)

Now we consider constraint (4.2.10):

3ηRSfαR[MNfβPQ]S + 2ξ(α[Mfβ)NPQ] = 0 . (D.12)

The four SO(6, n)-indices are totally antisymmetrized. From dimensional analysis it is a trivial
result to find how the following representations product decomposes:

(6⊗ 6⊗ 6⊗ 6)asym = 15 . (D.13)

Then we can dress the constraint with L M
ik LlkNL P

lm LjmQ, without loosing generality, and the
resulting constraint will be traceless:

E(αikF
jk

β) + E jk
(α Fβ)ik +

4

3
F(αikF

jk
β) + 3F k

(αai F
j

β)k = δji

(
1

3
F(αklF

kl
β) +

3

4
F l

(αak F
k

β)al ,

)
(D.14)

transforming in the
(3, •,15) . (D.15)

We recall also the previous result

(6⊗ 6⊗ 6)asym = 10 + 10 , (D.16)

thus we can contract (D.12) with L M
ik L N

jl LklPL Q
a and the final formula of quadratic constraint

in terms of T -tensor will be symmetric in the indices i, j: we will have 10 complex constraints
from this structure, times n real ones from the free index a:

(3, ,10) E(αaFβ)ij = 3E(α(ikF
k

β)aj) + 4F(α(ikF
k

β)aj) + 6F k
(αb(i Fβ)abj)k . (D.17)

In working out this constraint we have has to pay attention to some subtlety: indeed when we
consider expressions like L M

ik L N
jl LklP and resort to pseudo-reality condition (3.2.43), indices

symmetry have to be taken into account:

L M
ik L N

jl LklP =
1

2
ε(ikmnL

mnML N
j)l LklP , (D.18)
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otherwise we will end up with an expression in the right hand side that will be no longer symmetric
in i, j.

Remaining contractions with either two, three or four L M
a representatives will be trivial:

(
3, ,15

)
2E(α[aF

j
β)b]i + E(αikF

jk
β)ab − E jk

(α Fβ)abik +
4

3
F(αikF

jk
β)ab

− 4

3
F jk

(α Fβ)abik + 2F(αabcF
j

β)ci − 4F k
(α[ai F

j
β)b]k − 4F(α[acikF

jk
β)b]c = 0 ,

(D.19)

(
3, ,6

)
E(αijFβ)abc + 6F(α[abdFβ)c]dij = 3E(α[aFβ)bc]ij + 12F k

(α[a[i Fβ)bc]j]k ,(
3, ,1

)
3Fαe[abFβcd]e + 2E(α[aFβ)bcd] = 3Fα[abijF

ij
βcd] .

(D.20)

Finally, we have to reduce the last quadratic constraint (4.2.12):

εαβ
(
ηRSfαMNRfβPQS − ηRSξαRfβS[M [P ηQ]N ] − ξα[MfβN ][PQ] + ξα[P fβQ][MN ]

)
= 0 . (D.21)

This will give five (reducible) constraints on T -tensor components, because of the structure of
its indices: it is antisymmetric in indices M, N and P, Q, but it is also antisymmetric in the
exchange of the couples (M, N) and (P, Q). Then, dressing it with four L M

ij representatives,
we have a quadratic constraint in representation product

15⊗asym 15 = 15⊕ 45⊕ 45 . (D.22)

The relation between partially dressed embedding tensor (we are dressing the relation with
L M
im LlmNL P

kn LjnQ) reads

εαβ
(1

3
EαikF

jl
β − 1

3
E jl
α Fβik + F l

αai F
j

βak −
1

4
EαaF

j
βai δ

l
k +

1

4
EαaF

l
βak δ

j
i +

1

3
Eα(imFβk)nε

jlmn+

−1

3
E (lm
α F

j)n
β εikmn +

2

9
FαimF

jm
β δlk −

2

9
FαkmF

lm
β δji +

2

9
F jm
α F ln

β εikmn −
2

9
FαimFβknε

jlmn
)

= 0 ,

(D.23)
which transforms according to

(1, •,15⊗asym 15) . (D.24)

We can write explicitly the 15 components on the constraint by tracing with δkl :

(1, •,15) εαβ
(
F k
αai F

j
βak − EαaF

j
βai +

8

9
FαikF

jk
β

)
=

2

9
δji ε

αβFαlkF
lk

β . (D.25)

Contracting with a single LMa representative, the descending constraint will transform in
representation

(1, ,6⊗ 15) = (1, ,6)⊕ (1, ,10)⊕
(
1, ,10

)
⊕ (1, ,64) . (D.26)

If we dress (D.21) with L M
a L N

ij L P
km LlmQ, the 6 and 10 follow straightforwardly by tracing

over l and j (or i) and considering the antisymmetric and symmetric part in the remaining two
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indices, respectively. The general constraint is

εαβ
(

1

2
EαijF

l
βak +

1

2
Eα[ikF

l
βaj] +

2

3
Fα[ikF

l
βaj] + F l

αbk Fβabij −
1

3
EαaFβ[ikδ

l
j]−

−1

6
EαaF

lm
β εijkm −

1

4
EαbFβab[ikδ

l
j] +

1

8
EαbF

lm
βab εijkm −

1

4
Eα[imF

m
βak δlj]−

−1

4
EαkmF

m
βa[i δlj] −

1

4
E lm
α F n

βak εijmn +
1

8
E lm
α F n

βam εijkn−

−1

8
E mn
α F l

βam εijkn +
2

3
FαkmF

m
βa[i δlj] −

2

3
F lm
α F n

βa[i εj]kmn

)
= 0 ,

(D.27)

and its irreducible parts which are relevant for our analysis are:

(1, ,10) εαβ
(
−1

2
Eα(ikF

k
βaj) +

2

3
Fα(ikF

k
βaj) + F k

αb(i Fβabj)k −
1

2
EαaFβij

)
= 0 ,

(D.28)
and

(1, ,6) εαβ
(

1

4
Eα[ikF

k
βaj] +

2

3
Fα[ikF

k
βaj] +

1

2
F k
αb[i Fβabj]k +

5

8
EαbFβabij

−1

3
F kl
α F m

βak εijlm

)
= 0 .

(D.29)

There are two inequivalent ways to dress the constraint (D.21) with two L M
a and two L M

ij

representatives. We contract first with L M
ij L N

a LklPL Q
b and the resulting expression transforms

into the representation

(1, ,6)⊗asym (1, ,6) =
(
1, ,1

)
⊕
(
1, ,20′

)
⊕ (1, •,15)⊕ (1, ,15) . (D.30)

Its explicit form is

εαβ
(

1

2
EαijF

kl
βab +

1

2
E kl
α Fβabij + 2F

[k
αa[i F

l]
βbj] + FαacijF

kl
βbc + 2Eα(aF

[k
βb)[i δ

l]
j]+

+2F m
αa[i F

[k
βbm δ

l]
j] +

1

4
EαcFβabcδ

[k
i δ

l]
j −

1

2
δabEαcF

[k
βc[i δ

l]
j] −

1

3
δabEα[imF

[km
β δ

l]
j]+

+
1

3
δabE

[km
α Fβ[imδ

l]
j] −

1

4
E mn
α Fβabmnδ

[k
i δ

l]
j

)
= 0 .

(D.31)
Then we dress it with L M

a L N
b L P

ik LjkQ and the following constraint is(
1, ,15

)
εαβ
(

1

2
EαikF

jk
βab − 1

2
E jk
α Fβabik −

2

3
FαikF

jk
βab +

2

3
F jk
α Fβabik +

−Eα[aF
j

βb]i + FαabcF
j

βci

)
= 0

(D.32)

The remaining constraints are simpler:(
1, ,6

)
εαβ
(
−Eα[aFβb]cij +

1

2
EαcFβabij −

1

2
EαijFβabc − FαabdFβcdij

−2F k
αc[i Fβabj]k −

1

2
EαdFβ[adijδb]c − Eα[ikF

k
β[aj] δb]c

)
= 0 ,

(D.33)

and(
1, ,1

)
εαβ

(
FαabeFβcde − EαeFβe[a[cδd]b] − Eα[aFβb][cd] + Eα[cFβd][ab]

)
= 0 . (D.34)
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