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Introduction

Let us consider a non-negative finite Borel measure µ on R3 and the corresponding
linear Schrödinger operator

−∆

2
− µ ∗ 1

|x|
which describes a non-relativistic electron moving in the Coulomb potential gen-
erated by the charge distribution µ. It is well-known in the literature that the
lowest eigenvalue of this operator is given by the variational principle [LL01]

λ1

(
−∆

2
− µ ∗ 1

|x|

)
= inf

φ∈H1(R3)∫
R
|φ|2=1

{
1

2

∫
R3

|∇φ(x)|2dx−
∫
R3

(
µ ∗ 1

| · |

)
(x)|φ(x)|2dx

}
.

Since it is an infimum over affine functions of µ, it is a concave function of µ. There-
fore, on the convex set of non-negative Borel measures with fixed mass µ (R3) = ν,
it is minimized when µ is proportional to a delta and we have

λ1

(
−∆

2
− µ ∗ 1

|x|

)
⩾ λ1

(
−∆

2
− µ (R3)

|x|

)
= −µ (R

3)
2

2

for every µ ⩾ 0. The interpretation is that the lowest possible electronic energy is
reached by taking the most concentrated charge distribution, at fixed total charge
µ (R3).

In the presence of molecules containing heavy nuclei, relativistic effects play an
important role in the description of quantum electrons, since they will naturally
attain high velocities, of the order of the speed of light. A proper description should
then involve the Dirac operator D0, derived in 1928 by Dirac himself [Tha13]. The
Schrödinger operator is then replaced by D0 − µ ∗ |x|−1 = −iα · ∇+ β − µ ∗ |x|−1

(α and β are defined in the first chapter). One important difference with the
Schrödinger case is that the essential spectrum of this operator is (−∞,−1] ∪
[1,+∞), hence is unbounded from below (and from above). The eigenvalues in the
gap (−1, 1) physically correspond to stationary states of the relativistic electrons.
Therefore it seems natural to expect that the lowest eigenvalue in (−1, 1) will
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again be minimized for the Dirac measure µ (R3) δ0, like in the Schrödinger case.
The aim of this thesis is to study this conjecture following the work done in the
papers [ELS21a, ELS21b] by Maria J. Esteban, Mathieu Lewin and Éric Séré. In
particular, I will study the following minimization problem

λ1(ν) := inf
µ⩾0

µ(R3)⩽ν

λ1

(
D0 − µ ∗ 1

|x|

)
. (1)

Compared with nonrelativistic theories in which the Schrödinger operator−∆/2
appears instead ofD0, the unboundedness of the spectrum leads to important phys-
ical, mathematical and numerical difficulties. Indeed, if one simply replaces −∆/2
by D0 in the energies of operators that are commonly used in the nonrelativistic
case, one obtains energies which are not bounded from below.

Although there is no observable electron of negative energy, the negative spec-
trum plays an important role in physics. Dirac himself suspected that the negative
spectrum of his operator could generate new interesting physical phenomena, and
in the 1930’s he proposed the following interpretation [Dir34]:

We make the assumption that, in the world as we know it, nearly all
the states of negative energy for the electrons are occupied, with just
one electron in each state, and that a uniform filling of all the negative-
energy states is completely unobservable to us.

Physically, one therefore has to imagine that the vacuum (called the Dirac sea) is
filled with infinitely many virtual particles occupying the negative energy states.
With this conjecture, a real free electron cannot be in a negative state due to the
Pauli principle which forbids it to be in the same state as a virtual electron of the
Dirac sea. With this interpretation, Dirac was able to conjecture the existence
of “holes” in the vacuum, interpreted as “anti-electrons” or positrons, having a
positive charge and a positive energy (a better explanation of this fact will be
given in Section 1.3). The positron was discovered in 1932 by Anderson. Dirac also
predicted the phenomenon of vacuum polarization: In the presence of an electric
field, the virtual electrons are displaced, and the vacuum acquires a nonconstant
density of charge. All these phenomena are now well known and well established
in physics. They are direct consequences of the existence of the negative spectrum
of D0, showing the crucial role played by Dirac’s discovery.

Another difficulty with the models, in addition to the unboundedness of the
spectrum, is the lack of compactness: The Palais–Smale condition is not satisfied
due to the unboundedness of the domain R3.

The combination of the above two types of difficulties poses a challenge in the
Calculus of Variations.
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In the first chapter of this thesis I define the (free) Dirac operator and study
its properties, like self-adjointness and spectrum.

Then we add the potential µ ∗ |x|−1. The difficulty here is that, for a singular
measure µ, the operator D0 − µ ∗ |x|−1 can have several self-adjoint extensions,
all with a different point spectrum. Even in the simple case µ = νδ0, the Dirac-
Coulomb operator D0 − ν|x|−1 has infinitely many self-adjoint extensions when
ν >

√
3/2 [Tha13]. This is due to the fact that the Coulomb potential has a

critical scaling with regard to the one-order differential operator D0. This problem
does not arise for the Schrödinger operator −∆/2 − µ ∗ |x|−1 which is essentially
self-adjoint for every finite measure µ, by Hardy’s inequality. The solution to
this problem has been found many years ago (see [ELS19] for a complete list of
references).

The second chapter of the thesis, following the article [ELS21a], is dedicated to
prove the existence of a similar distinguished self-adjoint extension forD0−µ∗|x|−1

with domain in H1/2 (R3,C4), under the sole assumptions that

|µ|
(
R3
)
<∞ and |µ({R})| < 1 for all R ∈ R3.

This is done using Nenciu’s method ([Nen76], Corollary 2.1).
Then, considering the particular case of positive measures, I characterize the

domain using a method introduced in [EL07, EL08] and recently generalized in
[SST20]. This characterization of the domain allows us to provide min-max for-
mulas for the eigenvalues in the gap (−1, 1), following for example [DES00, DES06,
ELS19, SST20].

In the third and last chapter, following now [ELS21b], I investigate the detailed
properties of the lowest possible eigenvalue among all possible measures µ with a
fixed maximal charge ν; that is, the minimization problem (1). This problem is
indeed the main motivation for studying Dirac operators with general measures µ.

The difficulty here is that the lowest Dirac eigenvalue in the gap (−1, 1) depends
in a non trivial way on the measure, not like in the Schrödinger case. The main
result of this thesis will be Theorem 5 in [ELS21b]. It states that for any 0 ⩽ ν <
ν1, where ν1 will be defined as the critical mass for which we have λ1(D0 − µ ∗
|x|−1) > −1 for all µ(R3) < ν1, there exists at least one minimizing measure for
λ1(ν) and any minimizer concentrate on a compact set of Lebesgue measure zero.
Thus, although the full conjecture remains open so far, we already know that an
optimal measure should be singular.

The existence of the optimal measure is proved by a rather delicate adaptation
of techniques from nonlinear analysis to the context of Dirac operators. The first
eigenvalue is a highly nonlinear function of the measure µ, even if the operator
only depends linearly on µ. The main enemy here is the action of the non-compact
group of space translations and this will be controlled using Lions’ concentration-
compactness method [Lio84a, Lio84b, Lio85a, Lio85b, Lew10].
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Chapter 1

The Free Dirac Operator

1.1 Notation

Dirac derived in 1928 his operator to describe the relativistic motion of a spin-1/2
particle in R3 [Tha13]. For simplicity, we will work in a system of units for which
m = c = ℏ = 1 (the electron mass, the speed of light and the Planck constant,
respectively). The free Dirac operator is then given by

D0 := −iα · ∇+ β = −i
3∑

k=1

αk∂xk
+ β (1.1)

where α = (α1, α2, α3) is a triplet of matrices and α1, α2, α3, β are 4×4 Hermitian
matrices which satisfy the following anticommutation relations:

αkαl + αlαk = 2δkl1,

αkβ + βαk = 0,

β2 = 1.

The usual representation in 2× 2 block matrices is given by

β =

(
12 02

02 −12

)
, αk =

(
02 σk
σk 02

)
for k = 1, 2, 3,

where the Pauli matrices are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The important property of the Dirac operator is that D2
0 = −∆ + 1, where ∆ is

the usual Laplacian.
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8 CHAPTER 1. THE FREE DIRAC OPERATOR

The operator D0 is then given explicitly by the matrix-valued differential ex-
pression

D0 =

(
12 −iσ · ∇

−iσ · ∇ −12

)
, (1.2)

where σ = (σ1, σ2, σ3). Therefore, D0 acts on vector-valued wave-functions

φ(x) =

φ1(x)
...

φ4(x)

 ∈ C4.

In particular, D0 is defined on the Hilbert space H = L2(R3)⊕L2(R3)⊕L2(R3)⊕
L2(R3) ≡ L2(R3)4 ≡ L2(R3,C4). It consists of 4-components column vectors
φ = (φ1, φ2, φ3, φ4)

⊥ where each component φi is a complex-valued L2 function of
the space variable x ∈ R3. In H , the scalar product is given by

(φ, ψ) =

∫
R3

4∑
k=1

φk(x)ψk(x) d
3x.

We want to define the free Dirac operator

D0φ = −iα · ∇φ+ βφ, for every φ ∈ D(D0)

on a suitable domain D(D0) of this Hilbert space. In the next section, we will prove
that D0 is self-adjoint on D(D0) = H1(R3)4 ⊂ H , which is a natural domain for
first-order differential operators.

1.2 Self-adjointness and Spectrum

The free Dirac operator is easily analyzed in the Fourier space. The Fourier trans-
formation F maps L2(R3, d3x)4 into itself (sometimes to distinguish between the
variables we shall write FL2(R3, d3x)4 = L2(R3, d3p)4). Any matrix differential
operator in L2(R3, d3x)4 is mapped via F into a matrix multiplication operator in
L2(R3, d3p)4. For the Dirac operator (1.2), using the fact that F(−i∇) = p, one
obtains the matrix multiplication operator h(p), given by :

h(p) := (FD0F−1)(p) =

(
12 σ · p

σ · p −12

)
= α · p+ β. (1.3)

For each p, this is a 4× 4 Hermitian matrix with eigenvalues

λ1(p) = λ2(p) = −λ3(p) = −λ4(p) =
√
p2 + 1 =: λ(p), where p = |p|.
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1.3. CHARGE CONJUGATION 9

The unitary transformation u(p) which brings h(p) to its diagonal form is given
explicitly by

u(p) =
(1 + λ(p))1 + βα · p√

2λ(p)(1 + λ(p))
= a+(p)1 + a−(p)β

α · p
p

,

where

a±(p) =

√
1± 1/λ(p)

2
.

It is easy to check that u(p)h(p)u(p)−1 = βλ(p) where u(p)−1 = a+(p)1 −
a−(p)β

α·p
p
. From this latter equation and (1.3), we see that the unitary trans-

formation W := uF converts D0 into a multiplication operator by the diagonal
matrix (WD0W−1)(p) = (uFD0F−1u−1)(p) = (uhu−1)(p) = βλ(p) in the Hilbert
space L2(R3, d3p)4.

Thanks to the spectral theorem, we conclude thatD0 is self-adjoint on D(D0) =
W−1D(βλ(·)) = F−1u−1D(λ(·)) = F−1D(λ(·)), since it is unitarily equivalent to
the multiplication by a diagonal matrix-valued function of p. Here we used the
fact that the multiplication by a unitary matrix does not change the domain of
any multiplication operator. Moreover, H1(R3)4 is defined by

H1(R3)4 := {f ∈ L2(R3, d3p)4|(1 + |p|2)1/2f ∈ L2(R3, d3p)4}.

By definition of λ this set is equal to D(λ(·)).
The spectrum of D0 equals the spectrum of the multiplication operator βλ

which is simply the image of the functions p 7→ λi(p) for i = 1, ..., 4; that is,
σ(D0) = (−∞,−1] ∪ [1,+∞).

Along this manuscript, we will use the notation abuse D0 = α · p+ β by which
we mean that D0 acts in the following way:

(D0φ)(x) = F−1 ((α · p+ β)F(φ)(p)) (x) ∀φ ∈ H1(R3,C4).

1.3 Charge conjugation

The free Dirac operator represents the energy of the system described by the time-
dependent Dirac equation i ∂

∂t
φ(t, x) = D0φ(t, x). Since the spectrum of the Dirac

operator has a negative part, the system can be in a state with negative energy,
but the occurrence of negative energies for an electron is a peculiar fact. A better
understanding of the negative energy solutions can be obtained if we consider the
Dirac equation in an external field, and the operation of charge conjugation. The
Dirac operator for a charge e in an external electromagnetic field (φel, A) is given
by

H(e) = α · (p− eA(t, x)) + β + eφel(t, x).

9



10 CHAPTER 1. THE FREE DIRAC OPERATOR

Now, we will consider the antiunitary transformation

Cψ := UCψ,

where UC is a unitary 4 × 4 matrix such that βUC = −UCβ and αkUC = UCαk,
for k = 1, 2, 3. In our notation, we take UC = iβα2. It is easy to see that, when
ψ(t) is a solution of the Dirac equation with Hamiltonian H(e), Cψ(t) is a solution
of the Dirac equation with Hamiltonian H(−e). This motivates the name charge
conjugation for the operator C. Moreover, we have

CH(e)C−1 = −H(−e).

Thus, the negative energy subspace of H(e) is connected via a symmetry transfor-
mation to the positive energy subspace of the Dirac operator H(−e) for a particle
with opposite charge (antiparticle, positron).

Going back to the free Dirac operator, since D0 = H(0), we get

CD0C
−1 = −D0.

(The same holds for α · p + εβ and (α · p + εβ)−1 in place of D0.) This gives the
symmetry of the spectrum of these operators. Indeed, let us denote by A any of
them and by ρ(A) the resolvent of A. Then,

λ ∈ ρ(A) ∩R⇔ A− λ is invertible with bounded inverse

⇔ C(A− λ)C−1 is invertible with bounded inverse

⇔ −A− λ is invertible with bounded inverse

⇔ −λ ∈ ρ(A) ∩R.

We conclude since the spectrum is the complementary in R of the resolvent ρ.
The symmetry of the spectrum for a bounded self-adjoint operator gives us an

other important property that will be useful along the thesis: The maximum of
the spectrum equals the norm of the operaror A. Indeed, for bounded operators
Gelfand’s formula tells us that the spectral radius r(A), defined as the max of the
norm of the eigenvalues, is given by

r(A) = lim
n→∞

∥An∥1/n.

By the symmetry of the spectrum, it is clear that r(A) = max σ(A). On the other
hand, for any self-adjoint operator the right-hand side is exactly the norm, since
the identity ∥A2∥ = ∥AA∗∥ = ∥A∥2 implies by induction ∥A2n∥ = ∥A∥2n. Hence,
lim ∥An∥1/n = lim ∥A2n∥1/2n = lim ∥A∥ = ∥A∥. Finally,

maxσ(A) = r(A) = ∥A∥. (1.4)

10



Chapter 2

Distinguished extension and
min-max formulas

We now add to the free Dirac operator the potential generated by a charge distri-
bution µ ; that is

Vµ := µ ∗ 1

|x|
.

We want to study the properties of D0 − Vµ in order to arrive at a min-max
formulation of the eigenvalues, that is necessary to study the first, namely the
smallest, eigenvalue. All the theorems and their proofs of this chapter can be
found in [ELS21a].

2.1 Distinguished self-adjoint extension for a gen-

eral charge

The aim of this section is to give a meaning to the operator D0−Vµ for the largest
possible class of bounded measure µ.

Theorem 2.1 (Distinguished self-adjoint extension). Let µ be any finite signed
Borel measure on R3, such that

|µ({R})| < 1 ∀R ∈ R3.

Then the operator D0 − Vµ defined first on H1(R3,C4) or on C∞
c (R3,C4) has a

unique self-adjoint extension whose domain is included in H1/2(R3,C4).
The functions in the domain of the extension D(D0 − Vµ) have a square inte-

grable gradient in R3 ∖∪k
j=1Br(Rj) for all r > 0, where R1, ..., Rk ∈ R3 are all the

points such that |µ(Rj)| ⩾ 1
2
.
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12 CHAPTER 2. DISTINGUISHED EXTENSION AND MIN-MAX FORMULAS

The operator D0 − Vµ is the norm resolvent limit of D0 − Vµ1{|Vµ|⩽n} when
n→ ∞. Moreover, its essential spectrum is σess(D0 − Vµ) = (−∞,−1] ∪ [1,+∞).

The proof relies on the following lemmas.

Lemma 2.1 (Compactness for disjoint supports). Let f ∈ L2(Rn) and B ⊂ Rn a
compact set with supp(f) ⊂ B. Moreover, let g ∈ L2

loc(R
n) with supp(g) ⊂ Ω ⊂

Rn, where Ω is such that d(Ω, B) > 0. Finally, let us assume that
∫
Ω

|g(x)|2
(1+|x|2)2(n−s)dx <

∞, where 0 < s < n. Then, the operator K = g(x) 1
|p|sf(x), which formally is

φ 7→ Kφ(x) = g(x)F−1
(

1
|p|sF(f φ)(p)

)
(x), is compact and its norm can be esti-

mated by

∥K∥ ⩽ C∥f∥L2(B)

(∫
Ω

|g(x)|2

(1 + |x|2)2(n−s)
dx

)1/2

,

where C depends only on s, n, d(B,Ω) and supx∈B |x|.

Proof. The kernel of K is

K(x, y) = k
1Ω(x)g(x)f(y)

|x− y|n−s
,

for a positive constant k, i.e. Kh(x) =
∫
Rn K(x, y)dy =

∫
Rn k

1Ω(x)g(x)f(y)
|x−y|n−s dy =

k1Ω(x)g(x)
∫
Rn

f(y)h(y)
|x−y|n−sdy ∀h ∈ D(K). This comes from the fact that F( 1

|x|s )(p) =
1

|p|n−s (up to a multiplicative constant).

In addition, we have |x − y| ⩾ c(|x| + 1) ∀x ∈ Ω and y ∈ B. Indeed, the

function ψ(x, y) := |x−y|
|x|+1

is bounded from below by a positive constant c. Let

R := supy∈B |y|. Then,

• If x ∈ B(0, 2R), then ψ(x, y) ⩾ d(B,Ω)
2R+1

=: c1;

• If x /∈ B(0, 2R) then ψ(x, y) ⩾ |x|−R
|x|+1

⩾ R
2R+1

=: c2, where in the last in-

equality we used the fact that the function z 7→ ϕ(z) := y−R
y+1

is increasing

for z ⩾ 0, thus ϕ(|x|) ⩾ ϕ(2R) when |x| ⩾ 2R.

Finally, take c = min{c1, c2}. Therefore, we have the following estimate for the
kernel:

|K(x, y)| ⩽ k

cn−s

|g(x)|
(1 + |x|)n−s

|f(y)|,

12



2.1. DISTINGUISHED SELF-ADJOINT EXTENSION FOR A GENERAL CHARGE 13

and we can estimate the norm:

∥Kh∥22 = C

∫
Rn

(∫
Rn

f(y)h(y)

|x− y|n−s
dy 1Ω(x)g(x)

)2

dx

⩽ C

(∫
Ω

|g(x)|2

(1 + |x|)2(n−s)
dx

)(∫
Rn

f(y)h(y)dy

)2

Hölder

⩽ C

(∫
Ω

|g(x)|2

(1 + |x|2)2(n−s)
dx

)
∥f∥2L2(B)∥h∥22,

=⇒ ∥K∥ ⩽ C∥f∥L2(B)

(∫
Ω

|g(x)|2

(1 + |x|2)2(n−s)
dx

)1/2

<∞ by assumption.

For simplicity, when the domain is clear, we denote by ∥ · ∥p the Lp-norm on that
domain. We now conclude the proof by proving the compactness. Let un ⇀ 0 be
any sequence converging weakly to 0 in L2 such that ∥un∥2 = 1 for every n. The

sequence (Kun)(x) = kg(x)
∫
B

f(y)un(y)
|x−y|n−s dy converges to 0 a.e. since the function

y ∈ B 7→ f(y)
|x−y|n−s is in L2 ∀x ∈ Ω (f ∈ L2 and |x−y| ⩾ c(|x|+1) ⩾ c) and un

L2

⇀ 0.
In addition, we have

|(Kun)(x)| ⩽
k

cn−s

|g(x)|
(|x|+ 1)n−s

∫
Rn

|fun|
Hölder

⩽
k

cn−s

|g(x)|
(1 + |x|)n−s

∥f∥2∥un∥2

=
k∥f∥2
cn−s

|g(x)|
(1 + |x|)n−s

,

which is an L2 function by assumption. Hence ∥Kun∥2 −→
n→∞

0 by the dominated

convergence theorem.

Lemma 2.2 (Local compactness in the absence of atoms). Let µ′ ⩾ 0 be a finite
Radon measure on R3, with no atom. Then the operator

1BR

√
µ′ ∗ 1

|x|
1

|p|1/2

is compact for every finite R > 0.

Proof. We write µ′ = µ′1BN
+ µ′1Bc

N
=: µ′

1 + µ′
2, so that Vµ′ = Vµ′

1
+ Vµ′

2
. Hence,

using the fact that
√
a+ b ⩽

√
a+

√
b, we obtain that 0 ≤

√
Vµ′ −

√
Vµ′

1
⩽
√
Vµ′

2

pointwisely. This implies immediately that ∥(
√
Vµ′ −

√
Vµ′

1
) 1
|p|1/2∥ ⩽ ∥

√
Vµ′

2

1
|p|1/2∥.

Now, from Theorem A.2 in Appendix A, which is based on Kato’s inequality
1
|x| ⩽

π
2
|p| (A.1), one has

1

|p|
⩽
π

2
µ′(R3)

1

Vµ′
.

13



14 CHAPTER 2. DISTINGUISHED EXTENSION AND MIN-MAX FORMULAS

This implies that∥∥∥∥∥ 1

|p| 12
√
Vµ′φ

∥∥∥∥∥
2

2

= (
√
Vµ′φ,

1

|p|
√
Vµ′φ)

⩽
π

2
µ′(R3)(

√
Vµ′φ,

1

Vµ′

√
Vµ′φ) =

π

2
µ′(R3)∥φ∥22.

In particular, ∥∥∥∥∥√Vµ′
1

|p| 12

∥∥∥∥∥ =

∥∥∥∥∥ 1

|p| 12
√
Vµ′

∥∥∥∥∥ ⩽

√
π

2
µ′(R3), (2.1)

(where we used the fact that ∥AB∥ = ∥(AB)∗∥ = ∥B∗A∗∥ = ∥BA∥ since both
operators are self-adjoint). Note also that for these estimates the measure does
not necessarily have to be atom-free.

Going back to our case, we have proved∥∥∥∥(√Vµ′ −
√
Vµ′

1

) 1

|p|1/2

∥∥∥∥ ⩽

√
π

2
µ′(Bc

N)
N → ∞−→ 0.

Hence we may assume that µ′ has compact support, and then use the fact that the
norm-limit of a sequence of compact operators is compact (see [Kat13], Theorem
III.4.7).

Now for r > 0, let us consider two tilings of R3 with cubes:

Cj = 3r
(
j + [−1/2, 1/2)3

)
and C ′

k = r
(
k + [−1/2, 1/2)3

)
, for j, k ∈ Z3,

of side 3r and r respectively. For every k, we call jk the index of the large cube
Cjk of which C ′

k is exactly at the center.
Let ε > 0. Then, by compactness of the support of µ′ and the fact that µ′ has

no atom, we can find r > 0 s.t. µ′(Cj) ⩽ ε ∀j. We then write

1

|p|1/2
1BR

(
µ′ ∗ 1

|x|

)
1

|p|1/2
=
∑
k

1

|p|1/2
1BR∩C′

k

(
µ′(1Cjk

+ 1Cc
jk
) ∗ 1

|x|

)
1

|p|1/2
.

Notice that the sum is finite. The sets C ′
k and Cc

jk
are at least at a distance r from

each other, so we have∣∣∣∣1C′
k

(
µ′1Cc

jk
∗ 1

|x|

)∣∣∣∣ =
∣∣∣∣∣1C′

k

∫
Cc

jk

dµ′(y)

|x− y|

∣∣∣∣∣ |x−y|⩾r

⩽

∣∣∣∣µ′(Cc
jk
)

r

∣∣∣∣ =:
C

r
.

Hence

f(x) := 1C′
k

(
µ′1Cc

jk
∗ 1

|x|

)
∈ Lp(C ′

k) ∀1 ⩽ p ⩽ ∞.

14



2.1. DISTINGUISHED SELF-ADJOINT EXTENSION FOR A GENERAL CHARGE 15

In particular, |f |1/2 ∈ L6(R3) and g(p) := 1
|p|1/2 ∈ L6,∞

ω (R3), where the notation

L6,∞ stands for the weak L6 space that is embedded with the norm

∥g∥L6,∞ := sup
t>0

tL
(
{x ∈ R3 : |g(x)| > t}

)1/6
= sup

t>0
tL

({
1

|x|1/2
> t

}) 1
6

= sup
t>0

t(L (B 1
t2
))

1
6 = sup

t>0
t

(
k

t6

) 1
6

= k <∞,

where L is the Lebegue measure and k is a positive constant. Then, the operator
R := |f |1/2 1

|p|1/2 is compact by Cwikel’s theorem ([Sim05], Theorem 4.2). Therefore

1
|p|1/2 1BR∩C′

k

(
µ′1Cc

jk
∗ 1

|x|

)
1

|p|1/2 = 1
|p|1/2 |f |

1/2|f |1/2 1
|p|1/2 (= R∗R) is also compact (for

every k).
Finally, we have obtained that

1

|p|1/2
1BR

(
µ′ ∗ 1

|x|

)
1

|p|1/2
=
∑
k

1

|p|1/2
1BR∩C′

k

(
µ′1Cjk

∗ 1

|x|

)
1

|p|1/2
+K1,

where K1 is compact. Moreover, we can write

1

|p| 12
1BR∩C′

k
Vµ′1Cjk

1

|p| 12
= (1Cjk

+ 1Cc
jk
)

1

|p| 12
1BR∩C′

k
Vµ′1Cjk

1

|p| 12
(1Cjk

+ 1Cc
jk
).

The operator Tk := 1Cc
jk

1

|p|
1
2
1C′

k∩BR

√
µ′1Cjk

∗ 1
|x| is compact by Lemma 2.1 with

g(x) = 1Cc
jk
, f(x) = 1C′

k∩BR

√
µ′1Cjk

∗ 1

|x|
, n = 3, s = 1/2.

Therefore

1

|p|1/2
1BR

(
µ′ ∗ 1

|x|

)
1

|p|1/2
=
∑
k

1Cjk

1

|p|1/2
1BR∩C′

k

(
µ′1Cjk

∗ 1

|x|

)
1

|p|1/2
1Cjk

+
∑
k

1Cjk

1

|p|1/2
1BR∩C′

k

(
µ′1Cjk

∗ 1

|x|

)
1

|p|1/2
1Cc

jk

+
∑
k

1Cc
jk

1

|p|1/2
1BR∩C′

k

(
µ′1Cjk

∗ 1

|x|

)
1

|p|1/2
1Cjk

+K1

=: S +
∑
k

1Cjk

1

|p|1/2

√
µ′1Cjk

∗ 1

|x|
T ∗
k

+
∑
k

Tk

√
µ′1Cjk

∗ 1

|x|
1

|p|1/2
1Cjk

+K1 =: S +K2,

15



16 CHAPTER 2. DISTINGUISHED EXTENSION AND MIN-MAX FORMULAS

where K2 is compact because Tk is compact (⇒ T ∗
k too) and 1

|p|1/2

√
µ′1Cjk

∗ 1
|x| abd√

µ′1Cjk
∗ 1

|x|
1

|p|1/2 are bounded by (2.1). At the end, S can be bounded as follows:(
φ, 1Cjk

1

|p|1/2
1BR∩C′

k
Vµ′1Cjk

1

|p|1/2
1Cjk

φ

)
=

(
1Cjk

φ,
1

|p|1/2
1BR∩C′

k

√
Vµ′1Cjk

(
1

|p|1/2
1BR∩C′

k

√
Vµ′1Cjk

)∗

1Cjk
φ

)
=

∥∥∥∥( 1

|p|1/2
1BR∩C′

k

√
Vµ′1Cjk

)∗

1Cjk
φ

∥∥∥∥2
2

⩽

∥∥∥∥1BR∩C′
k

√
Vµ′1Cjk

1

|p|1/2

∥∥∥∥2 ∥1Cjk
φ∥22

2.1

⩽
π

2
µ′(Cjk)(φ, 1Cjk

φ) ∀φ ∈ L2(R3,C4).

This exactly means that

1Cjk

1

|p|1/2
1BR∩C′

k
Vµ′1Cjk

1

|p|1/2
1Cjk

⩽
π

2
µ′(Cjk)1Cjk

∀k.

Hence

0 ⩽ S ⩽
π

2

∑
k

µ′(Cjk)1Cjk
⩽ ε

π

2

∑
k

1Cjk
⩽

27π

2
ε,

where we used the fact that µ′(Cj) ⩽ ε by our choice of r and that every point

touches at most 27 Cjk . Letting ε go to 0, we obtain that 1
|p|1/2 1BR

(
µ′ ∗ 1

|x|

)
1

|p|1/2 =(
1BR

√
µ′ ∗ 1

|x|
1

|p|1/2

)∗ (
1BR

√
µ′ ∗ 1

|x|
1

|p|1/2

)
is compact, being norm-limit of compact

operators. Therefore, 1BR

√
µ′ ∗ 1

|x|
1

|p|1/2 also is compact, and this concludes the

proof.

We are now ready to prove the main theorem.

Proof of Theorem 2.1. Our goal is to show that

lim sup
|s|→∞

∥∥∥∥√|Vµ|
1

D0 + is

√
|Vµ|

∥∥∥∥ ⩽ max
R∈R3

|µ({R})|, (2.2)

which is strictly less then 1 since µ({R}) < 1 ∀R ∈ R3 and µ is finite.
Let us write now µ in the following way:

µ =
∞∑

m=1

νmδRm + µ′,

16



2.1. DISTINGUISHED SELF-ADJOINT EXTENSION FOR A GENERAL CHARGE 17

where Rm are all distinct, maxm |νm| < 1 (by assumption) and µ′ has no atom.
Then, we can write

µ =

(
K∑

m=1

νmδRm + µ′1BN

)
+

(∑
m>K

νmδRm + µ′1Bc
N

)
=: µ1 + µ2.

Notice that |µ2|(R3) tends to 0 asK,N → ∞. Using this fact and Kato’s inequality,
it suffices to show (2.2) for µ with finitely many atoms and for µ′ with compact
support. Indeed:∥∥∥∥√|Vµ|

1

D0 + is

√
|Vµ|

∥∥∥∥ ⩽

∥∥∥∥(√|Vµ1|+
√

|Vµ2|
)

1

D0 + is

(√
|Vµ1|+

√
|Vµ2|

)∥∥∥∥
⩽

2∑
i,j=1

∥∥∥∥√|Vµi
| 1

D0 + is

√
|Vµj

|
∥∥∥∥ ,

since
√
|Vµ| =

√
|Vµ1 + Vµ2| ⩽

√
|Vµ1| +

√
|Vµ2| and ∥fAf∥ = ∥fg−1gAgg−1f∥

⩽ ∥fg−1∥2∥gAg∥ ⩽ ∥gAg∥ if 0 ⩽ f ⩽ g because ∥fg−1∥ = ∥fg−1∥∞ ⩽ 1. But all
the terms with i = 2 or j = 2 tend to 0:∥∥∥∥√|Vµi

| 1

D0 + is

√
|Vµj

|
∥∥∥∥ =

∥∥∥∥√|Vµi
| 1

|p|1/2
|p|

D0 + is

1

|p|1/2
√
|Vµj

|
∥∥∥∥

2.1

⩽
π

2

√
|µi|(R3)|µj|(R3)

∥∥∥∥ |p|
D0 + is

∥∥∥∥ K,N→∞−→ 0,

because |p|
|D0+is| =

|p|√
(D0−is)(D0+is)

= |p|√
|p|2+1+s2

14 implies that

∥∥∥∥ |p|
D0 + is

∥∥∥∥ = sup
p∈R3

|p|√
|p|2 + 1 + s2

= 1 (2.3)

by Theorem A.4 in Appendix A. Therefore, we can assume this property of µ for
the rest of the proof, and we have

|Vµ(x)| =
∣∣∣∣∫ dµ(y)

|x− y|

∣∣∣∣ ⩽ |µ|(R3)

||x| −N |
,

whenever supp(µ) ⊂ BN . Let now R > N and η < min1⩽m̸=l⩽K
|Rm−Rl|

2
. We write

Vµ =
K∑

m=1

νm1Bη(Rm)

|x−Rm|
+ 1BR

Vµ′ +
K∑

m=1

νm1Bη(Rm)c

|x−Rm|
+ 1Bc

R
Vµ′

17



18 CHAPTER 2. DISTINGUISHED EXTENSION AND MIN-MAX FORMULAS

⇒
√

|Vµ| ⩽
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2
+ 1BR

√
V|µ′| +

√√√√ K∑
m=1

νm
η

+

√
|µ′|(R3)

R−N
,

where we used the two facts that |x − Rm| ⩾ η in Bc
η(Rm) and that

∣∣∣∫ dµ′(y)
|x−y|

∣∣∣ ⩽∣∣∣∫BN

dµ′(y)
||x|−|y||

∣∣∣ ⩽ |µ′|(R3)
R−N

in Bc
R.

Then we can replace it in
∥∥∥√|Vµ| 1

D0+is

√
|Vµ|

∥∥∥ and obtain the following terms:

•
K∑

m=1

|νm|
1Bη(Rm)

|x−Rm|1/2
1

D0 + is

1Bη(Rm)

|x−Rm|1/2
=:

K∑
m=1

|νm|1ΩmAm1Ωm

For Coulomb potential we have (see [ADV13, Kat83, Kla81, Nen76, Wüs77]):

σ

(
1

|x|1/2
1

α · p+ β

1

|x|1/2

)
= σess

(
1

|x|1/2
1

α · p+ β

1

|x|1/2

)
= σ

(
1

|x|1/2
1

α · p
1

|x|1/2

)
= σess

(
1

|x|1/2
1

α · p
1

|x|1/2

)
= [−1, 1],

(2.4)

and ∥∥∥∥ 1

|x|1/2
1

α · p+ is

1

|x|1/2

∥∥∥∥ =

∥∥∥∥ 1

|x|1/2
1

α · p+ β + is

1

|x|1/2

∥∥∥∥ = 1. (2.5)

Since 1
D0+is

commutes with translations we also have ∥Am∥ = 1. This is
useful to have a bound on the norm of the operator:∥∥∥∥∥

K∑
m=1

|νm|1ΩmAm1Ωmφ

∥∥∥∥∥
2

2

=

∫
|

K∑
m=1

|νm|1ΩmAm1Ωmφ|2

=

∫ K∑
m=1

|νm|2 |1ΩmAm1Ωmφ|
2 ⩽ (max

m
|νm|)2

K∑
m=1

∫
|1ΩmAm1Ωmφ|

2

⩽ (max
m

|νm|)2
K∑

m=1

∥Am1Ωmφ∥
2
2

∥Am∥=1

⩽ (max
m

|νm|)2
K∑

m=1

∥1Ωmφ∥
2
2

= (max
m

|νm|)2
∫ K∑

m=1

1Ωm |φ|2 = (max
m

|νm|)2
∫

|
K∑

m=1

1Ωmφ|2

= (max
m

|νm|)2
∥∥∥∥∥

K∑
m=1

1Ωmφ

∥∥∥∥∥
2

2

⩽ (max
m

|νm|)2
∥∥∥∥∥

K∑
m=1

1Ωm

∥∥∥∥∥
2

∥φ∥22,

⇒

∥∥∥∥∥
K∑

m=1

|νm|1ΩmAm1Ωm

∥∥∥∥∥ ⩽ (max
m

|νm|)

∥∥∥∥∥
K∑

m=1

1Ωm

∥∥∥∥∥ = max
m

|νm| < 1.

18



2.1. DISTINGUISHED SELF-ADJOINT EXTENSION FOR A GENERAL CHARGE 19

Note that the estimate does not depend on K but requires η to be small
enough to guarantee that the balls do not overlap. The choice of η depends
on the smallest distance between the nuclei. All the other terms are small
for s large enough.

• 1BR

√
V|µ′|

1

D0 + is
1BR

√
V|µ′| = 1BR

√
V|µ′|

1

|p|1/2︸ ︷︷ ︸
B

|p|
D0 + is︸ ︷︷ ︸

As

1

|p|1/2
1BR

√
V|µ′|︸ ︷︷ ︸

K

is of the form BAsK, where B is bounded by Kato’s inequality (2.1), K

is compact by Lemma 2.2 and As →
s→∞

0 strongly. Indeed
∫
| |p|
α·p+β+is

φ̂|2 =∫
| |p|√

|p|2+1+s2
φ̂|2 → 0 by dominated convergence, with ∥As∥ ⩽ C uniformly

in s (see 2.3). Then, by Theorem A.5, one has ∥BAsK∥ → 0.

• 
√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N

 1

D0 + is


√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N


=: C2 1

D0 + is

and ∥ 1
D0+is

∥ A.4
= ∥ 1

|D0+is|∥ = supp∈R3
1√

|p|2+1+s2
⩽ 1

|s| →
s→∞

0.

• (
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
1

D0 + is
1BR

√
V|µ′| =

=

(
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
1

|p|1/2︸ ︷︷ ︸
B

|p|
D0 + is︸ ︷︷ ︸

As

1

|p|1/2
1BR

√
V|µ′|︸ ︷︷ ︸

K

is again of the form BAsK. Note that B =
∑K

m=1

√
V|νm|δRm

1Bη(Rm)
1

|p|1/2 is

a finite sum of bounded operators by Kato’s inequality.

• 1BR

√
V|µ′|︸ ︷︷ ︸

A

1

D0 + is︸ ︷︷ ︸
B

(
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
︸ ︷︷ ︸

C

19



20 CHAPTER 2. DISTINGUISHED EXTENSION AND MIN-MAX FORMULAS

Since ∥ABC∥ = ∥C∗B∗A∗∥ we can look instead at(
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
1

D0 − is
1BR

√
V|µ′|

=

(
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
1

|p|1/2︸ ︷︷ ︸
B

|p|
D0 − is︸ ︷︷ ︸

As

1

|p|1/2
1BR

√
V|µ′|︸ ︷︷ ︸

K

,

which is again of the form BAsK and hence, its norm tends to 0.

• (
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
1

D0 + is


√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N

 ,

1BR

√
V|µ′|

1

D0 + is


√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N

 ,


√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N

 1

D0 + is

(
K∑

m=1

√
νm1Bη(Rm)

|x−Rm|1/2

)
,


√√√√ K∑

m=1

νm
η

+

√
|µ′|(R3)

R−N

 1

D0 + is
1BR

√
V|µ′|

can all be seen, multiplying and dividing by |p|1/2, as a composition of a

bounded operator (by Kato’s inequality) and |p|1/2
D0+is

, whose norm tends to 0:

∥As∥
A.4
= ∥ |p|1/2

|D0+is|∥ = supp∈R3
|p|1/2√

|p|2+1+s2
⩽ 1√

2|s|
→ 0.

• We are left with

1Bη(Rk)

|x−Rk|1/2
1

D0 + is

1Bη(Rm)

|x−Rm|1/2
with k ̸= m.

We can write

1

D0 + is
=

α · p
|p|2 + 1 + s2

+
β

|p|2 + 1 + s2
− i

s

|p|2 + 1 + s2
.

So we get three terms:

20



2.1. DISTINGUISHED SELF-ADJOINT EXTENSION FOR A GENERAL CHARGE 21

*
1Bη(Rk)

|x−Rk|1/2
β

|p|2 + 1 + s2
1Bη(Rm)

|x−Rm|1/2
=

=
√
VδRk

1Bη(Rk)
1

|p|1/2︸ ︷︷ ︸
B1

β|p|
|p|2 + 1 + s2︸ ︷︷ ︸

As

1

|p|1/2
√
VδRm

1Bη(Rm)︸ ︷︷ ︸
B2

where B1, B2 are bounded by Kato’s inequality and

∥As∥ = sup
p∈R3

|p|
|p|2 + 1 + s2

⩽
1

2|s|
−→
s→∞

0;

*
1Bη(Rk)

|x−Rk|1/2
α · p

|p|2 + 1 + s2
1Bη(Rm)

|x−Rm|1/2
=: As,

The kernel of the operator α·p
|p|2+1+s2

is the function

a(x, y) = i
α · (x− y)

4π|x− y|3
e−

√
1+s2|x−y| + i

√
1 + s2

α · (x− y)

4π|x− y|2
e−

√
1+s2|x−y|,

since

F(
α · p

|p|2 + 1 + s2
)(x) = i

α · (x)
4π|x|3

e−
√
1+s2|x| + i

√
1 + s2

α · (x)
4π|x|2

e−
√
1+s2|x|.

Therefore, a(x, y) can be bounded by

|a(x, y)| ⩽ e−
√
1+s2|x−y|

4π|x− y|2
+
√
1 + s2

e−
√
1+s2|x−y|

4π|x− y|

⩽
1

4π
√

|1 + s|1/2|x− y|5
+

√
1 + s2

4π
√
|1 + s2|3/2|x− y|5

⩽
C

|s|1/2|x− y|5/2
.

The kernel of As is then bounded by

|As(x, y)| =
∣∣∣∣ 1Bη(Rk)(x)

|x−Rk|1/2
a(x, y)

1Bη(Rm)(y)

|y −Rm|1/2

∣∣∣∣
⩽

C

|s|1/2

∣∣∣∣ 1Bη(Rk)(x)

|x−Rk|1/2
1

|x− y|5/2
1Bη(Rm)(y)

|y −Rm|1/2

∣∣∣∣ = C

|s|1/2
B(x, y),

where B(x, y) is the kernel of the operator B =
1Bη(Rk)

|x−Rk|1/2
1

|p|1/2
1Bη(Rm)

|x−Rm|1/2

since F( 1
|p|1/2 )(x) = c 1

|x|5/2 . Recalling now that |A(x, y)| ⩽ B(x, y) im-

plies ∥A∥ ⩽ ∥B∥, we obtain ∥As∥ ⩽ C
|s|1/2∥

1Bη(Rk)

|x−Rk|1/2
1

|p|1/2
1Bη(Rm)

|x−Rm|1/2∥. The

21
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norm on the right-hand side is finite by Lemma 2.1 whose hypotheses

are clearly satisfied: the supports are disjoint and
∫ 1Bη(Rk)

|x−Rk|(1+|x|2)5 <∞).
Hence the norm of As tends to 0 as s goes to infinity.

*
1Bη(Rk)

|x−Rk|1/2
−is

|p|2 + i+ s2
1Bη(Rm)

|x−Rm|1/2
=: Bs

is completely similar to the previous case since the kernel of −is
|p|2+i+s2

is
bounded by

|b(x, y)| = |s|e−
√
i+s2|x−y|

4π|x− y|
⩽

|s|
4π
√
|1 + s2|3/2|x− y|5/2

⩽
C

|s|1/2|x− y|5/2
.

This concludes the proof of (2.2), i.e. lim sup|s|→∞

∥∥∥√|Vµ| 1
D0+is

√
|Vµ|

∥∥∥ < 1. This

allows us to use Nenciu’s method ([Nen76], Corollary 2.1), which is based on the
resolvent expansion [Nen76, KW79, Kla81]

(D0+V −z)−1 = (D0−z)−1−(D0−z)−1
√
|V |(1+SKz)

−1S
√

|V |(D0−z)−1, (2.6)

where Kz =
√

|V |(D0 − z)−1
√
|V | and S = sgn(V ). In the notation of Corollary

2.1 in [Nen76], we have A = D0, V1 = −Vµ and V2 = 0. All the hypothesis are
satisfied:

1. |D0| ⩾ 1 > 0;

2. −Vµ is D0 form bounded:∫
|Vµφ|2

Kato

⩽ C

∫
|p||φ̂|2 ⩽ C

∫ √
1 + |p|2|φ̂|2 = ∥|D0|φ∥22.

Moreover, we have just proved that there exists is ∈ σ(D0) such that∥∥∥∥S (√|Vµ|
1

D0 + is

√
|Vµ|

)∥∥∥∥ ⩽

∥∥∥∥√|Vµ|
1

D0 + is

√
|Vµ|

∥∥∥∥ < 1,

which implies that 1 + S(
√
|Vµ| 1

D0+is

√
|Vµ|) is invertible;

3. V2|D0|1/2 is obviously compact since V2 = 0;

4.
√
|Vµ|

1

D0 + is︸ ︷︷ ︸
A

1

D0 − z

√
|Vµ|︸ ︷︷ ︸

B

is compact for z /∈ σ(D0) since A bounded, as

already seen, and B is compact. Let us prove this latter claim. Firstly,

22
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(D0 − z)−1 is continuous from L2 to H1. Indeed, for every z /∈ σ(D0) there
exists Cz s.t. ∥ 1

α·p+β−z
∥ ⩽ Cz√

|p|2+1
(seen as a 4× 4 matrix for fixed p), which

implies ∫
R3

(|p|2 + 1)

∣∣∣∣ 1

α · p+ β − z
φ̂

∣∣∣∣3 dp ⩽ C2
z

∫
R3

|φ̂|2dp.

Going back to the initial space, this means that ∥(D0− z)−1φ∥H1 ⩽ Cz∥φ∥2,
as wanted. Then, it remains to prove that the multiplication operator

√
|Vµ|

is compact from H1 to L2. By Sobolev’s embedding, for every ε > 0, H1

is compactly embedded in L6−ε
loc . For R > 0 fixed, let us split this operator

into
√

|Vµ|1|x|⩽R and
√
|Vµ|1|x|>R. The operator

√
|Vµ|1|x|⩽R is continuous

from L6−ε
loc to L2 by Hölder inequality with p = 6 − ε and q = 3 + ε′ where

ε′ = 2(6−ε)
4−ε

−3, so that 1
2
= 1

p
+ 1

q
(Vµ1|x|⩽R is in L6+ε′ for every ε′ > 0). Then

we have that
√

|Vµ|1|x|⩽R is compact from H1 to L2 and
√

|Vµ|1|x|>R can be

taken small (in norm) as desired taking R large enough, so that
√

|Vµ| is
compact as the norm-limit of compact operators. This ends the proof of the
fact that

1

D0 − z

√
|Vµ| is compact. (2.7)

Finally, the corollary implies that D0 − Vµ has a unique self-adjoint extension
whose domain is included in D(|D0|1/2) = H1/2(R3). Once we have this, two con-
sequences of the resolvent formula (2.6) and the compactness of B (2.7) are that
the essential spectrum of the extension is still σess(D0) = (−∞,−1] ∩ [1,∞) and
D0 − Vµ1{|Vµ|⩽n} −→

n→∞
D0 − Vµ in the norm resolvent sense ([KW79], Theorem 1

and 2).
It remains to prove the statement about the gradient of functions in the domain.

Let us denote by R1, . . . , RK all the points such that |µ|(Rk) ⩾ 1
2
. Let us fix

x′ ∈ R3 ∖ {R1, . . . , RK}, then we have

lim
r→0

|µ|(Br(x
′)) <

1

2
.

Let χ ∈ C∞
c with support in B1/2(0) and let χr(x) = χ((x − x′)/r). Every Ψ ∈

D(D0 − Vµ) satisfies
(D0 − Vµ)Ψ = Φ ∈ L2(R3)

in H−1/2, so that

D0(χrΨ)− VµχrΨ = χrΦ− i(α · ∇χr)Ψ ∈ L2(R3).

We decompose µ = µ1Br(x′) + µ1Br(x′)c and use that∣∣∣Vµ1Br(x′)c

∣∣∣ = ∣∣∣∣∫
Br(x′)c

dµ(y)

|x− y|

∣∣∣∣ |x−y|⩾r− r
2

⩽
2

r
|µ|(R3) on Br/2(x

′) ⊃ supp(χrΨ).
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This gives Vµ1Br(x′)c
χrΨ ∈ L2 and, hence, also (D0−Vµ1Br(x′)

)χrΨ = (D0−Vµ)χrΨ+

Vµ1Br(x′)c
χrΨ ∈ L2(R3). By Hardy’s inequality, we have (φ, φ

|x|2 ) ⩽ 4(∇φ,∇φ) =

4(φ,−∆φ), i.e. |x|−2 ⩽ 4(−∆), and, since D2
0 = −∆ + 1 ⩾ −∆ we have |x|−2 ⩽

4(D0)
2. By Theorem A.3, this gives

∥Vµ1Br(x′)
φ∥2 ⩽ 2|µ|(Br(x

′))︸ ︷︷ ︸
a

∥D0φ∥2. (2.8)

By the Rellich-Kato theorem, since for r small enough a < 1, D0 − Vµ1Br(x′)
is

self-adjoint in H1 and also invertible. Thus, χrΨ ∈ H1(R3). Taking now χR ∈ C∞
c

such that χR = 1 on BR/2 and null outside BR, we have that Vµ1BR/4
is bounded

on Bc
R/2 ⊃ supp((1−χR)Ψ) in the same way as before. So Vµ1BR/4

(1−χR)Ψ ∈ L2,

which also implies (D0 − Vµ1Bc
R/4

)(1−χR)Ψ ∈ L2. Using that |µ|(Bc
R/4) → 0 when

R → ∞ leads again to D0 − Vµ1Bc
R/4

self-adjoint on H1. Hence (1− χR)Ψ ∈ H1.

We obtain the claim by covering R3 ∖ ∪K
j=1Br(Rj) with finitely many balls

together with the complement of a large ball.

2.2 Description of the domain for a positive mea-

sure

One can describe the distinguished self-adjoint extension more precisely in the
case of a positive measure µ ⩾ 0. Let us introduce a new space for the first two
components φ ∈ L2(R3,C2), called upper spinor, of a four-components column
vector in L2(R3,C4). We define the following norm

∥φ∥Vµ :=

(∫
R3

|σ · ∇φ(x)|2

1 + Vµ(x)
dx+

∫
R3

|φ(x)|2dx
)1/2

,

which is well-defined on H1(R3,C2) and which is controlled by the H1-norm since
(1 + Vµ)

−1 ⩽ 1 since Vµ ⩾ 0. We need to know whether the completion Vµ

of H1(R3,C2) for this new norm is the same as the largest space given by the
conditions

φ ∈ L2(R3,C2),
σ · ∇φ

(1 + Vµ)1/2
∈ L2(R3,C2).

The following theorem answers this question affirmatively.

Theorem 2.2 (The upper-spinor space Vµ). Let µ ⩾ 0 be any finite Borel measure
on R3 such that

µ({R}) < 1 ∀R ∈ R3.
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2.2. DESCRIPTION OF THE DOMAIN FOR A POSITIVE MEASURE 25

We have

∥φ∥2
H1/2(R3,C2)

max(2, 16µ(R3))
⩽ ∥φ∥Vµ ⩽ ∥φ∥H1(R3,C2) ∀φ ∈ H1(R3,C2). (2.9)

The completion of H1(R3,C2) for the norm ∥ · ∥Vµ is a subspace of H1/2(R3,C2)
satisfying the continuous embeddings in (2.9). It coincides with the completion of
C∞

c (R3,C2) for the same norm and is given by

Vµ =
{
φ ∈ L2(R3,C2) : ∃g ∈ L2(R3,C2), σ · ∇φ = (1 + Vµ)

1/2g
}
, (2.10)

where σ · ∇φ is understood in the sense of distributions.

Proof. Step 1 - Proof of (2.9)
The second inequality follows from (1 + Vµ)

−1 ⩽ 1. Let us prove the first one. By
Theorem A.3 we have ∥∥∥∥Vµ 1

D0

∥∥∥∥ ⩽ 2µ(R3).

We also have ∥|p|(β + 1) 1
D0

∥ ⩽ ∥β + 1∥∥ |p|
D0

∥ = supp∈R3
2|p|√
1+|p|2

⩽
√
2. By the

Rellich–Kato theorem, the operator D0 − Vµ

8µ(R3)
− |p|β+1

4
=: D0 − V is self-adjoint

on H1. Indeed,∥∥∥∥( Vµ
8µ(R3)

+ |p|β + 1

4

)
φ

∥∥∥∥ =

∥∥∥∥V 1

D0

D0φ

∥∥∥∥
⩽

1

4
∥D0φ∥+

√
2

4
∥D0φ∥ =

(
1

4
+

√
2

4

)
︸ ︷︷ ︸

a

∥D0φ∥, with a < 1.

Moreover, 0 is not in the spectrum, and there is a universal estimate on the gap
(see [Lew22], Theorem 4.5): since 0 ∈ ρ(D0) ∩ R and ∥V D−1

0 ∥ < 1, one has
]− η, η[⊂ ρ(D0 − V ) for η = d(0, σ(D0)(1− ∥V D−1

0 ∥)) ⩾ 1− a.
For the same reason, ∀t ∈ [0, 1], D0 − t Vµ

8µ(R3)
− |p|β+1

4
has a gap around the

origin at least as big as when t = 1 since at =
t
4
+

√
2
4

⩽ a.

Note that |p|β+1
4

acts only on the upper spinor. Restricted to the lower spinor,

the quadratic form associated with this operator is just −1− t Vµ

8µ(R3)
⩽ −1.

From the min-max principle and a continuation argument in t (see [DES00],
Lemma 2.1 and Section 3), the fact that 0 is never in the spectrum is equivalent
to say that, ∀φ ∈ H1(R3,C2),∫

R3

|σ · ∇φ(x)|2

1 + Vµ(x)

8µ(R)

dx ⩾
1

8µ(R)

∫
R3

Vµ(x)|φ(x)|2dx+
1

2
(φ, |p|φ)− 1

2
∥φ∥22.
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Since 1
1+a

⩾ 1
max(1,b)(1+a

b
)
for every b, we get with a = Vµ, b = 8µ(R3)

∫
R3

|σ · ∇φ(x)|2

1 + Vµ(x)
dx ⩾

(φ, |p|φ)− ∥φ∥2L2(R3)

2max (1, 8µ (R3))
, ∀φ ∈ H1(R3,C2).

Denoting M = 2max(1, 8µ (R3)) ⩾ 2 we have

M

∫
R3

|σ · ∇φ(x)|2

1 + Vµ(x)
dx ⩾ (φ, |p|φ)− ∥φ∥2L2(R3) ⩾ (φ, |p|φ)− (M − 1)∥φ∥2L2(R3)

so that

∥φ∥2Vµ
=

∫
R3

|σ · ∇φ(x)|2

1 + Vµ(x)
dx+ ∥φ∥2L2 ⩾

(φ, |p|φ) + ∥φ∥2L2

M
⩾ c∥φ∥2H1/2 .

The operator −σ ·∇ 1
1+Vµ

σ ·∇+1, which is the one associated to the quadratic form

∥·∥2Vµ
, is well-defined and symmetric in the domain C∞

c (R3,C2), by Lemma 2.3 be-

low. Then, by ([RS75], Theorem X.23), the quadratic form defined in C∞
c (R3,C2)

is closable in L2(R3,C2). Finally, the domain of the closure is automatically a
subspace of H1/2(R3,C2) by the last inequality above.

Step 2 - Vµ coincides with the maximal space

We want to prove (2.10), i.e. that Vµ coincides with the maximal space in
which one can give a meaning to the associated norm ∥ · ∥Vµ . Firstly, let us prove
the following lemma.

Lemma 2.3 (Regularity of (1 + Vµ)
α). Let µ be a non-negative Radon measure

over R3. Then ∇ (1 + Vµ)
α ∈ L2 (R3) for all α < 1/2 and we have∫
R3

|∇ (1 + Vµ)
α|2 ⩽ Cαµ

(
R3
)
,

for a constant Cα depending only on α. When α = 0 we have the same estimate
with (1 + Vµ)

α replaced by log (1 + Vµ).

Proof. Let us assume that µ ∈ C∞
c (R3). Let Ω0 := {Vµ < 1} and Ωi := {2i−1 ⩽

Vµ < 2i} for i ⩾ 1. Then we have∫
R3

|∇ (1 + Vµ)
α|2 = α2

∫
R3

|∇Vµ|2

(1 + Vµ)
2−2α = α2

∞∑
i=0

∫
Ωi

|∇Vµ|2

(1 + Vµ)
2−2α

⩽ α2

∫
Ω0

|∇Vµ|2 + α2

∞∑
i=1

1

(1 + 2i−1)2−2α

∫
Ωi

|∇Vµ|2 ,
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where we used that V µ ⩾ 0 and V µ ⩾ 2i−1 on Ωi. Now, defining

vi :=

{
1{Vµ⩾1} + Vµ1{Vµ<1} for i = 0

2i−11{Vµ⩽2i−1} + 2i1{Vµ⩾2i} + Vµ1{2i−1<Vµ<2i} for i ⩾ 1
,

and since −∆V µ = 4πµ, we have ∀i ⩾ 0∫
Ωi

|∇Vµ|2
(vi=Vµ on Ωi)

=

∫
R3

∇Vµ · ∇vi = 4π

∫
R3

vi dµ
vi⩽2i

⩽ 4π2iµ
(
R3
)

⇒
∫
R3

|∇ (1 + Vµ)
α|2 ⩽ 4πα2

(
1 +

∞∑
i=1

2i

(1 + 2i−1)2−2α

)
µ
(
R3
)
,

where the series is finite for α < 1
2
.

Let us now go back to a general measure and use an approximation argument.
We can assume µ to be a finite measure : Otherwise the inequality is trivial (see
Appendix A.1 for an introduction to finite measures and the definition of tight
convergence). Using convolution by a sequence of smooth functions in L1 which
tends to δ0 tightly, one can construct a sequence (µn)n∈N ∈ C∞ ∩ L1 s.t. µn ⇀ µ
tightly as well. By a density argument, for every n fixed, there exists also a
sequence (µnk

)k∈N ⊂ C∞
c s.t. ∥µnk

− µ∥1 → 0 and in particular µnk
⇀ µn tightly.

Then, by a diagonal argument, one can find a sequence of C∞
c functions which

converges tightly to our initial µ. We will prove in Lemma 3.5 that this implies
that Vµn → Vµ in Lp

loc for every 1 ⩽ p ⩽ 2. Then (1 + Vµn)
α → (1 + Vµ)

α in L
p/α
loc

with p/α > 2p ⩾ 2, thus in L2
loc. By the C∞

c case, we have
∫
R3 |∇ (1 + Vµn)

α|2 ⩽
Cµn(R

3) ⩽ C (where we used that µn(R
3) are uniformly bounded by the tight

convergence). Hence the sequence ∇ (1 + Vµn)
α is bounded in L2 and therefore,

up to subsequences, it converges weakly in L2 to a function Ψ ∈ L2. Let us prove
that Ψ = ∇ (1 + Vµ)

α. Let h ∈ C∞
c , then

(∇ (1 + Vµn)
α , h) = ((1 + Vµn)

α ,∇h) → ((1 + Vµ)
α ,∇h) .

Since the left-hand side converges also to (Ψ, h), we have that Ψ = ∇ (1 + Vµ)
α

in the distributions sense. By the lower semi-continuity of the L2 norm we have
finally∫

R3

|∇ (1 + Vµ)
α|2 ⩽ lim inf

∫
R3

|∇ (1 + Vµn)
α|2 ⩽ Cα lim inf µn(R

3) = Cαµ(R
3).

When α = 0, the ragument is exactly the same with (1 + Vµ)
α replaced by

log (1 + Vµ).
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The above lemma says that for φ ∈ L2(R3), (1 + Vµ)
−1/2σ · ∇φ makes sense

as a distribution. It is equivalent to wonder whether there exists g ∈ L2(R3)
such that σ · ∇φ = (1 + Vµ)

1/2g. We now prove that for every φ such that g :=
(1 + Vµ)

−1/2σ · ∇φ ∈ L2(R3,C2), there exists a sequence (φn)n∈N ⊂ C∞
c which

converges φn → φ in Vµ, i.e. φn → φ and (1+Vµ)
−1/2σ ·∇φn → (1+Vµ)

−1/2σ ·∇φ
both in L2.

Let us define φn(x) := φ(x)χ(x
n
) where χ ∈ C∞

c and χ(0) = 1. By dominated
convergence, φn → φ in L2. In addition, we have, in the sense of distributions,

σ · ∇φn = χ(·/n)σ · ∇φ+ φ
(σ · ∇χ)(·/n)

n

= (1 + Vµ)
1
2

(
χ(·/n)g + φ

(σ · ∇χ)(·/n)
n (1 + Vµ)

1
2

)
,

where the function in the parentheses has compact support and converges to g in

L2 (R3). Indeed χ(·/n)g L2

→ g and ∥φ (σ·∇χ)(·/n)
n(1+Vµ)

1
2
∥2 ⩽ ∥∇χ∥∞

n
∥φ∥2 → 0. So, φn → φ in

Vµ. Hence functions with compact support are dense. Therefore, in the following
we can assume that both φ and g have compact support.

Next, we approximate φ by a sequence in H1. Let u ∈ Ḣ1(R3) such that

φ = σ ·∇u. We then have in the sense of distributions (1 + Vµ)
1
2 g = σ ·∇φ = ∆u.

We have then

u = − 1

4π

(
(1 + Vµ)

1
2 g
)
∗ 1

|x|
, φ =

1

4π

(
(1 + Vµ)

1
2 g
)
∗ σ · x

|x|3
.

Let us now define

uε = − 1

4π

(
(1 + Vµ)

1
2 1{Vµ⩽ε−1}g

)
∗ 1

|x|
, φε = σ · ∇uε,

which satisfies

σ · ∇φε = ∆uε = (1 + Vµ)
1
2 gε, φε =

1

4π

(
(1 + Vµ)

1
2 gε

)
∗ σ · x

|x|3
,

where gε = g1{Vµ⩽ε−1}. Since | (1 + Vµ)
1
2 1{Vµ⩽ε−1}g| ⩽ (1 + ε−1)1/2|g| and g ∈ L2,

we have (1 + Vµ)
1
2 gε ∈ L2 (R3). Moreover, since g has compact support, we also

have (1 + Vµ)
1
2 1{Vµ⩽ε−1}g ∈ L6/5 (R3). Now, by the Hardy-Littlewood-Sobolev

inequality

∥φε∥2 =
∥∥∥∥ 1

4π

(
(1 + Vµ)

1
2 gε

)
∗ σ · x

|x|3

∥∥∥∥
2

⩽ C
∥∥∥((1 + Vµ)

1
2 gε

)∥∥∥
6/5

<∞.
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Namely, φε ∈ L2 (R3). We also have σ · ∇φε = (1 + Vµ)
1
2 gε ∈ L2 (R3). Hence

∇φε ∈ L2 (R3), which implies φε ∈ H1 (R3). From the dominated convergence

theorem, gε
L2

→ g, and we now want to show that φε
L2

→ φ as well. Again by the
Hardy-Littlewood-Sobolev inequality, we have∫

R3

|φ− φε|2 ⩽ C
∥∥∥(1 + Vµ)

1
2 1{Vµ⩾ε−1}g

∥∥∥2
6/5

⩽ C∥g∥2L2(B)

(∫
B

(1 + Vµ)
3
2 1{Vµ⩾ε−1}

) 2
3

where supp(g) ⊂ B. The right-hand side tends to zero when ε → 0 by the
monotone convergence theorem, and this shows that φε → φ for the norm ∥ · ∥Vµ .
The density of C∞

c is then proved using the fact that ∥ · ∥Vµ is dominated by the
H1 norm. For φ ∈ L2 there exists (φn)n∈N ⊂ H1 s.t. φn → φ in Vµ, but for every
n there exists (φnk

)k∈N ⊂ C∞
c s.t. φnk

→ φk in H1, and hence also in Vµ. Then
by a diagonal argument one finds the desired sequence in C∞

c which converges to
φ in Vµ.

Using the space Vµ, we can now describe the domain of the distinguished self-
adjoint extension.

Theorem 2.3 (Domain of the distinguished self-adjoint extension for µ ⩾ 0). Let
µ ⩾ 0 be any finite Radon measure on R3 such that

µ({R}) < 1 ∀R ∈ R3.

Then the domain of the self-adjoint extension defined in Theorem 2.1 is explicitly
given by

D(D0 − Vµ) =

{
Ψ =

(
φ
χ

)
∈ L2(R3,C2) : φ ∈ Vµ, (D0 − Vµ)Ψ ∈ L2(R3,C4)

}
(2.11)

where, in the last condition, D0Ψ and VµΨ are understood in the sense of dis-
tributions. Moreover, this extension is the unique one that is included in Vµ ×
L2(R3,C2). We have

D(D0 − Vµ) ⊂ Vµ × Vµ ⊂ H1/2(R3,C4).

In addition, the Birman-Schwinger principle holds: λ ∈ (−1, 1) is an eigenvalue
of D0 − Vµ if and only if 1 is an eigenvalue of the bounded self-adjoint operator

Kλ =
√
Vµ

1

D0 − λ

√
Vµ.
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Proof. Let us consider the quadratic form

qλ(φ) :=

∫
R3

|σ · ∇φ|2

1 + λ+ Vµ
dx+

∫
R3

(1− λ− Vµ) |φ|2 dx

defined on H1(R3). We show that it is coercive for the norm of Vµ, after adding
C∥φ∥2L2(R3) for an appropriate constant C. Our proof will be based on Theorem
2.1, where we have shown that for s large enough∥∥∥∥√Vµ

1

D0 + is

√
Vµ

∥∥∥∥ < 1.

Step 1 - Equivalence of quadratic forms

Let us start with the following lemma.

Lemma 2.4 (Relating resolvent). For every 0 ⩽ ε ⩽ 1 and C ⩾ 0, we have the
operator bound

1

D0 +
C−ε|p|

2
(β + 1)

⩽
1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
+

8ε(1 + C)

|p|
.

Proof. First, let us assume ε = 0. We have

D0 +
C

2
(β + 1) = α · p+

(
1 +

C

2

)
β +

C

2
,

whose spectrum is given by the values of the functions

±

√
|p|2 +

(
1 +

C

2

)2

+
C

2
,

(as done in Section 1.2 for D0). The upper function is clearly bounded from below
by 1 + C, whereas the lower function is bounded above by -1 . So the gap is
(−1, 1 + C). This allows us to compute the resolvent, which we express in the
form

1

D0 +
C
2
(β + 1)

=
1

D0 +
C
2
(β + 1)

D0 +
C
2
(β − 1)

D0 +
C
2
(β − 1)

=
α · p+

(
1 + C

2

)
β − C

2

|p|2 +
(
1 + C

2

)2 − C2

4

=
α · p

|p|2 + 1 + C
+

β

|p|2 + 1 + C
+
C

2

β − 1

|p|2 + 1 + C
.

(2.12)
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Inserting

1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
− β

|p|2 + 1 + C

=
1

2

(
α · p+ β − i

√
C

|p|2 + 1 + C
+
α · p+ β + i

√
C

|p|2 + 1 + C

)
− β

|p|2 + 1 + C
=

α · p
|p|2 + C + 1

,

we obtain the relation

1

D0 +
C
2
(β + 1)

=
1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
+
C

2

β − 1

|p|2 + 1 + C
.

Since β ⩽ 1, the last term is non-positive, hence we find the simple inequality

1

D0 +
C
2
(β + 1)

⩽
1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
.

Let us now consider the case 0 < ε ⩽ 1. Note first that the spectrum of

D0 +
C − ε|p|

2
(β + 1) = α · p+

(
1 +

C − ε|p|
2

)
β +

C − ε|p|
2

is given by the values of the functions

±

√
|p|2 +

(
1 +

C − ε|p|
2

)2

+
C − ε|p|

2

= ±

√
|p|2 + 1 + C − ε|p|+

(
C − ε|p|

2

)2

+
C − ε|p|

2
.

Noticing that

|p|2 + 1 + C − ε|p| ⩾ |p|2 + 1 + C − |p| ⩾ |p|2

2
+

1

2
+ C > 0,

we see that the two eigenvalues do not approach the origin. Hence the operator is
invertible. We can next estimate the difference by∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

− 1

D0 +
C
2
(β + 1)

∥∥∥∥∥
=
ε|p|
2

∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

(β + 1)
1

D0 +
C
2
(β + 1)

∥∥∥∥∥
⩽ ε|p|

∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

∥∥∥∥∥
∥∥∥∥∥ 1

D0 +
C
2
(β + 1)

∥∥∥∥∥ .
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Using (2.12) we have∥∥∥∥∥ 1

D0 +
C
2
(β + 1)

∥∥∥∥∥ ⩽
|p|+ 1 + C

|p|2 + 1 + C
⩽

1 +
√
1+C
2

|p|
⩽

3
√
1 + C

2|p|
.

On the other hand, using again (2.12) with C replaced by C − ε|p| we obtain∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

∥∥∥∥∥ ⩽
|p|+ 1 + C + ε|p|
|p|2 + 1 + C − ε|p|

⩽
2|p|+ 1 + C
|p|2
2

+ 1
2
+ C

⩽
4 +

√
1 + C

|p|
⩽

5
√
1 + C

|p|
,

so that ∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

− 1

D0 +
C
2
(β + 1)

∥∥∥∥∥ ⩽
8ε(1 + C)

|p|
.

This gives also the same inequality without the operator norm:(
φ,

1

D0 +
C−ε|p|

2
(β + 1)

− 1

D0 +
C
2
(β + 1)

φ

)

=

∫
φ̂ ·

(
1

D0 +
C−ε|p|

2
(β + 1)

− 1

D0 +
C
2
(β + 1)

)
φ̂

C−S

⩽
∫ ∥∥∥∥∥ 1

D0 +
C−ε|p|

2
(β + 1)

− 1

D0 +
C
2
(β + 1)

∥∥∥∥∥ |φ̂|2
⩽
∫

8ε(1 + C)

|p|
|φ̂|2 =

(
φ,

8ε(1 + C)

|p|
φ

)
.

This, together with the case ε = 0, gives the claim.

Let us truncate Vµ into Wn = Vµ1{Vµ⩽n} and notice that if two operators A
and B are such that A ⩽ B then maxσ(

√
WnA

√
Wn) ⩽ ∥

√
WnB

√
Wn∥. Let us

call them A′ :=
√
WnA

√
Wn and B′ :=

√
WnB

√
Wn. It is easy to check that

A′ ⩽ B′. Moreover, by the Weyl’s characterization of the spectrum, there exists a
normalized sequence (φn)n∈N s.t. (A′ −maxσ(

√
WnA

√
Wn))φn tends to 0. Then

0 = lim(φn, (A
′ −maxσ(

√
WnA

√
Wn))φn)

⩽ lim(φn, (B
′ −maxσ(

√
WnA

√
Wn))φn)

= lim(φn, B
′φn)−maxσ(

√
WnA

√
Wn) ⩽ ∥B′∥ −maxσ(

√
WnA

√
Wn).
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Using this fact, Lemma 2.4 and Lemma 2.1, we obtain

maxσ

(√
Wn

1

D0 +
C−ε|p|

2
(β + 1)

√
Wn

)

⩽

∥∥∥∥√Wn

(
1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
+

8ε(1 + C)

|p|

)√
Wn

∥∥∥∥
⩽

∥∥∥∥√Vµ

(
1

2

(
1

α · p+ β + i
√
C

+
1

α · p+ β − i
√
C

)
+

8ε(1 + C)

|p|

)√
Vµ

∥∥∥∥
⩽ 4πε(1 + C)µ

(
R3
)

+
1

2

(∥∥∥∥√Vµ
1

α · p+ β + i
√
C

√
Vµ

∥∥∥∥+ ∥∥∥∥√Vµ
1

α · p+ β − i
√
C

√
Vµ

∥∥∥∥) .
We have shown in the proof of Theorem 2.1 that the two operator norms are less
than 1 for C large enough. Taking ε small enough we get

maxσ

(√
Wn

1

D0 +
C−ε|p|

2
(β + 1)

√
Wn

)
< 1. (2.13)

The previous condition implies that

D0 − tWn +
C − ε|p|

2
(β + 1)

has no eigenvalue in (−1, 0) for every t ∈ [0, 1]. Indeed, if A is a self-adjoint
operator, σ(A) ⊂ [a,∞) is equivalent to have that (φ,Aφ) ⩾ a∥φ∥2 ∀φ ∈ D(A),
which is true since(

φ,
√
Wn

(
−t+ 1√

Wn

(
D0 +

C − ε|p|
2

(β + 1)

)
1√
Wn

)√
Wnφ

)
⩾ −t∥

√
Wnφ∥2 + ∥

√
Wnφ∥2 ⩾ 0.

Here we used that (2.13) implies that the minimum of the spectrum of the inverse
operator is greater then 1. Again from the min-max principle and a continuation
argument in t [DES00], this is equivalent to saying that

q0,Wn(φ) ⩾ −C∥φ∥2L2 + ε
∥∥∥|p| 12φ∥∥∥2

L2

for all φ ∈ H1 (R3,C2), where of course q0,Wn denotes the quadratic form with Vµ
replaced by Wn. Passing to the limit n→ ∞ we obtain also

q0(φ) ⩾ −C∥φ∥2L2 + ε∥|p|
1
2φ∥2L2 . (2.14)
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Now using Theorem A.2, for 0 < η < 1 we write

q0(φ) + C∥φ∥2L2 = η(q0(φ) + C∥φ∥2L2) + (1− η)(q0(φ) + C∥φ∥2L2)

⩾ η

∫
R3

|σ · ∇φ|2

1 + µ ∗ |x|−1
dx− η

∫
R3

Vµ|φ|2 + (1− η)ε
∥∥∥|p| 12φ∥∥∥2

⩾ η

∫
R3

|σ · ∇φ|2

1 + µ ∗ |x|−1
dx+

(
(1− η)ε− π

2
ηµ
(
R3
)) ∥∥∥|p| 12φ∥∥∥2 .

After taking

η <
ε

ε+ π
2
µ (R3)

,

we see that the quadratic form q0 + C∥ · ∥2L2 is equivalent to the square of the
norm of the space Vµ. This quadratic form is thus closable on H1 (R3,C2) and its
closure is equivalent to the norm of Vµ.

Step 2 - Description of the domain via Vµ

Now, we can apply the results of ([SST20] Theorem 1.1, [EL07] Theorem
4,[EL08] Theorem 1) to the operator D0 + C(β + 1)/2 − Vµ, and we obtain a
unique self-adjoint extension, distinguished from the property that its domain is
included in Vµ×L2 (R3,C2) and the domain is given by the functions that are sent
by the operator in L2 functions and whose upper spinor is in Vµ. Of course, the
same holds for D0 − Vµ since C(β + 1)/2 is bounded:

D(D0 − Vµ) =

{
Ψ =

(
φ
χ

)
∈ L2(R3,C2) : φ ∈ Vµ, (D0 − Vµ)Ψ ∈ L2(R3,C2)

}
.

Next, we prove that the domain is included in Vµ ×Vµ. Let Ψ = (φ, χ) ∈ Vµ×
L2 (R3,C2) be in the domain. Then we have{

(1− Vµ)φ+ σ · pχ = f ∈ L2 (R3,C2)
− (1 + Vµ)χ+ σ · pφ = g ∈ L2 (R3,C2)

where the terms on the left side are interpreted as distributions. Since φ ∈ Vµ ⊂
H1/2 (R3,C2), we have by Theorem A.2 ∥(1 + Vµ)

1/2φ∥22 = ∥φ∥22 + ∥
√
Vµφ∥22 ⩽

∥φ∥22 + C∥|p|1/2φ∥22 ⩽ C∥φ∥2
H1/2 . Hence (1 + Vµ)

1/2 φ ∈ L2 (R3,C2).
But the first equation can then be written in the form

σ · pχ = f − 2φ+ (Vµ + 1)φ = (Vµ + 1)
1
2

(
(Vµ + 1)

1
2 φ+

f − 2φ

(Vµ + 1)
1
2

)
,

where the function in parenthesis belongs to L2 (R3,C2). By the characterization
(2.10) of Vµ, this gives immediately that χ ∈ Vµ. Hence D (D0 − Vµ) ⊂ Vµ ×Vµ ⊂
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H1/2 (R3,C4) . By uniqueness in H1/2 we conclude that this extension must be the
same as the one from Theorem 2.1. The Birman-Schwinger principle was shown
in [Kla81], and this ends the proof.

2.3 Min-max formulas for the eigenvalues

Related to the above characterization of the domain are the min-max formulas for
the eigenvalues. The main result of this chapter is the following.

Theorem 2.4 (Min-max formulas). Let µ ⩾ 0 be any finite non-trivial Radon
measure on R3 such that

µ({R}) < 1 ∀R ∈ R3.

Define the min-max values

λ(k) := inf
W subspace of F+

dimW = k

sup
Ψ∈(W⊕F−)\{0}

(Ψ, (D0 − Vµ)Ψ)

∥Ψ∥2
, k ⩾ 1, (2.15)

where F is any chosen vector space satisfying C∞
c (R3,C4) ⊆ F ⊆ H1/2 (R3,C4)

and

F+ :=

{
Ψ =

(
φ
0

)
∈ F

}
, F− :=

{
Ψ =

(
0
χ

)
∈ F

}
.

Then, the following holds:

i) λ(k) is independent of the chosen space F ;

ii) λ(k) ∈ [−1, 1) for all k;

iii) It is a non-decreasing sequence converging to 1: limk→∞ λ(k) = 1.

Let k0 be the first integer such that λ(k0) > −1, then
(
λ(k)
)
k⩾k0

are all the eigen-
values of D0−Vµ in non-decreasing order, repeated according to their multiplicity,
which are larger than -1 :

σ

(
D0 − µ ∗ 1

|x|

)
∩ (−1, 1) =

{
λ(k0), λ(k0+1), · · ·

}
.

By Theorem 1.1 in [DES00], the min-max formula is valid in the case of
Coulomb singularities in the domain of the distinguished self-adjoint extension
or in any core F on which the operator is essentially self-adjoint. Then it was
proved in H1/2 in [MM15, Mül16]. Finally in [ELS19] it was extended in any space
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between C∞
c (R3,C4) and H1/2(R3,C4). Here we can follow the same approach.

The min-max is valid in H1/2 (R3,C4) and the density of C∞
c (R3,C4) in Vµ allows

to conclude that the formula must hold in all spaces in between, following the ar-
gument of [ELS19]. In particular, the numbers λ

(k)
F are independent of the chosen

space F . One notable difference is that in those works it is often assumed that
λ(1) > −1, but it was explained in [DES06] how to handle the case where we only
have λ(k0) > −1 for some k0 ⩾ 1.

Proof. We have to prove that λ(k) ↗ 1. Let us first show that for any positive
integer k, λ(k) < 1 if µ ̸= 0. For every k we choose a k-dimensional subspace of
radial functions in C∞

c (R3,C2), denoted by Wk. Let UR(f) = R−3/2f(·/R) be the
unitary operator which dilates the function by a factor R. Let us introduce the
space Wk,R := URWk. Then, for every normalized function φR = URφ ∈ Wk,R, we
have

qλ (φR) =
1

R2

∫
R3

|σ · ∇φ(x)|2

1 + λ+ Vµ(Rx)
dx+

∫
R3

(1− λ− Vµ(Rx)) |φ(x)|2dx.

Decomposing µ = µ1Bη + µ1Bc
η
with a large but fixed η, we have

∣∣∣∣∫
R3

Vµ1Bc
η
(Rx)|φ(x)|2dx

∣∣∣∣ ⩽ µ (R3 \Bη) π

2R
∥φ∥2H1/2 .

This is proved exactly like in Theorem A.2 below using that F(f(ax))(ξ) =
1
|a|F(f)( p

a
). On the other hand

∣∣∣∣∫
R3

Vµ1Bη
(Rx)|φ(x)|2dx− µ (Bη)

R

∫
R3

|φ(x)|2

|x|
dx

∣∣∣∣
=

∣∣∣∣∣
∫
R3

∫
Bη

(
1

|Rx− y|
− 1

R|x|

)
|φ(x)|2dµ(y)dx

∣∣∣∣∣
⩽
∫
R3

∫
Bη

η

R|x||Rx− y|
|φ(x)|2dµ(y)dx

⩽
η

2R2

∫
R3

∫
Bη

|φ(x)|2

|x|2
dµ(y)dx+

η

2R2

∫
R3

∫
Bη

|φ(x)|2

|x− y/R|2
dµ(y)dx

⩽
ηµ(Bη)

R2

∫
|∇φ|2 ⩽ Cη

R2
∥φ∥2H1(R3),

where in the penultimate inequality we used the Hardy inequality and the fact
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that it is translation-invariant. We get then∫
R3

Vµ(Rx)|φ(x)|2dx =

∫
R3

Vµ1Bη
(Rx)|φ(x)|2dx+

∫
R3

Vµ1Bc
η
(Rx)|φ(x)|2dx

⩾
µ (Bη)

R

∫
R3

|φ|2

|x|
dx− Cη

R2
∥φ∥2H1 −

µ (R3 \Bη) π

2R
∥φ∥2

H
1
2

⩾
µ (Bη)

RK
∥φ∥22 −

Cη

R2
∥φ∥2H1 −

µ (R3 \Bη) π

2R
∥φ∥2

H
1
2

⩾

(
c
µ (Bη)− Cµ (R3 \Bη)

R
− Cη

R2

)
∥φ∥2L2(R3),

for some c > 0 depending on Wk, since all the functions in Wk,R have compact
support in a common compact set and, in this finite-dimensional space, all the
norms are equivalent. Choosing η large enough and λ = 1 − ε/R with ε > 0
small enough, we deduce that q1−ε/R (φR) < 0 on Wk,R for R large enough. As in
[DES00, SST20], the min-max formula (2.15) can be reformulated in terms of the
quadratic form qλ

λ(k) = inf {λ : ∃W ⊂ Vµ, dim(W ) = k : qλ(φ) ⩽ 0,∀φ ∈ W} .

Using this characterization, this proves that λ(k) ⩽ 1−ε/R, as we wanted. Indeed,

q1−ε/R(φR) =
1

R2

∫
R3

|σ · ∇φ(x)|2

2− ε/R + Vµ(Rx)
dx+

∫
R3

( ε
R

− Vµ(Rx)
)
|φ(x)|2dx

⩽
1

R

(
ε− c(µ (Bη)− Cµ(R3 \Bη)

)
∥φ∥22 + o

(
1

R

)
< 0

on Wk,R for η and R large enough.
Let us prove now that λ(k) → 1 when k → ∞. Note that k 7→ λ(k) is non-

decreasing and < 1 by the previous step. In addition, recall that

σess (D0 − Vµ) = (−∞,−1] ∪ [1 ∪∞).

From this, we conclude that if we have λ(k0) > −1 for some k0, then λ(k) is an
eigenvalue of D0 − Vµ and it can only converge to 1 . By contradiction, Let us
assume that λ(k) = −1 for all k ⩾ 1. By the characterization of λ(k) there exists
a sequence of spaces Wk ⊂ Vµ of dimension dim (Wk) = k and εk → 0+ such
that q−1+εk is negative on Wk. By monotonicity with respect to λ, we conclude
that q0 is also negative on Wk. This provides a sequence φn ∈ Vµ such that
∥φn∥L2 = 1, φn → 0 weakly and q0 (φn) < 0. Indeed

• k = 1, ∃W1 ⊂ Vµ with dim(W1) = 1 and q0 < 0 on it. So take φ1 ∈ W1 s.t.
∥φ1∥22 = 1 and q0(φ1) < 0;
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• k = 2, ∃W2 ⊂ Vµ with dim(W2) = 2 and q0 < 0 on it. So take φ2 ∈ W2 s.t.
φ2 ⊥ φ1, ∥φ2∥22 = 1 and q0(φ1) < 0;

...

• k = n, ∃Wn ⊂ Vµ with dim(Wn) = n and q0 < 0 on it. So take φn ∈ W2 s.t.
φn ⊥ φ1, . . . , φn−1, ∥φn∥22 = 1 and q0(φ1) < 0;

Since the sequence is orthonormal it converges weakly to 0. By Step 2 in the
previous proof we know

q0 (φn) ⩾ ε
∥∥∥|p| 12φn

∥∥∥2
2
− Cλ ∥φn∥22

and this proves that the sequence is bounded in H1/2 (R3). This implies also the
boundedness in Vµ:

0 > q0(φn) = ∥φn∥2Vµ
−
∫
Vµ|φn|2

A.2

⩾ ∥φn∥2Vµ
− ∥|p|1/2φn∥22 ⩾ ∥φn∥2Vµ

− C.

Next, we pick a localization function χR(x) = χ(x/R) where χ ∈ C∞
c (R3, [0, 1]),

χ ≡ 1 on B1 and χ ≡ 0 on R3 \B2 and let ηR :=
√

1− χ2
R. Let

∑
k J

2
k = 1 be any

real partition of unity, we use the pointwise IMS formula for the Pauli operator
[BDE08] which states that:∑

k

|σ · ∇ (Jkφ)|2 =
∑
k

3∑
i,j=1

(∂i (Jkφ) , σiσj∂j (Jkφ))C2

=|σ · ∇φ|2 +
∑
k

3∑
i,j=1

(φ, σiσφ)C2 ∂iJk∂jJk

+ 2ℜ
∑
k

3∑
i,j=1

(∂iφ, σiσjφ)C2 Jk∂jJk

=|σ · ∇φ|2 + |φ|2
∑
k

|∇Jk|2 .

We have used that σiσj + σjσi = 0 for i ̸= j in the second term of the second
equality and that 2

∑
k Jk∂jJk = ∂j

∑
k J

2
k = 0 for the last term. Since

|σ·∇φn|2 = (χ2
R+η

2
R)|σ·∇φn|2 = |σ·∇χRφn|2+|σ·∇ηRφn|2−(|∇χR|2+|∇ηR|2)|φn|2,

we obtain

q0 (φn) =

∫
R3

|σ · ∇ (χRφn)|2

1 + Vµ
−
∫
R3

Vµχ
2
R |φn|2 + 1

+

∫
R3

|σ · ∇ (ηRφn)|2

1 + Vµ
−
∫
R3

Vµη
2
R |φn|2 −

∫
R3

|∇χR|2 + |∇ηR|2

1 + Vµ
|φn|2 .
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For the first two terms involving χR we use that q0 is bounded from below by
(2.14), which yields∫

R3

|σ · ∇ (χRφn)|2

1 + Vµ
−
∫
R3

Vµχ
2
R |φn|2 ⩾ −C

∫
R3

χ2
R |φn|2 .

Using also that the fourth term is positive, |∇χR|2 + |∇ηR|2 = 1
R2 (|∇χ|2 (·/R) +

|∇η|2 (·/R)) ⩽ C
R2 and φn are normalized, we obtain

q0 (φn) ⩾ 1− C

∫
R3

χ2
R |φn|2 −

∫
R3

Vµη
2
R |φn|2 −

C

R2
.

We will prove that the negative terms on the right-hand side are all small in the
limit, which gives q0 (φn) ⩾ 0 and leads to a contradiction. Let us start with
the second negative term. We decompose µ = µχ2

R/4 + µη2R/4 and remark that

Vµχ2
R/4
η2R ⩽ C/R since the supports of µχ2

R/4 and η2R are at least R/2 apart,

whereas∫
R3

Vµη2
R/4
η2R |φn|2

A.2

⩽
π

2
µ
(
R3 \BR/2

)
∥ηRφn∥2H1/2 ⩽ Cµ

(
R3 \BR/2

)
,

so that ∫
R3

Vµη
2
R |φn|2 ⩽ C

(
1

R
+ µ

(
R3 \BR/2

))
.

We may therefore choose R large enough such that∫
R3

Vµη
2
R |φn|2 +

C

R2
⩽

1

2
.

However, due to the weak convergence φn ⇀ 0 in H1/2, we have for this fixed R

lim
n→∞

∫
R3

χ2
R |φn|2 = 0.

This proves, as wanted, that q0 (φn) ⩾ 0 for n large.

39



40



Chapter 3

The smallest eigenvalue

In this chapter we will focus on the first eigenvalue of the operator D0 − Vµ. In
particular, for ν < ν1, where ν1 is the critical mass that guarantees that λ1(D0−Vµ)
does not dive into the lower continuum spectrum for all µ(R3) < ν1. We will study
the minimization problem of the first eigenvalue over all the measures with mass
at most ν. The final goal is to check that an optimal measure for that problem has
to be concentrated on a compact set of Lebesgue measure zero. All the theorems
and their proofs can be found in [ELS21b].

3.1 Two critical coupling constants ν0 and ν1

Let us consider any non-negative finite measure µ ̸= 0 and denote

νmax(µ) := max
R∈R3

µ({R}) ∈ [0,∞)

the charge of its heaviest atom. As proved in the previous chapter, the operator

D0 − tµ ∗ 1

|x|

has a distinguished self-adjoint extension for all 0 ⩽ t < νmax(µ)
−1, by Theorem

2.1, and the min-max formula and the Birman-Schwinger principle hold. Next,
we consider the ray (tµ)t>0 and ask ourselves for which mass tµ (R3), the first
eigenvalue crosses 0 or approaches the bottom −1 of the spectral gap. Therefore,
we consider the first min-max level as in (2.15)

λ1 (D0 − tVµ) := inf
φ∈H1/2(R3,C2)\{0}

sup
χ∈H1/2(R3,C2)

((
φ
χ

)
, (D0 − tVµ)

(
φ
χ

))
∥φ∥2 + ∥χ∥2

,
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for all 0 ⩽ t < νmax(µ)
−1. According to Theorem 2.4, it is the first eigenvalue of

D0 − tVµ as soon as it stays above −1, and t 7→ λ1 (D0 − tVµ) is a non-increasing
continuous function of t. In the limit t→ 0, we have

lim
t→0+

λ1 (D0 − tVµ) = λ1(D0) = 1;

that is, for small t the first eigenvalue emerges from +1. We distinguish two cases
here: Either the eigenvalue decreases and approaches the bottom of the gap −1 at
some critical t < νmax(µ)

−1, or it stays above it in the whole interval (0, νmax(µ)
−1).

We denote

ν1(µ) := µ
(
R3
)
sup

{
t < νmax(µ)

−1 : λ1 (D0 − Vtµ) > −1
}

the corresponding critical mass. Similarly, we may define

ν0(µ) := µ
(
R3
)
sup

{
t < νmax(µ)

−1 : λ1 (D0 − Vtµ) > 0
}
.

This is the unique value of tµ (R3) for which the first eigenvalue, whenever, it exists
is equal to 0, otherwise it is taken equal to µ (R3) /νmax(µ). Clearly, by definition,
ν0(µ) ⩽ ν1(µ). By continuity and monotonicity, one also has λ1 (D0 − tVµ) > 0 for
all 0 ⩽ tµ (R3) < ν0(µ) and λ1 (D0 − tVµ) > −1 for all 0 < tµ (R3) < ν1(µ). As an
example, in the mere Coulomb case where µ = δ0, we have

νmax (δ0) = ν0 (δ0) = ν1 (δ0) = 1,

since the first eigenvalue reaches 0 but it never approaches −1 .
Note that the definitions are invariant if we multiply the measure µ by any

positive number:

νmax(tµ) = tνmax(µ), ν0(tµ) = ν0(µ), ν1(tµ) = ν1(µ).

When discussing ν0(µ) and ν1(µ), it will often be convenient to take a probability
measure for µ. However, while considering the first eigenvalue, the measure µ will
be assumed to satisfy just the condition µ (R3) ⩽ ν.

In this section, we are interested in the following minimization problems:

ν0 := inf
µ⩾0
µ̸=0

ν0(µ), ν1 := inf
µ⩾0
µ̸=0

ν1(µ) (3.1)

which are respectively the smallest charge for which an eigenvalue can approach 0
or −1, for some probability measure µ. For ν < ν1 we also study the minimization
problem

λ1(ν) = inf
µ⩾0

µ(R3)⩽ν

λ1

(
D0 − µ ∗ 1

|x|

)
(3.2)
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Since ν < ν1, we know that the eigenvalue in the infimum is always greater than
−1.

The first main result of this section is a characterization of the two numbers
introduced in (3.1) with a help of a formula based on the Birman-Schwinger princi-
ple or on Hardy’s inequalities. Since we study here ν0 and ν1, in the next theorem
it is convenient to work with probability measures µ.

Theorem 3.1 (The critical coupling constants ν0 and ν1). We have

1

ν0
= sup

µ⩾0

µ(R3)=1

∥∥∥∥√Vµ
1

α · p+ β

√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

and
1

ν1
= sup

µ⩾0

µ(R3)=1

∥∥∥∥√Vµ
1

σ · p
√
Vµ

∥∥∥∥
L2(R3,C2)→L2(R3,C2)

= sup
µ⩾0

µ(R3)=1

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

= sup
µ⩾0

µ(R3)=1

maxσ

(√
Vµ

1

α · p+ β + 1

√
Vµ

)
.

We first need preliminary lemmas. The first one is about the essential spectrum
of Kλ.

Lemma 3.1 (Essential spectrum of Kλ ). Let µ be any probability measure and
νmax(µ) := maxR∈R3 µ({R}) ⩽ 1. Then we have

σess

(√
µ ∗ 1

|x|
1

α · p+ εβ − λ

√
µ ∗ 1

|x|

)
= [−νmax(µ), νmax(µ)] (3.3)

for all ε > 0 and |λ| < ε, as well as

σess

(√
µ ∗ 1

|x|
1

α · p

√
µ ∗ 1

|x|

)
= [−1, 1]. (3.4)

Proof. Noticing that

1

α · p+ εβ − λ
=

1

α · p+ εβ
+

λ

(α · p+ εβ − λ)(α · p+ εβ)
,
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we see that √
Vµ

1

α · p+ εβ − λ

√
Vµ −

√
Vµ

1

α · p+ εβ

√
Vµ

=
√
Vµ

1

|p|1/2︸ ︷︷ ︸
bounded

λ|p|
(α · p+ εβ − λ)(α · p+ εβ)︸ ︷︷ ︸

compact

1

|p|1/2
√
Vµ︸ ︷︷ ︸

bounded

is compact. The second operator is compact by the fact that∥∥∥∥ λ|p|
(α · p+ εβ − λ)(α · p+ εβ)

∥∥∥∥2 ⩽
(

|p|+ ε+ λ

|p|2 + ε3 − λ2
λ|p|√
|p|2 + ε2

)2

⩽
Cλ,ε|p|2

(1 + |p|2)2
∈ L2(R3)

for some constant Cλ,ε, following an argument similar to the proof of Lemma 2.1.
This implies that the essential spectrum is invariant with respect to λ. Indeed
if A is self-adjoint and B is compact, then B is A-compact and then, by Weyl’s
theorem, σess(A) = σess(A+B). So we can assume λ = 0 for the rest of the proof.

We write now

µ =
M∑

m=1

νmδRm + µ̃,

where M can be infinite and µ̃ has no atom. Truncating both the sum and µ̃ in
space, denoting by µ′ the truncated measure and using Kato’s inequality (A.1), as
done in the proof of Theorem 2.1, we see that ∥

√
Vµ′

1
α·p+εβ

√
Vµ′−

√
Vµ

1
α·p+εβ

√
Vµ∥

tends to 0. Hence

σess

(√
Vµ′

1

α · p+ εβ

√
Vµ′

)
→ σess

(√
Vµ

1

α · p+ εβ

√
Vµ

)
,

since the distance of the spectrum of two operators is bounded by the norm of
the difference of the operators. Therefore, it suffices to prove the lemma for a
finite sum and for µ̃ with compact support, all included in a ball of radius N . To
simplify the notation, we assume without loss of generality, that µ (R3) = 1. We
have the pointwise estimate

1

|x|+N
⩽ Vµ(x) ⩽

1

|x| −N
(3.5)

for |x| > N which proves that |x|Vµ(x) → 1 at infinity.
If µ has no atom, namely νmax(µ) = 0, and has compact support then by

Lemma 2.2 (multiplying and dividing by |p|1/2) the operators are compact, and
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therefore the essential spectrum is just {0}, proving (3.3) in this case. It is also
well-known when µ is a delta measure (see (2.4)). Let us prove now that

[−νmax(µ), νmax(µ)] ⊂ σess

(√
Vµ

1

α · p+ εβ

√
Vµ

)
(3.6)

in the case when µ has at least one atom. We assume, without loss of generality,
that the delta measure of µ with the largest mass νmax(µ) is located at 0. For
η > 0 one can prove, after some computations (using a change of variable and
dominated convergence) that∥∥∥∥∥
(√

Vµ
1

α · p+ εβ

√
Vµ︸ ︷︷ ︸

Aε

−k

)
η3/2φ(η·)−

(√
νmax(µ)

| · |
1

α · p

√
νmax(µ)

| · |︸ ︷︷ ︸
νmax(µ)A

−k

)
φ

∥∥∥∥∥
2

→ 0

when η → ∞, where k is a real number. By (2.4), for fixed λ ∈ [−1, 1], there exists
a Weyl’s sequence φn for A. Then, rescaling it as above by n (with k = λνmax(µ))
you find a new Weyl’s sequence n3/2φn(n·) for the operator Aε related to the
eignevalues λνmax(µ). Hence [−νmax(µ), νmax(µ)] is included in the spectrum of Aε

and, being a closed interval, also in the essential spectrum.

Our main task will be to derive the reverse inclusion.

In the case ε = 0 we can also dilate functions. Let λ ∈ [−1, 1], by (2.4) and a
density argument, there exists a (normalized) Weyl sequence Ψn ∈ C∞

c (R3 \ {0},C4)
such that

(
Ψn, |x|−1/2(α · p)−1|x|−1/2Ψn

)
→ λ. By dilating Ψn and by using the

scaling invariance of |x|−1/2(α · p)−1|x|−1/2, we can assume that Ψn is supported
outside a ball Brn with rn → ∞. Next, we write(

Ψn,
√
Vµ

1

α · p
√
VµΨn

)
=

(
|x|

1
2

√
VµΨn,

(
1

|x| 12
1

α · p
1

|x| 12

)
|x|

1
2

√
VµΨn

)

and we use the fact that∥∥∥(|x| 12√Vµ − 1
)
Ψn

∥∥∥
L2(R3,C4)

⩽
C

rn
−→
n→∞

0,

because ||x|1/2
√
Vµ − 1 |⩽ C/

√
rn on the support of Ψn, by (3.19). Since the

operator |x|−1/2(α · p)−1|x|−1/2 is bounded, we deduce that

lim
n→∞

(
Ψn,

√
Vµ

1

α · p
√
VµΨn

)
= lim

n→∞

(
Ψn,

1

|x| 12
1

α · p
1

|x| 12
Ψn

)
= λ.
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Thus, we have constructed a Weyl sequence for the operator
√
Vµ(α · p)−1

√
Vµ.

We may conclude by varying λ that

[−1, 1] ⊂ σess

(√
Vµ

1

α · p
√
Vµ

)
. (3.7)

We now discuss the reverse inclusions. Similarly as in the proof of Theorem
2.1, we consider the following partition of unity

1 =
M∑

m=1

1Bη(Rm) + 1BR\∪M
m=1Bη(Rm) + 1R3\BR

,

where R is chosen large enough and η is chosen small enough, so that the balls
Bη (Rm) do not intersect and are all included in BR/2. We insert our partition of
unity on both sides of our operator and expand. We claim that all the cross terms
are compact, so that

Aε :=
√
Vµ

1

α · p+ εβ

√
Vµ

=
M∑

m=1

1Bη(Rm)Aε1Bη(Rm) + 1R3\BR
Aε1R3\BR

+K,

where K is compact. For instance, the compactness of

1Bη(Rm)Aε1Bη(Rℓ)

with ℓ ̸= m follows from the same proof as in Lemma 2.1. The functions 1Bη(Rℓ)

√
Vµ

are in L2, and the kernel of the operator (α · p+ εβ)−1 is

(α · p+ εβ)−1(x, y) = (−iα · ∇x + εβ)
e−

√
ε|x−y|

4π|x− y|
.

It is exponentially decaying at infinity for ε > 0 and equal to

(α · p)−1(x, y) = i
α · (x− y)

4π|x− y|3

when ε = 0. Similarly,

1R3\BR
Aε1Bη(Rm), 1Bη(Rm)Aε1R3\BR

are compact because Vµ behaves like 1/|x| at infinity and∫
R3\BR

|(α · p+ εβ)−1(x, 0)|2

|x|
dx <∞.
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Indeed, when ε > 0 the integrand is exponentially decaying whereas when ε = 0
it behaves like |x|−5. Finally, all the terms involving 1BR\∪M

m=1Bη(Rm) are easier to
treat since we can write:

Vµ =

(
1∣∣Bη/2

∣∣ M∑
m=1

νm1Bη/2(Rm) + µ̃

)
∗ 1

|x|
on R3 \ ∪M

m=1Bη (Rm) .

Then
1

|p| 12
√
Vµ1BR\∪M

m=1Bη(Rm)

is compact by Lemma 2.2. By the same argument we can actually infer that

1Bη(Rm)Aε1Bη(Rm) = νm
1Bη(Rm)

|x−Rm|1/2
1

α · p+ εβ

1Bη(Rm)

|x−Rm|1/2
+K,

where K is compact. Therefore, we have shown that

Aε =
√
Vµ

1

α · p+ εβ

√
Vµ

=
M∑

m=1

νm
1Bη(Rm)

|x−Rm|1/2
1

α · p+ εβ

1Bη(Rm)

|x−Rm|1/2

+ 1R3\BR

√
Vµ

1

α · p+ εβ

√
Vµ1R3\BR

+KR,η,ε,

where KR,η,ε is compact. By (2.5), as already done in the proof of Theorem 2.1,
we have the operator bound

1Bη(Rm)

|x−Rm|
1
2

1

α · p+ εβ

1Bη(Rm)

|x−Rm|
1
2

⩽ 1Bη(Rm)

and, therefore, we infer

Aε ⩽ νmax(µ)1∪M
m=1Bη

(Rm)

+ 1R3\BR

√
Vµ

1

α · p+ εβ

√
Vµ1R3\BR

+KR,η,ε.

When ε > 0 the operator

1R3\BR

√
Vµ

1

α · p+ εβ

√
Vµ1R3\BR

is also compact, using (2.7) with z = 0, and the fact that 1R3\BR

√
Vµ ⩽

√
µ(R3)
R−N

is bounded. Let Ψn ⇀ 0 be a Weyl sequence such that (Aε − λ)Ψn → 0 with
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λ := maxσess (Aε). Then, we have

(Ψn, (Aε − λ)Ψn) ⩽ νmax(µ) + (Ψn, 1R3\BR

√
Vµ

1

α · p+ εβ

√
Vµ1R3\BR

Ψn)

+ (Ψn,KR,η,εΨn)− λ.

Using that the compact terms and the left-hand side tend to 0, we obtain λ ⩽
νmax(µ). By charge-conjugation invariance (see Section 1.3), the spectrum and es-
sential spectrum of Aε are symmetric with respect to the origin. This obeservation,
together with (3.6), proves (3.3).

When ε = 0 we instead use the behavior at infinity of Vµ to infer that

1R3\BR

√
Vµ

1

α · p
√
Vµ1R3\BR

⩽ 1R3\BR

√
1

R−N

1

α · p

√
1

R−N
1R3\BR

⩽
1

1− N
R

1R3\BR

√
|x|−1

1

α · p
√
|x|−11R3\BR

2.5

⩽
1R3\BR

1− N
R

,

where supp(µ) ⊂ BN , and we obtain

Aε ⩽ νmax(µ)1∪M
m=1Bη

(Rm) +
1R3\BR

1− N
R

+KR,η,ε ⩽
1

1− N
R

+KR,η,ε,

since νm ⩽ 1 for all m. After taking R → ∞, as done for the case ε ̸= 0, this
proves the reverse inclusion to (3.7) and concludes the proof of (3.4).

In the previous proof, we have introduced the compact operator KR,η,ε. The
following lemma provides its limit as ε→ 0.

Lemma 3.2 (Behavior of KR,η,ε). The sequence of operators KR,η,ε converges in
norm to the corresponding compact operator KR,η,0 when ε→ 0+.

Proof. The operator KR,η,ε can be written in the form

KR,η,ε =
∑√

Vj(α · p+ εβ)−1
√
V

′
j ,

where for each j, either Vj or V
′
j has compact support, thus belongs to Lr for any

1 ⩽ r < 3. In addition, the supports of Vj and V
′
j do not intersect, except for only

one term involving W = 1BR\∪M
m=1Bη(Rm)

√
Vµ twice. The terms involving W are

rather easy to deal with, since they can be written in the form√
Vj

1

α · p+ εβ

√
W =

√
Vj

1

|p| 12
|p|

α · p+ εβ

1

|p| 12
√
W.
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Since |p|−1/2
√
W is compact by Lemma 2.2, the convergence holds in norm by

Theorem A.5. Therefore, we only have to treat the case where Vj and V
′
j correspond

to either two disjoint balls around some nuclei, or one such ball and the potential
Vµ1R3\BR

.
In order to deal with these more complicated terms, it is convenient to use

pointwise kernel bounds like in Lemma 2.1. Recall also that if |A(x, y)| ⩽ B(x, y),
then ∥A∥ ⩽ ∥B∥. First we compute the kernel of the difference(

1

α · p+ εβ
− 1

α · p

)
(x, y) = −iα · (x− y)

4π|x− y|3
(
1− e−

√
ε|x−y|

)
− i

√
ε
α · (x− y)

4π|x− y|2
e−

√
ε|x−y| + εβ

e−
√
ε|x−y|

4π|x− y|
.

Using for instance that

1− e−r

r2
⩽

1

r
3
2

,
e−r

r
⩽

1

r
3
2

,

we obtain the bound for ε small enough∣∣∣∣( 1

α · p+ εβ
− 1

α · p

)
(x, y)

∣∣∣∣ ⩽ 3ε
1
4

4π|x− y| 32
.

In the case of two non-overlapping balls around two different singularities, |x− y|
stays bounded and never vanishes. Hence, we find by Lemma 2.1 (with s = 3/2)∥∥∥∥1Bη(Rm)

√
Vµ

(
1

α · p+ εβ
− 1

α · p

)
1Bη(Rℓ)

√
Vµ

∥∥∥∥
⩽ Cε

1
4

∥∥∥∥1Bη(Rm)

√
Vµ

1

|p|3/2
1Bη(Rℓ)

√
Vµ

∥∥∥∥ ⩽ Cε
1
4

with m ̸= ℓ. For the cross term involving one singularity and Vµ1R3\BR
we obtain,

again by Lemma 2.1,∥∥∥∥1R3\BR

√
Vµ

(
1

α · p+ εβ
− 1

α · p

)
1Bη(Rℓ)

√
Vµ

∥∥∥∥
⩽ Cε

1
4

∥∥∥∥1R3\BR

√
Vµ

1

|p|3/2
1Bη(Rℓ)

√
Vµ

∥∥∥∥
⩽ Cε

1
4

(∫
R3\BR

Vµ
(1 + |x|)3

) 1
2

⩽ Cε
1
4

(∫
R3\BR

dx

|x|4

) 1
2

.

which concludes the proof that KR,η,ε → KR,η,0 in norm.
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After these preparatory lemmas, we are able to prove the following result, which
will be the main ingredient for the proof of Theorem 3.1 in the case of the critical
number ν1.

Lemma 3.3. For every probability measure µ, we have

lim
ε→0+

maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
⩽

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥ .
This limit exists because the function in the left-hand side is increasing with respect
to ε.

Proof. For 0 < ε ⩽ 1, we write

1

D0 + 1− ε
=
α · p+ β − 1 + ε

|p|2 + ε(2− ε)

=
1

α · p+ β
√
ε(2− ε)

+
(1−

√
ε(2− ε))β − 1 + ε

|p|2 + ε(2− ε)

⩽
1

α · p+ β
√
ε(2− ε)

,

where we have used that

(1−
√
ε(2− ε))β − 1 + ε ⩽ ε−

√
ε(2− ε) ⩽ 0.

We obtain the operator inequality√
Vµ

1

D0 + 1− ε

√
Vµ ⩽

√
Vµ

1

α · p+
√
ε(2− ε)β

√
Vµ,

which implies, as seen in the proof of Theorem 2.3, that

maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
⩽

∥∥∥∥∥√Vµ
1

α · p+
√
ε(2− ε)β

√
Vµ

∥∥∥∥∥ .
We now show that

lim
ε→0+

∥∥∥∥√Vµ
1

α · p+ εβ

√
Vµ

∥∥∥∥ =

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥ . (3.8)

We will use the fact that

Aε :=
√
Vµ

1

α · p+ εβ

√
Vµ −→

ε→0+

√
Vµ

1

α · p
√
Vµ =: A0
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strongly in the operator sense; that is, AεΨ → A0Ψ for any Ψ ∈ L2 (R3,C4).
Actually, we have ∥Aε∥ ⩽ π/2 for every ε ⩾ 0 by Kato’s inequality, and the limit
holds when Ψ ∈ C∞

c (R3,C4) by the dominated convergence, theorem. Therefore,
the convergence holds true everywhere by a density argument. Note that the
operator norm is lower semi-continuous for the strong convergence. Indeed, let
Ψ ∈ L2 (R3,C4) with norm equal to 1, then

lim inf
ε→0

∥Aε∥ = lim inf
ε→0

∥Aε∥∥Ψ∥ ⩾ lim inf
ε→0

∥AεΨ∥ = ∥A0Ψ∥.

Passing to the infimum over the normalized functions in last term in the right-hand
side, we get ∥A0∥ ⩽ lim inf ∥Aε∥. It remains to prove the reverse inequality. Let us
assume by contradiction, that, after extracting a subsequence, ∥Aεn∥ → λ > ∥A0∥.
Since ∥A0∥ ⩾ 1 by Lemma 3.1, this implies ∥Aεn∥ > 1 for n large enough. By
charge conjugation, the spectrum is symmetric. Hence, the maximum is equal
to the spectral radius, which is also equal to the norm for bounded self-adjoint
operators (see Section 1.3). Therefore, ∥Aεn∥ = max σ(Aεn) ∈ σ(Aεn) \ σess(Aεn)
by (3.1. Thus, ∥Aεn∥ =: λn is an eigenvalue of Aεn whenever n is large enough. Let
un be a corresponding normalized eigenfunction, then Aεnun = λnun. Since the
sequence of eigenfucntion is bounded in L2, we can assume that un ⇀ u weakly,
to a function u ∈ L2, up to a subsequence. This implies that A0u = λu. Indeed,
for every f ∈ L2, one has

(A0u, f) = ((A0 − Aεn)u, f) + (Aεn(u− un), f) + (Aεnun, f)

= ((A0 − Aεn)u, f)
↓ Aεnu→A0u

+ (u− un, Aεnf)
un⇀u ↓ Aεnf→A0f

+ (Aεnun, f)
λn→λ ↓ un⇀u

0 0 (λu, f).

Since λ > ∥A0∥, it means that u = 0. Otherwise, we would have ∥A0∥∥u∥2 <
λ∥u∥2 = ∥A0u∥2 ⩽ ∥A0∥u∥2. Now

lim
n→∞

(un,KR,η,εnun) = lim
n→∞

(un,KR,η,0un) = 0,

due to the norm convergence KR,η,R,ε → KR,η,0 from (3.2) and to the compactness
of the operator KR,η,0, which implies KR,η,0un → 0. Hence, we find

λ = lim
n→∞

(un, Aεnun)
3.2

⩽ lim
n→∞

(
un,

(
1

1− N
R

+KR,η,R,ε

)
un

)
=

1

1− N
R

.

Taking R → ∞ we conclude that λ ⩽ 1, and we reach a contradiction. Therefore,
we have proved (3.8). This concludes the proof of Lemma 3.3.

We finally turn to the proof of Theorem 3.1.
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Proof of Theorem 3.1. Step 1 - Proof of the characterization of ν0

According to Theorem 2.3, the Birman-Schwinger principle tells us that λ is an
eigenvalue of D0 − tVµ if and only if 1/t is an eigenvalue of the bounded operator
Kλ =

√
Vµ (D0 − λ)−1√Vµ. The ordered eigenvalues of this latter operator (out-

side of the essential spectrum) are increasing with respect to λ and are Lipschitz
continuous : Since z 7→ Kz is an analytic family of bounded operators, they are
indeed real analytic curves that may cross (see [Kat13, Chapter 7]). We conclude
that λ is the first eigenvalue of D0 − tVµ if and only if 1/t is the largest eigenvalue
of Kλ.

Due to the definition of ν0(µ) there are two cases:

• If the eigenvalue crosses 0 before t reaches 1/νmax(µ), then λ1(D0−ν0(µ)Vµ) =
0 and the Birman-Schwinger principle ensures that 0 is the first eigenvalue
iff ν0(µ)

−1 is the largest eigenvalue of K0 :

1

ν0(µ)
= maxσ

(√
Vµ

1

D0

√
Vµ

)
=

∥∥∥∥√Vµ
1

D0

√
Vµ

∥∥∥∥ . (3.9)

The last equality holds true because the spectrum is symmetric, by charge
conjugation;

• If t reaches 1/νmax(µ) before the eigenvalue crosses the origin, from the
Birman-Schwinger principle this means that necessarily

maxσ

(√
Vµ

1

D0

√
Vµ

)
⩽ νmax(µ) =

1

ν0(µ)
.

Otherwise the eigenvalue would have crossed the origin earlier. However, by
Lemma 3.1 we know that σess(

√
Vµ

1
D0

√
Vµ) = [−νmax(µ), νmax(µ)], so that

the maximum of the spectrum is always larger than or equal to νmax(µ).
Thus, there must be equality, and we conclude that (3.9) holds in all cases.

Taking the supremum over µ yields to

sup
µ

∥∥∥∥√Vµ
1

D0

√
Vµ

∥∥∥∥ = sup
µ

1

ν0(µ)
=

1

infµ ν0(µ)
=

1

ν0
.

Step 2 - Proof of the characterization of ν1

The argument for ν1(µ) is similar but a little more subtle since we are ap-
proaching the negative part of the essential spectrum. We have by Lemma 3.1

σess

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
= [−νmax(µ), νmax(µ)]
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and therefore

maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
⩾ νmax(µ) (3.10)

for all 0 < ε < 2. Again we have two cases:

• If λ1 (D0 − tVµ) approaches −1 before t reaches 1/νmax(µ), then the Birman-
Schwinger principle provides as above

1

ν1(µ)
= lim

ε→0+
sup

{
t <

1

νmax(µ)
: λ1(D0 − tVµ) > −1 + ε

}
= lim

ε→0+
maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
.

• If t reaches 1/νmax(µ) before the eigenvalue touches -1 , then necessarily

lim
ε→0+

maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
⩽ νmax(µ).

But, since the other inequality holds by (3.10), we see that there must be

equality. We thus conclude that ν1(µ)
−1 = limε→0+ maxσ

(√
Vµ

1
D0+1−ε

√
Vµ

)
holds for every probability measure µ.

Using Lemma 3.3, we obtain the upper bound

1

ν1(µ)
⩽

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

.

On the other hand, using the dominated convergence theorem, we have〈√
VµΨ,

1

D0 + 1− ε

√
VµΨ

〉
−→
ε→0+

〈√
VµΨ,

1

D0 + 1

√
VµΨ

〉
for any Ψ in the form domain of

√
Vµ (D0 + 1)−1√Vµ. For a bounded self-adjoint

operator A the maximum of the spectrum is

maxσ(A) = sup
∥Ψ∥=1

(Ψ, AΨ).

Indeed, by the spectral theorem there exists a measured space (X,m), a unitary
isomorphism U : L2(R3,C4) → L2(X,m) and a function f : X → R ∪ {±∞} s.t.
for every φ in the domain of A one has UAφ = fUφ m− a.e. in X. Moreover

σ(A) = essrange(f) = {y ∈ R : ∀ε > 0 m(f−1([y − ε, y + ε])) > 0}.
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Since A is bounded, we may assume that max σ(A) = max essrange(f) = ∥f∥∞ >
0, up to a translation of the operator. In addition

(φ,Aφ) = (Uφ, fUφ) =

∫
X

f |Uφ|2dm ⩽ ∥f∥∞∥Uφ∥2L2(X,dm) = ∥f∥∞∥φ∥22.

Hence we obtain that maxσ(A) ⩾ sup∥Ψ∥=1(Ψ, AΨ). But, taking for ε > 0
Uφ = 1f−1([∥f∥∞−ε,∥f∥∞]/∥1f−1([∥f∥∞−ε,∥f∥∞]∥2 – the norm at the denominator be-
ing positive by the definition of L∞-norm) – we have (φ,Aφ) = (Uφ, fUφ) ⩾
(∥f∥∞ − ε)∥φ∥22 and letting ε → 0 we get the reverse inequality. This implies
that the max of the spectrum is lower semi-continuous, as done in the proof of the
previous lemma. Hence

lim
ε→0+

maxσ

(√
Vµ

1

D0 + 1− ε

√
Vµ

)
⩾ maxσ

(√
Vµ

1

D0 + 1

√
Vµ

)
.

Therefore we have shown that

maxσ

(√
Vµ

1

D0 + 1

√
Vµ

)
⩽

1

ν1(µ)
⩽

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

for every probability measure µ. After maximizing over µ we obtain

sup
µ⩾0

µ(R3)=1

maxσ

(√
Vµ

1

D0 + 1

√
Vµ

)

⩽
1

ν1
⩽ sup

µ⩾0

µ(R3)=1

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

.

(3.11)

We want to show that these inequalities are in fact equalities. Let us write√
Vµ

1

α · p+ ε(β + 1)

√
Vµ =

√
Vµ

1

α · p
√
Vµ + ε(β − 1)

√
Vµ

1

|p|2
√
Vµ.

Next, we use the fact that if A and B are two self-adjoint operators with B being
bounded and A being non-negative (but possibly unbounded), then

lim
ε→0+

maxσ(B − εA) = max σ(B).

⩽) Let Ψn a Weyl’s sequence for maxσ(B − εA), then

maxσ(B − εA) = lim
n→∞

(Ψn, (B − εA)Ψn) ⩽ (Ψn, BΨn)

⩽ sup
∥Ψ∥=1

(Ψn, BΨn) = max σ(B);
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⩾) By density of D(A) for any η > 0 we can find a normalized vector v ∈ D(A)
such that (v,Bv) ⩾ maxσ(B) − η. Let Ψn be again a Weyl’s sequence for
maxσ(B − εA) =: λ, then

(v, (B − εA)v) ⩽ ∥B − εA∥ = inf
∥Ψ∥=1

∥(B − εA)Ψ∥

⩽ ∥(B − εA− λ)Ψn∥+ λ∥Ψn∥2 → maxσ(B − εA).

Therefore, we get

lim inf
ε→0+

maxσ(B − εA) ⩾ lim
ε→0+

(⟨v,Bv⟩ − ε⟨v, Av⟩) ⩾ maxσ(B)− η.

The claim follows after taking η → 0.

We therefore obtain that

lim
ε→0+

maxσ
(√

Vµ
1

α · p+ ε(β + 1)

√
Vµ

)
= maxσ

(√
Vµ

1

α · p
√
Vµ

)
=

∥∥∥∥√Vµ
1

α · p
√
Vµ

∥∥∥∥ ,
where the last equality follows from the symmetry of the spectrum. But, the left-
hand side is unitarily equivalent to

√
Vµε (D0 + 1)−1√Vµε with µε = 1

ε3
µ (ε−1·)

via the unitary operator Uεf = 1
ε3/2

f(·/ε) (hence the spectrum is the same), and
therefore ∥∥∥∥√Vµ

1

α · p
√
Vµ

∥∥∥∥ = lim
ε→0+

maxσ

(√
Vµε

1

D0 + 1

√
Vµε

)
⩽ sup

µ
′
⩾0

µ
′
(R3)=1

maxσ

(√
Vµ′

1

D0 + 1

√
Vµ′

)
.

Taking the supremum over the probability measures µ, this shows that there are
only equalities in (3.11) and proves the second and third equalities in the charac-
terization of ν1.

To conclude, it remains to notice that

1

α · p
=

(
0 1

σ·p
1
σ·p 0

)
.

Hence the norm of the operator in L2 (R3,C4) is the same as the one of the off-
diagonal term in L2 (R3,C2) :∥∥∥∥√Vµ

1

α · p
√
Vµ

∥∥∥∥
L2(R3,C4)→L2(R3,C4)

=

∥∥∥∥√Vµ
1

σ · p
√
Vµ

∥∥∥∥
L2(R3,C2)→L2(R3,C2)

.

This concludes the proof of Theorem 3.1
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Remark: The characterization of ν1 can be interepreted in terms of Hardy-
type inequalities. Indeed, for all u ∈ L2 (R3,C2) and for all positive measures
µ ∥∥∥∥√Vµ

1

σ · p
√
Vµu

∥∥∥∥2
L2(R3,C2)

⩽
∥u∥2L2(R3,C2)

ν21
µ(R3)2.

Taking u = V
−1/2
µ σ · pφ with φ ∈ H1 (R3,C2), we obtain that ν1 is also the best

constant in the Hardy-type inequality∫
R3

|σ · ∇φ|2

µ ∗ |x|−1
dx ⩾

ν21
µ (R3)2

∫
R3

(
µ ∗ 1

|x|

)
|φ|2dx (3.12)

for every φ ∈ H1 (R3,C2) and every positive measure µ on R3.

3.2 Continuity of the first eigenvalue for the vague

topology

Before proving the main result of the thesis regarding the existence of an op-
timal measure for the variational problem λ1(ν) defined in (3.2), we will prove
in this section the continuity of the map µ 7→ λ1 (D0 − µ ∗ |x|−1), using Lions’
concentration-compactness method [Lio84a, Lio84b, Lio85a, Lio85b, Lew10]. Be-
fore we provide the detailed statement, we prove some preliminary results which
are going to be useful in the argument. The first one will be used to deal with
the case of vanishing sequences (µn), which contain no compact bubble at all and
have all of their mass disappearing locally.

Lemma 3.4 (Estimate in terms of the largest local mass). Let µ be a nonnegative
finite measure over R3. Then there exists a universal constant C such that for all
R ⩾ 4 ∥∥∥∥Vµ 1

D0

∥∥∥∥ ⩽ C sup
x∈R3

µ (BR(x)) +
Cµ (R3)

R
.

Proof. Let us consider a partition of unity
∑

j∈Z3 χj = 1 of R3 with each χj ∈
C∞

c (R3) supported over the cube j + (−1, 1)3. Let R ⩾ 1 and χR,j(x) := χj(x/R)
be the dilated partition of unity. Arguing as in the proof of Lemma 2.2, we write

χR,jVµ = χR,jVµ1B4R(j)
+ χR,jVµ1

R3\B4R(j)

⩽ χR,jVµ1B4R(j)
+
Cµ (R3)

R
χR,j,
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where C is the distance between the sphere and the cube. This gives

0 ⩽ Vµ ⩽
∑
j∈Z3

χR,jVµ1B4R(j)
+
Cµ (R3)

R
.

Hence∥∥∥∥Vµ 1

D0

∥∥∥∥ A.4
=

∥∥∥∥Vµ 1√
1−∆

∥∥∥∥ ⩽

∥∥∥∥∥∥
∑
j∈Z3

χR,jVµ1B4R(Rj)

1√
1−∆

∥∥∥∥∥∥+ Cµ (R3)

R
.

To estimate the first term in the right-hand side, we write∑
j∈Z3

χR,jVµ1B4R(j)

1√
1−∆

=
∑
j∈Z3

χR,jVµ1B4R(j)

1√
1−∆

(
1B4R(j) + 1R3\B4R(j)

)
and we estimate the corresponding positive kernels pointwise. Using that

1√
1−∆

(x− y) ⩽ C
e−|x−y|

|x− y|2
⩽ C

1

|x− y|2
,

we obtain∑
j∈Z3

χR,jVµ1B4R(j)

1√
1−∆

(x, y) ⩽ C
∑
j∈Z3

1B4R(j)(x)
Vµ1B4R(j)

(x)

|x− y|2

⩽ C

∑
j∈Z3

1B4R(j)(x)

 sup
j∈Z3

Vµ1B4R(j)
(x)

1

|x− y|2
.

Note that the right-hand side is the kernel of the operator

C

∑
j∈Z3

1B4R(j)

 sup
j∈Z3

Vµ1B4R(j)

1

|p|
.

Therefore we have, by Hardy’s inequality and the fact that
∑

j∈Z3 1B4R(j) ⩽ C, the
following norm estimate∥∥∥∥∥∥

∑
j∈Z3

χR,jVµ1B4R(Rj)

1√
1−∆

∥∥∥∥∥∥ ⩽ C

∥∥∥∥∥∥
∑

j∈Z3

1B4R(j)

 sup
j∈Z3

Vµ1B4R(j)

1

|p|

∥∥∥∥∥∥
⩽ C

∥∥∥∥∥supj∈Z3

Vµ1B4R(j)

1

|p|

∥∥∥∥∥ ⩽ C sup
j∈Z3

µ (B4R(j)) .
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Thus we conclude that∥∥∥∥Vµ 1

D0

∥∥∥∥ ⩽ C sup
x∈R3

µ (BR′(x)) +
Cµ (R3)

R′ ∀R′ ⩾ 4.

The second lemma is about the convergence of the Coulomb potential Vµn in
the case where µn converges tightly or vaguely to a limit (see Appendix A.1 for an
introduction to finite measures).

Lemma 3.5 (Convergence of the potential). Let µn ⇀ µ be a sequence of measures
which converges tightly. Then the associated potential Vµn = µn ∗ |x|−1 converges
to Vµ = µ ∗ |x|−1 strongly in (L2 + L∞) (R3), hence also almost everywhere after
extraction of a subsequence. In particular, we have the norm convergence√

Vµn

1

D0 − λ
−→

√
Vµ

1

D0 − λ

for every λ ∈ (−1, 1), uniformly on compact subsets of (−1, 1). If µn ⇀∗ µ
converges vaguely (but not tightly), then we still have Vµn(x) → Vµ(x) strongly in
L2
loc (R

3), hence also almost-everywhere after extraction of a subsequence.

Proof. The tight convergence µn ⇀ µ implies that the Fourier transforms µ̂n(k) →
µ̂(k) converge for all k ∈ R3, since the function x 7→ e−2πi(x,k) is continuous and
bounded. Then

V̂µn(k)− V̂µ(k) = F
(
(µn − µ) ∗ 1

| · |

)
= µ̂n − µ · 1̂

|x|
= 4π

µ̂n(k)− µ̂(k)

|k|2

= 4π
µ̂n(k)− µ̂(k)

|k|2
1B1(k) + 4π

µ̂n(k)− µ̂(k)

|k|2
1R3\B1

(k),

where the first term in the last equation is in L1 (B1) and the second one in
L2 (R3 \B1). From the dominated convergence theorem – using that µ̂n is uni-
formly bounded –, we infer that both terms converge to 0, the first one in L1 and
the second one in L2. Applying the inverse of the Fourier transform, the conver-
gence in L2 remains the same, while the convergence in L1 becomes convergence
in L∞. Thus Vµn → Vµ strongly in (L2 + L∞) (R3), hence in L2

loc (R3).
The norm convergence follows from the inequality∥∥∥∥f(x) 1

D0 − λ

∥∥∥∥
⩽ min

 ∥f∥L∞

min(|λ− 1|, |λ+ 1|)
,
∥f∥L4

(2π)3

(∫
R3

∥∥∥∥ 1

α · p+ β − λ

∥∥∥∥4 dp
) 1

4

 .

(3.13)
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Indeed ∥∥∥∥(√Vµn −
√
Vµ)

1

D0 − λ

∥∥∥∥ ⩽

∥∥∥∥(√Vµn −
√
Vµ)1B1

1

D0 − λ

∥∥∥∥
+

∥∥∥∥(√Vµn −
√
Vµ)1Bc

1

1

D0 − λ

∥∥∥∥
and, using (3.13) on both terms and the fact that the L∞-norm of (

√
Vµn−

√
Vµ)1B1

and the L4-norm of (
√
Vµn −

√
Vµ)1Bc

1
go to zero, we get the norm convergence.

Let us prove (3.13). We have∥∥∥∥f 1

D0 − λ

∥∥∥∥ ⩽ ∥f∥∥ 1

D0 − λ
∥ ⩽

∥f∥L∞

dist(λ, σ(D0))
⩽

∥f∥L∞

min(|λ− 1|, |λ+ 1|)
;

and ∥∥∥∥f 1

D0 − λ
φ

∥∥∥∥
2

C−S

⩽ ∥f∥4
∥∥∥∥F−1

(
1

α · p+ β − λ
φ̂

)∥∥∥∥
4

⩽
∥f∥4
(2π)3

∥∥∥∥ 1

α · p+ β − λ
φ̂

∥∥∥∥
4/3

⩽
∥f∥4
(2π)3

(∫
R3

∥∥∥∥ 1

α · p+ β − λ

∥∥∥∥4/3 |φ̂|4/3dp
) 3

4

C−S

⩽
∥f∥L4

(2π)3

(∫
R3

∥∥∥∥ 1

α · p+ β − λ

∥∥∥∥4 dp
) 1

4

∥φ̂∥2.

Finally, if µn ⇀
∗ µ vaguely (but not tightly), then we may always choose a radius rn

diverging to infinity sufficiently slowly such that µn (Brn) → µ (R3). It is equivalent
to show that, for fixed rk diverging you can find a subsequence nk which goes to
infinity rapidly s.t. µnk

(Brk) → µ (R3). Thnaks to the vague convergence, we
have µn(Brk) → µ(Brk) as n → ∞. Extracting a subsequence we may assume
|µnk

(Brk)− µ(Brk)| ⩽ 1
k
. We then deduce that∣∣µnk

(Brk)− µ(R3)
∣∣ ⩽ 1

k
+ µ(R3 \Brk) −→

k→∞
0. (3.14)

Then, µn1Brn
converges tightly and, on any fixed ball BR, we have

1BR

∣∣∣Vµn − Vµn1Brn

∣∣∣ = 1BR

∣∣∣Vµn1
R3\Brn

∣∣∣ ⩽ µn (R
3)

|rn −R|
→ 0.

By the tight case, Vµn1Brn
→ Vµ in L2

loc and for any compact set K there exists
R > 0 s.t. K ⊂ BR. Hence,

∥Vµn − Vµ∥L2(K) ⩽ ∥Vµn − Vµn1Brn
∥L2(BR) + ∥Vµn1Brn

− Vµ∥L2(BR)

⩽

(
µn(B

c
rn)

|rn −R|

)2

|BR|+ ∥Vµn1Brn
− Vµ∥L2(BR) −→

n→∞
0,
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which concludes the proof

With these results in hand, we are now able to provide the proof of the main
theorem of this section.

Theorem 3.2 (Weak continuity). Let 0 ⩽ ν < ν1 and let (µn) be an arbitrary
sequence of non-negative measures such that µn (R

3) ⩽ ν. Then, there exists a
subsequence (µnk

), a sequence of space translations (xk) ⊂ R3 and a measure µ
such that µnk

(·+ xk)⇀
∗ µ vaguely and

lim
k→∞

λ1

(
D0 − µnk

∗ 1

|x|

)
= λ1

(
D0 − µ ∗ 1

|x|

)
.

Proof. Firstly, we notice that

lim
n→∞

λ1 (D0 − Vµ∗ζn) = λ1 (D0 − Vµ)

for any 0 ⩽ µ (R3) < 1 and ζn ∈ C∞
c (R3) ⇀∗ δ0 a regularizing sequence (we

can also assume that
∫
R3 ζn = 1 and ζn symmetric w.r.t the origin). This follows

from the resolvent convergence in Theorem 2.1. Moreover, µ ∗ ζn ⇀∗ µ tightly:
for every f ∈ Cb one has (µ ∗ ζn, f) = (µ, ζn ∗ f) → (µ, f) by the dominated
convergence theorem. Hence, in the whole proof we can assume for simplicity that
µn ∈ C∞ (R3,R+). By Theorem 2.1, this property ensures that the domain of the
corresponding Dirac operator is H1 (R3). Indeed µn({R}) = 0 for every R ∈ R3,
and this allows us to perform some computations more easily. Let

ℓ := lim
n→∞

λ1 (D0 − Vµn)

be the limit of the eigenvalues, which always exists after extraction of an appro-
priate subsequence, since the sequence is bounded in (−1, 1).

We split the proof of the proposition into several steps. In the first step we
deal with the easy case where ℓ = 1, which contains in particular the case of van-
ishing sequences in the sense of the concentration-compactness method, as we will
explain. The central argument is in Step 2 where we prove that ℓ > −1; that is,
the eigenvalue cannot approach the lower essential spectrum. In Step 3, we will
find the bubble µ which has the lowest possible eigenvalue and show that this is
the limit of λ1 (D0 − µn ∗ |x|−1).

Step 1 – The case ℓ = 1

If ℓ = 1, we can always find a sequence (xn) diverging fast enough to infinity
such that µn (·+ xn) ⇀

∗ 0 =: µ. Indeed, for f ∈ C0, one has (f, µn(· + xn)) =
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(f(· − xn), µn) → 0 by the dominated convergence theorem, by using the fact that
f goes to 0 at ∞. Since λ1 (D0 − V0) = λ1 (D0) = 1, the proposition is proved,
and µ = 0 in this case. In the rest of the proof, we therefore assume that

ℓ < 1.

Step 2 – The proof that ℓ > −1

Under this assumption, µn (R
3) cannot have a subsequence tending to 0. Oth-

erwise, by Hardy’s inequality, we would have∥∥∥∥Vµnk

1

D0

∥∥∥∥ ⩽ 2µnk

(
R3
)
→ 0,

and this would imply that λ1 (D0 − Vnk
) converges to ±1 by [Lew22, Theorem

5.4]. Since ℓ < 1, the only remaining possibility is −1. In particular, for k large
enough λ1(D0−Vnk

) stays away below 0. For every such k, by the continuity of the
function t 7→ f(t) = λ1(D0 − tVnk

) and since f(0) = 1 and f(1) < 0, there exists
tk ∈ (0, 1) such that f(tk) = λ1(D0 − tkVnk

) = 0. And we reach a contradiction
again since by the same argument as above λ1(D0 − tkVnk

) → ±1. Thus, we have

lim inf
n→∞

µn

(
R3
)
> 0.

Moreover
lim
n→∞

sup
x∈R3

µn (BR(x)) > 0

for all R > 0. Therefore, the sequence µn cannot vanish in the sense of the
concentration-compactness terminology [Lio84a, Lio84b, Lio85a, Lio85b, Lew10]).
Otherwise by Lemma 3.4 we would again deduce that

∥∥VµnD
−1
0

∥∥ → 0, and thus
λ1 (D0 − Vµn) → 1, which is in contradiction with ℓ < 1.

We argue by contradiction and assume that ℓ = −1. Let us denote

M := sup
{
µ
(
R3
)
: ∃ (xk) ⊂ R3, µnk

(· − xk)⇀
∗ µ vaguely

}
the largest mass of all the possible vague limits of µn, up to translations and
extraction of subsequences. IfM = 0, then µn (· − xn)⇀

∗ 0 for any (xn) ⊂ R3 and
this implies that µn (BR (xn)) → 0 for every R > 0. This cannot happen because
limn→∞ supx∈R3 µn (BR(x)) > 0. Therefore, M > 0, and there exists a sequence
of translations (xk) and a subsequence such that µnk

(· − xk) ⇀
∗ µ ̸= 0 vaguely

with, for instance, µ (R3) ⩾ M/2. The problem being translation-invariant, we
may assume for simplicity of notation that xk ≡ 0 and that µn ⇀

∗ µ vaguely, after
extraction of a subsequence. To simplify the notation, we introduce the shorthands

λn := λ1 (D0 − Vn) = −1 + εn, Vn := µn ∗
1

|x|
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with εn → 0+. Let Ψn ∈ H1 (R3,C4) be an eigenvector solving

(D0 − Vn)Ψn = λnΨn, Ψn =

(
φn

χn

)
.

Considering the min-max formula (2.15) for k = 1 and solving the maximization
over χn, one finds that λn is the lowest λ ∈ [−1, 1] such that

0 ∈ σ

(
−σ · ∇ 1

εn + Vn
σ · ∇+ 2− εn − Vn

)
. (3.15)

Since λn > −1, it is the first eigenvalue of D0−Vn and φn is the first eigenfunction
of the operator in (3.15); that is(

−σ · ∇ 1

εn + Vn
σ · ∇+ 2− εn − Vn

)
φn = 0 (3.16)

and

χn =
−iσ · ∇φn

εn + Vn
.

The quadratic form associated with the operator in (3.15) is

qλn(φ) :=

∫
R3

|σ · ∇φ(x)|2

εn + Vn(x)
dx+

∫
R3

(2− εn − Vn(x)) |φ(x)|2dx ⩾ 0.

It is non-negative because φn is the first eigenfunction related to the eigenvalue 0,
which is therefore the lowest eigenvalue. In the whole argument we normalize our
solution in order that the upper spinor itself is normalized in L2 :∫

R3

|φn(x)|2 dx = 1.

Let 0 ⩽ ζ ⩽ 1 be a smooth function with support in the ball B4, which equals
one in B2, and set ζR(x) := ζ(x/R) and ηR =

√
1− ζ2R. As done in the proof of

Theorem 2.3, we will use the pointwise IMS formula for the Pauli operator which
states that ∑

k

|σ · ∇ (Jkφ)|2 = |σ · ∇φ|2 + |φ|2
∑
k

|∇Jk|2

for a partition of unity
∑

k J
2
k = 1. Here again we obtain

0 = qλn (φn)

= qλn (ζRφn) + qλn (ηRφn)

−
∫
R3

|σ · ∇ζR(x)|2 + |σ · ∇ηR(x)|2

εn + Vn(x)
|φn(x)|2 dx

⩾ qλn (ζRφn) + qλn (ηRφn)−
C

R2

∫
2R⩽|x|⩽4R

|φn(x)|2

εn + Vn(x)
dx.
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On B4R \B2R we have

Vn(x) ⩾ (µn1BR
) ∗ 1

|x|
⩾
µn (BR)

5R
,

where 5R is the largest possible distance between the points in the annulus and
the points in the ball BR. Since µn (BR) → µ (BR) with µ (R

3) ⩾M/2 > 0 due to
the vague convergence, we deduce that for R large enough we have

qλn (ζRφn) + qλn (ηRφn) ⩽
C

R

∫
B4R\B2R

|φn|2 ⩽
C

R
.

Recall that qλn ⩾ 0, hence this gives a bound on qλn (ζRφn) and qλn (ηRφn) sepa-
rately.

We first look at the local part qλn (ζRφn) which gives, after discarding the L2

term, ∫
R3

|σ · ∇ζRφn|2

εn + Vn
dx−

∫
R3

Vn |ζRφn|2 dx ⩽ qλn(ζrφn) ⩽
C

R
.

For the second term in the left-hand side, by the characterization of ν1 in terms
of the Hardy-type inequality (3.12) on ζRφn, we have∫

R3

Vn |ζRφn|2 dx ⩽
µn (R

3)
2

ν21

∫
R3

|σ · ∇ζRφn|2

Vn
dx. (3.17)

For the first term, we use instead the lower bound

1

εn + Vn
=

1

Vn

(
1− εn

Vn + εn

)
⩾

1

Vn

(
1− εn

1
CR

+ εn

)
=

1

Vn

(
1− CεnR

1 + CεnR

)
,

where in above inequality we have used that

Vn ⩾
µn (B4R)

8R
⩾

1

CR
on B4R for n and R large enough.

We arrive at ∫
R3

|σ · ∇ζRφn|2

εn + Vn
dx ⩾

1

1 + CεnR

∫
R3

|σ · ∇ζRφn|2

Vn
dx.

We have therefore proved the following bound(
1

1 + CεnR
− µn (R

3)
2

ν21

)∫
R3

|σ · ∇ζRφn|2

Vn
dx ⩽

C

R
. (3.18)

63



64 CHAPTER 3. THE SMALLEST EIGENVALUE

Since µn (R
3) ⩽ ν < ν1 and εn → 0 by assumption, this shows that the integral

in the left-hand side is uniformly bounded for fixed R. In particular, ζRφn is also
uniformly bounded in Vµn :

∥ζRφn∥2Vµn
=

∫
R3

|σ · ∇ζRφn|2

1 + Vn
dx+ ∥ζRφn∥22 ⩽

∫
R3

|σ · ∇ζRφn|2

Vn
dx+ 1.

Next, we prove an H1/2 bound. In Theorem 2.2 we have shown the inequality

∥φ∥2
H1/2(R3,C2)

max (2, 16m (R3))
⩽ ∥φ∥2Vm

⩽ ∥φ∥2H1(R3,C2). (3.19)

Scaling φ and m in this way φ′ = 1
λ3/2φ(·/λ), m′ = 1

λ7/2m(·/λ), one gets, after
some computations, ∥φ′∥2 = ∥φ∥2, (φ′, |p|φ′) = 1

λ6 (φ, |p|φ), m′(R3) = 1
λ1/2m(R3)

and Vm′ = 1
λ3/2Vm(·/λ). Inserting φ′ and m′ in (3.19) we obtain the inequality∫

R3

|σ · ∇φ(x)|2

λ3/2 + Vm(x)
dx ⩾

(φ, |p|φ)
2λ11/2max

(
1, 8

λ1/2m (R3)
) − λ1/2∥φ∥2L2(R3),

for all φ ∈ H1 (R3,C2), all positive measure m and all λ > 0. For λ small

(φ, |p|φ)
2λ11/2max

(
1, 8

λ1/2m (R3)
) =

(φ, |p|φ)
16λ5m (R3)

⩾
(φ, |p|φ)
16m (R3)

.

Hence, taking λ→ 0 yields to

(φ, |p|φ) ⩽ 16m
(
R3
) ∫

R3

|σ · ∇φ(x)|2

Vm(x)
dx.

So by (3.18) we get(
1

1 + CεnR
− µn (R

3)
2

ν21

)
(ζRφn, |p|ζRφn) ⩽

C

R
. (3.20)

This shows that ζRφn is bounded in H1/2 for every R large enough. In other words,
φn is bounded in H

1/2
loc .

After extraction of a subsequence, we may assume that φn ⇀ φ weakly in L2

and strongly in L2
loc , hence also almost everywhere. From Lemma 3.5, since µn

converges vaguely to µ, we also have that Vn(x) → Vµ(x) almost everywhere. Then
passing to the limit in (3.17) and (3.18), we obtain from Fatou’s lemma∫

R3

Vµ |ζRφ|2 ⩽ lim inf

∫
R3

Vµ |ζRφn|2 ⩽ lim inf
µn (R

3)
2

ν21

∫
R3

|σ · ∇ζRφn|2

Vn

⩽ lim inf
µn (R

3)
2

ν21

(
1

1 + CεnR
− µn (R

3)
2

ν21

)−1
C

R
⩽
C

R
.
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Finally, taking R → ∞ gives φ ≡ 0 (Vµ > 0). Using the strong local compactness,
we can choose R = Rn → ∞ sufficiently slowly, (see (3.14) and [Lew10] for a
similar argument) to ensure that

εnRn → 0, µn (BRn) → µ
(
R3
)
, µn (B8Rn \BRn) → 0,∫

B8Rn

|φn|2 → 0.
(3.21)

From (3.20) we also have ∥ζRnφn∥H1/2 → 0. All this shows that nothing is hap-
pening in the region under investigation. The mass of φn must excape at infinity.

At this stage, we have shown that φn has no L2 mass in the region where µn

converges to µ. The next step is to apply the whole argument again to ηRnφn.
Namely, following the concentration compactness method [Lio84a, Lio84b, Lio85a,
Lio85b, Lew10], we extract the next profile in the sequence µn and use the same
argument to show that φn has no mass in the corresponding region. After finitely
many steps, the remainder µ

′
n will be composed of a piece which can vanish and

another piece with an arbitrarily small mass (for instance a mass ⩽ 1/4). For sim-
plicity of exposition, we provide the end of the argument in the simplest situation,
namely we assume that

µn1R3\BRn
= µ(1)

n + µ(2)
n ,

where µ
(1)
n vanishes in the sense of concentration-compactness, i.e.

lim
n→∞

sup
x∈R3

µn (BR(x)) = 0 (3.22)

for every R > 0, and µ
(2)
n (R3 \BRn) ⩽ 1/4. Then ∥Vµn1

R3\BRn

1
D0

∥ ⩽ ∥V
µ
(1)
n

1
D0

∥ +
∥V

µ
(2)
n

1
D0

∥ ⩽ 2
3
, for n large, since by Lemma 3.4 the first one tends to 0 due to

(3.22) and the second one is below 1/2 by Hardy’s inequality. This, using [Lew22,
Theorem 5.4] and the same argument presented at the beginning of this step,
implies that

λ1

(
D0 − Vµn1

R3\BRn

)
⩾ 1/3 ⩾ 0

for n large enough. Hence, by the min-max principle and the characterization in
terms of the quadratic form qλ [DES00], this tells us that

q0,µn1
R3\BRn

(φ) =

∫
R3

|σ · ∇φ|2

1 + Vµn1
R3\BRn

dx+

∫
R3

(
1− Vµn1

R3\BR

)
|φ|2dx ⩾ 0, (3.23)

for every φ ∈ H1 (R3,C2). On the support of ηRn , which is contained in Bc
2Rn

, we
have

Vn = Vµn1
R3\BR

+ Vµn1BRn
⩽ Vµn1

R3\BRn

+
C

Rn

.
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Hence, using that εn + CR−1
n → 0, we obtain

qλn (ηRnφn) =

∫
R3

|σ · ∇ (ηRnφn)|2

εn + Vµn

dx+

∫
R3

(2− εn − Vµn) |ηRnφn|2 dx

⩾
∫
R3

|σ · ∇ (ηRnφn)|2

εn + CR−1
n + Vµn1

R3\BRn

dx

+

∫
R3

(
2− εn −

C

Rn

− Vµn1
R3\BRn

)
|ηRnφn|2 dx

⩾
∫
R3

|σ · ∇ (ηRnφn)|2

1 + Vµn1
R3\BRn

dx

+

∫
R3

(
2− εn −

C

Rn

− Vµn1
R3\BRn

)
|ηRnφn|2 dx

3.23

⩾
∫
R3

(
1− εn −

C

Rn

)
|ηRnφn|2 dx ⩾

1

2

∫
R3

|ηRnφn|2 dx.

(3.24)

Since the left-hand side is bounded from above by C/Rn that goes to 0, this shows
that

∥φn∥22 = ∥ηRnφn∥22 + ∥ζRnφn∥22 ⩽ ∥ηRnφn∥22 +
∫
B8Rn

|φn|2
3.21−→ 0,

and we reach a contradiction with its normalization. We conclude that ℓ = −1
cannot happen.

Our next goal is to extract from µn one piece of mass µ̃n = µn1BRn (xn) ⇀ µ ̸= 0
tightly for a proper space translation (xn) ⊂ R3, such that the corresponding
eigenvalue λ1 (D0 − Vµ̃n) has the same limit ℓ as the original sequence µn. Then
we will also obtain that λ1 (D0 − Vµ̃n) → λ1 (D0 − Vµ), using the following lemma.

Lemma 3.6 (Convergence in the tight case). Let 0 ⩽ ν < ν1. Let (µn) be a
sequence of non-negative measures such that µn (R

3) ⩽ ν and which converges
tightly to a measure µ. Then we have

lim
n→∞

λ1

(
D0 − µn ∗

1

|x|

)
= λ1

(
D0 − µ ∗ 1

|x|

)
.

Proof. Since ν < ν1, there exists η > 0 such that ν(1 + η) < ν1. We consider
V

′
n := (1 + η)µn ∗ |x|−1 = (1 + η)Vn where (1 + η)µn (R

3) ⩽ (1 + η)ν < ν1. The
previous step implies that there exists ε0 > 0 such that

λ1 (D0 − (1 + η)Vn) > −1 + ε0

for n large enough. As seen in the beginning of the proof of Theorem 3.1, from the
Birman-Schwinger principle in Theorem 2.3 it follows that λ is the first eigenvalue
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of D0 − V µ iff 1 is the largest eigenvalue of Kλ. Then, since the eigenvalues are
increasing with λ, we obtain

maxσ

(
(1 + η)

√
Vn

1

D0 + 1− ε0

√
Vn

)
< maxσ

(
(1 + η)

√
Vn

1

D0 + λ1 (D0 − (1 + η)Vn)

√
Vn

)
= 1

=⇒ maxσ

(√
Vn

1

D0 + 1− ε0

√
Vn

)
<

1

1 + η
< 1.

Therefore, we have the operator bound

Kn =
√
Vn

1

D0 + 1− ε0

√
Vn <

1

1 + η
. (3.25)

Indeed, if there exists Ψ s.t. ∥Ψ∥2 = 1 and (Ψ, KnΨ) > maxσ(Kn), then maxσ(Kn) =
sup∥Ψ∥=1(Ψ, KnΨ) > maxσ(Kn), which is absurd. By Lemma 3.5 we get the strong

convergence Kn → K =
√
V 1

D0+1−ε0

√
V :∥∥∥∥(√Vn

1

D0 + 1− ε0

√
Vn −

√
V

1

D0 + 1− ε0

√
V

)
Ψ

∥∥∥∥2
2

⩽

∥∥∥∥(√Vn
1

D0 + 1− ε0
−

√
V

1

D0 + 1− ε0

)√
VnΨ

∥∥∥∥2 ( 3.5−→ 0)

+

∥∥∥∥√V 1

D0 + 1− ε0
(
√
Vn −

√
V )Ψ

∥∥∥∥2
2

(−→ 0 by dominated convergence).

The uniform upper bound implies from the functional calculus that

(1−Kn)
−1 → (1−K)−1

strongly as well. In addition, Lemma 3.5 also provides the norm convergence of√
Vn (D0 + 1− ε0)

−1. From the resolvent formula (2.6)

1

D0 − V − E
=

1

D0 − E

− 1

D0 − E

√
Vn︸ ︷︷ ︸

An

1

1−
√
Vn

1
D0−E

√
Vn︸ ︷︷ ︸

Bn

√
Vn

1

D0 − E︸ ︷︷ ︸
Cn

(3.26)

with E = −1+ε0, we conclude that, if AnBnCn converges in norm to ABC (where
A,B,C are the corresponding limits with Vµ in place of Vn), one has

(D0 − Vn + 1− ε0)
−1 → (D0 − V + 1− ε0)

−1
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in norm as n → ∞. Since An converges in norm to A, it is enough to prove that
BnCn does the same to BC. Cn is compact by (2.7). Therefore for every ε > 0
there exists a finite rank operator Tε s.t. ∥Tε − Cn∥ ⩽ ε. We can also assume
∥Tε−C∥ ⩽ 2ε because Cn converges in norm to C. Tε being a finite rank operator,
we have ∥(Bn − B)Tε∥ → 0 as n → ∞ since strong and norm convergences are
equivalent in finite dimensional spaces. Finally, we get

∥BnCn −BC∥ ⩽ ∥Bn(Cn − Tε)∥+ ∥(Bn −B)Tε∥+ ∥B(Tε − C)∥
⩽ kε+ ∥(Bn −B)Tε∥+ 2kε −→

n→∞
3kε.

Letting ε → 0 we obtain the norm convergence of the resolvent, which implies
the convergence of the spectrum (see [Ree12, Chapter 8]). In particular, the first
eigenvalue λ1 (D0 − Vn) (which is known to be larger than −1 + ε0 by the above
arguments) converges to λ1 (D0 − µ ∗ |x|−1), as wanted.

Step 3 - Extraction of a tight minimizing sequence

We go back to our initial minimizing sequence µn, for which we know that
−1 < ℓ < 1. We apply the same strategy as in Step 2 and extract finitely many
weak limits of µn up to translations, so that the remainder can be written in the
form µ

′
n = µ

(1)
n +µ

(2)
n , where µ

(1)
n vanishes in the sense of concentration-compactness

and µ
(2)
n has an arbitrarily small mass. By an argument similar to the one in (3.24),

we can prove that φn converges to 0 in L2 on the support of µ
′
n. Hence, it must

have a non zero mass in one of the regions where µn converges tightly to a non-zero
measure. We then show that the eigenvalue of this particular tight piece converges
to ℓ.

For the sake of clarity, we write again the whole argument in the simplest
situation where we only have one tight piece. Thus, we have like above that
µn1BRn

⇀ µ tightly, whereas µ
′
n := µn1R3\BRn

= µ
(1)
n + µ

(2)
n where µ

(1)
n vanishes and

µ
(2)
n (R3 \BRn) is as small as we want. Then from (3.24) we know that ηRnφn → 0,

which implies, since the sequence is normalized, that

lim
n→∞

∫
R3

|ζRnφn|2 = 1.

We have in addition

qλn (ζRnφn) ⩽
C

Rn

⩽
C

′

Rn

∫
R3

|ζRnφn|2 ,

since the last integral converges to 1. On the support of ζRn we have as before

Vn ⩽ Vµn1B8Rn
+

C

Rn

.
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Hence, we obtain

0 ⩾
∫
R3

|σ · ∇ (ζRnφn)|2

1 + λn + (C + C ′)/Rn + Vµn1B8Rn

dx

+

∫
R3

(
1− λn −

C + C ′

Rn

− Vµn1B8Rn

)
|ζRnφn|2 dx.

From the characterization of the first eigenvalue via the quadratic form, this proves
that

λ1

(
D0 − Vµn1B8Rn

)
⩽ λn +

C + C ′

Rn

= λ1(D0 − Vn) +
C + C ′

Rn

→ ℓ.

From Lemma 3.5, the tight convergence implies that the left-hand side converges
to λ1 (D0 − Vµ). Therefore, we obtain after passing to the limit

λ1 (D0 − Vµ) ⩽ ℓ.

On the other hand, for every fixed φ ∈ C∞
c (R3,C2) we have, as already seen,

qλn,µn(φ) ⩾ 0 and using the strong local convergence of Vn from Lemma 3.5, we
obtain qλn,µn(φ) → qℓ,µ(φ). So passing to the limit qℓ,µ(φ) ⩾ 0 and this precisely
means that

ℓ ⩽ λ1 (D0 − Vµ) .

Thus we have proved, as desired, that limλ1(D0 − Vµn) = ℓ = λ1 (D0 − Vµ) and
this concludes the proof of Theorem 3.2.

3.3 Existence of an optimal measure

The main result under study in this thesis is the following theorem concerning the
existence of an optimal measure for the variational problem λ1(ν) defined in (3.2)
and all sub-critical coupling constant 0 ⩽ ν < ν1, with ν1 as in (3.1).

Theorem 3.3 (Optimal measure). We have the following results:

1. The function ν 7→ λ1(ν) is locally Lipschitz-continuous on [0, ν1), decreasing
and takes its values in (−1, 1] with λ1(0) = 1.

2. For any ν ∈ [0, ν1), there exists a positive measure µν with µν (R
3) = ν such

that

λ1

(
D0 − µν ∗

1

|x|

)
= λ1(ν).

More precisely, any minimizing sequence (µn) for λ1(ν) is tight up to space
translations and converges tightly to an optimal measure for λ1(ν).
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3. Any such minimizer µν concentrates on the compact set

K :=

{
x ∈ R3 : |Ψν |2 ∗

1

| · |
(x) = max

R3

(
|Ψν |2 ∗

1

| · |

)}
,

where Ψν is any eigenfunction of D0−Vµν asscoiated to the eigenvalue λ1(ν).
The compact set K has a zero Lebesgue measure. In particular, µν is singular
with respect to the Lebesgue measure.

Proof. Step 1 - Existence of an optimizer

Let (µn)n∈N be any minimizing sequence of λ1(ν), with 0 < ν < ν1 and
µn (R

3) = ν. From Theorem 3.2, we know that there exists a subsequence
and space translations (xk) ⊂ R3 such that µnk

(·+ xk) ⇀
∗ µ vaguely (hence

µ (R3) ⩽ ν) and

λ1(ν) = lim
n→∞

λ1 (D0 − Vµn) = λ1 (D0 − Vµ) .

The measure µ is the desired optimizer. To prove that the convergence is in fact
tight, we have to show that µ (R3) = ν. The argument here relies on the strict
monotonicity of the eigenvalue. First, for ν > 0 we have

λ1(ν) ⩽ λ1 (D0 − ν/|x|) =
√
1− ν2 < 1

from which we deduce that µ ̸= 0 (that is, the sequence µn cannot vanish). On
the other hand, if µ (R3) < ν, we have

λ1(ν) = λ1 (D0 − Vµ) > λ1

(
D0 −

ν

µ (R3)
Vµ

)
⩾ λ1(ν),

and we reach a contradiction. Hence µ (R3) = ν and the original sequence must be
tight. In the previous inequality we have used that t 7→ λ1 (D0 − tVµ) is decreasing
for a fixed µ. This follows from the min-max principle and the characterization in
terms of quadratic forms [DES00]. Indeed, if φν ̸= 0 is an eigenfunction associated
with λ1 (D0 − Vµ), we have∫

R3

|σ · ∇φν |2

1 + λ1 (D0 − Vµ) + tVµ
dx+

∫
R3

(1− λ1(D0−Vµ)− tVµ) |φν |2 dx

< qλ1(D0−Vµ) (φν) = 0

for t > 1, since Vµ > 0 everywhere. This implies that λ1 (D0 − tVµ) < λ1(D0−Vµ)
for t > 1.
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Step 2 - Properties of ν 7→ λ1(ν)

The function ν 7→ λ1(ν) is obviously non-increasing for ν ∈ [0, ν1). Since there
exists a minimizer µ for every ν it is actually decreasing: if λ1(ν1) = λ1(ν2) for
ν1 < ν2, let µ1, µ2 be optimal measures respectively for λ1(ν1), λ1(ν2), then again
we have the following contradiction

λ1(ν1) = λ1(D0 − Vµ2) > λ1

(
D0 −

ν1
µ2 (R3)

Vµ2

)
⩾ λ1(ν1).

Hence it is continuous except possibly on a countable set.
To prove the continuity, consider a sequence νn → ν ∈ (0, ν1) together with an

associated sequence of optimizers µn such that λ1 (D0 − Vµn) = λ1 (νn). From The-
orem 3.1 we know that we can assume µn ⇀

∗ µ ̸= 0 vaguely after an appropriate
translation and extraction of a subsequence, so that

lim inf
n→∞

λ1 (D0 − Vµn) = lim
n→∞

λ1 (D0 − Vµn) = λ1 (D0 − Vµ) ⩾ λ1(ν),

because µ(R3) ⩽ lim inf µn(R
3) = lim νn = ν. Let now µ be an optimizer for λ1(ν),

then
lim sup
n→∞

λ1 (νn) ⩽ lim
n→∞

λ1

(
D0 −

νn
ν
Vµ

)
= λ1 (D0 − Vµ) = λ1(ν),

since the map t 7→ λ1 (D0 − tVµ) is continuous for a fixed µ. This concludes the
proof of the continuity of ν 7→ λ1(ν).

Finally, we discuss the regularity of ν 7→ λ1(ν). It is well known that for
every fixed µ, the function t 7→ λ1 (D0 − tVµ) is locally Lipschitz in [0, ν1/µ (R

3))
[Kat13]. This follows from the resolvent formula

1

D0 − tVµ + 1− ε0
− 1

D0 − t′Vµ + 1− ε0

= (t− t
′
)

1

D0 − tVµ + 1− ε0
Vµ

1

D0 − t′Vµ + 1− ε0
,

which implies by Kato’s inequality∥∥∥∥ 1

D0 − tVµ + 1− ε0
− 1

D0 − t′Vµ + 1− ε0

∥∥∥∥
⩽ C |t− t′|

∥∥∥∥ 1

D0 − tVµ + 1− ε0
|D0|

1
2

∥∥∥∥∥∥∥∥|D0|
1
2

1

D0 − t′Vµ + 1− ε0

∥∥∥∥ .
Here ε0 := λ1 (ν1 − η)+1 > 0 where η > 0 is chosen so that t, t′ < (ν1 − 2η) /µ (R3).
The two norms can be estimated uniformly in µ using the resolvent formula (3.26)
and the fact that (as in (3.25))√

Vµ
1

D0 + 1− ε0

√
Vµ ⩽

µ(R3)

ν1 − η
.
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To see that the Lipschitz property at fixed µ implies a similar property for λ1(ν),
we remark that for 0 ⩽ ν < ν

′
⩽ ν1 − ε

λ1(ν) ⩽ λ1

(
D0 −

ν

ν1 − ε
V ν1−ε

ν′ µ′

)
⩽ λ1

(
D0 −

ν ′

ν1 − ε
V ν1−ε

ν′ µ′

)
+ C(ν

′ − ν)

= λ1(ν
′) + C(ν

′ − ν),

where µ
′
is a minimizer for λ1(ν

′
) with µ′(R3) = ν ′. This is because t 7→

λ1 (D0 − tVµ) is locally Lipschitz in [0, ν1/µ (R
3)) and ν

ν1−ε
, ν′

ν1−ε
∈ [0, 1], which

is a compact set of [0, ν1
ν1−ε

ν′ µ′(R3)
) = [0, ν1

ν1−ε
).

Step 3 - Euler-Lagrange equation

Let µ be a minimizer for λ1(ν) and let Ψ = (φ, χ) be any corresponding eigen-
function. Recall that φ solves (3.16) and that

χ =
−iσ · ∇φ

1 + λ1(ν) + Vµ
.

Let µ′ be any other probability measure and µt := (1−t)µ+tµ′, for t ∈ [0, 1]. Then
we have λ1 (D0 − Vµt) ⩾ λ1 (D0 − Vµ) = λ1(ν) and this implies that qλ1,µt(φ) ⩾ 0
for all t ∈ [0, 1], and in t = 0 it equals 0. Then we have

0 ⩽
d

dt
qλ1,µt(φ)

∣∣∣∣
t=0

=

∫
R3

|σ · ∇φ|2(Vµ − Vµ′)

(1 + λ1(ν) + (1− t)Vµ + tVµ′)2
+ (Vµ − Vµ′)|φ|2

∣∣∣∣
t=0

=

∫
R3

(
|σ · ∇φ|2

(1 + λ1(ν) + Vµ)2
+ |φ|2

)
(Vµ − Vµ′)

=

∫
R3

|Ψ|2(Vµ − Vµ′) =

∫
R3

(
|Ψ|2 ∗ 1

| · |

)
d(µ− µ′)(x),

where |Ψ|2 = |φ|2 + |χ|2. In other words, µ solves the maximization problem

sup
µ′≥0

µ′(R3)=1

∫
R3

(
|Ψ|2 ∗ 1

| · |

)
(x)dµ′(x).

Since Ψ ∈ H1/2 (R3,C4) by Theorem 2.1, and H1/2 ⊂ L3,2, where L3,2 is the usual
Lorentz space [Tar98, Appendix IV], we have |Ψ|2 ∈ L3/2,1 = (L3,∞)∗. But |x|−1 ∈
L3,∞ and therefore the potential |Ψ|2∗|x|−1, being the convolution of two functions
in dual spaces, is actually a continuous function tending to zero at infinity. The
solutions to the maximization problem are exactly the measures supported on the
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compact set where this function attains its maximum. In particular, µ concentrates
on the compact set

K := argmax

(
|Ψ|2 ∗ 1

|x|

)
.

Step 4 - K has zero measure

The final step is to prove that K has zero Lebesgue measure. Assume by
contraddiction that |K| > 0 and denote by

Ω := R3 \ {R1, . . . , RK}

the set obtained after removing the largest singularities of µ, for instance all the
points such that µ ({Rj}) ⩾ min (1/4, ε0/4) where ε0 is the universal constant from
([ELS21b], Theorem 14). Then |K ∩ Ω| > 0 as well. Let us denote by

U := max
R3

(
|Ψ|2 ∗ 1

|x|

)
− |Ψ|2 ∗ 1

|x|
⩾ 0

the shifted potential which satisfies U ≡ 0 on K as well as the equation ∆U =
4π|Ψ|2 ⩾ 0 on R3. Consider a point of full measure x0 ∈ Ω∩K, that is, such that

lim
r→0

|Br (x0) \K|
|Br (x0)|

= 0.

Without loss of generality we may assume that x0 = 0. Let χ ∈ C∞
c (B2) be such

that χ|B1 ≡ 1 and set χr(x) := χ(x/r). Then we have

−χrU∆(χrU) = −χrU(χr∆U + 2∇χr · ∇χU + U∆χr)

= −4πχ2
rU |Ψ|2 − χrU

2∆χr −
1

2
∇χ2

r · ∇U2.

The first term in the right-hand side is non-positive since U ⩾ 0. Integrating and
using that 1

2
∆χ2

r = χr∆χr + |∇χr|2 we obtain∫
R3

|∇ (χrU)|2 ⩽ −
∫
R3

χrU
2∆χr +

1

2

∫
R3

U2∆χ2
r =

∫
R3

U2 |∇χr|2 ⩽
C

r2

∫
R3

U2

and therefore ∫
Br

(
U2

r2
+ |∇U |2

)
⩽
∫
R3

(
χ2
rU

2

r2
+ |∇ (χrU)|2

)
⩽
C

r2

∫
B2r

U2 =
C

r2

∫
B2r\K

U2,
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since U ≡ 0 on K by definition. Next, we use the Sobolev inequality ([AF03],
Theorem 4.12) in the ball B2r: ∥U∥2L6(B2r)

⩽ C∥U∥2W 1,2(B2r)
. Applying it to the

scaled U(r·) we get also

∥U∥2L6(B2r)
⩽ C

∫
B2r

(
U2

r2
+ |∇U |2

)
.

Therefore, by Hölder’s inequality we obtain

C

r2

∫
B2r\K

U2 ⩽
C |B2r \K|

2
3

r2
∥U∥2L6(B2r)

⩽
C |B2r \K|

2
3

r2

∫
B2r

(
U2

r2
+ |∇U |2

)
.

Hence, in summary, we have proved that∫
Br

(
U2

r2
+ |∇U |2

)
⩽ C

(
|B2r \K|

|Br|

) 2
3
∫
B2r

(
U2

r2
+ |∇U |2

)
for a universal constant C. By arguing like in ([DFG92], Section 3) this proves
that the integrand has a zero of infinite order, i.e.

lim
r→0+

r−α

∫
Br

(
U2

r2
+ |∇U |2

)
= 0 ∀α > 0, (3.27)

that is, U and ∇U vanish to all orders at x0 = 0.
Next, we prove that Ψ also vanishes to all orders at the same point. We use

Green’s formula in the form

4π

∫
Br

|Ψ|2 =
∫
Br

∆U = −
∫
Sr

∇U · n,

where n is the outward normal to the sphere Sr of radius r. After passing to
spherical coordinates we see that

−4π

∫
Bs

|Ψ|2 =
∫
Ss

∇U · n = s2
d

dr

(
1

r2

∫
Sr

U

) ∣∣∣∣
r=s

.

Therefore, after integrating over s between r and 2r, we obtain

1

r2

∫
Sr

U − 1

4r2

∫
S2r

U = 4π

∫ 2r

r

∫
Bs

|Ψ|2ds
s2

⩾
π

r

∫
Br

|Ψ|2,

because 1/s2 ⩾ 1/4r2 and
∫
Bs

|Ψ|2 ⩾
∫
Br

|Ψ|2 for r ⩽ s ⩽ 2r. Since U ⩾ 0 we have
shown the inequality

π

∫
Br

|Ψ|2 ⩽ 1

r

∫
Sr

U.
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From the continuity of boundary traces (∥U∥L2(∂Br) ⩽ C∥U∥W 1,2(Br)) and a scaling
like above we have∫

Sr

U ⩽ |Sr|1/2
(∫

Sr

U2

)1/2

⩽ Cr

∫
Br

(
U2

r2
+ |∇U |2

)
.

We finally get ∫
Br

|Ψ|2 ⩽ C

∫
Br

(
U2

r2
+ |∇U |2

)
,

which vanishes to all orders, as we have shown in (3.27), that is Ψ also vanishes
to all orders at the same point. This is impossible by ([ELS21b], Corollary 15).
Hence we must have |K| = 0 and this concludes the proof of Theorem.
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Appendix A

In this appendix I include some of the theorems I did not prove during the thesis
in order not to disrupt the thread of speech, to allow for a more smooth reading.

Theorem A.1 (Kato’s inequality). For all f ∈ {u : | · |1/2û ∈ L2(R3)},∫
R3

|x|−1|f(x)|2dx ⩽
π

2

∫
R3

|p||f̂(p)|2dp, i.e
1

|x|
⩽
π

2
|p|.

The constant π/2 is sharp.

Proof. We will prove the statement for a generic constant C in place of π/2, for
the sharp case see ([BE11], Theorem 2.2.4). By Paserval’s formula one has∫

R3

|f(x)|2

|x|
dx =

∫
R3

F
(
f(x)

|x|

)
(p) · F(f(x))(p)dp

=

∫
R3

(
F (f(x)) ∗ F(|x|−1)

)
(p) · F(f(x))(p)dp

= C

∫
R3

(
F (f(x)) ∗ | · |−2)

)
(p) · F(f(x))(p)dp

= C

∫
R3

∫
R3

F(f)(q) · F(f)(p)

|p− q|2
dqdp

= C

∫
R3

∫
R3

F(f)(q) |q||p| · F(f)(p) |p||q|

|p− q|2
dqdp

C−S

⩽ C

∫
R3

∫
R3

|F(f)(p)|2 |p|
2

|q|2

|p− q|2
dqdp

= C

∫
R3

|F(f)(p)|2|p|2
(∫

R3

dq

|q|2|p− q|2

)
dp.

The function p 7→
∫
R3

dq
|q|2|p−q|2 has been computed in ([LL01], Section 5.10) and it
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is equal to C|p|−1 so we finally get, as desired,∫
R3

|f(x)|2

|x|
dx ⩽ C

∫
R3

|p||F(f)(p)|2dp.

Theorem A.2. From Kato’s inequality,

1

|x|
⩽
π

2
|p|,

it follows that, for every µ ⩾ 0 positive finite Radon measure, one has

µ ∗ 1

| · |
⩽
π

2
µ(R3)|p|, or equivalently that

1

|p|
⩽
π

2
µ(R3)

1

Vµ
.

Proof. Kato’s inequality implies that∫
|φ|2

|x|
⩽
π

2

∫
φ · |p|φ =

π

2

∫ ∣∣∣|p| 12φ∣∣∣2 for every φ ∈ L2(R3,C4).

Hence for every x ∈ R3 we have∫
|φ(y)|2

|x− y|
dy =

∫
|φ(z + x)|2

|z|
dz ⩽

π

2

∫ ∣∣∣|p| 12φ(z + x)
∣∣∣2 dz

=
π

2

∫ ∣∣∣|p| 12F(φ(·+ x))(p)
∣∣∣2 dp = π

2

∫ ∣∣∣|p| 12 e−ip·xF(φ)(p)
∣∣∣2 dp

=
π

2

∫ ∣∣∣|p| 12F(φ)(p)
∣∣∣2 dp = π

2

∫ ∣∣∣|p| 12φ∣∣∣2 .
Then, integrating on x and using that µ is a positive measure we get∫

R3

∫
R3

|φ(y)|2

|x− y|
dydµ(x) ⩽

∥∥∥∥|φ|2 ∗ 1

| · |

∥∥∥∥
∞
µ(R3) ⩽

π

2
µ(R3)

∫ ∣∣∣|p| 12φ∣∣∣2
∀φ ∈ L2(R3,C4), which means that

µ ∗ 1

| · |
⩽
π

2
µ(R3)|p|, or equivalently that

1

|p|
⩽
π

2
µ(R3)

1

Vµ
. (A.1)

Theorem A.3. Let µ ⩾ 0 be a finite positive Borel measure, then, using |x|−2 ⩽
4(D0)

2, one has
∥Vµφ∥2 ⩽ 2µ(R3)∥D0φ∥2.
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Proof. Using the very same argument as in Theorem A.2, by |x|−2 ⩽ 4(D0)
2 one

gets ∫ ∫
|φ(y)|2

|x− y|2
dydµ(x) ⩽ 4µ(R3)

∫
|D0φ|2.

But, using that ∥ · ∥L1(R3,dµ) ⩽
√
µ(R3)∥ · ∥L2(R3,dµ), we have∫

V 2
µ (y)|φ(y)|2dy =

∫ (∫
dµ(x)

|x− y|

)2

|φ(y)|2dy

⩽ µ(R3)

∫ (∫
dµ(x)

|x− y|2

)
|φ(y)|2dy ⩽ 4µ(R3)2

∫
|D0φ|2.

Theorem A.4. Let A,B be bounded operators. Then we have the following

• if A is positive then ∥A1/2∥ = ∥A∥1/2;

• ∥A∥ = ∥|A|∥;

• If A,B are positive and commute, then (AB)1/2 = A1/2B1/2;

• if A,B are self-adjoint and commute, then |AB| = |A||B|;

• if A∗A = AA∗ (in particular if A is self-adjoint), then we have |A|−1 = |A−1|.
Proof. • Recall that ∥A∗A∥ = ∥AA∗∥ = ∥A∥2. Since the positive square root

A1/2 is self-adjoint, it follows that

∥A∥ = ∥A1/2A1/2∥ = ∥A1/2(A1/2)∗∥ = ∥A1/2∥2.

• ∥|A|∥ = ∥(A∗A)1/2∥ = ∥A∗A∥1/2 = ∥A∥.

• By uniqueness of square roots for positive operators, it is enough to prove
that (A1/2B1/2)2 = AB. Since A,B commute, also their square roots and
(A1/2B1/2)2 = A1/2B1/2A1/2B1/2 = A1/2A1/2B1/2B1/2 = AB.

• If A,B commute, then also the squares, and hence we have

|AB| = (BAAB)1/2 = (A2B2)1/2 = (A2)1/2(B2)1/2 = |A||B|.

• Finally, if A∗A = AA∗ one has

|A−1||A| =
√

(A−1)∗A−1
√
A∗A

=
(A−1)∗=(A∗)−1

√
(AA∗)−1(A∗A) =

√
(A∗A)−1(A∗A) = 1,

where in the second equality we have used also the third point.
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Theorem A.5. Let B be a bounded operator, As a sequence of operators such that
As → 0 strongly with ∥As∥ ⩽ C uniformly in s and K a compact operator. Then
one has ∥BAsK∥ →

s→∞
0.

Proof. SinceK is compact, there exists a sequence of finite rank operators (Kn)n∈N
s.t. ∥K −Kn∥ −→

n→∞
0 and the Kn’s are given by

Knφ =
n∑

j=1

λnφn(φ, φn),

where (φn)n∈N is a complete eigenbasis of L2 given byK and (λn)n∈N the associated
eigenvalues. Then, one has

∥BAsKnφ∥2 ⩽ ∥B∥∥AsKnφ∥2 = ∥B∥

∥∥∥∥∥
n∑

j=1

λnAsφn(φ, φn)

∥∥∥∥∥
2

⩽ ∥B∥

(
n∑

j=1

|λn|∥φn∥2∥Asφn∥2

)
∥φ∥2

⇒ ∥BAsKn∥ ⩽ ∥B∥

(
n∑

j=1

|λn|∥φn∥2∥Asφn∥2

)
−→
s→∞

0,

because the sum is finite and As → 0 implies ⇒ ∥Asφn∥2 → 0 for every n. Finally,
for every n ∈ N

∥BAsK∥ ⩽ ∥BAs(K −Kn)∥+ ∥BAsKn∥ ⩽ C∥B∥∥K −Kn∥+ ∥BAsKn∥,

so, letting first s→ ∞ and then n→ ∞, we get the claim.

A.1 Finite measure Theory

Now, I recall some definitions and results about finite (positive) measure since they
are extensively used during the thesis. One can find all the results in [Wil95, Cas].

Definition (Finite measure space). Let Ω ⊂ Rn be an open set. (We will use Ω =
R3). The space of finite measure on Ω, denoted M(Ω), is the space of continuous
linear maps on C0(Ω) = {f : Ω → C : f continuous and tending to 0 at ∞}.
M(Ω) is equipped with the norm

∥µ∥ := sup
u∈C0(Ω)\{0}

|(µ, u)|
∥u∥∞

= sup
u∈C0(Ω)\{0}

|
∫
Ω
udµ|

∥u∥∞
.

The set of positive finite measure is denoted M+(Ω).
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Note that if µ ∈ M+(Ω), then ∥µ∥ = (µ, 1) = µ(Ω).

Definition (Vague convergence). Let (µn)n∈N and µ be measures in M+(Ω), we
say that µn converges vaguely or weakly∗, µn ⇀

∗ µ if

lim
n→∞

∫
Ω

udµn =

∫
Ω

udµ ∀u ∈ C0(Ω).

Note that if µn ⇀
∗ µ vaguely, then it is not true that µn(A) → µ(A) for every

A ⊂ Ω. It holds for A bounded, but in general we have only µ(A) ⩽ lim infn µn(A).
Moreover, by uniform boundedness principle, if a sequence µn converges vaguely
then there is a uniform bound on µn(Ω).

Definition (Tight convergence). Let (µn)n∈N and µ be measures in M+(Ω), we
say that µn converges tightly, µn ⇀ µ if

lim
n→∞

∫
Ω

udµn =

∫
Ω

udµ ∀u ∈ Cb(Ω),

where Cb(Ω) is the set of continuous bounded functions on Ω.

The name tight is not classical, it comes from a translation from French. Often
in literature it is called Narrow convergence or (by abuse of notation) weakly
convergence.

Clearly tight convercence is stronger than vague convergence and they coincide
only if Ω is bounded. Unlike the vague case, for tight convergence we have µn(A) →
µ(A) for every A ⊂ Ω. We have the following characterization.

Theorem A.6. Let (µn)n∈N and µ be measures in M+(Ω), then the followings
are equivalent:

1. µn ⇀ µ tightly;

2. µn ⇀
∗ µ vaguely and ∥µn∥ = µn(Ω) → ∥µ∥ = µ(Ω).
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icana, 1(1):145–201, 1985.

[Lio85b] Pierre-Louis Lions. The concentration-compactness principle in the cal-
culus of variations. The limit case, part 2. Revista matemática iberoamer-
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[Wüs77] Rainer Wüst. Dirac operations with strongly singular potentials: Distin-
guished self-adjoint extensions constructed with a spectral gap theorem
and cut-off potentials. Mathematische Zeitschrift, 152:259–271, 1977.

86


	Introduction
	The Free Dirac Operator
	Notation
	Self-adjointness and Spectrum
	Charge conjugation

	Distinguished extension and min-max formulas
	Distinguished self-adjoint extension for a general charge
	Description of the domain for a positive measure
	Min-max formulas for the eigenvalues

	The smallest eigenvalue
	Two critical coupling constants 0 and 1
	Continuity of the first eigenvalue for the vague topology
	Existence of an optimal measure

	
	Finite measure Theory

	Bibliography

