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Abstract

How can a distributed network agree on the execution of an arbitrary code in a

trust-free way? Currently there are plenty of solutions to achieve that. Every

solution differs by the network’s structure and protocols but the common ground

is the presence of a bytecode that is able to run arbitrary code in a deterministic

manner. This paper will describe the basic characteristics of a Platform Agnos-

tic Bytecode and how is used in Polkadot, a distributed network that ‘aims to

provide a scalable and interoperable framework for multiple chains with pooled

security‘ [17].
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Chapter 1

PAB

1.1 Definition

A Platform-Agnostic Bytecode (PAB), from now on will be defined as a bytecode

that follows those two main principles:

� Turing Completeness

� Support for tooling that makes it executable on every machine

A bytecode implementing these principles is ideally designed to be executed

on a virtual machine that follows general patterns. This design should make

easier the compilation to another real machine’s bytecode. Examples of real

architectures with specified bytecode are AMD and Intel with x86 or ARM with

aarch64.

1.2 Execution

PABs require multiple phases of compilation. The first one is encountered when

you want to compile your High-Level language to the PAB using a Cross-Compiler.

Once you have the PAB code, you should be able to run it on every machine using

another compiler that will create the final executable code.

Re-compiling is not the only way to execute a PAB. Another common solu-

tion is to implement a Virtual Machine (VM) able to run arbitrary PAB code

interpreting it.
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2 Chapter 1. PAB

1.3 Key features

Every bytecode, ideally, can become a PAB if tools to make it runnable to different

machine exist. There are however some metrics to define which one is better than

others; example of metrics are:

Hardware Independence

If tightly related to specific hardware, a bytecode can’t become a PAB be-

cause translations to different hardware would be impossible. A weakly

coupled bytecode though can become a PAB if the coupling to a specific

hardware is negligible and requires some minor adaptations to run on dif-

ferent hardware is required. A completely hardware independent bytecode,

that does not make any specific assumption on the hardware on which will

be running on, is the best.

Sandboxing

The machine used to execute the PAB is defined as embedder. The embedder

will execute arbitrary code, possibly malicious. A sandboxed environment

is the typical solution to overcome any security problem. The execution

in a different environment makes it almost impossible to compromise the

embedder from the PAB code. Implementing a proper sandboxed environ-

ment is embedder dependent but a PAB can be more or less suitable for

this feature.

Figure 1.1: Sandboxing graphic example

Efficiency

The efficiency of a PAB has several facets, it could refer to:

� the efficiency of compiling High-Level Language to the PAB
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� the efficiency of the execution of the PAB. In this case it could refer

to the compilation to the final bytecode and the subsequent execution,

the interpretation or more complex solutions

Generally the first is not really related to the PAB, but more on the used

tools (examples gcc, rustc, etc.). The execution efficiency is the real issue:

how fast a PAB can be executed on a machine is crucial.

Tool Simplicity

The easiness of compiling a High-Level language and executing the PAB is

very important to make it usable by every one.

Support as Compilation Target

Writing bytecode by hand is something really rare and done only in specific

cases. Every compiled language has a compiler to make this, and is very

important for a PAB to support the compilation from as many languages

as possible.

1.4 Current usage

PAB are already widely used. A few examples are:

� The Java Virtual Machine (JVM) is one of the first that made the porta-

bility of the code one of the main concern of the language

� Linux brought eBPF [16], explained in one of the following chapters, into the

kernel, enabling arbitrary programs to be executed in a privileged context

(OS level)

� LLVM IR is the LLVM [4] assembly language, it provides type safety, low-

level operations, flexibility, and the capability of representing ‘all’ high-level

languages cleanly. It is the common code representation used throughout

all phases of the LLVM compilation strategy.

� WebAssembly [12] is a safe, portable, low-level code format designed for

efficient execution and compact representation.
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1.5 PAB in blockchains

Blockchains are distributed systems that need to agree on the execution of arbi-

trary code performed on different machines. While it is not the purpose of this

work to provide a detailed explanation of blockchains, it is essential for our pur-

poses to understand that the goal of each machine is to produce blocks that are

connected with hashes to the previous blocks, so creating a block chain. Machines

that take part in the block production are also called nodes, and they are part of

a trust-less network. This means that nodes can’t simply trust other nodes and

rely on the blocks produced by them, on the contrary they must verify in some

way the correctness of those blocks by themselves.

Let’s simplify and define the block production algorithm as a function that

takes an arbitrary input and produces and arbitrary output. Input and output

are then bundled together to produce a block (little caveat, though, is that each

input depends also on all the previous produced blocks).

If Block A is the first block, it contains A.input and A.output (A.input is a

special input that does not depend on the previous block because A is the genesis

block). A node then produces block B on top of block A while another node

produces block C on top of A. At this point the new blocks can be arbitrarily

added on top of either A, B, or C. A new node that just joins the network must

decide where to append a new block, Figure 1.2. This question is extremely

complex and outside our scope. We will however provide an answer to a part of

the question: on top of which block the node must not attach the new block.

Figure 1.2: Block Production Example

PABs are the answer to this question. The main point of having input and

output contained in the blocks, inside a trust-less network, is to let the nodes

re-validate blocks to make sure other nodes behaved correctly.

The function that gives the output must return the same result regardless of
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the node and the node’s architecture to make everyone agree on the correctness

of new blocks. This property is called ‘execution determinism‘.

The new node in the network will validate all the blocks in the chain. It

will start from the block A, re-compute A.output starting from A.input, make

sure the block is correct (i.e., compare the computed A.output with the A.output

contained in the block). The new node will then repeat the process for each block

up in the chain until the leafs. Every invalid block will be discarded as a possible

base on which to append a new block.

PABs are the most suitable solution to implement this validation. PABs can

encode any type of logic (first principle of a PAB) and can be executed on every

machine (second principle). PABs can also fully address execution determinism,

as we will describe in the following chapters.
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Chapter 2

Wasm

2.1 Definitions

WebAssembly, shortened to Wasm, is a binary instruction format for a stack-

based virtual machine [12]. It is a platform-agnostic binary format, meaning

that it will run the same exact instructions across whatever machine it operates

on. [7]

‘asm.js‘ was Wasm precursor, but browser vendors like Mozilla, Google, Mi-

crosoft, and Apple focused on the Wasm design. The main goal was to create

a binary format with some mandatory features: compact, support for streaming

compilation and sanboxed execution.

Wasm is currently a compilation target for a lot of high level language. This

allows many different languages to enter the web-world, in both client and server

sides, but also in completely different applications.

Examples are plugins. Imagine an application able to execute custom script

developed by the user: if those scripts are in Wasm then the High-Level language

used to develop those plugins is not constrained to a single one but to all the

languages that are able to compile to Wasm.

Wasm main design goals, as specified in the Wasm specification introduction

[12], are:

• Fast Its design allows to create executors with so less overhead that the exe-

cution is almost as fast as native code

• Safe It is completely memory-safe as long as the executor is behaving correctly,

sandboxing the execution properly

7



8 Chapter 2. Wasm

• Well-defined The definition of the binary format makes it easy to create a

valid executor that makes the code behave correctly

• Hardware-independent The compilation process is independent from the

architecture that will run the code

• Platform-independent It can be compiled and executed on all modern ar-

chitectures, embedded systems or applications (like browsers)

• Open There is a simple way to interoperate the with executor/environment

Other important considerations are made on the efficiency and portability.

The specification describes Wasm also as: compact, modular, efficient, stream-

able, and parallelizable.

In the following chapters the words ‘executor‘ or ‘embedder‘ have the same

meaning.

2.2 Specifications

The specification does not make any assumption on the embedder. This makes it

completely unconstrainted as far as it implements all the defined instruction set,

binary encoding, validation, and execution semantics [12].

Wasm is stack-based. This means that the instruction set is very different

from the standard architecture’s bytecode that are normally registered-based.

Wasm has also a one-to-one text representation other than the normal binary

representation, which makes the code less compact but almost human readable.

All the concepts present in the specifications are very high-level even if it is

a low level language. The most relevant are:

• Values Wasm has only four data types: integers and floating points (following

IEEE 754 standard) both 32 and 64 bits

• Instructions Being a stack based language every instruction works implicitly

on a stack but there is a general division between:

� Simple Instructions, performing basic operations on data

� Control Flows, allowing to follow some high-level language control flow

having nested blocks
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• Traps Those are instructions which immediately aborts the execution. The

termination is not handled by wams itself but by the embedder

• Functions Being so new, this assembly-like language allows users to work with

functions abstracting some of the assembly’s complexity

• Linear Memory This is where the communication between the code and the

environment happens: the linear memory is a contiguous area of memory

given to the code. This memory is very crucial for the security considera-

tions that we will see later.

• Modules A Module is the logical container of the code. Every Wasm code is

made by a single module.

• Exports Once the module is instantiated all the defined exports are callable

from the embedder, examples of possible exports are functions or global

variables.

• Imports Wasm can import things from the embedder. The more common

examples are the functions provided from the outside that are callable from

the Wasm code

• Embedder Wasm needs the embedder to be executed. Itsthe main jobs are:

� loading and initiate a new module

� provide imports

� manage exports

Other important concepts explained in the specification are Wasm phases:

• Decoding Decode the binary format to the specified abstract syntax. The

implementation could also compile directly to machine code.

• Validation A decoded module has to be valid. The validation consists in check

a set of well-formed conditions to guarantee that the module is meaningful

and safe [7]

• Execution Execution is made by two sub-phases:

� Instantiation, set up state and execution stack of a module

� Invocation, calling a function provided by the module to start the

effective execution
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2.3 Execution

Wasm specifications try to be unbreakable but at the end everything depends on

the embedder’s implementation: if it is not secure then Wasm execution itself is

not.

2.3.1 Execution Types

There are two main categories of execution types: compilation and interpretation,

those are then made by multiple sub-categories based on the technical details.

The main difference is: in compilation the Wasm code is re-compiled to the

architecture’s bytecode and then natively executed on the machine. The inter-

pretation, instead, uses a Virtual Machine to parse the Wasm code and execute

it inside of the machine.

Every type has its own advantages but also requires different tricks to make

everything secure. One important thing provided by Wasm is an articulated test

suite to check the correctness of the embedder. [13]

The common divisor for every compilation type of execution is the transpila-

tion of a stack-based bytecode to a register one; something similar happens also

in the interpretation because the Wasm code is stack-based but generally it needs

to be executed on a register-based one.

In Wasm there are multiple stacks:

� the Value Stack, used implicitly byWasm to store temporary data or passing

values to functions

� the Shadow Stack, this is not directly related to Wasm but used by many

toolchains in the compilation to Wasm.

Passing values around only by values is not always efficient and in Wasm

you don’t have access directly to the value stack being only implicitly used by

all the common instructions. The compiler uses the Shadow Stack, allocated in

the Linear Memory (explained later), to put information in it and pass around

pointer to this stack as value in the Value Stack.

Those two stacks are present in the Wasm code but when it needs to be

translated to the final bytecode the compiler tries to elide every access to the

Value Stack allocating everything needed in the registers. Registers are limited
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Figure 2.1: Value and Shadow Stack

though, so is impossible to use only them and the native stack of the embedder

will be used if needed.

The main types of execution used in blockchains are: Ahead Of Time Com-

plication (AOT), Just In Time Compilation (JIT), Single Pass Compilation and

generally Interpretation

• AOT is the standard compilation, all the code is compiled and then executed.

• JIT is a dynamic compilation type where the bytecode is compiled only when

needed. The compiler needs to create first an intermediate representation,

to be later able to compile the different parts only if the execution requires

to. A really simple example to make is: we have a program with two entry

point, function A and B. The JIT process will cover the understanding of

the structure, recognize the two functions and compile only the needed one,

either A or B.

Lots of optimizations are already been done in the first phase of compilation,

from the High-Level language to Wasm. In the second phase (runtime

compilation) the main goal is to compile only the required parts to the

machine-specific bytecode not caring too much about adding optimizations.

• SPC is a restriction of AOT Compilation, the complexity of the compilation

must be O(n) so the Wasm bytecode will be scanned through only once.

Like every other compilation methods here the objective is not to create

efficient final code but to create the final bytecode as fast as possible.

• Interpretation is the easiest way to execute Wasm, which becomes like any

other interpreted language executed by a specialized Virtual Machine.
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2.3.2 Embedders

There are multiple embedders able to execute Wasm using techniques not even

explained before. We will focus on three specific embedders commonly used in

blockchains: Wasmtime, Wasmi and Wasmer.

Those three cover all the techniques just explained:

• Wasmtime is a stand alone Wasm environment but it could be also used as

library to create a Wasm environment in your bigger application. Wasmtime

offers multiple features, it accepts Wasm in text or binary format and you’re

able to used JIT or AOT types of execution.

• Wasmi [14] is an efficient Wasm interpreter with low-overhead and support

for embedded environment such as Wasm itself.

There are multiple ways to interpret code. Wasmi makes a first Wasm

bytecode pass to produce another stack-based bytecode, called WASMI IR

(Intermediate Representation). Thereafter this representation is interpreted

by a Virtual Machine, even with this transpilation it is only 5 times slower

then the compilation to the native bytecode of the architecture.

• Wasmer has a lot of features, both AOT and JIT but in particular it imple-

ments a single pass compiler for all the most important architectures.

2.4 Security guarantee

Wasm principle aim is to be extremely secure. The specifications describes a lot

of ways to achieve that feature, but the security guarantee depends mostly on the

execution. WebAssembly is designed to be translated into machine code running

directly on the host’s hardware, so it can be sent to someone and executed freely,

(e.g., in browsers). We are running Wasm our machines every day, so security is

a main concern.

Executing Wasm is potentially vulnerable to side channel attacks on the hard-

ware level [12] and isolation is the only way to secure the execution. The embedder

translates one-by-one every instructions to native instructions on your computer,

but nothing is dangerous if the code has no access to the environment where is

executed.

The problem is that a completely isolation makes Wasm useless, so there

must be a way to communicate with the environment or have access to it, but
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those features are extremely limited and designed to be secure.

2.4.1 Linear Memory

FromWebAssemply you have direct access to raw bytes, but where are those bytes

allocated? Wasm uses a MemoryObject provided by the embedder to describe

the only accessible memory, besides the stack: the linear memory. [5]

Wasm does not have pointer types. Values in the linear memory are accessed

as a vector, where the first index of the memory is 0.

Wasm, for security reasons that will be explained in the next chapters, works

in a 32-bit address space. This makes usable only 4GiB of memory. Being the

position of Linear Memory unknown to the Wasm blob every load or store to the

memory is made passing through the embedder that will also do bounds checks

to make sure the address is inside the Wasm Linear Memory.

Figure 2.2: BLM: Base Linear Memory Pointer

This level of control makes it impossible to have memory leaks in the environ-

ment during the Wasm execution because there is a complete memory isolation.

[5]

2.4.2 Communication in a sandboxed environment

We just described how Wasm provides no ambient access to the computing en-

vironment in which the code is executed [12], thanks to a mix of Wasm design

choice and embedder implementation. But how then does the interaction with

the environment work?

Every interaction can be done by a set of functions provided by the embedder

and imported in the Wasm module [12]. Those functions are called Host Functions
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and allow the Wasm code to access to resources, operating system calls or any

other types of computation offered by the embedder. Generally the Exports

provided by Wasm that are usable and callable from the embedder are called

Runtime API.

Figure 2.3: Environment communication

2.4.3 Wasmtime Security guarantee

Wasmtime is widely used in different environments and as we will see in the next

chapter one of those is the polkadot ecosystem.

Wasmtime main goals is to execute untrusted code in a safe manner. [15]

Some features that makes executing Wasm byWasmtime secure are just inher-

ited by the Wasm specifications. Some examples are: the callstack is inaccessible,

pointers are compiled to offsets into linear memory, there’s no undefined behav-

ior and every interaction with the outside world is done through imported and

exported functions. [15]

Wasmtime adds a lot of mitigations to those features to limit risks:

� Linear memories are preceded with a 2GB guard region by default

� Wasmtime will zero the memory used by a WebAssembly instance after it’s

finished.

� Wasmtime uses explicit checks to determine if a WebAssembly function

should be considered to stack overflow

� The implementation language of Wasmtime, Rust, helps catch mistakes

when writing Wasmtime itself at compile time
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Polkadot

3.1 What’s Polkadot?

Polkadot is an heterogeneous multi-chain system [19]. Its aim is to provide a

scalable and interoperable framework for multiple chains with shared security. [17]

At the center of the entire system there is the ‘relay chain‘, responsible for

providing shared security to the other chains that are part of the system. Those

chains are called ‘parachains‘, they can be heterogeneous and independent be-

tween each others; the central point (relay chain) enables a trust-free inter-chain

transactability and the pooled security. [17]

Figure 3.1: Polkadot’s Architecture

15
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Polkadot provides the bedrock relay chain upon which a large number of

validatable, globally-coherent dynamic data-structures may be hosted side-by-

side. [19] What has just been described are the parachains that are not obligated

to be blockchains, they must just respect all the polkadot protocol.

In the Figure 3.1 you can see in the middle the relay chain that connects

multiple parachains.

3.2 Polkadot’s protocol

Briefly, the Polkadot system consists of a single open collaborative decentralised

network (relay chain), that interacts with many other external chains (para

chains) [17]. For the relay chain the internals of the parachians are not rele-

vant, parachains need only to adhere to a specific interface. The relay chain then

ensure that the parachain is trustable as a whole, not single nodes.

The ecosystem expects multiple actors to make the protocol work, the main

are:

• Validator Performs the bulk of the security work

• Nonimator Stakeholder who backs and selects validator candidates

• Collator Collects and submits parachain data to the relay chain

The protocol is composed by multiple phases and it defines the communication

between parties. The main processes are: [17]

1. The parachain’s collators:

� Run full relay chain node to keep up the latest state

� Build new block on top of the latest state and submit blocks to the

parachain’s validator

2. The relay chain’s validators:

� The ones associated to parachians produce the new relay chain block

candidate

� Follow a sub-protocol to ensure data sharding, data are mainly parachain

blocks and sharding is the process of making the validators collectively

and robustly responsible for the availability of these blocks using era-

sure coding
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� Submit votes to resolve forks and have a single head

� Manage messages between parachians

3.2.1 State Transition Function

The protocol’s main goal is to verify what happened on parachains, described

by the parachain logic. One of the few thing trequired from a parachain is in-

deed that it implements a State Transition Function (STF). An STF describes

the parachain logic and produces the transition between two states. Like any

transaction-based transition system, Polkadot state changes via an executing or-

dered set of instructions, known as extrinsics. [17]

The STF is also present in every validator node because it describe the relay

chain logic. Currently, all STFs are written in Wasm; for a parachain it would

be theoretically possible to implement STFs with other PABs as well, but that

would introduce additional complexities, as it will be illustrated in the following.

Every parachain or relay chain node can be divided into two parts: the STF

(or Runtime) and the Client. The latter one implements everything else required

to make the protocol work, from storage management to transaction gossiping.

Generally, the runtime is compiled into Wasm and stored as part of the state,

this allows making fork-less upgrades because the code transition happens under

consensus in the STF.

3.3 Wasm in Polkadot

Substrate is a framework to build blockchains, it is separate from Polkadot, and

with it you’re able to build so-called Solo Chains, a blockchain able to run on its

own that does not care about the polkadot protocols.

Substrate is the main, and unique for now, framework used to build blockchains

in the Polkadot ecosystem. Even the relay chain is built with substrate. Substrate

abstracts all the complexity of writing client and runtime code. It provides almost

everything at client level and leaves the freedom of developing everithing else in

the runtime, i.e. the specific state transition function of the specific blockchain

under implementation.

Substrate compiles the runtime to Wasm and the client has an embedder,

wasmtime, which is able to run the STF. As long as the chain is a Solo Chain,

substrate manages everything, it compiles the runtime in wasm and implements
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all the custom logic to make the client and the runtime communicate through the

embedder wasmtime.

The problems occurs when a blockchain wants to join the polkadot ecosystem,

where there is pooled security, and the logic not only must be executed by the

nodes that compose the parachain but also by the validators of the relay chain.

This is made possible by following a protocol made by multiple phases that are

built on top of two building blocks: the Parachain Validation Function (PVF)

and the Proof of Validity (PoV). [6]

3.3.1 PVF

Using Substrate you end up with a Substrate-Runtime, which is a wasm blob that

implements the State Transition Function of the specific blockchain. To become

a parachain you need to provide to the relay chain something that differs a bit

from the Substrate-Runtime.

The protocol requires a Parachain Validation Function that is composed of

the Substrate-Runtime and another function called ’validate block’. The reason

why this function is required is related to a constraint of the relay chain: polkadot

does not know anything about the previous state of the parachain.

Everything needed by the Runtime is not present in the validators node but is

provided in the block proposed by the collators, that’s called: PoV. The structure

of the PoV will be explained later, but it is important to know now that every

information needed in the execution of the PVF is indeed in the PoV.

The ’validate block’ function is the glue between the parachain-runtime and

the PoV. It accepts the PoV and reconstructs the previous state, applies all the

extrinsics using the parachain-runtime and then checks that the new state is

consistent with the one proposed by the collators.

Both relay chain and parachains implement the same HostFunctions for the

runtime. This means that the STF of the parachain would access the storage

through the same functions in the relay chain and in the parachain but what is

known by the nodes is different.

As was just said the relay chain does not know the previous state of the

parachain but the information resides in the PoV. The function ’validate block’

overrides the host functions to let the STF access the reconstructed internal state,

present in the PoV, instead of going into the relay chain client.

‘Collation‘ is the term used to represent the outcome produced by the collators

that will be used by validators, it is the same as PoV.
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Figure 3.2: PVF and Collation

From the 3.2 you can see how the parachain-runtime interacts in the same

way with the embedder but it is different in the Collator or the Validator. In the

first case the embedder is the client itself that knows the previous state, while

in the Validator the embedder in the client is tweaked a bit so that the previous

state is taken from the PoV and not from the Validator.

This encapsulation with a substitution of the host functions makes validator

able to execute different STFs without knowing anything about the parachain

that is validating.

3.3.2 PoV

The Proof of Validity is made by all the things needed by Runtime Validation, it

is mainly composed by: [2]

� Header of the new block

� Transactions included in the block

� Witness Data

� Outgoing messages

The witness data is what makes it possible for the relay chain to execute the

state transition validation without knowing the entire state of the parachain.

The state in polkadot is represented by a key-value database where each key

is unique and there is no assumption on it. The database itself is arranged as a

Merkle-Patricia Base 16 Trie that allows to describe the entire state in a single

constant state proof. Each block stored in the relay chain contains the state proof

of the previous block, and the witness data are then composed by:

� Data used in the state transition by the collator
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� Alongside their inclusion proof in the previous state

The Outgoing messages are everything that needs to be delivered to other

parachains. The underneath protocol is XCMP following the XCM format which

enables the parachain communication between parachains or with the relay chain.

3.3.3 SmartContracts

SmartContracts are arbitrary programs that can be uploaded on-chain and exe-

cuted in the State Transition Function. Even though the STF is itself an arbi-

trary program that can be updated, SmartContracts add additional convenience

by empowering final users to easily create and uploade custom logic on-chain. To

implement SmartContracts different blockchains offer different solutions. Polka-

dot implements SmartContracts via a recursive embedder.

The Client is the embedder of the STF and the STF becomes itself the em-

bedder of the SmartContracs. This is made possible thanks to Wasmi because

it can be executed in wasm itself. There are different solutions to secure the

execution of arbitrary, possibly malicious, code:

� Gas / Fuel measuring

� Storage usage deposit

Where the first one aims at limiting the number of operations that can be

executed in the STF, while the second aims at limiting the amount of used storage.

3.4 The crucial Role of Wasm in Polkadot

Clearly, the distributed algorithms implemented in blockchains would be com-

pletely useless if nodes could not execute the code in a secure and deterministic

manner.

The amount of tools and projects that are using Wasm makes it very suitable

for polkadot, an environment with very constrained resources: there is limited

space on every block, every state transition must be computed in a limited amount

of time and multiple nodes must reach the same results. Wasm has already

multiple tools like space and efficiency optimizer that make it even better for

polkadot.
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An important tools is Binaryen [1] with the wasm-opt optimization phases,

largely used in polkadot, that loads WebAssembly and runs Binaryen IR passes

on it to make it more space and complexity efficient.
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Alternatives

Wasm is not the only PAB used in the blockchain space, other technologies use

different solutions involving different protocols and algorithms. Examples are

Ethereum with the custom PAB executed by the EVM (Ethereum Virtual Ma-

chine) or Solana that used eBPF to implement SmartContracts, in the following

section those solutions and others will be analyzed.

4.1 EVM

Ethereum Virtual Machine code [18] is one of the first PABs used in blockchain,

it follows the principles used to describe a perfect PAB. It was created to be an

optimized blockchain’s bytecode on the Ethereum Virtual Machine, which is the

glue that makes code executable on every machine.

The EVM is the main building block of the Ethereum technology. It executes

stack based code and manages all the memory and access to the storage, following

therefore the same principles of an embedder for wasm with many features tied

to the measurement of the computation on-chain, called gas.

4.2 eBPF

4.2.1 What is eBPF

Linux brought eBPF [16] into the kernel, enabling sandboxed programs to run

inside a privileged context (OS level). For several different reasons, keeping the

kernel updated was a difficult task and eBPF intended to solve this problem.

The main issue was: how can a new feature be developed once and be added
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to the Linux kernel? Keeping in mind that running arbitrary code developed by

whoever in the kernel is absolutely not safe and the same code must be able to

run on different architectures.

The solution was to have the operating system grant efficiency and security

through a JIT compiler and a verification engine used to run eBPF program. To

achieve that every kernel contains an eBPF VM able to check the termination

and the security of the program.

Main points of eBPF to make the verification process possible are:

1. There are no functions in the code, there is only an unique blanket of code

2. There is limited limited control flow

3. Loops need to be statically defined, they are unrolled at compile time

4. The execution can’t pass twice on the same code

4.2.2 Solana eBPF

Not every program can compile to eBPF but a distributed systems need to execute

arbitrary code and limitation as strict as those posed by eBPF are too strong.

To overcome these issues Solana [20] then forked the eBPF backend of LLVM

and removed lots of constraint, keeping the finality guarantee by the standard

gas metering. [3]

Solana also create a new virtual machine for eBPF, rbpf [9], able to: check,

compile and execute the eBPF code on the blockchain.

eBPF is a perfect PAB for some use cases, as the linux kernel, but it does not

seem to be a good fit for blockchains, due to the its limitations:

1. limited control flow

2. limited loops

3. 64 bit usage, which implies lots of checks on the memory access

4. 8 bytes instructions, which are too long

4.3 RISC-V

RISC-V is a new instruction-set architecture (ISA) [11], even if it is an actual

bytecode for a specific hardware. While it seems not to match what has been
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described so far as a PAB, there are running experiments that validate it as a

valid option as a PAB.

There are several reasons why RISC-V could be a good PAB even if it wasn’t

designed for:

Real ISA suitable for direct native hardware implementation

RISC-V is designed to be executed on real hardware, no assumption is made

on the hardware itself, the only required thing is to respect all the constraint

specified in the specifications.

The ISA is developed following general machine patterns with something

completely new but still very related to other machines making really easy

the translation.

RISC

The name RISC stands for Reduced Instruction Set Computer. As a matter

of fact, the specifications are then very small and simple, making possible

the creation of a base executor in really few lines of code.

Completely open ISA

RISC-V is an open standard, which makes possible for everyone to know

the behavior and possibly create custom hardware to execute it.

ISA separated into a small base integer ISA

RISC-V is divided into smaller ISA, each one can work alone and can also

be composed to achieve different functionalities. One of the most important

division is the 32-bit and 64-bit address space division, which makes possible

the creation of a sandboxed environment in ad easy and effective way.

4.3.1 RISC-V for SmartConctract

One experiment [10] to port RISC-V in the Polkadot ecosystem as language for

SmartConctract is polkavm-experiment [8].

The spec is so easy that creating an interpreter required only one day and

the JIT only two days more. Those two executors were then tested against other

PABs with different executors, everyone executed the same code that can be

briefly described as a game where the measurement is: how close to 60 FPS the

code can get.

A comparison of the performance of the different implementations gave the

following results:
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� wasmi: 108ms/frame ( 9.2 FPS)

� wasmer singlepass: 10.8ms/frame ( 92 FPS)

� wasmer cranelift: 4.8ms/frame ( 208 FPS)

� wasmtime: 5.3ms/frame ( 188 FPS)

� solana rbpf (interpreted): 6930ms/frame ( 0.14 FPS)

� solana rbpf (JIT): 625ms/frame ( 1.6 FPS)

� RISC-V interpreter: 800ms/frame (1.25 FPS)

� RISC-V JIT: 25ms/frame ( 40 FPS)

As you can see the simplicity of RISC-V allowed the creation of a JIT compiler

faster than many competing compilers already in use.

An important difference rather than eBPF is dedicated instructions for syscall

(used as Host Function in the SmartContract) and the support in rustc and

LLVM. One of the main constraints is the number of registers used in RISC-V,

32 registers while most architectures use 16, the compiler or interpreter then must

properly manage those extra registers.
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Conclusions

We have seen how PABs are important for a decentralized network, in particular

for blockchains. Wasm is the main PAB used in Polkadot but other blockchains

are using different solutions, each of which has its own pros and cons. Wasm

was not invented for this specific purpose and it has some problems and some

behaviors so that some adaptation is required to make it fit for decentralized

networks.

Inventing something from scratch could satisfy every requirement of a blockchain,

but with the cons of creating and managing an entire technolopgy only for this

niche.

The best approach seems to be something along RISC-V, an Open Standard

that can be suitable for multiple environments while also being adaptable and

composable. Those characteristics offer the possibilities of modeling the bytecode

to satisfy almost every niche requirement, while allowing to exploit every tool or

contribution by other environments that are relying on the same technology.
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