
Università degli Studi di Padova

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingeneria Informatica

tesi di laurea

3D modeling and visualization of
utility networks

Relatore: Ch.mo Prof. Massimo Rumor

Laureando: Francesco Dolcetto

24 ottobre 2011

Abstract

Most of the current 2D GIS representations are tied to the limits of the
GIS software tools used and are, more properly, simplifications of the real
aspects of the territory. The development of 3D GIS tools has brought to
life by the belief that the description of the reality and the analysis of the
phenomena that take place in it must be done in the proper dimensions.
In this way, it is possible to solve spatial problems non addressable in
2D. Moreover 3D representation can be used to communicate territorial
information to non experts in a immediate realistic way.

An important field of application of GIS software tools is the utility
networks management. Utility networks, such as water distribution net-
works or sewage networks, can take advantage from GIS representation for
data visualisation, query and management.

Existing software tools that support management and 3D visualisation
of utility networks are powerful but very expansive.

The aim of the project is to design a general network model that will
be used to model an utility network and to visualise it in 3D.

The general network model has been designed to be data source and
platform independent. It can take data from OGC standard compliant
data source like GeoDBMS and WFS Servers and can be enriched by a
user defined set of attributes, making it suitable for every network analysis
and management need.

On the top of the general network model has been designed a geometri-
cal model that transforms the general network model in a 3D model which
can be displayed using a WebGL graphic engine.

Using the general network model and the geometrical model has been
designed and developed a WebGL viewer that visualises the network model
over a DTM with a complete navigation system that allows a complete tour
of the scene and data query and editing.

Contents

Abstract

1 Introduction to 3D GIS 1
1.1 Geographic Information Systems 1
1.2 GIS for utility networks 2

2 Analysis of existing 3D GIS for utility networks 5
2.1 AutoCAD Map 3D . 5
2.2 Bentley MicroStation . 7

2.2.1 Bentley Electric & Gas 7
2.2.2 Bentley Fiber . 7
2.2.3 Bentley Water . 7

2.3 Advantages and dis-advantages of existing solutions 8

3 Requirement Analysis 11
3.1 User requirements . 12

3.1.1 User requirements use cases 13
3.2 Software requirement specification 17

3.2.1 Software requirements use cases 17

4 Development platform 21
4.1 Graph Libraries available for Java 22

4.1.1 JGraphT . 22
4.1.2 JUNG . 23

4.2 Topology library for Java 24
4.3 WebGL . 25

4.3.1 Introduction to WebGL 25
4.3.2 OpenGL ES 2.0 Pipeline Structure 26
4.3.3 Getting a WebGL Implementation 30
4.3.4 Security . 30
4.3.5 WebGL Frameworks 33

CONTENTS

4.4 Chosen development platform 36

5 Software design, development and test 39
5.1 Software life cycle . 40
5.2 Requirements analysis . 42

5.2.1 Object diagram . 42
5.2.2 State diagram . 42
5.2.3 System diagram . 44

5.3 Architectural Design . 45
5.3.1 Software architecture 46
5.3.2 Activity diagram 48
5.3.3 Class Diagrams . 48
5.3.4 Package diagram 52
5.3.5 Sequence diagrams 52

5.4 Development work-flow . 52
5.4.1 Project work-flow 57
5.4.2 Project JavaDoc 57

5.5 Software Testing . 57
5.5.1 Software metrics 58
5.5.2 Static code analysis 59
5.5.3 Code coverage . 60
5.5.4 Unit testing . 61

6 Results 63
6.1 System recommended requirements 64

6.1.1 Mozilla Firefox . 64
6.1.2 Chrome . 64

6.2 User control . 65
6.3 Screenshots . 65

7 Conclusions and future development 71

A Achronyms 73

Bibliography 74

List of Tables 77

List of Figures 78

Chapter 1

Introduction to 3D GIS

1.1 Geographic Information Systems

A Geographic Information System (GIS) is an organised collection of com-
puter hardware, software and geographic data designed to efficiently cap-
ture, store, update, manipulate analyse and display all forms of geogra-
phically referenced information.

In a more generic sense, a GIS is a tool that allows users to create
interactive queries, analyse the spatial information, edit data, maps and
present the result of all these operations.

Spatial features are stored in a coordinate system (latitude/longitude,
state plane, UTM, etc.), which references a particular place on Earth.
Descriptive attributes in a tabular form are associated with spatial features.
For example, in a GIS oriented to water utility networks, features could
be pipes and manholes. The fundamental components of spatial data in
a GIS are points, lines (arcs), and polygons. Spatial data and associated
attributes in the same coordinate system can then be layered together
for mapping and analysis. GIS can be used for scientific investigations,
resource management, and development planning.

GIS differs from CAD and other graphical computer applications in
that all spatial data are geographically referenced to a map projection in
a earth coordinate system. For the most part, spatial data can be re-
projected from one coordinate system into another, thus data from various
sources can be brought together into a common database and integrated
using GIS software. Boundaries of spatial features should register or align
properly when re-projected into the same coordinate system.

Another property of a GIS database is that it has topology, which de-
fines the spatial relationship between features. When such relationship

2 Introduction to 3D GIS

exists, it is possible to perform analysis on spatial data, such as modelling
the flow through connecting lines in a network, combining adjacent poly-
gons that have similar characteristics, and overlaying geographic features.

1.2 GIS for utility networks

The main features of a typical GIS software tool oriented to utility networks
are

• Visualization, query and search (navigate on the map, spatial search
for elements).

• Editing and update of data (query and edit alphanumeric attributes
of network elements).

• Creation of new network elements.

A desirable feature of such a software is the ability to run on multiple
platforms and environments, in particular inside an Internet browser.

Web-based GIS (WebGIS) are, in fact, one of the most deployed ap-
proach. This is due to their easy upgrade/update mechanism and the ab-
sence of traditional software on the client, that reduce investments in hard-
ware. Currently are available many OGC standards compliant geospatial
servers (like GeoServer or MapServer) and GeoDBMS (like PostgreSQL-
PostGIS) that allows the creation of scalable, reliable and, more important,
standard compliant platforms on the top of which it is possible to design
a WebGIS.

An utility network can be easily imagined as a graph. In a water
distribution network, for example, the vertices could be water storage fa-
cilities, water pressurising components and water usage points and the
edges could be the pipes connecting network components. In a 2D GIS
this way of thinking about an utility network directly leads to a represen-
tation in which network components are represented by punctual features
and network connections are represented by linear features.

This representation could be sufficient to display the general aspects
of the network, such as the topology, but for more sophisticated analysis,
such as the spatial relationship between the network and other networks or
the terrain this 2D approach reveals its limits. With a 3D representation,
on the other hand, it is possible to represent the network as it appears
in the real world. This improves dramatically the potentiality of a GIS
system.

1.2 GIS for utility networks 3

With a 3D representation of the network and the surrounding environ-
ment it is possible to navigate the network and see were all its components
are located on the territory and in relation with buildings, terrain and other
networks. This allows the design of many features that can be adapted to
the needs of any utility company. It is possible, for example, in case of
planning maintenance intervention or creation of new network elements, to
visualize the situation of the network before and after the intervention. In
the long run this translates into minor costs and better service to customers
thanks to a better planning phase.

4 Introduction to 3D GIS

Chapter 2

Analysis of existing 3D GIS for

utility networks

In this chapter will be analysed existing 3D GIS software tools that can be
used by an utility company to visualize and manage an utility network.

Searching the Web has been found two market-leading solutions that
will be analysed in the following sections:

• Autodesk AutoCAD Map 3D.

• Bentley MicroStation

2.1 AutoCAD Map 3D

AutoCAD Map 3D mapping is a model-based infrastructure planning and
management application that provides broad access to CAD and GIS data.
It provides intelligent industry data models and tools that made possible to
users to apply regional and discipline-specific standards. With AutoCAD
Map 3D Enterprise, users have the ability to integrate spatial information
into an Oracle database.

AutoCAD Map 3D is a software tool designed to be adapted to the
needs of companies and governments in more fields:

• Electric & gas

• Water and waste water

• Telecommunications

• Utility and public works

6 Analysis of existing 3D GIS for utility networks

• Transportation

AutoCAD Map 3D GIS mapping software offers easier access to design,
GIS, imagery, point cloud, and business information from a broad range of
sources, including Esri, Bentley, Oracle, GE, and other software providers.
By using comprehensive data models for the gas, water, waste water, and
electric industries, users can organise disparate asset information and ap-
ply industry standards and business requirements to their data. AutoCAD
Map 3D also makes possible to use AutoCAD drafting and editing com-
mands directly with a variety of geospatial formats.

Modules oriented to utility networks are three:

• AutoCAD Map 3D for Electric & Gas.

• AutoCAD Map 3D for Water, Waste water & Storm water.

• AutoCAD Map 3D for Telecommunications

This modules are also grouped into AutoCAD Map 3D for Government
that integrates also the road network management.

For Electric & Gas AutoCAD Map 3D offers specific and extensible
data models that aim to improve data quality standards, minimise as-built
backlogs, and respond to information requests, including environmental or
regulatory reporting.

For water, waste water and storm water AutoCAD Map 3D offers spe-
cific data models that aim to improve data quality standards, identifying
network issues such as leaks and ageing pipes, and providing support to
future decision making for operations, maintenance, and capital planning.
It can also run hydrology and hydraulic analysis with Autodesk Storm and
Sanitary Analysis, included with AutoCAD Map 3D for planning of urban
drainage systems, storm sewers, and sanitary sewers.

For telecommunications AutoCAD Map 3D offers specific data models
oriented to manage cable and fibre network.

AutoCAD Map 3D offers many other features including survey func-
tionality to organise field measurements acquired from GPS and terrestrial
sources and analysis tools.

Another important feature of AutoCAD Map 3D is the ability to in-
tegrate with other AutoDesk software solution for utility firms like, for
example, AutoDesk Infrastructure Design Suite.

2.2 Bentley MicroStation 7

2.2 Bentley MicroStation

Bentley MicroStation is, , currently at version V8i, the Bentley’s CAD
solution. It is one of the market-leading CAD solutions and it is oriented
to infrastructure design. On the top of MicroStation has been developed
a set of 3D GIS tools, the ones oriented to utility networks are:

• Bentley Electric.

• Bentley Fiber.

• Bentley Gas.

• Bentley Water.

2.2.1 Bentley Electric & Gas

Bentley Electric and Bentley Gas address the facility management, mod-
elling, and maintenance issues that electric or gas utilities encounter in
day-to-day operations.

They integrates with Bentley Expert Designer through their configura-
bility and customization capabilities. Pre-configured data models provide
immediate productivity, yet Bentley Electric and Bentley Gas’s data model
independence allows for reconfiguration and customisation to meet specific
needs.

2.2.2 Bentley Fiber

Bentley Fiber is a comprehensive product for designing, documenting, and
maintaining outside plant fibre networks. It accommodates all the requisite
fibre architectures in a geospatial environment that provides for detailed
engineering calculations performed interactively during the design process.
Bentley Fiber includes capabilities for GIS land base development, strand
mapping, and duct management to complete the geospatial engineering
environment.

2.2.3 Bentley Water

Bentley Water is a comprehensive geospatial engineering solution for mu-
nicipal water networks design and management. An integrated GIS and
design environment coupled with an intelligent network model customis-
able by the users allow municipalities and utilities to address all operations
of a typical water supply network.

8 Analysis of existing 3D GIS for utility networks

Bentley Water transparently integrates with the industry-leading Bent-
ley’s Haestad Methods hydraulic modelling and analysis software in order
to share network connectivity, maintenance records, and operational data
to run hydraulic simulations of their potable water distribution systems.

2.3 Advantages and dis-advantages of exist-

ing solutions

The software tools described before are market-leading 3D GIS solutions
that allow an utility company to manage and visualise its networks’ topol-
ogy and data. The main advantage in the use of one of these tools are that
they integrate many functions encompassing operations made on network
from planning to maintenance.

Nevertheless, since GIS are moving towards a WebGIS approach a dis-
advantage in the adoption of these products is that they are classical desk-
top products which need to be installed on every workstation that will use
them, while a WebGIS solution has only to be deployed on a server in
order to be accessed by clients. Another dis-advantage in the adoption of
these products is that they require big investments both in hardware and
in software technology. Per-license costs of the products, DBMS costs and
hardware costs make these products often unaffordable by small utilities.
Moreover, these products are often over-sized for small utilities, since they
are designed to be used by large utilities.

With a WebGIS approach, on the other hand, it is possible to design a
software tool that meets all the requirements listed before without the need
of installing specific software on client workstations. A scalable, standard
compliant (OGC Standards, regional and discipline-specific standards) We-
bGIS software tool is a better solution than traditional desktop-based ones,
and can be tailored on the needs of any utility company. Since there are
plenty of OpenSource standard compliant geospatial tools, it is possible to
develop this solution on the basis of widely community used and supported
tools that can also be adapted to the specific needs of users improving the
quality of the software and its maintainability.

For the reasons just explained the aim of the project is to develop a soft-
ware component that can be integrated with a WebGIS for modelling and
visualising an utility network. The modelling part will integrate with OGC
standard data sources (typically GeoDBMS and WFS Servers) to retrieve
network data and build a 3D model of the network. For 3D visualization of
the network model, the software will use WebGL technology that permits

2.3 Advantages and dis-advantages of existing solutions 9

to display hardware accelerated 3D graphics directly in a browser without
the need of install specific components on client workstations.

10 Analysis of existing 3D GIS for utility networks

Chapter 3

Requirement Analysis

Requirements analysis encompasses those tasks that go into determining
the needs or conditions to meet for a new or altered product, taking account
of the possibly conflicting requirements of the various stakeholders, such
as beneficiaries or users.

Requirements analysis is critical to the success of a development project.
Requirements must be documented, actionable, measurable, testable, trace-
able, related to identified business needs or opportunities, and defined to
a level of detail sufficient for system design.

In requirement analysis is often useful to use some categorisation scheme
as a check-list for requirement coverage, to reduce the risk of not consid-
ering some important detail of the system.

In this analysis requirements will be categorised according to the FURPS+
model, a mnemonic with the following meaning:

• Functional (features, capabilities, security etc.).

• Usability (human factors, help, documentation etc.).

• Reliability (frequency of failure, recoverability, predictability etc.).

• Performance (response times, throughput, accuracy, availability, re-
source usage etc.).

• Supportability (adaptability, maintainability, internationalisation, re-
configurability etc.).

The “+” in the acronym indicates auxiliary factors such as: implementa-
tion, interface, operations, packaging, legal and so on.

Some of these requirements are collective called the quality require-
ments (or quality attributes) of a system. These include usability, reliabil-
ity, performance and supportability. In common usage, requirements are

12 Requirement Analysis

categorised as functional (behavioural) or non-functional (everything
else).

3.1 User requirements

The user requirements phase is the problem definition phase of a software
project and it is mainly focused on functional requirements.

The main activity of this phase is to capture the user requirements and

document them. The scope of the software has to be established and the
interfaces with external systems identified.

While user requirements originate in the spontaneous perception of
needs, user requirements should be clarified through the criticism and ex-
perience of existing software and prototypes. The widest possible agree-
ment about the user requirements should be established through interviews
and surveys. User requirements definition is an iterative process, and re-
quirements capture activities may have to be repeated a number of times
before the documentation is ready.

Determining the operational environment should be the first step in
defining the user requirements. When it has been established, specific user
requirements are extracted and organised. Implementation considerations
are omitted, unless they are the essence of the requirement.

Writing use cases is an excellent technique to understand and describe
requirements. A use case defines the interactions between external actors
and the system under consideration to accomplish a goal. An actor spec-
ifies a role played by a person or thing when interacting with the system.
The same person using the system may be represented as two different
actors because they are playing different roles.

Use cases treat the system as a black box, and the interactions with
the system, including system responses, are perceived as from outside the
system. This is a deliberate policy, because it forces the author to focus
on what the system must do, not how it is to be done, and avoids the trap
of making assumptions about how the functionality will be accomplished.

A use case should:

• Describe what the system shall do for the actor to achieve a particular
goal.

• Include no implementation-specific language.

• Be at the appropriate level of detail.

• Not include detail regarding user interfaces and screens.

3.1 User requirements 13

3.1.1 User requirements use cases

Use cases are a mature model to capture user (person or system) proffered
interaction requirements and begin to establish some of the functional re-
quirements before construction of a new system begins.

Proponents prefer them to large, monolithic documents which they
believe cannot be simultaneously complete and meaningful, and regard
them as an excellent technique for capturing the functional requirements
of a system. In tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 are indicated the
user requirements for a 3D GIS software tool oriented to utility network
modelled as use case templates. Use case diagram is reported in figure 3.1.

USE CASE: run on multiple platforms
Summary The software should be able to run on

multiple platform and environment
Priority Desired
User frequency Always
Direct actor User
Stakeholders
Prerequisites Different platforms available
Main scenario Run on multiple platforms
Scenario extensions
Notes

Table 3.1: USE CASE: run on multiple platforms

USE CASE: display the network model
Summary The software has to display the network

model
Priority Essential
User frequency Always
Direct actor User
Stakeholders Model, Model Generator
Prerequisites Model has been created
Main scenario Display model in 3D view inside a win-

dow
Scenario extensions
Notes

Table 3.2: USE CASE: display the network model

14 Requirement Analysis

USE CASE: pick network element on the scene
Summary The software has to allow mouse picking

of a network element on the scene
Priority Essential
User frequency Very Often
Direct actor User
Stakeholders Model
Prerequisites Scene is displayed
Main scenario Get the element at mouse position
Scenario extensions Pick from search
Notes

Table 3.3: USE CASE: pick network element on the scene

USE CASE: read network element information
Summary The software has to show information

about a network element on the scene
Priority Essential
User frequency Very Often
Direct actor User
Stakeholders Model, WFS Server, GeoDBMS
Prerequisites Scene is displayed and network element

is picked
Main scenario Display the network element information
Scenario extensions
Notes

Table 3.4: USE CASE: read network element information

3.1 User requirements 15

USE CASE: edit network element information
Summary The software has to give to the user the

capability to edit information about a
network element on the scene

Priority Essential
User frequency Often
Direct actor User
Stakeholders Model, WFS Server, GeoDBMS
Prerequisites Scene is displayed and network element

is picked
Main scenario Edit the network element information
Scenario extensions
Notes

Table 3.5: USE CASE: edit network element information

USE CASE: navigate through model
Summary The software has to be able to navigate

through the model
Priority Essential
User frequency Always
Direct actor User
Stakeholders Model
Prerequisites Scene is displayed
Main scenario User should be able to zoom, pan and

rotate inside the model
Scenario extensions
Notes

Table 3.6: USE CASE: navigate through model

16 Requirement Analysis

Figure 3.1: User requirements use case diagram

3.2 Software requirement specification 17

3.2 Software requirement specification

A Software Requirements Specification (SRS) is a complete description
of the behaviour of the system to be developed. It includes a set of use
cases that describe all of the interactions that the users will have with
the software. Use cases are also known as functional requirements. In
addition to use cases, the SRS also contains non-functional (or supplemen-
tary) requirements. Non-functional requirements are requirements which
impose constraints on the design or implementation (such as performance
engineering requirements, quality standards, or design constraints).

3.2.1 Software requirements use cases

The use cases reported in tables 3.7, 3.8, 3.9 and in figure 3.2 are extensions
to the user requirements analysed in the previous section from a software
design point of view.

USE CASE: run inside a web browser
Summary The software should be able to run inside

a web browser
Priority Desired
User frequency Always
Direct actor User
Stakeholders
Prerequisites Supported web browser
Main scenario The software runs inside a web browser
Scenario extensions
Notes

Table 3.7: USE CASE: run inside a web browser

18 Requirement Analysis

USE CASE: create model from WFS Service
Summary The software should be able to create

a model from network data stored on a
WFS Server

Priority Desired
User frequency Often
Direct actor User
Stakeholders Model, WFS Server
Prerequisites Network data are available on a WFS

Server
Main scenario Create model from WFS Server
Scenario extensions
Notes

Table 3.8: USE CASE: create model from WFS Service

USE CASE: create model from GeoDBMS
Summary The software should be able to create

a model from network data stored on a
GeoDBMS

Priority Essential
User frequency Very Often
Direct actor User
Stakeholders Model, GeoDBMS
Prerequisites Network data are available on a

GeoDBMS
Main scenario Create model from GeoDBMS
Scenario extensions
Notes

Table 3.9: USE CASE: create model from GeoDBMS

3.2 Software requirement specification 19

Figure 3.2: Software requirements use case diagram

20 Requirement Analysis

Chapter 4

Development platform

The requirements defined in chapter 3 are essential to choose the right
development platform to accomplish the project without big troubles and
design issues.

The first topic to face with is the choice of the development language.
The development language must be object oriented to permit the use of
software engineering tools like UML and the use of some design patterns
defined by the namesake book. Every OOP language permits to write
software libraries that can be used from other software in the same, or
in a different language, so this is a weak restriction, if an object oriented
language is chosen.

One of the main requirements of the Network Model is the capability
to be used from web applications on multiple platforms. To ensure that
this requirement and the need of scalability and reliability proper of any
well engineered software, Java has been chosen as the programming lan-
guage. Java is a general-purpose, concurrent, class-based, object-oriented
language that is specifically designed to have as few implementation de-
pendencies as possible. It is intended to let application developers “write
once, run anywhere.”. Java is currently one of the most popular program-
ming languages in use, particularly for client-server web applications, so it
is a good choice for a project that aims to be used from a web application.

With the introduction of the HTML5 standard and of the related tech-
nologies like WebGL, web applications are dramatically incrementing their
potential. So, operations before unimaginable like running 3D graphics
directly in a browser, are now possible. Since GIS are in continuous evolu-
tion and, as said before, are moving towards a WebGIS approach, WebGL
technology potential should be investigated with the aim to design a 3D
WebGIS.

Has already been noticed that two crucial requirements of the Network

22 Development platform

Viewer are that it has to be platform-independent and embeddable in
most common Internet browsers. These requirements can be met using
the WebGL technology.

4.1 Graph Libraries available for Java

Once Java has been chosen as the development platform for the project,
it is necessary to analyse the available graph libraries that are compliant
with the requirements. A graph library is needed to abstract the network
features and think to the network in terms of vertexes and edges of a
graph. In this way it is possible to create a model that is independent
from underlying data and also it is possible to model a network different
from an utility network.

The main project requirement for the graph library is the type-safeness.
In this way it is possible to build the vertex and edge models and create a
graph using these models without knowing directly how the graph library
works and adapt the graph representation to any need.

Searching on the web and looking for the requirements has been found
some libraries that will be evaluated in the following pages. These libraries
are:

• JGraphT.

• JUNG.

Another aim of the search is to select a library that permits, in a future
stage of the project, also the analysis of the network graph, for example
to make network flow measurements.

4.1.1 JGraphT

JGraphT is a FOSS (released under the terms of the GNU LGPL) Java
library that provides mathematical graph-theory objects and algorithms.

The project is part of The Eigenbase Project which aims to provide an
extensible open-source platform for building specialised data management
systems in a wide variety of application spaces.

The current distribution (0.8.2) of JGraphT supports many types of
graphs such as:

• Directed graphs and undirected graphs.

• Graphs with weighted, unweighted, labelled or user-defined edges.

4.1 Graph Libraries available for Java 23

• Various edge multiplicity options, including: simple-graphs, multi-
graphs, pseudo-graphs.

• Unmodifiable graphs: allow modules to provide “read-only” access to
internal graphs.

• Listenable graphs: allow external listeners to track modification events.

• Sub-graph: graphs that are auto-updating sub-graph views on other
graphs.

• All composition of above graphs.

JGraphT is designed to be simple and type-safe (via Java generics). For
example, graph vertexes can be of any objects.

4.1.2 JUNG

JUNG the Java Universal Network/Graph Framework is a FOSS (released
under the terms of BSD License) Java library designed to support the
modelling, analysis, and visualization of data that can be represented as
graphs.

It was created by three Information and Computer Science PhD stu-
dents at the University of California, Irvine: Joshua O’Madadhain, Danyel
Fisher, and Scott White.

Its focus is on mathematical and algorithmic graph applications per-
taining to the fields of social network analysis, information visualization,
knowledge discovery and data mining. However, it is not specific to these
fields and can be used for many other applications pertaining to graphs
and networks.

The JUNG architecture is designed to support a variety of representa-
tions of entities and their relations, such as:

• Directed and undirected graphs.

• Multi-modal graphs.

• Graphs with parallel edges.

• Hypergraphs.

The current distribution (2.0.1) of JUNG includes implementations of a
number of algorithms from graph theory, data mining, and social network

24 Development platform

analysis, such as routines for clustering, decomposition, optimisation, ran-
dom graph generation, statistical analysis, and calculation of network dis-
tances, flows, and importance measures.

JUNG also provides a mechanism for annotating graphs, entities, and
relations with metadata. This facilitates the creation of analytic tools for
complex data sets that can examine the relations between entities as well
as the metadata attached to each entity and relation.

4.2 Topology library for Java

Since the Network Model has to deal with geospatial data, there is the
need of a Java library to deal with geometry. Recalling that one of the
main requirements is the ability to take data from multiple source and
typically it isn’t known a priori how the spatial data are made, it is better
to develop the software thinking at geometries as they are defined by the
OGC standard specifications.

The JTS Topology Suite is an open source Java software library that
provides an object model for Euclidean planar linear geometry together
with a set of fundamental geometric functions. JTS is primarily intended
to be used as a core component of vector-based geomatics software such as
GIS. It can also be used as a general-purpose library providing algorithms
in computational geometry.

JTS implements the geometry model and API defined in the OGC
Simple Features Specification for SQL. The software is published under
the GNU LGPL and it is maintained as an independent software project
by Martin Davis.

The JTS Geometry model support modelling points, linestrings, poly-
gons, and collections. Geometries are linear, in the sense that boundaries
are implicitly defined by linear interpolation between vertexes. Geometries
are embedded in the 2-dimensional Euclidean plane. Geometry vertexes
may also carry a z value.

User-defined precision models are supported for geometry coordinates.
Computation is performed using algorithms which provide robust geomet-
ric computation under all precision models.

JTS support many geometric functions including:

• Topological validity checking.

• Overlay functions (including intersection, difference, union, symmet-
ric difference).

4.3 WebGL 25

• Buffer computation (including different cap and join types).

• Convex hull.

• Geometric simplification and densification.

• Precision reduction.

• Delaunay triangulation and constrained Delaunay triangulation.

• Voronoi diagram generation.

• Smallest enclosing rectangle.

Another important feature of JTS that will be useful in the project is the
ability to process geometries in WKB, WKT and GML formats. In this
way it is possible to have a solid basis on top of which can be designed a
module that reads geometries from multiple sources.

4.3 WebGL

It has already been said that the Viewer will use the WebGL technology,
so, for the sake of completeness, in the next section will be introduced this
technology.

4.3.1 Introduction to WebGL

WebGL is a cross-platform API used to create 3D graphics in a Web
browser. It is based on OpenGL ES 2.0 and uses the OpenGL shading
language GLSL. Since it runs in the HTML5 Canvas element, WebGL has
full integration with all Document Object Model (DOM) interfaces and it
can be used from any DOM-compatible language (for example JavaScript).

Main advantages of WebGL technology are:

• An API that is based on a familiar and widely accepted 3D graphics
standard.

• Cross-browser and cross-platform compatibility.

• Tight integration with HTML content, including layered composit-
ing, interaction with other HTML elements, and use of the standard
HTML event handling mechanisms.

• Hardware-accelerated 3D graphics for the browser environment.

26 Development platform

• A scripting environment that makes it easy to prototype 3D graphics.
There is no need to compile and link before of viewing and debugging
the rendered graphics.

4.3.2 OpenGL ES 2.0 Pipeline Structure

With reference to the figure 4.1 main components of OpenGL ES 2.0
Pipeline Structure are:

• Primitive Processing.

• Vertex Shader.

• Primitive Assembly.

• Rasterizer.

• Fragment Shader.

• Fragment Operations (Depth/Stencil buffer testing, Colour Buffer
Blending, Dithering etc.)

Primitive processing

In this step the application sets up an ordered list of vertices to send to
the pipeline. These vertices define the boundaries of a scene geometry.
Vertices are grouped to form primitives.

Primitives are basic drawing shapes, like triangles, lines, and points.
This part of the pipeline deals with a number of objects like Vertex

Array Objects and Vertex Buffer Objects. Vertex Array Objects
define what data each vertex has, while Vertex Buffer Objects store the
actual vertex data itself.

A vertex’s data is a series of attributes. Each attribute is a small set
of data that the following stages will do computations on.

Vertex Shader

The Vertex Shader is called once for each input vertex. The main task of
the Vertex Shader is to provide vertex positions for the following stages of
the pipeline. Additionally, it can calculate further attributes that can be
used as input for the Fragment Shader later. The most basic shader just
takes vertex positions as input and directly assigns the input data to the
gl_Position Varying.

4.3 WebGL 27

Figure 4.1: ES2.0 Programmable Pipeline

28 Development platform

Typically, the shader does a multiplication with the model-view pro-
jection matrix (passed as a Uniform constant) to allow translation and ro-
tation of input geometry as well as perspective projection, possibly passes
texture coordinates, and calculates lighting parameters. Additional user
outputs typically include:

• Texture coordinates. These may be just passed through from
input attributes for simple texturing but also might get generated
or processed for implementing reflective surfaces and environment
mapping or other effects such as dynamic texturing.

• Fog factor. For a fog effect, the distance of the primitive from the
eye can be calculated in the vertex shader. The fragment shader can
later fade out the fragment based on this value.

• Lighting parameters. Based on light source positions (passed as
Uniform constants) and vertex normals (needed as additional per-
vertex input), lighting parameters can be generated for the fragment
shader.

Primitive Assembly

In the Primitive Assembly stage, several coordinate transformations are
done:

• Clipping. Primitives lying outside the viewing volume are dis-
carded, and primitives lying partially outside the view will be clipped.
Varying outputs of the vertex shader get clipped, too.

• Perspective Division. The three main elements of gl_Position

(x, y, z) are normalised to [−1.0...1.0] by division by the fourth vertex
element w. The result is normalised device coordinates.

• Viewport Transformation. Coordinates are transformed to win-
dow coordinates by means of a linear transformation.

Rasterization

Rasterization is the process of creating a two-dimensional rasterized image
from a scene geometry. In other words it is the process of calculating the
set of fragments (pixels) for each primitive that compose the geometry.
For polygon rasterization, this includes the following steps:

4.3 WebGL 29

• Culling. Polygons viewed from the back can be discarded if the
culling is enabled.

• Depth Offset. A depth offset can be applied to polygon coordinates
using. This can prevent Z-fighting1 for polygons that lie in the same
plane.

• Varying interpolation. Vertex shader Varying outputs and depth
are interpolated when prepared as input for the Fragment Shader.

Fragment Shader

The Fragment Shader is called once for each geometry fragment (pixel).
The main task of the Fragment Shader is to provide colour values for each
output fragment. The most basic Fragment Shader just assigns a constant
value to its gl_FragColor output. Typically, the Fragment Shader does a
texture look-up and implements lighting based on the lighting parameters
the Vertex Shader computed previously.

Fragment Operations

Possible operations on fragments include:

• Scissor testing. If enabled, only pixels in a specified rectangular
region are drawn.

• Stencil buffer testing. If enabled, pixels may be updated only
when passing a test against the stencil buffer.

• Depth buffer testing. If enabled using, pixels are only drawn if
passing the depth buffer test, implementing hidden-surface removal.

• Blending. If enabled, pixels output by the Fragment Shader may
be blended with pixel values already present in the output buffer.

• Dithering. If enabled using, dithering may be used to increase the
perceived colour depth.

• Antialiasing. it is possible to configure simple antialiasing.

1Z-fighting is a phenomenon that occurs when two or more primitives have similar

values in the z-buffer. Affected pixels are rendered with fragments from one polygon or

the other arbitrarily, in a manner determined by the precision of the z-buffer.

30 Development platform

4.3.3 Getting a WebGL Implementation

The WebGL 1.0 specification has recently been released, and the latest
builds of several browsers have reached or are close to reach full confor-
mance. In the following list is shown the status of WebGL implementation
in most common desktop Internet browsers.

• Mozilla Firefox - WebGL has been enabled on all platforms that
have a capable graphics card with updated drivers since version 4.0.

• Google Chrome - WebGL has been enabled by default since version
9.

• Safari - Safari 5.1 installed on Apple Mac OS X Lion has support
for WebGL, but is disabled by default.

• Opera - WebGL is not implemented in the latest Opera 11.51 re-
lease. However, it is partially supported by development versions for
Microsoft Windows. There are plans to support it from release 12.

• Internet Explorer - Microsoft has not announced any plans to
officially support WebGL. The Chrome Frame and IEWebGL plug-
ins provide options to add support for WebGL to Internet Explorer.

4.3.4 Security

Since some security issues concerning WebGL technology has been discov-
ered, it is necessary to investigate about how it is possible to mitigate these
risks without having to abandon this promising technology.

Resource restrictions

Traditional browser content would not normally have direct access to the
hardware in any form, if one drew a bitmap it would be handled by some
code in the browser with responsibility for drawing bitmaps. This would
then be likely to delegate that responsibility to an OS component, which
would perform the drawing itself. While this distinction is blurring some-
what with the introduction of 2D graphics acceleration in all the popular
browsers it is still the case that the actual functionality of the GPU is not
directly exposed to a web page. The salient facts are that the content is
pretty easy to verify, has a measurable render time relative to the content,
and generally contains little programmable functionality (at least which
would be exposed to the graphics hardware).

4.3 WebGL 31

WebGL on the other hand provides, by virtue of its functional require-
ments, access to the graphics hardware. Shader code, while not written
in the native language of the GPU, are compiled, uploaded then executed
on the graphics hardware. Render times for medium to complex geometry
can be difficult to determine ahead of time from the raw data as it is hard
to generate an accurate value without first rendering it. Also some data
can be hard to verify and security restrictions can be difficult to enforce
once out of the control of the WebGL implementation.

This might not be such an issue, except for the fact that the current
hardware and graphics pipeline implementations are not designed to be
pre-emptable or maintain security boundaries. Once a display list has been
placed on the GPU by the scheduler it can be difficult to stop it, at least
without causing obvious, system-wide visual corruption and instabilities.
By carefully crafting content it is possible to seriously impact the OS’s
ability to draw the user interface, or worse. The difficultly in verifying all
content and maintain security boundaries also have potential impact on
the integrity of the system and user data.

To mitigate this risk, WebGL resources such as textures and vertex
buffer objects (VBOs) must always contain initialised data, even if they
were created without initial user data values. Creating a resource without
initial values is commonly used to reserve space for a texture or VBO. If
initial data are not provided to these calls, the WebGL implementation
must initialise their contents to 0; depth render buffers must be cleared
to the default 1.0 clear depth. For example, this may require creating a
temporary buffer of 0 values the size of a requested VBO, so that it can
be initialised correctly. All other forms of loading data into a texture or
VBO involve either ArrayBuffers or DOM objects such as images, and are
therefore already required to be initialised.

When WebGL resources are accessed by shaders the WebGL implemen-
tation must ensure that the shader cannot access either out of bounds or
uninitialised data.

A WebGL implementation must only accept shaders which conform to
The OpenGL ES Shading Language, Version 1.00. In particular, a shader
referencing state variables or functions that are available in other versions
of GLSL (such as that found in versions of OpenGL for the desktop), must
not be allowed to load.

Origin restriction

One of the fundamental security boundaries in the specification of the
DOM and browser handling of JavaScript is the domain boundary. This

32 Development platform

is to prevent content served from a domain being able to access authenti-
cated/trusted resources on another domain. Whether content is permitted
to be accessed across this boundary very much depends on the type of re-
source being accessed. This is sometimes referred to as “Right to Embed”
vs. “Right to Read”. For example it is perfectly acceptable to embed an
image from outside of a domain because the underlying APIs never gave a
mechanism to read the actual content (outside of image dimensions, and
an indication of success or failure to load). On the other hand trying to use
the XMLHttpRequest object to pull content from outside a domain (and
therefore giving access to the raw data) is generally not permitted.

In order to prevent information leakage, the HTML5 canvas element
has a origin-clean flag. For a WebGL context, the origin-clean flag
must be set to false if any of the following actions occur:

• The texImage2D method is called with an HTMLImageElement or
HTMLVideoElement whose origin is not the same as that of the Doc-
ument object that owns the canvas element.

• The texImage2D method is called with an HTMLCanvasElement whose
origin-clean flag is set to false.

Whenever the readPixels method of the 2D context of a canvas ele-
ment whose origin-clean flag is set to false is called with otherwise correct
arguments, the method must raise a SECURITY_ERR exception.

Defence against DoS

It is possible to create, either intentionally or unintentionally, combinations
of shaders and geometry that take an undesirably long time to render. This
issue is analogous to that of long-running scripts, for which user agents
already have safeguards. However, long-running draw calls can cause loss
of interactivity for the entire window system, not just the user agent.

In the general case it is not possible to impose limits on the structure
of incoming shaders to guard against this problem. Experimentation has
shown that even very strict structural limits are insufficient to prevent
long rendering times, and such limits would prevent shader authors from
implementing common algorithms.

User agents should implement safeguards to prevent excessively long
rendering times and associated loss of interactivity. Suggested safeguards
include:

• Splitting up draw calls with large numbers of elements into smaller
draw calls.

4.3 WebGL 33

• Timing individual draw calls and forbidding further rendering from
a page if a certain time-out is exceeded.

• Using any watchdog facilities available at the user level, graphics API
level, or operating system level to limit the duration of draw calls.

• Separating the graphics rendering of the user agent into a distinct op-
erating system process which can be terminated and restarted with-
out losing application state.

The supporting infrastructure at the OS and graphics API layer is
expected to improve over time, which is why the exact nature of these
safeguards is not specified.

4.3.5 WebGL Frameworks

Since WebGL is the new frontier of the web development, especially in the
entertainment and scientific fields, there are plenty of frameworks that aim
to ease the development of web applications that use WebGL for rendering
3D graphics.

Only some of them, nevertheless, are sufficiently supported and have
sufficient functionality to be used in the project. The framework that are
going to be analysed in the following paragraphs are:

• C3DL.

• SpiderGL.

• Three.js.

C3DL

The Canvas 3D JS Library (C3DL) is an open source (released under
the terms of MIT License) JavaScript library that will make it easier to
write 3D applications using WebGL. It was first developed as part of the
CATGames Research network at Seneca College (Toronto, Canada) work-
ing on providing a middle layer API for Canvas 3D (the precursor of We-
bGL). It provides a set of math, scene, and 3D object classes that makes
WebGL more accessible for developers that want to develop 3D content
in browser but do not want to have to deal in depth with the 3D math
needed to make it work.

C3DL supports loading of Collada models.

34 Development platform

SpiderGL

SpiderGL is a a JavaScript library for developing 3D graphics web applica-
tions designed by Marco Di Benedetto, Federico Ponchio, Fabio Ganovelli
and Roberto Scopigno from the Visual Computing Lab of ISTI-CNR (Istu-
tuto di Scienza e Tecnologie dell’informazione - Consiglio Nazionale delle
Ricerche)2. SpiderGL provides data structures and algorithms to ease the
use of WebGL, to define and manipulate shapes, to import 3D models in
various formats, to handle asynchronous data loading it extends JavaScript
by including geometric data structures and algorithms and wraps their
implementation towards WebGL. SpiderGL was designed keeping in mind
three fundamental qualities:

• Efficiency: with JavaScript and WebGL, efficiency is not only a mat-
ter of asymptotic bounds on the algorithms, but the ability to find the
most efficient mechanism to implement, for example, asynchronous
loading or parameters passing to the shader programs, without bur-
dening the CPU with respect to a bare bone implementation;

• Simplicity and Short Learning Time: users should be able to reuse as
much as possible of their former knowledge on the subject and take
advantage of the library quickly. For this reason SpiderGL care-
fully avoids over-abstraction: almost all of the function names in
SpiderGL have a one to one correspondence with either OpenGL or
GLU commands, or with geometric/mathematics entities.

• Flexibility: SpiderGL does not try to hide native WebGL functions,
instead it provides higher level functionality that fulfil the most com-
mon needs of the CG developer, who can use SpiderGL and WebGL
calls almost seamlessly.

SpiderGL is composed of five modules:

• GL: access to WebGL functionality.

• MESH: 3D model definition and rendering.

• ASYNC: asynchronous content loading.

• UI: User Interface.

• Space: math and geometry utilities.

4.3 WebGL 35

Figure 4.2: SpiderGL structure

36 Development platform

In figure 4.2 can be seen the structure of SpiderGL.
Currently SpiderGL supports loading of models from it’s own JSON

format and OBJ.

Three.js

Three.js aims to create a lightweight 3D engine with a very low level of
complexity. The engine can render graphics using HTML5 canvas, svg and
WebGL. It is currently under heavy development and it is supported by
an active community of developers.

Three.js is a scene-graph based engine, so users have to create:

1. A scene that contains a set of user-created Object3D objects that
are elements of the scene.

2. A camera that will be used by the renderer to set the viewable area.

3. A renderer that, receiving in input a camera and a scene renders
the scene using canvas, svg or WebGL.

In figure 4.3 can be seen a simplified object diagram of Three.js.
Three.js provides an interface that completely abstracts the underlin-

ing WebGL, or other renderer, internal mechanisms, so it is possible to
port the same project on multiple renderers. It supports direct loading of
Collada models and loading of OBJ models via its JSON Model format.
Also, Three.js supports the use of shaders and permits the creation of user
controls to navigate and interact with the scene.

Three.js is an OpenSource project (released only MIT License) sup-
ported by a community of about forty-five developers, and the code is
hosted on GitHub.

4.4 Chosen development platform

While programming language and topology library has already been cho-
sen, graph library and WebGL engine are still to be choose. The main
aim is to get performance and scalability, while portability is ensured by
a using a completely web based approach, so there is no need to install
additional software on the client.

Although JGrapht and JUNG are quite similar in functionality, has
been chosen JGraphT because it offers a better support to complex graph

2Institute of Information Science and Technology - Italian National Council of Re-

search

4.4 Chosen development platform 37

Figure 4.3: Three.js object diagram

38 Development platform

like hypergraphs. Since the topology of the network graph isn’t known a
priori it could be necessary to generate almost every type of graph, and,
in the future, there could be the need to apply graph-theory algorithms
to these graphs. Another important aspect to take in account is that
JGraphT appears to be better supported than JUNG.

Since WebGL has been chosen as the technology for 3D rendering, one
of the three JavaScript libraries that have been analysed before has to be
chosen. The library that will be chosen has to permit the model created
by the model creator, so it should have an internal model that could be
used directly or adapted to the model created by the model creator.

Although C3DL is good library for rendering and supports loading
of Collada models, it lacks of some navigation controls that are required
to implement navigation functions required in the project and it it too
simplified to deal with the needs of the viewer that is going to be developed
in the project.

SpiderGL is efficient and has a JSON model that could be extended to
load a customised model but it doesn’t have a scene-graph approach, so it is
difficult to deal with complex scene graphs like the ones that are going to be
displayed in the viewer that is going to be developed in the project. Also, it
lacks a good material system and a user interaction system. Nevertheless,
the most important problem with SpiderGL is the lack of support. There is
no documentation apart the source code, source repository is not updated
and there are no forums or mailing-list to support developers or to submit
bugs and bug-fixes, in other words, it appears to be, although a very good
project, a dead project so it is not a good choice.

Three.js, on the other hand, is in continuous development (currently is
at revision r45) and it is supported by an active community of developers
who write in the wiki, submit and fix bugs. There are many examples and
the code is auto-explicative.

Three.js provides a scene-graph approach that makes easier to deal with
complex scenes and a JSON model format that can be easily extended to
support the needs of the project. Also Three.js has extensible camera and
control models to implement the navigation and user interface and provides
a good material model with the possibility of use shaders. For all these
reasons Three.js has been chosen as WebGL engine for the project.

Design and development of the project will be done using Java, JTS
Topology Suite, JGraphT and Three.js as operative environment.

Chapter 5

Software design, development

and test

Software design is a process of problem-solving and planning for a software
solution. After the purpose and specifications of software is determined,
software developers will design or employ designers to develop a plan for
a solution. It includes low-level component and algorithm implementation
issues as well as the architectural view.

The software requirements analysis (SRA) step of a software develop-
ment process yields specifications that are used in software engineering. If
the software is “semi-automated” or user-centred, software design may in-
volve user experience design yielding a story board to help determine those
specifications. If the software is completely automated (meaning no user
or user interface), a software design may be as simple as a flow chart or
text describing a planned sequence of events. There are also semi-standard
methods like Unified Modelling Language and Fundamental modelling con-
cepts. In either case some documentation of the plan is usually the product
of the design. A software design may be platform-independent or platform-
specific, depending on the availability of the technology called for by the
design.

There are many aspects to consider in the design of a piece of software.
The importance of each should reflect the goals the software is trying to
achieve. Some of these aspects are:

• Extensibility - New capabilities can be added to the software with-
out major changes to the underlying architecture.

• Robustness - The software is able to operate under stress or tolerate
unpredictable or invalid input. For example, it can be designed with
a resilience to low memory conditions.

40 Software design, development and test

• Reliability - The software is able to perform a required function
under stated conditions for a specified period of time.

• Fault-tolerance - The software is resistant to and able to recover
from component failure.

• Security - The software is able to withstand hostile acts and influ-
ences.

• Maintainability - The software can be restored to a specified con-
dition within a specified period of time. For example, anti-virus soft-
ware may include the ability to periodically receive virus definition
updates in order to maintain the software’s effectiveness.

• Compatibility - The software is able to operate with other prod-
ucts that are designed for interoperability with another product. For
example, a piece of software may be backward-compatible with an
older version of itself.

• Modularity - the resulting software comprises well defined, inde-
pendent components. That leads to better maintainability. The
components could be then implemented and tested in isolation be-
fore being integrated to form a desired software system. This allows
division of work in a software development project.

• Re-usability - the modular components designed should capture
the essence of the functionality expected out of them and no more
or less. This single-minded purpose renders the components reusable
wherever there are similar needs in other designs.

A software designer or architect may identify a design problem which has
been solved by others before. A template or pattern describing a solution
to a common problem is known as a design pattern. The reuse of such pat-
terns can speed up the software development process, having been tested
and proved in the past.

5.1 Software life cycle

The software life cycle is the sequence of different activities that take place
during software development.

There are also different deliverables produced. Although deliverables
can be agreements or evaluations, normally deliverables are objects, such

5.1 Software life cycle 41

as source code or user manuals. Usually, the activities and deliverables are
closely related.

Milestones are events that can be used for telling the status of the
project. For example, the event of completing the user manual could be
a milestone. For management purposes, milestones are essential because
completion of milestones allow the manager to assess the progress of the
software development.

The software life cycle model adopted for the development of the project
is the Linear sequential model, also called the waterfall model, since the
typical diagram (see figure 5.1) looks like a series of cascades. First de-
scribed by Royce in 1970, it was the first realization of a standard sequence
of tasks.

Figure 5.1: The waterfall model

There are many versions of the waterfall model. Although the specific
development tasks will occur in almost every development, there are many
ways to divide them into phases. Note that in this version of the water-
fall, the project planning activities are included in the requirements phase.
Similarly, the delivery and maintenance phases have been left off. Feasi-

42 Software design, development and test

bility of the project has already been considered in the previous chapters,
so it will not be analysed in the following design phases.

5.2 Requirements analysis

The user requirement and software requirement analysis has already been
done in chapter 3. In the following section the requirement analysis will
be extended with object diagram, state diagram and system diagram.

5.2.1 Object diagram

The basic approach in an object-oriented (OO) methodology is to develop
an object model that describes that subset of the real world that is the
problem domain. The purpose is modelling the problem domain and not
designing an implementation. Thus, entities that are essential to under-
standing the problem will be included even if they are not going to be
included in the solution. The attributes and methods included in the ob-
ject model will also be those needed for understanding the problem and
not those that will just be important for the solution.

An object diagram is an UML diagram that shows a complete or partial
view of the structure of a modelled system at a specific time. This snapshot
focuses on some particular set of object instances and attributes, and the
links between the instances. A correlated set of object diagrams provides
insight into how an arbitrary view of a system is expected to evolve over
time. Object diagrams are more concrete than class diagrams, and are
often used to provide examples, or act as test cases for the class diagrams.
Only those aspects of a model that are of current interest need be shown
on an object diagram.

In figure 5.2 is shown the object diagram of the project. In this model is
shown the working environment of the software. The working environment
can be described in the following way. A user can navigate a 3D model
created by a model generator from data stored on a GeoDBMS or on
a WFS Server. The model contains a scene that is made by scene ele-
ments. Scene elements can be network nodes (for example manholes),
network edges (pipes connecting network nodes) or a terrain model.

5.2.2 State diagram

The state of a machine or program is the collection of all the values of
all the variables, registers, and so on. A state diagram (or state machine

5.2 Requirements analysis 43

Figure 5.2: Object diagram

44 Software design, development and test

diagram) shows the states of the system ad the possible transitions between
these states. A state diagram shows the states of the system and the
possible transitions between these states. A program or machine will have
an extremely large number of different states. However, many states will
be similar in how the machine will behave on the next input, and so forth.
A set of states with similar behaviours can be grouped together into a
state. These states can be reported in a diagram to show the transition
between them.

When being used as a part of the requirements specification, it is im-
portant that the states reflect domain conditions that are understandable
to the users. States that are only significant to the implementation should
be coalesced into domain significant states.

Figure 5.3: State diagram

In figure 5.3 is shown the state diagram of the project. At page loading
WebGL context and user interface are initialized, then the Model Creator
creates the model to display from the data-source. When the model is
ready, it is rendered by the WebGL renderer and the user can navigate
into it. Once the model has been created and rendered, if the user picks
an element on the scene, this is highlighted and a detail window with the
details of the picked element is shown. The rendering is repeated when
the view changes. User can exit the viewer both when this is loading the
model and when this is display the model.

5.2.3 System diagram

A system diagram is a non-formally defined diagram used to give an
overview of a proposed system. It is often used when the more formally

5.3 Architectural Design 45

defined diagrams are too limited to express the necessary overview.
System diagrams usually incorporate aspects of data flow and use case

diagrams. They usually have ovals representing processing parts of the
system, data objects representing files and/or databases, boxes represent-
ing data, and stick figures representing persons. Arcs are used to show the
ow into and out of functions.

Figure 5.4: System diagram

In figure 5.4 is shown the system diagram for the project.

5.3 Architectural Design

The purpose of the Architectural Design phase is to define the structure of
the software. The model constructed in the Software requirements phase
is the starting point.

This model is transformed into the architectural design by allocating
functions to software components and defining the control and data ow
between them. This phase may involve several iterations of the design.

46 Software design, development and test

Technically difficult or critical parts of the design have to be identified.
Prototyping of these parts of the software may be necessary to confirm the
basic design assumptions.

5.3.1 Software architecture

The project will be developed using the Model-View-Controller (MVC)
architecture. This architectural pattern isolates “domain logic” (the ap-
plication logic for the user) from the user interface (input and presenta-
tion), permitting independent development, testing and maintenance of
each (separation of concerns).

Model

The model manages the behaviour and data of the application domain,
responds to requests for information about its state (usually from the view),
and responds to instructions to change state (usually from the controller).
In event-driven systems, the model notifies observers (usually views) when
the information changes so that they can react.

In the project the model is a collection of Java classes that reflect the
tables of the GeoDBMS on which network data are stored. Hibernate
will be used to manage database access in order to provide an abstraction
level between the application and data and ensure portability. In this way,
for example, it is possible to reuse the same Java classes to retrieve data
from a WFS Server instead of GeoDBMS maintaining the upper levels
untouched.

Hibernate Hibernate is an object-relational mapping (ORM) library
for the Java language, that provides a framework for mapping an object-
oriented domain model to a traditional relational database.

Hibernate is free software that is distributed under the GNU Lesser
General Public License. The current version is 3.6.7.

Hibernate primary feature is mapping from Java classes to database
tables (and from Java data types to SQL data types). Hibernate also
provides data query and retrieval facilities. Hibernate generates the SQL
calls and attempts to relieve the developer from manual result set handling
and object conversion and keep the application portable to all supported
SQL databases with little performance overhead.

5.3 Architectural Design 47

View

The view renders the model into a form suitable for interaction, typically
a user interface element. Multiple views can exist for a single model for
different purposes. A viewport typically has a one to one correspondence
with a display surface and knows how to render to it.

In the project the view is represented by JavaServer Pages (JSPs) that
communicate with the server using Apache Struts and display both the
model using WebGL and the picked element data.

Apache Struts Apache Struts is an open-source web application frame-
work for developing Java EE web applications. It uses and extends the
Java Servlet API to encourage developers to adopt a model-view-controller
(MVC) architecture. It is opensourc software that is released under Apache
Software License. The current version is 2.2.3.

The goal of Struts is to separate the model from the view and the
controller. Struts provides the controller (a servlet known as ActionServlet)
and facilitates the writing of templates for the view or presentation layer
(typically in JSP, but XML/XSLT and Velocity are also supported). The
web application programmer is responsible for writing the model code,
and for creating a central configuration file struts-config.xml that binds
together model, view and controller.

Requests from the client are sent to the controller in the form of “Ac-
tions” defined in the configuration file; if the controller receives such a
request it calls the corresponding Action class that interacts with the
application-specific model code. The model code returns an “ActionFor-
ward”, a string telling the controller what output page to send to the client.
Information is passed between model and view in the form of special Jav-
aBeans. A powerful custom tag library allows it to read and write the
content of these beans from the presentation layer without the need for
any embedded Java code.

Controller

The controller receives user input and initiates a response by making calls
on model objects. A controller accepts input from the user and instructs
the model and a viewport to perform actions based on that input.

In the project, to improve scalability and reuse of code, Struts Actions
will not make direct calls to the model objects, so the controller is repre-
sented by a collection of Java classes (called services) that communicate
both with the view and the model.

48 Software design, development and test

All Java classes in model, view and controller are bounded together
using Spring Framework.

Spring Framework The Spring Framework is an open source applica-
tion framework for the Java platform. It is opensource sofware released
under the Apache Software License. The current version is 3.0.6.

The core features of the Spring Framework can be used by any Java
application, but there are extensions for building web applications on top
of the Java EE platform. Although the Spring Framework does not im-
pose any specific programming model, it has become popular in the Java
community as an alternative to, replacement for, or even addition to the
Enterprise JavaBean (EJB) model.

The Spring Framework comprises several modules that provide a range
of services. The ones used in the project are:

• Inversion of Control container: provides a consistent means of
configuring and managing Java objects using reflection. The con-
tainer is responsible for managing object life-cycles: creating objects,
calling initialization methods, and configuring objects by wiring them
together.

• Data access: working with relational database management sys-
tems on the Java platform using JDBC and object-relational map-
ping tools and with NoSQL databases.

• Transaction management: unifies several transaction manage-
ment APIs and coordinates transactions for Java objects.

• Testing: support classes for writing unit tests and integration tests.

5.3.2 Activity diagram

An activity diagram represents the business and operational step-by-step
work-flows of components in a system. An activity diagram shows the
overall flow of control, describing the sequencing of activities, with support
for both conditional and parallel behaviour. The activity diagram in figure
5.5 represents the main flow of an instance of the project.

5.3.3 Class Diagrams

In the Unified Modelling Language, a class diagram is a type of static
structure diagram that describes the structure of a system by showing the
system’s classes, their attributes and the relationship between the classes.

5.3 Architectural Design 49

Figure 5.5: Activity diagram

50 Software design, development and test

In the following are reported the class diagram of most important pack-
ages in the project focusing the attention on generating network 3D model
from network data.

graph3d.model.data package

This package contains the abstract data model that describes any feature
(node or edge) of the network. The classes contained in this package are
used by the viewer to describe the network, so the model generator doesn’t
need to know how data are stored. In this way it is possible to model not
only an utility network, but also other types of networks (for example road
network). The class diagram is shown in figure 5.6.

Figure 5.6: graph3d.model.data package class diagram

5.3 Architectural Design 51

graph3d.model.graph package

This package contains the implementation of the graph model of the net-
work. The class diagram is shown in figure 5.7.

Figure 5.7: graph3d.model.graph package class diagram

graph3d.converter.graph package

This package contains classes that apply the adapter pattern to the classes
in graph3d.model.data package transforming their instance into vertex or
edge of the graph network model. The class diagram is shown in figure
5.8.

Figure 5.8: graph3d.converter.graph package class diagram

52 Software design, development and test

graph3d.scene package

This package contains the classes that describe the scene and are used to
send data to the viewer.

graph3d.converter.model package

This package contains classes that convert a network graph representa-
tion into a scene-graph. It also translate geographic coordinates in screen
coordinates and creates materials. This package can be extended by the
viewer to adapt the scene representation to the needs of the specific viewer
application. For example in the viewer application this package has been
extended in order to add the DTM to the scene.

5.3.4 Package diagram

A package diagram depicts how a system is split up into logical groupings
by showing the dependencies among these groupings. As a package is
typically thought of as a directory, package diagrams provide a logical
hierarchical decomposition of a system.

Package are usually organized to maximize internal coherence within
each package and to minimize external coupling among packages. With
these guidelines in place, the packages are good management elements.
Each package can be assigned to an individual or team, and the dependen-
cies among them indicate the required development order. In figure 5.11
is reported the package diagram of package graph3d.

5.3.5 Sequence diagrams

A sequence diagram shows, as parallel vertical lines, different processes or
objects that live simultaneously, and, as horizontal arrows, the messages
exchanged between them in the order in which they occur. This allows the
specification of simple run time scenarios in a graphical manner.

In figure 5.12 is reported the sequence diagram for the process of cre-
ation and rendering of a network model.

5.4 Development work-flow

The development of the project has been engineered to follow a specific
work-flow to keep track of code changes, bugs and tickets. This allow better
control of the project life cycle and permit easy backup and recovery in

5.4 Development work-flow 53

Figure 5.9: graph3d.scene package class diagram

54 Software design, development and test

Figure 5.10: graph3d.converter.model package class diagram

Figure 5.11: graph3d package diagram

5.4 Development work-flow 55

Figure 5.12: graph3d sequence diagram

56 Software design, development and test

case of data loss or not working code. The aim of this strategy is to be
proactive and not reactive while concentrating on code quality to minimise
rework.

Development tools are an essential part of this process and the ones
used for the development of the project are:

• Integrated Development Environment: Eclipse. Eclipse is an
integrated development environment (IDE) written primarily in Java.
In its default form it is meant for Java developers, consisting of the
Java Development Tools (JDT). Users can extend its capabilities by
installing plug-ins written for the Eclipse software framework, such
as development tool-kits for other programming languages, and can
write and contribute their own plug-in modules.

• Version Control System: Git. Git is a distributed revision control
system with an emphasis on speed. Git was initially designed and
developed by Linus Torvalds for Linux kernel development. Every
Git working directory is a full-fledged repository with complete his-
tory and full revision tracking capabilities, not dependent on network
access or a central server. Git is free software distributed under the
terms of the GNU General Public License version 2.

• Issue and bug tracking: Mantis Bug Tracker. Mantis Bug Tracker
is a free and open source web-based bug tracking system released
under the terms of the GNU General Public License version 2. The
most common use of MantisBT is to track software defects. However,
MantisBT is often configured by users to serve as a more generic issue
tracking system and project management tool.

• Dependency management and building: Apache Maven. Maven
is a build automation and software comprehension tool. It is hosted
by the Apache Software Foundation, where it was formerly part of
the Jakarta Project. Maven uses a construct known as a Project Ob-
ject Model (POM) to describe the software project being built, its
dependencies on other external modules and components, and the
build order. It comes with pre-defined targets for performing cer-
tain well-defined tasks such as compilation of code and its packag-
ing. Maven dynamically downloads Java libraries and Maven plug-ins
from one or more repositories. Maven provides built-in support for
retrieving files from the Maven Central Repository and other Maven
repositories, and can upload artifacts to specific repositories after a
successful build. A local cache of downloaded artifacts acts as the

5.5 Software Testing 57

primary means of synchronising the output of projects on a local sys-
tem. Maven is built using a plug-in based architecture that allows it
to make use of any application controllable through standard input.

5.4.1 Project work-flow

The main objectives of the work-flow used in the development of the project
are the following: to maintain the local copy of the project up to date with
the latest version in the repository and to keep the repository up to date
with changes made by developers. If working copy is updated regularly, the
probability that the changes made conflict with other changes published
to the repository is reduced.

These tasks have been followed on regular basis:

• Update local copy with the latest version in the repository.

• Make changes to local copy of the project.

• Resolve conflicts.

• Publish changes.

In addition to these tasks, bug notices and enhancement tickets have been
tracked using Mantis Bug Tracker to keep development under control.

5.4.2 Project JavaDoc

To support further development and code analysis, the project’s docu-
mentation has been completed with JavaDoc source code documentation.
JavaDoc is a documentation generator from Sun Microsystems for generat-
ing API documentation in HTML format from Java source code. JavaDoc
is the industry standard for documenting Java classes.

Project’s JavaDoc can be found attached to the source code distribution
and it is not reported here due to its length.

5.5 Software Testing

Software testing is the process used to assess the quality of computer soft-
ware. Software testing is an empirical technical investigation conducted to
provide stakeholders with information about the quality of the product or
service under test, with respect to the context in which it is intended to
operate. This includes, but is not limited to, the process of executing a

58 Software design, development and test

program or application with the intent of finding software bugs. Quality is
not an absolute; it is value to some person. With that in mind, testing can
never completely establish the correctness of arbitrary computer software;
testing furnishes a criticism or comparison that compares the state and
behaviour of the product against a specification.

5.5.1 Software metrics

A software metric is a measure of some property of a piece of software or its
specifications. The purpose is to quantify some attribute of the objects, for
example, to measure the size of software projects. Additionally, a purpose
may be to predict some other attribute that is not currently measurable,
such as effort needed to develop a software project.

JDepend

JDepend traverses Java class file directories and generates design quality
metrics for each Java package. JDepend allows to automatically measure
the quality of a design in terms of its extensibility, re-usability, and main-
tainability to manage package dependencies effectively. There is a Maven
plugin based on JDepend that produces an HTML metrics report and has
been used for metrical analysis of the project. JDepend is distributed
under the terms of BSD license.

JDepend features the following metrics:

• Number of Classes - The number of concrete and abstract classes
(and interfaces) in the package is an indicator of the extensibility of
the package.

• Afferent Couplings - The number of other packages that depend
upon classes within the package is an indicator of the package’s re-
sponsibility.

• Efferent Couplings - The number of other packages that the classes
in the package depend upon is an indicator of the package’s indepen-
dence.

• Abstractness - The ratio of the number of abstract classes (and
interfaces) in the analysed package to the total number of classes in
the analysed package. The range for this metric is 0 to 1, with A = 0
indicating a completely concrete package and A = 1 indicating a
completely abstract package.

5.5 Software Testing 59

• Instability - The ratio of efferent coupling (Ce) to total coupling
(Ce/(Ce+Ca)). This metric is an indicator of the package’s resilience
to change. The range for this metric is 0 to 1, with I = 0 indicating a
completely stable package and I = 1 indicating a completely unstable
package.

• Distance - The perpendicular distance of a package from the ide-
alized line A + I = 1. This metric is an indicator of the package’s
balance between abstractness and stability. A package squarely on
the main sequence is optimally balanced with respect to its abstract-
ness and stability. Ideal packages are either completely abstract and
stable (x = 0, y = 1) or completely concrete and unstable (x = 1,
y = 0). The range for this metric is 0 to 1, with D = 0 indicat-
ing a package that is coincident with the main sequence and D = 1
indicating a package that is as far from the main sequence as possible.

• Cycles - Packages participating in a package dependency cycle are in
a deadly embrace with respect to re-usability and their release cycle.
Package dependency cycles can be easily identified by reviewing the
textual reports of dependency cycles. Once these dependency cycles
have been identified with JDepend, they can be broken by employing
various object-oriented techniques.

5.5.2 Static code analysis

Static code analysis is the analysis of computer software that is performed
without actually executing programs built from that software (analysis
performed on executing programs is known as dynamic analysis). In most
cases the analysis is performed on some version of the source code and in
the other cases some form of the object code. The term is usually applied
to the analysis performed by an automated tool, with human analysis being
called program understanding or program comprehension.

PMD

PMD is a static rule-set based Java source code analyser used for code
analysis in the project. It is available a Maven Plugin to generate an
HTML report of code analysis based on PMD.

PMD scans Java source code and looks for potential problems like:

• Possible bugs - empty try/catch/finally/switch statements.

60 Software design, development and test

• Dead code - unused local variables, parameters and private meth-
ods.

• Suboptimal code - wasteful String/StringBuffer usage.

• Overcomplicated expressions - unnecessary if statements, for
loops that could be while loops.

• Duplicate code - copied/pasted code means copied/pasted bugs.

5.5.3 Code coverage

Code coverage describes the degree to which the source code of a program
has been tested. It is a form of testing that inspects the code directly and
is therefore a form of white box testing.

To measure how well the program is exercised by a test suite, one or
more coverage criteria are used. There are a number of coverage criteria,
the main ones being:

• Function coverage - Has each function in the program been exe-
cuted?

• Statement coverage - Has each line of the source code been exe-
cuted?

• Condition coverage - Has each evaluation point (such as a true/false
decision) been executed?

• Path coverage - Has every possible route through a given part of
the code been executed?

• Entry/exit coverage - Has every possible call and return of the
function been executed?

The target software is built with special options or libraries and/or run
under a special environment such that every function that is executed in
the program is mapped back to the function points in the source code.
This process allows developers and quality assurance personnel to look for
parts of a system that are rarely or never accessed under normal conditions
and helps reassure test engineers that the most important conditions have
been tested.

5.5 Software Testing 61

Cobertura

The code coverage analysis tool used for the project testing is Cobertura
a free Java tool based on jcoverage. It is avaliable a Maven Plugin to
generate an HTML report of code coverage analysis made by Cobertura.

Main features of Cobertura are:

• Can be executed from ant or from the command line.

• Instruments Java bytecode after it has been compiled.

• Can generate reports in HTML or XML.

• Shows the percentage of lines and branches covered for each class,
each package, and for the overall project.

• Shows the McCabe cyclomatic code complexity of each class, and
the average cyclomatic code complexity for each package, and for
the overall product.

• Can sort HTML results by class name, percent of lines covered, per-
cent of branches covered, etc. And can sort in ascending or descend-
ing order.

5.5.4 Unit testing

Unit testing is a procedure used to validate that individual units of source
code are working properly. A unit is the smallest testable part of an appli-
cation. In procedural programming a unit may be an individual program,
function, procedure, etc., while in object-oriented programming, the small-
est unit is a method, which may belong to a base/super class, abstract class
or derived/child class.

JUnit

JUnit is a simple, open source framework to write and run repeatable tests.
It is an instance of the xUnit architecture for unit testing frameworks.
JUnit features include assertions for testing expected results, test fixtures
for sharing common test data, test runners for running tests.

In the project JUnit has been used for unity testing because it can be
tightly integrated with Eclipse IDE, used for the project development and
because JUnit Tests can be run in Maven build in order to ensure that the
build is not broken.

62 Software design, development and test

Specific test cases have been developed to test every aspect of the
project. They have been used to look for bugs and to test source quality.

Chapter 6

Results

The 3D GIS software tool that has been developed in this project is able
to create and visualise in a browser a network model from data stored on
a GeoDBMS or on a WFS Server. In the test application a Digital Terrain
Model has also been loaded into the scene using the same scene model used
for the network.

The software meets all the user and functional requirements require-
ments listed in chapter 3. The requirements and how the developed soft-
ware meets them are recapped in the following list:

• Run on multiple platforms and inside a web browser. The
software runs in a browser, so it runs in every operating system where
a WebGL enabled Internet browser runs. Since there are WebGL
enabled Internet browsers running on most diffused operating system,
the software meets this essential requirement.

• Create model from GeoDBMS or WFS Server. In the test
software network data used for creating the model has been retrieved
from a GeoDBMS, but the structure of the software permits also to
retrieve data from a WFS Server.

• Display the network model. This is the fundamental requirement
of the software and it is its main function.

• Pick network element on the scene and edit element infor-
mation. Clicking on a network element on the scene, it is possible
to visualise and then edit its alphanumeric information.

• Navigate through the model. Users, using mouse and keyboard
controls, can move into the displayed scene.

64 Results

6.1 System recommended requirements

The software has been tested both on Mozilla Firefox (version 4 or greater)
and in Google Chrome (version 9 or greater) that support natively WebGL
techology. It is developed to run in all WebGL enabled Internet browsers,
but Chrome and Firefox better support WebGL, so they are recommended.

It is necessary a video card that supports WebGL technology. In the
following will be reported Chrome and Firefox’s requirements about video
card on main operating systems.

6.1.1 Mozilla Firefox

Firefox’s graphics driver blacklist is fully documented on Mozilla’s wiki
(https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers).
Below is a summary of the main rules affecting WebGL.

Firefox on Windows

For WebGL in Firefox on Windows, Windows XP or newer is required.
The following minimal driver versions are required: either NVIDIA >=
257.21, or ATI/AMD >= 10.6, or Intel driver versions from September
2010 or newer.

Firefox on Mac OS X

For WebGL in Firefox on Mac, Mac OS 10.6 or newer is required.

Firefox on X11

In Firefox 4 and 5 on X11, only the NVIDIA driver is whitelisted. In
Firefox 6 and newer on X11, the following minimal versions are required:
either Mesa >= 7.10, or NVIDIA >= 257.21, or any version of FGLRX
implementing OpenGL 3.0 or newer.

6.1.2 Chrome

On all operating systems, WebGL is disabled on: the Intel Mobile 945
Express family of chipsets and on NVIDIA GeForce FX Go5200

https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers

6.2 User control 65

Chrome on Windows

On all versions of Windows, WebGL is disabled on all graphics drivers older
than January 1, 2009. Additionally, on Windows XP, WebGL is disabled
on ATI/AMD drivers older than version 10.6, on NVIDIA drivers older
than version 257.21, and on Intel drivers older than version 14.42.7.5294.

Chrome on Mac OS X

On Mac OS X, WebGL is disabled on: ATI Radeon X1900 and NVIDIA
GeForce 7300 GT. Additionally, WebGL’s antialiasing support is disabled
on most ATI/AMD cards on Mac OS X, although WebGL is otherwise
supported on these cards. The exceptions, where all features are supported,
are: ATI Radeon HD 4670, ATI Mobility Radeon HD 4670

Chrome on Linux

WebGL is disabled on all Intel and ATI/AMD cards.

6.2 User control

In table 6.1 are listed the navigation controls. Mouse double-click on a
network element opens the detail window of the slected element.

R fly up
F fly down
A D pan left and right
W S move forward and backward
Mouse Camera looking point movement
Directional Arrows Camera looking point movement

Table 6.1: User controls

6.3 Screenshots

66 Results

Figure 6.1: Panoramic view of the network and the terrain

6.3 Screenshots 67

Figure 6.2: Close view of the network and the terrain

68 Results

Figure 6.3: Bird’s-eye view of the network and the terrain

6.3 Screenshots 69

Figure 6.4: Close view with different hillshade texture

70 Results

Figure 6.5: Element detail

Chapter 7

Conclusions and future

development

The developed software is one of the first example of 3D WebGIS applied
to utility networks. HTML5 and WebGL technology had a fundamental
role in the project and it has been demonstrated that they can be used to
develop full-featured WebGIS application with 3D hardware accelerated
rendering of models.

The model developed in this project can be applied to other networks,
so it is possible to create a WebGIS that support management and visual-
isation of various networks showing the spatial relations between them as
they appears in the real world. This translates in better network manage-
ment and better service to network users, because utility companies can
have a precise idea of the impact of their interventions since the planning
phase.

Integrating the network models with city models and terrain models, it
will be possible to create 3D WebGIS that show a whole city, with streets,
buildings, utility networks, transportation networks and so on. Such a
WebGIS running in a browser and accessible from almost anywhere could
have may uses, for example security and risk prevention, architectural
planning, public transportation route planning or, this project aim, utility
network planning.

Future roadmap of the project development includes the following fea-
tures:

• Streaming and LOD of terrain and network. To improve ren-
dering time and overall performance of the software will be intro-
duced a system of LOD and streaming of terrain and network.

• Capability to make section views of the network. It will be

72 Conclusions and future development

possible to make sections view on the network to have a more precise
idea of the real world situation.

• Support of CityGML standard. The model of the network will
be also exported in OGC CityGML standard. In this way it will
be possible to integrate accurate utility networks models into city
models.

• Drawing of new network elements. It will be possible to draw
new network elements directly on the scene.

Appendix A

Achronyms

CAD Computer Aided Design
DTM Digital Terrain Model
DoS Denial of Service
GIS Geographic Information System
GML Geographic Markup Language
JSON JavaScript Object Notation
KML Keyhole Markup Language
VBO Vertex Buffer Object
WKB Well Known Binary
WKT Well Known Text

74 Achronyms

Bibliography

[1] F. P. Preparata and M. I. Shamos, Computational Geometry: an In-

troduction. Berlin: Springer, 1985.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-

putational Geometry: Algorithms and Applications. Springer-Verlag,
Jan. 2000.

[3] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development. Upper Sad-
dle River, NJ: Prentice Hall PTR, third edition ed., 2002.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer graphics:

Principles and practice in C. Addison-Wesley, 2nd ed., 1996.

[5] E. Gamma, R.Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software. Addison-Wesley profes-
sional computing series, Addison-Wesley, 1995.

[6] D. A. Gustafson, Theory and problems of Software Engineering. Mc-
Graw Hill, 2002.

[7] M. Rumor and E. Roccatello, “Design and development of a visualiza-
tion tool for 3D geospatial data in CityGML format,” in Urban and

regional data management: UDMS annual 2009: proceedings of the

Urban Data Management Society symposium 2009, Ljubljana, Slove-

nia, 24-26 June 2009, p. 31, CRC Press, 2009.

[8] “Webgl specification.” https://www.khronos.org/registry/webgl/specs/1.0/,
Feb. 2011.

[9] “Webgl public wiki.” http://www.khronos.org/webgl/wiki/Main_Page.

[10] M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno, “Spi-
derGL: a JavaScript 3D graphics library for next-generation WWW,”

https://www.khronos.org/registry/webgl/specs/1.0/
http://www.khronos.org/webgl/wiki/Main_Page

76 BIBLIOGRAPHY

in Proceedings of the 15th International Conference on Web 3D Tech-

nology, pp. 165–174, ACM, 2010.

[11] “SpiderGL website.” http://spidergl.org/.

[12] “Three.js project page.” https://github.com/mrdoob/three.js/.

[13] “Canvas 3D JS Library (C3DL).” http://www.c3dl.org/.

[14] “JGraphT website.” http://www.jgrapht.org/.

[15] “Java Universal Network/Graph Framework (JUNG).”
http://jung.sourceforge.net/.

[16] “JTS Topology Suite.” http://tsusiatsoftware.net/jts/main.html.

[17] “Spring Framework website.” http://www.springsource.org/.

[18] “Hibernate website.” http://www.hibernate.org/.

[19] “Struts website.” http://struts.apache.org/2.x/.

[20] “Autodesk AutoCAD Map 3D website.”
http://usa.autodesk.com/autocad-map-3d/ .

[21] “Bentley Water website.” http://www.bentley.com/en-US/Products/Bentley+Water/.

[22] “ArcGIS for Water Utilities website.”
http://resources.arcgis.com/content/water-utilities.

http://spidergl.org/
https://github.com/mrdoob/three.js/
http://www.c3dl.org/
http://www.jgrapht.org/
http://jung.sourceforge.net/
http://tsusiatsoftware.net/jts/main.html
http://www.springsource.org/
http://www.hibernate.org/
http://struts.apache.org/2.x/
http://usa.autodesk.com/autocad-map-3d/
http://www.bentley.com/en-US/Products/Bentley+Water/
http://resources.arcgis.com/content/water-utilities

List of Tables

3.1 USE CASE: run on multiple platforms 13
3.2 USE CASE: display the network model 13
3.3 USE CASE: pick network element on the scene 14
3.4 USE CASE: read network element information 14
3.5 USE CASE: edit network element information 15
3.6 USE CASE: navigate through model 15
3.7 USE CASE: run inside a web browser 17
3.8 USE CASE: create model from WFS Service 18
3.9 USE CASE: create model from GeoDBMS 18

6.1 User controls . 65

78 LIST OF TABLES

List of Figures

3.1 User requirements use case diagram 16
3.2 Software requirements use case diagram 19

4.1 ES2.0 Programmable Pipeline 27
4.2 SpiderGL structure . 35
4.3 Three.js object diagram 37

5.1 The waterfall model . 41
5.2 Object diagram . 43
5.3 State diagram . 44
5.4 System diagram . 45
5.5 Activity diagram . 49
5.6 graph3d.model.data package class diagram 50
5.7 graph3d.model.graph package class diagram 51
5.8 graph3d.converter.graph package class diagram 51
5.9 graph3d.scene package class diagram 53
5.10 graph3d.converter.model package class diagram 54
5.11 graph3d package diagram 54
5.12 graph3d sequence diagram 55

6.1 Panoramic view of the network and the terrain 66
6.2 Close view of the network and the terrain 67
6.3 Bird’s-eye view of the network and the terrain 68
6.4 Close view with different hillshade texture 69
6.5 Element detail . 70

	Abstract
	1 Introduction to 3D GIS
	1.1 Geographic Information Systems
	1.2 GIS for utility networks

	2 Analysis of existing 3D GIS for utility networks
	2.1 AutoCAD Map 3D
	2.2 Bentley MicroStation
	2.2.1 Bentley Electric & Gas
	2.2.2 Bentley Fiber
	2.2.3 Bentley Water

	2.3 Advantages and dis-advantages of existing solutions

	3 Requirement Analysis
	3.1 User requirements
	3.1.1 User requirements use cases

	3.2 Software requirement specification
	3.2.1 Software requirements use cases

	4 Development platform
	4.1 Graph Libraries available for Java
	4.1.1 JGraphT
	4.1.2 JUNG

	4.2 Topology library for Java
	4.3 WebGL
	4.3.1 Introduction to WebGL
	4.3.2 OpenGL ES 2.0 Pipeline Structure
	4.3.3 Getting a WebGL Implementation
	4.3.4 Security
	4.3.5 WebGL Frameworks

	4.4 Chosen development platform

	5 Software design, development and test
	5.1 Software life cycle
	5.2 Requirements analysis
	5.2.1 Object diagram
	5.2.2 State diagram
	5.2.3 System diagram

	5.3 Architectural Design
	5.3.1 Software architecture
	5.3.2 Activity diagram
	5.3.3 Class Diagrams
	5.3.4 Package diagram
	5.3.5 Sequence diagrams

	5.4 Development work-flow
	5.4.1 Project work-flow
	5.4.2 Project JavaDoc

	5.5 Software Testing
	5.5.1 Software metrics
	5.5.2 Static code analysis
	5.5.3 Code coverage
	5.5.4 Unit testing

	6 Results
	6.1 System recommended requirements
	6.1.1 Mozilla Firefox
	6.1.2 Chrome

	6.2 User control
	6.3 Screenshots

	7 Conclusions and future development
	A Achronyms
	Bibliography
	List of Tables
	List of Figures

