
Università degli Studi di Padova

Facoltà di Ingegneria

Corso di Laurea in Ingegneria delle Telecomunicazioni

A Multi-Hop 6LoWPAN
Wireless Sensor Network

for Waste Management Optimization

Laureando Relatore

Dario Cassaniti Prof. Michele Zorzi

Master Thesis in cooperation with

Fraunhofer Fokus Institute

Anno Accademico 2011/2012

I would like to dedicate my dissertation to my parents, my brother and my
whole family, who supported me during my studies. They understood my
dreams, my needs and my problems as no one else could do better. They
believed in me and they allowed me to make very important experiences
such as the Erasmus at the Technische Universität Hamburg Harburg and
my Internship at the Fraunhofer Fokus Research Institute in Berlin which
characterized not only my professional pro�le, but also my personal
developement. With regard to my experience at the Fraunhofer Fokus
Institute, I want to thank the Rescon (Resource Optimized Networks)
team, in particular Dr. Thomas Luckenbach, who gave me this challenging
opportunity of being part of the research group on the Outsmart European
FP7 Project; Mrs. Gabriele Goldacker, who supervised me patiently during
my six months internship and who gave me precious hints about how to
organize, analyze and describe my research; Björn Riemer for his technical
support regarding the Contiki Operative System and the creation of the
platform for the AVR Atmel Atmega modules on this OS; Janis Sarikas for
his studies on the sensors available on the market and his work on the
point-to-point code between the waste basket sensor and the computer.
I also want to thank my supervisor, Prof. Michele Zorzi of the University of
Padova, who gave me the opportunity to do an internship in a Research
Institute abroad and to work on my Master Thesis about this project
without any restriction or obstacle, but simply giving me suggestions and
support during my work.
Moreover, I would like to thank my colleagues of the University of Padova
and from the Technische Universität Hamburg Harburg, with which I
shared moments of happiness, excitement, anxiety as well as common
interests, hopes and hunger for knowledge.
Last but not least, a big thank to my friends of Padova, Hamburg and
Berlin, with which I had many amazing times in my leisure.

Dario Cassaniti

Contents

1 Introduction 1
1.1 OUTSMART Project - The Berlin Cluster 1

1.1.1 Research Goals . 2

2 Wireless Sensor Network Technologies 5
2.1 The ISM Band . 6
2.2 Topologies . 8

2.2.1 Reliability . 10
2.2.2 Energy E�cency . 11
2.2.3 Scalability and self-organization 13
2.2.4 Data latency . 14

2.3 Power Consumption and Duty Cycle 14
2.4 IEEE 802.15.4 Standard . 16

2.4.1 IEEE 802.15.4 Protocol Standard 17
2.4.1.1 Frame Format 18
2.4.1.2 Security . 19

2.4.2 ZigBee . 21
2.4.2.1 Network Layer (NWK) 23
2.4.2.2 Application Layer (APL) 25
2.4.2.3 Energy consumption 26
2.4.2.4 Security in ZigBee 26

2.4.3 6LoWPAN . 28
2.4.3.1 6LoWPAN Network Architecture 28
2.4.3.2 6LoWPAN Protocol Stack 30
2.4.3.3 6LoWPAN packet format 30
2.4.3.4 Addressing 32
2.4.3.5 Header compression 35
2.4.3.6 Fragmentation and reassembly 37

iv CONTENTS

2.4.3.7 Bootstrapping, Neighbor Discovery and Se-
curity . 38

2.4.3.8 Node, router and edge router operations . . . 42
2.4.3.9 Security in 6LoWPAN 43
2.4.3.10 Mobility . 44
2.4.3.11 Routing . 49
2.4.3.12 Border Routing 51
2.4.3.13 Application protocols 53

2.4.4 IEEE 802.15.4a - Ultra Wide band 55
2.4.4.1 IEEE 802.15.4a Frame Structure 55

2.4.5 Wireless Hart . 57
2.5 Z-Wave . 59

2.5.1 Topology and Routing 60
2.5.2 Security . 60

2.6 Bluetooth and Bluetooth Low Energy 61
2.6.1 Bluetooth Low Energy 64

2.7 Wavenis . 66
2.7.1 Wavenis Operation . 68

2.8 Dash7 . 69
2.8.1 Relation between frequency and distance range 70
2.8.2 Drawbacks of the 433MHz ISM Band 71

3 Contiki Operative System 2.5 73
3.1 System overview . 74
3.2 Kernel Architecture . 75
3.3 Events . 75
3.4 Processes . 76
3.5 Two level scheduling hierarchy 77
3.6 Services . 77
3.7 Libraries . 78
3.8 Communication support . 79
3.9 The uIP TCP/IP stack . 80
3.10 RIME . 83
3.11 6LoWPAN Implementation . 84
3.12 Preemptive multi-threading 85
3.13 Code size . 86
3.14 Contiki RPL . 86

4 RPL Routing Protocol 91
4.1 Protocol Overview . 91
4.2 RPL Instances . 95

CONTENTS v

4.3 ICMPv6 RPL Control messages 96
4.4 Sequence counter . 100
4.5 Upward routes . 101
4.6 Downward routes . 103
4.7 RPL Security . 106
4.8 Packet forwarding and loop avoidance 107
4.9 Maintenance of routing adjacency 108
4.10 Objective Functions . 109
4.11 Initialization Mode . 109

5 A Multi-Hop WSN implementation with ContikiRPL 111
5.1 Introduction . 111
5.2 Hello World example . 112
5.3 IPv6 Udp Sender & Receiver 113
5.4 RPL Collect: Compiling Sink node & Sender node 116
5.5 RPL Border Router . 121
5.6 Multi-hop UDP - RPL Collect 129

5.6.1 Collect View . 133
5.7 Multi-hop WSN for Outsmart: Sensor data collection 135

5.7.1 Level of fullness detection 135
5.7.2 Multi-Hop Sensor Network Tests 139

6 Conclusions and future implementations 145

7 Appendix 147

Bibliography 155

vi CONTENTS

Abstract

In the �rst part of this Master Thesis several Wireless Sensor Network
technologies, including the ones based on the IEEE 802.15.4 Protocol Stan-
dard like ZigBee, 6LoWPAN and UltraWideBand, as well as other technolo-
gies based on other protocol standards like Z-Wave, Bluetooth and Dash7,
are analyzed with respect to relevance and suitability with the Waste Man-
agement Outsmart European FP7 Project. A particular attention is given
to the parameters which characterize a Large Scale Wireless Sensor Network
for Smart Cities, due to the amount of sensors involved and to the practical
application requested by the project.
Secondly, a prototype of sensor network is proposed: an Operative System
named Contiki is chosen not only for its portability on di�erent hardware
platforms, but especially for its Open Source license, for the use of the 6LoW-
PAN protocol and for the implementation, in the last version, of the new RPL
routing protocol. The Operative System is described in detail, with a special
focus on the uIP TCP/IP stack and on the 6LoWPAN and RPL implemen-
tation. With regard to this innovative routing protocol designed speci�cally
for Low Power Lossy Networks, chapter 4 describes in detail how the network
topology is organized as a Directed Acyclic Graph, what is an RPL Instance
and how downward and upward routes are constructed and maintained.
With the use of several AVR Atmel modules mounting the Contiki Operative
System a real wireless network is created and, with an Ultrasonic Sensor, the
�lling level of a waste basket prototype is periodically detected and trans-
mitted through a multi-hop wireless network to a sink node.

viii

Chapter 1
Introduction

The optimization of the waste management has always been a challenging
problem, especially in big cities and State capitals like the city of Berlin.
The knowledge not only of the level of fullness of every single waste basket,
but also of the weight of the whole content and the knowledge of the kind of
objects inside the waste baskets, can give a remarkable improvement in the
waste management quality, in the safety of the dustmen and in the cleanness
and tidiness of the city. Moreover, an accurate statistical study of the fre-
quency of usage of every single waste basket can give interesting information
about the typical use not only of a single waste bin, but of the whole sur-
rounding area.
The use of a Wireless Sensor Network for the waste management optimiza-
tion would lead to a remarkable improvement in the waste collection route
plan in order to avoid the accumulation of trash around the basket when it
becomes full (which might last for a few hours or even for several days), as
well as in order to avoid a frequent route to the areas where the public waste
bins are rarely full. A route plan optimization leads, in the long term, to
a considerable save of gasoline (and consequently pollution), but also to a
remarkable improvement of the city cleanness and, in general, in the quality
of life of the city.

1.1 OUTSMART Project - The Berlin Cluster

Outsmart is an FP7 European project which goal is to contribute to the
Future Internet by aiming at the development of �ve innovative ecosystems
(clusters) in urban areas. The Berlin cluster is one of these and it has to do
with the waste management optimization with the use of a wireless sensor

2 CHAPTER 1. INTRODUCTION

network. This cluster is expected to develop the platform and main build-
ing blocks for data collection, preprocessing and provision of information
regarding the waste management in the city of Berlin. This will include the
speci�cations of the architecture from sensor/actuator nodes and networks
up to the IP world.
The Fraunhofer FOKUS Institute in Berlin is responsible for the Work Pack-
age 4 of the Berlin cluster: this work package is supposed to cover all the
aspects related to sensor technologies and sensor/actuator networks required
to reach the overall goals of the Outsmart project. Moreover, Work Pack-
age 4 is supposed to analyze routing protocols over wireless lossy links in
order to enhance end-to-end IP networking with an energy-e�cient trans-
mission mechanisms and is supposed to analyze auto-con�guration, device
management and node failure handling requirements in the selected applica-
tion scenarios. Main aspect in the work of Work Package 4 is the integration
of carefully selected communication mechanisms and protocols of existing
state-of-the-art technologies considered appropriate for supporting scalable
Future Internet applications based on Wireless Sensor Network.

The Fraunhofer FOKUS Institute is working on the Berlin cluster of
the Outsmart project side by side with another partner of the project: the
Berliner Stadtreinigung (BSR - the Berlin City Cleaning Services at a glance),
a public company fully owned by the State of Berlin, which is the largest
municipal refuse collection service provide in Germany, covering an area of
890km2 and 3.4 millions of inhabitants. The information provided by the
BSR company regarding the location of the four waste management depots,
the �ve regional centers of area cleaning and the 15 recycling depots across
the whole city of Berlin (Figure 1.1) were very useful to get an idea about
the problem as well as the information about the location of the 20.000 waste
bins and the concession of a waste basket in order to test some prototypes.

1.1.1 Research Goals

Scope of this research was �rst of all to analyze the characteristics of the
wireless sensor network technologies available in the market, with a special
focus on the energy e�ciency, the scalability, the reliability, but also on the
routing protocols adopted and the topologies supported. In particular the
IEEE 802.15.4 standard (which de�nes only the physical layer and the MAC
layer of low power networks) and the technologies which uses this standard
as lower part of their stack, like ZigBee, 6LoWPAN, Ultra Wide Band and
Wireless Hart were studied, as well as other technologies like Z-Wave, Dash7
and Bluetooth.

1.1. OUTSMART PROJECT - THE BERLIN CLUSTER 3

Figure 1.1: The BSR Depots and Regional Centers location in the city of
Berlin

Secondly, a prototype of a wireless sensor network was developed: after some
discussions with the other researchers in the Fraunhofer FOKUS Labora-
tories regarding the possible sensors which could be used for detecting the
�lling level of the waste basket, a wireless network implementing multi-hop
was created in order to save energy for the transmission to a central node
and to reduce the complexity - and consequently the cost - of every single
transmitter. An Open Source operative system (Contiki OS) was chosen
for di�erent reasons, including the introduction, in the last version of the
operative system, of an innovative routing technique named RPL, a rout-
ing protocol designed speci�cally for Low Power Lossy Networks based on
the concept of the Directed Acyclic Graph and perfectly integrated with the
6LoWPAN standard.

4 CHAPTER 1. INTRODUCTION

Chapter 2
Wireless Sensor Network Technologies

A wireless sensor network (WSN) consists of spatially distributed and au-
tonomous sensors that cooperatively monitor physical or environmental con-
ditions, such as temperature, sound, vibration, pressure, motion or pollu-
tants. Wireless sensor network applications typically require network com-
ponents with average power consumption that is substantially lower than
currently provided in implementations of existing wireless networks. The
overall cost plays a fundamental role in applications adding wireless connec-
tivity to inexpensive or disposable products, and for applications with a large
number of nodes in the network. In order to meet this objective, the com-
munication protocol and network design must avoid the need for high-cost
components. The network should be ad hoc and capable of self-con�guration
and self-maintenance in order to be a true low-cost system. An "ad hoc" net-
work in this context is de�ned as a network without predetermined physical
distribution, or logical topology, of the nodes. "Self-con�guration" is de�ned
to be the ability of network nodes to detect the presence of other nodes and
to organize into a structured, functioning network without human interven-
tion. "Self-maintenance" is de�ned to be the ability of the network to detect
and recover from faults appearing in either network nodes or communication
links, again without human intervention.
The Outsmart project needs to take into account, in order to create an ef-
�cient wireless sensor network for the waste management, the fact that in
the city of Berlin over 20000 waste bins are present. Therefore, it is neces-
sary to consider a speci�c WSN sub-�eld named Large Scale Wireless Sensor
Networks, where several thousands of nodes are distributed in hundreds of
square meters. The small communication range of sensor nodes (in general
between 10 and 100m), due to the necessity to prolong battery life by re-
ducing energy consumption, makes the use of a multi-hop communication

6 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

necessary in order to build a Large Scale Wireless Sensor Network.

2.1 The ISM Band

Most of the wireless sensor network technologies operate in one (or more) of
the ISM band(Industrial, Scienti�c and Medical radio band). These frequen-
cies were internationally reserved for the use of RF electromagnetic �elds for
industrial, scienti�c and medical purposes other than communications.
The ISM bands are de�ned by ITU-R in 5.138, 5.150, and 5.280 of the Radio
Regulations. Because communication devices using the ISM bands must tol-
erate any interference from other ISM equipment, these bands are typically
given over to uses intended for general licensed operation, since they need to
be tolerant of interference from other devices anyway. A table with the ISM
bands and a list of typical uses for each frequency range follows:

Start Frequency End Frequency Typical Uses

6.765 MHz 6.795 MHz Radio broadcast

Weather report

Aeronautical radio service

13.553 MHz 13.567 MHz Radio services

Telecommunications (PTP)

Remote control system

26.957 MHz 27.283 MHz Used by CB

40.66 MHz 40.70 MHz Television broadcaast

Telemetry/remote control

433.66 MHz 434.79 MHz Amateur radio services

Backscatter r�d system

Baby intercoms

Relemetry transmitter

Cordless headphones - micro-
phones

2.1. THE ISM BAND 7

868 MHz 869 MHz Short range devices

RFID applications

902 MHz 928 MHz Not available in Europe

2.4 GHz 2.5 GHz Backscatter (RFID)

Telemetry transmitter

WiFi/Bluetooth

Skype Phones

Car Alarm

5.725 GHz 5.875 GHz Amateur radio

Radiolocation services

Movement sensors (door openers)

Contactless toilet �ushing

Backscatter RFID system

24 GHz 24.25 GHz Amateur radio

Radio location services

Earth resources services via satellite

Movement sensors

Directional radio system for radio
transmission

61 GHz 61.5 GHz

122 GHz 123 GHz

244 GHz 246 GHz

These bands have been shared with general licensed error-tolerant com-
munications applications such as Wireless Sensor Networks in the 865 MHz,
915 MHz and 2.450 GHz bands, as well as wireless LANs and cordless phones
in the 915 MHz, 2.450 GHz, and 5.800 GHz bands. Because these devices are
already required to be tolerant of ISM emissions in these bands, low power
uses are generally able to operate in these bands without causing problems
for ISM users. The ISM bands are also widely used for Radio Frequency
Identi�cation (RFID) applications with the most commonly used band be-
ing the 13.56 MHz band used by systems compliant with ISO/IEC 14443,
including those used by biometric passports and contactless smart cards.

8 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Most of the wireless sensor network technologies suitable for the OUTSMART
project in order to realize a scalable, energy e�cient and marketable sensor
network in urban environments use the ISM radio bands to create a WPAN
(Wireless Personal Area Network).

Technology Frequencies

IEEE 802.15.4 - ZigBee/6LoWPAN 868 MHz

915 MHz

2,4 GHz

ZWave 868 MHz

915 MHz

IP500 Alliance 868 MHz

915 MHz

Wavenis 433 MHz

868 MHz

915 MHz

Bluetooth - Bluetooth Low Energy 2.4 GHz

KNX 868 MHz

UMTS/3GPP developments (LTE) 1800 MHz

Each of these frequencies is regulated by the European Communica-
tion O�ce in accordance with the Radio and Telecommunications Terminal
Equipment (R&TTE) Directive (1999/5/EC) of the European Commission.
The main restrictions in the ISM band rules are the transmit power, which
in�uences the maximum distance achievable, and the duty cycle, which in-
�uences the time that can be used for transmission by each node.

2.2 Topologies

The basic issue in communication networks is the transmission of messages
to achieve a prescribed message throughput and Quality of Service (QoS).
QoS can be speci�ed in terms of message delay, message due dates, bit error
rates, packet loss, economic cost of transmission, transmission power, etc.

2.2. TOPOLOGIES 9

Depending on QoS, the installation environment, economic considerations,
and the application, one of the several basic network topologies may be used.
A communication network is composed of nodes, each of which has comput-
ing power and can transmit and receive messages over communication links,
wireless or cabled. The basic network topologies are shown in Figure 2.1 and
include fully connected, mesh, star, ring, tree, bus. A single network may
consist of several interconnected subnets of di�erent topologies.

Figure 2.1: Di�erent topologies

The most common topologies in wireless sensor networks are the star,
mesh and tree networks. The star networks are a very simple and com-
mon form of communication topologies. The star topology organizes all the
peripheral nodes around the central hub (sink), which is logically (and some-
times physically) at the center of the network. The central hub can be either
the base station itself or a gateway node that is in direct communication with
the base station. A natural and logical extension of the star topology is the
tree topology, where the sink node is the root and nodes at di�erent levels
in hierarchy are connected via direct links.
The mesh networks are multi-hop local area networks, in which each sensor
node not only sends and receives its own message, but also works as a router
to relay messages for its neighbors through the network. Mesh topology fa-
cilitates multiple communication paths from the sensor nodes to the base
station. A special case of mesh is the grid topology.
In clustered hierarchical topology, all nodes in the Wireless Sensor Network
are joined at the lowest level. The sensors use their local neighborhood in-
formation to form a set of clusters and elect a cluster head (CH) for each
cluster. The CH election process can be based on various parameters such
as available energy resources, proximity to the base station, and number of

10 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

neighbors. The CH in the lowest level are arranged into clusters in a higher
level, and a CH is assigned for each cluster at this level. The process is
repeated for each level in the hierarchy. The number of hierarchical levels
depends on several criteria, including coverage requirement, deployment re-
gion, node density, and transceiver sensing range. The clustered hierarchical
architecture maintains a tree rooted at the sink node, with a hierarchy of
CH as the internal nodes and the sensor nodes as leaf nodes of the tree,
for network addressing and organization. Nevertheless, di�erent from the
tree topology, it still maintains the multi-hop mesh routing for actual data
communication. While this hierarchical scheme is not optimal for traditional
networks, it is still e�ective for Wireless Sensor Networks because most of the
communication is directed from the sensor nodes to the sink or vice versa,
and the higher level CH are usually closer to the sink.

Figure 2.2: a) Mesh Con�guration; b) Hierarchical Tree Con�guration; C)
Clustered Hierarchical Con�guration

The choice between di�erent wireless sensor network topologies is in�u-
enced mainly by four parameters : reliability, energy e�ciency, scalability
and latency

2.2.1 Reliability

Reliability is generally de�ned as the probability that the system will perform
its intended function under stated conditions for a speci�ed period of time.
The WSN reliability can be studied for three di�erent scopes of data delivery,
known as the infrastructure communication:

• users send their interest to a single sensor node

• users send their interest to a subset of nodes in a sub-area and the
message needs to be delivered to all sensors in the particular group

2.2. TOPOLOGIES 11

• users send their interest to the entire sensor network and the message
needs to be delivered to all sensors in the network.

In Star WSN the reliability is simply the product of the reliabilities of
communication between each node in the subset S with the sink node.
In Mesh WSN the reliability is the k-terminal network reliability among the
nodes in the subset S and the base station.
In Clustered Hierarchical WSN the reliability is the probability that there
exists an operational path from the sink to top hierarchical level CH, then
to the next hierarchical level CH and so on to the destination group's CH
and �nally to all sensor nodes in that group. Note that the sensor nodes in
the group may belong to a single cluster or a subset of contiguous or non-
contiguous clusters.

For all the scenarios, mesh topology o�ers the highest reliability due to
multiple paths through the network. A mesh network is highly fault tolerant
as it o�ers multiple redundant paths throughout the network. If a routing
node fails or the link between two nodes becomes unavailable, the network
automatically recon�gures itself around the failed component. In a mesh
WSN, the degree of redundancy, and in general the reliability of the net-
work, is essentially a function of node density.
Tree topology has the lowest reliability due to the use of only a single direct
link between nodes at successive levels in the hierarchy. Clustered hierarchi-
cal topology is a compromise between the two extremes. It is better than
tree as it still maintains multi-hop paths, while it has lower reliability than
mesh because each communication between nodes at di�erent clusters must
route through a�liated cluster heads.

2.2.2 Energy E�cency

While traditional networks aim on achieving high quality-of-service provi-
sions, WSN focus primarily on energy awareness in every aspect of hardware
and software design and operation to prolong the useful lifetime of each sen-
sor node and in the entire WSN. The energy required for communication
scales with distance (d) as d2 to d4. Since the radio signal attenuation scales
with distance in a greater-than-linear fashion, the multi-hop communication
in mesh networks consumes less power than the traditional single-hop long
distance radio communication in star networks.

P (h, d) = (h− 1)PRxElec + h
[
PTxRad1

(
d
h

)r
+ PTxElec

]
where d is the distance between node and base station, h is the number

of hops, PrxElec is the power required to receive and PtxElec is the one to

12 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

transmit electronics, PtxRad1 is the radiated power required for a successful
one-meter transmission and r is the path loss exponent.

Figure 2.3: As the distance between source node and base station increases,
the number of intermediate hops increases

It is possible to calculatean optimal characteristic distance and an op-
timal number of hops that balances the reduced transmission energy and
increased receive energy. The optimal number of hops (Kopt) can be calcu-

lated as Kopt =
∣∣∣ d
dchar

∣∣∣ where D is the distance between the node and the

base station and dchar = n

√
α1

α2(n−1)
, with α1 the energy/bit consumed by

the transmitter electronics (including energy costs of imperfect duty cycling
dueto �nite startup time), α2 accounts for energy dissipated in the transmit
op-amp (including op-amp ine�ciencies) and n is the loss index.

The existence of a characteristic distance has two practical implications
for micro-sensor networks. First, it is often impractical to ensure that all
nodes are spaced exactly dchar apart: the deployed nodes may be placed in a
line of nodes and a base station separated at a distance of either d or 2d, with
d < dchar < 2d. The second practical implication of a fairly large dchar is that
there are a large class of applications for which the entire network diameter
will be less than dchar. For these applications, the best communication policy
is not to employ multi-hop at all: direct transmission from each node to the
base station is the most energy-e�cient communication scheme. For today's
radio hardware, the typical dchar is around 20 meters.
For the scenario where the network size is less than the characteristic dis-
tance, direct communication in star networks is the most energy e�cient
because star topology facilitates energy savings for the sensor nodes by al-

2.2. TOPOLOGIES 13

lowing them to enter in sleep mode independently and to turn on brie�y
for sensing and communicating the sensed data back to the base station. In
a mesh WSN, nodes closer to the base station handle more tra�c and de-
plete their energy faster than the nodes away from the base station, thereby
disconnecting the base station from the whole WSN, which might still have
adequate resources and infrastructure.
Clustered hierarchical architecture is inherently amenable to in-network pro-
cessing. It decreases communication tra�c and communication frequency
via data aggregation progressively at each CH in the hierarchy by processing
and �ltering the possibly redundant data received from its member nodes. To
prevent unfairly taxing the battery power of the CH, LEACH algorithm uses
randomized rotation of high-energy CH responsibility among all the nodes
to distribute the energy load evenly among the sensors in the network. Sim-
ulations show that LEACH can achieve as much as a factor of 8 reduction
in energy dissipation compared with direct communication when using the
optimal number of cluster-heads (5%).

2.2.3 Scalability and self-organization

In star WSN, addition of nodes increases load on the base station, which
results in increased power consumption and complexity. Also, as node den-
sity increases, the increase in collision greatly degrades performance. It is
di�cult to scale star WSN to more than a few nodes.
Mesh WSN are self-con�guring networks that dynamically optimize routes
through the network, based on the best link quality between neighboring
nodes. The propagation of sensor data through the mesh allows WSN to be
extended, in theory, to an unlimited range. However, the transmission and
duty-cycle scheduling of sensor nodes should be planned in a very careful
way. Therefore mesh networks work well for medium sized networks, but
have scalability limitations that degrade performance for larger or densely
deployed WSN.
Clustered hierarchical networks improve the scalability of the mesh networks
by assigning CH to manage the local neighborhood of sensor nodes. For ex-
ample, LEACH uses localized coordination to enable scalability and robust-
ness for dynamic networks. Also, the adaptive self-organizing capabilities
of clustered hierarchical WSN allow the periodic reformation of hierarchical
clusters of sensor nodes in the event of environmental or topology changes as
sensor nodes fail or new sensor nodes are added to improve connectivity and
coverage.

14 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.2.4 Data latency

Star networks have the least data latency because there is nodelay due to
bu�ering at routers along the path, but they are not scalable and moreover
there may be more loss due to collision as the network density increases.
Mesh network has higher data latency than star but lower data loss be-
cause keeping the transmission power lower reduces the packet collision rate.
Depending on the number ofnodes and the distances between them, mesh
network may endure increased latency as message moves along multi-hop
route to the base station. Also, mesh network can cause the nodes closer
to base station to overload with the increase in node density which might
cause latency in communication, and at the worst case create a black hole of
overloaded (or dead) nodes around the base station.
In hierarchical tree topology, as the data moves from the lower level to a
higher level, it moves a greater distance, thus reducing the travel time and
data latency. However, as the distance between cluster levels increases, the
energy dissipation, which is proportional to square of the distance, increases.
Clustering is a design approach to minimizing energy consumption and min-
imizing communication latency In clustered hierarchical topology, only CH
(along the hierarchy) perform aggregation; while in mesh topology, (every)
intermediate nodes perform aggregation. As a result, clustered hierarchical
architecture has lower latency than mesh topology.

2.3 Power Consumption and Duty Cycle

There are two important parameter in the ultra-low power sensor network:
the sleep current, which a�ects the power consumption of the device while it
is sleeping, and the time needed by the sensor to wake up after the sleeping
time. Ultra-low power sensors spend most of their life asleep, waking up as
a result of an external event or an internal timer. When they are sleeping,
they need to consume negligible current, ideally no more than the leakage
current of the source powering them. Most of the devices manage deep-sleep
currents of a few microamperes, whilesome of the best low-power radio chips
can survive on a few hundred nanoamperes.
The second parameter is how quickly the device can wake up, assemble and
transmit the data packet, wait for an acknowledgement (assuming that the
protocol requires one) and then return to the sleep mode (Figure 2.4). The
length of this time is principally determined by the standard, which speci�es
the number and size of packets that need to be sent over the wireless link.
Standards that aim for this ultra-low power market minimize the need for

2.3. POWER CONSUMPTION AND DUTY CYCLE 15

unnecessary transactions, and can give total 'ON' times less than 5 millisec-
onds. Moreover, for many radios the current consumption in receive mode
is greater than it is in transmit mode. So if a transmission needs to be ac-
knowledged,it is important that it is done as quickly as possible, so that the
receiver does not need to be awake and consume energy during the wait for
acknowledgement process.

Figure 2.4: Sensor Life Cycle - Power Consumption example

2.4 IEEE 802.15.4 Standard

IEEE 802.15.4 standard de�nes the protocol and compatible interconnection
for data communication devices using low-data-rate, low-power, and low-
complexity short-range radiofrequency (RF) transmissions in a wireless per-
sonal area network (WPAN). The de�nition of the network layers is based on
the OSI model, although only the physical layer (PHY) and medium access
control (MAC) layers are de�ned (as shown in Figure 2.5).

Figure 2.5: IEEE 802.15.4 Protocol Stack

The 2006 revision upgrade included two optional physical layers(PHYs)
yielding higher data rates in the lower frequency bands and therefore the
following four PHYs are speci�ed:

PHY Frequency Channel Modulation Bit-Rate Symbols

(MHz) Band Number (Kb/s)

868/915 868-868.6 0 BPSK 20 Binary

902-928 1-10 BPSK 40 Binary

868/915 868-868.6 0 ASK 250 20-bit PSSS

(optional) 902-928 1-10 ASK 250 5-bit PSSS

868/915 868-868.6 0 O-QPSK 100 16-ary Orth.

(optional) 902-928 1-10 ASK 250 16-ary Orth.

2450 2400-2483.5 11-26 O-QPSK 250 16-ary Orth.

2.4. IEEE 802.15.4 STANDARD 17

2.4.1 IEEE 802.15.4 Protocol Standard

The standard uses carrier sense multiple access with collision avoidance
(CSMA-CA) medium access mechanism, while the media access is contention
based. However, using the optional superframe structure, time slots can be
allocated by the PAN coordinator to devices with time critical data. Con-
nectivity to higher performance networks is provided through a PAN co-
ordinator. Two di�erent device types can participate in an IEEE 802.15.4
network: a full-function device (FFD) and a reduced-function device (RFD).
The FFD can operate in three modes serving as a personal area network
(PAN) coordinator, a coordinator or a device and is able to talk to RFDs or
other FFDs, while an RFD can talk only to an FFD. RFD are intended for
extremely simple application and therefore they can be implemented using
minimal resources and memory capacity.
Two types of topologies are supported by this standard: star topology and
peer-to-peer topology. All devices operating on a network of either topology
shall have unique 64-bit addresses, which may be used for direct communi-
cation within the PAN, or a short address may be allocated by the PAN co-
ordinator when the device associates and used instead. Peer-to-peertopology
allows more complex network formations to be implemented, such as mesh
networking topology. A peer-to-peer network can be ad hoc, self-organizing,
self-healing and may also allow multiple hops to route messages from any
device to any other device on the network. Such functions can be added at
the higher layer, but are not part of the 802.15.4 standard.
The MAC sublayer provides the MAC data service and the MAC manage-
ment service interfacing to the MAC sublayer management entity service
access point (known as MLME-SAP). The transmission can use beaconless
mode or beacon mode. In the �rst one a CSMA-CA channel access mode
is performed similarly to the IEEE 802.11 protocol standard. Each time a
device wishes to transmit data frames or MAC commands, it waits for a ran-
dom period. If the channel is found to be idle, following the random backo�,
the device transmits its data. If the channel is found to be busy following the
random backo�, the device waits for another random period before trying to
access the channel again. Acknowledgment frames are sent without using a
CSMA-CA.
In the case of beacon mode, the standard allows the optional use of a su-
perframe structure which is bounded by network beacons sent by the co-
ordinator and is divided into 16 equally sized slots. The beacon frame is
transmitted in the �rst slot of each superframe and is used to synchronize
the attached devices, to identify the PAN, and to describe the structure of
the superframes. Any device wishing to communicate during the contention

18 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

access period (CAP) between two beacons competes with other devices using
a slotted CSMA-CA mechanism. Beacon mode uses an hybrid Time Division
Multiple Access (TDMA) which allows to reserve time-slots for critical data
transmission.

2.4.1.1 Frame Format

The IEEE 802.15.4 standard uses four types of frames:

• Data frame, for data transmission.

• Acknowledgement frame, transmitted from the receiver nodeafter 12
symbol period (192µs), after the reception of a frame, if explicitly re-
quested by an ack bit �ag in the MAC header data.

• MAC Layer command frames, used in the beacon-enabled mode to use
some services at the MAC layer like coordinator association-disassociation
and the transmission synchronization management.

• Beacon frame, used by the coordinator in the beacon-enabled mode.

Figure 2.6: IEEE 802.15.4 Data Frame

The structure of a frame, which originates from the upper layers, is shown
in Figure 2.6. The data payload is passed to the MAC sublayer and is referred
to as the MAC service data unit (MSDU). The MAC payload is pre�xed
with an MHR, which contains the FrameControl �eld, data sequence number
(DSN), addressing �elds, and optionally the auxiliary security header, and
appended with an MFR, which is composed of a 16-bit FCS.
The Frame Control �eld is 2 octets in length and contains information de�n-
ing the frame type (beacon, data, acknowledgement or MAC command) , ad-
dressing �eld, and other control �ags. The Sequence Number �eld is 1 octet
in length and speci�es the sequence identi�er for the frame. The address-
ing �eld includes the Destination PAN Identi�er, the Destination Address,

2.4. IEEE 802.15.4 STANDARD 19

the Source PAN Identi�er and the Source address. The Auxiliary Security
Header �eld has a variable length and speci�es information required for secu-
rity processing, including how the frame is actually protected (security level)
and which keying material from the MAC security PIB is used. The FCS �eld
is 2 octets in length and contains a 16-bit ITU-T CRC (cyclic redundancy
check) in order to detect bit errors in every frame. The FCS is calculated over
the MHRand MAC payload parts of the frame using the following standard
generator of polynomial of degree 16:

G16 = x16 + x12 + x5 + 1

2.4.1.2 Security

The actual frame protection provided can be adapted on a frame-by-frame
basis and allows for varying levels of data authenticity (to minimize secu-
rity overhead in transmitted frames where required) and for optional data
con�dentiality. When nontrivial protection is required, replay protection is
always provided.
Cryptographic frame protection may use a key shared between two peer de-
vices (link key) or a key shared among a group of devices (group key), thus
allowing some �exibility and application-speci�c tradeo�s between key stor-
age and key maintenance costs versus the cryptographic protection provided.
If a group key is used for peer-to-peer communication, protection is provided
only against outsider devices and not against potential malicious devices in
the key-sharing group. There are three �elds in the IEEE 802.15.4 MAC
frame which are related to security issues:

• Frame Control (located in the MAC Header)

• Auxiliary Security Control (in the MAC Header)

• Data Payload (in the MAC Payload �eld)

As shown in Figure 2.7 the Auxiliary Security Frame is only enabled if
the Security Enabled sub�eld of the Frame Control Frame is turned on. This
special header has 3 �elds:

• Security Control (1B) speci�es which kind of protection is used.

• Frame Counter (4B) is a counter given by the source of the current
frame in order to protect the message from replaying protection. For
this reason each message has a unique sequence ID represented by this
�eld.

20 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Figure 2.7: IEEE 802.15.4 Security

• Key Identi�er (0-9B) speci�es the information needed to know what
key we are using with the node we are communicating with.

Each 802.15.4 transceiver has to manage a list to control its �trusted brothers�
along with the security policy . For this reason each node has to control its
own Access Control List (ACL) which stores the following �elds:

• Address: of the node we want to communicate with

• Security Suite: the security police which is being used (AEC-CTR,
AES-CCM-64, AES-CCM-128,...)

• Key: the 128b key used in the AES algorithm

• Last Initial Vector (IV) and Replay Counter: both are the same �eld.
The Last IV is used by the source and the Replay Counter by the
destination as a message ID in order to avoid reply attacks.

When a node wants to send a message to a speci�c node or receives a
packet, it looks at the ACL to see if it is a trusted brother or not. In the
case it is, the node uses de data inside the speci�c row to apply the security
measures. In the case the node is not in the list or its message is rejected,
an authentication process starts.

2.4. IEEE 802.15.4 STANDARD 21

2.4.2 ZigBee

The IEEE 802.15.4 protocol does not standardize the higher communication
protocol layers, including the network and application layers. To assure in-
teroperability between devices operating with the IEEE 802.15.4 standard,
the behavior of these layers must be speci�ed. The creation of such a speci-
�cation has been taken up by the ZigBee Alliance. The IEEE 802.15.4 MAC
and PHY layers de�ne the RF and communication components of neighbor-
ing devices, while ZigBee stack layers, on the other hand, include a network
layer, an application layer and a security service provider(SSP), as shown in
Figure 2.8.

Figure 2.8: ZigBee protocol stack

ZigBee uses Direct-Sequence Spread Spectrum (DSSS) in the 2.4GHz
band, with O�set-Quadrature Phase-Shift Keying (O-QPSK) modulation.
Each channel has a width of 2MHz, with 5MHz channel spacing. The
868 and 900MHz bands also use direct-sequence spread spectrum but with
binary-phase-shift keying modulation (BPSK). Raw data throughput rates
of 250Kbps can be achieved at 2.4GHz (16 channels), 40Kbps at 915MHz
(10 channels), and 20Kbps at 868MHz (1 channel). Transmission range is
between 10 and 75m, although it is heavily dependent on the particular envi-
ronment and on the device output power, which is generally 0 dBm (1 mW).

22 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

In the ZigBee speci�cation, three di�erent types of ZigBee devices are de-
�ned:

• ZigBee coordinator (ZC): The most capable device, the coordinator
forms the root of the network tree and might bridge to other networks.
There is exactly one ZigBee coordinator in each network since it is the
device that started the network originally. It is able to store information
about the network, including acting as the Trust Center & repository
for security keys.

• ZigBee Router (ZR): These devices extend network area coverage, dy-
namically route around obstacles, and provide backup routes in case of
network congestion or device failure. They can connect to the coordi-
nator and other routers, and also support child devices.

• ZigBee End Device (ZED): Contains just enough functionality to talk
to the parent node (either the coordinator or a router); it cannot relay
data from other devices. This relationship allows the node to be asleep
a signi�cant amount of the time thereby giving long battery life. A
ZED requires the least amount of memory, and therefore can be less
expensive to manufacture than a ZR or ZC.

The protocol builds an algorithmic research (Ad-hoc On-demand Distance
Vector) to automatically construct an ad-hoc network of nodes which can
form a star network, a mesh network or a cluster tree, as shown in Figure
2.9.

Figure 2.9: ZigBee Network Topologies

2.4. IEEE 802.15.4 STANDARD 23

ZigBee operates in two main modes: non-beacon mode and beacon mode.
Beacon mode is a fully coordinated mode where all the devices know when
to coordinate with one another. In this mode, the network coordinator will
periodically "wake-up" and send out a beacon to the devices within its net-
work. This beacon subsequently wakes up each device, who must determine
if it has any message to receive. If not, the device returns to sleep, as will
the network coordinator, once its job is complete. Non-beacon mode, on the
other hand, is less coordinated, as any device can communicate with the co-
ordinator at will. However, this operation can cause di�erent devices within
the network to interfere with one another, and the coordinator must always
be awake to listen for signals, thus requiring more power.

2.4.2.1 Network Layer (NWK)

The ZigBee stack architecture includes a number of layered components in-
cluding the IEEE 802.15.4-2003 Medium Access Control (MAC) layer, Phys-
ical (PHY) layer, and the ZigBee Network (NWK) layer. Each component
provides an application with its own set of services and capabilities. , its pri-
mary purpose is to describe the component labeled Application (APL) Layer.
In order to interface with the application layer, the network layer conceptu-
ally includes two service entities that provide the necessary functionality.
These service entities are the data service, provides the data transmission
service via its associated SAP, and the management service, which provides
the management service via its associated SAP.

The Network Layer Data Entity provides a data service to allow an ap-
plication to transport application protocol data units between two or more
devices located on the same network. The Network Layer Data Entity will
provide the following services:

• Generation of the Network level PDU (NPDU): The NLDE shall be
capable of generating an NPDU from an application support sub-layer
PDU through the addition of an appropriate protocol header.

• Topology-speci�c routing: The NLDE shall be able to transmit an
NPDU to an appropriate device that is either the �nal destination of
the communication or the next step toward the �nal destination in the
communication chain.

• Security: The ability to ensure both the authenticity and con�dentiality
of a transmission.

24 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

The Network Layer Management Entity provides a management service
to allow an application to interact with the stack and provides the following
services:

• Con�guring a new device: this is the ability to su�ciently con�gure
the stack for operation as required. Con�guration options include be-
ginning an operation as a ZigBee coordinator or joining an existing
network.

• Starting a network: this is the ability to establish a new network.

• Joining, rejoining and leaving a network: this is the ability to join,
rejoin or leave a network as well as the ability of a ZigBee coordinator
or ZigBee router to request that a device leave the network.

• Addressing: this is the ability of ZigBee coordinators and routers to
assign addresses to devices joining the network.

• Neighbor discovery: this is the ability to discover, record, and report
information pertaining to the one-hop neighbors of a device.

• Route discovery: this is the ability to discover and record paths through
the network, whereby messages may be e�ciently routed.

• Reception control: this is the ability for a device to control when the
receiver is activated and for how long, enabling MAC sub-layer syn-
chronization or direct reception.

• Routing: this is the ability to use di�erent routing mechanisms such
as unicast, broadcast, multicast or many to one to e�ciently exchange
data in the network.

2.4. IEEE 802.15.4 STANDARD 25

2.4.2.2 Application Layer (APL)

Figure 2.10: Zigbee Application Layer

The ZigBee application layer consists of the APS sublayer, the ZigBeeDe-
vice Object (containing the ZDO management plane), and the manufacturer
de�ned application objects, as shown in Figure 2.10. The application support
sub-layer (APS) provides an interface between the network layer (NWK) and
the application layer (APL) through a general set of services that are used
by both the ZDO and the manufacturer-de�ned application objects. The
services are provided by two entities:

• The APS data entity (APSDE) through the APSDE service access point
(APSDE-SAP).

• The APS management entity (APSME) through the APSME service
access point (APSME-SAP).

The APSDE provides the data transmission service between two or more
application entities located in the same network.
The application framework in ZigBee is the environment in which applica-
tion objects are hosted on ZigBee devices. Up to 240 distinct application
objects can be de�ned, each identi�ed by an endpoint address from 1 to 240.
Two additional endpoints are de�ned for APSDESAP usage: endpoint 0 is

26 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

reserved for the data interface to the ZDO, and endpoint 255 is reserved
for the data interface function to broadcast data to all application objects.
Endpoints 241-254 are reserved for future use.

2.4.2.3 Energy consumption

The energy consumption of a ZigBee wireless sensor network is strictly con-
nected to the duty cycle. In beacon enabled mode, the duty cycle is given
by the expression 2SO

2BO
, where SO and BO are two MAC layer parameters

that de�ne the time interval between beacons (Beacon Order BO) and the
duration of the active part (Superframe Order SO), as shown in Figure 2.11.

Figure 2.11: IEEE 802.15.4 - Zigbee Superframe structure

Low duty cycle conserves energy by putting devices to sleep. However, a
low duty cycle reduces the bandwidth and increases latency. With the same
duty cycle, di�erent combination of SO and BO are possible, which means
the superframe structure has di�erent active period and inactive period.

2.4.2.4 Security in ZigBee

ZigBee implements two extra security layers on top of the 802.15.4 one: the
Network and Application security layers. All the security policies rely on
the AES 128b encryption algorithm so the hardware architecture previously
deployed for the link level (MAC layer) is still valid. There are three kind of
Keys: master, link and network keys.

• Master Keys: They are pre-installed in each node. Their function is
to keep con�dencial the Link Keys exchange between two nodes in the
Key Establishment Procedure (SKKE).

• Link Keys: They are unique between each pair of nodes. These keys
are managed by the Application level. They are used to encrypt all the

2.4. IEEE 802.15.4 STANDARD 27

information between each two devices, for this reason more memory
resources are needed in each device

• Network key: It is a unique 128b key shared among all the devices in
the network. It is generated by the Trust Center and regenerated at
di�erent intervals. Each node has to get the Network Key in order to
join the network. Once the trust center decides to change the Network
Key, the new one is spread through the network using the old Network
Key (see image above about �ZigBee Residential Mode�). Once this
new key is updated in a device, its Frame Counter (see in the previous
sections) is initialized to zero. This Trust Center is normally the Coor-
dinador, however, it can be a dedicated device. It has to authenticate
and validate each device which attempts to join the network.

Each pair of devices can have set both Network and Link Keys. In this
case the Link key is always used (more security although more memory is
needed). There are two kinds of security policies which the Trust Center can
follow:

• Commercial mode: the Trust Center share Master and Link Keys with
any of the devices in the network. This mode requires high memory
resources. This mode o�ers a complete centralized model for the Key
Security control.

• Residential mode: the Trust Center shares just the Network Key (it is
the ideal mode when embedded devices have to cope with this task due
to the low resources they have). This is the mode normally chosen for
the Wireless Sensor Network model

28 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.4.3 6LoWPAN

The Internet Engineering Task Force (IETF), which creates and maintains
all core Internet standards and architecture work, de�ned the 6LoWPAN
standard, which enables the e�cient use of IPv6 over low-power and low
rate wireless networks on simple embedded devices. This was made through
an adaptation layer and the optimization of the related protocol, which was
possible with a simpli�cation of the IPv6 functionality, de�ning very compact
header formats and taking the nature of wireless networks into account.
The 6LoWPAN concept originated from the idea that the Internet Protocol
could and should be applied even to the smallest devices, and that low-power
devices with limited processing capabilities should be able to participate in
the Internet of Things. The vision behind the Internet of Things is that smart
objects are becoming IP enabled, which means they will become integral part
of the Internet. The scale of these IP enabled objects is already estimated
to be larger than trillions of devices, while there are several applications
which could bene�t from the use of the internet protocols because IP based
devices can be easily connected to other IP networks without the use of any
gateway or proxy, while the IP technology is very well known, have existed
for decades, is speci�ed to an open and free way with standard processes and
documents available to anyone.

2.4.3.1 6LoWPAN Network Architecture

The Internet of Things is created by connecting clouds of wireless embedded
devices, where each cloud is an independent network on the Internet, which
means that IP packets are sent within the network, but doesn't act as a
transit to other networks. A LoWPAN can be de�ned as the collection of
6LoWPAN nodes which share a common IPv6 address pre�x, the �rst 64 bits
of an IPv6 address.
Three di�erent kind of LoWPAN can be de�ned, as shown in Figure 2.12:

• Simple LoWPAN: connected through a LoWPAN Edge Router to an-
other IP network

• Extended LoWPAN: includes the LoWPAN of multiple edge routers
along with a backbone link interconnecting them

• Ad Hoc LoWPAN: not connected to the Internet, it operates without
an infrastructure

The main di�erence between simple and extended LoWPAN is the pres-
ence of multiple edge routers sharing the same IPv6 pre�x and common

2.4. IEEE 802.15.4 STANDARD 29

Figure 2.12: 6LoWPAN Network Types

backbone link(i.e. Ethernet), which leads to a remarkable o�oad of the
Neighbor Discovery messaging in the backbone link and simpli�es LoWPAN
node operation because IPv6 addresses are stable through the network.
The edge router plays an important role in the 6LoWPAN network not only
because it routes the tra�c in and out of the LoWPAN, but also because it
handles the 6LoWPAN compression and Neighbor Discovery, which de�nes
how hosts and routers interact with each other on the same link. For example
the network interfaces of the nodes in a LoWPAN share the same IPv6 pre�x
and, in order to facilitate e�cient network operation, nodes register with an
edge router during the Neighbor Discovery. Moreover, if the LoWPAN is
connected to an IPv4 network, the edge router should also handle the IPv4
interconnectivity.
The interaction between LoWPAN nodes and IP nodes in other networks
happens in an end-to-end way: every single LoWPAN node is identi�ed by
a unique IPv6 address and is capable of sending and receiving IPv6 packets.

30 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.4.3.2 6LoWPAN Protocol Stack

Figure 2.13: 6LoWPAN Protocol Stack

A simple IPv6 protocol stack with 6LoWPAN is almost the same as a
normal IP stack, as shown in Figure 2.13. There are, anyway, some relevant
di�erences:

• 6LoWPAN supports only IPv6, for which a small adaptation layer was
de�ned to optimize IPv6 over IEEE 802.15.4

• The UDP (User Datagram Protocol) is the most common transport
protocol used by 6LoWPAN, while the TCP protocol is not commonly
used for performance, complexity and e�ciency reasons.

The adaptation between the full IPv6 and the 6LoWPAN format is per-
formed by the edge routers.

2.4.3.3 6LoWPAN packet format

An adaptation layer has to map IP datagrams to the services provided by
the subnetwork, which is usually considered to be at Layer 2. In particular,
the Layer 2 has to solve the following problems:

• In case a packet is overheard by multiple receivers, not all of which
may need to act on it, the Layer 2 address provides an e�cient way to
make this decision

• The IP packet needs to be encapsulated in a subnetwork in a way that
the receiver Layer 2 can extract the IP packet again. This leads to
three sub-problems:

� IP packets may not �t into the data units that Layer 2 can trans-
port: the maximum packet size that can be sent using an IP

2.4. IEEE 802.15.4 STANDARD 31

network Interface (MTU) for IPv6 is at least 1280 bytes. IEEE
802.15.4 can only transport L2 packets of up to 127 bytes. In or-
der to transport larger IPv6 packets segmentation and reassembly
(also called fragmentation) is implemented.

� There may be need to distinguish di�erent kinds of encapsulation

� In a LoWPAN the typical IP/UDP header size of 48 bytes already
consumes a signi�cant part of the payload space. For this reason
header compression is a key feature and 6LoWPAN comes with
its own header compression.

6LoWPAN attempts to have modest link layer requirement: the basic
service required by the link layer is for one node to be able to send unicast
packets to another node within radio reach (one hop neighbor). Regarding
the four types of 802.15.4 MAC Layer frame (data, acknowledgement, com-
mand and beacon frame), the 6LoWPAN speci�cation only concerns data
frames, which carry both source and destination address. IEEE 802.15.4
nodes are permanently identi�ed by EUI-64 identi�ers (8 bytes), but the
standard de�nes also a 16 bit short address format.
The basic IEEE 802.15.4 data packet format does not contain any �elds that
further identify the payload carried by a packet, which means that there is no
multiplexing information that allows the receiver to distinguish 6LoWPAN
packets from any other data packets that might be sent or to distinguish the
di�erent kind of 6LoWPAN packets. One of the duties of the 6LoWPAN
encapsulation format is to provide a packet type identi�er, which is not pro-
vided by the IEEE 802.15.4 itself. The �rst byte of the payload is therefore
used as a dispatch byte, providing both a type identi�er and, when possible,
some additional information within the subtype.

00 Not a LoWPAN packet

01 Normal Dispatch

10 Mesh Header

11 Fragmentation Header

Some of the formats de�ned by 6LoWPAN are designed to carry fur-
ther 6LoWPAN PDUs as their payload. When multiple headers need to be
present, the question is which header should be transported as the payload
of which other header (i.e. which order the header should be nested). The
various headers should be used in the following order:

• Addressing: the mesh header, carrying the Layer 2 original source and

32 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

�nal destination address and hop count, followed by a 6LoWPAN PDU

• Hop-by-hop processing: headers that are Layer 2 hop-by-hop options
(such as the broadcast header) followed by a 6LoWPAN PDU

• Destination processing: the fragmentation header, carrying fragments
that, after possibly having been carried through multiple Layer 2 hops,
need to be reassembled to a 6LoWPAN PDU on the destination node

• Payload: headers carrying layer 3 packets such as IPv6 (�gure below),
LOWPAN_HC1 or LOWPAN_IPHC

Figure 2.14: uncompressed IPv6 packet with 6LoWPAN header

2.4.3.4 Addressing

An IP adaptation layer involves usually at least two kind of addresses: link
layer addresses (Layer 2) and IP addresses (layer 3). In addition, 6LoWPAN
supports two address formats at the link layer (the 64-bit EUI-64 address and
the dynamically assigned 16-bit short address). To ensure global uniqueness
of the EUI-64s, the manufacturer �rst has to buy a 24-bit OUI(organization
unique identi�er) from the IEEE for a one-time fee, and then builds the EUI-
64 from the OUI and 40 bits of extension identi�er chosen by the manufacture
with a procedure similar to the one for creating the Ethernet's 48 bit MAC
address, as shown in Figure 2.15.

2.4. IEEE 802.15.4 STANDARD 33

Figure 2.15: Composition of a EUI-64

It is important to note that the least signi�cant bit (M) is used to distin-
guish multicast address from unicast ones, while the second least signi�cant
bit (L) is used to distinguish locally assigned addresses from universal ad-
dresses assigned globally with the OUI scheme.

One easy way of forming an IPv6 address is to combine a 64-bit pre�x
with a 64-bit EUI-64 as an interface ID to yield a 128-bit value. The designers
of IPv6 only applied one twist: the L bit was inverted, turning into a U bit
for universal address. In the hexadecimal the IPv6 address representation the
universal addresses have the �rst 16 bit sub�eld in the interface ID which are
XOR-ed with 0200 (hexadecimal), as shown in Figure 2.16. This allow the
easy to remember address like 2001:db8::1 for locally assigned addresses.

Figure 2.16: Composition of an IPv6 address from an EUI-64: U is the
inverted L bit

In 6LoWPAN this derivation of IPv6 addresses from link layer is manda-
tory because the Neighbor Discovery protocol rely on this mapping. While
in the IEEE 802.15.4 the 16-bit short address is assigned by the PAN coor-
dinator during the association procedure, in 6LoWPAN this is done by the
edge router according to the Neighbor Discovery procedure. To form an IPv6
address out of a 16-bit short address, the short address (assigned by the PAN

34 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

coordinator) is combined with a PAN identi�er, as shown in Figure 2.17. The
rule for the universal/local bit requires bit6 of the PAN identi�er to be zero,
as this is not an IEEE assigned universal EUI-64.

Figure 2.17: Interface identi�er for 16-bit short address

Frequently the packets have to perform multiple radio hops through the
network, which involves two related processes: forwarding and routing. In
each node the routing protocol �lls in a routing information base (RIB) which
contains all the information needed to perform the routing protocol. Usually
the RIB can be simpli�ed to a forwarding information base (FIB) which is
consulted when a packet arrives and needs to be forwarded. There are two
di�erent way to �ll the FIB: proactively and reactively. In the �rst one the
FIB should always contain an entry for each packet that can actually be
forwarded, while in the second one the FIB �lls the gaps only when a packet
arrives.

Figure 2.18: Forwarding Information Identi�er

When packets arrives at a router on an interface if0, it looks up the
destination address in its FIB, selects an interface to forward it out and
sends the packet encapsulated with the new link layer address. In 6LoWPAN
forwarding is motivated by the fact that the �rst node may not have the radio

2.4. IEEE 802.15.4 STANDARD 35

range to reach the third node.
When route and forwarding happens in the layer 3 (also called route-over
forwarding), no special support from the adaptation layer format is required.
Before the layer 3 forwarding engine sees the packet, the adaptation layer
has already decapsulated the packet. This means that fragmentation and
reassembly are performed at each hop in route-forwarding, as the layer 3
addresses are part of the initial bytes of the IPv6 header (present only in the
�rst fragment of a larger packet).

2.4.3.5 Header compression

One of the main characteristics of 6LoWPAN is the limited payload size
of the packets provided by IEEE 802.15.4, half of which is then consumed
by the size of an IPv6 header. 6LoWPAN is more e�cient when all the
IPv6 packets can be made to �t into a single IEEE 802.15.4 packet, avoid-
ing therefore fragmentation and reassembly. Much of the information that
is repeatedly sent in sequence of network headers is redundant and could
be therefore compressed. Data compression techniques (such as gzip and
DEFLATE algorithm) are optimized in order to suppress redundancies in a
given data item, but these techniques don't work well on small data items
such as single packets. Data compression algorithms are best applied to the
application layer content of the packet, while a separate set of techniques has
focused on compressing the headers in sequences of packets.
Header compression is mostly performed hop-by-hop as part of the adapta-
tion layer. This allows compressing the full header stack including the IP
header just before sending the packet on a link, and the decompressing and
reconstructing the header stack in full before the packet is routed and sent
on a di�erent link. The advantage of this approach is that deploying header
compression becomes a local decision between two neighbors.
There are plenty of header compression standards and techniques, one of
those gained popularity its own formal notation: robust header compression
(ROHC). This standard focuses on compressing �ows of packets (like a se-
quence of packets from a single TCP connection) expending a considerable
complexity for compressing the full stack of headers (IP/TCP or IP/UD-
P/RTP) by setting up �ow state for each new connection or stream and
stepping through a set of compression states during the exchange of the ini-
tial packets of the �ow until a high level of compression is reached. The main
disadvantage of this technique (and of all the �ow-based header compression
ones) is that the per-�ow state is likely to get out of sync between sender and
receiver when packets are lost. Because of this disadvantage and the high
complexity of the algorithm behind, this protocol was judged inappropriate

36 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

for the resource-constrained LoWPAN systems by the IETF team.
Instead of the ROHC protocol, the IETF team preferred to employ in the
original 6LoWPAN format exclusively the stateless compression (without
state there is no synchronization problem). The 6LoWPAN format speci-
�cation de�nes two header compression schemes designed to work together:
HC1 to compress IPv6 headers and HC2 to compress UDP headers. Figure
2.19 shows the initial bytes of an HC1 or HC1/HC2 compressed payload.

Figure 2.19: HC1 and HC2 Header

The goal of HC1/HC2 is to enable header compression in an entirely
stateless way, with no requirement for previous agreement between nodes ex-
changing the compressed packets. HC1/HC2 exploits internal redundancies
in the packet , which is caused by the way IP addresses are formed from
Layer 2 addresses. When a 6LoWPAN host sends a packet, the Layer 2
source address of the packet will re�ect the MAC address of the host. The
IID half of the IP address is created from the MAC address as well, so it is
redundant and can be elided. Similar considerations apply to the two des-
tination addresses present in packets sent to hosts. HC1 only optimizes the
case where the 64 bits of an IP address indicate a local link address, pre�x
FE80::/64. HC1 performs source address encoding (SAE) and destination
address encoding (DAE), while the rest of the HC1 header is concerned with
the compression of the non-address components of an IPv6 header.
The largest part of the IPv6 headers are the two IPv6 addresses in the header
(together they can consume up to 40% of the usable space of a packet). Unfor-
tunately it is impossible to compress the large globally routable IPv6 address
without at least some state, which is the reason why the 6LoWPAN work-
ing group standardized a second header compression method context based.
The most important correctness aspect about this method is to make sure

2.4. IEEE 802.15.4 STANDARD 37

that the context stays synchronized between compressor and de-compressor.
The context is divided into multiple slots that may be changed indepen-
dently: a sending node should only start using a context slot when there is
a su�cient reason to believe that the updated value for this slot has perco-
lated to the receiving node. To further reduce the probability of damage,
LoWPAN nodes should use context-based header compression only when a
higher-layer protocol is used to protect the IPv6 addresses with some form
of pseudo-header-based checksum. Like in the stateless header compression,
the context based header compression is divided into a compression scheme
for the IP header and an optional compression scheme for the next header.

2.4.3.6 Fragmentation and reassembly

While the smallest IPv6 packet would contain only the 40 byte IP header
(and 0 bytes of payload), the largest IPv6 packet would contain a payload
of up to 65535 (216-1) bytes. Most of the subnetwork de�ne a maximum
transmission unit in order to de�ne the maximum packet size that can be
transported e�ciently. In a host with a single interface it is usually easy to
�nd the MTU which allows an application to adjust the size of the packet
that it sends. On the other hand, in a multiple interface multi-hop network
the MTU is likely to change from hop to hop on the way to the packet's
destination.
When a source of a datagram wants to use fragmentation it needs to insert
a separate fragmentation header as an extension header. All the IPv6 sub-
networks have to provide a minimum MTU of 1280 bytes, which was chosen
to leave space for tunneling headers that may have to be wrapped around
the packet before transmission an Ethernet and to leave some space for the
IP header, while the recommended MTU size is 1500 bytes. Higher layers
that want to send datagrams larger than the path MTU can fragment at the
source using the IPv6 fragmentation header shown in Figure 2.20.

Figure 2.20: IPv6 fragmented header (M=MF)

6LoWPAN has di�erent requirements on its fragmentation and reassem-
bly mechanism. On one hand its link layer already provides error checking

38 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

and variable length frames, on the other hand 6LoWPAN links do not pro-
vide the in-sequence virtual circuit semantics like ATM (asynchronous trans-
fer mode) so more information than a single bit is required to splice together
the right frames into one IPv6 packet. Instead of providing more fragments
�ag like in IPv4, 6LoWPAN copies the size of the packet to be reassembled
(IPv6 header + IPv6 payload) into every fragment. This enables the receiv-
ing end to allocate a bu�er for the whole reassembly unit upon reception
of the �rst fragment, independent of which of the fragments actually arrives
�rst. In this way the receiver to allocate a bu�er for the whole reassem-
bly unit upon reception of the �rst fragment, independent of which of the
fragments actually arrives �rst. A 16-bit datagram_tag, combined with the
sender's link layer address, the destination's link layer address and the data-
gram_size is used to distinguish the di�erent packets to be reassembled. An
8-bit datagram_o�set indicates the position of the fragment in the reassem-
bled IPv6 packet.
Fragmentation is undesirable for many reason, but the main one regards the
decoupling between unit of loss (the fragment) and unit of retransmission
(the entire packet) with the related une�ciencies. Consecutive layer-2 hops
might have di�erent values for max_frame; in certain cases the �rst hop in a
LoWPAN might split up a packet into 80-bytes fragments, only to have the
next hop split each of these into one 72-byte and one 8-byte fragment. The
question is what are the packet sizes that an application can choose to make
it likely not to cause layer-2 fragmentation. A UDP-based application will
have payloads of 50-60 bytes or less to have a reasonable expectation that no
fragmentation occurs in the LoWPAN.

2.4.3.7 Bootstrapping, Neighbor Discovery and Security

A 6LoWPAN device which is connected for the �rst time has to perform the
following actions:

• Find the LoWPAN it is going to be part of

• Establish networking parameters such as the IP address pre�x and its
own IPv6

• Establish security associations with the relevant entities in the network

• Build paths out of the node to the relevant entities, maintain them and
possibly start forwarding for the other nodes in the network

• Some of these establishments have to be repeated dynamically over
small timescales (for example the selection of the router or the routing

2.4. IEEE 802.15.4 STANDARD 39

paths for forwarding). Other parameters are less dynamic and their
setup can be structured in two phases:

• Commissioning: some of the establishment of state require human in-
tervention; security relationships are initialized in order to protect the
network

• Bootstrapping : the node is ready to operate without further human
intervention but there may still be state that needs to be acquired both
when a device initializes (power-up fresh batteries) or when it enters a
LoWPAN. A protocol that is related to bootstrapping is the Neighbor
Discovery.

A node uses Neighbor Discovery to discover other nodes on the same
link, to determine their link-layer addresses, to �nd routers and to maintain
reachability information about the paths to neighbors that the node is ac-
tively communicating with. The protocol divides nodes into the traditional
roles of host and router, where only the router forwards IP packets that
are not addressed to itself. As many nodes in LoWPAN will be limited in
their capabilities, 6LoWPAN-Neighbor Discovery introduces a third role, the
edge router, specialized in performing some of the more complex functions
of 6LoWPAN-Neighbor Discovery and therefore reducing the complexity of
the tasks performed by the other routers and in particular by the hosts. The
main concept added by the Neighbor Discovery protocol is the whiteboard
maintained by the edge routers, centralizing some of the protocol state.
As mentioned before, 6LoWPAN simpli�es the IPv6 addressing model by
requiring that the node addresses are formed from an interface ID built
from a MAC layer address and a pre�x. Two such addresses are needed
for each 6LoWPAN interface: a link local address (constructed from the pre-
�x FE80::/10) and a globally routable address, constructed from the globally
routable pre�x of the LoWPAN. In the standard Neighbor Discovery proto-
col, routers periodically send router announcements (RA) multicast messages
and the nodes, in case they don't want to wait for the periodical RA, can
solicit a router with a Router Solicitation (RS) multicast message. Addition-
ally, there is a space where a 4-bit Context ID number (CID) can be given:
this makes the pre�x supplied also available for context-based header com-
pression, which works correctly only if all nodes in the 6LoWPAN share a
common view of the context. Neighbor Discovery therefore speci�es that the
complete set of context is to be disseminated in the entire LoWPAN starting
from the edge router, which include the context information in their RA in
order to make it available to all �rst-hop routers.

40 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Figure 2.21: Router Advertisement dissemination

The next step after forming an address would be to perform Duplicate
Address Detection (DAD) on it, which is done by sending a Neighbor So-
licitation (NS) to a solicited-node address, a multicast address formed as a
function of the address to be validated. To do this, 6LoWPAN-Neighbor Dis-
covery uses the edge routers as the focal point for DAD: every edge router
maintains a whiteboard on which nodes can scribble their address and which
other nodes can later read. This is done using two new ICMP6 messages:
Node registration (NR) and node con�rmation (NC), and the entire process
is called registration (Figure 2.22).

Figure 2.22: Basic router discovery/registration process with an edge router

2.4. IEEE 802.15.4 STANDARD 41

The whiteboard entries, called bindings, are soft state, which means they
need to be refreshed periodically to remain in place. The whiteboard of an
edge router serves as a shared database for all nodes that have registered
to that edge router and, via the mechanism that hold together an extended
LoWPAN for the whole LoWPAN. As the LoWPAN is a distributed system,
there is always a possibility of multiple nodes trying to create entries in that
database that are in con�ict with each other. There are two levels of collision
detection in 6LoWPAN-Neighbor Discovery:

• Address collision detection and resolution: multiple nodes try to reg-
ister the same IPv6 address, while only one of those should succeed.
Each registration is identi�ed by the pair of OII (Owner Interface Iden-
ti�er)and the IPv6; a node registration that tries to register an IPv6
address which is already registered with a di�erent OII is denied.

• OII collision detection: the address collision detection and resolution
mechanism are based on the assumption that the OII is globally unique
from the way the EUI-64 are allocated. However if an error is allocating
or storing EUI-64 causes two nodes to share an OOI, address collision
detection breaks down, leading to malfunctioning of the LoWPAN.

The standard Neighbor Discovery protocol makes the responsibility of each
node to �nd other nodes in con�ict with it, while 6LoWPAN-Neighbor Dis-
covery supports con�ict detection with boot-time owner nonces: random
numbers generated each time a node starts up. The owner nonce is used
to set up a registration and maintain it; in addition to the nonce, an 8-bit
sequence number called Transaction ID (TID) serves to correlate consecutive
messages from one node. The TID is sent in each Node Registration message
and echoed back by the Edge Router in the Node Con�rmation message.
The registration process becomes slightly more complicated when the node
registering is not adjiacent to an edge router. Nodes can register to a LoW-
PAN router in the one-hop neighborhood as long as that router indicates its
ability to handle the registration; the router then relays the NR to the edge
router and the NC back to the node, as shown in the Figure 2.23.

Given that there may be multiple routers in the one-hop neighborhood
available for registration, the host is supposed to choose the "best" one: edge
routers that don't have a good reason to go incognito identify themselves in
their RA message by setting the default router preference �eld to high (01),
while it is set to medium (00) for RAs from other LoWPAN routers.
On the other hand, if no routers are in the one-hop neighborhood the ER
metric in the 6LoWPAN pre�x summary option, a 16-bit unsigned integer
indicating how good this router is at the next hop towards the outside world,

42 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Figure 2.23: Nodes registration with an Edge Router

comes in handy. This �eld is usually set to 0 as they are by de�nition the
best way out of the LoWPAN.

2.4.3.8 Node, router and edge router operations

LoWPAN nodes start operation by auto-con�guring the link local address
derived from the globally unique EUI-64 of the LoWPAN interface. From
the point of view address and requires con�rmation via an NR/NC message
exchange with an edge router before becoming fully operational (preferred).
When the Node Con�rmation message arrives and indicates success, the node
takes note of its new 16-bit short address, adds the corresponding IPv6 ad-
dress to its LoWPAN interface and changes the status of the addresses from
optimistic to preferred. As a result of the way LoWPAN nodes generate their
IPv6 addresses, there is a one-to-one mapping between link layer addresses
and corresponding link-local addresses. A node knows whether another node
is in the one-hop neighborhood or needs it be addressed via a router because
the node may have cached information about its one-hop neighborhood from
the previous packet received. The usual behavior is to send the packet to
the default router selected with the ER metric criterion in the absence of
any cache entry. In addition to unicast addresses, nodes need to support the
all-nodes multicast address FF02::1 is used for receiving RAs from routers.
Multicast addresses are always considered to be on-link and are resolved as
speci�ed in the 6LoWPAN format speci�cation.
A LoWPAN router begins operations like any other LoWPAN node: it sets
up its interfaces and their addresses, performs the required Duplicate Address
Detection with the whiteboard and then start running the routing protocol;
then it can advertise its services to other nodes using periodic router Ad-
vertisement and by listening to Router Solicitations. Another duty of the
Router is to relay Node Registration messages from adjacent nodes to an

2.4. IEEE 802.15.4 STANDARD 43

edge router and relay back Node Con�rmation messages to the originating
node.
The edge router is characterized by the presence of multiple interfaces used
to run the communication. One of these is connected to a larger IPv6 net-
work via a simple backhaul link, making the LoWPAN a simple LoWPAN,
or it can be a backbone link connecting to other edge routers in the same
extended LoWPAN. In the case of a single edge router, it has to run the
whiteboard and the two con�ict detection algorithms, is the source of the
network parameters disseminated in the Router Advertisement and performs
the routing from other IPv6 networks into a back out of the LoWPAN. In an
extended LoWPAN, multiple edge routers are interconnected with a back-
bone link. The backbone link has the same pre�x as the LoWPAN, requiring
the edge routers to bi-directionally translate between 6LoWPAN-ND on the
LoWPAN interfaces and standard Neighbor Discovery on the backbone link.
The collision detection algorithms are extended over the backbone link and
the neighbor solicitations on the backbone link are answered by the edge
routers.

2.4.3.9 Security in 6LoWPAN

The security objectives of a wireless system can be grouped into three cat-
egories: con�dentiality , which means that data can't be overheard by un-
intended listeners, achieved by cryptographic encryption; integrity, which
means that data cannot be altered by unauthorized parties and which can
be achieved by cryptographic integrity checks to messages; availability, which
means that the system is not subject to denial of service attacks.
Layer-2 security mechanism goal is to increase robustness against attacks
on con�dentiality and integrity. The encryption mechanism chosen is based
on the AES (advanced encryption standard) algorithm. IEEE 802.15.4 uses
AES in the counter with CBC-MAC mode, which provides not only encryp-
tion but also integrity check mechanism. AES/CCM encrypts a message m
and authenticates that together with additional authenticated data a, using
a secret key K and a nonce N. A parameter L controls the number of bytes
used for counting the AES blocks in the message and m must be shorter than
28L bytes. For a IEEE 802.15.4 packet, the smallest value of L=2 is plenty.
The nonce N is of length 15-L, i.e. 13 bytes for IEEE 802.15.4. The result
of AES/CCM is an encrypted message of the same length as m as well as
an authentication value of length M bytes, where M is a parameter that can
be any even value between 4 and 16. The authentication value can only be
created correctly if K is known.
Layer-3 mechanism has the goal to bring end-to-end security mechanism and

44 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

the way to achieve this was ported from an IPv4 feature known as IPsec. This
system has two main components: the �rst one regards packet formats and
related speci�cations that de�ne the con�dentiality and integrity mechanism
for the actual data, while the second one regards a key management scheme
called IKE (internet key exchange). IPsec de�nes two packet formats for
cryptographically protected data: the IP authentication header, which pro-
vides integrity protection and authentication only, and the IP encapsulating
security payload (ESP), which combines this function with con�dentiality
protection through encryption and which is more popular in the 6LoWPAN
systems.
In summary, ESP with AES/CCM is not too heavyweight for end-to-end
encryption and integrity checking between LoWPAN and its correspondent
nodes. The per-packet overhead could be a bit less with 1-4 bytes of over-
head for padding and eight bytes for the explicitly transmitted initialization
vector.

2.4.3.10 Mobility

Mobility in IP networks is the act of a node changing its topological point
of attachment. There are several causes of mobility in low power wireless
networks:

• Physical movement: nodes in the network move in relation to each
other

• Radio channel: changes in the environment which cause changes in
radio propagation, called fading

• Network performance: packet loss and delay on wireless networks may
be caused by poor signal strength, collisions, overloaded channel ca-
pacity or node congestion

• Sleep schedules: if a node �nds itself attached to a sleeping router
without a suitable duty cycle for the application, this may cause the
node to move to a better point of attachment

• Node failure: due to battery depletion, nodes tend to be prone to
failure. Therefore the failure of a router causes a topology change for
nodes using it as default router

There is another class of mobility in which an entire network moves its point
of attachment, named network mobility, which occurs when an edge router
changes its point of attachment while the nodes in the LoWPAN remain

2.4. IEEE 802.15.4 STANDARD 45

attached to it. When the ipv6 address of the edge router changes, this a�ects
the addressing of all nodes in the LoWPAN.
Two kinds of mobility can be de�ned:

• Roaming: a mobile node moves from one network to another, typically
with no existing packet stream

• Handover: a process in which a mobile node disconnects from its ex-
isting point of attachment and attaches itself to a new point of attach-
ment.

Mobility can also be described in the terms of micro and macro mobility,
where the �rst one refers to mobility that occurs within the network domain
and where the IPv6 pre�x does not change. On the other hand, macro
mobility refers to mobility between LoWPANs in which the IPv6 pre�x
changes. The macro-mobility process requires both roaming and handover,
while micro-mobility requires only handover. When micro-mobility occurs
between attachment points that are part of the same link, the link layer
may be able to deal with the mobility without any noticeable changes to the
network layer.

Figure 2.24: 6LoWPAN Micro and Macro Mobility

46 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Low power wireless technologies like IEEE 802.15.4 tend to leave mo-
bility to be dealt with by the network layer. Topology changes are node
controlled (such as in wi�) rather than network controlled (such as in cel-
lular system). Neighbor discovery for 6LoWPAN includes a built-in feature
for dealing with micro-mobility in extended LoWPAN topologies . This is
achieved using a Neighbor Discovery proxy technique and whiteboard syn-
chronization between edge routers, allowing a node to keep the same IPv6
address regardless of its point of attachment within the extended LoWPAN.
Macro-mobility always involves a change of IPv6 address for a node. The sim-
plest way to deal with this is to simply restart when detecting an IP change.
This is used when the node acts as a client, but if it acts as a server and
must therefore be reachable by any time, macro-mobility is a real challenge.
One way of dealing with this is at the application layer, using for example
the session initiation protocol (SIP), uniform resource identi�ers (URI), or a
domain name server (DNS).
Mobile IPv6 provides one way of dealing with this at the network layer by
maintaining a home address on behalf of mobile nodes which does not change,
thus requiring DNS change.
When handover occurs one thing that must be considered is how the trans-
port layer protocol reacts to a change in IP address for one of the end-to-end
points. 6LoWPAN applications often make use of UDP as a transport, which
is resilient to changes in IP address as each datagram is independent. An
application using UDP still needs to deal with the change in IP address,
correlating the new address to the same end-point. In order for an applica-
tion server communicating with a mobile node with changing IPv6 address
to function, it needs to use some sort of unique and stable identi�er for each
node: for example the EUI-64 of the node interface, or the domain name
resolved using the DNS. Care must be taken when using the DNS for such
purposes as updates may not propagate immediately, although by using a
client to send dynamic updates and with careful Time to Live (TTL) set-
tings.
The mobility of nodes on the internet can be dealt with at the network layer
using a protocol called Mobile IP and updated to Mobile IPv6. The goal of
this protocol is to allow a host to be contacted using a well-known IP address,
regardless of its location on the internet, using the concept of a home address,
which is associated with a host's home network. When a host is away from
his home network and attaches to another network domain(visited network),
the new IP address is called its care-of address. A node communicating with
a mobile node roaming in a visited network is called the correspondent node.
Mobile IP works using a special kind of routing functionality (which is called
binding), which is host controlled and is implemented by an entity called the

2.4. IEEE 802.15.4 STANDARD 47

Home Agent that must be present in the home network domain of a mobile
node in order to use Mobile IP. The home agent is responsible for maintain-
ing a binding between a node's permanent home address and the temporary
care of address used while roaming in a visited network. The home agent
therefore acts as a forwarder of tra�c.

Figure 2.25: Mobile IPv6

The use of Mobile IPv6 with 6LoWPAN has the following problems:

• IPv6-in-IPv6 tunneling between the Home Agent and the LoWPAN
node would need a large header overhead

• The requirement of IPsec security association between MIPv6 entities
may be unreasonable for LoWPAN nodes

• The added complexity of implementing MIPv6 in term of code size and
RAM is unjusti�able for LoWPAN nodes

• In domains with large LoWPAN and frequent mobile nodes, the tra�c
caused by MIPv6 could be high for a low-bandwidth link

48 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

A better solution for network mobility in LoWPAN is available using
the Network Mobility Protocol (NEMO). The philosophy behind NEMO is
to extend Mobile IP so that each node does not need to run Mobile IP,
but only the router they are attached to runs Mobile IP. This approach �ts
perfectly with the 6LoWPAN model because the nodes are not capable of
dealing with Mobile IPv6, while edge routers or other router entities run full
IPv6 stacks and have the capability to deal with Mobile IPv6. The NEMO
protocol works by introducing a new logical entity called the mobile router,
which is responsible for handling Mobile IPv6 functions for the entire mobile
network. Mobile IPv6 normally only handles forwarding for the home address
bound by mobile nodes, while NEMO extends the functionality of the Home
Agent to be able to deal with pre�xes in addition to home address of mobile
nodes. A mobile router works like a normal Mobile IPv6 host, setting up
a bidirectional tunnel with its Home Agent, but in addition it negotiates
pre�xes to be forwarded to it by the Home Agent, which forwards then all
packets matching the bound pre�x to the mobile router.

Figure 2.26: Network Mobility Protocol

2.4. IEEE 802.15.4 STANDARD 49

2.4.3.11 Routing

While IP mobility considers technique for preserving the IP address as it
moves from one point to another, IP routing deals with maintaining rout-
ing tables on IP routers which indicate which next-hop forwarding decision
should be made for the destination of an IP packet. As IP networks are
packet switched, forwarding decisions are made hop-by-hop, based on the
destination address in a packer. In 6LoWPAN IP addresses are structured
and this structure is used to group addresses together under a single route en-
try. In IPv6 an address pre�x is used for this purpose, which is why it's called
pre�x-based routing. Two types of routing can be considered in a 6LoWPAN
network: routing inside the LoWPAN and routing between a LoWPAN and
another IP network.

Figure 2.27: Routing in a 6LoWPAN network

There are then two main classes of routing protocols in 6LoWPAN: distance-
vector routing and link-state routing.
In distance-vector routing, to each link is assigned a cost using appropriate
routing metrics and when a packet has to be sent from node A to node B, the
path with the lowest cost will be chosen. The routing table of each router
keeps soft-state route entries for the destination, with the associated path
cost. Depending on the routing algorithm, routing information is updated
either proactively (a priori) or reactively (on demand). Algorithms using
a proactive approach build up routing information on each node before the
routes are needed. Thus they proactively prepare for the data tra�c by learn-
ing routes to all possible or likely destinations. Most of the protocols that are
intra-domain IP use this approach as the topologies are stable. The advan-
tage of this approach is that routes are immediately available when needed,
but this comes at the cost of increased signaling overhead, especially with
frequent topology changes and increased state for routers. Reactive routing
protocols, on the other hand, store little information after auto-con�guration

50 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

of the routing protocol. Routes are discovered dynamically only at the time
they are needed and the advantage of this approach is that signaling and
route state grows only as needed, so it's well suited to ad hoc networks with
frequent topology change. The main advantages of the distance-vector rout-
ing technique is the simplicity, the local adapted nature and the low signaling
overhead.
In link state routing each node acquires complete information about the en-
tire network, called graph. In order to do this each node �oods the network
with information about its link information to nearby destinations. After
receiving link-state reports from su�cient networks, each node calculates a
tree with the shortest-path from itself to each destination using algorithms
like Dijkstra. This tree is used either to maintain the routing table in each
node or to include a source-route in the header of the IP packet. This kind of
algorithms incur to a large amount of overhead, especially in networks with
frequent topology change and they require substantial memory resources.
Thus they are not suitable for LoWPAN nodes, but may be usefully applied
o�ine to edge routers which have su�cient memory capacity for collecting
the link-state information.
In the path selection process, route metrics are used to choose the best route.
Typical metrics for IP routing include hop count, bandwidth, delay, MTU
and reliability.
The metrics considered can be classi�ed as follows:

• Link versus node metrics

• Qualitative versus quantitative metrics

• Dynamic versus static metrics

2.4. IEEE 802.15.4 STANDARD 51

Example of link metrics include throughput, latency and link reliability.
Node metrics may include memory, processing load and residual energy. The
metrics identi�ed are summarized in the table below.
Legend: QT=Quantitative, QL=Qualitative, ST=Static, DY=Dynamic

Metric Type Description

Node memory QT, ST The memory available for routing infor-
mation on a node

Node CPU QT, ST Computational power

Node energy QT, DY The residual energy left for battery-
powered nodes, important for optimiz-
ing network lifetime

Node overload QT, DY A simple indication of the network load
(e.g. queue size) of a node

Link Throughput QT, DY The total and currently available
throughput of a link

Link Latency QT, DY The range of latency and current la-
tency of a link

Link reliability QT, DY The link reliability speci�ed as e.g. av-
erage packet error rate, which is a crit-
ical routing metric

Link coloring QL, ST This static attribute is used to prefer
or avoid speci�c links for speci�c tra�c
types

Most of these metrics are used for building and maintaining the rout-
ing topologies, while others are used for making forwarding decisions. The
ROLL/RPL routing protocol uses a very granular depth metric for building
the basic topology. The use of dynamic metrics is particularly challenging,
as it may lead to routing instability; moreover a set of metrics will be used
for path calculation and it is important that this calculation is consistent
throughout the same routing domain.

2.4.3.12 Border Routing

Border routing between two IP routing domains is a common issue on the
Internet, where intra-domain and inter-domain routing protocols intersect.

52 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

With the advent of IP routing in wireless stub networks using mesh routing
protocols border routing becomes an issue as well. In 6LoWPAN there are
three border routing cases to consider: simple and extended LoWPAN and
router redistribution. In simple LoWPAN there is only an edge router and the
subnet of its LoWPAN interface is di�erent from that of its IPv6 interface. As
the simple LoWPAN and the IPv6 link are on di�erent subnets, pre�x-based
route entries between the two pre�xes are used. Moreover, it is mandatory
that edge routes �lter out any outgoing tra�c from or incoming tra�c to
addresses not in its whiteboard. Therefore it is not necessary to run a routing
protocol on the edge router's IPv6 interface.

Figure 2.28: 6LoWPAN Border Routing Example

In the Figure 2.28 an example of border routing in the Simple LoWPAN
case is shown, with ROLL routing in the LoWPAN and OSPF (open shortest
path �rst) routing on the backhaul link. The route to 2001:4fa2:0001::/48
would be redistributed to OSPF.
Border routing between extended LoWPAN and an IP network can be per-
formed in two di�erent places as the LoWPAN and the ipv6 interfaces of edge
routers are in the same subnet, but it must be done using destination route
entries. The simplest way to achieve this is to use edge router whiteboard
entries to maintain these route table entries and a routing protocol could
be used on the backbone link to enable routing over the backbone between
parts of the extended LoWPAN. Border routing could also be performed on
the router between the backbone link and another IP network, while routing
here would be achieved using pre�x-based route entries, like in the simple
LoWPAN case.

2.4. IEEE 802.15.4 STANDARD 53

Route redistribution has to be performed if border routing involves rout-
ing algorithms on both its interfaces. In this case, a router advertises some
routes maintained by an algorithm on one interface into the algorithm of
another interface. Because LoWPANs are stub networks, this redistribution
always happens from the LoWPAN routing protocol to the protocol on an
IP interface.

2.4.3.13 Application protocols

Application protocols can be de�ned as all the messages and methods having
to do with inter-process communication via the Internet Protocol. The appli-
cation layer depends on the transport layer to provide host-to-host commu-
nication and port multiplexing allowing multiple processes to communicate
between end-points simultaneously. The limitations of 6LoWPAN, such as
small frame sizes, limited data rates, limited memory, sleeping node cycles,
along with the mobility of devices make the design of new application pro-
tocols and the adaptation of existing ones di�cult.
Web services enable the communication between processes using well-de�ned
message sequences with the simple object access protocol (SOAP) or state-
less resources with representational state transfer (REST) style design. What
makes 6LoWPAN very di�erent from other solutions is that the same net-
work can be used by a large variety of devices running di�erent applications
thanks to the internet model. Although the internet protocol provides basic
packet networking over heterogeneous links, it is UDP and TCP that allow for
the large range of application protocols by providing best-e�ort (UDP) and
reliable connection oriented (TCP) multiplexed communications between ap-
plication processes. IP protocols use a socket-based approach, where process
end-points are identi�ed by 16-bit source and destination port identi�ers.
These are commonly called Internet sockets or network socket and the com-
munication between two end-points is uniquely identi�ed for each transport
by a four-tuple consisting on the local and remote socket addresses:
{sourceIPAddress; sourcePort; destinationIPaddress; destinationPort}
6LoWPAN supports the compression of UDP ports down to a range of 16,
which is useful because LoWPAN usually has a limited number of applica-
tions. Application protocols used over 6LoWPAN need to take a number of
requirements into account which are typically not an issue over general IP
networks, which include:

• Link layer: issues include lossy asymmetrical links, typical payload sizes
of 70-100 bytes, limited bandwidth and no native multicast support.
The most limiting feature of ISM band radios is their small frame size:

54 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

IEEE 802.15.4 has a physical layer payload size of 127 bytes in length,
resulting in 72-116 bytes of available UDP payload depending on the
MAC and 6LoWPAN features in use.

• Networking: issues include the use of UDP, limited compressed UDP
port space and performance issues regarding the use of fragmentation.
If the UDP source or destination ports are compressed then the port
space can be limited down to 16 ports. The fragmentation of large
payloads increases delay, packet loss probability and congestion.

• Host issues: 6LoWPAN hosts and networks are often mobile, therefore
the use of an IPv6 address for identifying 6LoWPAN devices is not
recommended. The IP address changes each time the LoWPAN node
or the whole LoWPAN changes its point of attachment. A unique serial
number such as the EUI-64 of the device is a reliable identi�er. The
most application-friendly method is to use a domain name to identify
a device, which is updated with the current IPv6 address of the device
each time it moves, using appropriate DNS technique. Furthermore
battery powered nodes use sleep periods with duty cycles often between
1 and 5%. The intermittent node availability due to mobility and sleep
schedules needs to be taken into account during application design.
For example the synchronous polling of LoWPAN nodes from a server
should be avoided. Instead communication should be node initiated
and asynchronous when possible.

• Compression: issues include header and payload compression and whether
it is performed end-to-end or by an intermediate proxy.

2.4. IEEE 802.15.4 STANDARD 55

2.4.4 IEEE 802.15.4a - Ultra Wide band

The IEEE 802.15.4a Standard provides an alternative physical layer for low
rate WPAN and is an amendment of the IEEE 802.15.4 Standard. The Direct
Sequence Ultra Wide Band approach was chosen for the standard due to its
spectral e�ciency, robustness at low transmit powers and support for high-
precision ranging. UWB PHY waveforms employ an impulse radio scheme.
The standard speci�es three independent frequency bands and a total of 16
channels (or 32 complex channels). A single mandatory channel is speci�ed
for each band, one of which a compliant device must implement to adhere to
the standard. Inside each channel there is support for two complex channels.
A complex channel has a unique 31 bit preamble code used to construct the
synchronization header part of a UWB PHY frame. The channel number
together with the preamble code makes up a complex channel.
Ultra Wide Band is a spread spectrum technology, a Radio Frequency com-
munication technology in which the bandwidth of the baseband signal is
intentionally spread over a larger bandwidth by injecting a higher-frequency
signal. Consequently, the transmit energy is spread over a wider bandwidth
and the signal appears as noise. UWB di�ers from conventional spread spec-
trum technologies because in a UWB system the information is transmitted
through a series of short pulses or a "chirped" signal while with traditional
spread spectrum systems information is transmitted by modulating a contin-
uous carrier signal.
The energy contained in a single pulse is very low, therefore in order to
extract information out of UWB transmitted data and to �ght noise and in-
terference, a technique called spreading is used. A symbol to be transmitted
is represented by a number of consecutive pulses instead of a single pulse.
The pseudorandom bit sequence determining the polarity of these pulses is
referred to as spreading code. In order to restore the original bit, i.e. to
despread the sequence of pulses, a cross-correlation operation

∑N
i=1(xici) of

N pulses x with the spreading code c, also of length N, is calculated. The
value of the decision variable y determines the value of the original bit.

2.4.4.1 IEEE 802.15.4a Frame Structure

In IEEE 802.15.4a UWB IR systems data is being transmitted in frames
consisting of three major sub-parts:

• Synchronization header (SHR) / Preamble

• Data header (PHR)

• Data unit, i.e. the actual payload data (PSDU)

56 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

The synchronization header, also referred to as preamble, is being trans-
mitted in order to aid receiver algorithms intiming acquisition and frame
synchronization. It also serves the purpose of channel estimation and gain
control setting optimization. This preamble is composed of SHR symbols
that contain a number of isolated pulses.
The data unit and its header are constructed out of PSDU symbols. Each
symbol is able to carry two bits of information: one bit is coded in the symbol
half in which a burst, i.e. a concatenation of pulses, occurs (burst position
modulation, BPM). Another bit is used to determine the polarity (phase)
of the burst itself (binary phase shift keying, BPSK). The state of a linear
feedback shift register (LFSR) varies the spreading code for each transmitted
PSDU symbol. This spreading code determines the burst sequence as well as
the exact burst position within one of the symbol halves ("hopping code").
A PSDU symbol is depicted in the Figure 2.29

Figure 2.29: Ultra Wide Band PSDU Symbol

The 802.15.4a compliant Ultra Wide Band Integrated Circuits available
in the market are still very expensive. Two of those ICs can be mentioned:
IMEC Digital UWB Transmitter IC and the TES IEEE 802.15.4a transceiver
with ranging capability. The �rst one, in order to reduce the startup time and
reduce energy, uses a phase-aligned Frequency Locked Loop (FLL) instead of
the traditional Phased Locked Loop (PLL). The second one implements the
complete LR-UWB functionalities speci�ed in the IEEE 802.15.4a standard,
including localization and tracking algorithms, AES security engine, Embed-
ded Flash/RAM and signal conditioning and directional UWB antennas.

2.4. IEEE 802.15.4 STANDARD 57

2.4.5 Wireless Hart

Wireless Highway Addressable Remote Transducer (Wireless HART) is a
proprietary wireless communications standard suitable for industrial appli-
cations such as process control, measurement and management applications.
The main characteristics of this standard are its reliability, security, com-
patibility with existing devices and its energy e�ciency. The reliability
is traduced by its capability of coexisting with other wireless networks in
the vicinity (immunity against interference) thanks to adopted modulation
scheme (channel hopping) and the usage of time-synchronized messaging.
The security is ensured through the usage of encryption, authentication, key
management, and other open industry-standard security practices. And the
energy e�ciency is guaranteed by the Smart Data Publishing and other tech-
niques that make batteries, solar and other low-power options practical for
wireless devices. A WirelessHART network consists of three basic compo-
nents:

• Wireless �eld devices connected to process or plant equipment. This
device could be a device with WirelessHART built in or an existing
installed HART-enabled device with a WirelessHART adapter attached
to it.

• Gateways enable communication between these devices and host ap-
plications connected to a high-speed backbone or other existing plant
communications network.

• A Network Manager is responsible for con�guring the network, schedul-
ing communications between devices, managing message routes, and
monitoring network health. The Network Manager can be integrated
into the gateway, host application, or process automation controller.

The network uses IEEE 802.15.4 compatible radios operating in the 2.4GHz
ISM band, with the Time Division Multiple Access (TDMA) for access to
communication medium. The complete time of communications executes in-
side predetermined time slots of 10ms. Each device in the mesh network can
serve as a router for messages from other devices. In other words, a device
doesn't have to communicate directly to a gateway, but just forward its mes-
sage to the next closest device. This extends the range of the network and
provides redundant communication routes to increase reliability.
The Network Manager determines the redundant routes based on latency,
e�ciency and reliability. To ensure the redundant routes to remain open and
unobstructed, messages continuously alternate between the redundant paths.

58 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Consequently, like the Internet, if a message is unable to reach its destination
by one path, it is automatically re-routed to follow a known-good, redundant
path with no loss of data.
The WirelessHART standard supports multiple messaging modes including
one-way publishing of process and control values, spontaneous noti�cation
by exception, ad-hoc request/response, and auto-segmented block transfers
of large data sets. These capabilities allow communications to be tailored to
application requirements thereby reducing power usage and overhead.
To increase reliability it is used technique of hopping between transfer chan-
nels which makes possible the work on di�erent frequencies i.e. that di�erent
appliances transfer messages in the framework of same time slot using di�er-
ent transfer channels. In this way appearance of interferences is avoided and
the multi-path fading e�ect decreases.
Data transfer from all communication appliances in WirelessHART network
passes across the gateway which must direct packages towards before hand
quoted destination. Gateway uses standard HART commands for commu-
nication with network devices and host applications. The network manager
creates start superframe and con�gures the HART Gateway.

Figure 2.30: A WirelessHART Network

2.5. Z-WAVE 59

2.5 Z-Wave

Developed by a Danish company, Zensys, Z-Wave protocol is a low bandwidth
half duplex proprietary protocol designed for reliable wireless communication
in a low cost control network. The protocols main purpose is to communicate
short control messages in a reliable manner from a control unit to one or more
nodes in the network. Z-Wave is not designed to transfer large amounts of
data or to transfer any kind of streaming or timing critical data.
The protocol consists of 4 layers, the MAC layer that controls the RF media,
the Transfer Layer, that handles frame integrity checks, acknowledgements,
and retransmissions, the Routing Layer that controls the routing of frames in
the network and the application interface; and �nally the Application Layer
controls the payload in the transmitted and received frames (Figure 2.31).

Figure 2.31: Z-Wave Protocol Stack

The modulation used by Z-Wave for communication is the Gaussian Fre-
quency Shift Keying (GFSK) and the maximum bandwidth, which depends
on the ISM band chosen, can be 9,600 bit/s or 40 kbit/s.
The frequency bands used by Z-Wave are the 900 MHz ISM band: 908.42
MHz (United States); 868.42 MHz (Europe); 919.82 MHz (Hong Kong);
921.42 MHz (Australia/New Zealand). In Europe, the 868 MHz band has a
1% duty cycle limitation, meaning that a Z-Wave unit can only transmit 1%
of the time. This limitation is not present in the U.S. 908 MHz band, but
U.S. legislation imposes a 1 mW transmission power limit. Z-Wave units can
be in power-save mode and only be active 0.1% of the time, thus reducing
power consumption dramatically. The maximum distance range is estimated
to be around 30 meters in open air conditions,with reduced range indoors
depending on building materials etc.

60 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.5.1 Topology and Routing

Z-Wave uses a source-routed mesh network topology and has one or more
master controllers that control routing and security. A Device can com-
municate to another by using intermediate nodes to actively route around
obstacles or radio dead spots that might occur. Therefore a Z-Wave network
can span much farther than the radio range of a single unit; however with
several of these hops a delay is introduced between the control command and
the desired result. In order for Z-Wave units to be able to route unsolicited
messages, they cannot be in sleep mode. Therefore, most battery-operated
devices are not designed as repeater units. A Z-Wave network can consist of
up to 232 devices with the option of bridging networks if more devices are
required.

2.5.2 Security

The original version of Z-Wave used a security algorithm called Triple Data
Encryption Algorithm (DES) with a 56-bit key, but in the revised version it
was not implemented anymore. Instead of the DES sexurity, an optional
security method named "rolling code" was implemented, which works in
the following way: when the transmitter button is pressed, it sends a 40-
bit access code along with the function instruction (to open the car door
or garage door, etc). The receiver holds the current 40-bit access code in
memory, and if it receives the same code then it accepts the instruction.
Both the transmitter and the receiver use the same pseudo-random number
generator to pick identical new codes each time and access code is received.
So the transmitter and the receiver are synchronized. In case the transmitter
is pressed and for some reason the receiver does not pick up the signal, the
synchronization of the two security codes will be lost. The system gets around
this by accepting any of the next several codes in the sequence. Suppose the
system is set to accept the next 256 codes generated by the pseudo-random
number generator. If someone accidentally sets o� the transmitter 257 times
without a successfully reception by the receiver, then the transmitter will be
ignored. By dropping hardware security from its series 200 Z-Wave chips,
Zensys achieved a 35% saving in the amount of code that has to be saved on
the chip.

2.6. BLUETOOTH AND BLUETOOTH LOW ENERGY 61

2.6 Bluetooth and Bluetooth Low Energy

Bluetooth, also known as the IEEE 802.15.1 standard, is based on a wireless
radio system designed for short-range and cheap devices to replace cables
for computer peripherals, such as mouse, keyboards, joysticks, and print-
ers. This range of applications is known as wireless personal area network
(WPAN).
Two connectivity topologies are de�ned in Bluetooth: the piconet and scat-
ternet. A piconet is a WPAN formed by a Bluetooth device serving as a
master in the piconet and one or more Bluetooth devices serving as slaves
(Figure 2.32). A frequency-hopping channel based on the address of the mas-
ter de�nes each piconet and all the devices participating in a communication
in a given piconet are synchronized using the clock of the master. Slaves
communicate only with their master in a point-to-point fashion under the
control of the master. The master's transmissions may be either point-to-
point or point-to multipoint. Also, besides in an active mode, a slave device
can be in the parked or standby modes so as to reduce power consumptions.

Figure 2.32: Bluetooth Piconet

A scatternet is a collection of operational Bluetooth piconets overlapping
in time and space (Figure 2.33). Two piconets can be connected to form a
scatternet. A Bluetooth device may participate in several piconets at the
same time, thus allowing the possibility that the information could �ow be-
yond the coverage area of the single piconet. A device in a scatternet could
be a slave in several piconets, but master in only one of them.

Much of the way in which the topology works and devices talk to each
other stems from the nature of a frequency-hopping network. Adaptive fre-
quency hopping (AFH) works by scanning all of the channels and looking

62 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Figure 2.33: Bluetooth Scatternet

for activity on each of them. This is used to build up a picture of channels
in use, which is then used to modify the hopping sequence of a Bluetooth
piconet, so that these channels are avoided.
Frequency hopping naturally divides transmission up into time-slots, each
of which lasts for the duration of one hop. For Bluetooth, the connection
scheme starts o� with 1600 equally spaced hops every second, resulting in a
base time slot of 625 µs.

Figure 2.34: Spectrum usage of Bluetooth

2.6. BLUETOOTH AND BLUETOOTH LOW ENERGY 63

The odd-numbered time slots are reserved for the master device, while
the even-numbered ones are reserved to slave devices. Slave devices can only
transmit in response to a query from the master device. Further, even de-
vices have data to transmit, they must wait until the master device authorize
them. Two types of connections are possible: Synchronous Connection Ori-
entated (SCO), or Asynchronous Connection Less (ACL).
The SCO (Synchronous Connection Oriented) channels are used for data or
voice streaming by reserving slots which are symmetric between the master
and a slave. A Bluetooth master can support three simultaneous SCO chan-
nels, which can be split between up to three slaves. Each channel provides a
bandwidth of 64 kbps. Packets are neither acknowledgednor retransmitted.
An ACL (Asynchronous Connection Less) channel supplies an asynchronous
access between master and slave (a single channel per couple), with the slot
as base. The data packets only are used. In addition, a slave can only
transmit after having received a packet from the master (the following slot).
For this purpose, the master can send polling packets to the slaves (when
there is nothing more asynchronous to transmit). Most ACL formats incor-
porate FEC and header error correction (HEC) to detect and correct errors.
Data rates of up to 723 kbps are achievable using ACL links with basic-rate
Bluetooth and 2.1 Mbps using enhanced-data rate.

Figure 2.35: Bluetooth Synchronous Connection Oriented and Asynchronous
Connection Less Channels

64 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.6.1 Bluetooth Low Energy

Bluetooth Low Energy, also known as ULP (Ultra Low Power) Bluetooth,
operates in the same spectrum range (2402-2480 MHz) as classic Bluetooth,
but uses a di�erent set of channels. Instead of Bluetooth's 1 MHz wide 79
channels, Bluetooth Low Energy (BLE) has 40 2 MHz wide channels.
Bluetooth Low Energy is designed with two equally important implemen-
tation alternatives: single-mode and dual-mode. Small devices like tokens,
watches and sports sensors based on a single-mode Bluetooth Low Energy
implementation will enjoy the low-power consumption advantages enabled for
highly integrated and compact devices. In dual-mode implementations Blue-
tooth Low Energy functionality is integrated into Classic Bluetooth circuitry.
The architecture will share Classic Bluetooth technology radio and antenna,
enhancing currently chips with the new low energy stack and enhancing the
development of Classic Bluetooth devices with new capabilities.

Technical Speci�ca-
tion

Classic Bluetooth Bluetooth LE

Distance/Range 100 m (330 ft) 200 m (660 ft)

Over the air data rate 1-3 Mb/s 1 Mb/s

Application throughput 700Kb/s-2.1 Mb/s 260 Kb/s

Active slaves 7 Not de�ned; imple-
mentation dependent

Security 64/128-bit and appli-
cation layer user de-
�ned

128-bit AES with
Counter Mode CBC-
MAC and application
layer user de�ned

Robustness Adaptive fast fre-
quency hopping,
FEC, fast ACK

Adaptive frequency
hopping, Lazy Ac-
knowledgement,
24-bit CRC, 32-bit
Message Integrity
Check

Latency (from a non
connected state)

Typically 100 ms 6 ms

2.6. BLUETOOTH AND BLUETOOTH LOW ENERGY 65

Total time to send data
(det.battery life)

100 ms 6 ms

Voice capable Yes No

Network topology Scatternet Star-bus

Peak current consump-
tion

<30 mA <20 mA (max 15 mA
to run on coin cell
battery)

Service discovery Yes Yes

Pro�le concept Yes Yes

Primary use cases Mobile phones, gam-
ing, headsets, stereo
audio streaming,
automotive, PCs,
security, proximity,
healthcare, sports &
�tness, etc.

Mobile phones, gam-
ing, PCs, watches,
sports and �tness,
healthcare, secu-
rity & proximity,
automotive, home
electronics, automa-
tion, Industrial,
etc.

The Ultra Low Power chip's radio wakes up when it has data to transmit
and the transmission itself is short. This leads to some coexistence issues
with standard Bluetooth: since both modes use the same radio, some ac-
commodation must be made for sharing it. Two elements in the dual-mode
protocol stack, Admission Control and the DuMo Manager, have been added
to avoid coexistence issue.

66 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.7 Wavenis

Wavenis is a proprietary ultra-low-power and long-range wireless technol-
ogy developed by Coronis and currently used in diverse markets where com-
munication ability and device autonomy present con�icting requirements.
These markets include telemetry, industrial automation, remote utility meter
monitoring, home comfort, alarms for protecting people and property, home
healthcare, centralized building management, access control, cold-chain mon-
itoring, as well as long-range UHF RFID applications for the identi�cation,
tracking, and locating of people and objects.

Speci�cation

General Ultra-low-power and long-range wireless technology

Multi-year battery life, 2-way communications

Repeater function in every device (up to 4 hops)

Complete API (application programming interface)

Asynchronous or synchronous (with common realtime
clock)

Frequency bands 868 MHz, 915 MHz, 433 MHz

Certi�ed ETS300-220, FCC15-247, 15-249

Distance Range LOS range up to 1km (25mW, +15dBm)

LOS range up to 4km (500mW) - not in Europe

Data rates 4.8 kbps to 100 kbps

Typical values: 9.6 kbps @ 433 MHz and 868 MHz; 19.2
kbps @ 915 MHz

Link budget -110dBm @ 19.2 kbps - 50kHz BW channel

-113dBm @ 4.8 kbps - 25kHz BW channel

2.7. WAVENIS 67

Network Access
time

Programmable from 12.8 ms to 12.8s (typically 1.28s)

Power management Programmable output power from -10dBm to +14dBm

Automatic Frequency Control

Automatic Sensitivity Control

Adaptive Frequency Hopping

Receiver Sampling, which reduces average power con-
sumption by a factor of 20-30

Ultra-low-power Smart cyclic standby-receive mode

operation 10µA average operating current with 1s access time

5µA average operating current with 2s access time

17mA RX current in full run mode

45mA TX current (25mW output power)

2µA STANDBY current

Security and FHSS (Fast Frequency Hopping Spread Spectrum)

robustness Single channel operation for narrowband applications

GFSK modulation

FEC (Forward Error Correction) - BCH(31,21)

Data scrambling via LFSR feed

Data interleaving (16x16 matrix)

3DES, AES-128, RSA, EMV security algorithms upon
request

Combined RTS/CTS and TDMA (CSMA/TDMA for
broadcast/ multicast)

Carrier Sense (CS) optional

CSMA/CA(2)

Network Point-to-point, point-to-multipoint (repeater, polling,
broadcast/multicast)

Quality of Service management

Fast RSSI detection

68 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

2.7.1 Wavenis Operation

Wavenis data rates are programmable, from a few to a hundred kilobytes per
second. Most Wavenis applications use low data rates (typically, 19.2-38.4
kbps), with higher rates when larger amounts of data are required. The low
data rate enables the use of narrowband (and highly sensitive) receivers, with
a high link budget, resulting in long-range radio coverage and satisfactory
operating ranges. Wavenis maximizes the radio link budget between devices
in order to compensate for bad propagation conditions and signal attenua-
tion indoors, and to compensate for poor antenna gain resulting from tiny
footprint design and mandatory low-cost solutions. Among other things, this
makes it possible to enable wireless communication in hard-to-reach devices
without repeater nodes. Wavenis networks are not limited in size and they
can range from a few devices to hundreds. However, time-critical applica-
tions by their very nature limit cluster size (due to TDMA management
when feedback is required after a broadcast command). Nevertheless, a high
number of devices can be achieved using time-shifted cluster-tree topology
within remotely-monitored �xed networks. With Wavenis, wireless monitor-
ing can be performed from �xed access points and/or from portable or mobile
devices. As a result, Wavenis networks can be operated in many scenarios:
over LANs (local area networks), via modem, through Compact Flash or SD
cards in handheld terminals or PDAs, or by WAN (wide area network) GSM
�xed network monitoring.

2.8. DASH7 69

2.8 Dash7

The goal of DASH7 is to expand the market for low power wireless tech-
nologies by leveraging ISO 18000-7. DASH7 is an acronym that stands for
"Developers' Alliance for Standards Harmonization of ISO 18000-7", It op-
erates at the 433 MHz ISM band (which is available for use worldwide) and
provides a multi-year battery life, a communication range of up to 2 km (po-
tentially farther) with an E.R.P. of 10mW, low latency for tracking moving
objects, small protocol stack, sensor and security support, and data transfer
of up to 200 kbit/s. Networks based on DASH7 di�er from typical wire-line
and wireless networks that operate with a "session". DASH7 networks serves
applications in which low power usage is essential, and data transmission is
typically much slower and/or sporadic. Instead of replicating a wire-line
"session", DASH7 was designed with the concept of BLAST:

• Bursty: Data transfer is abrupt and does not include content such as
video, audio, or other isochronous forms of data.

• Light: For most applications, packet sizes are limited to 256 bytes.
Transmission of multiple, consecutive packets may occur but is gener-
ally avoided if possible.

• Asynchronous: DASH7's main method of communication is by command-
response, which by design requires no periodic network "hand-shaking"
or synchronization between devices. On the other hand, this commu-
nication method has the requirement that every device is always in
listening mode, which e�ects on the energy e�ciency.

• T ransitive: A DASH7 system of devices is inherently mobile or transi-
tional. Unlike other wireless technologies DASH7 is upload-centric, not
download-centric, so devices do not have to be managed extensively by
�xed infrastructure (i.e. base stations).

70 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

Technical Speci�cations

Range Dynamically adjustable from 10 meters to 10
kilometers

Power <1 mw power draw

Data Rate Dynamically adjustable from 28kbps to
200kbps

Frequency 433.92 MHz (available worldwide)

Signal Propagation Penetrates Walls, Concrete, Water

Real-Time Locating Preci-
sion

within 4 meters

Latency Con�gurable, but worst case is less than two
seconds

P2P Messaging Yes

IPv6 Support Yes

Security 128-bit AES, public key

Application Pro�les None

Standard ISO/IEC 18000-7

2.8.1 Relation between frequency and distance range

The Friis equation provides a theoretical distance value for free space com-
munication when receiver sensitivity (Pr), transmission power (Pt), receiver
antenna gain (Gr), transmitter gain (Gt), and wavelength (λ) are known.
The range value derived here is highly optimistic for real world scenarios, at
least because it doesn't account for bandwidth or modulation.
Range = 1

4π
λ

√
Pr

PtGtGr

2.8. DASH7 71

Figure 2.36: Distance range as function of the frequency

As shown in the Figure 2.36, the distance achieved by the use of a 433MHz
transmission is much higher (more than 5Km theoretically) than the one
achieved by other transmission techniques that uses di�erent ISM Bands, for
example Bluetooth Low Energy or ZigBee.

2.8.2 Drawbacks of the 433MHz ISM Band

The main drawback of the choice of the 433MHz ISM band is based on the
fact that this frequency band is getting more and more crowded in the last
years. Wireless headphones and microphones, garage door openers, wireless
alarm systems, baby monitor intercoms and indoor/outdoor temperature in-
dicators with a remote transmitter are just some of the devices that use
this frequency band. They operate in the UHF band from 433.075 MHz to
434.775 MHz with 25 kHz channel spacing, for a total of 69 channels. These
devices are frequency modulated (FM) with a maximum legal power output
of 10 mW. The only solution for the setup of a reliable and e�cient wire-
less sensor network using this frequency band is the use of powerful channel
coding techniques. Moreover if the remote device is supposed to transmit
for more than very brief periods of time the use of the 433MHz band is not
possible. This band is reserved for brief periodic data transfer and the law
imposes a limit on the percentage of time that the unit can be transmitting.
Last drawback is that the 433MHz wavelength is approximately 69 cm, while
for 2.4GHz is 10 cm, which means that the antenna design becomes to be not
as simple as for higher frequency devices. The half-wave dipole is simply not

72 CHAPTER 2. WIRELESS SENSOR NETWORK TECHNOLOGIES

an option for 433 MHz because it is 35 cm long. Even when using slightly
less e�cient folded-dipoles, the antenna preferred by most 2.45 GHz radios,
the size is too big for most use below 1 GHz. There are quite a few designs
for small antennas workable at lower frequencies anyway and some of them
even come close to matching the folded dipole in performance. A common
design is the small loop antenna, which is easy to design, cheap, and easy
to implement within a printed-circuit board, but another solutions can be
the use of an helical loop antenna, with a further performance improvements
possible by inserting a ferromagnetic core into the helix, particularly with
smaller loop helixes.

Chapter 3
Contiki Operative System 2.5

Contiki is an open source, multi-tasking and portable operating system for
memory-constrained networked embedded systems written by Adam Dunkels
at the Networked Embedded Systems group at the Swedish Institute of Com-
puter Science. Contiki is designed for embedded systems with small amounts
of memory: a typical Contiki con�guration is 2 kilobytes of RAM and 40 kilo-
bytes of ROM. Contiki, thanks to its uIPv6 stack, is IPv6 Ready Phase 1
certi�ed, which combined with power-e�cient radio mechanisms such as Con-
tikiMAC, allows battery-operated devices to participate in IPv6 networking
(also routers can run on batteries).
The new Contiki version number 2.5 supports not only the 6LoWPAN header
compression, but also the new IETF RPL IPv6 routing protocol and the
IETF CoAP application layer protocol, among many other protocols and
mechanisms. Contiki consists of an event-driven kernel, on top of which ap-
plication programs are dynamically loaded and unloaded at runtime. Contiki
processes use light-weight protothreads that provide a linear, thread-like pro-
gramming style on top of the event-driven kernel. Contiki is implemented
in the C language, is available as open source under a BSD-style license and
has been ported to a number of microcontroller architectures, including the
Texas Instruments MSP430 and the Atmel AVR.
Contiki contains two communication stacks: uIP and Rime. uIP is a small
RFC-compliant TCP/IP stack that makes it possible for Contiki to commu-
nicate over the Internet, while Rime is a lightweight communication stack
designed for low-power radios. Rime provides a wide range of communica-
tion primitives, from best-e�ort local area broadcast to reliable multi-hop
bulk data �ooding.

73

74 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

3.1 System overview

A Contiki system consists of the kernel, libraries, the program loader, and
a set of processes. A process could be either an application program or a
service, where a service implements functionality used by more than one
application process. All processes (both application programs and services)
can be dynamically replaced at run-time and the communication between
processes always goes through the kernel, which does not provide a hardware
abstraction layer, but let device drivers and applications to communicate
directly with the hardware.
An event handler function and an optional poll handler function de�nes a
process, which state is held in the process' private memory and the kernel
only keeps a pointer to the process state. All processes share the same
address space and do not run in di�erent protection domains. Interprocess
communication is done by posting events.

Figure 3.1: Partitioning into core and loaded

A Contiki system is partitioned into two parts: the core and the loaded
programs, as shown in Figure 3.1. When the application is compiled, the par-
titioning is made and is speci�c to the deployment in which Contiki is used.
The core consists typically of the Contiki kernel, the program loader, the most
commonly used parts of the language runtime and support libraries, and a
communication stack with device drivers forthe communication hardware.
The core is compiled into a single binary image that is stored in the devices
prior to deployment and is generally not modi�ed after deployment, but it
is important to note that a special boot loader can be used to overwrite or
patch the core. Programs are loaded into the system by the program loader,
which may obtain the program binaries either by using the communication

3.2. KERNEL ARCHITECTURE 75

stack or by using directly attached storage such as EEPROM. Programs to
be loaded into the system are typically �rst stored in EEPROM before they
are programmed into the code memory.

3.2 Kernel Architecture

The kernel in Contiki consists of a lightweight event scheduler that dispatches
events to running processes and periodically calls processes' polling handlers.
The execution of the programs is triggered either by events dispatched by
the kernel or through the polling mechanism. The kernel does not preempt
an event handler once it has been scheduled, therefore event handlers must
run to completion and may use internal mechanisms to achieve preemption.
The kernel supports two kind of events:

• asynchronous events: they are a form of deferred procedure call and
they are enqueued by the kernel and dispatched to the target process
some time later.

• synchronous event: they are similar to asynchronous but immediately
causes the target process to be scheduled.

The control returns to the posting process only after the target has �n-
ished processing the event, which can be seen as an inter-process procedure
call and similarly to the door abstraction used in the �ring� operating system.
The Contiki kernel uses a single shared stack for all process execution and
the use of asynchronous events reduces stack space requirements because the
stack is rewound between each invocation of event handlers.
The kernel provides a polling mechanismin addition to the events. Polling
can be seen as high priority events that are scheduled in-between each asyn-
chronous event and which is used by processes that operate near the hardware
to check for status updates of hardware devices. All the processes that im-
plement a poll handler are called, in order of their priority, when a poll is
scheduled.

3.3 Events

The Contiki kernel is event-driven. The idea of such a system is that every
execution of a part of the application is a reaction to an event. The entire
application (kernel + libraries + user code) may contain several processes
that will execute concurrently.
The di�erent processes usually execute for some time, then wait for events

76 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

to happen. While waiting, a process is said to be blocked. When a event
happens, the kernel executes the process passing the information about the
event. Events can be classi�ed in three kinds:

• timer events, where a process may set a timer to generate an event after
a given time, it will block until the timer expires and then continue
its execution. This is useful for periodic actions, or for networking
protocols e.g. involving synchronization;

• external events, where peripheral devices connected to IO pins of the
microcontroller with interrupt capabilities may generate events when
triggering interruptions. A push-button, a radio chip or a shock de-
tector accelerometer are a few examples of devices that could generate
interruptions, thus events. Processes may wait for such events to react
accordingly.

• internal events, where any process has the possibility to address events
to any other process, or itself. This is useful for inter-process commu-
nication as informing a process that data is ready for computation.

An interrupt service routine will post an event to a process when it is
executed. Events have the following information:

• process: the process addressed by the event. It can be either one speci�c
process or all the registered processes;

• event type: the type of event. The user can de�ne some event types
for the processes to di�erentiate them, such as one when a packet is
received, one when a packet is sent;

• data: additionally, some data may be provided along with the event
for the process.

3.4 Processes

Processes are the task-equivalent of Contiki. A process is a C function, most
likely containing an in�nite loop and some blocking macro calls. Since the
Contiki event-driven kernel is not preemptive, each process when executed
will run until it blocks for an event. Several macros are de�ned for the
di�erent blocking possibilities, which allows programming state-machines as
a sequential �ow of control.
The process mechanism uses the underlying protothread library which in turn

3.5. TWO LEVEL SCHEDULING HIERARCHY 77

uses the local continuation library. Protothreads are extremely lightweight
stackless threads designed for severely memory constrained systems, such
as small embedded systems or wireless sensor network nodes. Protothreads
provide linear code execution for event-driven systems implemented in C
and can be used with or without an underlying operating system to provide
blocking event-handlers. They provide sequential �ow of control without
complex state machines or full multi-threading.

3.5 Two level scheduling hierarchy

All the event scheduling is done at a single level in Contiki and events can
only be preempted by interrupts, but can't preempt each other. Interrupts
are normally implemented using hardware interrupts but they can also be
implemented using an underlying real-time executive, technique used by the
Linux kernel to provide real-time guarantees.
Contiki never disables interrupts in order to be able to support an underlying
real-time executive and, because of this, it does not allow events to be posted
by interrupt handlers as that would lead to race-conditions in the event
handler. On the other hand, the kernel provides a polling �ag to request a
poll event which provides interrupt handlers with a way to request immediate
polling.

3.6 Services

A service is a process that implements functionality that can be used by
other processes. A service can be seen as a form of a shared library, can be
dynamically replaced at runtime and must therefore be dynamically linked.
Examples of services are communication protocol stacks, higher level func-
tionality such as sensor data handling algorithms, sensor device drivers etc.
A service consists of a service interface,which is characterized by a version
number and a function table with pointers tothe functions that implement the
interface, and a process that implements the interface. A service layer, con-
ceptually situated directly next to the kernel services, keeps track of running
services and provides a way to �nd installed services. A service is identi�ed
by a textual string that describes the service and the service layer uses ordi-
nary string matching to querying installed services.
A stub library is used to communicate with a service by application programs
that are using the service. The stub library is linked with the application
and uses the service layer to �nd the service process. Once a service has been

78 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

located, the service stub caches the process ID of the service process anduses
this ID for all future requests. Through the service interface stub, programs
call services and need not be aware of the fact that a particular function is
implemented as a service (Figure 3.2). The �rst time the service is called,
the service interface stub performs a service lookup in the service layer and
if the speci�ed service exists in the system, the lookup returns a pointer to
the service interface.
The version number in the service interface is checked with the version of
the interface stub. The service interface contains, in addition to the version
number, pointers to the implementation of all service functions which are
contained in the service process. The interface stub calls the implementation
of the requested function if the version number of the service stub matches
the number in the service interface.

Figure 3.2: An application function calling a service

3.7 Libraries

The Contiki kernel only provides the most basic CP multiplexing and event
handling features, while the rest of the system is implemented as system
libraries that are optionally linked with programs. Programs can be linked
with libraries in three di�erent ways:

• Programs can be statically linked with libraries that are part of the
core.

3.8. COMMUNICATION SUPPORT 79

• Programs can be statically linked with libraries that are part of the
loadable program.

• Programs can call services implementing a speci�c library. Libraries
that are implemented as services can be dynamically replaced at run-
time.

Runtime libraries such as often-used parts of the language runtime li-
braries are typically best placed in the Contiki core. Rarely used or applica-
tion speci�c libraries are more appropriately linked with loadable programs.
Libraries that are part of the core are always present in the system and don't
have to be included in loadable program binaries.
For example it is possible to consider a program that uses thememcpy(),
a frequently used C library function, and atoi(), a less common C library
function, to copy memory and to convert strings to integers, respectively.
Therefore, in this particular example, memcpy() is included in the system
core but not atoi(). When the program is linked to produce a binary, the
memcpy() function will be linked against its static address in the core, while
the object code for the part of the C library that implements theatoi() func-
tion must, however, be included in the program binary.

3.8 Communication support

In Contiki, communication is implemented as a service in order to enable run-
time replacement and to provide multiple communication stacks to be loaded
simultaneously. In experimental research, this can be used to evaluate and
compare di�erent communication protocols. Moreover, the communication
stack may be split into di�erent services, as shown in Figure 3.3, which en-
ables runtime replacement of individual parts of the communication stack.

The service mechanism is used by the communication services to call each
other and synchronous events to communicate with application programs.
Because synchronous event handlers are required to be run to completion,
it is possible to use a single bu�er for all communication processing, avoid-
ing therefore data copy. A device driver reads an incoming packet into the
communication bu�er and then calls the upper layer communication service
using the service mechanisms. The communication stack processes the head-
ers of the packet and posts a synchronous event to the application program
for which the packet was destined. The application program acts on the
packet contents and optionally puts a reply in the bu�er before it returns
control to the communication stack, which prepends its headers to the out-

80 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

Figure 3.3: Contiki loosely coupled communication

going packet and returns control to the device driver so that the packet can
be transmitted.

3.9 The uIP TCP/IP stack

The uIP TCP/IP stack is intended to make it possible to communicate using
the TCP/IP protocol suite even on small 8-bit micro-controllers. Despite
being small and simple, uIP do not require their peers to have complex, full-
size stacks, but can communicate with peers running a similarly light-weight
stack. The code size is on the order of a few kilobytes and RAM usage can
be con�gured to be as low as a few hundred bytes. The uIP implementation
is designed to have only the absolute minimal set of features needed for a full
TCP/IP stack. It can only handle a single network interface and contains
the IP, ICMP, UDP and TCP protocols. The uIPv6 stack is the �rst one
developed for very constrained devices to satisfy all the IPv6 Ready Phase-
1 requirements. It works independently from any particular MAC or link
layer and the interface between uIPv6 and the lower layers consists of two
wrappers for the link-layer input/output functions, the link-layer address,
and a couple of constants. This creates a level of abstraction which enables
the easy integration of many di�erent MAC and Link Layer protocols (see
Figure 3.4).

The uIPv6 stack runs as a Contiki protothread: at system startup, uIPv6
initializes its network interface and the node creates its link-local IPv6 ad-
dress by combining the fe80 :: 0/64 pre�x and its 802.15.4 MAC address. It

3.9. THE UIP TCP/IP STACK 81

Figure 3.4: The uIPv6 stack runs over any MAC and link layer

performs then Duplicate Address Detection (DAD) to make sure the address
is not already used by another node and issues router solicitation messages
to trigger advertisement from routers on the network. The information re-
ceived is used by the node in order to con�gure its global addresses and
update its network parameters. The uIPv6 stack uses di�erent timers for
the messages sent during the DAD and the router discovery processes. In
further operations, events generated by lower-layers trigger the processing of
incoming IPv6 packets by the stack, which includes generating the appro-
priate response and updating the di�erent neighbor discovery and interface
data structures.
Next-hop determination is performed when a node needs to send a packet in
order to �nd the neighbor to which the packet should be sent. If the MAC
address of this neighbor is not contained in its cache, the node performs ad-
dress resolution to obtain it.
A single global bu�er is used by the uIPv6 stack for incoming and outgoing
packets. The length of the bu�er is the length of the MAC header plus 1280
bytes (the minimum link MTU), but additional bu�ers are available to sup-
port fragment reassembly and per neighbor packet bu�ering. The main data
structures are the interface address list and the neighbor cache, pre�x list,
and default router list which are required by Neighbor Discovery. Two peri-
odic timers are used to manage and remove outdated information from these
structures. The total amount of memory usage for uIPv6 depends heavily on
the applications of the particular device in which the implementations are
to be run. The memory con�guration determines both the amount of tra�c
the system should be able to handle and the maximum amount of simultane-
ous connections. It is possible to run the uIP implementation with as little

82 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

as 200 bytes of RAM, but such a con�guration will provide extremely low
throughput and will only allow a small number of simultaneous connections.
The uIP stack requires a lower layer (according to the OSI model) in order to
communicate with peers. Two di�erent types of peers can be distinguished:

• Nodes: communication between nodes is achieved with a wireless link.
The uIP stack needs to be able to send and receive packets. When
it comes to IPv6, Contiki follows a route-over con�guration. There-
fore, uIP6 uses a simple MAC layer called sicslowMAC. Beside header
compression provided by the 6LoWPAN module, it just forwards the
packet to/from the radio. In the case of IPv4, Contiki chose a mesh-
under con�guration. This is done with the Rime communication stack,
which provides mesh routing and route discovery and therefore uIP uses
it to forward packets on the network. From the IP point of view, all
the nodes of the sensor network form a local sub-network, even though
multiple radio hops may be required.

• Gateways: to reach a network entity outside the wireless sensor net-
work, a gateway is required. It's a system that will make the link
between the wireless sensors network and another network. It will
typically be a PC in most experiments, although it could be many em-
bedded system. The connection between a PC and a mote is a serial
link. IP packets are sent between these two using SLIP, which stands
for Serial Line IP. On the computer side, a program must run to do the
interface between the serial line and a network interface. Depending
on the uIP stack version, the functionality is not the same.

� With uIPv6, a node will be loaded with a very simple program that
forwards every packet from the radio to the serial link and vice
versa. It doesn't do any address comparison, there is no IP stack
on it, besides the header compression/decompression mechanism
(6LoWPAN). This node is seen from the PC point of view as an
ethernet network interface.

� With uIPv4 the node connected to the PC will act as a gateway,
with all the IP stack in it. Every time it has a packet to send, it will
check its IP address: if it belongs to the wireless sensor network
subnet range, then it will send it using its radio, otherwise it will
send it to the computer using the serial link. The computer runs
a program that create a IP network interface.

3.10. RIME 83

3.10 RIME

The Rime communication stack provides a set of lightweight communication
primitives ranging from best-e�ort anonymous local area broadcast to reli-
able network �ooding.
Rime draws heavily from communication abstractions for distributed pro-
gramming where layers of simple abstractions are combined to form powerful
high-level abstractions. The purpose of Rime is to simplify implementation
of sensor network protocols and facilitate code reuse. The code footprint of
Rime is less than two kilobytes and the data memory requirements on the
order of tens of bytes. Rime does not allow for a fully modular structure
where any module can be replaced, but enforces a strict layering structure
where only the lowest layer and the application layer can be replaced.

Figure 3.5: The RIME communication stack organization

Rime is organized in layers as shown in Figure 3.5. The layers are designed
to be extremely simple, both in terms of interface and implementation. Each
layer adds its own header to outgoing messages. The thin layers in Rime
enable code reuse within the stack. For example, reliable communication is
not implemented in a single layer but divided into two layers, one that imple-
ments acknowledgments and sequencing, and one that resends messages until
the upper layer tells it to stop. This is called �layer stubborn�. A stubborn
layer is not only used by reliable protocols but also by protocols that send
periodic messages such as neighbor maintenance for routing protocols and
repeated transmission of messages in Rime's network �ooding layer (NF).
The lowest level primitive in Rime is anonymous best-e�ort broadcast, ABC.
The ABC layer provides a 16-bit channel abstraction but no node addressing;
it is added by upper layers. The identi�ed sender best-e�ort broadcast, IBC,

84 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

adds a sender identity header �eld and the unicast abstraction, UC, adds a
receiver header �eld.
One of the basic ideas of Rime is to shift the burden, in terms of mem-
ory footprint, from protocol implementations to Rime. To reduce memory
footprint, Rime uses a single bu�er for both incoming and outgoing packets
similar to uIP. Layers that need to queue data, e.g. a stubborn protocol or
a MAClayer, copy the data to dynamically allocated queue bu�ers.

3.11 6LoWPAN Implementation

6LoWPAN Contiki Implementation is based on RFC4944 Transmission of
IPv6 Packets over IEEE 802.15.4 Networks, draft-hui-6LoWPAN-interop-
00 Interoperability Test for 6LoWPAN, and draft-hui-6LoWPAN-hc-01 Com-
pression format for IPv6 datagrams in 6LoWPAN Networks.
RFC4944 de�nes address con�guration mechanisms based on 802.15.4 16-bit
and 64-bit addresses, fragmentation of IPv6 packets below IP layer, IPv6
and UDP header compression, a mesh header to enable link-layer forwarding
in a mesh under topology, and a broadcast header to enable broadcast in a
mesh under topology. Draft-hui-6LoWPAN-hc-01 de�nes a stateful header
compression mechanism which should soon deprecate the stateless header
compression mechanism de�ned in RFC4944. It is much more powerful and
�exible, in particular it allows compression of some multicast addresses and
of all global unicast addresses.
6LoWPAN does not run as a separate process, but it's called by the MAC pro-
cess when a 6LoWPAN packet is received, and by the TCp/IP process when
an IPv6 packet needs to be sent. It is initialized from the MAC process, which
calls sicsLoWPAN_init (giving as argument a pointer to the mac_driver
structure), while the main 6LoWPAN functions are implemented in the sic-
sLoWPAN.h and sicsLoWPAN.c �les which are used to format packets be-
tween the 802.15.4 and the IPv6 layers. The format of a 802.15.4 address is
de�ned in the �le uip.h, while the format of ND link-layer address options de-
pends on the length of the link-layer addresses. 802.15.4 speci�cities regard-
ing link-layer address options are implemented in uip-nd6.h. The address
autocon�guration mechanism also depends on the format of the link-layer
address. The dependency is re�ected in the uip_netif_addr_autoconf_set
function in uip-netif.c. At initialization, the input function in sicsLoWPAN.c
is set as the function to be called by the MAC upon packet reception. The
output function is set as the tcpip_output function. At packet reception, the
link-layer copies the 802.15.4 payload in the rime bu�er, sets its length and
stores the source and destination link-layer addresses as two rime addresses.

3.12. PREEMPTIVE MULTI-THREADING 85

Fragmentation support is enabled by setting the SICSLOWPAN_CONF_FRAG
compilation option. As complex bu�er allocation mechanism is not sup-
ported, for now a new 1280 bytes bu�er (sicsLoWPAN_buf) to reassemble
packets is de�ned. At reception, once all the fragments are received, the
packet is copied to uip_buf, set uip_len, and call tcpip_input.
MAC_MAX_PAYLOAD de�nes the maximum payload length in a 802.15.4
frame, which is constant and equal to 102 bytes (the 802.15.4 frame can be
maximum 127 bytes long, and the header 25 bytes long).
The Header Compression scheme supported is de�ned in the SICSLOW-
PAN_CONF_COMPRESSION compilation option. HC1, HC01, and IPv6
compression are supported. HC1 and IPv6 compression are de�ned in RFC4944,
HC01 in draft-hui-6LoWPAN-hc. IPv6 compression means sending packets
with no compression, and adding the IPv6 dispatch before the IPv6 header.
If at compile time either HC1 or HC01 are chosen, all �elds at sending will
be compressed, and packets compressed with the chosen scheme will be ac-
cept as well as uncompressed packets. Note that HC1 and HC01 support is
mutually exclusive. HC01 should soon deprecate HC1.
When a packet is received, the input function is called. Fragmentation is-
sues are handled, then the dispatch byte is checked: if it is IPv6, the packet
is treated inline. If it is HC1 or HC01, the corresponding decompression
function (uncompress_hdr_hc1 or uncompress_hdr_hc01) is called.

3.12 Preemptive multi-threading

Preemptive multi-threading is implemented in Contiki as a library on top
of the event-based kernel. The library is optionally linked with applications
that explicitly require a multi-threaded model of operation and is divided
into two parts: a platform independent part that interfaces to the event
kernel and a platform speci�c part implementing the stack switching and
preemption primitives. Usually, the preemption is implemented using a timer
interrupt that saves the processor registers onto the stack and switches back
to the kernel stack. In practice very little code (25 lines of C code in the
implementation for the MSP430) needs to be rewritten when porting the
platform speci�c part of the library.
Unlike normal Contiki processes, each thread requires a separate stack and
the library provides the necessary stack management functions. Threads
execute on their own stack until they either explicitly yield or are preempted.
The API of the multi-threading library consists of four functions that can be
called from arunning thread (mt yield(), mt post(), mt wait(),and mt exit()
) and two functions called to setup and run a thread (mt start() and mt

86 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

exec()). The mt exec() function performs the actual scheduling of a thread
and is called from an event handler.

3.13 Code size

One of the most important characteristics of operating system for constrained
devices is the compactness in terms of both code size and RAM usage in or-
der to leave room for applications running on top of the system.

Module Code size (AVR) Code size (MSP430) RAM usage

Kernel 1044 810 10+4e+2p

Service layer 128 110 0

Program loader - 658 8

Multi-threading 678 582 8+s

Timer library 90 60 0

Replicator stub 182 98 4

Replicator 1752 1558 200

Total 3874 3876 230 + 4e + 2p + s

In the Table above the compiled code size (in bytes) and the RAM usage of
the Contiki 2.1 system compiled for two architectures (the Texas Instruments
MSP430 and the Atmel AVR) is shown. The numbers report the size of
both core components and an example application: a sensor data replicator
service which consists of the service interface stub for the service as well as the
implementation of the service itself. The program loader is only implemented
on the MSP430 platform.
The RAM requirement depends on the maximum number of processes (p)
that the system is con�gured to have,the maximum size of the asynchronous
event queue (e) and, in the case of multi-threaded operation, the size of the
thread stacks (s).

3.14 Contiki RPL

ContikiRPL was implemented in the version 2.5 of Contiki by Joakim Eriks-
son and Nicolas Tsiftes from the Contiki team. It was written in C program-
ming language, using the APIs of the Contiki Operating System.

3.14. CONTIKI RPL 87

Figure 3.6: Contiki Stack with ContikiRPL

A network that manages its routing topologies using RPL may run one or
more RPL instances, where each instance de�nes a topology that is built us-
ing a unique metric or constraint within the network. In each RPL instance,
multiple Directed Acyclic Graphs (DAGs) may exist, each having a di�erent
DAGroot. What is important to note is that a node can join multiple RPL
instances, but must belong only to one DAG within each instance. When
forming the topology, each sink constructs a packet called a DAG Informa-
tion Object (DIO), and sends it to all children: any child that decides to join
the DAG may pass the DIO further to its own children. The DIO contains
a rank, a number increased monotonically when a child joins the DAG, used
to prevent routing loops and help the nodes to distinguish between parents
and siblings.
DAGs may need to change if the network restructures because of mobility
or link quality variance: RPL ensures that DAGs are adjusted occasionally
by having the root send out a new DAG iteration. A Trickle timer is used
in order to regulate when nodes should forward such information to their
children, which e�ciently suppresses many redundant updates in dense net-
works. It is important to note that, in order to generate a fast repair, nodes
that detect routing inconsistencies (for example the loss of a parent) reset
their Trickle timers to their minimum values.
The routing protocol uses Contiki's modular IPv6 routing interface, which
has three functions: activate, deactivate and lookup. The activate func-
tion initializes the Directed Acyclic Graph(DAG) construction by sending a
DAG Information Solicitation (DIS); neighbors that belong to a DAG will

88 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

reset their Trickle timers, and shortly thereafter the node will receive at least
one DIO. The deactivate function deallocates internal structures and sends
a no-DAO to the node's neighbors. After deactivation, the module stops
responding to route-lookup requests, but may be reactivated later. If uIPv6
detects that the destination for a packet is not an immediate neighbor, it
asks RPL for the route using the lookup function.

ContikiRPL implements the RPL protocol and two objective functions:
OF0 and the Minimum Rank Objective Function with Hysteresis(MRHOF).
It separates protocol logic, message construction and parsing, and objec-
tive functions into di�erent modules. The protocol logic module manages
DODAG information, maintains a set of candidate parents and their associ-
ated information, communicates with objective function modules, and vali-
dates RPL messages at a logical level according to the RPL speci�cation. The
message construction and parsing module translates between RPL's ICMPv6
message format and Contiki RPL's own abstract data structures. Finally, the
objective function modules implement an objective function API. To facil-
itate simple replacement of and experimentation with objective functions,
their internal operation is opaque to ContikiRPL.
ContikiRPL sets up forwarding tables for uIPv6 and leaves the actual packet
forwarding to uIPv6 instead of making the forwarding decisions per packet.
Outgoing IPv6 packets �ow from the uIPv6layer to the 6LoWPAN layer for
header compression, fragmentation. The outgoing packet is then sent by
the 6LoWPAN layer to the MAClayer. The default Contiki MAC layer is a
CSMA/CA mechanism that places outgoing packets on a queue, which are
then transmitted in order through the radio duty cycling (RDC) layer. The
RDC layer in turn transmits the packets through the radio link layer. The
MAC layer will retransmit packets until it sees a link-layer acknowledgment
from the receiver, but outgoing packets have a con�gurable threshold for the
maximum number of transmissions.
Link cost estimation updates are provided by an external neighbor informa-
tion module through a callback function. ContikiRPL recomputes the path
cost to the sink via the updated link, and checks with the selected objec-
tive function whether to switch the preferred parent. The link cost re�ects
the per-neighbor ETX metric, which is calculated using an exponentially-
weighted moving average function over the number of link-layer transmissions
with α = 0.2. The ETX is used to compute the rank for the MRHOF ob-
jective function and in parent selection for the OF0 objective function. New
neighbor table entries have an initial ETX estimate of 5. The ContikiRPL
neighbor eviction policy is to keep neighbors that have good ETX estimates
and low ranks.

3.14. CONTIKI RPL 89

The table below shows the implementation complexity for ContikiRPL on a
Tmote SKY module. The total ROM size is 3224 bytes, which is approxi-
mately 6.5% of the Tmote Sky's ROM. The RAM size is dependent on the
amount of candidate neighbors that should be stored; ContikiRPL reserves
space for 10 neighbors. This setting results in a RAM footprint of 800 bytes,
which is approximately 8% of the available space.

Module RAM (bytes) ROM (bytes)

Generic IPv6 routing 420 484

RPL packet generation and parsing 2 1316

RPL protocol logic 378 1074

RPL timer handling 0 350

ContikiRPL Total 800 3224

90 CHAPTER 3. CONTIKI OPERATIVE SYSTEM 2.5

Chapter 4
RPL Routing Protocol

The Routing Protocol for Low Power Lossy Networks (RPL) provides a mech-
anism whereby point-to-point, multipoint-to-point and point-to-multipoint
tra�c from the central control point to the devices inside the LoWPAN is
supported. This is possible through a mechanism which disseminate informa-
tion over the dynamically-formed network topology, which enables minimal
con�guration in the nodes, allowing them to operate mostly autonomously.
RPL may in particular disseminate IPv6 Network Discovery information such
as Pre�x Information Option (PIO) and Route Information Option (RIO).
Neighbor discovery information that is disseminated by RPL conserves all
its original semantics for router to host, with limited extensions for router to
router. RPL also introduces the capability to bind a subnet together with
common pre�x and to route within that subnet.
In order to be useful in a wide range of LoWPAN application domains, RPL
separates packet processing and forwarding from the routing optimization
objective. RPL operations require bidirectional links, while in some LoW-
PAN scenarios those links may exhibit asymmetric proprieties. It is required
that the reachability of a router is veri�ed before the router can be used as
a parent.

4.1 Protocol Overview

RPL organizes a topology as a Directed Acyclic Graph (DAG) that is parti-
tioned into one or more Destination Oriented DAGs (DODAGs). RPL routes
are optimized for tra�c to or from one or more roots that act as sinks for the
topology, which means there is one DODAG per sink. RPL uses four values
to identify and maintain a topology:

91

92 CHAPTER 4. RPL ROUTING PROTOCOL

• RPLInstanceID: it identi�es a set of one or more Destination Oriented
DAGs; the set of DODAGs intenti�ed by a RPLInstanceID is called
a RPL Instance. All the DODAGs in the same RPL Instance use
the same Objective Function (OF), which de�nes how routing metrics,
optimization objectives and related functions are used to compute a
Rank (a number that identi�es the node's individual position relative
to other nodes with respect to a DODAG root) and which dictates how
parents in the DODAG are selected

• DODAGID: the scope of a DODAGID is a RPL Instance and the com-
bination of RPLInstanceID and DODAGID uniquely identi�es a single
DODAG in the network. It is important to note that a RPL Instance
may have multiple DODAGs, each of which has an unique DODAGID.

• DODAGVersionNumber: the scope of a DODAGVersionNumber is a
DODAG and the combination with a RPLInstanceID and a DODAGID
uniquely identi�es a DODAG Version

• Rank: the scope of Rank is a DODAG Version. It establishes a partial
order over a DODAG version and de�nes an individual node position
with respect to the DODAG root.

A RPL Instance contains one or more DODAG roots and may provide routes
to certain destination pre�xes, reachable via the DODAG roots or alternate
paths within the DODAG. It may comprise a single DODAG with a sin-
gle root, multiple uncoordinated DODAGs with independent roots, a single
DODAG with a virtual root that coordinates the LoWPAN sinks over a
backbone network or a combination of the above.

Figure 4.1: RPL Instance

4.1. PROTOCOL OVERVIEW 93

The Figure 4.1 shows an example of an RPL Instance comprising three
DODAGs. The DODAG roots are R1, R2 and R3 and each of these advertise
the same RPLInstanceID.

Figure 4.2: RPL DODAG Version number increment

The Figure 4.2 shows how a DODAG Version number increment leads to
a new DODAG Version and, in this case, a di�erent DODAG topology.
The Objective Function de�nes how RPL nodes select and optimize routes
within a RPL Instance. The Objective Function is identi�ed by an Objec-
tive Code Point within the DIO con�guration option and de�nes how nodes
translate one or more metrics and constraints into a value, the Rank, which
approximates the node's distance from a DODAG root. Another role of the
Objective Function is to de�ne how the nodes select their parents.
DODAGs can be grounded or �oating, where the grounded o�ers connec-
tivity to hosts that are required for satisfying the application-de�ned goal
and a �oating only provides routes to nodes within the DODAG and may
be used for example to preserve inner connectivity during repair. The root
has the task of advertising which is the case. An high level overview of the
distributed algorithm which constructs the DODAG is as follows:

• Some nodes are con�gured to be DODAG roots, with associated DODAG
con�gurations

• Nodes advertise their presence, a�liation with a DODAG, routing cost
and related metrics by sending link-local multicast DODAG informa-
tion Object (DIO) messages to all RPL nodes

• Nodes listen for DIOs and use their information to join a new DODAG

94 CHAPTER 4. RPL ROUTING PROTOCOL

or to maintain an existing DODAG according to the speci�ed Objective
Function and Rank of their neighbors

• Nodes provision routing table entries for the destinations speci�ed in
the DIO message via their DODAG parents in the DODAG Version.
Nodes that decide to join a DODAG can provision one or more DODAG
parents as the next-hop for the default route and a number of other
external routes for the associated instance.

For applications that require P2MP or P2P tra�c, RPL uses Destination
Advertisement Object (DAO) messages to establish downward routes. RPL
supports two modes of downward tra�c: storing or non-storing. In both
cases, P2P packets travel Up toward a DODAG Root then Down to the �nal
destination, but in the non-storing case the packet will travel all the way to
the root before travelling down, while in the storing case the packet may be
directed down towards the destination by a common ancestor of the source
and the destination prior to reaching a DODAG root. The rank of a node is
a scalar representation of the location of that node within a DODAG Version
and is used to avoid and detect loops. The exact calculation of the rank is
left to the Objective Function and it may depend on parents, link metrics,
node metrics and node con�guration and policies. It is incremented in a
strictly monotonic fashion and can be used to validate a progression from
or towards the root. The Rank can be thought as a �xed point number,
where the position of the radix point between the integer part of the frac-
tional part is determined by MinHopRankIncrease, the minimum increase
between a node and any of its DODAG parents. MinHopRankIncrease cre-
ates a tradeo� between hop cost precision and the maximum number of hops
a network can support. When an objective function computes a rank, the
objective function operates on the entire rank quantity and when the rank is
compared the integer portion of the rank is to be used: DAGRank(rank) =
�oor (rank/MinHopRankIncrease).
Given two nodes A and B, if DAGRank(A) is less than DAGRank(B) then
the position of A is closer to the DODAG Root than the position of B. Node
A may safely be a DODAG parent for Node B without risk of creating a
loop. If DAGRank(A) equals DAGRank(B) the position of A and B with
respect to the DODAG root are identical and routing through a node with
equal Rank may cause a routing loop. RPL tries to avoid creating loops
when undergoing topology changes and includes rank-based datapath val-
idation mechanism for detecting loops when they occur. RPL guarantees
neither loop free path selection nor tight delay convergence times, but can
detect and repair a loop as soon as it is used. RPL uses this loop detection
to ensure that packets make forward progress within the DODAG Version

4.2. RPL INSTANCES 95

and trigger repairs when necessary.
A DODAG loop may occur when a node detaches from the DODAG and
reattaches to a device in its prior sub-DODAG, which may happen in par-
ticular when DIO messages are missed. Strict use of the DODAG Version
Number can avoid this kind of loop. A DAO loop can occur when the parent
has a route installed upon receiving and processing a DAO Message from a
child, but the child has subsequently cleaned up the related DAO state. This
kind of loop happens when a NO-Path message was missed (a kind of DAO
message that invalidates a previously announced pre�x). RPL includes an
optional mechanism to acknowledge DAO messages, which can reduce the
impact of a single DAO message being missed.

4.2 RPL Instances

There are two types of RPL Instances, local and global, and the RPLIn-
stanceID space is divided between Global and Local instances to allow for
both coordinated and unilateral allocation of RPLInstanceIDs. Global RPL
Instances are coordinated, have one or more DODAGs and are typically long-
lived, while local RPL Instances are always a single DODAG whose singular
root owns the corresponding DODAGID, allocates the Local RPLInstan-
ceID in a unilateral manner and can be used, for example, for constructing
DODAGs in support of a future on-demand routing solution.
Data packets and control packets within RPL network are tagged to unam-
biguously identify what RPL Instance they are part of: every RPL control
message has a RPLInstanceID �eld and the data packets that �ow within the
network expose the RPLInstanceID as part of the RPL Packet Information
that RPL requires.
A global RPLInstanceID must be unique in the whole LoWPAN and there
can be up to 128 global instance in the whole network. A global RPLIn-
stanceID is encoded in a RPLInstanceID �eld as follows: Local instances are
always used in conjunction with a DODAGID, are allocated and managed
by the node that owns the DODAGID and up to 64 local instances can be
supported.

Figure 4.3: RPL �eld format for a) Global Instance ID b) Local Instance ID

96 CHAPTER 4. RPL ROUTING PROTOCOL

In Figure 4.3 the D �ag is set to 0 in RPL control messages, while in data
packets it indicates whether the DODAGID is the source or the destination
of the packet.

4.3 ICMPv6 RPL Control messages

A RPL control message is identi�ed by a code and composed of a base that
depends on the code, and some options. The source address is a link-local
address and the destination address is either the all-RPL-nodes multicast
address (FF02::1A) or a link-local unicast address of the destination. The
RPL control message consists of an ICMPv6 header followed by a message
body which is comprised of a message base and some options.

Figure 4.4: RPL Control Message

The code �eld identi�es the type of RPL Control message:

0x00 DODAG Information Solicitation (DIS)

0x01 DODAG Information Object (DIO)

0x02 Destination Advertisement Object (DAO)

0x03 Destination Advertisement Object Acknowledgment (DAO-ACK)

0x80 Secure DODAG Information Solicitation

0x81 Secure DODAG Information Object

0x82 Secure Destination Advertisement Object

0x83 Secure Destination Advertisement Object Acknowledgment

0x8A Consistency Check

Each RPL message has a secure variant which provides integrity, con�den-

4.3. ICMPV6 RPL CONTROL MESSAGES 97

tiality and replay protection. Because the security covers the base message
and the options, the security information are placed between the checksum
and the base (Figure 4.5).

Figure 4.5: Secure RPL control message and security algorithm

The security algorithm �eld speci�es the encryption, Message Authenti-
cation Code (MAC) and signature scheme the network uses. The DODAG
Information Solicitation (DIS) message can be used to solicit a DODAG
Information Object from an RPL node, similarly to that of a Router Solici-
tation speci�ed in IPv6 Neighbor Discovery. A node may use DIS to probe
its neighborhood for nearby DODAGs.
The DODAG Information Object (DIO) carries information that allows a
node to discover a RPL Instance, learn its con�guration parameters, select a
DODAG parent set and maintain the DODAG (Figure 4.6).

Figure 4.6: The DIO base object

98 CHAPTER 4. RPL ROUTING PROTOCOL

MOP Meaning

0 No downward routes maintained by RPL

1 No storing mode

2 Storing without multicast support

3 Storing with multicast support

- All other values are unassigned

In the DIO the DODAGID is a 128-bit IPv6 address set by the DODAG
root which uniquely identi�es a DODAG and must be a routable IPv6 address
belonging to the DODAG root. Destination Advertisement Object (DAO)
is used to propagate destination information upwards along the DODAG
(Figure 4.7). In storing mode the DAO message is unicast by the child
to the selected parent, while in the non-storing mode the DAO message is
unicast to the DODAG root. In both modes the DAO message can optionally
be acknowledged by its destination with a DAO-ACK.

Figure 4.7: The DAO base object

It is important to note that the '*' denotes that the DODAGID is not
always present: if the 'D' �ag is set then a local RPLInstanceID is used and
the DODAGID �eld is present. The 'K' �ag indicates if a DAO-ACK is ex-
pected; the DAOSequence is incremented at each unique DAO message from
a node and echoed in the DAO-ACK message.

The consistency check message (CC) is used to check secure message
counters and issue challenge/response and it must be sent as a secured RPL
message (Figure 4.8).

The CC nonce is a 16-bit unsigned integer set by a CC request and the cor-
responding CC response includes the same CC nonce value as the request.
The Destination Counter is a 32-bit unsigned integer value indicating the

4.3. ICMPV6 RPL CONTROL MESSAGES 99

Figure 4.8: Consistency Check Nonce

sender's estimate of the destination's current security Counter value and al-
lows new or recovered nodes to resynchronize through CC message exchanges.

The RPL control message options use the format shown in Figure 4.9:

Figure 4.9: RPL control message options format

Pad1 option may be present in DIS, DIO, DAO and CC messages and is
used to insert a single octet of padding into the message to enable options
alignment.
PadN option may be present in the same messages as in Pad1, but is used
to insert two or more octets of padding into the message to enable options
alignment.
Metric container option may be present in DIO or DAO messages and is used
to report metrics along the DODAG.
Route Information option may be present in DIO messages and carries the
same information as the IPv6 Neighbor Discovery Route Information option.
It is used to indicate that connectivity to the speci�ed destination pre�x is
available from the DODAG root.
DODAG Con�guration option may be present in DIO messages and is used
to distribute con�guration information for DODAG operation through the
DODAG.
RPL Target option may be present in DAO messages and is used to indicate
a target IPv6 address pre�x or multicast group that is reachable or queried
along the DODAG. In a DAO the RPL target option indicates reachability.

100 CHAPTER 4. RPL ROUTING PROTOCOL

Transit Information option may be present in DAO messages and is used for
a node to indicate attributes for a path to one or more destinations, where
the destinations are indicated by one or more Target options that immedi-
ately precede the Transit Information option. It can be used for a node to
indicate its DODAG parents to an ancestor that is collecting DODAG rout-
ing information, typically for the purpose of constructing source routes.
Solicit Information option may be present in DIS messages and is used for a
node to request DIO messages from a subset of neighboring nodes. It con-
tains �ags that indicate which predicates a node should check when deciding
whether to reset its Trickle timer (a node resets it when all predicates are
true). There are three possible predicates: V (Version predicate), which is
true if the receiver's DODAGVersionNumber matched the requested version
number; I (InstanceID predicate), which is true when the RPL node's current
RPLInstanceID matches the requested RPLInstanceID; D (DODAGID pred-
icate), which is true if the RPL node's parent set has the same DODAGID.
Pre�x Information option may be present in DIO messages and is used to
distribute the pre�x in use inside the DODAG. An RPL node may use this
option for the purpose of Stateless Address Auto Con�guration from a pre�x
advertised by a parent.
RPL Target Descriptor option may be immediately followed by one opaque
descriptor that quali�es that speci�c target.

4.4 Sequence counter

In order to validate the freshness and the synchronization of protocol infor-
mation, three di�erent sequence numbers are used:

• DODAGVersionNumber is present in the DIO base to indicate the ver-
sion of the DODAG being formed and is monotonically incremented
by the root each time the root decides to form a new version of the
DODAG in order to revalidate the integrity and allow a global repairs
to occur. This number is propagated unchanged down the DODAG as
routers join the new DODAG version. An older value (lesser) indicates
that the originating router has not migrated to the new DODAG ver-
sion and can't be used as a parent once the receiving node has migrated
to the newer DODAG version.

• DAOSequence is present in the DAO base to correlate a DAO message
and a DAO ACK message. This number is locally signi�cant to the
node that issues a DAO message for its own consumption to detect the
loss of a DAO message and enable retries

4.5. UPWARD ROUTES 101

• Path Sequence is present in the Transit Information option in a DAO
message and is used to di�erentiate a movement where a newer route
supersedes a stale one from a route redundancy scenario where multiple
routes exist in parallel for a same target. This number is globally
signi�cant in a DODAG and indicates the freshness of the route to the
associated target. An older value (lesser) received from an originating
router indicates that the originating router holds stale routing states
and should not be considered anymore as a potential next-hop for the
target. This number is computed by the node that advertises the target
and is unchanged as the DAO content is propagated towards the root
by parent routers.

4.5 Upward routes

Nodes that decide to join a DODAG must provision at least one DODAG
parent as a default route for the associated instance, which enables a packet
to be forwarded upwards until it eventually hits a common ancestor from
which it will be routed downwards to the destination.
A DIO message can also transport explicit routing information, like the
DODAGID, a global or unique local IPv6 address of the root, or a RIO
Pre�x, used to advertise an external route that is reachable via the root and
is interpreted as a capability of the root as opposed to a routing advertise-
ment and must not be redistributed in another routing protocol. It should be
used by an ingress RPL router to select a DODAG when a packet is injected
in a RPL domain from a node attached to that RPL router.
A node that is not a DODAG root has to advertise the same values as
its preferred DODAG parent for the following base �elds: Grounded (G),
Mode of operation (MOP), DAGPreference (Prf), Version, RPLInstanceID
and DODAGID. In this way these values will propagate down the DODAG
unchanged and advertise by every node that has a route to that DODAG
root. A node may, on the other hand, update the Rank �eld and the DTSN
�eld at each hop. Moreover, the DODAGID �eld must be unique within the
RPL Instance and must be a routable IPv6 address belonging to the root.
Upward route discovery allows a node to join a DODAG by discovering neigh-
bors that are members of the DODAG of interest and identifying a set of par-
ents. RPL's upward route discovery algorithms and processing are in terms
or three logical sets of link-local nodes: �rst the candidate neighbor set is a
subset of the nodes that can be reached via link-local multicast; second the
parent set is a restricted subset of the candidate neighbor set; third the pre-
ferred parent is a member of the parent set that is the preferred next hop in

102 CHAPTER 4. RPL ROUTING PROTOCOL

upward routes. In this way there is a consistent partial order on nodes within
the DODAG and as long as node's rank don't change every node's route to
a DODAG root is loop-free. The above rules govern a single DODAG ver-
sion, while the following de�ne how RPL operates when there are multiple
DODAG versions:

1. The tuple (RPLInstanceID, DODAGID, DODAGVersionNumber) uniquely
de�nes a DODAG Version and every element of a node's DODAG par-
ent set must belong to the same DODAG Version.

2. A node is a member of a DODAG version if every element of its DODAG
parent set belongs to that DODAG version or if that node is the root
of the corresponding DODAG.

3. A node must not send DIOs for DODAG versions of which is not a
member

4. DODAG roots may increment the DODAGVersionNumber that they
advertise and thus move to a new DODAG Version.

5. Within a given DODAG a node that is not a root must not advertise a
DODAGVersionNumber higher than the highest DODAGVersionNum-
ber he has heard

6. Once a node has advertised a DODAGVersion by sending a DIO, it
must not be a member of a previous DODAGVersion of the same
DODAG.

The objective function and the set of advertised routing metrics and con-
straints of a DAG determines how a node selects its neighbor set, parent set
and preferred parents. This selection implicitly also determines the DODAG
within a DAG and can include administrative preference (Prf) as well as
metrics.
Regarding the Rank and the movement within a DODAG version, a node
must not advertise a Rank less than or equal to any member of its parent set
within the DODAG version and may advertise a Rank lower than its prior
advertisement within the DODAG version. Let L be the lowest rank within
a DODAG version that a given node as advertise: that node must not ad-
vertise an e�ective rank higher than L+DAGMaxRankIncrease. Moreover,
a node may choose to join a di�erent DODAG within a RPL Instance and
such a join has no rank restriction unless that di�erent DODAG is a DODAG
version of which this node has previously been a member and may choose to
migrate to the next DODAG Version within the DODAG at any time after

4.6. DOWNWARD ROUTES 103

hearing the next DODAGVersionNumber advertised from suitable DODAG
Parent. In this case the DODAG parent set needs to be rebuild for the new
version.
When a DIO message is received, the receiving node must �rst determine
whether or not the DIO message should be accepted for further processing
and subsequently present the DIO message for further processing if eligible.
If the DIO message is malformed it must be discarded by the node, but if
the sender of the DIO message is a member of the candidate neighbor set
and the DIO message is not malformed, the node must process the DIO.
The DODAG selection is implementation and Objective Function dependent:
nodes should provide a mean to �lter out a parent whose availability is de-
tected as �uctuating and should verify that bidirectional connectivity and
adeguate link quality is available with a candidate neighbor before it consid-
ers that candidate as a DODAG parent.
In some cases a RPL node may attach to a DODAG as a leaf node only,
which does not extend DODAG connectivity but may still need to trans-
mit DIOs on occasion. A node operating as a leaf node must not transmit
DIOs containing the DAG metric container and must advertise a DAGRank
of INFINITE_RANK. It may suppress DIO transmission unless it has been
triggered due to detection of inconsistency when a packet is being forwarded
or in response to a unicast DIS message and it may transmit unicast DAOs
and multicast DAOs to the 1-hop neighborhood.

4.6 Downward routes

RPL constructs and maintains downward routes with Destination Advertise-
ment Object (DAO) messages. Downward routes support P2MP �ows from
the DODAG roots toward the leaves and P2P �ows toward a DODAG Root
through an upward route, then away from the DODAG root to a destination
through a downward route.
A RPL Instance may choose between two di�erent modes for maintaining
downward routes: storing and non-storing modes. In the �rst one, nodes
store downward routing tables for their sub-DODAG and each hop on a
downward route examinates its routing table to decide on the next hop,
while in the second one (non-storing), nodes do not store downward routing
tables and downward packets are routed with source routes populated by a
DODAG root.
To establish downward routes, RPL nodes send DAO messages upwards and
the next hop destination of these DAO messages are called DAO parents.
The collection of a node's DAO parents is called DAO Parent Set. A node

104 CHAPTER 4. RPL ROUTING PROTOCOL

may send DAO messages using the all-RPL-nodes multicast address (opti-
mization to provision one-hop routing). In storing-mode operation a node
must not address unicast DAO messages to nodes that are not DAO par-
ents and the IPv6 source and destination addresses of a DAO message must
be link-local address. In non-storing-mode a node must not address unicast
DAO messages to nodes that are not DODAG roots and the IPv6 source and
destination addresses of a DAO message must be a unique-local or a global
addresses. The selection of DAO parents is implementation and objective
function speci�c.
Destination Advertisement can be con�gured to be entirely disabled, as re-
ported in the Mode of Operation (MOP) in the DIO message. All nodes who
join a DODAG have to abide by the MOP setting from the root and, if the
MOP is 0 (no downward routing), nodes must not transmit DAO messages.
In non-storing mode the DODAG root should store source routing table en-
tries for destination learned from DAOs and must be able to generate source
routes for those destinations learned from DAOs which were stored. On the
other hand in storing mode all non-root and non-leaf nodes must store rout-
ing table entries for destinations learned from DAOs.
For each target associated with a node, that node is responsible to transmit
DAO message in order to provision downward routes. The node must in-
crement the Path Sequence counter and generate a new DAO message when
the Path Lifetime has to be updated or the Parent Address list has to be
changed. The Target+Transit information contained in the DAO messages
subsequently propagates up the DODAG. In storing mode the node gener-
ates such DAO to each of its DAO parents in order to enable multipath.
A node might send DAO messages when it receives DAO messages, as a re-
sult of changes in its DAO parent set, or in response to another event such
as the expiry of a related pre�x lifetime. In non-storing mode every DAO
message a node receives is "new", while in storing mode a DAO message is
"new" if it has a newer Path Sequence number or if it has additional Path
Control bits, or if it is a No-Path message that removes the last downward
route to a pre�x.
Because DAOs �ow upwards, receiving a unicast DAO can trigger sending a
unicast DAO to a DAO parent. On receiving a unicast DAO message with
updated information, a node should send a DAO after a speci�c delay (De-
layDAO) in order to aggregate DAO information from other nodes for which
it is a DAO parent. Nodes can trigger their sub-DODAG to send DAO mes-
sages. Each node maintains a DAO trigger sequence number (DTSN) and
if a node hears that one of its DAO parents increment its DTSN, it should
schedule a DAO message transmission. In case of non-storing mode the node
has also to increment its own DTSN. In the case of triggered DAOs, select-

4.6. DOWNWARD ROUTES 105

ing a proper DelayDAO can greatly reduce the number of DAOs transmitted.
Such a scheduling could be approximated by setting DelayDAO infersely pro-
portional to the Rank.
In non-storing mode, RPL routes messages downward using IP source rout-
ing. DAOs are sent directly to the root along a default route installed as part
of the parent selection. A node uses DAOs to report its DAO parents to the
DODAG root, who can piece together a downward route to a node by using
a DAO parent set from each node in the route. The purpose of this per-hop
calculation is to minimize tra�c when DAO parents change.
In storing mode, RPL routes messages downward by the IPv6 destination ad-
dress. On receiving a unicast DAO, a node must compute if the DAO would
change the set of pre�xes that the node itself advertises. If so, the node must
generate a new DAO message and transmit it. When a node generates a
new DAO, it should unicast it to each of its DAO parents and it must not
unicast the DAO message to nodes that are not DAO parents. When a node
removes a node from its DAO parent set, it should send a No-Path message
to invalidate the existing route. Unlike in non-storing mode, these DAOs do
not communicate information about the routes themselves: that information
is stored within the network and is implicit from the IPv6 source address.
Because this information is stored within each node's routing tables, in stor-
ing mode DAOs are communicated directly to DAO parents, who store this
information.
A DAO message from a node contains one or more Target Options, each of
which speci�es either a pre�x advertised by the node, a pre�x of addresses
reachable outside the LoWPAN, the address of destination in the node's sub-
DODAG or a multicast group that a node in the sub-DODAG is listening
to. The Path Control �eld of the Transit Information option allows a node
to bound how many downward routes will be generated to it. In non-storing
mode the root can determine the downward route by aggregating the infor-
mation from each received DAO which includes the Path Controll indications
of preferred DAO parents.
A special case of DAO operation, distinct from unicast DAO operation, is
multicast DAO operation which may be used to populate "1-hop" routing
table entries. A multicast DAO message must be used only to advertise
information about the node itself and not to relay connectivity information
learned. It can be used to enable direct P2P communication without needing
the DODAG to relay the packets.

106 CHAPTER 4. RPL ROUTING PROTOCOL

4.7 RPL Security

RPL supports three security modes: unsecured, pre-installed and authenti-
cated.
In the unsecured one, RPL uses basic DIS, DIO, DAO and DAO-ACK mes-
sages which do not have security sections. It is important to note that, as
network could be using other security mechanism such as link-layer security,
unsecured mode does not imply all messages are sent without any protection.
In the Pre-installed mode, RPL uses secure messages and, in order to join a
RPL instance, a node must have a pre-installed key. Nodes use this to pro-
vide message con�dentiality, integrity and authenticity. A node may, using
this preinstalled key, join the RPL network as either a host or a router.
The Authenticated mode uses, as in the pre-installed mode, secure messages
and a pre-installed key. The main di�erence is that a node may join the
network as a host only and, in order to join the network as a router, a node
must obtain a second key from a key authority, who can authenticate that
the requester is allowed to be a router before providing it with the second
key.
As the cryptographic basis for RPL security, CCM - Counter with CBC-
MAC (Cipher Block Chaining Message Authentication Code) is used and
CCM uses AES-128 as its underlying cryptographic algorithm. To join a
secure RPL network, a node either listens for secure DIOs or triggers secure
DIOs by sending a secure DIS.
RPL nodes send Consistency Check (CC) messages to protect against replay
attacks and synchronize counters. Consistency Check messages allow nodes
to issue a challenge-response to validate a node's current Counter value. Be-
cause the CC nonce is generated by the challenger, an adversary replaying
messages is unlikely to be able to generate a correct response.
When secured RPL messages have to be transmitted, a RPL node must set
the security section (T, Sec, KIM, LVL) in the outgoing RPL packet to de-
scribe the protection level and security settings that are applied. The counter
value used in constructing the AES-128 CCM nonce to secure the outgoing
packet must be an increment of the last counter transmitted to the particular
destination address. When a secured RPL message is received, the node uses
the RPL security control �elds to determine the necessary packet security
processing.
Message authentication codes (MAC) and signatures are calculated over the
entire unsecured IPv6 packet. MAC and signature calculation are performed
before any compression that lower layers may apply. The signature scheme in
RPL for security mode is an instantiation of the RSA algorithm (RSASSA-
PSS) which uses a public key pair (n, e), where n is a 2048-bit or 3072-bit

4.8. PACKET FORWARDING AND LOOP AVOIDANCE 107

RSA modulus and where e = 216 + 1. It uses CCM mode as the encryption
scheme with M=0 (as a stream-cipher). RSA signatures of this form provide
su�cient protection for RPL networks.

4.8 Packet forwarding and loop avoidance

When forwarding a packet to a destination, precedence is given to selection
of a next-hop successor in the following way:

• If the packet header speci�es a source route by including a RH4 header
then that route has to be used. If the node fails to forward the packet
with that speci�ed source route, than the packet should be dropped.

• If there is an entry in the routing table matching the destination that
has been learned from a multicast destination advertisement, that that
successor has to be used.

• If there is an entry in the routing table matching the destination that
has been learned from a unicast destination advertisement, than that
successor has to be used.

• If there is a DODAG Version o�ering a route to a pre�x matching the
destination, then select one of those DODAG parents as a successor
according to the OF and routing metrics.

• Any other as-yet-unattempt DODAG parent may be chosen for the
next attempt to forward a unicast packet when no better match exists.

It is important to note that the chosen successor can't be the neighbor
that was the predecessor of the packet (split horizon), except in the case
where it is intended for the packet to change from an upward to a downward
direction.

RPL loop avoidance mechanisms are kept simple and designed to mini-
mize churn and states. RPL includes a reactive loop detection technique that
protects from meltdown and triggers repair of broken paths. This mechanism
uses RPL Packet Information that is transported within the data packets,
relying on an external mechanism that places in the RPL Packet Informa-
tion in an IPv6 hop-by-hop option header. An important bit �ag in the RPL
Packet Information is the Down 'O' bit, which indicates whether the packet
is expected to progress Up or Down and is useful to detect DODAG incon-
sistencies. If the direction of a packet does not match the rank relationship,
a receiver can detect an inconsistency by checking the 'O' bit: if it is set (to

108 CHAPTER 4. RPL ROUTING PROTOCOL

down) from a node of a higher rank or if it is cleared (for up) from a node of
a lesser rank.
One inconsistency along the path is not considered a critical error and the
packet may continue. If a second detection along the path of a same packet
occurs, then the packet must be dropped. This process is controlled by the
Rank-Error bit associated with the packet. When an inconsistency is de-
tected on a packet, if the Rank-Error bit was not set then the Rank-Error
bit is set, while if it was set then the packet must be discarded and the trickle
timer must be set.
DAO inconsistency loop recovery is a mechanism that applies to storing mode
of operation only. In non-storing mode the packets are source routed to the
destination and DAO inconsistencies are not corrected locally. Instead, an
ICMP error with a new code "Error in Source Routing Header", a message
with the same format as the "Destination Unreachable Message", is sent
back to the root. A DAO inconsistency happens when a router has a down-
ward route that was previously learned from a DAO message via a child,
but that downward route is no longer valid in the child. Upon receiving a
packet with a Forwarding-Error bit set, the node must remove the routing
states that caused forwarding to that neighbor, clear the Forwarding-Error
bit and attempt to send the packet again, which must be sent to an alternate
neighbor.

4.9 Maintenance of routing adjacency

The selection of successors, along the default paths up in the DODAG, leads
to the formation of routing adjacencies that require maintenance. RPL does
not de�ne any "keep-alive" mechanism to detect routing adjacency failures:
this is because in many cases such a mechanism would be too expensive in
terms of bandwidth and even more importantly energy (a battery operated
device could not a�ord to send periodic "keep-alive"). Such a mechanism
should preferably be reactive to tra�c in order to minimize the overhead to
maintain the routing adjacency and focus on links that are actually being
used. Examples of reactive mechanisms that can be used include the "Neigh-
bor Unreachability Detection" mechanism and the �Layer 2 triggers� derived
from events such as association states and L2 acknowledgement.

4.10. OBJECTIVE FUNCTIONS 109

4.10 Objective Functions

An Objective Function (OF), in conjunction with routing metrics and con-
strains, allows for the selection of a DODAG to join, and a number of peers
in that DODAG as parents. The OF is used to compute an ordered list of
parents and is also responsible to compute the rank of the device within the
DODAG Version. The Objective function is indicated in the DIO message
using an Objective Code Point (OCP) and is expected to follow the same
abstract behavior at a node:

• The parent selection is triggered each time an event indicates that a
potential next hop information is updated, which might happen upon
the reception of a DIO message, a timer elapse, all DODAG parents
are unavailable or a trigger indicating that the state of a candidate
neighbor has changed.

• An OF scans all the candidate neighbors on all the possible interfaces
of the node to check whether they can act as a router for a DODAG.

• An OF computes the rank of a node for comparison by adding to the
rank of the candidate a value representing the relative locations of the
node and the candidate in the DODAG version.

• As it scans all the candidate neighbors, the OF keeps the current best
parent and compares its capabilities with the current candidate neigh-
bor. The OF de�nes a number of tests that are critical to reach the
objective.

• When the scan is complete, the preferred parent is elected and the
node's rank is computed as the preferred parent rank plus the step in
rank with that parent.

4.11 Initialization Mode

Any operations and parameters should be con�gured or negotiated dynam-
ically rather than manually. This is especially valid in LoWPAN where the
number of devices may be large and manual con�guration is infeasible. This
has been taken into account in the design of RPL whereby the DODAG root
provides a number of parameters to the devices joining the potential sources
of miscon�guration.
When a node is �rst powered up, the node may decide to stay silent, waiting

110 CHAPTER 4. RPL ROUTING PROTOCOL

to receive DIO messages from DODAG of interest and not send any multi-
cast DIO messages until it has joined a DODAG, or may decide to send one
or more DIS messages as an initial probe for nearby DODAGs and in the
absence of DIO messages in reply after some con�gurable period of time, the
node may decide to root a �oating DODAG and start sending multicast DIO
messages.

Chapter 5
A Multi-Hop WSN implementation

with ContikiRPL

5.1 Introduction

Di�erent prototypes of waste basket �lling level sensors were tested in order
to compare the precision and the overall complexity of the system. The �lling
level data, collected at �xed time intervals, were then transmitted through a
radio transmitter and, for all the prototypes, the ICradio Stick 2.4G and the
ICradio Module 2.4G were used for the transmission (Figure 5.1).
The ICradio Stick 2.4G is a compact USB-dongle, speci�ed for IEEE 802.15.4/Zig-
Bee network applications. It is based on the AVR ATmega1281 controller
and the AT86RF230 2.4GHz radio chip from Atmel. The ICradio Module
2.4G is a compact and �exible to use radio, speci�ed for IEEE 802.15.4/Zig-
Bee network applications. It's excellent for evaluation purposes, since most
of the IO-pins of the ATmega128 are accessible on pinheads. It is based
on the AVR ATmega1281 controller and the AT86RF230 2.4GHz radio chip
from Atmel.

The Operative System chosen was Contiki OS 2.5, which is fully compat-
ible with the AVR platform. Unfortunately, the ATmega 1281 controller and
the AT86RF230 radio chip were never been ported on Contiki, so it was neces-
sary to create a new platform speci�cally for this module. A new Contiki plat-
form was created starting from the AVR-Zigbit platform and the AVR-Raven
platform. A new folder was created: /Contiki/platform/avr−icm230_12/
and some changes were also made in the /Contiki/cpu/avr/radio/rf230bbfiles
in order to use correctly the radiotransmitter of the Atmel Atmega 1281 Mod-
ules and USB Sticks.

111

112CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

Figure 5.1: a) ICradio Stick 2.4G; b) ICradio Module 2.4G

5.2 Hello World example

"Hello world" is the �rst example that has been tried. First, the source code
was compiled for the new platform that was created:

$ cd examples/hello world

$ make TARGET=avr -icm230_12 hello -world.hex

The .hex output �le was then USB-�ashed on the module with a propri-
etary software, ICload (Figure 5.2)

Figure 5.2: ICradio Module �hello world� �ash upload

5.3. IPV6 UDP SENDER & RECEIVER 113

With a software named HTerm it was possible to read the serial line
output after the setup of some parameters like the COM port and the baud
rate (in this case the baud rate was chosen to 57600) as shown in Figure 5.3.

Figure 5.3: Serial line output of the Hello World example with HTerm

5.3 IPv6 Udp Sender & Receiver

With this example it was possible to send from the "udp-client" module an
UDP string to the "udp-server" and to get an answer back when the packet
was successfully received.

$ cd examples/udp -ipv6/

$ make TARGET=avr -icm230_12 udp -server.hex udp -client.hex

It is important to note that in the source code it was necessary to set the
client/server IPv6 address and communication port.

// Thi s i s the udp−c l i e n t s ou r c e code .
// The d e s t i n a t i o n add r e s s f o l l o w s :
#e l s e

// u ip_ip6addr (ipaddr , 0 x fe80 , 0 , 0 , 0 , 0 x6466 , 0 x9999 , 0 x9999 , 0 x6666) ;
u ip_ip6addr (ipaddr , 0 xbbbb , 0 , 0 , 0 , 0 x0011 , 0 x13 f f , 0 x fe00 , 0 x1101) ;

#end i f /∗ UDP_CONNECTION_ADDR ∗/

114CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

From the serial line output it was possible to read the messages exchange:

Figure 5.4: Serial line output of the UDP client and server

5.3. IPV6 UDP SENDER & RECEIVER 115

With a 802.15.4 USB Stick and a software called Wireless Protocol An-
alyzer it was possible to sni� the packets in a speci�c channel (in this case,
channel 25 was used) as shown in the �gure below.

116CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.4 RPL Collect: Compiling Sink node & Sender

node

In this example each node was sending sensor data to a speci�c sink node.
The source code had to be modi�ed in order to set the sender/sink IPv6
address and communication port and then compiled.

$ cd examples/ipv6/rpl -collect

$ make TARGET=avr -icm230_12 udp -sink.hex udp -sender.hex

The RPL Debug Messages are useful to understand the topology forma-
tion of the network. It was possible to enable them in the �le /Contiki/core/net/rpl/rpl−
icmp6.c

//#d e f i n e DEBUG DEBUG_NONE
#def ine DEBUG DEBUG_FULL

With the following command it was possible to check the memory usage
of the hex �le:

$ avr -size -C udp -sink.avr -icm230_12

AVR Memory Usage

Device: Unknown

Program: 51448 bytes

(.text + .data + .bootloader)

Data: 4476 bytes

(.data + .bss + .noinit)

EEPROM: 8 bytes

(. eeprom)

In case the sender node was going to be a leaf node, it wass possible
to enable a �ag to change the RPL ranking calculation and force it to have
always in�nite rank in order to reduce the power consumption. The �ag which
has to be enabled is in the �le /Contiki/platform/avr−icm23012/contiki−
conf.h as follows:

RPL_CONF_LEAF_NODE 1

It was also necessary to edit part of the /Contiki/core/net/rpl/rpl −
dag.c source code. The di�erences between the original rpl-dag.c �le and the
edited �le, obtained with the diff linux command follows:

5.4. RPL COLLECT: COMPILING SINK NODE & SENDER NODE 117

d i f f −−g i t co r e / net / r p l / r p l−dag . c co r e / net / r p l / r p l−dag . c i ndex 09
b900a . . 0 2 cceb8 100644

−−− co r e / net / r p l / r p l−dag . c
+++ co r e / net / r p l / r p l−dag . c
@@ −373 ,6 +373 ,7 @@

/∗ Update the DAG rank , s i n c e l i n k− l a y e r i n f o rma t i o n may have
changed the l o c a l c o n f i d e n c e . ∗/

+#i f !RPL_CONF_LEAF_NODE
dag−>rank = dag−>of−>ca l c u l a t e_ r ank (best , 0) ;

i f (dag−>rank < dag−>min_rank) {
dag−>min_rank = dag−>rank ;

@@ −383 ,6 +384 ,7 @@
remove_parents (dag , 0) ;
return NULL ;

}
+#en d i f /∗ !RPL_CONF_LEAF_NODE ∗/

return be s t ;
}

@@ −517 ,8 +519 ,10 @@
/∗ copy p r e f i x i n f o rma t i o n i n t o the dag ∗/
memcpy(&dag−>p r e f i x_ i n f o , &dio−>p r e f i x_ i n f o , s i z eo f (

r p l_p r e f i x_ t)) ;

+#i f !RPL_CONF_LEAF_NODE
dag−>rank = dag−>of−>ca l c u l a t e_ r ank (p , d io−>rank) ;
dag−>min_rank = dag−>rank ; /∗ So f a r t h i s i s the l owe s t rank we

know o f . ∗/
+#end i f /∗ !RPL_CONF_LEAF_NODE ∗/

PRINTF("RPL : Jo ined DAG wi th i n s t a n c e ID %u , rank %hu , DAG ID "
,
d io−>ins tance_ id , dag−>rank) ;

@@ −555 ,8 +559 ,10 @@
dag−>rank = INFINITE_RANK ;

} e l s e {
rp l_se t_de f au l t_rou t e (dag , from) ;

+#i f !RPL_CONF_LEAF_NODE
dag−>rank = dag−>of−>ca l c u l a t e_ r ank (NULL , d io−>rank) ;

dag−>min_rank = dag−>rank ;
+#en d i f /∗ !RPL_CONF_LEAF_NODE ∗/

rp l_re se t_d io_t ime r (dag , 1) ;
i f (should_send_dao (dag , d io , p)) {
rp l_schedu le_dao (dag) ;

@@ −637 ,6 +643 ,7 @@
return 1 ;

}

118CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

+#i f !RPL_CONF_LEAF_NODE
i f (DAG_RANK(old_rank , dag) != DAG_RANK(dag−>rank , dag)) {
i f (dag−>rank < dag−>min_rank) {
dag−>min_rank = dag−>rank ;

@@ −656 ,6 +663 ,7 @@
from the cho i c e o f i t as a pa r en t would be too h igh . ∗/

return 0 ;
}

+#en d i f /∗ !RPL_CONF_LEAF_NODE ∗/

return 1 ;
}

5.4. RPL COLLECT: COMPILING SINK NODE & SENDER NODE 119

The serial line output and the Wireless Protocol Analyzer are useful to
see how the RPL is working, as shown in the following two �gures:

120CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.5. RPL BORDER ROUTER 121

5.5 RPL Border Router

An Atmel AVR Raven USB Stick (also known as Jackdaw) was used as a
Border Router, following the Contiki-Wiki con�guration tutorial.

Figure 5.5: Atmel AVR Raven USB Stick

The AVR Raven USB Stick is normally a repeater with minimal IPv6 rou-
tines implemented via fakeuip.c, but RPL can be added by including the full
uIPv6 stack in the make�le /Contiki/examples/ravenusbstick/Makefile.ravenusbstick

#CONTIKI_NO_NET=1
UIP_CONF_IPV6=1

The �rmware had to be compiled and �ashed in the Jackdaw Stick. A
linux application named dfu-programmer was used:

$ cd examples/ravensubstik

$ make

$ sudo dfu -programmer at90usb1287 erase

$ sudo dfu -programmer at90usb1287 flash ravenusbstick.hex

$ sudo dfu -programmer at90usb1287 start

In order to turn on the Border router, a make start command was neces-
sary:

$ cd examples/ravenusbstick/

$ sudo dfu -programmer at90usb1287 start

By default, RNDIS does the IPv6 address resolution protocol of Neighbor
Solicitation/Neighbor Advertisement, and RPL doesn't support link-layer
NS/NA broadcasts. Without a NA response, RNDIS will not send any IPv6
addressed packets. Although the Jackdaw could trap the NS and construct
a NA reply, it was simple to disable NS/NA on the Linux RNDIS interface:

$ ifconfig usb0 -arp

$ ip -6 address add bbbb::0/64 dev usb0

122CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

Once the Border Router was turned on, it was possible to ping the inter-
face at the address bbbb::1, the border router at the address bbbb::200 and
every neighbor node at its IPv6 address

$ ping6 bbbb::1

PING bbbb::1(bbbb::1) 56 data bytes

64 bytes from bbbb::1: icmp_seq =1 ttl=64 time =0.103 ms

64 bytes from bbbb::1: icmp_seq =2 ttl=64 time =0.033 ms

64 bytes from bbbb::1: icmp_seq =3 ttl=64 time =0.032 ms

64 bytes from bbbb::1: icmp_seq =4 ttl=64 time =0.030 ms

$ ping6 bbbb::200

PING bbbb::200(bbbb::200) 56 data bytes

64 bytes from bbbb::200: icmp_seq =1 ttl=64 time =4.11 ms

64 bytes from bbbb::200: icmp_seq =2 ttl=64 time =10.2 ms

64 bytes from bbbb::200: icmp_seq =3 ttl=64 time =10.0 ms

64 bytes from bbbb::200: icmp_seq =4 ttl=64 time =6.93 ms

$ ping6 bbbb::11:13ff:fe00:5

PING bbbb::11:13ff:fe00:5(bbbb::11:13ff:fe00:5) 56 data

bytes

64 bytes from bbbb::11:13ff:fe00:5: icmp_seq =2 ttl=63

time =30.7 ms

64 bytes from bbbb::11:13ff:fe00:5: icmp_seq =3 ttl=63

time =27.5 ms

64 bytes from bbbb::11:13ff:fe00:5: icmp_seq =4 ttl=63

time =25.5 ms

64 bytes from bbbb::11:13ff:fe00:5: icmp_seq =5 ttl=63

time =23.5 ms

5.5. RPL BORDER ROUTER 123

With the help of an application named Wireshark it was possible to an-
alyze the packets during the ping session (Figure 5.6):

Figure 5.6: Wireshark interface - Ping command

Through the debug console output it was possible to get some information
about the Jackdaw Border router and the neighbors available. First of all
it was necessary to connect with applications like Putty or CU (which was
used in this case). In this case CU was used with the following command:

$ cu -l /dev/ttyACM0 --nostop -s57600

124CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

By pressing the key h or the key ? it was possible to view the Jackdaw
RPL Border Menu

∗∗∗∗∗∗∗∗∗∗∗ Jackdaw Menu ∗∗∗∗∗∗∗∗
∗ [B u i l t Aug 31 2011] ∗
∗ m Pr i n t c u r r e n t mode ∗
∗ s Set to s n i f f e r mode ∗
∗ n Set to network mode ∗
∗ c Set RF channe l ∗
∗ p Set RF power ∗
∗ 6 Toggle 6LoWPAN ∗
∗ r Toggle raw mode ∗
∗ d Toggle RS232 output ∗
∗ S Enab le s n e e z e r mode ∗
∗ N RPL Ne ighbor s ∗
∗ G RPL G loba l Repa i r ∗
∗ e Energy Scan ∗
∗ D Switch to DFU mode ∗
∗ R Reset (v i a WDT) ∗
∗ h , ? P r i n t t h i s menu ∗
∗ ∗
∗ Fraunho fhe r Fokus I n s t i t u t e ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The key m gives the possibility to see some useful information about the
Jackdaw Border Router:

Cu r r e n t l y Jackdaw :
∗ Wi l l send data ove r RF
∗ Wi l l change l i n k− l o c a l a d d r e s s e s i n s i d e IP messages
∗ Wi l l decompress 6LoWPAN heade r s
∗ Wi l l not Output raw 802 . 15 . 4 f rames
∗ Wi l l Output RS232 debug s t r i n g s
∗ USB Ethe rn e t MAC: 0 2 : 1 2 : 1 3 : 1 4 : 1 5 : 1 6
∗ 802 . 15 . 4 EUI−64: 0 2 : 1 2 : 1 3 : f f : f e : 1 4 : 1 5 : 1 6
∗ Operates on channe l 26 wi th TX power +3.0dBm
∗ Cur r en t / Las t / Sma l l e s t RSSI : −88/−88/−91dBm
∗ Con f i g u r a t i o n : 129 , USB<−>ETH i s a c t i v e
∗ Never−used s t a c k > 800 by t e s

The key e performs the energy scan in the sixteen 2.4 GHz ISM Band
channels, which is useful to choose the best channel available:

Energy Scan :
.
11 : −80dB #########:::
12 : −74dB #################:
13 : −74dB ##################
14 : −80dB ############
15 : −92dB

5.5. RPL BORDER ROUTER 125

16 : −83dB : : : : : : : : :
17 : −83dB : : : : : : : : :
18 : −74dB : : : : : : : : : : : : : : : : : :
19 : −56dB ####################################
20 : −47dB ###
21 : −47dB ###
22 : −59dB #################################
23 : −71dB ###################::
24 : −59dB #################################
25 : −59dB #################################
26 : −80dB ###########:

Done .

The key N gives the possibility to see the neighbors and routes of the
Border Router:

Addre s s e s [4 max]
bbbb : : 2 0 0
f e80 : : 1 2 : 1 3 f f : f e14 :1516

Ne ighbor s [3 max]
f e80 : : 1 1 : 1 3 f f : f e00 : 9
f e80 : : 1 1 : 1 3 f f : f e00 : 3
f e80 : : 1 1 : 1 3 f f : f e00 : 5

Routes [3 max]
bbbb : : 1 1 : 1 3 f f : f e00 :3/128 (v i a f e80 : : 1 1 : 1 3 f f : f e00 : 3)
bbbb : : 1 1 : 1 3 f f : f e00 :9/128 (v i a f e80 : : 1 1 : 1 3 f f : f e00 : 5)
bbbb : : 1 1 : 1 3 f f : f e00 :5/128 (v i a f e80 : : 1 1 : 1 3 f f : f e00 : 5)

It is important to note that it is possible to reach and ping the node 9
(bbbb::11:13�:fe00:9) with a multi-hop transmission through the node 5(bbbb::11:13�:fe00:5).

If one of the neighbors runs a webserver, the border router allows the
access to it through its IPv6 address. The Contiki Webserver-nano interface
is shown in the �gure below:

126CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

It is possible to check the packets that goes in and out the AVR Raven
USB Stick with a very high level of protocol details with Wireshark on the
usb0 interface (Figure 5.7 and 5.8):

Figure 5.7: Wireshark output during a webserver index request

5.5. RPL BORDER ROUTER 127

Figure 5.8: Wireshark output - HTTP packet details

128CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.6 Multi-hop UDP - RPL Collect

The RPL-Collect example was used in order to test the multi-hop packet
transmission in an 6LoWPAN network. Node 2 (address bbbb::2) runs the
udp-sink.c code, while nodes 3, 5, 8 and 9 (addressesbbbb::11:13�:fe00:X,
where X is the node number)run the udp-sender.c code. The node location
in the Fraunhofer FOKUS department is shown in Figure 5.9.

Figure 5.9: RPL Collect multi-hop transmission: �rst test at the Fraunhofer
FOKUS department

The serial line output of the sink node (from now simply node 2, from its
address fe80::11:13�:fe00:2), with the RPL debug messages enabled, follows:

∗∗∗∗∗∗∗∗BOOTING CONTIKI∗∗∗∗∗∗∗∗∗
OSCAL : a :128 b :128
I am s i n k !
System o n l i n e .
UDP s e r v e r s t a r t e d
c r e a t e d a new RPL dag
Se r v e r IPv6 add r e s s e s : : :
bbbb : : 2
f e80 : : 1 1 : 1 3 f f : f e00 : 2
Created a s e r v e r c onne c t i on wi th remote add r e s s : : l o c a l / remote

po r t 5688/8775
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256

5.6. MULTI-HOP UDP - RPL COLLECT 129

Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIS from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Mu l t i c a s t DIS => r e s e t DIO t ime r
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Ne ighbor added to ne i ghbo r cache f e80 : : 1 1 : 1 3 f f : f e00 : 3 ,

0 2 : 1 1 : 1 3 : f f : f e : 0 0 : 0 0 : 0 3
RPL : Incoming DIO rank 1536
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 640
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DAO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : DAO l i f e t i m e : 255 , p r e f i x l e n g t h : 128 p r e f i x : bbbb : : 1 1 : 1 3 f f :

f e00 : 3
RPL : Added a r ou t e to bbbb : : 1 1 : 1 3 f f : f e00 :3/128 v i a f e80 : : 1 1 : 1 3 f f :

f e00 : 3
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 512
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 128
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 8
RPL : Ne ighbor added to ne i ghbo r cache f e80 : : 1 1 : 1 3 f f : f e00 : 8 ,

0 2 : 1 1 : 1 3 : f f : f e : 0 0 : 0 0 : 0 8
RPL : Incoming DIO rank 1792
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 768
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
Rece i v ed an RPL c o n t r o l message

130CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 512
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 128
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 8
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 768
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 256
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 512
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 128
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 256
SENSOR DATA: 1314370348697 30 0 134 0 3 1 1 0 22 14617 0 0 0 0 0

512 8 512 2 131 0 0 0 0 0 0 0 0 0 0
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 3
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 512
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 128
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535

5.6. MULTI-HOP UDP - RPL COLLECT 131

RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n
RPL : Ne ighbor f e80 : : 1 1 : 1 3 f f : f e00 : 3 i s known . ETX = 1
SENSOR DATA: 1314370362957 30 0 149 0 8 1 2 0 22 14617 0 0 0 0 0

768 8 768 2 131 0 0 0 0 0 0 0 0 0 0
SENSOR DATA: 1314370369985 30 0 156 0 3 2 1 0 22 17306 0 0 0 0 0

512 8 512 2 131 0 0 0 0 0 0 0 0 0 0
SENSOR DATA: 1314370377017 30 0 163 0 5 1 3 0 22 14617 0 0 0 0 0

2048 8 1024 1 131 0 0 0 0 0 0 0 0 0 0
SENSOR DATA: 1314370384045 30 0 170 0 8 2 2 0 22 17306 0 0 0 0 0

768 8 768 2 131 0 0 0 0 0 0 0 0 0 0
SENSOR DATA: 1314370398077 30 0 184 0 5 2 3 0 22 17306 0 0 0 0 0

2048 8 1024 1 131 0 0 0 0 0 0 0 0 0 0
SENSOR DATA: 1314370446113 30 0 233 0 3 3 1 0 22 26825 0 0 0 0 0

512 8 512 2 262 0 0 0 0 0 0 0 0 0 0

Multi-hop Messages: node 5 (fe80::11:13�:fe00:5) receives the RPL mes-
sages and the packets from node 9 and forwards them to node 8. This is
visible from the RPL debug messages of node 5.

RPL : Send ing p r e f i x i n f o i n DIO f o r bbbb : :
RPL : Send ing a mu l t i c a s t−DIO with rank 768
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DAO from fe80 : : 1 1 : 1 3 f f : f e00 : 9
RPL : DAO l i f e t i m e : 255 , p r e f i x l e n g t h : 128 p r e f i x : bbbb : : 1 1 : 1 3 f f :

f e00 : 9
RPL : Forward ing DAO to pa r en t f e80 : : 1 1 : 1 3 f f : f e00 : 8
Rece i v ed an RPL c o n t r o l message
RPL : Rece i v ed a DIO from fe80 : : 1 1 : 1 3 f f : f e00 : 9
RPL : Ne ighbor a l r e a d y i n ne i ghbo r cache
RPL : Incoming DIO rank 1024
RPL : DIO subop t i on 2 , l e n g t h : 6
RPL : DAG MC: type 7 , f l a g s 8 , aggr 0 , p r e c 0 , l e n g t h 2 , ETX 384
RPL : DIO subop t i on 4 , l e n g t h : 14
RPL : DIO Conf : db l =8, min=12 red=10 maxinc=768 min inc=256 ocp=1

d_l=255 l_u=65535
RPL : DIO subop t i on 8 , l e n g t h : 30
RPL : Copying p r e f i x i n f o rma t i o n

132CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.6.1 Collect View

In order to view information about the packets transmitted, the number of
hops, the beacon interval and many others, a Java application named Collect-
View is available. It was �rstly tested with the RPL-collect example showed
in the previous section.

$ cd tools/collect -view/

$ ant

$ cd dist/

$ java -jar collect -view.jar /dev/ttyUSB0

In the Figure 5.10, the number of hops are shown for each node connected
to the Sink, in this case Node 2 (which is connected through the USB0 linux
interface to the collect-view application)

Figure 5.10: Collect View Interface: Network Hops per node with the RPL
Collect example

5.6. MULTI-HOP UDP - RPL COLLECT 133

(a) Network Hops per Node

(b) Neighbor Count over time

As it is possible to see in the Figure b, node 5 increases its neighbors from
one (node 8) to two (node 8 and node 9), while node 8 increases the number
of neighbors from two (node 3 and node 5) to three (node 3, 5 and 9).

134CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.7 Multi-hop WSN for Outsmart: Sensor data

collection

5.7.1 Level of fullness detection

The possibility to have information about the level of fullness of every single
public waste basket is very attractive and leads to many possible improve-
ment in the waste management in big cities. The way to have a precise
estimate about the level of fullness is, on the other hand, not that imme-
diate. The idea of using a weight sensor in order to detect if the weight is
larger than a certain threshold is not accurate enough because the weight
is not always proportional to the occupied volume. The waste bin, in fact,
could be completely full of light objects like paper or empty plastic bottles,
as well as the waste basked could be almost empty but at the same time
containing an heavy full bottle or some other heavy but small objects.
One of the �rst techniques implemented and tested in the Fraunhofer FOKUS
Laboratories was using the principle of light re�ection through di�erent bar-
riers located at di�erent levels of height in the waste bin (Figure 5.11).

Figure 5.11: Light re�ection technique

This technique was presenting several disadvantages: �rst of all many
sensors were necessary, which makes this solution expensive. Secondly, this
technology was presenting problems with transparent materials because the
light was passing through the object; the space occupied by the transparent

5.7. MULTI-HOPWSN FOROUTSMART: SENSORDATA COLLECTION135

object was therefore not detected leading to an unacceptable level of fullness
detection error. Moreover, when an object with a big surface (for example
a newspaper) was placed inside the waste bin, it was activating many light
barriers at the same time even if it was not occupying all the space detected
by the sensors. A possible solution could be to place more sensor per level,
which point in di�erent directions. This would make the technology even
more expensive and would be necessary to place even more cables inside the
waste bin.

The second technique considered was the laser triangulation (Figure 5.12),
which was characterized by the advantage of the presence of only one sensor
on top of the waste bin, but also by the same disadvantage of the light sensor:
the problems presented with the transparent materials.

Figure 5.12: Laser triangulation technique

The third sensor used was an ultrasonic sensor (Figure 5.13), which uses
the re�ection of high frequency (above 18KHz) sound waves to detect parts
or distances to the parts. These sensors calculate the time interval between
sending the signal and receiving the echo in order to determine the distance
to an object.

The distance was therefore calculated as d = 1
2
txv, where v is the speed

of sound (343.2 m/s) and tx is the time interval. One of the advantages of ul-
trasonic sensors is the use sound rather than light for detection, which allows
these sensors to work in applications where photoelectric sensors may not suc-

136CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

Figure 5.13: Ultrasonic sensor technique

ceed. Ultrasonic sensors are solution not only for clear object detection, but
also for liquid level measurement applications, where photo-electrics struggle
with because of the target translucence. Objects' color and re�ectivity don't
a�ect ultrasonic sensors which are able to operate reliably in high-glare en-
vironments. The ability to work in dark environments and the simple data
processing in comparison with other sensors allows the ultrasonic sensor not
only to extract the object information regardless to the kind of object, but
also to recognize the type of object independently from the traslation and/or
the rotation.

It is important to take into account the non-sensitive zone and the uncer-
tainty zone, where the non-sensitive zone is the interval between the surface
of the sensor head and the minimum detection distance resulting from de-
tection distance adjustment. The uncertainty zone is the area close to the
sensor where detection is not possible due to the sensor head con�guration
and reverberations. Anyway the detection may occur in the uncertainty zone
due to multi-re�ection between the sensor and the object. Another problem
which is important to deal with is the fact that di�erent materials, for exam-
ple soft and hard materials, re�ect ultrasonic way very di�erently, leading to
some potential errors in the detection of the level of fullness.

An ad-hoc software was created to remotely control the level of fullness
for every single waste basket and was then integrated with Open Street Map
(www.openstreetmap.org) , a website which provides a free editable map of
the World, as shown in Figure 5.14.

5.7. MULTI-HOPWSN FOROUTSMART: SENSORDATA COLLECTION137

(a) Waste basket nearly empty

(b) Waste basket full

Figure 5.14: Waste Basket level of fullnes interface with OpenMap

138CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

5.7.2 Multi-Hop Sensor Network Tests

In the �rst test, node 3 was running the Ultrasonic sensor detector code, while
node 8 was running the RPL-Collect udp-sender.c code and was used for
packet forwarding in order to test the multi-hop network. The node location
in the Fraunhofer FOKUS department is shown in Figure 5.15, where the
waste basket is indicated with a green dot.

Figure 5.15: Multi-Hop sensor data collection - �rst experiment node location

The goal of this test was to see if the detected distance (which means
the �ll level of the waste basket) was transmitted to the sink node with a
multi-hop transmission through node 8.

The .C code of the software running on the node equipped with the ul-
trasonic sensor can be found on Appendix 1.

5.7. MULTI-HOPWSN FOROUTSMART: SENSORDATA COLLECTION139

The serial line output of the sensor node (node 3) and the sink node (node
2) follows.

Figure 5.16: Multi-Hop sensor data collection - �rst experiment serial line
output

As it is possible to see the distance, which represents the �lling level of
the waste bin, is periodically detected by the sensor and is then transmitted
to the sink node through a multi-hop network.

140CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

In the second test, the reliability of the sensor data collection is studied
when one or more nodes of the network are not available anymore and thus
the network topology changes.

Figure 5.17: Multi-Hop sensor data collection - second experiment node lo-
cation

First, a network with nodes 9 => 2<= 6 <= 8 <= 3 <= 7 is formed, as
shown in Figure 5.17. Then, node 6 is disconnected: node 8 transmits directly
to node 2 instead of using node 6 for a multi-hop transmission (Figure 5.18).

Figure 5.18: Multi-Hop sensor data collection - second experiment

5.7. MULTI-HOPWSN FOROUTSMART: SENSORDATA COLLECTION141

(a) Sensor Map before(left) and after (right) the disappearance of node 6

(b) Number of Hops: only node 8 reduces its hops from 2 to 1

142CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

Node 8 transmits now the packets directly to node 2, therefore the number
of hops decreases from 2 to 1. On the other hand node 7 doesn't change the
number of hops because its packets were transmitted before through node 3
and 6 to node 2, while now they're transmitted through nodes 3 and 8 to
node 2.

The number of neighbors of node 8 increases by one (node 3) when node
6 is not available anymore.

5.7. MULTI-HOPWSN FOROUTSMART: SENSORDATA COLLECTION143

The serial line output of the sensor node and of the sink node follows:

144CHAPTER 5. AMULTI-HOPWSN IMPLEMENTATIONWITH CONTIKIRPL

Chapter 6
Conclusions and future

implementations

After a platform creation and a set of examples used in order to get familiar
with the Contiki Operative System, its �le system and compilation, its serial
line output and its behavior with the RPL routing protocol, with the help
of the Collect View graphical interface a multi-hop 6LoWPAN transmission
system was tested and then applied to the Outsmart Waste Management
project. In particular, an ultrasonic sensor was used to evaluate the �lling
level of the waste basket every 30 seconds (the optimal time interval be-
tween the data collection has still to be analyzed), and the sensed data were
transmitted through many hops to a sink node, which was displaying them
through the serial line output. The transmission system has shown reliability
and fast auto-con�guration features, also in case of non-availability of one of
the nodes.
One of the implementations that has to be made is the choice of the behavior
of the sink node, which could be equipped for example with a bigger storage
memory and could collect the data and transmit them only when a waste
collection vehicle is in the nearby, in order to inform the vehicle about which
waste basket needs to be emptied. Another approach could be to place side
by side to the sink node a border router, which could periodically transmit
the data collected from a speci�c area to a central server connected through
the internet, allowing the company in charge to manage the waste collection
(in this case the BSR company) to have a real-time global vision of the �lling
level of every single waste basket. In this way, it would be possible to organize
in advance the waste collection route plan, in order to save time, gasoline
and pollution, but also to have a big improvement in the city cleanness.
The choice of an IPv6 enabled open source Operative System was made to

145

146CHAPTER 6. CONCLUSIONS AND FUTURE IMPLEMENTATIONS

reduce the implementation cost of the wireless sensor network and to bring
the "Internet of Things" vision behind the 6LoWPAN to a real wireless sen-
sor network system which has the possibility to improve not only the quality
of the waste management, but also the quality of life of the citizens and of
the tourists of a city like Berlin.

Chapter 7
Appendix

#inc lude " c o n t i k i . h"
#inc lude " c o n t i k i− l i b . h"
#inc lude " c o n t i k i−net . h"
#inc lude " ic_module_twi . h"
#inc lude <u t i l / d e l a y . h>
#inc lude <s t r i n g . h>

#def ine DEBUG DEBUG_PRINT
#inc lude " net / uip−debug . h"

#def ine SEND_INTERVAL 15 ∗ CLOCK_SECOND
#def ine MAX_PAYLOAD_LEN 40

// ∗∗∗∗∗∗∗∗∗ my debugs ∗∗∗∗∗∗∗∗∗∗∗
#def ine DEBUG_MEASUREMENT_RESULTS 0

// ∗∗∗∗∗∗∗∗∗ my d e f i n e s ∗∗∗∗∗∗∗∗∗∗

#def ine API_ID ' b '
#def ine GARBAGE_CAN_ID 3
#def ine SRF02_WRITE_ADDRESS 0xE0
#def ine SRF02_READ_ADDRESS SRF02_WRITE_ADDRESS+1
#def ine SRF02_CM_MEASUREMENT 0x51
#def ine SRF02_IN_MEASUREMENT 0x50
#def ine SRF02_MS_MEASUREMENT 0x52
#def ine SRF02_AUTOTUNE_RESTART 0x60

// ∗∗∗∗∗∗∗∗ my g l o b a l v a r i a b l e s ∗∗∗∗∗∗∗

typedef s t ruc t {

147

148 CHAPTER 7. APPENDIX

u int8_t ap i_id ;
u int32_t garbage_can_id ;
u int8_t f i l l _ l e v e l ;
u int8_t data [1 2 0] ;

}__attribute__ ((__packed__)) api_data_t ;

api_data_t api_data = {
. ap i_id=API_ID ,
. garbage_can_id=GARBAGE_CAN_ID,

} ;
s t a t i c s t ruc t uip_udp_conn ∗ c l i e n t_conn ;

// ∗∗∗∗∗∗∗∗∗∗ my f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗

void tw i_e r r o r (u int8_t cnt , u int8_t exp_status) {

v o l a t i l e u int8_t s t a t u s = 0 ;
u int8_t cnt2 = 0 ;

PRINTF("\n%d . ERROR:\ n" , cnt) ;
f o r (cnt2 = 0 ; cnt2 <2; cnt2++)
{

i f (cnt==0){
PRINTF("Expeted S ta tu s : ") ;
s t a t u s=exp_status ;

}
e l s e {

PRINTF("\ nRece i ved S ta tu s : ") ;
s t a t u s=TWI_CURRENT_STATUS() ;

}
switch (s t a t u s)
{

case TWI_START_STATUS:
PRINTF("TWI_START_STATUS") ;
break ;

case TWI_REPSTART_STATUS:
PRINTF("TWI_REPSTART_STATUS") ;
break ;

case TWI_SLAW_ACK_STATUS:
PRINTF("TWI_SLAW_ACK_STATUS") ;
break ;

case TWI_SLAW_NACK_STATUS:
PRINTF("TWI_SLAW_NACK_STATUS") ;
break ;

case TWI_SLAR_ACK_STATUS:
PRINTF("TWI_SLAR_ACK_STATUS") ;

break ;
case TWI_SLAR_NACK_STATUS:

PRINTF("TWI_SLAR_NACK_STATUS") ;

149

break ;
case TWI_TXDATA_ACK_STATUS:

PRINTF("TWI_TXDATA_ACK_STATUS") ;
break ;

case TWI_TXDATA_NACK_STATUS:
PRINTF("TWI_TXDATA_NACK_STATUS") ;
break ;

case TWI_RXDATA_ACK_STATUS:
PRINTF("TWI_RXDATA_ACK_STATUS") ;
break ;

case TWI_RXDATA_NACK_STATUS:
PRINTF("TWI_RXDATA_NACK_STATUS") ;
break ;

case TWI_ARBLOST_STATUS:
PRINTF("TWI_ARBLOST_STATUS") ;
break ;

defau l t :
PRINTF("0x%X" , s t a t u s) ;
break ;

}
}
PRINTF("\n") ;
_delay_ms (100) ;

}

put_block (char ∗p , char l e n g t h)
{

char cnt = 0 ;
f o r (cnt ; cnt<l e n g t h ; cnt++){

putcha r (∗p) ;
p++;

}
}
/∗−−∗/
PROCESS(udp_c l i en t_proces s , "UDP c l i e n t p r o c e s s ") ;
AUTOSTART_PROCESSES(&udp_c l i en t_proce s s) ;
/∗−−∗/
s t a t i c void

t cp i p_hand l e r (void)
{
char ∗ s t r ;
i f (uip_newdata ()) {

s t r = uip_appdata ;
s t r [u ip_data l en ()] = ' \0 ' ;

p r i n t f ("Response from the s e r v e r : '%s '\ n" , s t r) ;
}

}
/∗−−∗/
s t a t i c void

150 CHAPTER 7. APPENDIX

t imeout_hand le r (void)
{
s t a t i c i n t seq_id ;
char buf [MAX_PAYLOAD_LEN] ;

p r i n t f (" C l i e n t s end i ng to : ") ;
PRINT6ADDR(&c l i en t_conn−>r i p a d d r) ;
// s p r i n t f (buf , " He l l o %d from the c l i e n t " , ++seq_id) ;
memcpy(buf , (u int8_t ∗)&api_data . api_id , 8) ;

p r i n t f (" (msg : ") ;
put_block (buf , 8) ;
p r i n t f (") \n") ;
uip_udp_packet_send (c l i en t_conn , buf , 8) ;

}
/∗−−∗/
s t a t i c void

p r i n t_ l o c a l_add r e s s e s (void)
{
i n t i ;
u int8_t s t a t e ;

PRINTF(" C l i e n t IPv6 a dd r e s s e s : ") ;
f o r (i = 0 ; i < UIP_DS6_ADDR_NB; i++) {
s t a t e = uip_ds6_i f . a d d r_ l i s t [i] . s t a t e ;
i f (u ip_ds6_i f . a d d r_ l i s t [i] . i s u s e d &&

(s t a t e == ADDR_TENTATIVE | | s t a t e == ADDR_PREFERRED)) {
PRINT6ADDR(&uip_ds6_if . a d d r_ l i s t [i] . i p add r) ;
PRINTF("\n") ;

}
}

}
/∗−−∗/
#i f UIP_CONF_ROUTER
s t a t i c void

s e t_g loba l_add r e s s (void)
{
u ip_ipaddr_t i p add r ;

u ip_ip6addr (& ipaddr , 0xbbbb , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
u ip_ds6_set_addr_i id(& ipaddr , &u i p_ l l a d d r) ;
uip_ds6_addr_add(& ipaddr , 0 , ADDR_AUTOCONF) ;

}
#end i f /∗ UIP_CONF_ROUTER ∗/
/∗−−∗/
s t a t i c void

s e t_connec t i on_addre s s (u ip_ipaddr_t ∗ i p a dd r)
{

151

#def ine _QUOTEME(x) #x
#def ine QUOTEME(x) _QUOTEME(x)
#i f d e f UDP_CONNECTION_ADDR
i f (u i p l i b_ i p add r c on v (QUOTEME(UDP_CONNECTION_ADDR) , i p add r) == 0)

{
PRINTF("UDP c l i e n t f a i l e d to pa r s e add r e s s '%s '\ n" , QUOTEME(

UDP_CONNECTION_ADDR)) ;
}

#e l i f UIP_CONF_ROUTER
// aaaa : : 2 1 2 : 7 4 0 4 : 4 : 4 0 4
u ip_ip6addr (ipaddr , 0 xbbbb , 0 , 0 , 0 , 0 , 0 , 0 , 2) ;

#el se

u ip_ip6addr (ipaddr , 0 x fe80 , 0 , 0 , 0 , 0 x6466 , 0 x6666 , 0 x6666 , 0 x6666) ;
#end i f /∗ UDP_CONNECTION_ADDR ∗/
}
/
/∗−−∗/
PROCESS_THREAD(udp_c l i en t_proces s , ev , data)
{
s t a t i c s t ruc t e t ime r e t ;

u int8_t r b y t e = 0 ;
u int8_t hbyte = 0 ;
u int8_t l b y t e = 0 ;
u int8_t cnt = 0 ;
u int8_t e r r o r = 0 ;
u int16_t d i s t a n c e = 0 ;
u int16_t m ind i s t an c e = 0 ;

u ip_ipaddr_t i p add r ;

PROCESS_BEGIN() ;
PRINTF("UDP c l i e n t p r o c e s s s t a r t e d \n") ;

#i f UIP_CONF_ROUTER
se t_g loba l_add r e s s () ;

#end i f

p r i n t_ l o c a l_add r e s s e s () ;

s e t_connec t i on_addre s s (& i padd r) ;

/∗ new connec t i on wi th remote hos t ∗/
c l i e n t_conn = udp_new(& ipaddr , UIP_HTONS(5688) , NULL) ;
udp_bind (c l i en t_conn , UIP_HTONS(8775)) ;

PRINTF(" Created a connec t i on wi th the s e r v e r ") ;
PRINT6ADDR(&c l i en t_conn−>r i p a d d r) ;
PRINTF(" l o c a l / remote po r t %u/%u\n" ,

UIP_HTONS(c l i en t_conn−>l p o r t) ,

152 CHAPTER 7. APPENDIX

UIP_HTONS(c l i en t_conn−>rp o r t)) ;
PRINTF(" tw i_ i n i t = %d\n" , tw i_ i n i t (F_CPU, 100000)) ;
PRINTF("TWBR = %d\n" , TWBR) ;
PRINTF("TWSR = 0x%X\n" , TWSR) ;
e t ime r_se t (&et , SEND_INTERVAL) ;
whi le (1) {
PROCESS_YIELD() ;

f o r (; ;) {
cnt = 0 ;

cnt++; i f (tw i_s t a r t () !=TWI_START_STATUS) { tw i_e r r o r (cnt ,
TWI_START_STATUS) ; continue ; }

cnt++; i f (twi_wbyte (SRF02_WRITE_ADDRESS) !=
TWI_SLAW_ACK_STATUS) { tw i_e r r o r (cnt ,TWI_SLAW_ACK_STATUS)
; continue ; }

cnt++; i f (twi_wbyte (0 x04) !=TWI_TXDATA_ACK_STATUS) { tw i_e r r o r
(cnt ,TWI_TXDATA_ACK_STATUS) ; continue ; }

cnt++; i f (tw i_s t a r t () !=TWI_REPSTART_STATUS) { tw i_e r r o r (cnt ,
TWI_REPSTART_STATUS) ; continue ; }

cnt++; i f (twi_wbyte (SRF02_READ_ADDRESS) !=
TWI_SLAR_ACK_STATUS) { tw i_e r r o r (cnt ,TWI_SLAR_ACK_STATUS)
; continue ; }

cnt++; i f (tw i_rbyte (&hbyte , 1) !=TWI_RXDATA_ACK_STATUS) {
tw i_e r r o r (cnt ,TWI_RXDATA_ACK_STATUS) ; continue ; }

cnt++; i f (tw i_rbyte (& lb y t e , 0) !=TWI_RXDATA_NACK_STATUS) {
tw i_e r r o r (cnt ,TWI_RXDATA_NACK_STATUS) ; continue ; }

TWI_STOP_SET() ;
m ind i s t an c e = (hbyte <<8) | l b y t e ;

#i f DEBUG_MEASUREMENT_RESULTS
PRINTF("minimum d i s t a n c e : %d cm\n" , m ind i s t an c e) ;

#end i f

cnt++; i f (tw i_s t a r t () !=TWI_START_STATUS) { tw i_e r r o r (cnt ,
TWI_START_STATUS) ; continue ; }

cnt++; i f (twi_wbyte (SRF02_WRITE_ADDRESS) !=
TWI_SLAW_ACK_STATUS) { tw i_e r r o r (cnt ,TWI_SLAW_ACK_STATUS)
; continue ; }

cnt++; i f (twi_wbyte (0 x00) !=TWI_TXDATA_ACK_STATUS) { tw i_e r r o r
(cnt ,TWI_TXDATA_ACK_STATUS) ; continue ; }

cnt++; i f (twi_wbyte (SRF02_CM_MEASUREMENT) !=
TWI_TXDATA_ACK_STATUS) { tw i_e r r o r (cnt ,
TWI_TXDATA_ACK_STATUS) ; continue ; }

TWI_STOP_SET() ;

_delay_ms (100) ;
cnt++; i f (tw i_s t a r t () !=TWI_START_STATUS) { tw i_e r r o r (cnt ,

TWI_START_STATUS) ; continue ; }

153

cnt++; i f (twi_wbyte (SRF02_WRITE_ADDRESS) !=
TWI_SLAW_ACK_STATUS) { tw i_e r r o r (cnt ,TWI_SLAW_ACK_STATUS)
; continue ; }

cnt++;
cnt++; i f (tw i_s t a r t () !=TWI_START_STATUS) { tw i_e r r o r (cnt ,

TWI_START_STATUS) ; continue ; }
cnt++; i f (twi_wbyte (SRF02_WRITE_ADDRESS) !=

TWI_SLAW_ACK_STATUS) { tw i_e r r o r (cnt ,TWI_SLAW_ACK_STATUS)
; continue ; }

cnt++; i f (twi_wbyte (0 x02) !=TWI_TXDATA_ACK_STATUS) { tw i_e r r o r
(cnt ,TWI_TXDATA_ACK_STATUS) ; continue ; }

i f (e t ime r_exp i r ed (&e t)) {
t imeout_hand le r () ;
e t im e r_ r e s t a r t (&e t) ;

} e l s e i f (ev == tcp ip_event) {
t cp i p_hand l e r () ;

}
}

PROCESS_END() ;
}

154 CHAPTER 7. APPENDIX

Bibliography

[1] Frequentznutzungplan, Bundesnetzadgentur. April 2008.

[2] Performance Analysis of Large-Scale Wireless Sensor Network Architec-
ture with Multi-Cluster Con�guration, M. Sugano, Y. Kiri and M. Mu-
rata. April 2008.

[3] A Performance Comparison of Di�erent Topologies for Wireless Sensor
Networks, Shrestha; Liudong Xing. University of Massachusetts Dart-
mouth, 2007

[4] Ultra-Low Energy Wireless Sensor Networks in Practice, M. Kuorilehto,
M. Kohvakka,J. Suhonen, Panu, Marko and Timo Hämäläinen. Tampere
University of Technology, Finland

[5] Wireless Sensor Networks-Architectures and Protocols, Edgar H. Call-
away, Jr.. Auerbach Publications; August 2003

[6] Power Aware Wireless Microsensor Systems, Chandrakasan, Min, Bhard-
waj, S. Cho, and Wang. Florence, Italy, September 2002

[7] IEEE 802.15.4 Standard for Information technology, (revision of IEEE
802.15.4-2003). 2006

[8] Analysis of the IEEE 802.15.4a Ultra Wide Band Physical Layer through
wireless sensor network simulations in Omnet++, M. Alberts. 2011-04-06

[9] ZigBee and Zigbee RF4CE Standard 09-5231, Zigbee Alliance. 2009

[10] ZigBee Cluster Library Speci�cation, Zigbee Alliance. May 2008

[11] Performance Analysis of IEEE 802.15.4 and ZigBee for Large-Scale
Wireless Sensor Network Application, M. Kuorilehto, M. Kohvakka, T.
Hämäläinen. Tampere University of Technology, Finland, 2006

156 BIBLIOGRAPHY

[12] 6LoWPAN: The Wireless Embedded Internet, Z. Shelby; C. Bormann.
Wiley, 2009

[13] 6LoWPAN implementation, The uIP TCP/IP stack,
(http://www.sics.se/ adam/contiki/docs-uipv6/a01109.html/pages.html).
Contiki Docs, Oct 2008

[14] Zigbee vs Z-Wave, (http://mobiledevdesign.com/hardware_news/zigbee_zwave_battle_1008).
Mobiledevdesign magazine, 2007

[15] Bluetooth Core V4.0 Speci�cation, Bluetooth Special Interest Group.
2010

[16] Extending the Near Field Communication Market Opportunity with
DASH7 Wireless Sensor Networking Technology, JP Norair, Pat Burns.
2010

[17] Contiki 2.x Reference Manual, JA Dunkels. 2007

[18] Rime, A Lightweight Layered Communication Stack for Sensor Net-
works, A. Dunkels. Swedish Institute of Computer Science

[19] ContikiRPL and TinyRPL: Happy Together, Ko , J. Eriksson , N.
Tsiftes , S. Haggerty ,A. Terzis , A. Dunkels and D. Culler. Apr 2011

[20] Rime, A Lightweight Layered Communication Stack for Sensor Net-
works, A. Dunkels. Jan 2007

[21] Low-Power Wireless IPv6 Routing with ContikiRPL, Tsiftes, J. Eriks-
son, A. Dunkels . Stockholm, Sweden, April 2010.

[22] Interconnecting Smart Objects with IP, The Next Internet, ean-Philippe
Vasseur , Adam Dunkels. 2010

[23] RPL: IPv6 Routing Protocol for Low Power and Lossy Networks, draft-
ietf-roll-rpl-19. 2011

[24] Atmel AVR ATmega1281/V, 8-bit Atmel Microcontroller with
64K/128K/256K Bytes In-System Programmable Flash, Atmel Corpo-
ration Datasheet. 2011

[25] ICradio Module 2.4G Datasheet, In-Circuit GmbH - http://www.ic-
board.de/data/datasheet/ICradio-Module24G_(english).pdf. Dresden
2009

	Introduction
	OUTSMART Project - The Berlin Cluster
	Research Goals

	Wireless Sensor Network Technologies
	The ISM Band
	Topologies
	Reliability
	Energy Efficency
	Scalability and self-organization
	Data latency

	Power Consumption and Duty Cycle
	IEEE 802.15.4 Standard
	IEEE 802.15.4 Protocol Standard
	Frame Format
	Security

	ZigBee
	Network Layer (NWK)
	Application Layer (APL)
	Energy consumption
	Security in ZigBee

	6LoWPAN
	6LoWPAN Network Architecture
	6LoWPAN Protocol Stack
	6LoWPAN packet format
	Addressing
	Header compression
	Fragmentation and reassembly
	Bootstrapping, Neighbor Discovery and Security
	Node, router and edge router operations
	Security in 6LoWPAN
	Mobility
	Routing
	Border Routing
	Application protocols

	IEEE 802.15.4a - Ultra Wide band
	IEEE 802.15.4a Frame Structure

	Wireless Hart

	Z-Wave
	Topology and Routing
	Security

	Bluetooth and Bluetooth Low Energy
	Bluetooth Low Energy

	Wavenis
	Wavenis Operation

	Dash7
	Relation between frequency and distance range
	Drawbacks of the 433MHz ISM Band

	Contiki Operative System 2.5
	System overview
	Kernel Architecture
	Events
	Processes
	Two level scheduling hierarchy
	Services
	Libraries
	Communication support
	The uIP TCP/IP stack
	RIME
	6LoWPAN Implementation
	Preemptive multi-threading
	Code size
	Contiki RPL

	RPL Routing Protocol
	Protocol Overview
	RPL Instances
	ICMPv6 RPL Control messages
	Sequence counter
	Upward routes
	Downward routes
	RPL Security
	Packet forwarding and loop avoidance
	Maintenance of routing adjacency
	Objective Functions
	Initialization Mode

	A Multi-Hop WSN implementation with ContikiRPL
	Introduction
	Hello World example
	IPv6 Udp Sender & Receiver
	RPL Collect: Compiling Sink node & Sender node
	RPL Border Router
	Multi-hop UDP - RPL Collect
	Collect View

	Multi-hop WSN for Outsmart: Sensor data collection
	Level of fullness detection
	Multi-Hop Sensor Network Tests

	Conclusions and future implementations
	Appendix
	Bibliography

