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Sommario

Questa tesi si propone di analizzare le possibili applicazioni delle reti neurali artificiali, in par-
ticolare delle cosiddette "Physics-informed neural networks" (PINN), un tipo di reti neurali
artificiali che sfrutta la conoscenza delle leggi fisiche per fronteggiare la mancanza di dati e ac-
celerare il processo di "training", nell’ambito dell’elettromagnetismo computazionale, svilup-
pando un codice che utilizzi le PINN per risolvere problemi elettromagnetici, in particolare
problemi elettrostatici 1D e 2D. Viene proposto un esempio, preso dal sito di Mathworks®,
nel quale si risolve l’equazione di Poisson in un dominio di forma circolare, impiegando una
rete neurale artificiale. A partire dal codice visto nell’esempio, inizia poi il lavoro di sviluppo
di un algoritmo MATLAB che sia in grado di risolvere il problema elettrostatico del conden-
satore piano, in varie configurazioni: 1D con permittività omogenea, 1D con permittività non
omogenea, 2D con permittività non omogenea. I risultati sono poi confrontati con le soluzioni
degli stessi problemi ottenute per via analitica o tramite un codice FEM. Il risultato finale è
un codice MATLAB utilizzabile per risolvere il problema elettrostatico del condensatore piano
nelle configurazioni sopra elencate e che fornisce soluzioni la cui accuratezza è comparabile a
quella delle soluzioni ottenute tramite il metodo degli elementi finiti. Sono inoltre analizzate
le limitazioni che caratterizzano questo tipo di algoritmi e che ne ostacolano l’applicazione a
problemi più complessi.
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Abstract

The goal of this thesis is to analyze the possible applications of artificial neural networks, in
particular the so-called "Physics-informed neural networks" (PINN), a type of artificial neural
networks that exploits the knowledge of the physical laws to overcome the lack of data and
speed up the training process, in the field of computational electromagnetism, developing a
code that uses PINNs to solve electromagnetic problems described by partial differential equa-
tions, in particular 1D and 2D electrostatic problems. An example, taken from the Mathworks®

website, is proposed. In this example a PINN is used to solve the Poisson’s problem on a unit
disk. From this example, we start the development of a MATLAB algorithm that is able to solve
the electrostatic problem of the parallel plate capacitor, in various configurations: 1D with ho-
mogeneous permittivity, 1D with non-homogeneous permittivity, 2D with non-homogeneous
permittivity. The results are then compared to the analytical or FEM solutions of the same
problems. The final result is a MATLAB code that can be used to solve the parallel-plate
capacitor problem in the aforementioned configurations and provides solutions with accuracy
comparable to those obtained via the finite element method. The limitations that characterize
this type of algorithms and limit their application to more complex problems are also analyzed.
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Chapter 1

An introduction to artificial neural
networks

1.1 What is an artificial neural network

Artificial Intelligence (AI) has been drawing the attention of the scientific community in the
past few decades, and has seen a quite steep increase in consideration in these last years. As its
capabilities are being unveiled, more and more research is focusing on AI, even in sectors that,
so far, have seemed indifferent to it, such as computational engineering [1].

Among all the different AI branches, one that has received particular regard in computa-
tional engineering is Machine Learning (ML). Machine Learning is a broad term that refers to
the ability of a machine to learn and imitate behaviors that are peculiar to humans. In particu-
lar, it aims at creating machines that are able to do so "without being explicitly programmed"
(Samuel, n.d., as cited in [1]). ML is based on data, and ML algorithms use data to train
themselves in order to perform tasks so complex that developing a conventional algorithm to
perform these same tasks would be almost impossible or would take too much time and effort.

Artificial neural networks (ANNs) are part of the broader family of ML algorithms. More
specifically, ANNs can be classified as Deep Learning (DL) algorithms. The term Deep Learn-
ing refers to algorithms that use multiple layers (hence the adjective "deep") of nonlinear pro-
cessing units to learn representations of data [2] and to extract features from them [3]. The idea
behind ANNs is pretty simple. They replicate the neural connections of a human brain in order
to learn from data and perform tasks accordingly. ANNs undergo a training process, done on
a set of input data, named training dataset, that aims at minimizing the discrepancy between
the target output (which is known for the training dataset) and the actual network output, by
varying the network parameters. Once the network has been successfully trained, it can be fed
a different set of input data, with unknown output, and, without the need to readjust its param-
eters, it can perform the required tasks. This means that training the network on a finite set of
data makes it possible to process a potentially infinite number of input datasets.

We will get into more details about ANNs structure and training later, but we can already
grasp the potentialities of such a kind of algorithms. It is easy to understand why their use
is so popular in science, medicine and engineering [4]. Among ANNs applications, we find
feature extraction, feature reduction, classification problems [5], function approximation, data
processing, filtering, clustering, compression, robotics, regulations, decision making [6] and
many more.

1.2 ANNs structure

An artificial neural network is composed by nodes, each node representing the artificial coun-
terpart of a neuron, and nodes are connected to each other. Connections (edges) between nodes
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are intended to artificially replicate the brain synapses. Each node receives signals (real num-
bers) from other neurons as inputs, and its output is a non-linear function of the sum of its
inputs, called activation function, which can be for example a hard limiter or some kind of
sigmoid function. Each connection to a node has a weight, meaning that each node performs a
weighted sum of its inputs. A bias might also be added to the sum of the inputs. The weights
and biases represent the adjustable parameters of the network. A node (or neuron) of a network
can be mathematically represented as a function:

Y = θ(
n

∑
i=1

WiXi +b), (1.1)

where θ is the activation function, Wi are the weights and b is the bias [5].

FIGURE 1.1: Graphic representation of a neuron [5]

The nodes of an ANN are organized in layers. There is usually an input layer, which takes
the input data (for example, some features of sample objects) and feeds them to the rest of
the network, and an output layer, which performs the required task (for example, cataloguing
the objects according to certain criteria). In between them there can be one or more layers,
called hidden layers, whose nodes receive their inputs from the nodes connected to them in
the previous layer, and send their outputs to the nodes connected to them in the next one.
Networks organized in this way are called feedforward networks. If the neurons in one layer
are all connected to every neuron in the next layer, the feedforward network is called fully
connected. Conversely, if the some nodes in a layer also send their output to other nodes in
the same layer or in previous layers, the network is called recurrent. If a layer has N neurons,
whose outputs are described by (1.1), the mathematical representation of the output of the layer
is:

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
Y1
...

Yi
...

YN

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
θ(∑M

j=1W1 jX j +b1)
...

θ(∑M
j=1Wi jX j +bi)

...
θ(∑M

j=1WN jX j +bN)

⎤⎥⎥⎥⎥⎥⎥⎦ (1.2)

If we represent the weights Wi, j as a matrix

W =

⎡⎢⎣W11 · · · W1M
...

...
...

WN1 · · · WNM

⎤⎥⎦ , (1.3)
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we can write (1.2) in matrix form:

Y = θ(WX+b), (1.4)

where X is the vector of the outputs of the previous layer and b is the vector of the biases. If we
take a look at the network in Figure 1.2, its output, according to (1.4) can be mathematically
formulated as:

Y3 = θ(W3Y2 +b3)

= θ(W3
θ(W2Y1 +b2)+b3)

= θ(W3
θ(W2

θ(W1X+b1)+b2)+b3).

(1.5)

FIGURE 1.2: Graphic representation of a three-layer ANN [5]

1.3 Network training

Once the network structure has been defined, we need to adjust the weights and biases of the
neurons in order to achieve satisfactory performances of the network. This is done by training
the network using a training dataset. If the network has M neurons in the input layer and N
neurons in the output layer, the training dataset will be a set of P pairs (I, O) where I is an M-
dimensional vector representing the input data and O is an N-dimensional vector representing
the expected output. The training problem is then reduced to an optimization problem. If Y is
the vector of the neural network outputs generated by input I, we can define the cost function
as:

C =
1
P

P

∑
i=1
∥Yi−Oi∥2. (1.6)

As (1.1) shows, the output of the network, which is a combination of the outputs of the single
neurons, is a function of the network parameters. This means that also C is a function of net-
work parameters. In order to achieve the desired network output, we need to find a set of these
parameters (weights and biases) that minimizes the function C. This task can be handled by
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several different optimization algorithms, usually gradient-based, such as backpropagation or
Adam, but which will be discussed in detail in Section 2.4. Once the optimal set of parameters
has been found, the network is ready to perform the tasks required on different sets of input
data. This type of training approach is called supervised training [6]. Other types of approach
can be used, such as unsupervised training or reinforcement training, which, however, will not
be discussed in this thesis.

1.4 Application of ANNs to computational electromagnetics and
limitations of the data-driven approach

ANNs can be used as an alternative to FEM or other conventional numerical methods to solve
EM boundary value problems. Conventional methods are typically fast and efficient when
solving field problems, but in the case of large domains, nonlinear media and time dependent
problems may lead to computationally expensive solutions [7]. Moreover, solving differential
equations with ANNs offers a big advantage over conventional solvers. Since the solution
obtained using ANNs is a differentiable analytic function (see (1.5)), it will be easy to use it
subsequent computations [8].

An artificial neural network can be trained using space and time coordinates as inputs [9],
and the respective known potential values as expected outputs in the cost function. Once the
network is trained, it can be used to compute the potential in the whole space/time domain
by feeding it the coordinates and evaluating the corresponding output. This is another great
advantage over FEM and other computational tools, because time-dependent problems can be
dealt without the need for a time-stepping scheme [10].

This approach, however, requires the knowledge of a large number of input-output pairs,
something that is usually not available in the case of EM field problems. A way to overcome
this problem could be using the FEM solution on a coarse mesh as the training dataset, but
this would result in an overcomplicated algorithm, a larger computational cost and would still
require the use of conventional solvers, making ANNs not a real alternative to them.

An idea to overcome this problem comes from the fact that electromagnetic problems are
usually described by a set of partial differential equations and boundary and initial conditions.
Embedding the knowledge of the governing PDE in the network training process could be a
solution to the problem of data availability. In the next chapter we will see how this can be im-
plemented and what are the advantages of this approach over the purely data driven application
of ANNs described in this chapter.
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Chapter 2

Physics-informed neural networks

2.1 What is a Physics-informed neural network

In the case of problems described by partial differential equations, an idea to overcome the lack
of training data and speed up the convergence of the neural network (that is, the minimization
of its cost function), is to embed the knowledge of the governing PDE inside the cost function.
From this idea Physics-informed neural networks (PINNs), a particular type pf ANNs, were
derived [11].

PINNs are universal function approximators [12] that can be used to solve problems in-
volving partial differential equations. The name comes from the fact that the physical laws that
govern the studied phenomena are used to drive the training process of the network, resulting
in a solution that is physically consistent without needing a huge amount of training data [11].
This feature makes PINNs very interesting for the solution of electromagnetic field problems.

Maxwell’s equations, which describe the laws that govern electromagnetic interactions,
involve differential operators such as divergence and curl, making PINNs a suitable tool to
solve the problems described by them. Maxwell’s equations read:

∇ ·D = ρ, (2.1)

∇ ·B = 0, (2.2)

∇×E =−∂B
∂ t

, (2.3)

∇×H = J+
∂D
∂ t

, (2.4)

where D is the electric displacement field, ρ is the charge density, B is the magnetic flux
density, E is the electric field, H is the magnetic field strength and J is the current density.
These equations can be rearranged and combined depending on the particular conditions of
the problem (e.g. electrostatics, magnetostatics etc.). Under specific conditions, discussed in
Section 2.6, they can be reduced to a particular form of the equation:

∇ · k1∇u+ k2
∂u
∂ t

= F, (2.5)

which describes field problems characterized by the presence of a scalar potential u. Together
with boundary and initial conditions, (2.5) fully describes the problem to be solved. In (2.5), u
is the scalar potential (electric or magnetic), F is the source term (e.g. current density) and k1
and k2 are material properties (such as permittivity and reluctivity). Although the application of
PINNs is not limited to this type of PDEs, in this thesis we are going to deal only with equations
like (2.5). A PINN can be trained so that its output approximates the potential distribution u
in a domain. This is done by making it fulfill the PDE together with boundary and initial
conditions. In the next paragraphs we will see how the knowledge of the physical laws can
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be embedded in the cost function and how the boundary and initial conditions can be used as
additional training data in order to make the network output convergent to the exact solution.

2.2 Cost function definition

We consider, for the sake of simplicity, static problems, for which the time derivative in (2.5)
can be dropped. The most straightforward way to approach the PINN training process is to
divide the space domain into two parts: the boundary and the internal domain. We then sample
the two subdomains to obtain points to train our network. This can be done in many different
ways, but the easiest one is to mesh the domain and use the mesh nodes as sample points. The
nodes belonging to the internal domain are called collocation points and on those points the
network output must fulfill the governing PDE. On the boundary nodes instead, the output must
match the boundary conditions. To achieve this, a two-term cost (or loss) function is defined.
The first term is related to boundary conditions and the second term to the PDE. In the case of
Dirichlet boundary conditions, the first term is defined like in (1.6):

Lb =
1
B

B

∑
i=1
∥Yb,i−BCi∥2, (2.6)

where B is the number of sample points on the boundary, Yb,i is the network output on the i-th
boundary point and BCi is the value of the potential on the i-th boundary point prescribed by
Dirichlet boundary conditions. In the case of Neumann conditions, (2.6) doesn’t change much.
The only thing is that we need to compute the derivative of the network output on Neumann
boundary points. This can be easily done by a technique called automatic differentiation (AD),
which will be discussed in Section 2.3. The second term of the cost function is directly derived
form the differential equation. Equation (2.5), in the case of static problems, reads:

∇ · k∇u = F. (2.7)

From (2.7), we can compute the residual of the equation as:

res = F−∇ · k∇u = 0. (2.8)

In order to obtain a solution consistent with the equation, the identity (2.8) must be fulfilled at
collocation points, thus obtaining the second term of our loss function:

LPDE =
1
C

C

∑
i=1

res2
i , (2.9)

resi = ∥Fi−∇ · k∇u∥, (2.10)

where C is the number of collocation points, k and u are respectively the vector of the values
of the material coefficient and the vector of the values of the network output on the collocation
points and Fi is the value of the source term on the i-th collocation point. Now we can combine
the two terms to obtain the complete cost function:

L = λ1Lb +λ2LPDE , (2.11)

λ1 +λ2 = 1. (2.12)

By minimizing the cost function L, an approximate solution of the field problem is sought.
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The two main aspects of the training process are the computation of the cost function, which
involves the differentiation of the network output with respect to the input coordinates, and its
optimization, which is gradient-based and involves the differentiation of the loss function with
respect to the network parameters. Differentiation and optimization are discussed in the next
sections.

2.3 Automatic Differentiation

As it can be observed in (2.10) and (2.11), in order to train the network we need to compute
the derivatives of its output. There are several methods to compute derivatives of functions, the
most commonly used being the numerical ones, who rely on finite difference approximation.
Given a function f : Rn→ R, its gradient ∇ f = ( ∂ f

∂x1
, ..., ∂ f

∂xi
, ..., ∂ f

∂xn
) can be approximated using

∂ f (x)
∂xi

≈ f (x−hei)− f (x)
h

, (2.13)

where ei is the unit vector along the xi-axis and h is the step size. (2.13) is obtained from the
definition of the derivative of a function, i.e. when h→ 0. Numerical differentiation is widely
used because of its simplicity of implementation, but, as Baydin et al. remark in [13], can result
in low accuracy due to truncation errors (due to h being finite) and round-off errors (due to a
finite number of digits in computations). The accuracy is also dependent on the choice of the
step size h. Moreover, from (2.13), if we need to compute the gradient of a function f in n
dimensions, we need to make n evaluations of f at each sample point. This makes numerical
differentiation not suitable for neural networks training, in which we need to compute the
gradients of the network output with respect to a huge number of variables.

This leads us to the introduction of a different method for differentiating functions, the
so-called automatic differentiation (AD). As Baydin et al. explain in [13], AD is based on the
fact that every numerical computation is, ultimately, a combination of elementary operations,
whose derivatives are known. This means that the derivative of the original computation can
be obtained combining the derivatives of its constituent operations. These operations include
arithmetic operations and trigonometric, logarithmic and exponential functions. A function
f : Rn → Rm can be reconstructed according to a three-part notation [14], using intermediate
variables vi. The vi are defined as follows:

• vi−n = xi, i = 1, ...,n are the input variables

• vi, i = 1, ..., l are the working (intermediate) variables

• ym−i = vl−i, i = m−1, ...,0 are the output variables.

AD makes use of this notation to compute the derivative of the function f . For the reason
mentioned above, this method is suitable for differentiating functions expressed not only in
closed form but also through an algorithm (numerical algorithms perform a combination of
elementary operations). This is of particular interest since, in the practical implementation of
PINNs, we will need to compute the gradient of functions expressed as algorithms.

AD can be performed in two different modes: forward mode and reverse mode. Here we
only present AD in reverse mode, since it is the mode that is commonly used in ML appli-
cations. An in-depth investigation on this topic is presented in [13]. The following example,
proposed by Baydin et al. in [13] to introduce AD, is provided. If we consider a function
f (x1,x2) = ln(x1) + x1x2− sin(x2), evaluated at (x1,x2) = (2,5), we can compute its gradi-
ent ∇ f = ( ∂ f

∂x1
, ∂ f

∂x2
) in the following way. We split the process into two phases. An initial
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Intermediate
variables
v−1 = x1 = 2
v0 = x2 = 5
v1 = ln(v−1) = ln(2)
v2 = v−1v0 = 2 ·5
v3 = sin(v0) = sin(5)
v4 = v1 + v2 = 0.693+10
v5 = v4− v3 = 10.693+0.959
y = v5 = 11.652

TABLE 2.1: AD, intermediate variables (forward phase).

forward phase, in which we compute all the intermediate variables vi (see table 2.1), and a
second reverse phase, in which we compute the desired derivative combining the derivatives
of the intermediate variables. Once the vi have been defined, we proceed by assigning to each
intermediate variable its complement

vi =
∂y
∂vi

, (2.14)

which represents the sensitivity of y with respect to a variation of vi. Our goal is to compute
v−1 and v0. From Table 2.1, we see that v0 affects y through v2 and v3. This means that ve can
compute v0 as:

v0 =
∂y
∂v0

=
∂y
∂v2

∂v2

∂v0
+

∂y
∂v3

∂v3

∂v0
= v2

∂v2

∂v0
+ v3

∂v3

∂v0
. (2.15)

At this point, it is clear how we can compute all the derivatives just by looking at how the
variables interact with each other.
Table 2.2, shows how the derivatives of f with respect to the input (x1,x2) are computed. Note
that v0 and v−1 are computed in two incremental steps. In the case of Rn→ R functions, like the
one in the example, only one run of the reverse mode is needed to compute the gradient of the
function ∇ f = ( ∂ f

∂x1
, ..., ∂ f

∂xi
, ..., ∂ f

∂xn
). This is a big advantage in network training applications,

since gradients of scalar functions with a large number of variables need to be computed.

2.4 The Adam optimizer

The minimization of the cost function of the problem is the key step in the training of a neural
network. In order for the network output to be an accurate approximation of the required so-
lution, we need to adjust the network parameters through an optimization process [8]. Among
the family of gradient based optimization algorithms, a fairly recent one has emerged in ML
applications, Adam [15], which is an algorithm based on the adaptive estimation of first and sec-
ond moments of the gradient. It combines two gradient descent methods, i.e. the Momentum
method, which uses only the first moment, and Root Mean Square Propagation (RMSProp)
method, which uses only the second moment. Adam, like every optimization algorithm, is
iterative, and the first and second moments of the gradient at iteration k can be computed as:

mk = β1 ·mk−1 +(1−β1) ·∇θC(θk−1), (2.16)

vk = β2 · vk−1 +(1−β2) · (∇θC(θk−1))
2, (2.17)
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Derivatives
calculation
from y expression:
v5 = y = 1

from v5 expression:
v4 = v5

∂v5
∂v4

= v5 ·1 = 1
v3 = v5

∂v5
∂v3

= v5 · (−1) =−1

from v4 expression:
v1 = v4

∂v4
∂v1

= v4 ·1 = 1

v2 = v4
∂v4
∂v2

= v4 ·1 = 1

from v3 expression:
v0 = v3

∂v3
∂v0

= v3 cosv0 =−0.284

from v2 expression:
v−1 = v2

∂v2
∂v−1

= v2v0 = 5

v0 = v0 + v2
∂v2
∂v0

= v0 + v2v−1 = 1.716

form v1 expression:
v−1 = v−1 + v1

∂v1
∂v−1

= v−1 +
v1

v−1
= 5.5

x1 =
∂y
∂x1

= v−1 = 5.5

x2 =
∂ f
∂x2

= v0 = 1.716

TABLE 2.2: AD, calculation of the desired derivatives (reverse phase).

where mk and vk are the first and second moment at iteration k, β1 and β2 are two hyperparame-
ters, valued between 0 and 1 (usually close to 1), ∇θC(θk−1) is the gradient of the cost function
computed after (k−1) iterations and θk−1 is the set of network parameters at iteration (k−1).
As we said, Adam is a combination of two algorithms. The update rules for Momentum and
RMSProp are:

Momentum : θk = θk−1−α ·mk, (2.18)

RMSProp : θk = θk−1−
α

(
√

vk + ε)
, (2.19)

where α is the learning rate, which is set a priori and controls the amplitude of the movement
in the search space [16], and ε is a small coefficient to avoid division by zero. As we can see
from (2.18) and (2.19), Momentum uses the previous gradient to smooth out fluctuations in
the optimization process, while RMSProp scales the learning rate based on the magnitude of
recent gradients [17]. Adam combines the two update rules to obtain an adaptive learning rate
for each parameter. Before proceeding, we note that at the beginning of the process, mk and vk
are set to zero, and, since β1 and β2 are close to 1, they both tend to be biased towards zero. A
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solution implemented in Adam to avoid this bias is the following:

m̂k =
mk

(1−β k
1 )

, (2.20)

v̂k =
vk

(1−β k
2 )

. (2.21)

We can now use m̂k and v̂k to update the network parameters in the following way:

θk = θk−1−α · m̂k

(
√

v̂k + ε)
. (2.22)

Adam offers a few advantages compared to other optimization algorithms [17], such as adap-
tive learning rates for each parameter, which allows a faster convergence and higher accuracy in
high-dimensional parameter spaces (which is the case of neural networks), the bias correction
of the moments estimates and an overall robustness to hyperparameter choices.

In the next paragraph we combine all the knowledge acquired so far about cost function
definition, automatic differentiation and Adam optimization to explain the training process of
a PINN more in-depth.

2.5 Network training

At this point, we have all the elements to understand how the training of a neural network
works. Once we have defined the collocation points, the boundary points and the network
structure (number of layers, number of neurons in each layer and activation function type), and
we have initialized the network parameters, we can set the training process hyperparameters.
The first one is the number of training epochs, which can range anywhere from less than a
hundred to several hundreds of thousands, depending on the number of sampling points and the
complexity of the problem. The training can be performed simultaneously on all the collocation
points or can be performed on batches of points at each iteration, so the next hyperparameter to
set is the batch size. If the batch size is equal to the number collocation points, each iteration
will correspond to one epoch, otherwise we will have more than one iteration in each epoch.

Then we have to choose the optimization algorithm hyperparameters. The learning rate,
usually in the order of 10−1÷10−5 [15], can be kept constant or can decay at each iteration as:

αk =
α0

1+β · k
, (2.23)

where α0 is the initial learning rate, β is the decay rate and k is the current iteration. β1 and
β2 are usually kept at their default value (β1 = 0.9,β2 = 0.999) and ε is set in the order of
10−8 [17].

Once all the hyperpameters have been set, we can start the optimization process. The
collocation points are divided in batches, and a batch queue is formed. The cost function C is
computed on the batch collocation points and on the boundary points, as described in Section
2.2, and then its gradient with respect to the network parameters is obtained through AD.
Once the gradient is computed, we pass it to the Adam algorithm, which updates the network
parameters. The process is repeated on the next batches of points until the batch queue is empty.
Then the algorithm proceeds to the next training epoch, until all epochs are performed and the
training process is over. Algorithm 1 shows a pseudocode describing the network training
process.
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Algorithm 1 A pseudocode for network training

Require: PDEcoe f f icients,BoundaryConditions
Require: CollocationPoints, BoundaryPoints
Require: NetworkStructure, θ ▷ θ=network parameters
Require: NumE pochs, BatchSize
Require: α,β ,β1,β2,ε ▷ leaning rate, decay rate, adam hyperparameters

form BatchQueue
E poch← 0 ▷ initialize Epoch number
while E poch ̸= NumE pochs do

E poch← E poch+1
while BatchQueue hasdata do

XY ← next(BatchQueue)
u← NetworkOut put(XY ) ▷ network output on batch points
Yb← NetworkOut put(BoundaryPoints) ▷ network output on boundary points
C←Cb(Yb)+CPDE(u) ▷ compute the cost function
gradient← ∇θC ▷ compute the cost function gradient via AD
θ ← AdamU pdate(gradient,α,β1,β2,ε) ▷ use Adam to update network parameters

end while
α ← α/(1+β ·E poch) ▷ update learning rate
reset(BatchQueue)

end while
return θ ▷ optimal network parameters

Once the training is successfully completed, i.e. the cost function has reached a value very
close to zero, we can evaluate the network output on a set of domain points different from
collocation points, and we will obtain the solution of the given problem on those points. If we
have a solution obtained analytically or through a conventional solver (for example FEM) on
the same set of points, we can compare it to the solution obtained through the PINN to see if
the training process was actually done properly. This phase is called network testing and serves
as validation of the whole algorithm.

2.6 Application of PINNs to computational electromagnetics

Electromagnetic phenomena are generally described by Maxwell’s equations. Maxwell’s equa-
tions can be combined into a single equation that, together with boundary conditions, fully
describes the electromagnetic problem. Only electrostatic and magnetostatic problems are ex-
amined here.

2.6.1 Electrostatic formulation

The electromagnetic problem is static, when quantities are constant in time. In particular, we
are in electrostatic conditions when the time derivative of the electric field is equal to zero. In
electrostatic conditions, we can describe our problem using a set of three equations:

∇×E = 0 (2.24)

∇ ·D = ρ (2.25)

D = εE. (2.26)
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Since the electric field is curl-free, there exists an electric scalar potential V such that:

E =−∇V. (2.27)

Combining (2.24), (2.25), (2.26) and (2.27) we obtain a single equation involving only the
scalar potential V :

∇ · ε∇V =−ρ, (2.28)

which is a particular form of (2.5) and can be used to train a PINN as described in Sections 2.2
and 2.5.

2.6.2 Magnetostatic formulation

In magnetostatic conditions the time derivative of the magnetic flux density is equal to zero.
From Maxwell’s equations ((2.1)-(2.4)):

∇×H = J (2.29)

∇ ·B = 0 (2.30)

H = νB, (2.31)

the magnetic flux density is divergence free, there exists a magnetic vector potential A such
that:

B = ∇×A. (2.32)

To ensure the uniqueness of the solution, we need to impose a gauge on A. For magnetostatics,
the Coulomb gauge is typically adopted:

∇ ·A = 0, (2.33)

Combining (2.29), (2.30) (2.31) and (2.32) we obtain a single equation involving only the
vector potential A:

∇×ν∇×A = J. (2.34)

For 2D magnetostatics, if plane symmetry is present (i.e. the x and y components of B vary
only on the (x,y) plane), we can rearrange (2.34) to obtain an equation like (2.5). If B only has
components on the (x,y) plane, i.e. B = (Bx,By,0), A only has one component along the z-axis
(A = (0,0,Az)). If we formally compute the curl of A, we obtain:

B = ∇×A = (
∂Az

∂x
,−∂Az

∂y
,0) (2.35)

By using H = νB = (νBx,νBy,0) and (2.29) we obtain:

−∇ ·ν∇Az = Jz, (2.36)

which is a particular form of (2.5) and can be used to train a PINN as described in Section 2.2
and 2.5.

2.7 PINNs for the analysis of transient and non-linear problems

From what we have seen in this chapter, PINNs seem to be a promising alternative to conven-
tional PDE solvers like FEM. They can approximate potential distributions in a bounded space
domain in static conditions and, thanks to the introduction of the governing equation into the
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training process, the solution will be consistent with the physics of the problem. Moreover, a
small adjustment in the cost function definition could allow PINNs to also treat problems in
time domain without the need for time-stepping [10]. It would be sufficient to add time as an
input of the network and take collocation points in space and time [9]. The cost function can
be modified by adding the time-dependent term of the PDE to (2.10) and add a term to (2.11)
to take initial conditions into consideration.

PINNs could also be a great tool for non-linear electromagnetic problems. When we treat
magnetic media with non-linear B-H characteristics with FEM, we need to perform an iterative
procedure [18] to account for the variations of the magnetic permeability, which can be very
time-consuming. If we take the variations of µ into consideration during the network training
process, we could use PINNs to treat non-linear problems just as we do with linear ones.

The goal of this thesis is to find out if it is actually possible to practically implement what is
presented in this chapter at the current stage of PINNs development. We will investigate PINNs
capabilities and limitations when it comes to computational electromagnetism, starting from a
simple problem like the solution of Poisson’s equation on a circular domain and then moving
on to more complex settings and tasks. A simple Matlab algorithm is presented in the next
chapter as a starting point, and then, in the following part of the thesis, we will try to modify it
to obtain the solution of increasingly more challenging electromagnetic problems.
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Chapter 3

PINN solution of Poisson’s equation on
a unit disk

3.1 Problem description

One of the simplest examples of partial differential equations is the so-called Poisson’s equa-
tion. In its generic form it can be written as:

−∇
2u = f , (3.1)

where u is the potential distribution, f is the source function and ∇2 is the Laplacian. The
Laplace operator can be written in carthesian coordinates as:

∇
2 = (

∂ 2

∂x2 ,
∂ 2

∂y2 ,
∂ 2

∂ z2 ). (3.2)

In order to introduce the practical implementation of PINNs, the example of PINN solver
present in the MATLAB library [19] is here examined. In this example, the Poisson’s equation,
with f = 1, is solved on a unit disk (i.e. a circle with r = 1), with u = 0 on the boundary
(Dirichlet condition).The collocation points and boundary points are obtained from the triangle
mesh of the disk and then the potential distribution is approximated by training a PINN. To test
its accuracy, the solution is compared with the analytical solution, which in this case is:

u(x,y) =
1− x2− y2

4
. (3.3)

3.2 Data and geometry

The boundary value problem to solve, as already mentioned in the previous Section, is:

−∇
2u = 1 on Ω

with u = 0 on ∂Ω.
(3.4)

The domain Ω is a circle with unitary radius. The MATLAB PDE toolbox [20] is used to set
up the model and generate the mesh. Figure 3.1 shows how to generate the model and the mesh
using the functions provided by the PDE toolbox. The function createpde generates a blank
PDE model, then the geometry of the domain is defined by the function geometryFromEdges
(circleg is the function that describes a unitary disk center at the origin). Dirichlet boundary
condition is imposed using applyBoundaryCondition, where "Edge" defines the edges on which
the condition is imposed. After that, the function specifyCoefficients is used to assign to each
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FIGURE 3.1: Model setup and mesh generation in MATLAB using the PDE
toolbox (source: Mathworks website [19])

coefficient of the equation its prescribed value. Coefficients m, d, c, a, f are defined as:

m
∂ 2u
∂ t2 +d

∂u
∂ t
−∇(c∇u)+au = f , (3.5)

so in this specific case the coefficients are imposed as m=0, d=0, c=1, a=0, f=1 in order to
obtain a PDE equal to the one defined in (3.4). The domain is then meshed using the function
generateMesh, through which the target maximum length of the mesh edges (Hmax), the mesh
growth rate (Hgrad) and the target edge size around selected domain edges (Hedge) can be set. In
this case a smaller edge length around the boundary edges is chosen to obtain a large number
of sampled nodes on the boundary. In this way the boundary conditions can be accurately
enforced on all ∂Ω. Figure 3.2 shows the meshed domain.

3.3 Network definition and training process

3.3.1 Network definition

A fully connected network with three hidden layers, with 50 neurons each, is defined. The
activation function is tanh for all the neurons. The input layer has two neurons: one receives
the x-coordinate of the sample points as input and the other receives the y-coordinate. The
output layer has one neuron, that will yield the value of the potential as its output. The function
featureInputLayer is used to define the input layer, fullyConnectedLayer to define the hidden
layers and the output layer and tanhLayer to define the activation function for all the neurons
in one layer. Then using the function dlnetwork all the information about the network structure
are gathered to generate the neural network. All these functions are part of MATLAB Deep
Learning Toolbox [21].
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FIGURE 3.2: Geometry and mesh

FIGURE 3.3: Definition of the network structure (source: Mathworks website
[19])

3.3.2 Training points choice and training options

Now the sample points for the training process need to be defined. The easiest choice is to
simply take the boundary nodes of the mesh as boundary points and the inner nodes as collo-
cation points. The boundary nodes are identified using the function findNodes, which finds the
indexes of mesh nodes belonging to a certain region (in this case the boundary). The number
of collocation points obtained in this way is 3853, the number of boundary nodes 728. The
collocation points are fed to the network in mini-batches. Mini-batches are sets of points of
predefined size that are formatted in order to be suitable inputs for the neural network [24].
These mini-batches of points are generated by the function minibatchqueue, which receives
collocation points coordinates (in the form of an arrayDatastore object [25]), batch size and
data format as inputs, and outputs a series of batches containing the collocation points coor-
dinates in the form of formatted deep learning arrays. These arrays store data with format
information, and allow the computation of derivatives through automatic differentiation [23].
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FIGURE 3.4: Identification of the training points (source: Mathworks website
[19])

The network that we defined earlier can receive as input 1×2 vectors representing the coordi-
nates of each sample point. If we have a batch of N points on which the network output has
to be evaluated, we need to store it as a deep learning array with 2 channels (corresponding to
the two dimensions x,y) of size N. This is done using "BC" as the format input (B=batch size,
C=number of channels) in minibatchqueue. This way the network knows that each row of the
input batch corresponds to a point and each column corresponds to a dimension. The size of

FIGURE 3.5: Generation of the mini-batches of collocation points (source:
Mathworks website [19])

each batch, the number of epochs, the initial learning rate of the optimization algorithm and its
decay rate represent the training options of the problem, i.e. the hyperparameters that we need
to set a priori. In this example, the hyperparamters are chosen as:

• nepochs = 50: number of training epochs,

• batchsize = 500: number of points in each batch,

• αi = 0.01: initial learning rate,

• β = 0.005: learning rate decay.

3.3.3 Training of the network

Once the collocation points have been chosen and the training options have been set, the train-
ing process can be started. In each training epoch the algorithm has to evaluate the network
output on every batch of training points, then compute the loss function value, its gradient with
respect to the network parameters and update the parameters using Adam optimizer. Once this
is done for all the batches of points, the algorithm updates the training progress monitor (a
tool used to visualize the loss function progress in real time [27]) with the latest loss function
value, adjusts the learning rate according to its decay rate, and then proceeds to the next epoch.
Practically, this results in two nested while loops: the inner one does all the computations for
every batch of points and the outer one performs the loss function and learning rate updates.
As shown in Figure 3.6, the outer while loop goes on until all the training epochs have been
performed, or the training process is stopped by the user. It updates the epoch number and
resets the batch queue and then moves on to the inner loop, which goes on until there are no
more batches in the queue. The inner loop updates the iteration number, takes the next batch
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FIGURE 3.6: The training algorithm (source: Mathworks website [19])

of points in the queue and passes it, together with all the other required inputs, to the function
that computes the loss function value and its gradient. The command dlfeval [26] is used to
evaluate the function output at each iteration. This command is used to evaluate user defined
deep learning models, such as that implemented in the function modelLoss, proposed in the
example. The loss function defined by the user takes the PDE model, the network structure,
the current batch of collocation points and the coefficients of the PDE as inputs, and yields the
value of the loss function and its gradient with respect to the network parameters.

The first step is to compute the network output on the collocation points. This is done
using the command forward, which takes the network structure and the coordinates as inputs
and gives a vector with values of the network output on the input coordinates as a result. After
that, the Laplacian of the output is computed. This is carried out by evaluating the gradient
of the output with respect to the collocation points coordinates and then the gradient of the x
and y components of the gradient, again with respect to the collocation points coordinates. To
compute gradients, we use automatic differentiation. In MATLAB, automatic differentiation
is performed using the command dlgradient [23], which takes the sum of the network output
vector components and the coordinates as inputs, and gives the gradient of the network output
with respect to the input coordinates as output. In order to be able to compute the Laplacian,
we need to enable the computation of the derivatives of the gradient via the command Enable-
HigherDerivatives, which ensures the differentiability of the gradient. At this point we can
compute the residuals of the PDE on each collocation point of the batch and thus the first term
of the loss function. The residual on the i-th collocation point is computed as:

resi =− f −∇
2uPINN,i, (3.6)
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FIGURE 3.7: Loss function initialization and gradient computation (source:
Mathworks website [19])

where uPINN,i is the neural network output on the i-th collocation point. A vector called res,
containing the residuals resi computed on all the collocation points, is defined. For the train-
ing to be considered successful, the residuals should all be zero. We define a target vector
zeroTarget of the same dimension as res, composed of only zeros. The first term of the loss
function is:

lossF = MSE(res,zeroTarget). (3.7)

Now the second term of the loss function, the one related to boundary conditions, needs to be
computed. First, the mesh nodes belonging to each boundary edge are found with the command
findNodes and the respective boundary condition with the command findBoundaryConditions
(in this case it is u = 0 on all the boundary). After that, the coordinates of the boundary
nodes are formatted using the function dlarray, which transforms the matrix of coordinates
in a formatted deep learning array (again, we need to set the format command to "BC", see
Section 3.2 for the details). Then the output of the network on the boundary nodes is evaluated.
If we call the boundary condition imposed on the j-th boundary node as actualBC j and the
network output on the same node as predictedBC j, and we define two vectors actualBC and
predictedBC containing all the actualBC j and predictedBC j terms, the second term of the loss
function is computed as:

lossU = MSE(predictedBC,actualBC). (3.8)

Now we have all the elements to calculate the value of the total loss function. We choose
λ1 = 0.6 and λ1 = 0.4 (see (2.11)), and the the loss function is computed as:

loss = 0.6lossU +0.4lossF. (3.9)

Now, the loss function gradient with respect to the network parameters (also called learnables)
is computed with, again, automatic differentiation (see figure 3.8).

FIGURE 3.8: Calculation of the loss function gradient (source: Mathworks
website [19])

After the computation of the loss function value and its gradient, we can proceed with the opti-
mization. The Adam algorithm (see Section 2.4 for details) is implemented in MATLAB with
the function adamupdate [28]. This function takes the network structure, the loss function gra-
dient, the previous first and second moments of the gradient (averageGrad and averageSqGrad
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in figure 3.9, they need to be initialized to zero before the first epoch of training), the current
iteration number and the learning rate. As outputs, it gives the updated network structure and
the value of the two moments to be used in the next iteration.

FIGURE 3.9: Implementation of the adamupdate function (source: Mathworks
website [19])

After the process has been repeated with all the batches in the queue, the algorithm updates
the learning rate as:

α =
αi

1+β ·E poch
, (3.10)

communicates the new loss function value to the training progress monitor and updates its
parameters (see last three rows in figure 3.6). Figure 3.10 shows how the training progress
monitor is initialized in MATLAB.

FIGURE 3.10: Initialization of the training progress monitor (source: Math-
works website [19])

3.4 Training results and network testing

After 50 epochs of training, the loss function has reached a value of 1.1686 ·10−4. By looking
at the graph in figure 3.11, we observe that this is three orders of magnitude smaller than the
initial loss function value (between 0.16 and 0.15). We can also note that it took 28 seconds to
the algorithm to perform the 50 epochs of training.

FIGURE 3.11: Training progress monitor
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To test the accuracy of the solution, Upinn, which is the array of potentials evaluated on mesh
nodes, can be compared with the analytical solution (3.3) computed on the same nodes (Utrue).
To do so we plot the two solutions and we compute the L2 norm of the error vector as:

L2(e) = ∥Upinn−Utrue∥ (3.11)

Figure 3.12 shows the analytical solution and the solution obtained through the training of the
PINN. We can see that the potential distribution is approximated quite well by the PINN, and
the norm of the error is 4.3 · 10−1. It means that with just 28 seconds of training the network
is able to solve the Poisson’s problem with good accuracy. To further improve the accuracy
of the solution, one can use a finer mesh and a higher number of training epochs. This simple
example is useful to understand how the training of a PINN can be implemented in MATLAB
and how PINN algorithms can be applied to electromagnetic problems. It also represents a
starting point for the development of codes discussed in the next chapters.
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FIGURE 3.12: Analytical solution (above) and PINN solution (below) (source:
Mathworks website [19])
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Chapter 4

PINN solution of the parallel-plate
capacitor problem

4.1 The parallel plate capacitor

The example presented in the previous chapter is the starting point for the development of an
original code that is able to solve 1D electrostatic problems using physics-informed neural net-
works. The parallel plate capacitor problem with analytical solution is considered. It consists
of two parallel conductive plates and a dielectric material between them (Figure 4.1).

FIGURE 4.1: Parallel plate capacitor

The goal is to compute the potential distribution inside the dielectric region knowing the value
of the potential at the terminals (V0 and VL), the distance between them (L) and the charge
density (ρv) and permittivity (ε) between the two plates.

In electrostatic conditions, the potential distribution inside the capacitor is the solution of
(2.27). The Dirichlet conditions on the two terminals ensure the uniqueness of the solution.
We can use PINNs to solve the equation by modifying the MATLAB code presented in the
previous chapter. The accuracy of the PINN solutions was tested by comparing them to analyt-
ical solutions or to solutions obtained through a FEM algorithm developed in MATLAB. The
FEM algorithm was validated by comparing its results to solutions obtained through COMSOL
Multiphysics®.

4.2 One-dimensional capacitor with constant permittivity

4.2.1 Problem description

We can analyze a capacitor in one dimension when all the parameters vary only in the direction
orthogonal to the two terminals and if we neglect the edge effects. We consider a capacitor on
the xy-plane with the plates parallel to the y-axis and with ρv = 0 and ε = ε0 = const. This
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means that the electrical potential v will vary only along x-axis and (2.27) becomes:

∂ 2u
∂x2 = 0. (4.1)

The boundary conditions are u(x = 0) = 1 V and u(x = L) = 0 V. The distance L between the
two terminals is 1m.

We start from the domain definition and the mesh. In this case the domain is simply a
segment of length L, and can be subdivided in n subsegments of equal length, that will be the
elements of the mesh. The higher n, the finer the mesh. In this case we choose n = 50, so we
have 50 elements and 51 nodes. For a 1D problem it is not necessary to use the MATLAB PDE
toolbox to to generate the mesh of the geometry. The equation coefficients are all zero but c,
which is equal to the air permittivity ε0 and can be directly plugged in the loss function formula
without using the specifyCoefficients function (like we did in Section 3.2). The same applies to
the boundary conditions. They can be defined as a two-component vector BdCond and passed
directly to the loss function input without using the applyBoundaryCondition function.

4.2.2 Training process

4.2.2.1 Network definition

Having defined the geometry and data of the problem, we can now create a trainable neural
network. We choose a structure with three hidden layers, with 50 neurons each, and tanh as
activation function for all the layers. The only difference with the example discussed in Chapter
3 is that, since we have a one dimensional domain, we only have one neuron in the input layer,
because the input data will only have one component (x-coordinate).

FIGURE 4.2: Definition of the neural network

4.2.2.2 Training points choice and training options

The easiest choice for collocation points is to take the mesh nodes, so we will have 49 collo-
cation points. The boundary nodes will be the first and the last node of the mesh. Once the
training points have been chosen, we can move on to the training options setting. Since the
problem geometry is really simple and we have a much smaller number of training points with
respect to the Poisson’s problem that we presented in the previous chapter, we can set a higher
number of training epochs. For the same reason, the batch size will be equal to the number of
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FIGURE 4.3: Identification of boundary and collocation points

collocation points, since there is no need to divide such a small number of points in batches.
The training process hyperparamters are:

• nepochs = 100: number of training epochs,

• batchsize = 49: number of points in each batch,

• αi = 0.01: initial learning rate,

• β = 0.005: learning rate decay.

4.2.2.3 Training of the network

At this point we can start the training process. We proceed in the same way as we did with
Poisson’s problem, but this time we need to slightly change the MATLAB function to compute
the loss function value and gradient. In this case the equation describing the problem is (4.1)
and so the residual of the PDE on the i-th collocation point is:

res1,i =
∂ 2uPINN,i

∂x2 , (4.2)

where uPINN,i is the network output on the i-th collocation point. We use dlgradient to compute
the derivative in (4.2). We define a vector res1 containing all the resi terms. We then define a
target vector target1 of zeros with a number of entries equal to the number of collocation points
(the residual of the PDE must be zero on every collocation point) and compute the first term of
the loss function as:

lossF = MSE(res1, target1). (4.3)

The MSE is computed using the MATLAB function l2loss. The second part of the loss func-
tion is simply constructed by evaluating the network output on the two boundary nodes, and
computing the residual on the j-th boundary point as:

res2, j = ubd, j−BdCond j, (4.4)

where ubd, j is the network output on the j-th boundary point and BdCond j is the boundary
condition imposed on the j -th boundary point. We define a vector res2 containing all the res2, j
terms and a vector target2 of zeros of the same size as res2. Then the loss function term related
to the boundary conditions is computed as:

lossU = MSE(res2, target2), (4.5)

where target2 is a 2-component vector of zeros. The final loss function expression (constructed
as (2.11)), with λ1 = 0.4 and λ2 = 0.6 is:

loss = 0.4lossF +0.6lossU. (4.6)



28 Chapter 4. PINN solution of the parallel-plate capacitor problem

The loss function gradient with respect to the network parameters is computed using dlgradi-
ent. Figure 4.4 shows the MATLAB function for the loss function calculation.

FIGURE 4.4: Loss function

4.2.3 Training results and network testing

Once the training is completed, we can plot the network output on the mesh nodes and compare
it with the analytical solution of the problem. For a one-dimensional capacitor with constant
permittivity, the potential distribution is:

v(x) =V0 +
x
L
(VL−V0). (4.7)

After 100 training epochs, the loss function reached a value of 3.8224 ·10−5 after 9s of training.
The small runtime is due to the fact that the training points were few and so the calculations
took little time to be performed. The L2 norm of the error vector between the PINN and the
analytical solution is 0.0154V (see (3.11) for the formula). In Figure 4.6 we can see that the
PINN solution is very accurate.

The next step of our work will be the introduction of a space-varying permittivity coef-
ficient. This small modification will pose a series of problems that will need to be properly
addressed.
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FIGURE 4.5: One-dimensional capacitor, training progress

4.3 One-dimensional capacitor with non-homogeneous permittiv-
ity

4.3.1 Problem description

In Section 4.2 we have seen PINNs applied to a very simple one dimensional electrostatic
problem. To make a step further, we introduce a variation to the settings of that problem.
Now we consider a relative permittivity inside the dielectric region that varies according to the
following law:

εr = 1+
x
L
. (4.8)

The first difference is that now the permittivity coefficient in the PDE needs to be defined as
a vector, that we will name p, of the same length as the number of collocation points. Each
component of this vector will be the value of the permittivity on the corresponding collocation
point according to (4.8). All the other data remain the same as in Section 4.2.

4.3.2 The problem of non-homogeneous media

4.3.2.1 Interfaces

The first challenge posed by a non-homogeneous medium, i.e. a medium whose parameters
vary in space, is how to deal with interfaces between the regions that present different values
of the material parameter (permittivity, in the case of the parallel plate capacitor). Until now,
we have taken the nodes of the mesh as collocation points. However, if interfaces are present,
the nodes on them would belong to two (or more) regions at the same time, creating ambiguity
in the coefficient value assignment. To avoid this ambiguity, we can use the centres of the
elements of the mesh, instead of the nodes, as collocation points. Since elements of a mesh,
constructed using the FEM prescriptions, cannot belong to two regions at the same time, we
have eliminated the problem of one collocation point belonging to different regions and, if the
mesh is fine enough, we will also have a good approximation of the solution at interfaces. In
Section 4.3.3.2 we will see how this change is implemented in practice.
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FIGURE 4.6: One-dimensional capacitor, potential distribution, PINN vs. an-
alytical

4.3.2.2 Differentiation

Another problem concerning non-homogeneous media is that, if the loss function of the prob-
lem is constructed as in (2.9), one has to compute the spacial derivative of the material parame-
ter. Unless the parameter variation is described by a function in closed form, AD is not able to
compute its derivatives (see Section 2.3 for details). The only alternative is using finite differ-
ences, but, when moving from one region to another, we may encounter a sharp change in the
value of the material parameter. This leads to large derivatives and has a detrimental impact on
the stability of the network training [10] and subsequently on the accuracy of the final solution.

To solve the aforementioned problem, Gong et al., in [10], propose a different way to define
the loss function. They consider a magnetostatic problem, but their approach can be easily
transposed to electrostatics. In Chapter 2, we have seen the PDE formulations of electrostatic
and magnetostatic problems. Both can be described by a Poisson’s equation (2.28) in terms
of scalar potential. In the approach proposed in [10] Maxwell’s equations are not combined
together: for instance, for electrostatics, Gauss’ equation is not combined to the constitutive
equation for dielectrics; in this way, the field problem is formulated in terms of electric potential
and electric displacement field:

−ε∇V = D (4.9)

∇ ·D = ρ. (4.10)

In one dimension, (4.9) and (4.10) become:

−ε
∂V
∂x

= D (4.11)

∂D
∂x

= ρ. (4.12)

We see that, in (4.11), the permittivity is not differentiated. If we construct a neural network
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with two outputs (approximating V and D) instead of just one, we can train it using (4.11) and
(4.12) to define the loss function. This way, instead of one residual for lossF and one residual
for lossU , we will have multiple residuals to combine. On the i-th collocation point we will
have:

res1,i =−εi
∂VPINN,i

∂x
−DPINN,i (4.13)

res2,i =
∂DPINN,i

∂x
−ρ (4.14)

for lossF , where VPINN,i, DPINN,i and εi are the network outputs and the permittivity value on
the i-th collocation point, and, on the j-th boundary point,

res3, j =Vbd, j−VDir, j (4.15)

for lossU , where Vbd, j is the first network output on the j-th boundary point and VDir, j are the
corresponding Dirichlet condition. We can now build the loss function as:

lossF = λ1lossF1 +λ2lossF2 (4.16)

loss = γ1lossF + γ2lossU, (4.17)

where the lossFk in (4.16) are computed as in (4.3) and the lossU in (4.17) as in (4.5).

4.3.3 Training process

4.3.3.1 Network definition

In Section 4.3.2 we have discussed a new approach to the loss function definition, which re-
quires more than one network output. For a 1D problem, we need a network with two output
channels, one corresponding to the electric potential V and the other to the electric displace-
ment field D, which in this case has only the x-component. To do this, we need to add one
neuron to the output layer of the network. Figure 4.7 shows this change implemented in MAT-
LAB.

FIGURE 4.7: Definition of a neural network with two output channels
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4.3.3.2 Training points choice and training options

The first important modification to the algorithm, besides the two-output network, is in the
choice of collocation points. To implement what we discussed in Section 4.3.2, we take the
centres of the mesh elements as collocation points. This is done by looping through all the
elements, computing the mean between the two nodes of each element and putting it into a
vector of the same size as the number of elements, which is 50. The vector is then converted
and formatted using dlarray. We take the first and the last node of the mesh as boundary points.

Once the training points have been chosen, we can move on to the training options setting.
Since we introduced the space varying permittivity, the complexity of the problem is a bit
higher and thus it is best to perform a bigger number of training epochs with respect to the case
with constant permittivity. The training process hyperparamters are:

• nepochs = 300: number of training epochs,

• batchsize = 50: number of points in each batch,

• αi = 0.01: initial learning rate,

• β = 0.005: learning rate decay.

4.3.3.3 Training of the network

Having set the training options, we can proceed with the network training. To implement
what Section 4.3.2 suggests, we need to modify the MATLAB function that computes the loss
function value and its gradient. This time we have two network outputs on collocation points,
VPINN and DPINN , so we need to define three loss function terms, the first two to enforce the
PDEs on the collocation points and the other one to enforce the boundary conditions. The first
one comes from (4.9):

res1,i =−pi
∂VPINN,i

∂x
−DPINN,i (4.18)

lossF1 = MSE(res1, target1), (4.19)

where pi is the component of the vector p (see Section 4.3.1) corresponding to the i-th colloca-
tion point, res1 is a vector containing all the res1,i terms and target1 is a vector of zeros of the
same size as the number of collocation points. The second term of the loss function is defined
from (4.10). In this case ρ = 0, so we end up with

res2,i =
∂DPINN,i

∂x
(4.20)

lossF2 = MSE(res2, target2), (4.21)

where res2 is a vector containing all the res2,i terms and target2 is a vector of zeros of the same
size as the number of collocation points. The derivatives in (4.18) and (4.20) are computed
using dlgradient. The loss function term related to the PDE is then computed as:

lossF = 0.5lossF1 +0.5lossF2. (4.22)

Now we need to define the two terms pertaining the boundary conditions on V and D. The
conditions on V are simply V (x = 0) = 1 and V (x = L) = 0. The boundary conditions on D
come from (4.9). In a 2D domain, if we have Dirichlet conditions on V , it means that ∂V

∂ t = 0
on the boundary, leading to Dt = ε

∂V
∂ t = 0. In this case the domain is 1D, so we only have
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the normal component Dn = Dx, meaning that we actually don’t need to enforce any boundary
condition on D. This leaves us with only one loss function term for the BCs, defined as in (4.4):

res3, j =Vbd, j−BdCond j (4.23)

lossU = MSE(res3, target3), (4.24)

where Vbd, j and BdCond j are the network output and the boundary condition on the j-th bound-
ary point and target3 is a vector of zeros of the same size as the number of boundary points.
The total loss function is then obtained combining lossF and lossU :

loss = 0.5lossF +0.5lossU. (4.25)

Its gradient with respect to the network parameters is computed using dlgradient.

FIGURE 4.8: Modified loss function

Figure 4.8 shows the modified MATLAB function that computes the loss function and its gra-
dient. The rest of the training process is the same as described in Section 3.3.3.

4.3.4 Training results and network testing

Once the training is complete, we can test the results. After 300 epochs the loss function
reached a value of 1.1975 ·10−4. The training process took a total of 1 minute and 5 seconds.
We note that the runtime is much higher with respect to the case with constant permittivity, due
the higher number of epochs and the slightly more complex loss function. The PINN solution
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can be compared to the analytical one:

V (x) =V0 +
VL−V0

log(2)
· log(1+

x
L
) (4.26)

The L2 norm of the error vector between the analytical and the PINN solution is 0.0075. Figure
4.9 shows the loss function evolution in time while Figure 4.10 shows the comparison between
the two solutions evaluated on the mesh nodes. We can see that the PINN manages to approxi-
mate the real solution quite well with a fairly small number of training epochs.

FIGURE 4.9: One dimensional capacitor with varying permittivity, training
progress

FIGURE 4.10: One dimensional capacitor with varying permittivity, potential
distribution, PINN vs. analytical

To further test the accuracy of the solution, we can exploit the differentiability of the PINN



4.3. One-dimensional capacitor with non-homogeneous permittivity 35

output (see Section 1.4) to compute the electric field inside the capacitor. At this purpose a
MATLAB function that exploits dlgradient for automatic differentiation has been developed.
It allows to compute the electric field from the scalar potential as dlgradient do compute E as:

E =−∂V
∂x

. (4.27)

If we compute E on the mesh nodes, we can compare it with the analytical solution derived
from (4.26):

E(x) =
V0−VL

log(2)
· 1

x+L
. (4.28)

In figure 4.11 we see the function used to compute the electric field, while figure 4.12 shows
the comparison between the electric field computed via (4.28) and the one computed differen-
tiating the PINN solution via AD. The L2 norm of the error vector between the two solutions,
computed as in (3.11), is 0.1365, which confirms the good accuracy of the PINN solution.

FIGURE 4.11: Function to compute the electric field

FIGURE 4.12: One dimensional capacitor with varying permittivity, electric
field, PINN vs. analytical
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4.3.5 Old vs. new approach

To check if the new approach to the loss function definition actually improved the performance
of the algorithm, we can redo the training keeping the same settings but using the "old" ap-
proach, i.e. the one introduced in the previous chapter and adapted to the 1D capacitor in
Section 4.2.2.3, with the only difference that instead of a constant permittivity value we need
to consider a varying permittivity in (4.2). Figure 4.13 shows the results compared to the an-

FIGURE 4.13: One dimensional capacitor with varying permittivity, PINN vs.
analytical, old approach

alytical solution. We can see that the PINN was not able to approximate the variation of the
permittivity and the solution looks like the one obtained with a constant permittivity value.
This is due to the fact that AD, as already mentioned in Section 4.3.2.2, is not able to compute
the derivatives of the permittivity, because the permittivity is passed to the modelLoss function
as a vector of constant coefficients, while AD can only differentiate functions expressed in
closed form or by an algorithm (see Section 2.3). In this particular case, since ε is defined by
an expression in closed form (see (4.8)), we could solve this problem by defining the permit-
tivity vector inside the modelLoss MATLAB function instead of passing it to the function as an
input, allowing AD to compute its derivatives. However, in the next Sections, we will present
some cases in which this is not possible. This means that the approach proposed in Section 4.3
allows us to treat problems that would be impossible to solve using the algorithm discussed in
the previous chapter, improving the generality of the code.

4.4 Extension to a two dimensional domain

Until now, we have considered a one-dimensional domain. To see if the approach proposed in
Section 4.3 can be applied to a two-dimensional domain, we can treat the problem proposed in
Section 4.3 as a 2D problem. Figure 4.15 shows the 2D domain configuration. We neglect the
edge effects in this case too. If the approach works, we should obtain the same solution as in
the 1D case.
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FIGURE 4.14: 2D mesh generation

4.4.1 Domain meshing and training points choice

The first step is to mesh the domain to obtain collocation and boundary points. We define two
vectors of equally spaced points, between 0 and 1, that represent the divisions along the x and y
axes. We choose 0.1 m as the edge size for the mesh. We use the function meshgrid to build a
grid whose nodes correspond to the nodes of the mesh, then the function delaunay (a function
that creates a Delaunay triangulation from the points in the grid [29]) to build the connectivity
matrix. Figure 4.14 shows the code used to create the mesh and Figure 4.15 shows the meshed
domain.

As suggested in Section 4.3, we choose the centres of the mesh elements as collocation
points. To do so, we loop through all the elements and we take the mean value of the x and
y coordinates of their nodes, putting them inside a M× 2 matrix, where M is the number of
elements. The number of collocation points that we obtain is M = 200. On the plates of the
capacitor, where the potential is constant, Dirichlet conditions are imposed, while on the sides
of the dielectric region Neumann conditions are imposed (see Figure 4.15), so that the electric
field is tangent to the Neumann boundary. To find the indexes of the elements of the coordinate
matrix corresponding to the boundary nodes, we use the MATLAB function convhull, that
computes the convex hull of the matrix. Once we have the indexes, we can find the coordinates
of the nodes belonging to each edge of the boundary. Figure 4.17 shows the details of the
procedure.

4.4.2 Loss function definition

Since we are now in a 2D setting, we need to make some changes to the MATLAB function that
computes the loss function value. Now we have two components of the electric displacement
field, so we need to add one term to lossF . Moreover, since we also have Dirichlet and Neu-
mann conditions, we need to add three terms to lossU , one for the Neumann conditions on the
electric potential and two for the Dirichlet and Neumann conditions on the electric displace-
ment field. The three-component network output (VPINN ,Dx,PINN ,Dy,PINN) must fulfill (4.9)
and (4.10) on collocation points. In our case, since ρ = 0, the residuals on the i-th collocation
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FIGURE 4.15: 2D meshed domain

FIGURE 4.16: Definition of the collocation points

FIGURE 4.17: Identification of boundary nodes



4.4. Extension to a two dimensional domain 39

point are computed as

res1,i =−pi
∂VPINN,i

∂x
−Dx,PINN,i (4.29)

res2,i =−pi
∂VPINN,i

∂y
−Dy,PINN,i (4.30)

res3,i = (
∂Dx,PINN,i

∂x
+

∂Dy,PINN,i

∂y
). (4.31)

On the j-th Dirichlet node we have two residuals to minimize:

res4, j =Vbd, j−BdCond j (4.32)

res5, j = Dbd,x, j, (4.33)

whereVbd, j and BdCond j are the network output corresponding to the electric potential and the
boundary condition on the j-th Dirichlet node and Dbd,x, j is the network output corresponding
to the electric displacement field component tangent to the Dirichlet boundary on the j-th
Dirichlet node. On the k-th Neumann node we have two residuals to minimize, related to
Neumann conditions on V and D:

res6,k =
∂VbdN,k

∂x
(4.34)

res7,k = DbdN,x,k, (4.35)

(4.36)

where VbdN,k and DbdN,x,k are the network output components on k-th Neumann node. Each
loss function component is then defined as in (4.3):

lossn = MSE(resn, targetn). (4.37)

The complete loss function is then a linear combination of all the lossn terms. Figure 4.18
shows the MATLAB function used to compute the loss function and its gradient.

4.4.3 Training process and results

We choose the following training options:

• nepochs = 300: number of training epochs,

• batchsize = 200: number of points in each batch,

• αi = 0.01: initial learning rate,

• β = 0.005: learning rate decay.

After 300 epochs of training, for a total training time of 1 minute and 28 seconds, the loss
function has reached a value of 1.9226 · 10−04. We can test if the approach was successful
by comparing the potential distribution along the y-axis with the one obtained in the 1D case.
To test the accuracy of the solution, we can plot the potential distribution along the y-axis on
50 equally spaced points for three different values of the x-coordinate (x = 0 m, x = 0.5 m
and x = 1 m). If the training is carried out properly,the potential distributions obtained from
these three x-coordinates must be approximately the same. We can also compare them with
the analytical solution of the 1D case to see if they are accurate. Figure 4.19 shows the results.
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FIGURE 4.18: Loss function for the 2D problem
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FIGURE 4.19: Two-dimensional capacitor, potential distribution, PINN vs.
analytical
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FIGURE 4.20: Two-region domain and mesh

We can see that in all the three cases the PINN solution is accurate compared to the analytical
one. To validate the graphical results, we can check the L2 norm of the error vectors. For x = 0
m, L2(E) = 0.0203, for x = 0.5 m, L2(E) = 0.0224 and for x = 1 m, L2(E) = 0.0183. All the
norms are small and in the same order of magnitude.

We can conclude that the proposed approach works for both 1D and 2D electrostatic prob-
lems with non-homogeneous permittivity. In the next Section we will see if it also works when
we have a permittivity that is not a continuous function (unlike (4.8)), but has a constant value
in one region of the dielectric and another constant value in another region.

4.5 Parallel plate capacitor with two dielectric regions

4.5.1 Problem description

To test the generality of the approach proposed in Section 4.3 and 4.4, we now consider a
2D capacitor with two dielectric regions with different values of the permittivity. The setting
remains the same as in Section 4.5, but now we have εr = 2 from y = 0m to y = 0.5m and
εr = 1 from y = 0.5m to y = 1m. The domain meshing can be carried out in the exact same
way as we did in the previous case. Figure 4.20 shows the meshed domain and highlights the
two regions.

4.5.2 Training points and loss function definition

The collocation and boundary points can be chosen exactly as in Section 4.4.1. However, we
need to define two additional sets of points to account for the interface between the two regions.
On these points we will enforce interface conditions. The interface points will be the centres
of the elements that have at least one node tangent to the interface between the two regions.
To do so we need to find those elements in the two regions whose centre is less than 0.1m
(mesh edge size) from the interface. Once we have found the interface points belonging to
each region (we need two separate arrays, one for the interface nodes belonging to the region
with εr = 1 and one for those belonging to the region with εr = 2), we need to remove them
from the collocation points array (because they are already constrained nodes). One more thing
to do before proceeding to the loss function definition, is to divide the collocation points in two
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batches, one with the points belonging to the first region and one with the points belonging to
the second region. We will call these two arrays XY1 and XY2.

Now it is time to modify our MATLAB function to compute the loss function and its gra-
dient. The idea to solve this kind of problem is to enforce (4.9) and (4.10) on the collocation
points of the two regions separately, and then combine the two solutions by imposing an in-
terface condition. In this case we can enforce the continuity of the electric displacement field
component normal to the interface (Dy in this case). This new condition requires the addition
of a new term to the loss function:

resint,i = Dy,int1,i−Dy,int2,i, (4.38)

lossint = MSE(resint , targetint), (4.39)

where Dy,int1,i and Dy,int2,i are the y-components of the D field evaluated on the i-th couple of
interface points (interface points that have the same x-coordinate but belong one to region 1
and one to region 2), resint is a vector containing all the resint,i terms and targetint is a vector
of zeros of the same size as resint . Figure 4.21 shows the bit of code that enforces the interface
condition in the MATLAB function. nod_int1 and nod_int2 are the interface nodes in the two
regions.

FIGURE 4.21: Enforcement of the interface condition in the loss function al-
gorithm

Boundary conditions will be enforced in the same way as we did in the previous example. The
final loss function will be the linear combination of the loss functions related to the PDE in the
two regions, the loss function related to the interface condition and the loss functions related to
the boundary conditions.

4.5.3 Training results and comparison with FEM

The increased complexity of the problem requires a higher number of training epochs to obtain
an accurate solution. We choose a number of epochs equal to 1000. All the other training
parameters remain the same as in the previous example. Also the PINN structure remains the
same. Once the training is completed, we can test the accuracy of the solution by comparing
it to the solution of the same problem obtained using a FEM algorithm. After 1000 training
epochs, for a total training time of 2 minutes and 13 seconds, the loss function reached a value
of 5.3374 · 10−4. Figure 4.22 shows the progress of the network training. We can plot the
equipotential lines using the MATLAB contour function to visualize the 2D potential distri-
bution in the domain. Figure 4.23 shows the comparison between the PINN and the FEM
solution. We can see that the two distributions look similar. The L2 norm of the error vector
(computed as in (3.11)) is 0.0543, which confirms the good accuracy of the solution obtained
using the PINN.
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FIGURE 4.22: Two-region capacitor, training progress

4.6 Developing a solid approach to electrostatic problems

The results obtained in the examples above confirm the capabilities of the approach proposed
in Section 4.3. By using the centres of the mesh elements as collocation points, we managed to
solve the problem of interfaces between regions with different values of the material parameter.
Moreover, using a mesh-guided approach to the choice of training points makes it easy to
implement a FEM code for the testing of the results. This approach should allow us to treat
problems with more complex geometry, and by varying the mesh size around specific edges
of the domain, we could obtain a more precise approximation of the potential distribution in
sensible areas of the domain. Gong et al., in [10], call this approach Mesh-Assisted Non-
Uniform Sampling.

Another important result presented in this chapter was the ability to solve problems, even
though very simple, that had a space-varying parameter and that the original code that we have
introduced in chapter 3 was not able to solve. This was done without twisting the code too
much and without the need for tools other than those introduced in the previous chapters. In
particular, we were able to keep all the advantages of automatic differentiation by combining
Maxwell’s equations in a different way. The next examples that we are going to deal with,
will put the current version of the algorithm to test. We will use these examples to see if this
approach is solid enough to solve more complex problems.

4.7 Parallel plate capacitor with three dielectric regions

4.7.1 Problem description

To make a step further in the complexity of the problems that we are testing our algorithm
with, we can try to solve a three-region capacitor problem. In particular, we analyze a device
that has a central dielectric region with a relative permittivity εr = 16 and the upper and lower
region with εr = 1. The central region is 1m large and 0.4m long. The rest of the data remains
the same as in the example proposed in Section 4.5. The main difference is that we now have
two interfaces, one between the central and the upper region and one between the central and
the lower region. Figure 4.24 shows the meshed domain and the division between the three
regions.
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FIGURE 4.23: Two-region capacitor, contour plot of the potential distribution,
PINN vs. FEM
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FIGURE 4.24: Three-region domain and mesh

4.7.2 Training points and loss function definition

The training points choice is done in the same way as in the previous case. The only difference
is that now we need four sets of interface nodes, two for the upper interface and two for the
lower interface. The interface nodes are identified in the same way as described in Section
4.6.2. Also the loss function remains almost exactly the same as described in Section 4.5.2, we
only need to add two terms to it. The first one is needed because now we have three regions and
not just two, and the second one is needed to account for the condition on the second interface.

4.7.3 Training results and comparison with FEM

The training parameters remain the same as in the previous example, except for the number
of training epochs. Given the increased complexity of the problem, we choose a number of
epochs equal to 6000. We also change the number of neurons in each layer of the PINN to 250,
to improve the capacity of the PINN to approximate the solution. Once the training process
is finished, after 50 minutes and 34 seconds (the time increase is due to the higher number of
epochs and neurons to train), the loss function reached a value of 2.4754 · 10−4. From figure
4.25, we can see that the solution obtained by the PINN is quite similar to the one obtained by
FEM. This is also confirmed by the mean squared error between the two solutions evaluated
on the mesh nodes, which is equal to 1.934 ·10−4. These results confirm the generality of the
approach that we adopted, even though the training time and the code complexity are starting
to increase dramatically.

4.8 Parallel plate capacitor with a dielectric inclusion

4.8.1 Problem description

The last example that we are going to discuss is a full 2D electrostatic problem, i.e. a capacitor
with a dielectric inclusion inside the domain. This inclusion has a permittivity value sixteen
times higher with respect to the rest of the dielectric region. The inclusion is 0.4m×0.4m and is
at the centre of the domain. All the other data remain the same. Figure 4.26 shows the domain
configuration and the elements of the mesh. We can see that now we have four interfaces, two
of them parallel and two of them normal to the capacitor terminals. We can try to modify the
code to account for the two additional interfaces. One way to this is to divide the domain in
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FIGURE 4.25: Three-region capacitor, contour plot of the potential distribu-
tion, PINN vs. FEM
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FIGURE 4.26: Capacitor with dielectric inclusion, meshed domain

two regions regions, as we did in the previous examples. The first region is the area around the
inclusion (cyan area in figure 4.26), the second one is the inclusion (red area in Figure 4.26).
The interface conditions to enforce are the following:

[Dy] = D+
y −D−y = 0 for interfaces parallel to the capacitor terminals (4.40)

[Dx] = D+
x −D−x = 0 for interfaces normal to the capacitor terminals. (4.41)

(4.40) and (4.41) are enforced in the same way as described in Section 4.5.2, being careful not
to enforce two different conditions on the nodes that are in the corners of the inclusion. They
could belong to both parallel and normal interfaces, we arbitrarily decide that they belong to
the parallel ones. The training is then performed in the same way as before, with the addition
of two loss function terms to account for interface conditions on Dx. The number of epochs is
initially set to 10000.

4.8.2 Convergence failure

After 10000 training epochs, the training process is complete. However, this time the PINN
output does not converge to a solution that represents, not even approximately, the potential
distribution inside the capacitor. Even increasing the number of epochs and the number of
mesh nodes doesn’t seem to bring any significant improvement to the solution. This is probably
due to the fact that, in this case, there is a region, the dielectric inclusion, that does not have
any boundary condition imposed on its points. Conversely, in all the previous examples, all the
regions had at least some points tangent to the domain boundary. This means that the inclusion
doesn’t have any points on which the electric potential or the electric displacement field have a
fixed value, probably leading to instability in the solution.

We can try to solve this problem by changing our approach to the network training. The
idea is to train the PINN as in Section 4.4, instead of dividing the domain in regions. The
permittivity coefficient is defined as a vector of the same length as the number of collocation
points, and its elements have a value of ε = 16ε0 in correspondence of the collocation points in-
side the inclusion, while they are equal to ε0 outside the inclusion. The loss function is defined
as in Section 4.4.2 and all the other settings are kept the same as before. To test the robustness
of the approach, we performed 200000 training epochs to see if this approach improved the
accuracy of the solution. After 200000 training epochs and 7 hours and 42 minutes of training
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time, even though the loss function has reached a value of 2.407 · 10−6, the solution obtained
was not accurate compared to the one obtained with FEM. We can clearly observe from Figure
4.28 that the PINN output is not an accurate approximation of the potential inside the capacitor.
The equipotential lines are straight, while they should curve in correspondence of the dielectric
inclusion edges, and they are concentrated towards the lower terminal of the capacitor. Numer-
ical results show that the algorithm is not able to treat 2D electrostatic problems in which the
electric displacement has two spatial components.
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FIGURE 4.27: Capacitor with dielectric inclusion, potential distribution, PINN
vs. FEM
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Chapter 5

Extending the use of PINNs to general
2D electromagnetic problems

5.1 Problems with non-homogeneous media

The first limitation that we encountered in the development of our code was in the solution of
problems that had a non-homogeneous medium in their domain. As long as the model geometry
only featured interfaces between different regions oriented in only one direction (parallel to x-
axis in our case), the algorithm achieved good accuracy, but as soon as we introduced a domain
that also had interfaces oriented in another direction (parallel to y-axis), the algorithm did
not provide acceptable results. The problem probably lies in the inability of the network to
approximate fields that have both components (along x and y-axes) different from zero. In
order to move on to more complex problems, we need to find a way to actually be able to treat
this type of configurations.

5.2 Problems with sources inside the domain

The next step in the code development would be the introduction of sources inside the domain.
In chapter 4 we discussed problems that featured no charge density. However, in most appli-
cations, field sources are actually present, and they play a key role in the field and potential
distribution in the domain. For example in electrical transformers, it’s the current density in the
coils that generates the magnetic field responsible for the energy transfer [30]. Theoretically,
by plugging the value of the source F term inside (2.8), we should be able to solve problems
that involve field sources using PINNs. However, as already happened with a space varying
material parameter, a space varying source parameter in (2.7) might cause problems in the net-
work convergence. In fact, it would lead to the introduction of interfaces between the field
source (for example the winding of a transformer) and the rest of the domain. Figure 5.1 shows
an example of a domain that is non-homogeneous and has field sources inside the domain. We
can see from the image that the coil, which is our field source, has interfaces with both the core
and the air.

5.3 Non-linear problems

The solution of non-linear field problems is very common in electrical engineering because
electric machines are made of non-linear materials. Ferromagnetic materials are characterized
by a magnetic permeability that is not constant, but is dependent on the value of the magnetic
field strength H and the magnetic flux density B. This is due to the fact that, during the mag-
netization process of the material, the B-H curve saturates. Since µ = B/H, if the slope of the
B-H curve varies, varies also the value of µ . Figure 5.2 shows a typical magnetization curve
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FIGURE 5.1: Non-homogeneous domain with sources

FIGURE 5.2: Magnetization curve of a ferromagnetic material [32]

of a ferromagnetic material. We can observe how the curve saturates, showing a non linear be-
havior. An in-depth explanation of ferromagnetic materials and the phenomenon of hysteresis
is presented in [31].

As already mentioned in Section 2.7, a finite element solution of non-linear electromagnetic
problems can be computationally demanding because it often requires a time-domain solver.
Integrating the non-linearity into the loss function of a network can be a way to solve non-linear
problems using PINNs. The value of µ can be updated at each training iteration, knowing the
magnetization curve of the material and the value of H and B. B can be easily obtained from
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the curl of the magnetic potential A (by using automatic differentiation), we would need to
add one more PINN output to obtain the magnetic field strength H. This can be done using
the approach proposed in [10], that we already readapted to solve the parallel plate capacitor
problems in Chapter 4. An additional term would be added to the loss function to account for
the variation of µ:

µcurve,i =
BPINN,i

HPINN,i
(5.1)

resµ,i =
BPINN,i

HPINN,i
−µcurve,i, (5.2)

where µcurve,i is the value of the permeability on the i-th collocation point obtained from the
magnetization curve, and BPINN,i and HPINN,i are the values of the magnetic flux density and
the magnetic field strength on the i-th collocation point obtained through the PINN training. In
this way the non-linearity would be integrated in the PINN training and the solution obtained
should be coherent with the physics of the problem.

5.4 Time-dependent problems

When, in addition to space derivatives, time derivatives of field quantities are present, we
need to perform an analysis in space and time in order to solve our problem. Using conven-
tional solvers like FDTD (Finite Difference Time-Domain) or FEMTD (Finite Element Time-
Domain) requires the implementation of a time-stepping scheme [33]. Conversely, the use of
PINNs to solve time-dependent problems could eliminate the need for time-stepping, like in
the case of non linear problems. The time domain analysis could be carried out by adding time
to the inputs of the network, and training it on space and time collocation points [34]. The
network training process could remain almost the same, with the addition of a term to the loss
function to account for initial conditions. For a 2D transient problem (2.5) becomes:

∇ · k1∇u(x,y, t)+ k2
∂

∂ t
u(x,y, t) = F. (5.3)

The residuals that define the loss function would be:

resPDE,i =−∇ · k1∇uPINN,i− k2
∂uPINN,i

∂ t
−F, (5.4)

resin,i = uPINN,i,0−u0,i (5.5)

resbd, j = uPINN,bd, j−ubd, j, (5.6)

where uPINN,i is the network output computed on the collocation point (xi,yi, ti), uPINN,i,0 is
the network output on the collocation point (xi,yi,0), uPINN,bd, j is the network output on the
boundary point (xbd, j,ybd, j, t j) and u0,i and ubd, j are the initial and boundary conditions on
the i-th collocation point and on the j-th boundary point. All the loss function terms can be
computed as in (3.7).

5.5 Developing a solid approach to electromagnetic problems

In this chapter, we have briefly analyzed the possible future steps that can be made to continue
the development of a MATLAB code that can efficiently solve electromagnetic IBVPs using
PINNs. Among all the aspects that electromagnetism forces us to take into account, non-
homogeneity, non linearity and dependence on time seem the biggest and issues that need to
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be tackled in order to make PINNs a viable alternative to traditional numerical methods such
as FEM. If what is discussed in this chapter is implemented successfully, it could make the
PINN-based algorithm a serious competitor against conventional solvers for electromagnetic
initial-boundary value problems (IBVPs). However, the issues mentioned in Section 5.1 and
5.2 must be resolved.
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Chapter 6

Conclusion

The goal of this work was to develop a MATLAB code that was able to solve increasingly more
difficult electromagnetic BVPs using PINNs. We analyzed all the essential aspects of artificial
neural networks structure and training and then we tried to apply the knowledge acquired to the
solution of practical examples. We started from the Poisson’s equation example taken from the
MathWorks® website and then moved on to analyze various configurations of the parallel plate
capacitor, re-adapting the initial code depending on the situation. We succesfully adapted the
MATLAB PINN solver to the analysis of a 1D electrostatic problem with homogeneous media.
In order to extend the analysis to inhomogeneous approach, a new approach, based on field and
scalar variables, was developed. The approach proposed in [10], that we rearranged in order
to apply it to electrostatic problems, combined with the interface conditions method that we
implemented, turned out to be successful in various applications. Numerical results showed a
very good agreement with both analytical and FEM solutions.

However, the extension to 2D static problems led to a considerable increase in the code
complexity. The training time has risen from 9 s all the way up to 50 min and 34 s, which is a
considerable amount of time compared to a standard FEM solver for a linear, two-dimensional,
electrostatic problems like the ones we presented in Section 4.7. Moreover, it was not possible
to solve a full 2D electrostatic problem with a dielectric inclusion.

Even though the attempts made in this thesis were not always successful and there are still
many steps to be taken in order to make PINN-based solvers competitive with FEM-based ones,
we also need to highlight the positive results that are presented in this thesis. Even if the prob-
lems that the algorithm was able to solve were very simple, it must be remarked that PINNs
are still at an early stage of development and the literature is still limited, especially if electro-
magnetic problems are considered. It is clear that developing a code that is able to deal with
the vast majority of problems that electrical engineers are required to solve is not an easy task.
The algorithm presented in this thesis is just at the beginning of its development and already
encountered challenges that seem unsolvable with the tools and strategies that we introduced
in the previous chapters. A huge amount of research will be required to bring everything that
we mentioned in this thesis together into a code that is usable, solid and efficient.

The possible future developments of the code presented in this thesis, as discussed in
Chapter 5, regard the possibility to solve problems that feature non-homogeneous media, field
sources, non-linear materials and time-dependent equations. As this thesis highlights, PINNs
offer all the tools needed to tackle this type of problems. However a way to successfully im-
plement them in practical applications must be found.
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Appendix A

MATLAB codes

In this Appendix we present the last functioning version of the algorithm, that was used to
solve the problem discussed in Section 4.7. Section A.1 shows the main algorithm and Section
A.2 shows the function used to compute the loss function value and its gradients.

A.1 Main algorithm

%% MODEL PARAMETERS

%Domain

L_x=1; %[m]

L_y=1; %[m]

h=0.1; %mesh size

rel_toll=1e-6;

eps_0=8.85418e-12; %vacuum permittivity

p1=1; %material parameter region 1

p2=16; %region 2

%Boundary conditions

V_b=1; %bottom

V_t=0; %top

V_0=V_t-V_b; %applied voltage

%% MESH GENERATION

N_x=L_x/h; %number of division along x-axys

N_y=L_y/h; %number of division along y-axis

vec_x=linspace(0,L_x,N_x+1);

vec_y=linspace(0,L_y,N_y+1);

[X,Y]=meshgrid(vec_x,vec_y); %creates a grid with x and y values

x=X(:);

y=Y(:);

nod=[x,y]; %coordinate matrix

conn=delaunay(nod(:,1),nod(:,2)); %connectivity matrix
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N=size(nod,1); %number of nodes

M=size(conn,1); %number of cells

figure (1)

triplot(conn,nod(:,1),nod(:,2),'k-','Linewidth',1) %mesh plot

axis equal %same scaling of both axis

xlabel('x [m]')

ylabel('y [m]')

hold on

%Find elements centres

centres=zeros(M,2);

for i=1:M

nodes=conn(i,:);

nodtr=nod(nodes,:);

centres(i,:)=mean(nodtr,1);

end

%% BOUNDARY NODES AND CONDITIONS

%Find boundary nodes

ind=convhull(nod(:,1),nod(:,2));

Fr=sort(ind(1:end-1));

indFr1=find(abs(nod(Fr,2))<rel_toll*L_y); %bottom nodes:

%they have y coordinate equal to 0

FrD1=Fr(indFr1); %dirichlet boundary nodes (bottom)

indFr2=find(abs(nod(Fr,2)-L_y)<rel_toll*L_y); %top nodes:

%they have y coordinate equal to L_y

FrD2=Fr(indFr2); %dirichlet boundary nodes (top)

indN=setdiff(Fr,FrD1);

indN=setdiff(indN,FrD2);

BdNodes_top=nod(FrD2,:);

BdNodes_bottom=nod(FrD1,:);

BdNodes=nod(Fr,:);

BdNodesD=[BdNodes_top

BdNodes_bottom];

BdNodesD=dlarray(BdNodesD,"BC");

BdNodesN=nod(indN,:);

BdNodesN=dlarray(BdNodesN,"BC"); %neumann nodes

%Boundary conditions

BdCond=zeros(size(BdNodesD,1),1);

BdCond(1:size(BdNodes_top,1))=V_t;

BdCond(size(BdNodes_top,1)+1:size(BdNodes_top,1)+size(BdNodes_bottom,1))=V_b;

BdCond=dlarray(BdCond,"BC");

%% DIVIDE THE TWO REGIONS
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ind_reg2=[];

for e=1:M

triangle=conn(e,:); %triangle nodes

nodtri=nod(triangle,:); %triangle coordinates

centre=mean(nodtri,1); %compute the centre of the triangle

%check if the triangle is inside the inclusion:

if abs(centre(2))>0.3 && abs(centre(2))<0.7

ind_reg2=[ind_reg2,e]; %#ok<AGROW>

patch(nodtri(:,1),nodtri(:,2),'red')

else

patch(nodtri(:,1),nodtri(:,2),'blue')

end

end

ind_reg3=[];

for e=1:M

triangle=conn(e,:); %triangle nodes

nodtri=nod(triangle,:); %triangle coordinates

centre=mean(nodtri,1); %compute the centre of the triangle

%check if the triangle is inside the inclusion:

if abs(centre(2))>0.7

ind_reg3=[ind_reg3,e]; %#ok<AGROW>

patch(nodtri(:,1),nodtri(:,2),'green')

end

end

ind_tot=1:M;

ind_reg1=setdiff(ind_tot,ind_reg2);

ind_reg1=setdiff(ind_reg1,ind_reg3);

%% INTERFACE POINTS

nod_int1=[]; %region 1 (blue)

ind_int1=[];

nod_int3=[]; %region3 (green)

ind_int3=[];

nod_int2_1=[]; %region 2 (red) with region 1 (blue)

ind_int2_1=[];

nod_int2_2=[]; %region 2 (red) with region 3 (green)

ind_int2_2=[];

for i=1:M

nod_y=centres(i,2);

if abs(nod_y-0.3)<h && (nod_y-0.3)<0

nod_int1=[nod_int1;

centres(i,:)]; %#ok<AGROW>

ind_int1=[ind_int1,i]; %#ok<AGROW>

end

if abs(nod_y-0.7)<h && (nod_y-0.7)>0

nod_int3=[nod_int3;

centres(i,:)]; %#ok<AGROW>
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ind_int3=[ind_int3,i]; %#ok<AGROW>

end

if abs(nod_y-0.3)<h && (nod_y-0.3)>0

nod_int2_1=[nod_int2_1;

centres(i,:)]; %#ok<AGROW>

ind_int2_1=[ind_int2_1,i]; %#ok<AGROW>

end

if abs(nod_y-0.7)<h && (nod_y-0.7)<0

nod_int2_2=[nod_int2_2;

centres(i,:)]; %#ok<AGROW>

ind_int2_2=[ind_int2_2,i]; %#ok<AGROW>

end

end

nod_int1=sortrows(nod_int1);

nod_int1=dlarray(nod_int1,"BC");

nod_int2_1=sortrows(nod_int2_1);

nod_int2_1=dlarray(nod_int2_1,"BC");

nod_int2_2=sortrows(nod_int2_2);

nod_int2_2=dlarray(nod_int2_2,"BC");

nod_int3=sortrows(nod_int3);

nod_int3=dlarray(nod_int3,"BC");

%Update collocation points

centres=dlarray(centres',"BC");

domainCollocationPoints=centres;

ind_int=[ind_int1, ind_int2_1, ind_int2_2, ind_int3];

ind_reg1=setdiff(ind_reg1,ind_int1);

ind_reg2=setdiff(ind_reg2,ind_int2_1);

ind_reg2=setdiff(ind_reg2,ind_int2_2);

ind_reg3=setdiff(ind_reg3,ind_int3);

domainCollocationPoints(ind_int,:)=[];

%% COEFFICIENTS VECTOR

p=p1.*ones(M,1);

p(ind_reg2)=p2;

p=dlarray(p,"BC");

%% NETWORK ARCHITECTURE

%Define a multilayer network with four fully connected layers,

%each with 150 neurons

%The first layer has two input channels corresponding to the inputs x and y

%The last layer has three outputs corresponding to A(x,y), Hx(x,y), Hy(x,y)

numNeurons=150;
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layers=[

featureInputLayer(2,Name="featureinput")

fullyConnectedLayer(numNeurons,Name="fc1")

tanhLayer(Name="tanh_1")

fullyConnectedLayer(numNeurons,Name="fc2")

tanhLayer(Name="tanh_2")

fullyConnectedLayer(numNeurons,Name="fc3")

tanhLayer(Name="tanh_3")

fullyConnectedLayer(3,Name="fc4")

];

pinn=dlnetwork(layers);

%% TRAINING OPTIONS

N_epochs=6000; %number of epochs

initialLR=0.01; %initial learning rate

LRDecay=0.005; %learning rate decay

%Initialize the average gradients and squared average gradients for Adam

average_grad=[];

average_sq_grad=[];

%Total number of iterations for the training progress monitor

N_iterations=N_epochs;

%Initialize the training progress monitor

monitor=trainingProgressMonitor(Metrics="Loss",Info="Epoch",...

...XLabel="Iteration");

%% TRAIN PINN

iteration=0;

epoch=0;

learning_rate=initialLR;

while epoch<N_epochs && ~monitor.Stop

epoch=epoch+1;

iteration=iteration + 1;

XY1=centres(ind_reg1,:);

XY2=centres(ind_reg2,:);

XY3=centres(ind_reg3,:);

XY1=dlarray(XY1,"BC");

XY2=dlarray(XY2,"BC");

XY3=dlarray(XY3,"BC");

%Compute the loss function value and its gradients
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[loss,gradients]=dlfeval(@modelLoss_cap2D,pinn,BdNodesD,BdNodesN,...

...BdCond,XY1,XY2,XY3,nod_int1,nod_int2_1,nod_int2_2,nod_int3);

%Update the network parameters using Adam optimizer

[pinn,average_grad,average_sq_grad]=adamupdate(pinn,gradients,...

...average_grad,average_sq_grad,iteration,learning_rate);

%Update the learning rate

learning_rate=initialLR/(1+LRDecay*iteration);

%Update the training progress monitor

recordMetrics(monitor,iteration,Loss=loss);

updateInfo(monitor,Epoch=epoch+"of"+N_epochs);

monitor.Progress=100*iteration/N_iterations;

end

%% TEST PINN

%Contour plot

nodes_dlarray=dlarray(nod',"CB");

Out_pinn=gather(extractdata(predict(pinn,nodes_dlarray)));

Vpinn=Out_pinn(1,:);

Dxpinn=Out_pinn(2,:);

Dypinn=Out_pinn(3,:);

figure (3)

Z=reshape(Vpinn,[N_y+1,N_x+1]); %reshape the solution vector as a matrix

contour(X,Y,Z,'LineWidth',1)

colorbar

axis equal

xlabel('x');

ylabel('y');

zlabel('potential (PINN)')

xt = 0.35;

yt = 0.6;

str = 'PINN solution';

text(xt,yt,str,'Color','black','FontSize',14)

f=gcf;

exportgraphics(f,'PINN solution.jpg')
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A.2 Loss function

function [loss,gradients]=modelLoss_cap2D(net,BdNodesD,BdNodesN,BdCond...

...XY1,XY2,XY3,nod_int1,nod_int2_1,nod_int2_2,nod_int3)

%Train pinn on the first region

[out1]=forward(net,XY1);

V=out1(1,:);

D_x=out1(2,:);

D_y=out1(3,:);

%Compute derivatives of V

dV=dlgradient(sum(V,"all"),XY1,EnableHigherDerivatives=true);

dV_x=dV(1,:);

dV_y=dV(2,:);

%Compute derivatives of D

dD_x=dlgradient(sum(D_x,"all"),XY1,EnableHigherDerivatives=true);

dD_xx=dD_x(1,:);

dD_y=dlgradient(sum(D_y,"all"),XY1,EnableHigherDerivatives=true);

dD_yy=dD_y(2,:);

%Enforce PDE, calculate lossF

res1=-dV_x-D_x;

res2=-dV_y-D_y;

res3=dD_xx+dD_yy;

target1=zeros(size(res1));

lossF1=l2loss(res1,target1);

target2=zeros(size(res2));

lossF2=l2loss(res2,target2);

target3=zeros(size(res3));

lossF3=l2loss(res3,target3);

lambda1=0.25;

lambda2=0.25;

lossF_reg1=lambda1*lossF1+lambda2*lossF2+(1-lambda1-lambda2)*lossF3;

%Train pinn on the second region

[out2]=forward(net,XY2);

V=out2(1,:);

D_x=out2(2,:);

D_y=out2(3,:);

%Compute derivatives of V

dV=dlgradient(sum(V,"all"),XY2,EnableHigherDerivatives=true);
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dV_x=dV(1,:);

dV_y=dV(2,:);

%Compute derivatives of D

dD_x=dlgradient(sum(D_x,"all"),XY2,EnableHigherDerivatives=true);

dD_xx=dD_x(1,:);

dD_y=dlgradient(sum(D_y,"all"),XY2,EnableHigherDerivatives=true);

dD_yy=dD_y(2,:);

%Enforce PDE, calculate lossF

res1=-16.*dV_x-D_x;

res2=-16.*dV_y-D_y;

res3=dD_xx+dD_yy;

target1=zeros(size(res1));

lossF1=l2loss(res1,target1);

target2=zeros(size(res2));

lossF2=l2loss(res2,target2);

target3=zeros(size(res3));

lossF3=l2loss(res3,target3);

lambda1=0.25;

lambda2=0.25;

lossF_reg2=lambda1*lossF1+lambda2*lossF2+(1-lambda1-lambda2)*lossF3;

%Train pinn on the third region

[out3]=forward(net,XY3);

V=out3(1,:);

D_x=out3(2,:);

D_y=out3(3,:);

%Compute derivatives of V

dV=dlgradient(sum(V,"all"),XY3,EnableHigherDerivatives=true);

dV_x=dV(1,:);

dV_y=dV(2,:);

%Compute derivatives of D

dD_x=dlgradient(sum(D_x,"all"),XY3,EnableHigherDerivatives=true);

dD_xx=dD_x(1,:);

dD_y=dlgradient(sum(D_y,"all"),XY3,EnableHigherDerivatives=true);

dD_yy=dD_y(2,:);

%Enforce PDE, calculate lossF

res1=-dV_x-D_x;

res2=-dV_y-D_y;

res3=dD_xx+dD_yy;
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target1=zeros(size(res1));

lossF1=l2loss(res1,target1);

target2=zeros(size(res2));

lossF2=l2loss(res2,target2);

target3=zeros(size(res3));

lossF3=l2loss(res3,target3);

lambda1=0.25;

lambda2=0.25;

lossF_reg3=lambda1*lossF1+lambda2*lossF2+(1-lambda1-lambda2)*lossF3;

%Enforce interface conditions

[out_int1]=forward(net,nod_int1);

[out_int2_1]=forward(net,nod_int2_1);

[out_int2_2]=forward(net,nod_int2_2);

[out_int3]=forward(net,nod_int3);

Dy1=out_int1(3,:);

Dy21=out_int2_1(3,:);

Dy23=out_int2_2(3,:);

Dy3=out_int3(3,:);

res4=Dy1-Dy21;

res5=Dy23-Dy3;

target4=zeros(size(res4));

target5=zeros(size(res5));

lossF4=l2loss(res4,target4);

lossF5=l2loss(res5,target5);

loss_int=0.5*lossF4+0.5*lossF5;

lossF=0.25*lossF_reg1+0.25*lossF_reg2+0.25*lossF_reg3+(1-0.75)*loss_int;

%Enforce Dirichlet boundary conditions, calculate lossUd.

%Electric potential

[Bdout]=forward(net,BdNodesD);

V_bd=Bdout(1,:);

res4=V_bd-BdCond;

target4=zeros(size(res4));

lossU1=l2loss(res4,target4);

%Electric displacement field

D_bdx=Bdout(2,:);

res5=D_bdx;

target5=zeros(size(res5));

lossU2=l2loss(res5,target5);

lambda3=1;

lossUd=lambda3*lossU1+(1-lambda3)*lossU2;
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%Enforce Neumann boundary conditions, calculate lossUn

%Electric potential

[Bdout]=forward(net,BdNodesN);

V_bd=Bdout(1,:);

dV_bd=dlgradient(sum(V_bd,"all"),BdNodesN,EnableHigherDerivatives=true);

dV_bd_x=dV_bd(1,:);

res6=dV_bd_x;

target6=zeros(size(res6));

lossU3=l2loss(res6,target6);

%Electric displacement field

D_bdx=Bdout(2,:);

res7=D_bdx;

target7=zeros(size(res7));

lossU4=l2loss(res7,target7);

lambda4=0.5;

lossUn=lambda4*lossU3+(1-lambda4)*lossU4;

lambda5=0.5;

lossU=lambda5*lossUd+(1-lambda5)*lossUn;

%Combine the losses

lambda=0.5;

loss=lambda*lossF+(1-lambda)*lossU;

gradients=dlgradient(loss,net.Learnables);

end
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