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Abstract

The aim of this thesis is the study of a holographic description of condensed matter
systems by means of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence
which involves models of non-linear electrodynamics. After exposing the main concepts of
AdS/CFT and generic non-linear electrodynamics, we study effects of the recently found
(non-linear) ModMax electrodynamics on the minimal holographic superconductor in the
background of a Schwarzschild-AdS black hole spacetime, and compare the results with
the case of Maxwell electrodynamics. This is done by introducing in the background
spacetime a charged scalar field minimally coupled to the ModMax electromagnetic field,
and by using the correspondence to compute the behaviour of the dual scalar operator in
the field theory, whose expectation value is identified with the order parameter, distinguish
between the normal and superconducting state. We find that the scalar operator acquires a
non-zero vacuum expectation value below a critical temperature and the effect of ModMax
is to enhance its value. The critical temperature at which this happens and the optical
conductivity of the field theory are unaffected by the introduction of ModMax. We also
analyze the effect of ModMax on the Reissner-Nordström AdS planar black hole since it
represents the main ingredient for dualizing finite density boundary theories.

i



ii



Contents

1 Introduction 1

2 Aspects of AdS spacetime 7
2.1 Review of AdS spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 AdS coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 AdS boundary and compactification . . . . . . . . . . . . . . . . . . 9
2.1.3 AdS isometries and relation to the conformal group . . . . . . . . . 10
2.1.4 AdS as a solution of Einstein’s field equations with negative cosmo-

logical constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Black holes in AdS spacetime . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 AdS-Schwarzschild black hole and Hawking temperature . . . . . . 15
2.2.2 AdS-Reissner-Nordström black hole . . . . . . . . . . . . . . . . . . 18

2.3 Exact solution for a scalar field in AdS . . . . . . . . . . . . . . . . . . . . 20

3 Non-linear electrodynamics and ModMax 25
3.1 Maxwell electrodynamics and its non-linear extensions . . . . . . . . . . . 25

3.1.1 Born-Infeld electrodynamics . . . . . . . . . . . . . . . . . . . . . . 27
3.2 ModMax electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Dyonic AdS black brane with ModMax . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Relation between the Maxwell and the ModMax case . . . . . . . . 29
3.3.2 Application to the black brane . . . . . . . . . . . . . . . . . . . . . 32

4 Holography and AdS/CFT dictionary 37
4.1 The AdS/CFT correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 AdS/CFT as a computational tool: the dictionary . . . . . . . . . . . . . . 38
4.3 From AdS/CFT to AdS/CMT . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Holographic superconductivity with ModMax 47
5.1 Instability of the RN black brane . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Minimal holographic superconductor . . . . . . . . . . . . . . . . . . . . . 50
5.3 Holographic superconductor in presence of ModMax . . . . . . . . . . . . . 53

5.3.1 Condensation in the probe limit . . . . . . . . . . . . . . . . . . . . 54
5.4 Conductivity in the probe limit . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions and future directions 61

A Christoffel symbols for black brane metric 65

iii



B Holographic superconductors - explicit calculations 67
B.1 ModMax case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Generalized Born-Infeld case . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C Detailed numerical analysis 73

iv



Chapter 1

Introduction

The physical description of natural phenomena is based on two main theories: quantum
field theory and general relativity. The first describes three fundamental interactions
of matter - weak, strong and electromagnetic - as well as condensed matter systems,
where one deals with many body physics and the quantized excitations are not necessarily
elementary particles but so called quasiparticles. Quantum field theory makes strong and
accurate predictions when the degrees of freedom are weakly coupled, since one can rely
on perturbation theory. However, when a set of weakly coupled degrees of freedom cannot
be identified, the theory loses most of its predictivity.

On the other hand, general relativity describes the remaining fundamental interac-
tion, the gravitational one, and more generally the spacetime geometry, in presence of
matter. General relativity is a classical theory. A quantum description of gravity ca-
pable of describing the gravitational interaction at very small scales as being mediated
by corpuscular quanta called gravitons is a long-sought objective which is still missing.
There are however theories that are candidates to unify quantum field theory and general
relativity. The best known examples are string theory and loop quantum gravity theory.

String theory, in particular, is a quantum theory of gravity and other fundamental
interactions in which elementary objects are one-dimensional strings rather than point-
like particles. This allows one to avoid quantum divergences which appear when one
tries to quantize general relativity in the framework of the conventional field theory. It
is in the context of string theory where in the 1990s a less intuitive, although impressive
connection was found, relating quantum field theories and gravity theory. This connection
between the two seemingly unrelated areas of physics is known as anti-de Sitter/conformal
field theory correspondence, or briefly AdS/CFT [1]. The term AdS refers to the anti-de
Sitter spacetime, a solution to Einstein’s field equations in the presence of a negative
cosmological constant, while CFT refers to a special class of quantum theories which
are invariant under the conformal group, a generalization of the Lorentz group and scale
transformations. Crucially, spacetime dimensions are different in the two theories: the
CFT lives in a spacetime with at least one dimension less than AdS.

Relating gravity to quantum field theory in fewer dimensions was an idea prior to
AdS/CFT. In 1970s S. Hawking and J. Bekenstein discovered that black holes are en-
dowed with thermodynamic properties as temperature and entropy, this is black holes are
intrinsically thermodynamic systems [2, 3]. In particular, the entropy of a black hole is
proportional to its surface area, which led ’t Hooft [4] to propose a radical interpretation
of the entropy law, according to which it must be possible to describe all phenomena
within the volume by a set of degrees of freedom which reside on the surface. Encoding
the information of a gravitational system in a reduced number of dimensions is the con-
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tent of the holographic principle [4, 5]. For this reason, the AdS/CFT correspondence is
interpreted as a concrete realization of the holographic principle according to which the
gravity theory on AdS, also called the bulk theory, is controlled in some way by field the-
ories on effective spacetime boundaries, and for this referred as boundary theories. More
generally, AdS/CFT is also referred as gauge/gravity duality or simply as holography.

A very first glimpse of why gravity in AdS may be a good candidate to describe
conformal field theories and vice-versa is that the conformal algebra is isomorphic to
the algebra of the AdS isometry group. The correspondence between AdS and CFTs is
understood as a duality, in the sense that certain types of quantum field theories admit
a (dual) description in terms of stringy quantum gravity in an AdS spacetime, and vice-
versa. The actual, quantitative way to relate one description to the other was found
by Gubser, Klebanov, Polyakov and independently by Witten [6, 7]. They provided a
“dictionary” translating the quantities in one description to corresponding quantities in
the dual description. The fact that on the “left hand side” of the correspondence there is
a stringy quantum gravity description is what makes AdS/CFT a somewhat mysterious
tool, as that of quantum gravity is not yet a fully understood field. This would also
limit its applicability. However, in a particular limit - to be discussed in a moment - the
quantum gravity description reduces to a classical theory of gravity in AdS spacetime:
the fact that a classical theory of gravity can provide a dual description of a quantum
field theory is by itself an astonishing result! The above-mentioned limit refers to the
number of colours N of the quantum field theory tending to infinity and to the ’t Hooft
coupling λ of this theory being large too. Since quantum field theories are generically
predictive only when they are weakly coupled, the possibility of investigating the strongly
coupled regime by means of the correspondence, and in particular of a classical theory
of gravity, is extremely appealing. On the other hand, the N → ∞ limit obliges to
consider theories which are very different from real world quantum systems, for example
from quantum chromodynamics, which is based on SU(3) symmetry group and hence
has N = 3. So, how can one apply the correspondence to “real world” systems? Said
otherwise, how can one use classical gravity to study quantum field theories away from
the large N limit? This generically depends on the questions one wants to answer using
the correspondence. Remarkably, there are cases where the correspondence seems to work
even for theories which are not large-N gauge theories. This is related to the so called
“UV-independence” which basically is a statement about the independence of macroscopic
phenomena from the details of the microscopic physics. The idea of UV-independence led
theoretical physicists to apply the correspondence, or some generalization of it, to study
strongly coupled quantum systems in e.g. quantum chromodynamics or condensed matter,
although they are not large-N gauge theories.

A typical example of the above discussion is given by the gravity/fluid duality, or
holographic hydrodynamics. With this term one refers to the capacity of holography to
reproduce hydrodynamics by means of classical gravity. The fundamental equations of
hydrodynamics are the Navier-Stokes equations, which govern the macroscopic behaviour
of any system respecting translational and rotational symmetry. The structure of these
equations is universal, in the sense that they are independent on the specifics of the
underlying UV theory, which is important only in determining the coefficients in the
equations. As proved by Bhattacharyya, Hubeny, Minwalla and Rangamani in [8], the
Navier-Stokes equations for the finite-temperature boundary theory can be obtained, using
AdS/CFT, from the dynamics of Einstein gravity. Clearly these will be the Navier-Stokes
equations for a large N field theory. As already mentioned, this detail will only determine
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the specific values of the parameters in the equations, without changing their formal
structure. The ratio between the shear viscosity of this strongly interacting fluid and its
entropy density has been computed in [9] to be

η

s
=

ℏ
4πkB

,

which is very small quantity.
Quantum chromodynamics (QCD) is the theory which describes the strong interaction

and it is notably a strongly interacting theory at low energies. In this regime perturbation
theory is not an option, and one has to rely on more sophisticated field theoretical ap-
proaches, as lattice calculations, or numerical methods (e.g. Monte Carlo method) which
do not always work well enough. For these reasons QCD has become an important arena
where to test AdS/CFT, resulting in an enormous amount of literature (for a review, see
[10]). The application of the correspondence to study the strong interaction is known as
AdS/QCD. Particularly interesting is the AdS/QCD description of the strongly coupled
quark-gluon plasma produced in heavy-ion collisions. Quark-gluon plasma is a state of
matter where quarks and gluons are not confined into hadrons, and heavy-ion collisions
experiments found that its behaviour is close to a perfect fluid, having a very small viscos-
ity. The value η/s computed using AdS/CFT is compatible with the small experimental
value, whereas perturbative computations gave a significantly larger value. This was the
first confirmation of the validity of AdS/CFT by an experiment. The fact that the dual
description gave a result very close to the experimental value was also suggesting that the
quark-gluon plasma is indeed a strongly coupled system, despite being in the deconfined
phase [9, 11, 12].

In this work we will focus on applications of the AdS/CFT correspondence to con-
densed matter physics. This amounts to the study of large number of particles at tem-
peratures low enough so that the quantum effects overcome the thermal fluctuations and
quantum mechanics plays a significant role in determining the phase structure. In the
zero temperature case, the system may undergo a phase transition by varying an external
tuning parameter g, for example an applied magnetic field, pressure, etc. In this case
we have a quantum phase transition, because it is driven by quantum (i.e. not thermal)
fluctuations only. This is usually a continuous phase transition, with the coherence length
diverging as g approaches a critical value gc. At that point the system is scale invariant
[13]. This situation is referred to as quantum criticality and it happens at the quantum
critical point, which technically speaking is only realized at the absolute zero. However
the critical behaviour can dominate in a wider region, called quantum critical region, for
instance in presence of a finite temperature T , but with g close to gc [13, 14]. Of particu-
lar interest is the understanding of the behaviour of strange metals, a phase of correlated
electrons in solids. The name is due to important differences with usual metals described
as Fermi-liquid states; one of the main differences lies in that a strange metal resistivity
is proportional to the temperature [15], while that of ordinary metals is proportional to
the temperature squared. Many condensed matter systems display a strange metal be-
haviour, in particular heavy-fermion compounds [16] and the cuprate high temperature
superconductor compounds.

AdS/CMT, the application of AdS/CFT to condensed matter, is then the attempt
to describe condensed matter systems in the vicinity of critical points and which are
amenable to a quantum description, hoping that this framework may be valid also more
generally. The first important aspect is that AdS/CFT can capture the physics of thermal
matter using classical gravity. The dictionary says that this is done by considering a black
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hole in the AdS spacetime. As already mentioned, black holes are intrinsically thermo-
dynamic systems and their thermodynamical quantities, as temperature and entropy, are
directly related to quantities of the boundary theory. For example, the temperature of the
boundary theory is the same of the black hole Hawking temperature in the deep interior
of the bulk. The introduction of a black hole in the AdS spacetime clearly changes the
overall geometry: while the asymptotic, near boundary geometry must remain the one
of AdS as to apply the AdS/CFT dictionary, moving away from the boundary reveals a
different geometry. This difference with respect to the pure AdS case is related to the
renormalization group of the field theory. The important notion here is that in AdS/CMT
one often considers asymptotically AdS spacetimes due to the presence of a black hole, in
order to account for thermodynamic and finite-density properties of the boundary quan-
tum field theory. The latter is then identified with the UV fixed point of the boundary
renormalization group flow.

Holography in condensed matter is particularly powerful when dealing with strongly
interacting systems at finite-density, either at zero or finite-temperature. With finite-
density one means that there is a net charge density, usually associated with a U(1)
conserved charge, and a chemical potential. The gravitational dual description is pro-
vided by a charged black hole in AdS spacetime - usually with a planar horizon - being a
generalization of the well known Reissner-Nordström black hole. Within this model one
can holographically compute transport coefficients/Green’s functions of primary impor-
tance as the optical and Hall conductivity in the critical phase (e.g. [17, 18]), the shear
viscosity and many others and account for dissipative effects. An important aspect of the
AdS/CFT correspondence is that it relates global symmetries in the CFT boundary the-
ory to corresponding local symmetries (gauge fields) in the bulk. The immediate example
of a U(1) gauge field capable of reproducing finite-density in the boundary is the Maxwell
field, described by the action

SMaxwell = −1

4

∫
dDxFµνF

µν ,

where D is the number of bulk dimensions.
Using this particular black hole solution, and via the holographic principle, it was

possible to study quantum theories exhibiting properties associated with strange metals
[19, 20, 21, 22, 15, 23], Fermi surfaces [24, 25, 26, 27, 28], and superfluids/superconductors
[29, 30, 31, 32, 33, 34, 35] without invoking a quasiparticle description. All of these
holographic descriptions are obtained by filling the bulk with appropriate fields. For
example, Fermi surfaces are reproduced by fermions in the bulk. Remarkably, holography
can be used to compute fermions spectral functions of the quantum theory at finite density.
Angular resolved photoemission (ARPES) and scanning tunnelling spectroscopy (STS)
are two main ways of probing the spectral function of strongly interacting systems in
solids; its calculation is of primary importance in order to compare with experiments.
Superconductors, on the other hand, are holographically described by introducing a scalar
field in the bulk which condenses below a critical temperature.

The power of AdS/CFT to investigate strongly interacting systems in condensed mat-
ter motivated people to apply the correspondence starting from various bulk theories,
following a bottom-up approach. A particularly interesting modification of the bulk the-
ory is the replacement of the Maxwell action with a non-linear electrodynamics model
[36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Examples of non-linear U(1)
gauge fields are Born-Infeld [51], Euler-Heisenberg [52], power-Maxwell, logarithmic and
exponential.
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Recently a new non-linear model of electrodynamics, named Modified Maxwell or
ModMax theory [53], has been found. ModMax is the unique one-parameter non-linear
extension of Maxwell theory, preserving all of its symmetries. Contrarily to above men-
tioned non-linear models, effects of ModMax in the context of AdS/CMT have not been
investigated yet. In this thesis, we explore the main concepts of the AdS/CFT and how
non-linear effects can affect the physics of the boundary theory. The focus in on ModMax
electrodynamics and the consequences of its employment in AdS/CMT, in particular in
the context of holographic superconductivity.

The thesis is organized as follows: in chapter 2 we review the main properties of AdS
spacetime, with particular focus on black hole solutions and on the relation between AdS
isometries and the conformal group. In chapter 3 we explore general notions about non-
linear electrodynamics and in particular of ModMax electrodynamics. The solution for
a charged black hole with planar horizon in the presence of ModMax electrodynamics is
obtained. As already said, this is a master bulk system to describe holographically field
theories at finite density. Chapter 4 is devoted to the study of the holographic dictionary,
this is the set of rules needed to quantitatively connect bulk quantities with boundary
quantities. A rigorous presentation of the dictionary may require the employment of
string theory. We will sometimes rely on qualitative and intuitive argument to explain
the dictionary content, in order not to depart too much from the main topic of this work.
In chapter 5 we apply the correspondence to condensed matter systems. In particular
we work out a holographic description of a superconductor, where the dual theory in the
bulk is general relativity with minimally-coupled ModMax electrodynamics and a charged
scalar field. Effects of ModMax on the formation of the condensate, critical temperature
and conductivity are studied. We show that, within the approximations of our model,
the ModMax parameter does affect the boundary theory for what concerns the value
of the scalar condensate in the superconducting phase but it does not affect the critical
temperature and the optical conductivity. Finally, in Chapter 6 we present our conclusions
and provide possible future directions.
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Notation and conventions

In this work we will always use units where the speed of light c, the reduced Plank constant
ℏ and the Boltzmann constant are equal to one:

c = ℏ = kB = 1 .

With these units every physical quantity has dimensions of a length to the appropriate
power. In particular the gravitational constant G(D) inD spacetime dimensions has length
dimension

[G(D)] = D − 2 .

The number of spacetime dimensions of the boundary CFT is denoted with d+ 1, where
d is the number of spatial dimension of the field theory and the “+1” is for time. The
bulk theory lives in a spacetime with an extra dimension with respect to that of the CFT;
thus the bulk theory is defined on a d+ 2 dimensional manifold.

For generic tensors in the CFT theory we use Greek indices which assume the values
0,1,2,...,d, where 0 is for time. For generic tensors in the bulk theory we still use Greek
indices, but this time they assume values 0,1,2,...,d+1. We introduce different indices for
tensors in the two theories when confusion between bulk and boundary indices may arise.
In both cases the metric is Lorentzian with signature (−,+,+, . . . ).

Physical dimensions

Another important constant in the context of AdS/CFT is the AdS curvature radius, de-
noted with L. This is not a fundamental constant but it appears when relating quantities
of the dual descriptions using the dictionary. This constant and G are often combined
with other constants. We collect many of the constants and quantities appearing in this
thesis together with their length dimension in the following table, where the dimension of
the bulk is d+ 2 and that of the boundary is d+ 1:

bulk quantity symbol length dimension
AdS curvature radius L 1
gravitational constant G d
black hole mass term M d− 1

black hole charge term Q d− 1
black hole temperature T −1

scalar field mass m −1
scalar field charge q 0

metric tensor ds2 2
gauge field (one-form) A (2− d)/d

boundary quantity
U(1) conserved current Jµ −(d+ 2)/2

source of the current AQFT
µ −d/2

temperature T −1
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Chapter 2

Aspects of AdS spacetime

The aim of this chapter is to provide a schematic collection of classical results regarding
the structure of the anti-de Sitter (AdS) spacetime, serving as a starting point for the
following chapters where the AdS/CFT paradigm and its applications to condensed matter
will require many of the contents exposed here. As shown in the next section, charts on
AdS usually include a time-like coordinate, a radial coordinate and a set of d “equivalent”
space-like coordinates. For this reason the dimension of the manifold will be written as
d+2 and the manifold itself will be denoted with AdSd+2 or with similar notations. Even
if the contents of this chapter will be applied in the context of AdS/CFT (or AdS/CMT),
references to the correspondence are minimized.

We start with the definition of the AdSd+2 spacetime together with different coordinate
systems, each of which will reveal some of the manifold properties. The isometries of
AdSd+2 and the connection to the conformal group are studied, providing a first hint for
the AdS/CFT correspondence. Next, we analyse more physical aspects of this spacetime
like its definition as a solution to Einstein equations and the black hole generalizations.
In particular, we make contact with known results, showing that black hole solutions in
AdS approach the known Schwarzschild and Reissner-Nordström in asymptotically flat
space. Eventually we explore the propagation of a classical scalar field in AdSd+2 and its
stability. Understanding the near boundary behaviour of the fields in AdS is crucial for
exposing the AdS/CFT dictionary. Also, AdS-black hole solutions together with a scalar
field are fundamental ingredients for the holographic description of a superconductor.

2.1 Review of AdS spacetime
In the Euclidean Rd space, one can define the hyperboloid as the set of points whose
coordinates (X1, . . . , Xd) satisfy

−X2
1 +X2

2 + · · ·+X2
d = −L2 . (2.1)

The anti-de Sitter (AdSd+2) space is the Lorentzian generalization of the previous hyper-
boloid. In order to construct it, first consider the flat R2,d+1; this is the set of points
(U, V,X1, . . . , Xd+1) equipped with the metric

ds2 = −dU2 − dV 2 + dX2
1 + . . . dX2

d+1 . (2.2)

Given a positive constant L with dimensions of a length, the AdSd+2 spacetime is then
defined as the hypersurface in R2,d+1 satisfying

−U2 − V 2 +X2
1 +X2

2 + · · ·+X2
d+1 = −L2 , (2.3)
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i.e. the points at a given (pseudo)distance from the origin. So we can either see AdSd+2

as a kind of hyperboloid in the Euclidean space, or as a pseudosphere in flat R2,d+1. In
both cases we are using a definition by embedding, in the sense that AdSd+2 is seen as a
part of a larger space. The last point of view is the appropriate one when considering the
metric, as it is induced by that of R2,d+1.

2.1.1 AdS coordinates

The next step is to introduce new coordinates uµ ≡ (t, ρ, θ1, . . . , θd) on the manifold, in
such a way that the above equation is satisfied. An immediate choice is

U = L cosh(ρ) sin(t) ,

V = L cosh(ρ) cos(t) ,

Xi = L sinh(ρ)X̂i , i = 1, . . . , d+ 1 ,

(2.4)

with
∑d+1

i=1 X̂
2
i = 1. For instance

X̂1 = cos(θ1) ,

X̂2 = sin(θ1) cos(θ2) ,

X̂3 = sin(θ1) sin(θ2) cos(θ3) ,

...

X̂d = sin(θ1) sin(θ2) . . . sin(θd−1) cos(θd) ,

X̂d+1 = sin(θ1) sin(θ2) . . . sin(θd−1) sin(θd) .

(2.5)

The ranges of the coordinates uµ are ρ ∈ [0,∞), t ∈ [0, 2π], θd ∈ [0, 2π) and θi ∈ [0, π] for
i < d. In these new d + 2 coordinates, known as global coordinates, the metric induced
from (2.2) on the hypersurface AdSd+2 is

ds2 = L2(− cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dΩ2
d) , (2.6)

with dΩ2
d being the metric of the d-sphere. Allowing now the variable t to run from −∞

to ∞ one gets the universal covering of AdSd+2
1, regardless of the embedding used to get

here. For simplicity this will be referred as AdSd+2 also in the following, with no reference
to the universal covering. A similar expression is obtained by rescaling ρ and t by defining
r = ρL ∈ [0,∞) and τ = tL ∈ (−∞,∞), obtaining

ds2 = − cosh2
( r
L

)
dτ 2 + dr2 + L2 sinh2

( r
L

)
dΩ2

d . (2.7)

In this form, it is straightforward to see that in the L → ∞ the metric reduces to
Minkowski (in spherical coordinates):

ds2 → ds2Mink = −dτ 2 + dr2 + r2dΩ2
d . (2.8)

Another useful form of the metric, especially when dealing with the boundary of the
manifold, is obtained by the change the of coordinate sinh(ρ) = tan(ψ) (or, analogously,
cosh(ρ) = [cos(ψ)]−1), leading to

ds2 =
L2

cos2(ψ)

(
−dt2 + dψ2 + sin2(ψ)dΩ2

d

)
, (2.9)

1Some authors take this as the definition of AdSd+2 spacetime.
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with ψ ∈ [0, π/2).
However, the most useful coordinate systems for the AdS/CFT correspondence, espe-

cially for our purposes, are the following:

1. wµ ≡ (z, t, x1, . . . , xd) defined by

U =
1

2z

(
L2 + z2 − t2 +

d∑
i=1

x2i

)
,

V =
L

z
t ,

X1 =
L

z
x1 ,

...

Xd =
L

z
xd ,

Xd+1 =
1

2z

(
L2 − z2 + t2 −

d∑
i=1

x2i

)
.

(2.10)

with t, x1, . . . , xd ∈ (−∞,∞) and z ∈ (0,∞). In these coordinates (Poincaré coor-
dinates) the metric is

ds2 =
L2

z2

(
dz2 − dt2 +

d∑
i=1

dx2i

)
(2.11)

and it is clearly conformal to the flat metric, indeed

ds2 = Ω2(z)

(
dz2 − dt2 +

d∑
i=1

dx2i

)
; Ω(z) =

L

z
. (2.12)

The interior corresponds to large values of z, while small values correspond to the
the boundary (to be defined soon). Notice that this patch doesn’t cover the full
AdSd+2 but only one half of it, which is conformal to half of Minkowski.

2. vµ = (r, t, x1, . . . , xd) related to the previous by r = L2/z; the metric is

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 +

d∑
i=1

dx2i

)
. (2.13)

These are referred as Poincaré coordinates too. Now the interior corresponds to
small values of r while approaching the boundary corresponds to taking r → ∞.
This coordinate system still covers half of AdSd+2.

2.1.2 AdS boundary and compactification

AdS/CFT correspondence qualitatively asserts that the physics on the boundary of an
(asymptotically) AdSd+2 spacetime is strictly related to the one of a conformal field theory
(CFT) in d+1 dimensions. In this sense the CFT can be thought as living on the AdSd+2

boundary. Actually, AdSd+2 does not have a boundary in the standard sense and with the
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word “boundary” we refer to its conformal boundary. This is obtained by compactification
of the original AdSd+2 spacetime, resulting in a new manifold ÂdSd+2. In order to get it,
a finite range coordinate system for AdSd+2 is adopted, as the one in (2.9). The metric
can then be written in the form

ds2 =
1

cos2(ψ)
dŝ2 (2.14)

with ψ = π/2, corresponding to an infinitely far away point, not included. However the
metric dŝ2 is regular at ψ = π/2. The compactified spacetime ÂdSd+2 is then defined by
the metric dŝ2 with the point ψ = π/2 included. Thus AdSd+2 is conformal to ÂdSd+2:
the original AdSd+2 is mapped in the interior of ÂdSd+2 and the conformal boundary of
AdSd+2 is defined as the boundary of ÂdSd+2, i.e. its submanifold having ψ = π/2.

2.1.3 AdS isometries and relation to the conformal group

AdSd+2 spacetime has isometry group SO(2, d+ 1). This is because AdSd+2 is a pseudo-
sphere in flat R2,d+1 and, analogously to the 2-sphere embedded in R3 having SO(3) as
isometry group, it inherits the symmetry from the ambient space. Of course considering
the universal covering of AdSd+2 does not affect this property. The group SO(2, d+1) has
D(D−1)/2 generators, with D = (d+1)+2 being the dimension of the ambient space. It
follows that the SO(2, d+1) group accounts for all the possible isometries of AdSd+2. It is
useful to have these symmetries acting in a clear way on the local coordinates. Unfortu-
nately, the realization of the SO(2, d+1) isometry on local coordinates is not easy to see.
Nevertheless, one can recognize how do particular elements of SO(2, d + 1) act on, e.g.
Poincaré coordinates. From (2.11), the ISO(1, d) is manifest: this is the isometry group
of the Minkowski spacetime Md+1, called Poincaré group, which acts as translations and
usual Lorentz transformations on the coordinates t, x1, . . . , xd in (2.11).

Also, the subgroup SO(1, 1) of the original SO(2, d + 1) can be shown to act on the
Poincaré coordinates wµ defined in (2.10) as a dilation

z → λz, t→ λt, xi → λxi (2.15)

(see below for an argument). In the coordinates vµ (see (2.13)), the SO(1, 1) obviously
acts as

r → r/λ, t→ λt, xi → λxi . (2.16)

Argument for the previous statement

Consider the subgroup SO(1, 1) of SO(2, d+1), acting on global coordinates (U,Xd+1) as

SO(1, 1) :

{
U ′ = γ(U − βXd+1)
X ′
d+1 = γ(Xd+1 − βU)

, (2.17)

which, introducing null coordinates P± = (U ±Xd+1)/
√
2, reads

SO(1, 1) : P ′
± = γ(1∓ β)P± ≡ a±1P± . (2.18)
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On the other hand, using the Poincaré coordinates (2.10), it is possible to infer what is
the transformation on the latter. Indeed, also using (2.18),

P+ =
L2

z

SO(1,1)−−−−→ a
L2

z

P− =
1

z

(
z2 − t2 +

d∑
i=1

x2i

)
SO(1,1)−−−−→ a−11

z

(
z2 − t2 +

d∑
i=1

x2i

)
;

(2.19)

from the first one, it necessarily follows that z → a−1z under SO(1, 1), while from the
second one the correct transformation is obtained if one takes t→ a−1t and xi → a−1xi .
Upon renaming a−1 with λ, this is exactly (2.15).

□

It is worth mentioning that the isometry group of AdSd+2, i.e. SO(2, d+1), has the same
dimension of the conformal group on (d+1)-dimensional Minkowski space, Conf(Md+1).
Moreover, the algebras of the two groups are isomorphic.

Now we investigate the relation between AdS isometries and the conformal group. The
conformal group of Md+1 ≃ R1,d contains the usual isometries ISO(1, d) with generators
Pµ (translations) and Mµν (Lorentz transformations), but also dilations generated by D
and special conformal transformations generated by Kµ, with µ, ν = 0, 1, . . . , d. In order
to work out the conformal algebra, consider its scalar representation. We start with a
transformation of the type

ϕ′(x′) = F (ϕ(x))

x′ = x+ δx
(2.20)

which we will take to be infinitesimal. This means that if ϵ is the small parameter of the
transformation, then x′ − x and ϕ′(x)− ϕ(x) are of order ϵ.

In general, the generator G of a transformation2 is defined in terms of the “syn-
chronous” variation (comparing fields at the same point) as

−iϵGϕ(x) = ϕ′(x)− ϕ(x) . (2.21)

Since the left hand side is of order ϵ, we can substitute x with x′ = x + δx, where δx is
itself of order ϵ. Thus

−iϵGϕ(x) = −iϵGϕ(x′) = ϕ′(x′)− ϕ(x′) (2.22)

at first order. For conformal transformations, the field and its transformed are related by

ϕ′(x′) = Ω∆(x)D(R(x))ϕ(x) (2.23)

where ∆ is the scaling dimension of the field ϕ and Ω(x) is the conformal factor implicitly
defined by

∂xµ

∂x′ν
= Ω(x)Rµ

ν(x) , Rµ
ν(x) ∈ SO(1, d) , (2.24)

together with Rµ
ν(x). The requirement that Rµ

ν(x) is an SO(1, d) matrix makes the
previous definition unambiguous. The quantity D(R(x)) is the spin representation of the

2Clearly, the transformation belongs to a Lie group.
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group element R(x), and so it brings spin indices. For a scalar field, D maps to the
identity, so that equation (2.23) reads

ϕ′(x′) = Ω∆(x)ϕ(x) . (2.25)

We can now compute the generators for the different conformal transformations:

• Translations (δxµ = aµ)

The infinitesimal parameters here are aµ and the generators are Pµ. For translations,
Ω(x) = 1 and by using (2.25) we find ϕ′(x′) = ϕ(x). The generators in (2.22) are
thus given by

−iaµPµϕ(x) = ϕ(x)− ϕ(x′) . (2.26)

It is now straightforward to find the generators. By Taylor expansion we get

ϕ(x′) = ϕ(x) + aµ∂µϕ(x) =⇒ −aµ∂µϕ(x) = ϕ(x)− ϕ(x′) . (2.27)

and by comparison with (2.26),

Pµ = −i∂µ . (2.28)

• Lorentz (δxµ = ωµνx
ν , ωµν = −ωνµ)

The infinitesimal parameters are ωµν , which contract with the antisymmetric3 gen-
erators Mµν . The conformal factor Ω(x) is again 1, and so ϕ′(x′) = ϕ(x). The
generators are found similarly to what have been done for translations. Indeed, the
definition of generator (2.22) and the Taylor expansion give{

− i
2
ωµνMµν = ϕ(x)− ϕ(x′)
ϕ(x′) = ϕ(x) + ωµνxν∂µϕ(x)

=⇒ Mµν = i(xµ∂ν − xν∂µ) , (2.29)

where we conventionally added a 1
2

in the first line and the generators Mµν have
been already antisymmetrized.

• Dilations (δxµ = sxµ)

The infinitesimal parameter is s and the generator is D. This time the conformal
factor is not equal to one, indeed equation (2.24) reads

Ω(x)Rµ
ν(x) =

∂xµ

∂x′ν
=
∂(x′µ − sxµ)

∂x′ν
=
∂(x′µ − sx′µ)

∂x′ν
= (1− s)δµν (2.30)

and so, using (2.25), ϕ′(x′) = (1 − s)∆ϕ(x) = (1 + s)−∆ϕ(x). The equation for the
generator (2.22) is then

−isDϕ(x) = (1 + s)−∆ϕ(x)− ϕ(x′) = −s∆ϕ(x)− sxµ∂µϕ(x) , (2.31)

where we expanded at first order in s. It follows that the generator is

D = −ixµ∂µ − i∆ . (2.32)
3A possible symmetric part will give no contribution in the contraction anyway.
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• Special conformal transformation (δxµ = 2(x · b)xµ − x2bµ)

The infinitesimal parameters are the bµ and the generators are the Kµ. As for
dilation, we first compute Ω(x) at first order in bµ as follows:

Ω(x)Rµ
ν(x) =

∂xµ

∂x′ν
=

∂

∂x′ν
(x′µ − δxµ)

=
∂

∂x′ν
(x′µ − 2(x′ · b)x′µ + x′2bµ)

= δµν − 2(x′ · b)δµν − 2bνx
′µ + 2x′νb

µ

= δµν − 2(x · b)δµν − 2bνx
µ + 2xνb

µ .

(2.33)

If we collect the coefficients of δµν , we get

Ω(x)Rµ
ν(x) = (1− 2(x · b))δµν − 2(bνx

µ − xνb
µ)

= (1− 2(x · b))
(
δµν + 2

xνb
µ − bνx

µ

1− 2(x · b)

)
.

(2.34)

The indexed part is clearly an SO(1, d) matrix because it has the form δµν + ωµν ,
with ωµν antisymmetric. We conclude that

Ω(x) = 1− 2(x · b) , (2.35)

that substituted in (2.25) returns

ϕ′(x′) = (1 + 2(x · b))−∆ϕ(x) = ϕ(x)− 2(x · b)∆ϕ(x) . (2.36)

This in turn can be used in the definition of the generators (2.22), to find

−ibµKµϕ(x) = ϕ(x)− 2(x · b)∆ϕ(x)− ϕ(x′)

= −2bµxµ∆ϕ(x)− 2bµxµx
ν∂νϕ(x) + x2bµ∂µϕ(x)

(2.37)

where in going from the first to the second line we Taylor expanded ϕ(x′) around
x. Finally, the generators Kµ are

Kµ = −i(2xµxν∂ν − x2∂µ)− 2ixµ∆ . (2.38)

Using these explicit expressions for the generators Pµ, Mµν , D and Kµ, it is possible to
work out the conformal algebra conf(Md+1)

[Pµ, Pν ] = 0

[Pµ,Mρσ] = i (ηµρPσ − ηµσPρ)

[D,Pµ] = iPµ

[Kµ, Pν ] = 2i (ηµνD −Mµν)

[Mµν ,Mρσ] = i (ηµσMνρ − (µ↔ ν)− (ρ↔ σ) + (µ↔ ν; ρ↔ σ))

[D,Mµν ] = 0

[Kρ,Mµν ] = i (ηρµKν − ηρνKµ)

[D,D] = 0

[D,Kµ] = −iKµ

[Kµ, Kν ] = 0

(2.39)
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where ηµν is of course diag(−1, 1, . . . , 1). As usual when trying to map one algebra into
another, the above generators can be mixed to form new elements of the algebra. Precisely,
one defines new antisymmetric generators as

Jµν =Mµν

Aν ≡ J−1,ν =
1

2
(Pν −Kν)

Bν ≡ Jd+1,ν =
1

2
(Pν +Kν)

J−1,d+1 = D

(2.40)

or, in matrix notation,

0 . . . J−1,ν . . . D

...
Jµ,−1

...

Mµν

...
Jµ,d+1

...

−D . . . Jd+1,ν . . . 0


(2.41)

which form the SO(2, d+ 1) algebra

[JMN , JRS] = i (ηMSJNR − (M ↔ N)− (R ↔ S) + (M ↔ N ;R ↔ S)) (2.42)

with M,S,R,N = −1, 0, 1, . . . , d, d+ 1 and ηMS = diag(−1,−1, 1 . . . , 1, 1), showing that
the algebra of the conformal group of the Minkowski spacetime is isomorphic to the
isometry group of AdSd+2, this is conf(Md+1) ≃ so(2, d+ 1).

2.1.4 AdS as a solution of Einstein’s field equations with negative
cosmological constant

AdS spacetime is commonly known to be a maximally symmetric solution to the Einstein’s
field equations with a negative cosmological constant and vanishing energy momentum
tensor:

Rµν −
1

2
(R− 2Λ)gµν = 0 , (2.43)

with

Λ = −d(d+ 1)

2L2
< 0 , (2.44)

obtained from the action

S =
1

16πG

∫
dd+2x

√
−g (R− 2Λ) . (2.45)

It is worth recalling that the gravitational constant G has dimension [length]d, so that
the action is dimensionless.
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2.2 Black holes in AdS spacetime
In this section we present some black hole solutions which are asymptotically AdS. In
order to make contact with well known results, before considering AdS we review the
standard Schwarzschild black hole in asymptotically flat spacetime.

The 4-dimensional standard Schwarzschild black hole is a spherically symmetric solu-
tion of Einstein’s field equations with vanishing energy momentum tensor and no cosmo-
logical constant:

Rµν −
1

2
Rgµν = 0 , (2.46)

obtained from the Einstein-Hilbert action

S =
1

16πG

∫
d4x

√
−gR . (2.47)

The metric can be obtained by inserting in the Minkowski metric (in spherical coordinates)
the emblackening factor fSch(r) according to

ds2Sch = −fSch(r)dt
2 +

dr2

fSch(r)
+ r2dΩ2

2 (2.48)

with fSch(r) = 1 − 2Gm/r. Here m is the mass of the black hole, which is found by
matching with Newton’s gravity in the weak field limit. Clearly, when r → ∞ Minkowski
metric is recovered, while for r = 2Gm the emblackening factor vanishes and there is a
coordinate singularity. This particular value of r is the horizon radius rh.

For AdSd+2 black holes, we will always take a metric of the form

ds2AdS-BH =
r2

L2

(
−f(r)dt2 + dΣ2

)
+

L2

r2f(r)
dr2 , (2.49)

with dΣ2 ≡
∑d

i=1 hiidx
idxi. Notice that gii = r2hii/L

2, so that, in matrix notation, the
metric tensor gµν in the coordinates (t, r, x1, . . . , xd) reads

gµν =


− r2f(r)

L2 0 0 . . . 0

0 L2

r2f(r)
0 . . . 0

0 0 r2

L2h11 . . . 0
...

...
... . . . ...

0 0 0 . . . r2

L2hdd

 . (2.50)

We will sometimes improperly refer to dΣ2 and hii as the horizon metric. Also, it will be
sometimes useful to express equations using the function

f̃(r) =
r2

L2
f(r) , (2.51)

referred as emblackening factor too.

2.2.1 AdS-Schwarzschild black hole and Hawking temperature

The AdS-Schwarzschild metric is a solution to the Einstein’s field equations with negative
cosmological constant in d+ 2 dimensions with no energy momentum tensor:

Rµν −
1

2
Rgµν −

d(d+ 1)

2L2
gµν = 0 (2.52)
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and it can be obtained from the metric ansatz (2.49) mimicking the one for the asymp-
totically flat case. Notice that the above equation is nothing but (2.43)-(2.44). Here we
present the solution for three possible topologies of the horizon4, labelled by the curva-
ture k. They are spherical horizon, flat horizon and hyperbolic horizon, corresponding to
k = 1, 0,−1 respectively [54]. The metric is expressed in the form (2.49) as

ds2AdS-Sch =
r2

L2

(
−fAdS-Sch(r)dt

2 + dΣ2
k

)
+
L2

r2
dr2

fAdS-Sch(r)
, (2.53)

with dΣ2
k =

∑d
i=1 hiidx

idxi given by

dΣ2
k =


L2dΩ2

d k = 1 spherical horizon
dx⃗2 ≡ Σd

i=1dx
2
i k = 0 flat horizon

L2dH2
d k = −1 hyperbolic horizon

, (2.54)

where dΩ2
d and dH2

d are the metric on the d−sphere Sd and the metric on the d−hyperbolic
space Hd, respectively. The emblackening factor fAdS-Sch(r) turns out to be [54, 55]

fAdS-Sch(r) = 1− ML2

rd+1
+
kL2

r2
, (2.55)

where M is a constant with dimension [length]d−1 and it is related to a proper mass term
m (i.e. having dimension [length]−1) and to the gravitational constant G (with dimension
[length]d) as

M =
16πGm

dVold
, (2.56)

with Vold being the volume of the d−sphere/d−hyperboloid or equal to L−d ∫ ddx (infinite
for an infinitely extended plane horizon), for k = ±1, 0 respectively.

The distinction of different topologies is even more evident when there is no black hole
at all (M = 0): the k = 0 case is again the pure AdSd+2 of equation (2.13) but for k = ±1
the resulting metric is different although it still satisfies Einstein equations (2.52).

The outer horizon, or simply “horizon”, corresponds to the largest zero of fAdS-Sch,
namely

fAdS-Sch(rh) = 0 =⇒ ML2 = rd+1
h + kL2rd−1

h . (2.57)

For later convenience, we also write the derivative of the emblackening factor at the
horizon

f ′
AdS-Sch(rh) = (d+ 1)

ML2

rd+2
h

− 2kL2

r3h
=

(d+ 1)

rh
+

(d− 1)kL2

r3h
. (2.58)

which is related to the temperature of the black hole, as we now discuss.
As discovered by Hawking in the 1970s [3], black holes are thermal objects and they

are associated with a temperature. Indeed, they emit a black body radiation, whose
temperature is known as Hawking temperature and it can also be derived from the
Euclidean formulation of gravity. In this context, the Hawking temperature is identi-
fied with the inverse of the length of the imaginary time circle. In order to compute
it, consider a generic AdS black hole metric of the form (2.49), perform a Wick rota-
tion (t → iτ) and then a near horizon expansion obtained by replacing r → rh and

4In asymptotically flat spacetimes, the Schwarzschild solution has a spherical horizon but in AdS we
extend the name also to other topologies.
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f(r) → f(rh) + (r − rh)f
′(rh) = (r − rh)f

′(rh). This gives the near-horizon Euclidean
metric

ds2AdS-BH,E ≈ r2h
L2
f ′(rh)(r − rh)dτ

2 +
r2h
L2
dΣ2 +

L2

r2h

dr2

(r − rh)f ′(rh)
(2.59)

which, upon the change of variables

ρ̃2 =
4L2(r − rh)

(r2hf
′(rh))

,

τ̃ =
r2hf

′(rh)τ

(2L2)
,

(2.60)

reads
ds2AdS-BH,E ≈ dρ̃2 + ρ̃2dτ̃ 2 +

r2h
L2
dΣ2 , (2.61)

resembling in part the R2 metric in polar coordinates, with ρ̃ being the radius and τ̃ the
angular variable. The Hawking temperature is found by requiring τ̃ to have periodicity
∆τ̃ = 2π, which, using the second of (2.60), corresponds to a periodicity of the imaginary
time β ≡ ∆τ = 4πL2

r2hf
′(rh)

. The temperature TAdS-BH = β−1 of an AdS black holes is then

TAdS-BH =
r2hf

′(rh)

4πL2
=
f̃ ′(rh)

4π
, (2.62)

where we used the definition of the function f̃(r) given in (2.51).
For the AdS-Schwarzschild case, the emblackening factor is fAdS-Sch (equation (2.55))

and the horizon metric dΣ2 is given by (2.54). The temperature is easily computed just
by substituting (2.58) in (2.62):

TAdS-Sch =
1

4πL2

(
(d+ 1)rh +

kL2(d− 1)

rh

)
. (2.63)

Up to here we presented the solution of the AdS-Schwarzschild black hole for three
values of k to emphasize that the difference with the standard Schwarzschild lies both in
the horizon topology and in the presence of the cosmological constant.

For k = 1 and d = 2, the Schwarzschild solution (2.48) is obtain as the L→ ∞ limit of
the AdS-Schwarzschild metric. Indeed, in this limit the Einstein equations (2.52) reduces
to (2.46), admitting the 4-dimensional Schwarzschild metric as a solution. To explicitly
check this, we start from the AdS4 black hole (2.53)-(2.55) with, of course, k = 1 and
d = 2:

ds2AdS-Sch =

(
r2

L2
− M

r
+ 1

)
dt2 +

(
r2

L2
− M

r
+ 1

)−1

dr2 + r2dΩ2
2 . (2.64)

From (2.56) we find Vol2 = 4π and

M = 2Gm . (2.65)

Substituting this value of M in (2.64), it is straightforward to see that the L → ∞ limit
correctly gives the standard Schwarzschild solution (2.48). Also in this limit, from (2.57)
we find that M = rh, consistently with the last equation and with the temperature of a
standard Schwarzschild black hole, which is found taking the limit of (2.63):

TSch =
1

8πGm
. (2.66)
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This last result is particularly important; for a standard Schwarzschild spacetime the tem-
perature decreases as the mass (and the radius) increases, while for an AdS-Schwarzschild
with flat horizon, the temperature is an increasing function of the radius, as can be seen
from (2.63).

In the remainder of this work we will mostly focus on flat horizons (k = 0); this is a
common choice in the context of gauge/gravity duality, especially for condensed matter
applications. Black holes with a flat horizon are known as black branes.

2.2.2 AdS-Reissner-Nordström black hole

Consider the Einstein-Maxwell theory in presence of negative cosmological constant,
whose action is5

S =

∫
dd+2x

√
−g
[

1

16πG

(
R +

d(d+ 1)

L2

)
− 1

4g2F
FµνF

µν

]
. (2.67)

The classical equations of motion admit an asymptotically AdS charged black hole/brane
solution for different k’s, being a generalisation of the Reissner-Nordström (RN) black
hole in asymptotically flat spacetime. The “structure” of the metric is the same as in the
AdS-Schwarzschild case

ds2AdS-RN =
r2

L2
(−fAdS-RN(r)dt

2 + dΣ2
k) +

L2

r2
dr2

fAdS-RN(r)
(2.68)

with dΣ2
k defined as in (2.54) and the emblackening factor is now given by [56]

fAdS-RN(r) = 1 +
Q2L2

r2d
− ML2

rd+1
+
kL2

r2
. (2.69)

The constants Q and M represent the charge and the mass and they both have the
dimensions of [length]d−1. To make contact with RN in asymptotically flat spacetime,
it is useful to keep in mind that, similarly to (2.56), Q2 ∝ Gq2,6 with q an “honest”
charge with dimensions [length](d−2)/2. Regarding the gauge field, a solution is provided
by [56, 24]

At = µ

(
1− rh

d−1

rd−1

)
, with µ ≡ gFQ

2cd
√
πGrd−1

h

, cd ≡
√

2(d− 1)

d
. (2.70)

As usual, the metric is asymptotically (locally isometric to) AdS and the horizon is iden-
tified with the events at fixed r = rh, with rh largest positive root of fAdS-RN:

fAdS-RN(rh) = 0 =⇒ ML2 = rd+1
h +

Q2L2

rd−1
h

+ kL2rd−1
h . (2.71)

We now focus on the black brane solution, this is k = 0. In this case the above
equation is accompanied by the inequality

ML2 ≥ 2d

d− 1

(
d− 1

d+ 1

)(d+1)/2d

(QL)(d+1)/d , (2.72)

5The normalization of the fields is the one used in [55].
6The proportionality constant is set by the actual definition of the charge.
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needed in order not to have any naked singularity. When the inequality is saturated, we
have the extremal black brane solution such that equation (2.71) is now

2d

d− 1

(
d− 1

d+ 1

)(d+1)/2d

(QL)(d+1)/d = rd+1
h +

Q2L2

rd−1
h

=⇒ rh ≡ r∗ =

(
d− 1

d+ 1

)1/2d

(QL)1/d
(2.73)

This particular black brane has zero temperature but finite mass and charge. Indeed, in
the general case,

f ′
AdS-RN(rh) =

d+ 1

rh
− Q2L2

r2d+1
h

(d− 1) (2.74)

which substituted in (2.62) gives the Hawking temperature for the AdS-RN black brane

TAdS-RN =
r2hf

′
AdS-RN(rh)

4πL2
=

(d+ 1)rh
4πL2

(
1− (d− 1)Q2L2

(d+ 1)r2dh

)
. (2.75)

From the rightmost term it is evident that the temperature vanishes in the extremal case
rh = r∗. The fact that for an extremal black brane the first derivative of the emblackening
factor vanishes at the horizon strongly affects the near horizon expansion, as now the
dominant term is the one containing f ′′

AdS-RN∗(r∗).7 Explicitly one has

f ′′
AdS-RN∗(r∗) =

2d(d+ 1)

r2∗
,

ds2AdS-RN∗ ≈ −d(d+ 1)(r − r∗)
2

L2
dt2 +

L2

d(d+ 1)(r − r∗)2
dr2 +

r2∗
L2
dx⃗2 .

(2.76)

The change of coordinates

r − r∗ = λL2
2/ζ , t = λ−1θ , λ→ 0 , (2.77)

with L2 = L/
√
d(d+ 1), reveals that the near horizon metric of an extremal black brane

is that of AdS2 × Rd

ds2AdS-RN∗ =
L2
2

ζ2
(
−dθ2 + dζ2

)
+
r2∗
L2
dx⃗2 . (2.78)

with the AdS2 sector given in Poincaré coordinates (2.11).
Finally, to make contact with known results, we briefly discuss the asymptotically flat

RN limit. The limit is L → ∞ in d = 2, k = 1 and gF = 1 for simplicity. The metric is
obtained from the limit of (2.68) and (2.69)

ds2RN =

(
1− M

r
+
Q2

r2

)
dt2 +

(
1− M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2 (2.79)

while the At is the same of (2.70), but we remove the constant term and change sign (this
does not affect the energy momentum tensor and so Einstein equations are still satisfied):

At =
Q

2
√
πGr

. (2.80)

7The subscript AdS-RN* indicates the extremal solution.
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We can explicitly write down the relation between Q and the dimensionless q. Consider
a hypersurface Σ enclosing the charge, basically the filled 2-sphere centered in r = 0 with
infinite radius. The timelike unit normal vector is σµ = (L

r
, 0, 0, 0) (indeed σtσtgtt = −1

at radial infinity). Then consider the boundary of Σ, the 2-sphere ∂Σ, with outward
normal unit vector given by nν = (0, r

L
, 0, 0) (indeed nrnrgrr = 1 at radial infinity). If

γ(∂Σ) denotes the metric on ∂Σ, then from Gauss law [57]

q ≡
∫
∂Σ

d2x
√
|γ(∂Σ)|σµnν

(
−2

∂L
∂F µν

)
=

∫
∂Σ

dθdφ r2 sin θ σtnrFtr ,

(2.81)

where the term in brackets is the generalization of Fµν valid also for non-linear electrody-
namics.

q =

∫
∂Σ

dθdφ r2 sin θ

(
Q

2
√
πGr2

)
=

2
√
πQ√
G

=⇒ Q=q

√
G

4π
. (2.82)

Substituting in (2.79) and (2.80) and using (2.65) for the mass term, we get the RN
solution

ds2RN =

(
1− 2Gm

r
+

Gq2

4π

r2

)
dt2 +

(
1− 2Gm

r
+

Gq2

4π

r2

)−1

dr2 + r2dΩ2
2 , (2.83)

At =
q

4πr
. (2.84)

2.3 Exact solution for a scalar field in AdS

In this section we consider a pure AdSd+2 with metric given by (2.13) and study the
behaviour of a massive scalar field in this fixed background, i.e. the backreaction on the
spacetime is ignored. We will have more to say about the mass of the scalar field at end
of this section. The coordinates xi are collectively denoted x. The scalar field action is

Sϕ =
1

2

∫
AdS

dr dt ddx
√
−g [−(∇ϕ)2 −m2ϕ2] + Sct

=

∫
AdS

dr dt ddx
√
−g 1

2
ϕ(∇µ∇µ −m2)ϕ+ Sbdy + Sct,

(2.85)

and the explicit expression for the metric components is

gµν = diag

(
− r2

L2
,
L2

r2
,
r2

L2
, . . .

)
. (2.86)

Here we are only concerned with solving the equation of motion and so the boundary term
will not be considered, as its presence does not change the equations. The term Sct is the
counterterm action, and it is inserted to have a finite action, but does not contribute to
the equations. The dynamics of the field ϕ(r, t,x) is dictated by the Klein-Gordon like
equation

∇µ∇µϕ−m2ϕ = 0 . (2.87)
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We anticipate that the mass parameter m2 can also be negative, but not too much. Using
the relation ∇µ∇µϕ = (

√
−g)−1∂µ (

√
−ggµν∂νϕ), straightforward calculations lead to the

equation (
r2∂2r + (2 + d)r∂r −

L4

r2
(∂2t − ∂2x)−m2L2

)
ϕ = 0 . (2.88)

At this point it is convenient to Fourier transform the t and x variables, so that ϕ(r, t,x) →
ϕ(r, ω,k) and (∂2t − ∂2x → −ω2 + k2 = k2), resulting in the following equation[

∂2r +
d+ 2

r
∂r −

(
k2L4

r4
+
m2L2

r2

)]
ϕ = 0 . (2.89)

The change of variable z = kL2/r will show that this is nothing but a “cousin” of the
Bessel equation: [

z2∂2z − dz∂z −
(
z2 +m2L2

)]
ϕ = 0 (2.90)

the difference lying in that the middle term in the Bessel equation is +z∂z. To solve this
we look for a solution of the form ϕ = zαBν(z) with Bν(z) the solution of the Bessel
equation [

z2∂2z + z∂z − (z2 + ν2)
]
Bν = 0 . (2.91)

The parameter ν2 has not to be chosen equal to m2L2 as equation (2.90) at first sight
would suggest. Instead, set ν2 = m2L2 + β2. By substitution in (2.90) one gets[

z2∂2z − dz∂z − (z2 + ν2 − β2)
]
zαBν = 0 (2.92)

and on using (2.91)

zα+1∂zBν (2α− (d+ 1)) + zαBν

(
β2 + α2 − α(d+ 1)

)
= 0 . (2.93)

A solution can be easily found just by requiring that the two terms separately vanish: from
the first term, α is found to be (d+ 1)/2, which, once set in the second term, determines
β = (d+ 1)2/4. The solution is then

ϕ = z(d+1)/2Bν(z) with ν =

√
(d+ 1)2

4
+m2L2 . (2.94)

Recall that z depends on k; for k2 > 0 equation (2.91) is properly called modified Bessel
equation, whose solution is

Bν(z) = aKKν(z) + aIIν(z) , (2.95)

with Kν(z), Iν(z) being modified Bessel functions and aK , aI being constants. On the
other hand, if k2 < 0, then z is purely imaginary and the solution is given by

Bν(z) = a+H
(1)
ν (Imz) + a−H

(2)
ν (Imz) (2.96)

where H(1)
ν , H

(2)
ν are the Hankel functions and a+, a− are constants. In this case, Imz =√

ω2 − k2L2/r. At this point it is worth to note that Iν(z) diverges approaching the
interior of AdSd+2, corresponding to z → ∞ or, equivalently, r → 0. For this reason one
usually sets aI = 0. We then have three independent solutions, one for k2 > 0 and two
for k2 < 0.
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We now restore the original variable r = kL2/z and study the asymptotic (r → ∞)
behaviour of the solutions. Starting from the k2 > 0 case (2.95), with aI = 0, the solution
(2.94) is

ϕ = aK

(
kL2

r

)(d+1)/2

Kν

(
kL2

r

)
(k2 > 0) , (2.97)

with near boundary behavior obtained by the known expansion of the modified Bessel
function

Kν

(
kL2

r

)
=

(
kL2

r

)−ν
Γ(ν)

2
+

(
kL2

r

)ν
Γ(−ν)

2
+ . . . (r → ∞) , (2.98)

resulting in

ϕ = A(k)
( r
L

)− d+1
2

+ν

+B(k)
( r
L

)− d+1
2

−ν
(k2 > 0, r → ∞) . (2.99)

For the case k2 < 0 we consider the two independent solutions separately. The first
one is proportional to H(1)

ν

(√
ω2 − k2L2/r

)
, whose asymptotic expansion is given by

H(1)
ν

(
qL2

r

)
=

(
qL2

2r

)−ν (
−iΓ(ν)

π

)
+

(
qL2

2r

)ν (
−iΓ(−ν)

π
e−iπν

)
+ . . . (r → ∞) .

(2.100)
For the solution proportional to H(2)

ν

(√
ω2 − k2L2/r

)
the expansion is similar:

H(2)
ν

(
qL2

r

)
=

(
qL2

2r

)−ν (
iΓ(ν)

π

)
+

(
qL2

2r

)ν (
iΓ(−ν)
π

eiπν
)
+ . . . (r → ∞) . (2.101)

In both cases the solution ϕ has a near boundary behavior of the form (2.99), but this
time with k2 < 0. In the context of AdS/CFT, the exponents in (2.99) are usually written
in terms of

∆± =
d+ 1

2
±
√

(d+ 1)2

4
+m2L2 , (2.102)

so that the asymptotic behavior can be written as

ϕ =
ϕ+

r∆+
+

ϕ−

r∆−
(r → ∞) . (2.103)

Here we did not specify the argument as both ϕ(r, t,x) and the Fourier transformed
ϕ(r, ω,k) have this asymptotic behaviour. That this works also for ϕ(r, t,x) can be checked
by substitution in (2.88) and neglecting the r−2 term. Note that ∆− ≤ ∆+ and so the ϕ−
piece is the leading term at the boundary (also called non-normalizable8 or slow falloff ),
while the ϕ+ term is subleading (also called normalizable or fast falloff ). For future
convenience, notice that ∆± = d+ 1−∆∓.

About the Breitenlohner-Freedman bound on m2

In [58] Breteinlohner and Freedman showed that a negative mass squared scalar field
propagating in AdS does not necessarily give rise to an instability (tachyon propagation).

8It is often the case that this term is actually non-normalizable. Nonetheless, there are cases in which
the leading behaviour is normalizable, and for which this terminology is not very appropriate.
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Indeed, while in Minkowski spacetime a negative m2 makes the potential not bounded
from below, AdS geometry contributes with a “binding” term to the effective potential,
with the result that m2 can be negative without causing an instability, provided that
the square root in (2.102) is real. Explicitly, in order to avoid instability, the following
inequality must hold

m2L2 ≥ −(d+ 1)2

4
, (2.104)

known as Breitenlohner-Freedman (BF) bound.
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Chapter 3

Non-linear electrodynamics and
ModMax

Models of non-linear electrodynamics have been extensively studied and applied in differ-
ent areas, from cosmology [59, 60] to condensed matter (e.g. [36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50]). Properties of strongly correlated condensed matter system at
finite density can be holographic captured by introducing a U(1) gauge field in the bulk.
This does not necessarily need to be linear, so that one can try to holographically simulate
different behaviours of the strongly interacting system by means of a non-linear U(1) field.
Examples of quantities which are susceptible to non-linear electromagnetic effects are the
conductivity, the Hall angle, phase transitions and Meissner effect in superconductors.

In this chapter we analyze general properties of non-linear models of electrodynamics.
In order to make contact with well known results, we start from Maxwell case and see how
one can extend the theory to construct non-linear models, including the new ModMax
theory. We will mostly consider a fixed four dimensional Minkowski metric and, as in
the previous chapter, references to the AdS/CFT correspondence are minimized. Then
in section (3.3) we will derive asymptotically AdS black hole solutions in presence of
ModMax electrodynamics and make some comments on what the correspondence will
imply in that specific case.

3.1 Maxwell electrodynamics and its non-linear exten-
sions

We start from Maxwell electrodynamics in absence of sources. The main ingredient is the
field strength

Fµν = ∂µAν − ∂νAµ , (3.1)

using which one constructs the action in a manifestly Lorentz-invariant and gauge-invariant
form1:

S = −1

4

∫
d4x FµνF

µν . (3.2)

1Sometimes the field strength is rescaled by the coupling gF ; this leads to an extra g2F in the denomi-
nator below. This was the convention used in chapter 2 when discussing the AdS-RN black hole.
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Equation (3.1) is actually the solution of the Bianchi identity. Putting together the
equations that are derived from (3.2) and the Bianchi identity, we get, respectively

∂µF
µν = 0 ,

∂µ
∗F µν = 0 , ∗F µν =

1

2
ϵµνρσFρσ .

(3.3)

Free Maxwell theory posses four important symmetries: Lorentz invariance, gauge invari-
ance, conformal invariance and electromagnetic duality invariance. With the latter we
mean the SO(2) transformation(

Fµν
∗Fµν

)
→
(

F ′
µν

∗F ′
µν

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Fµν
∗Fµν

)
(3.4)

valid for the Maxwell case. This definition will be generalized to the case of non-linear
models. The Lorentz invariance is easily seen from all the indices in the action (3.2) being
contracted. The gauge invariance is a consequence of the fact that the action (3.2) is built
with Fµν . The latter is given by (3.1), which is invariant under gauge transformation
Aµ → Aµ + ∂µα. Invariance of the equations of motion under conformal transformation
have been shown in [61] while invariance of the equations of motion under electromagnetic
duality is seen by applying (3.4) on (3.3). In this way the Maxwell equations (3.3) are
transformed into

∂µF
µν cos θ + ∂µ

∗F µν sin θ = 0 ,
−∂µF µν sin θ + ∂µ

∗F µν cos θ = 0 ,
(3.5)

which is equivalent to (3.3).
We now move to non-linear extensions of Maxwell theory. The first properties that

such extensions must have are Lorentz and gauge invariance. These requirements are
satisfied if the action is a functional of the two independent Lorentz invariants, a scalar
and a pseudoscalar, defined as

S =
1

2
FµνF

µν , P =
1

2
Fµν

∗F µν . (3.6)

where ∗F µν is still defined by the third equation in (3.3). Hence, the generic action for a
non-linear model of electrodynamics takes the form

SNED =

∫
d4x LNED(S,P) , (3.7)

where NED stays for non-linear electrodynamics. We will omit this subscript when it does
not cause any confusion. The gauge invariance is again a consequence of the definition of
the field strength which is the building block of the NED action. Non-linear electrody-
namics models should satisfy certain conditions. For instance, causality and unitarity of
the theory constrain a possible form of its Lagrangian. Also, the NED is usually expect
to reduce to the Maxwell electrodynamics in some limit, e.g. for weak fields. The gener-
alization of the equation of motion for a non-linear model is obtained by replacing F µν in
the first of (3.3) with (see e.g. [62])

Eµν = −2
∂LNED

∂Fµν
= −2 (LSF

µν + LP
∗F µν) (3.8)
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where LS and LP are the partial derivatives of LNED with respect to the invariants S and
P respectively. It is straightforward to check that Eµν = F µν in the Maxwell case. The
equations of motion are then

∂µE
µν = 0 ,

∂µ
∗F µν = 0 .

(3.9)

The first one is, of course, the Euler-Lagrange equation derived from the action (3.7).
Keeping the discussion general, it is interesting to characterize non-linear models ex-

hibiting electromagnetic duality invariance. We say that a there is duality invariance if
the equations of motion are invariant under(

Eµν
∗Fµν

)
→
(

E ′
µν

∗F ′
µν

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Eµν
∗Fµν

)
, (3.10)

and
E ′
µν = −2

∂LNED(F
′)

∂F ′µν . (3.11)

Here F ′ is in general a function of F and LNED(F
′) has the same form as LNED(F ).

Notice that equations (3.10) and (3.11) are in general not equivalent. Indeed, E ′ defined
as the upper component of the SO(2) transformed doublet will not in general satisfy
the constitutive relation (3.11) similar to (3.8). The duality invariance requires that the
constitutive relation must be satisfied. This restricts the form of the Lagrangian LNED.
As proven in [62], the theory has duality invariance if it satisfies

4(L2
S − L2

P)P − 8LSLPS = P . (3.12)

The Maxwell Lagrangian LMaxwell = −S/2 satisfies this equation.

3.1.1 Born-Infeld electrodynamics

Born-Infeld electrodynamics [51] was the first proposed model of non-linear electrody-
namics. It was constructed in order to have a finite electron self energy, but it ended up
being used in many different context, in particular in AdS/CMT. The Lagrangian density
of Born-Infeld is

LBI = T −
√
T 2 +

T

2
FµνF µν − 1

16
(Fµν∗F µν)2

= T −
√
T 2 + TS − P2

4
.

(3.13)

The parameter T is the characteristic parameter of the theory. It has dimension of
an energy density. The above Lagrangian satisfies (3.12) and so the theory is duality
invariant. However, it is not scale invariant (and so neither conformal invariant). If we
rescale the fields, the whole Lagrangian does not get rescaled uniformly and therefore
cannot compensate the rescaling of the measure in the action integral. In the weak field
limit (equivalent to taking T → ∞) LBI can be expanded as

LBI | weak fields ≈ T − T

(
1 +

S
2T

)
= −S

2
, (3.14)

which is the Maxwell Lagrangian.
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3.2 ModMax electrodynamics
In 2020 Bandos, Lechner, Sorokin and Townsend found [53] a non-linear extension of
Maxwell electrodynamics being both conformal and duality invariant (and, of course,
gauge invariant). It is the unique one-parameter extension of Maxwell electrodynamics
preserving all of its symmetries. Using the electromagnetic invariants (3.6) the Lagrangian
density of the ModMox theory is written as

LModMax = −cosh γ

2
S +

sinh γ

2

√
S2 + P2 . (3.15)

The Lagrangian of the Maxwell theory is recovered for γ = 0, while conditions of causality
and unitarity require γ ≥ 0 [53, 63], at least in flat spacetime. It is worth stressing that
Maxwell theory is not recovered in the weak field limit, as happens for many other non-
linear models of electrodynamics, but in the limit of vanishing coupling constant. The
equations of motion are (3.9)

∇µ

(
−2

∂LModMax

∂Fµν

)
= 0 , (3.16)

∇µ
∗F µν = 0 , (3.17)

where we generalized them to curved spacetimes by using covariant derivatives. They
are invariant under the duality SO(2) rotations [53, 64, 65] given by (3.10) and (3.11).
However, this is not a symmetry of the ModMax Lagrangian. We can explicitly prove the
duality invariance by checking that (3.12) is sastisfied. The Lagrangian derivatives are

LS ≡ ∂LModMax

∂S
=

1

2

(
− cosh γ + sinh γ

S√
S2 + P2

)
,

LP ≡ ∂LModMax

∂P
=

sinh γ

2

P√
S2 + P2

,

(3.18)

Evaluation of the first term in (3.12) gives

4(L2
S − L2

P)P = cosh2 γP + sinh2 γ

(
S2 − P2

S2 + P2

)
P − 2 sinh γ cosh γ

SP√
S2 + P2

(3.19)

while the second term gives

8LSLPS = −2 sinh γ cosh γ
SP√

S2 + P2
+ 2 sinh2 γ

S2P
S2 + P2

(3.20)

subtracting the above two equations exactly gives P , hence equation (3.12) is satisfied
and the theory has duality invariance.

The energy momentum tensor of ModMax theory, this time in a generic d+ 2 dimen-
sional spacetime, is

TModMax
µν =

−2√
−g

δSModMax

δgµν
= (Sgµν − 2FµσF

σ
ν )LS (3.21)

where SModMax =
∫
dd+2x

√
−gLModMax and LS is given by (3.18)

LS ≡ ∂L
∂S

=
1

2

(
− cosh γ + sinh γ

S√
S2 + P2

)
; (3.22)
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when γ = 0 it is equal to −1/2. In order to make contact with the Maxwell theory, we
factorize a -2 in the rightmost term of (3.21). In this way the energy-momentum tensor
reads

TModMax
µν = −2

(
FµσF

σ
ν − 1

2
Sgµν

)
LS = −2LST

Mawell
µν , (3.23)

which is a particularly useful form. It is straightforward to check that the two tensors are
equal in the γ = 0 case.

In [53, 66, 67] Born-Infeld electrodynamics was combined with ModMax. By looking
at the Born-Infeld Lagrangian (3.13), the middle term in the square root is −2TLMaxwell.
Replacing it with −2TLModMax gives

LγBI = T −
√
T 2 − 2TLModMax −

1

16
(Fµν∗F µν)2 . (3.24)

It can be checked that this Lagrangian density also satisfies (3.12) and hence the theory
is duality-invariant. The weak field limit (T → ∞) of LγBI is LModMax.

3.3 Dyonic AdS black brane with ModMax
Black holes in the presence of ModMax electrodynamics have been studied in a number
of papers. In particular, AdS black holes were explored in e.g. [68]. There, the solution
for a dyonic spherical black hole with both electric and magnetic charges was given. In
this section we derive the solution for a dyonic ModMax d = 2 black brane (k = 0) in
AdS.

The procedure to find such a solution is the following: we first investigate how a black
hole/brane solution in presence of Maxwell electrodynamics is related to the solution with
ModMax. This will provide us with a “rule”, or prescription, to move between the two
cases. Next, we apply the so obtained “rule” to the dyonic AdS black brane in presence
of Maxwell electrodynamics, found in [18] or [29], to obtain the solution in the ModMax
case.

3.3.1 Relation between the Maxwell and the ModMax case

In order to find the “rule”, we start by considering the action

SX =

∫
d4x

√
−g
[
R +

d(d+ 1)

L2
+ LX

]
, (3.25)

where LX can be LModMax given by (3.15), or the usual Maxwell Lagrangian with gF = 1,
this is −FµνF µν/4. The equations derived from the above action are2.

Rµν −
1

2
Rgµν −

3

L2
gµν =

1

2
TXµν . (3.26)

and TXµν is the energy momentum tensor in presence of Maxwell or ModMax electrodynam-
ics, and we look for black holes solutions (but the results we will obtain can be generalized

2Notice that we normalized the fields in the action is such a way that there is no 16πG. Formally this
is equivalent to setting 16πG = 1 or to absorb it in the energy-momentum tensor, so that the right hand
side of Einstein equations will have a 1

2 instead of 8πG. As a consequence, the gauge field Aµ gets scaled
by a factor 4

√
πG, turning dimensionless
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also for branes) of the form:

ds2X =
r2

L2
fX(r)dt

2 +
L2

r2
dr2

fX(r)
+ r2dΩ2

2

AX = AXt dt+ AXφ dφ ,

(3.27)

and the equations for the gauge field are

−2∇µ
∂LX
∂Fµν

= 0 . (3.28)

In general, in order compare two systems, we have to identify a set of parameters
that make them look “similar”. For the black holes under considerations we have four
parameters which can be used to compare the two black holes. They are Qe, Qm, M and
rh and they are not independent of each other. Before proceeding, we must define the
above quantities:

• the charges Qe,m;X are defined through Gauss law;

• the mass MX is defined as the coefficient of −1/r in r2

L2fX(r);

• rh;X is defined as the largest zero of r2

L2fX(r).

Here X stays for Maxwell or ModMax.
For the Maxwell case3, the solution of (3.26) will be fully characterized by the param-

eters
MM , Qe,m;M , rh;M , (3.29)

each having the dimension of [length]1, as discussed in chapter 2, and they are related by
[56]

r2

L2
fM(r) =

r2

L2
− MM

r
+
Q2
e;M +Q2

m;M

r2
+ 1 ,

rh;M ⇐⇒ r2

L2
fM(rh;M) = 0 .

(3.30)

The +1 is due to the positive curvature of the horizon. The black hole mass is related to
charges and horizon radius as

r2

L2
fM(rh;M) = 0 =⇒ MM(Qe,m;M , rh;M) =

r3h;M
L2

+
(Q2

e;M +Q2
m;M)

rh;M
+ rh;M . (3.31)

This is nothing but the RN-AdS black hole found in chapter 2, but with the magnetic
charge.

On the other hand, the ModMax solution is fully characterized by the parameters

MMM , Qe,m;MM , rh;MM , (3.32)

related by [68]

r2

L2
fMM(r) =

r2

L2
− MMM

r
+
e−γ(Q2

e;MM +Q2
m;MM)

r2
+ 1 ,

rh;MM ⇐⇒ r2

L2
fMM(rh;MM) = 0 .

(3.33)

3We use the subscript M for the Maxwell case and the subscript MM for the ModMax case.
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In particular, the black hole mass is related to charges and horizon radius as

r2

L2
fMM(rh;MM) = 0

=⇒ MMM(Qe,m;MM , rh;MM) =
r3h;MM

L2
+
e−γ(Q2

e;MM +Q2
m;MM)

rh;MM

+ rh;MM .

(3.34)

If we want to compare the two black holes, we should set a “reference” with respect to
which measuring the deviations of one with respect to the other. There are three possible
ways to proceed:

1. to compare two black holes with equal masses and charges;

2. to compare two black holes with equal radii and charges;

3. to compare two black holes with equal masses and radii.

We now investigate the second one, namely we set

Qe,m;M = Qe,m;MM ≡ Qe,m , rh;M = rh;MM ≡ rh (3.35)

and the masses MM and MMM of the two black holes are not independent parameters,
but rather functions of rh and Qe.m via (3.31) and (3.34) respectively.

For the Maxwell case we use (3.31)

MM(Qe,m, rh) =
r3h
L2

+
(Q2

e +Q2
m)

rh
+ rh (3.36)

and analogously for ModMax we use (3.34)

MMM(Qe,m, rh) =
r3h
L2

+
e−γ(Q2

e +Q2
m)

rh
+ rh (3.37)

and the difference of the masses is

∆M ≡MM(Qe,m, rh)−MMM(Qe,m, rh) = (1− e−γ)
(Q2

e +Q2
m)

rh
. (3.38)

The expressions of MM and MMM can be substitutes in the first of (3.30) and (3.33)
respectively. In this way we find the emblackening factors in term of the three independent
parameters Qe,m and rh:

r2

L2
fM(r) =

r2

L2
−

r3h
L2 +

(Q2
e+Q

2
m)

rh
+ rh

r
+

(Q2
e +Q2

m)

r2
+ 1 , (3.39)

r2

L2
fMM(r) =

r2

L2
−

r3h
L2 +

e−γ(Q2
e+Q

2
m)

rh
+ rh

r
+
e−γ(Q2

e +Q2
m)

r2
+ 1 . (3.40)

Summarizing: using specific definitions of the parameters of a black hole, two black
holes in AdS, both with horizon rh and charges Qe,m, but in one the gauge field dynamics
is governed by LM while for the other by LMM , have the same metric, apart from the
fact that in the ModMax case the charges in the metric get a factor e−γ/2. Regarding
their masses, they are different but, since the mass is not an independent parameter, this
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information is already encoded in the screening of the charges at the level of the metric.
If we define Qeff

e,m = e−γ/2Qe,m, using (3.31) and (3.34), it is straighforward to check that

MMM(Qe,m, rh) =MM(Qeff
e,m, rh) , (3.41)

and so using (3.33) and (3.30) we get a relation between metric in the two cases:

r2

L2
fMM(r;Qe,m, rh) =

r2

L2
− MMM(Qe,m, rh)

r
+
e−γ(Q2

e +Q2
m)

r2
+ 1

=
r2

L2
−
MM(Qeff

e,m, rh)

r
+

(Qeff
e )2 + (Qeff

m )2

r2
+ 1

=
r2

L2
fM(r;Qeff

e,m, rh) ,

(3.42)

meaning that the metric of an AdS-RN black hole with ModMax, having charges Qe,m

and radius rh is exactly the metric of an AdS-RN black hole with Maxwell, having charges
Qeff
e,m and the same radius.

Regarding the gauge field, for the Maxwell case a solution is given by4

AM(Qe, Qm) =
2Qe

r
dt+ 2Qm cos θdφ , (3.43)

while for ModMax we have [68]

AMM(Qe, Qm) = e−γ
2Qe

r
dt+ 2Qm cos θdφ = AM(e−γQe, Qm) , (3.44)

meaning that, the ModMax gauge field is given by the Maxwell gauge field (3.43) with
e−γQe in place of Qe.

With the conventions used (16πG = 1) everything turned dimensionless. To restore
the proper units, the right hand side of (3.43) is divided by 4

√
πG, and similarly for

(3.44). Once physical dimensions are restored, recall that the charges Qe,m in d = 2 are
lengths, and they are related to a proper dimensionless charges qe,m by Q2

e,m ∝ Gq2e,m, as
discussed in chapter 2.

3.3.2 Application to the black brane

Summarizing the results obtained above, in switching from Maxwell to ModMax, keeping
the radius and the charges fixed, is equivalent to apply the following substitution

Q2
e,m → e−γQ2

e,m in the metric ,
Qe → e−γQe in the gauge field .

(3.45)

With this prescription we can obtain the black brane solution in presence of ModMax,
where we still use the formal convention 16πG = 1.

The ansatz for the metric is the usual one:

ds2 = − r2

L2
f(r)dt2 +

L2

r2
dr2

f(r)
+ r2(du2 + u2dφ2) . (3.46)

4The factors 2 in front of Qe,m are due to the relative normalization of the gravity action with respect
to the electromagnetic action in (3.25).
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where we switched to polar coordinates for the boundary field dimensions, this is (dx2 +
dy2) = L2(du2 + u2dφ2). To solve the equations, we start from the Maxwell case, studied
in [29, 18]. The emblackening factor is given by

r2

L2
fM(r) =

r2

L2
−

r3h
L2 +

Q2
e+Q

2
m

rh

r
+
Q2
e +Q2

m

r2
, (3.47)

with Qe and Qm the electric and magnetic charges respectively, defined by Gauss law.
Using (2.69) and the first of (2.71), we recognize that the middle term is nothing but the
typical mass term in the emblackening factor. The gauge field is given by

AM(r, u) =
2Qe

rh

(
1− rh

r

)
dt+Qmu

2dφ . (3.48)

If instead of using polar coordinates, we use dimensional Cartesian coordinates defined
by (dx2 + dy2) = L2(dx′2 + dy′2), the last term is can be taken to be 2Qmx

′dy′.
In order to switch to ModMax keeping the radius and the charges (defined through

Gauss law) fixed, from (3.45) we see that the effect of introducing ModMax is to screen
both Qe and Qm by a factor e−γ/2 in the metric and to screen only Qe by e−γ in the gauge
field (while Qm is untouched there). What we want to show is that the particular structure
of ModMax is capable of restoring an equal screening when considered at the level of the
energy-momentum tensor. In this way, both sides of Einstein equations will reduce to the
Maxwell case, but with screened charges. If we use the definition of emblackening factor
given in (2.51), equation (3.45) directly implies that

f̃ModMax(r) = f̃Maxwell(r)

[
Q2
e → e−γQ2

e

Q2
m → e−γQ2

m

]
(3.49)

and
AModMax(r, u) = AMaxwell(r, u)

[
Qe → e−γQe

]
. (3.50)

The square brackets contain the instructions for the replacements (i.e. screenings).
The ModMax energy-momentum tensor structure is given by (3.23): one factor has

exactly the same form of the Maxwell energy-momentum tensor. Clearly, this is just a
factorization and it does not relate the two solutions, but only the analytic expressions of
the two tensors. Since we want to relate the Maxwell solution to the ModMax solution,
we have to perform the screenings according to (3.45). Thus we obtain

TModMax
µν = −2LS T̄

Maxwell
µν . (3.51)

where the bar means that TMaxwell
µν , solution of the Einstein-Maxwell theory (i.e. on-shell),

is acted on by the transformations (3.45)5. Now the only thing left is to compute LS .
Using (3.18) leads us to compute S and P . The only non-vanishing components of the
field strength are

Ftr = −∂rAt = −2e−γQe/r
2 ,

Fuφ = ∂uAφ = 2Qmu ,
(3.52)

and S is found as

S =
1

2
FρσF

ρσ = FtrF
tr + FuφF

uφ

= F 2
trg

ttgrr + F 2
uφg

uugφφ

= 4
Q2
m − e−2γQ2

e

r4
.

(3.53)

5Indeed the energy momentum tensor is a function of the metric and of the gauge field only, thus
making unambiguous how to apply the transformations (3.45).
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For P we must first evaluate ∗F µν . Again, the only non-vanishing components are
∗F tr = ϵtruφFuφ = 2Qm/r

2 ,

∗F uφ = ϵuφtrFtr = −2
e−γQe

r4u
,

(3.54)

where we used that ϵµνρσ = |g|−1/2 ϵ̃µνρσ (see e.g. section 2.8 of [57]), and thus

P =
1

2
Fρσ

∗F ρσ = Ftr
∗F tr + Fuφ

∗F uφ

= −8
e−γQeQm

r4
.

(3.55)

Now it is straightforward to compute

S2 + P2 = 16

(
e−2γQ2

e +Q2
m

r4

)2

(3.56)

and
S√

S2 + P2
=
Q2
m − e−2γQ2

e

Q2
m + e−2γQ2

e

. (3.57)

With a bit of manipulation of the hyperbolic functions, we eventually get LS :

−2LS =
e−γ(Q2

m +Q2
e)

Q2
m + e−2γQ2

e

. (3.58)

Now we must compute TModMax and show that it is just TMaxwell with both charges
screened. The only non-vanishing components of Tµν are the diagonal terms. Starting
from the tt component, and without doing the explicit calculation of the tensor in the
Maxwell case, we have (using (3.49), (3.51) and (3.58))

• tt

TMaxwell
tt =

2f̃Maxwell

r4
(Q2

e +Q2
m) , (3.59)

TModMax
tt = −2LS

2f̃ModMax

r4
(e−2γQ2

2 +Q2
m)

=
2f̃ModMax

r4
e−γ(Q2

m +Q2
e)

= TMaxwell
tt

[
Q2
e → e−γQ2

e

Q2
m → e−γQ2

m

]
;

(3.60)

• rr

TMaxwell
rr = − 2

f̃Maxwellr4
(Q2

e +Q2
m) , (3.61)

TModMax
rr = −2LS

[
− 2

f̃ModMaxr4
(e−2γQ2

e +Q2
m)

]
= − 2

f̃ModMaxr4
e−γ(Q2

m +Q2
e)

= TMaxwell
rr

[
Q2
e → e−γQ2

e

Q2
m → e−γQ2

m

]
;

(3.62)
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• uu

TMaxwell
uu = 2

Q2
e +Q2

m

r2
, (3.63)

TModMax
uu = −2LS · 2e

−2γQ2
e +Q2

m

r2

= 2
e−γ(Q2

e +Q2
m)

r2

= TMaxwell
uu

[
Q2
e → e−γQ2

e

Q2
m → e−γQ2

m

]
;

(3.64)

• φφ

TMaxwell
φφ = 2

u2(Q2
e +Q2

m)

r2
, (3.65)

TModMax
φφ = −2LS · 2u

2(e−2γQ2
e +Q2

m)

r2

= 2
u2e−γ(Q2

e +Q2
m)

r2

= TMaxwell
φφ

[
Q2
e → e−γQ2

e

Q2
m → e−γQ2

m

]
.

(3.66)

We stress that the result obtained is not the same of (3.51). The latter is a factorization
of TModMax in terms of T̄Maxwell, where the bar means acted on by (3.45), which is a
somewhat unnatural transformation. What we have shown here is that when computing
TModMax starting from the Einstein-Maxwell solution TMaxwell, one does not even need
the factorization or to “put the bar” using the transformations (3.45), but only to replace
Qe,m → e−γ/2Qe,m in TMaxwell. This is the same screening acting at the level of the metric,
this is occurring on the left hand side of Einstein equations. We conclude that for a
ModMax black brane, both sides of Einstein equations are exactly the ones of Maxwell
case (studied in [29]), apart from the charges being screened, and so the equations are
still satisfied. Said otherwise, if LS happened to have a different form from the one we
computed in (3.58), TModMax would have transformed differently from the left-hand side,
and Einstein equations wouldn’t have held true anymore.
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Chapter 4

Holography and AdS/CFT dictionary

This chapter is devoted to holographic methods in condensed matter physics. We first
give a glimpse on the idea of holography in theoretical physics and to its best known
example, the AdS/CFT correspondence. A proper presentation of AdS/CFT inevitably
requires string theory, which however is far from the scope of this work. For this reason
the focus will be on general features, rather than on rigour and details. After that, we
discuss how the correspondence can be used to compute physical quantities.

In theoretical physics, the word holography generically indicates that the information
of a system can be encoded in a different system (or spacetime region) having at least one
dimension less. This is exactly what happens with a hologram: a three dimensional image
is obtained from the interference pattern lying on a two dimensional film. The idea of
holography in theoretical physics originates from black hole thermodynamics, where the
fact that the black hole Bekenstein-Hawking entropy is proportional to the horizon area
(SSchw = A/4GN for a (3+1) Schwarzschild black hole) suggests that the information of
the microstates of the black hole is stored on its surface rather than in its volume, as first
proposed by ’t Hooft [4]. Indeed, the entropy is a measure of the number of microscopic
states corresponding to a given macroscopic state described by thermodynamic variables,
such as temperature T , and for any “standard” system it grows as the volume. This
is a first hint for holography, although at this point its realization remains undefined.
As discussed in the following section, string theory concretely provides a realization of
holography.

4.1 The AdS/CFT correspondence

In the previous section we discussed the main, qualitative idea of holography. In practice,
the best known realization of holography is given by the AdS/CFT correspondence, which
is found in the context of string theory. This means that by “looking” at a CFT in p
dimensions one sees a gravity theory in (at least) p+ 1 dimensions.

In the original formulation of the correspondence [1], Maldacena showed that N =
4 U(N) super Yang-Mills (SYM herafter) theory1 in (3+1) dimensions is dual (in a sense
to be specified soon) to type IIB supergravity on AdS5 × S5. The N = 4 SYM is a CFT
with a peculiar matter content: a gauge field Aµ = AaµT

a, six scalars and four fermions, all
in the adjoint representation, and it seems very different from any field theory appearing
in “real world” and condensed matter systems. Nevertheless, as anticipated before, it is
not crucial to have such a theory on one side of the correspondence; we will answer the

1Here N is the number of supercharges and N is the number of colours.
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question “why is it ok to use AdS/CFT in condensed matter?” in the following sections.
Before proceeding, we want to fix the terminology: the gravity theory in AdS is referred
as the bulk theory, while the dual field theory is the boundary theory.

Coming back to the Maldacena example, the important point is that taking the large
N (number of colours) limit in the boundary theory implies going to a classical theory
of gravity on the gravitational side of the correspondence. Moving away from this limit
makes it necessary to consider “stringy” properties of gravity in the bulk. At the same
time, the ’t Hooft coupling of the field theory λ = g2YMN should be kept large2, so to
have a derivative expansion in the bulk action (see e.g. Chapter 1 of [69]). When these
two limits are realized, a strongly coupled (λ≫ 1) field theory is described by a classical
gravity theory (because of the large N), and vice versa. In general it is also true the
opposite, that is a strongly coupled “stringy” gravity theory is described by a weakly
coupled field theory. It is then clear that AdS/CFT correspondence is precisely a strong-
weak duality, which is the reason why it became a powerful tool in studying condensed
matter problems.

Another crucial aspect is that the gravity theory lives in higher number of dimensions.
For example in the Maldacena work the bulk spacetime is AdS5 (the S5 is responsible for
the appearance of massive modes with masses proportional to their angular momentum
along the sphere and will not be considered, see [55] Chapter 4) while the boundary theory
lives in a (3+1)-dimesional spacetime.

Summarizing the aspects of interest for us, AdS/CFT relates a strongly coupled quan-
tum field theory in p dimensions to classical gravity in (at least) p+1 dimensions, provided
that N ≫ λ ≫ 1. The extra dimension, which in our case will always be the AdS radial
direction r, is related to the energy scale and it geometrises the renormalization group
flow. The remaining p dimensions are usually x ≡ t, x1, . . . , xp−1.

4.2 AdS/CFT as a computational tool: the dictionary
Up to now we did not give any explicit formula relating the two theories in AdS/CFT.
In this section we clarify what the duality is about. Most of the content in this section is
written following the exposition in the textbooks [55, 69, 70].

The GKPW relation

The duality between the boundary field theory and the bulk gravity theory lies in the
equality of their partition functions. The QFT partition function in the presence of
sources hi(x) coupled to operators Oi(x) is

ZQFT = ⟨ei
∫
dd+1x hi(x)Oi(x)⟩QFT (4.1)

where the right hand side subscript means that the path integral is performed with the
(strongly interacting) QFT action, and thus generically quite difficult to compute. The
gravity partition function to be equated with ZQFT is given by

Zgravity =

∫ ϕi→hi∏
i

Dϕi e
iSbulk[ϕ] (4.2)

2Note that in the large N limit, theories with matrix valued fields in the adjoint representation have
as effective coupling the ’t Hooft coupling. The theory can remain (strongly) interacting even in the large
N limit. For a theory with fields in the vector representation, howerver, the large N limit inevitably
leads to a free/weakly interacting theory.
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where Sbulk is the action in the bulk spacetime. This is not necessarily AdS, but generically
an asymptotically AdS spacetime. The bulk fields ϕi, collectively denoted ϕ, are taken
to coincide with the field theory sources hi when evaluated on the spacetime boundary.
This is represented by the ϕi → hi notation taken from [69]. In this sense the QFT is
said to “live” on the boundary. In the large N limit, the theory of gravity is a classical
theory, and so the partition function can be evaluated on the saddle point, this is (the
underscored means on-shell)

Zgravity = eiSbulk[ϕ
∗→h] (4.3)

and ϕ∗ is the solution of the classical equations of motion with the boundary conditions
that ϕ∗

i (x) coincides with hi(x) when evaluated on the boundary (we will be more precise
about this statement later in this section). Then AdS/CFT is the statement that

ZQFT = Zgravity (4.4)

This was first formulated (in Euclidean formalism) by Witten [7] and Gubser-Klebanov-
Polyakov [6], or briefly GKPW. From (4.1) and (4.2) we notice that a field ϕi in the bulk
acts as a source hi for an operator Oi of the boundary. To illustrate the exact relation
between fields in the bulk and operators on the boundary, we take the example of a scalar
field in AdS.

Green functions: scalar field example

Consider the scalar field in pure AdS of Section 2.3. As mentioned there, the scalar
field action should contain a counterterm, as the on-shell action diverges. A geometrical
regulator to treat the divergence is introduced by shifting the boundary at r = ϵ−1 (instead
of r = ∞). After regularization, the action (2.85) is

Sbulk ≡ Sϕ =

∫
r≤ϵ−1

dr dt ddx
√
−g1

2
ϕ(∇µ∇µ −m2)ϕ+ Sbdy + Sct (4.5)

with Sbdy being the usual boundary term coming from the integration by parts of −1
2
(∇ϕ)2,

Sbdy = −1

2

∮
r=ϵ−1

dt ddx
√
−γϕ ∂nϕ , (4.6)

and Sct is the counterterm action [71], needed to cancel the divergence when the action
is evaluated on-shell:

Sct = a

∮
r=ϵ−1

dt ddx
√
−γϕ2 . (4.7)

In the above formulas, a is a constant to be set in order to cancel a possible divergence,
while γ is the (determinant of the) induced metric on the boundary. For pure AdS, it is
given by

γµν =
r2

L2
ηµν

∣∣∣∣
r=ϵ−1

=⇒ γ = −
(
r2

L2

)d+1

r=ϵ−1

=⇒
√
−γ =

( r
L

)d+1

r=ϵ−1
. (4.8)

The differential operator ∂n = nµ∂µ is the normal derivative, and nµ is the unit vector,
normal to the boundary and pointing outward. For pure AdS, the only non-vanishing
component of nµ is

nr =
r

L
=⇒ ∂n = nr∂r =

r

L
∂r (4.9)
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and it is correctly normalized since

nµnµ = nµnνgµν = nrnrgrr =
r

L

r

L

L2

r2
= 1 . (4.10)

The on-shell action is obtained by substituting the exact solution found in Section 2.3 in
(4.5). However, the first term on the right-hand-side vanishes on-shell, while the boundary
term and the counterterm must be evaluated at r = ϵ−1 which is supposed to be a very
large value of the coordinate r. Therefore, one just has to substitute (2.103) in (4.6),
resulting in

Sϕ = Sbdy + Sct ,

Sbdy =
1

2Ld+2

∮
r=ϵ−1

dt ddx
[
ϕ2
+∆+r

d+1−2∆+ + ϕ2
−∆−r

d+1−2∆−

+(∆+ +∆−)ϕ+ϕ−r
d+1−∆+−∆−

]
=

1

2Ld+2

∮
r=ϵ−1

dt ddx
[
ϕ2
+∆+r

∆−−∆+ + ϕ2
−∆−r

∆+−∆− + (d+ 1)ϕ+ϕ−
]
,

Sct =
a

Ld+1

∮
r=ϵ−1

dt ddx
[
ϕ2
+r

d+1−2∆+ + ϕ2
−r

d+1−2∆− + 2ϕ+ϕ−r
d+1−∆−−∆+

]
=

a

Ld+1

∮
r=ϵ−1

dt ddx
[
ϕ2
+r

∆−−∆+ + ϕ2
−r

∆+−∆− + 2ϕ+ϕ−
]
.

(4.11)

where the underscore means evaluation along the solution (i.e. on-shell) and we used
∆± = d + 1 − ∆∓. Since ∆+ ≥ ∆−, the ϕ2

− term in Sboundary is problematic because it
leads to a divergence when ϵ→ 0.3 However, in Sct there is a similar term, and by setting
a one can cancel the divergence in Sboundary. Precisely, setting a = −∆−/2L gives a finite
on-shell action

Sϕ =
∆+ −∆−

2Ld+2

∮
r=ϵ−1

dt ddx
[
ϕ2
+r

∆−−∆+ + ϕ+ϕ−
] ϵ→ 0−−−→ ∆+ −∆−

2Ld+2

∮
dt ddx ϕ+ϕ− (4.12)

which is regular for ϵ→ 0.
Now we can be more precise about the identification of the scalar field on the boundary

with the local source h(x) of the field theory. The prescription is that one should identify
the leading behaviour ϕ− (up to a normlization constant) with the local source h. With
this prescription the one-point function in the field theory is obtained using (4.1), (4.3)
and (4.4).

⟨O⟩h =
1

iZQFT

δ

δh
ZQFT[h] = e−iSϕ[ϕ]1

i

δ

δϕ−
eiSϕ[ϕ] =

∆+ −∆−

2Ld+2
ϕ+ . (4.13)

For our purposes it is enough to keep in mind that

h ∝ ϕ−

⟨O⟩h ∝ ϕ+ .
(4.14)

This is true even for other kind of fields, but generically the definition of ∆± is differ-
ent. We conclude that a scalar (fermionic, vector...) field in the bulk is dual to a scalar

3Also the ϕ2+ term could be problematic if ∆− − ∆+ ≥ 1 but this is not possible thanks to the BF
bound.
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(fermionic, vector...) operator in the boundary theory, in the sense that the slow falloff
gives the source of the operator and the fast falloff gives its vev, as expressed by (4.14).
Notice that ϕ± correspond to the two falloffs after having removed the r∆± : this is cru-
cial (and general) as quantities in the boundary theory must be “unaware” of the radial
direction!

Actually, the duality is even more tight, as both the conformal dimension and the
retarded Green’s function of the operator are obtained from the bulk field. From linear
response theory, the momentum space retarded Green’s function of the operator O in the
field theory, defined as

GR
OO(ω,k) = −i

∫
dt dx eiωt−ik·x θ(t) ⟨[O(t,x),O(0,0)]⟩ , (4.15)

is given by the ratio of the expectation value by the source

GR
OO =

⟨O⟩
h

∝ ϕ+

ϕ−
. (4.16)

From the exact solution of the scalar field (formulas (2.97) and followings), we can see
that ϕ± ∼ k∆± and so

GR
OO ∼ k∆+−∆− = (k2)∆+−(d+1)/2 (4.17)

which, upon taking the inverse Fourier transform in the boundary field theory (coming
back to spacetime coordinates), gives

GR
OO(x− y) ∼ 1

|x− y|2∆+
(4.18)

with x−y = (x0−y0,x−y). The right hand side of the above equation is exactly how the
Green’s function of a conformal dimension ∆+ operator behaves in a CFT. So we showed
that the conformal dimension of O is ∆+ and it is determined by the mass of the bulk
field. Summarizing, the scalar field example has been used to show that

Bulk Boundary
scalar (fermion, vector...) field ϕ ⇐⇒ scalar (fermion, vector...) operator O

slow falloff ϕ− ⇐⇒ source h of the operator O
fast falloff ϕ+ ⇐⇒ expectation value ⟨O⟩

fast to slow ratio ϕ+
ϕ−

⇐⇒ mom. space ret. Green’s function GR
OO

field mass m2 ⇐⇒ operator dimension ∆+

(4.19)

Alternative “quantization” and unitarity bound

Equation (4.18) shows that ∆+ is the dimension of the boundary operator O dual to the
bulk field ϕ. The BF inequality (2.104) sets the bound on ∆+

∆+ =
d+ 1

2
+

√(
d+ 1

2

)2

+m2L2 ≥ d+ 1

2
, (4.20)

seemingly implying that it is not possible to have boundary operators with dimension
smaller than (d+ 1)/2.
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On the other hand, unitarity of the boundary CFT implies that operators must have
dimension greater than (d− 1)/2 (see e.g. [72]). This rises the question of how to dualise
a boundary operator with dimension ∆ in the range (d− 1)/2 < ∆ < (d + 1)/2 without
violating the BF bound. The answer is that there is a mass window such that both
the leading and the subleading behaviours are normalizable. Indeed, the fact that the
leading behaviour grows near the boundary means that they are non-fluctuating classical
backgrounds of the field theory and so they cannot correspond to an operator, but only
to a source [73]. But when this is not the case, one can use the subleading behaviour
(fast falloff) as the source and the leading, but normalizable, behaviour (slow falloff) as
the vev of the operator, which now has dimension ∆ = ∆−. This procedure is sometimes
referred as alternative quantization, as opposed to the standard quantization discussed in
previous pages. It is important to notice that the two quantizations are incompatible,
and one has to make a choice. The operator in the boundary field theory depends on this
choice and in general the two quantizations correspond to two different CFTs.

To determine the mass window we impose that the operator dimension in the alter-
native quantization belongs to the range mentioned above:

d− 1

2
< ∆− <

d+ 1

2
, (4.21)

Recalling that ∆− = (d+ 1)/2−
√

(d+ 1)2/4 +m2L2 we solve for m2L2 and get

−
(
d+ 1

2

)2

< m2L2 < −
(
d+ 1

2

)2

+ 1 . (4.22)

The left inequality in (4.22) is again the BF bound not being violated (i.e. no tachyon
propagation). If also the inequality on the right is satisfied, then ∆− lies in the range
(4.21), which is not accessible to ∆+. In this range the slow falloff is normalizable too
and within the alternative quantization, the dictionary becomes

ϕ+ ∝ halt

ϕ− ∝ ⟨Oalt⟩
ϕ−

ϕ+

∝ GR
OaltOalt

(4.23)

and Oalt has dimension ∆−.

Symmetries, source fields and currents

A global symmetry in the boundary theory corresponds to a local symmetry in the bulk.
In particular, the Noether currents Jaµ in the boundary4 correspond to the gauge field in
the bulk.

As a clarifying example, useful for the following, consider the case of a global U(1) in
the boundary. The Noether current Jµ couples to the electromagnetic source AQFT

µ . The
latter is nothing but the slow falloff of the bulk field AM , which in turn is the gauge field
associated with the local U(1) in the bulk. We stress that the gauge, electromagnetic
field in the bulk does not dualise in a dynamical electromagnetic field (photons) in the
boundary theory, clearly because there is no gauge symmetry there. The correspondence

4In this part we use capital Latin indices for the bulk and Greek indices for the boundary. Lowercase
Latin is for color indices.
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is between the gauge field in the bulk and the conserved current in the boundary. To
prove this, consider a U(1) gauge field in the bulk. The bulk theory is invariant under
AM → AM +∇Mχ. If χ is finite at the boundary, the field theory action will have a term
like ∫

dd+1x
√
−γ (AQFT

µ +∇µχ)J
µ =

∫
dd+1x

√
−γ (AQFT

µ Jµ − χ∇µJ
µ) (4.24)

and the invariance implies ∇µJ
µ = 0.

Finite temperature, finite density and background magnetic field

In chapter 2 we have seen that (AdS) black holes are thermal objects and that their
temperature is taken to be the Hawking temperature, which can be computed from the
length of the compact time (τ) circle. The AdS/CFT dictionary provides a straightforward
way to encode the temperature of the boundary theory in the bulk system. A finite
temperature in field theory can be obtained by using a black hole geometry in the bulk
[74]. The boundary theory temperature is nothing but the Hawking temperature of a
black hole in the deep interior of the AdS bulk, or, analogously, the length of the compact
time circle of the bulk. Thus

TQFT = TBH . (4.25)

Indeed, the time coordinate t in the bulk is also the time coordinate of the boundary
theory, consequently the periodicity of the imaginary time is the same in the two theories.

Another thermodynamic quantity of interest is the (Gibbs) free energy. In the Eu-
clidean signature, the free energy is obtained directly from the GKPW discussed above.
Indeed,

F = −TQFT lnZQFT = −TBH lnZgravity = −TBH ln e−SE,bulk = TBHSE,bulk , (4.26)

where SE,bulk is the on-shell, Euclidean action of the bulk system.
Particularly important in the context of AdS/CMT is the dualisation of QFTs at finite-

density. With finite-density QFT we mean that the time component of the global U(1)
conserved current, which is the charge density, has non-zero expectation value: ⟨J t⟩ ≠ 0.
Starting from a zero-density QFT, one can induce finite-density by adding to the QFT
Lagrangian the term ∆LQFT = µQFTJ

t [75], where µQFT ≡ AQFT
t is the chemical potential

of the boundary theory and it is the source of the operator J t. As discussed in the previous
section, the conserved operator Jµ associated with global U(1) in the boundary is dual
to U(1) gauge field AM in the bulk. In particular, J t is dual to At, in the sense of the
dictionary (4.19).

In chapter 2 the AdS-RN black hole/brane (with Maxwell electrodynamics) was stud-
ied. There, the time component of the U(1) field was found to be

At = µ

(
1− rd−1

h

rd−1

)
. (4.27)

Notice that the above solution is still the sum of a normalizable mode A+r
−(d−1) plus

a non-normalizable A−r
0. The dictionary rules (4.19) still apply (with A± in place of

ϕ±). Since the slow falloff here is µ and the source in the QFT is µQFT we conclude that
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µ = µQFT. This justifies why we used µ in (4.27). The fast falloff is A+ = µrd−1
h and it is

related to the charge density as

ρ ≡ ⟨J t⟩ = (d− 1)µrd−1
h

g2FL
d

. (4.28)

The is nothing but the third entry of the dictionary (4.19), where the normalization
constant is the one appropriate for gauge fields and it is taken from [13, 69] written in
our conventions. The chemical potential has units of [length]−d/2 and the charge density
has dimensions of [length]−(d+2)/2, but [µρ]=[length]−(d+1) as the QFT Lagrangian5. In
particular, for a three dimensional QFT (d = 2) with gF = 1 one gets

ρ =
µrh
L2

. (4.29)

Also notice that, in d = 2, [µ] = [length]−1 and [ρ] = [length]−2, as expected for a chemical
potential and a charge density respectively. The above argument holds in the same way
when the U(1) field is the ModMax (and other kinds of non-linear electrodynamics, but
not for power-Maxwell electrodynamics [50] because the gauge field falls off with different
powers of r). As discussed in the previous chapter, what changes is the relation between
the slow falloff µ and the bulk charge Q. The same argument holds for the fast falloff.

The background magnetic field in the boundary is obtained similarly to µ. Let us
consider for simplicity d = 2. Given a U(1) field AM and the corresponding antisymmetric
field strength FMN in the bulk, the radial component of the magnetic field is given by
Fxy. For the examples considered in the previous chapter, Fxy is a constant in r and so
it is a non-normalizable mode, exactly as µ. For this reason the magnetic field on the
boundary has to be considered as a source.

4.3 From AdS/CFT to AdS/CMT
Now we address the problem of justifying why AdS/CFT can be applied to condensed
matter systems. Indeed, these systems are not in general described by large N field
theories, so it is not clear why AdS/CFT, as we explored in previous sections, has a
reason to be applied. The answer is that one may rely on the so called “UV independence”,
which often appears in physics. With this we mean that phenomenological theories are
generically rather independent of the microscopic underlying physics, as general long-range
physics manifests itself in hopefully a universal way. Thus we overcome the problem of the
large N gauge theory because we are confident that the emergent collective phenomena
are independent of the details of the microscopic theory. This aspect of field theories is
also known as “strong emergence”.

In general what we have to care about is the kind of condensed matter system we want
to describe. In this work we will focus on superfluids/superconductors. For this reason we
must ensure to work with a finite temperature and finite density boundary theory. From
the discussion of section 4.2, this is obtained using a black brane to introduce temperature
and a U(1) field to reproduce a chemical potential. A detailed description of how it is
possible to build a holographic superconductor will be given in chapter 5.

Coming back to the general case, we want to discuss what is the effect of introducing a
black hole and why it is meaningful for condensed matter applications. The introduction

5A more natural definition is to identify the source as µQFT = µL(d−2)/2, which by differentiation of
the action implies an extra L−(d−2)/2 in (4.28). In this way [µ]=[length]−1 and [ρ]=[length]−d always.
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of a black hole/brane in the AdS spacetime changes the metric to that of an asymptotically
AdS manifold. This modification of the geometry is particularly important for AdS/CMT.
Pure AdS spacetime remains invariant under the rescaling of the coordinates (z, t, xi) →
λ(z, t, xi) as it is seen from the metric (2.11). Regarding the coordinates (t, xi), this is
just the invariance under the rescaling of the boundary theory coordinates. However, the
coordinate z is exclusive of the bulk theory and does not correspond to any direction in the
boundary theory space. The interpretation of the radial bulk direction z (or analogously,
the coordinate r used so far) is that of energy scale at which the boundary theory is
probed (e.g. [76] and references therein). Following the flow along the radial direction
means following the renormalization group of the boundary theory. In particular small
values of z (large r) correspond to approaching the UV theory, while large values of z
(small r) correspond to the IR theory. Said otherwise, processes in the bulk interior
determine long distance physics, the IR, of the dual field theory while processes near the
boundary control the short distance, or UV, physics.

Pure AdS spacetime is the geometrization of scale invariance for a relativistic quantum
field theory, since it is invariant under the rescaling of (z, t, xi) (the bulk interior and near
boundary looks the same). The dual theory exhibits no renormalization group flow at
all. An asymptotic AdS spacetime, instead, has this symmetry only for z → 0, meaning
that the boundary theory corresponds to the fixed UV point of its renormalization group
flow [75]. An important consequence of the duality between the radial direction and the
energy scale of the boundary theory is the emergence of quantum criticality of the field
theory when probed in the IR [24]. To see this, consider the IR geometry of the RN-AdS
black brane given in formula (2.78): this geometries has a scaling invariance only in time
direction. This critical behaviour can be related with observed scaling symmetry of em-
pirical strange metals (see e.g. Chapter 3 of [55] for a discussion). Also, the existence of
Fermi surfaces in the IR is predicted by holography [24], while behaviour of holographic
superconductors in the IR have been explored in e.g. [77]. We conclude that the intro-
duction of a black hole in the bulk gives a way of discerning between UV and IR regimes
of the boundary theory.

IR physics is the one of interest in condensed matter. However, as anticipated before,
some phenomena can be observed also in the UV theory. Phenomena as the Hall effect
and Nerst effect have a dual gravitational description (e.g. [18, 78]). In the specific case
of interest to us, i.e. holographic superconductivity, we have in mind the condensation
of a scalar operator. As will be shown in chapter 5, the dual UV theory (the one living
on the AdS boundary) will exhibit such condensation and also infinite DC conductivity,
even though they occur in the CFT UV boundary theory.
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Chapter 5

Holographic superconductivity with
ModMax

Holographic superconductors are gravitational systems dual to quantum field theories
exhibiting properties commonly associated with superconductors. Real world supercon-
ductors are materials with a complex structure, usually doped and engineered to study
their properties. For example, many high-Tc superconductors are cuprates, this is crys-
tals made of layers of copper oxides, as La2CuO4. Still taking high-Tc superconductors
as an example, they usually have a rich phase diagram: when appropriately doped and
with tuned external parameters, they can transit in antiferromagnetic phase, Fermi liquid
phase or pass in a strange metal phase. Finally, the microscopic mechanism determining
the superconductive phase is still debated.

Reproducing such a complex phenomenology holographically is a hard task, as one
has to add more and more structure to the bulk. The first description of a holographic
superconductor was given in [29, 30], where the condensation of a scalar operator, infinite
DC conductivity and a Meissner-like effect in the boundary have been described with
holography. Starting from here, many other aspects were accounted using AdS/CFT. The
introduction of a Josephson junction into the dualised picture was carried out in [79, 80].
In [34, 32, 33] the effect of magnetic fields was studied for the first time. Unconventional
p-wave superconductors, i.e. superconductors where the strongly paired electrons are
type p wave functions, was first studied in [35]. To add more structure in the bulk,
one can use massive gravity in order to break translational symmetry [81]. Indeed, real
superconductors do have a lattice structure, i.e. they are not translational invariant.

Among all the aspects regarding the description of superconductors using holography,
we are interested in non-linear effects which can be mimicked by non-linear electrody-
namics in the bulk. These effects have been studied over a wide range of models. The list
includes Born-Infeld, power-Maxwell, exponential, logarithmic, arcsin and others non-
linear models. A number of publications is furnished in the bibliography and in the
introduction. Calculations are usually oriented in computing boundary quantities as e.g.
optical conductivity, the formation of the condensate and magnetic effects. The choice
of the electrodynamics model plays a crucial role, because it will directly influence the
above quantities. Inspired by the cuprates being superconducting layers, much of the
research regards d = 2 superconductor holographically dual to a gravity theory in an
asymptotically AdS4 bulk.

In this chapter our superconductor is associated with a quantum field theory in which
a scalar operator (order parameter) acquires non vanishing expectation value when the
temperature drops below a critical value. This phase transition is a second order phase
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transition and it leads to infinite DC conductivity and Meissner effect, which are two
phenomenon associated with all superconductors. In particular we will first expose how
the RN-black brane instability against perturbation of a scalar field is dual to spontaneous
symmetry breaking in the boundary theory, that is to a scalar operator acquiring non-zero
vev. Next we show how this idea leads to a holographic description of superconductivity,
as discovered by Hartnoll, Herzog and Horowitz in 2008. Eventually we promote the
Maxwell gauge field in the bulk to the ModMax gauge field and we show the effect of the
ModMax non-linear parameter on the order parameter and optical conductivity.

5.1 Instability of the RN black brane
The main idea behind holographic superconductivity is that a spontaneous symmetry
breaking of a global symmetry in the boundary can be encoded in the physics of a “hairy”
black hole in the bulk. The word “hairy” refers to the existence of some kinds of non-trivial
fields outside a black hole. For asymptotically flat spacetimes there is a class of theorems
called “no-hair theorems”, stating that a black hole solution is characterized only by the
mass M , the charge Q, and the spin J (see e.g. [82]). The physical content of these
theorems is that eventually matter falls in the black hole or is radiated to infinity, so that
nothing can remain near the horizon. For example there cannot be a massive scalar field
outside the black hole. However, in an asymptotically AdS spacetime these theorems are
no longer valid and so there is a chance to have stationary fields outside a black hole.

If one wishes to holographically describe a superconductor and in particular the
normal-to-superconductor phase transition via AdS/CFT, a hairy black hole is needed.
In the phase transition a scalar operator of the field theory acquires a finite vev by spon-
taneous symmetry breaking. On the other hand, as shown by Gubser [83], it is possible to
spontaneously break an Abelian gauge symmetry in the vicinity of a black hole horizon,
in the sense that a Higgs-like scalar field condenses (classically) near the horizon. This
would correspond to the breaking of the corresponding global symmetry in the boundary,
thus providing a possible holographic description for the phase transition.

In practice, a bulk system in which a local U(1) is spontaneously broken can be built
as follows. Consider the action1

S =

∫
d4x

√
−g
[

1

16πG

(
R +

6

L2

)
− 1

4
F µνFµν − |∇µψ − iqAµψ|2 −m2|ψ|2

]
(5.1)

and a black brane solution of the corresponding equations of motion. This is similar to
the black brane studied in chapter 2, but this time the gauge field is coupled to a charged
massive scalar field ψ. We now show that the electrostatic potential acts as an effective
mass squared for the scalar field, which may trigger a Higgs-like mechanism in the bulk.

Defining

Lψ = − |∇µψ − iqAµψ|2 −m2|ψ|2

= −(∇µψ
∗ + iqAµψ

∗)(∇µψ − iqAµψ)−m2ψ∗ψ ,
(5.2)

the equation for ψ is

0 = −∇µ
∂Lψ
∂∇µψ∗ +

∂Lψ
∂ψ∗

= ∇µ(∇µψ − iqAµψ)− iqAµ∇µψ − (q2AµA
µ +m2)ψ .

(5.3)

1We specialize to the d = 2 case, but the results hold also for higher dimensions.
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The last term in on the right hand side of this equations contains the “effective mass”

m2
eff = m2 + q2AµAνg

µν . (5.4)

To illustrate how the instability comes in, consider At as the only non vanishing compo-
nent; the effective mass becomes

m2
eff = m2 + q2A2

tg
tt (5.5)

with gtt < 0 as the metric is Lorentzian. The mass receives a negative contribution, which
may cause the mass to go below the BF bound, thus causing an instability (see section
2.3). Since the spacetime is asymptotically AdS4, this means that near the boundary
(and only there) the BF bound is m2

effL
2 = −9

4
. However, as we approach the boundary

gtt ∼ −r−2 and At ∼ µ (from the AdS-RN solution (2.68)-(2.70) with k = 0), so that the
negative mass contribution goes like

q2A2
tg
tt ∼ −µ

2

r2
(r → ∞) (5.6)

that in general is a very small contribution, so that m2
eff(r → ∞) = m2. So, if m2 is

above the boundary BF bound, then m2
eff considered at the boundary will also be above

that BF bound. In this case there is no instability near the boundary. Nevertheless, it is
possible to argue, at least in the specific case of an extremal black brane geometry, that
an instability can be triggered in proximity of the horizon. Indeed, from (2.78) we know
that the near horizon topology is AdS2 × R2 with AdS curvature radius L/

√
6, and thus

the BF bound near the horizon is the one of this specific AdS2, this is m2
eff
L2

6
= −1

4
(by

using equation (2.104) with the substitutions d → 0 and L → L/
√
6). Thus in order to

cause a near horizon instability we need

m2
effL

2 < −3

2
. (5.7)

The negative contribution, which was negligible near the boundary, can be evaluated near
the horizon. Using the results from chapter 2, in particular (2.69) with k = 0, (2.70),
(2.73) and (2.72) with the equality sign, we can easily compute

Q2L2 = 3r4h ,

ML2 = 4r3h ,

µ2 =
3g2F r

2
h

4πGL2
.

(5.8)
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The shift in the mass (5.5) is thus given by

q2A2
t |gtt| = q2

A2
t

|gtt|
= q2 lim

r→rh

µ2
(
1− r

rh

)2
r2

L2f(r)


H
= q2µ2 lim

r→rh

[
−2

r2h
r3

+ 2 rh
r2(

r2

L2f(r)
)′
]

H
= q2µ2 lim

r→rh

[
6
r2h
r4

− 4 rh
r3(

r2

L2f(r)
)′′
]

= q2µ2L2 lim
r→rh

[
3
r2h
r4

− 2 rh
r3

1 + 3Q
2L2

r4
− ML2

r3

]
(5.8)
= q2L2

(
3g2F r

2
h

4πGL2

)
lim
r→rh

[
3
r2h
r4

− 2 rh
r3

1 + 9
r4h
r4

− 4
r3h
r3

]

= q2L2

(
3g2F r

2
h

4πGL2

)[
1

6r2h

]
=
q2g2F
8πG

.

(5.9)

In going from the first to the third line in the above equation we used two times L’Hôpital’s
rule. This is permitted because both r2f(r) and its derivative (related to the temperature)
vanish for the extremal black brane. Eventually we get the following near horizon effective
mass:

m2
eff(r → rh) = m2 − q2A2

t |gtt| = m2 − q2g2F
8πG

(5.10)

We now see that it possible to produce a near horizon instability while preserving the
stability at the boundary. This happens when the near horizon BF is violated, but the
near boundary BF is not:

m2
eff(∞)L2 = m2L2 > −9

4

m2
eff(rh)L

2 = m2L2 − q2g2FL
2

8πG
< −3

2
.

(5.11)

As a consequence the Higgs-like scalar may condense near the horizon if thermodynam-
ically favourable. To see the effect one has to rely on numerics. It turns out that the
solution with a scalar profile is favourite with respect to the solution with no scalar. The
falloffs of this solution are the ones expressed in (2.103) and in general both ϕ+ and ϕ−
will be different from zero, corresponding to a having sourced scalar operator with finite
vev in the boundary theory. Now, it is true that the source provides an explicit symmetry
breaking but it is possible to find configurations of the scalar field which realize a genuine
spontaneous symmetry breaking on the boundary, this is a finite vev with no external
source.

5.2 Minimal holographic superconductor

In 2008 Horowitz, Hartnoll and Herzog [30] proposed a way to describe superconductivity
using AdS/CFT correspondence. Since in a zero-density CFT there is no preferred scale,
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every finite temperature is equivalent and there cannot be a definite temperature at which
the transition to the superconductive phase occurs. However, as discussed in chapter 4,
AdS/CFT correspondence can be applied to to finite-density CFTs as well. To do so,
a finite chemical potential (or charge density) is added, effectively introducing a new
scale. The simplest model is the one studied in [30], featuring a non-dynamical AdS4-
Schwarzschild black brane metric (see section 2.2)

ds2AdS-Sch = −f̃(r)dt2 + dr2

f̃(r)
+
r2

L2
(dx2 + dy2) ,

f̃(r) =
r2

L2

(
1− r3h

r3

)
=
r2

L2
− r3h
rL2

,

(5.12)

with r3h =ML2 and temperature given by (2.63)

T =
3rh
4πL2

. (5.13)

As seen in chapter 4, this is also the boundary field theory temperature.
The Lagrangian density in this background is given by

L = −1

4
F µνFµν − |∇µψ − iqAµψ|2 −m2|ψ|2 . (5.14)

Fµν = ∂µAν−∂νAµ with Aµ being the U(1) Maxwell gauge field, and ψ is a charged massive
scalar field, just as in the previous discussion. This is known as minimal holographic
superconductor, where minimal stays for “no self-interactions of the scalar field”. Also,
the fact that the spacetime geometry is not dynamical comes from the assumption that
the fields do not backreact on the spacetime. This is the so called probe limit. Allowing
the fields to backreact on the metric will produce a RN black brane with scalar hair. This
is possible because the spacetime is asymptotically AdS, and so the no-hair theorem does
not apply. Strictly speaking, the probe limit corresponds to the large values of the charge
q. Indeed, by rescaling the fields as Aµ → Aµ/q and ψ → ψ/q, the part of the full action
(5.1) containing Aµ and ψ gets a factor 1/q2. In the large q limit, the action reduces
to the Hilbert-Einstein, without any matter content. As explored in [29, 84], this limit
retains most of the interesting physics. Restricting to the case in which Aµ and ψ depend
only on r and setting Ar = Ax = Ay = 0 and At ≡ ϕ, the equations of motion are2

ψ′′ +

(
f̃ ′

f̃
+

2

r

)
ψ′ +

(
q2ϕ2

f̃ 2
− m2

f̃

)
ψ = 0 , (5.15)

and
ϕ′′ +

2

r
ϕ′ − 2q2ψ2

f̃
ϕ = 0 , (5.16)

For the one-form A = ϕdt to be well defined at r = rh, ϕ(rh) = 0 is required. This
is naively understood recalling that at the horizon dt is infinite; a better argument can
be found in [84]. Also, equation (5.15) in the near-horizon (r ∼ rh) gives ψ′(rh) =
m2ψ(rh)/f̃

′. Indeed, in proximity of the horizon, equation (5.15) reduces to

f̃ ′

f̃
ψ′ − m2

f̃
ψ = 0 =⇒ ψ′(rh) =

m2L2

3rh
ψ(rh) , (5.17)

2Although we used to denote scalar fields with ϕ in the previous chapters, in the literature of holo-
graphic superconductors the scalar and the potential are always denoted with ψ and ϕ, respectively.
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because all the other terms are finite (non-diverging) or zero at the horizon. Notice that
the fact that ψ and ψ′ are proportional at the horizon is a regularity condition. As it is
well known, in general a second order differential equation has two independent boundary
conditions. Finally, the asymptotic behaviours for ψ and ϕ can be taken from (2.103) and
(2.70) with d = 2, respectively. It is a common choice in the literature to set m2L2 = −2
(above the boundary BF bound) and L = 1. With this convention all the quantities
become dimensionless. For clarity we explicitly write down the above statements: the
near boundary behaviour of the fields is3

ψ(r → ∞) ∼ ψ(1)

r
+
ψ(2)

r2
,

ϕ(r → ∞) ∼ ϕ(0) − ϕ(1)

r
,

(5.18)

and the conditions to be imposed at the horizon are

bcs at rh :

 ϕ(rh) = 0

ψ′(rh) = − 2

3rh
ψ(rh)

. (5.19)

From the results of chapter 4, in particular from (4.27) and (4.28), we see that ϕ(0) = µ
is the chemical potential of the field theory and that ϕ(1) = µrh = ρ is the charge density.
With the above choice of the scalar field mass, equation (2.102) gives ∆± = 1, 2. As
discussed in Chapter 4, there are two available correspondences for this bulk system. The
first one where the falloff ψ(1) is dual to a scalar operator O1 and ψ(2) is the corresponding
source hO1 , and the second one where ψ(2) is dual to a scalar operator O2 and ψ(1) is the
source hO2 . The switch to the superconducting phase is signalised by having ⟨O⟩h=0 ̸= 0
when T < Tc, for a given choice of the correspondence. A final remark regards the
ensemble of the boundary field theory. If one wants to work with a grand canonical
ensemble, µ must be fixed. Otherwise, in the canonical ensemble, ρ must be fixed. The
requirement of vanishing boundary source and the specification of the ensemble of the
boundary theory, translate directly into boundary conditions at r = ∞ in the bulk:

bcs at ∞ :

{
ϕ(0) = µ or ϕ(1) = ρ
ψ(1) = 0 or ψ(2) = 0

. (5.20)

We will work in the grand canonical ensemble, i.e. we set ϕ(0) = µ with a fixed µ, and set
ψ(1) = 0, i.e. choose the correspondence with ψ(2) ∝ ⟨O2⟩ and ψ(1) ∝ hO2 .

With these choices, after imposing conditions (5.19) and (5.20), equations (5.15) and
(5.16) can be solved (for instance, numerically) and afterwards one can read the value
of ψ(2) from the falloff of the solution ψ(r). Similarly, ρ can be read off the asymptotic
behavior of the solution ϕ. What one finds is that ⟨O2⟩ acquires finite values below a
critical temperature Tc. An analogous procedure is performed for different choices in
(5.20).

To conclude this section, we explain in which sense this bulk system is dual to a su-
perconductor. First of all, as discussed in chapter 4, the boundary theory is not gauged,
so it would be better to talk of a superfluid rather than a superconductor. Second, since
the boundary theory has a net charge density ρ it cannot describe a neutral material. The
point here is that we are ignoring the opposite charged lattice, so that we are “dualising”

3We label fast and slow falloffs with the inverse power of r.
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only the moving charges. In order to describe the lattice, one should at least break trans-
lation invariance. However, surprisingly enough, the normal-to-superconducting phase
still occurs, even if, at lest for low temperature superconductors described by BCS theory
[85], the superconducting phase is microscopically due to a pair mechanism, for which the
flowing charges (electrons) pair together, mediated by vibrations of the lattice (phonons).
This is an example of what we referred as “strong emergence” in chapter 4, namely the
independence on the microscopic details of the physical phenomena as the phase transi-
tion. Finally, the two main characteristics of a superconductor, infinite DC conductivity
and Meissner effect, must occur in the boundary; this will be shown in the next chapter.

5.3 Holographic superconductor in presence of Mod-
Max

As an application of ModMax theory in the AdS/CMT framework, we extend the results
from section 5.2 to the case in which the U(1) gauge field is described by the ModMax
Lagrangian (3.15). We choose to study a minimal holographic superconductor, i.e. self-
interactions of the scalar field are ignored. The bulk action in four dimensions is

S =

∫
d4x

√
−g
[

1

16πG

(
R +

6

L2

)
+ LModMax − |∇µψ − iqAµψ|2 −m2|ψ|2

]
. (5.21)

Although one can solve the equations derived from this action with particular ansatz on
the fields, it is easier to solve them in the probe limit. This limit retains much of the
physics and it definitely simplifies the equations. Therefore, the metric is just the AdS4-
Schwarzschild black brane (5.12) and we again restrict to the case in which both ψ and
At depend only on the radial coordinate r and set Ar = Ax = Ay = 0 and At ≡ ϕ. The
equations of motion for ψ and ϕ are

ψ′′ +

(
f̃ ′

f̃
+

2

r

)
ψ′ +

(
q2ϕ2

f̃ 2
− m2

f̃

)
ψ = 0 (5.22)

and
ϕ′′ +

2

r
ϕ′ − e−γ

2q2ψ2

f̃
ϕ = 0 , (5.23)

respectively. The first of these two equations is independent of the electrodynamics model
employed, as a consequence of the fact that the scalar field ψ is minimally coupled to the
gauge field. The second equation features the factor e−γ, characteristic of the ModMax
theory. When γ = 0, the equation reduces to (5.16), where the gauge field is described by
Maxwell theory. A complete derivation of these equations can be found in the Appendix
B; as discussed there, the crucial relations to obtain the above equations (in particular
the latter) are S < 0 and P = 0.

In section 5.2 we described the asymptotic behavior of ψ and ϕ; the introduction of
the ModMax action in place of the standard Maxwell one’s does not affect the asymptotic
behavior, at least in the probe limit, which is still given by (5.18)

ψ(r → ∞) ∼ ψ(1)

r
+
ψ(2)

r2
,

ϕ(r → ∞) ∼ ϕ(0) − ϕ(1)

r
.

(5.24)
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The boundary conditions to be imposed are the same as were used in section 5.1,
namely

bcs at rh :

 ϕ(rh) = 0

ψ′(rh) =
m2L2

3rh
ψ(rh)

, (5.25)

needed to have a well defined one-form Aµdx
µ and to satisfy (5.22) near the horizon, and

bcs at ∞ :

{
ϕ(0) = µ

ψ(1) = 0
, (5.26)

corresponding to the boundary field theory being in the grand canonical ensemble and to
setting the source to zero in one of the two possible quantizations, as discussed in section
5.2.

5.3.1 Condensation in the probe limit

The first quantity of interest to study when dealing with a phase transition is the order
parameter. In the case of a superconductor we look for a scalar operator that condenses
when the temperature goes below a critical temperature. This is the main motivation for
studying how ⟨O2⟩ varies with the temperature.

Equations (5.22) and (5.23) are solved numerically with the shooting method: one
imposes conditions (5.25) and ϕ(∞) = µ for some fixed µ (first of (5.26)) and then varies
ψ(rh) until the corresponding numerical solution satisfies also the second of (5.26). Doing
this way, all the four boundary conditions are satisfied. The values of ρ and ψ(2) can then
be read off the asymptotics of the solutions ϕ and ψ respectively. The above procedure is
carried on for different values of rh (at fixed µ), corresponding to different temperatures
thanks to (5.13). Actually, for every fixed (µ, rh), the above procedure provides us with a
countable family of solutions, corresponding to several values of ψ(2). Each solution can be
labelled with its number of nodes, i.e. the number of times the solution crosses the zero.
However, it has been argued in [83] that there is only one solution ψ(r) which minimizes
the free energy and it is the one with no nodes. Calculations have been performed by
setting L = 1, q = 0.5, 1, 2, m2L2 = −2 and µ = 1, 2, 10, 31. The numerical procedure is
reported in the Appendix C.

In order to compute physical quantities in the field theory, recall that AdS/CFT
dictionary relates ψ(2) to the expectation value of a scalar operator O2 of the boundary
field theory. For a holographic superconductor this is nothing but the order parameter.
We adopt the same convention as in [30]:

⟨O2⟩ =
√
2ψ(2) . (5.27)

The numerical analysis showed that in order for the operator O2 to acquire a non-zero
expectation value, a minimal temperature is required; above this temperature ⟨O2⟩ is
zero. The results are shown in Figure 5.1. For a given µ, the critical temperature can be
found fitting ⟨O2⟩ in the T ∼ Tc region, as

⟨O2⟩ = cT 2
c (1− T/Tc)

1/2 , (T → Tc) . (5.28)

We found that

1. Tc/qµ ≈ 0.058748 regardless of the value of γ, among the one tested. We then
conclude that the ModMax parameter γ does not affect the critical temperature
significantly.
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Figure 5.1: Expectation value of O2 as a function of the temperature in the grand canonical
ensemble for different value of γ. Here m2L2 = −2, q = 1 and µ = 1.

2. below the critical temperature, the value of the condensate ⟨O2⟩ is an increasing
function of γ.

An analytic expression relating the value of the condensate (at a given temperature
and chemical potential) for different choices of γ is obtained from equations (5.22) and
(5.23); indeed, by defining Ψ = e−γ/2ψ, the equations, the boundary conditions (5.25,
5.26) and the asymptotic behaviour (5.24) stay the same, provided that one performs the
substitutions ψ → Ψ, ψ(i) → Ψ(i), γ → 0. The bulk field Ψ then gives the value of the
condensate with Maxwell theory at work (γ = 0). The definition of Ψ is natural because ψ
appears always in the combination e−γ/2ψ. Explicitly, the calculation is as follows. First
we just write down all the equations in terms of Ψ: equations (5.22) and (5.23) read

Ψ′′ +

(
f̃ ′

f̃
+

2

r

)
Ψ′ +

(
q2ϕ2

f̃ 2
− m2

f̃

)
Ψ = 0 ,

ϕ′′ +
2

r
ϕ′ − 2q2Ψ2

f̃
ϕ = 0 ,

(5.29)

while the asymptotic behaviours (5.24) read

Ψ(r → ∞) ∼ e−γ/2ψ(1)

r
+
e−γ/2ψ(2)

r2
≡ Ψ(1)

r1
+

Ψ(2)

r2
,

ϕ(r → ∞) ∼ ϕ(0) +
ϕ(1)

r
.

(5.30)

The boundary conditions at infinity (5.26) read4

Ψ(1) = 0 ,

ϕ(0) = µ ,
(5.31)

4Notice that the first condition in (5.31) is nothing but the absence of the source hO2 as expressed by
the second equation in (5.26). However, if we allowed for a source ψ(1) = h, the first of (5.31) would have
been Ψ(1) = e−γ/2h, making this boundary condition model dependent.
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while the boundary conditions at the horizon (5.25) read

Ψ′(rh) = − 2

3rh
Ψ(rh) ,

ϕ(rh) = 0 .
(5.32)

Now, forgetting about ψ, we can solve the system (5.29)-(5.32) for Ψ and ϕ. This is the
same system presented in section 5.2 and studied in [29, 30] (but in the grand canonical
ensemble) and coincides with the Maxwell case (γ = 0). Thus, regardless of the value
of γ, we always reduce to the minimal holographic superconductor of section 5.2, but
with Ψ in place of ψ. Ψ and ϕ are then uniquely determined by the condition for Ψ of
having zero nodes, and Ψ(2) and ϕ(1) are read off the asymptotics of Ψ and ϕ respectively.
In particular,

√
2Ψ(2) gives the condensate ⟨O2⟩γ=0 of the boundary CFT (at chemical

potential µ and charge density ρ = ϕ(1)) in the Maxwell case, basically the blue line in
figure 5.1.

Coming back to ψ, AdS/CFT tells that
√
2ψ(2) is the condensate ⟨O2⟩γ at finite γ

of the boundary CFT (at chemical potential µ and charge density ρ = ϕ(0)), then the
definition of Ψ = e−γ/2ψ (or, analogously, the first of (5.30)) implies

⟨O2⟩γ = eγ/2 ⟨O2⟩γ=0 . (5.33)

The manifestation of ModMax can be seen in (5.23), where e−γ multiplies ψ2 and so we
can remove it introducing Ψ2, reducing to the γ = 0 case, as we did. The remnant of γ is
in the relation between Ψ and the “original” bulk scalar field ψ.

An important consequence of the above discussion is that the charge density ρ (at a
given T and µ) does not depend on the value of γ. Indeed we managed to reduce to the
Maxwell (γ = 0) case just by rewriting the equations in terms of Ψ, without altering the
solution ϕ. As we will discuss briefly, this is something not trivial and in general not
possible with other non-linear electrodynamics. Numerical result confirm this prediction;
for example at T/Tc = 0.4 and µ = 1, q = 1, the charge density is ρ ≈ 0.291500 for every
value of γ considered.

This does not happen with other types of non-linear electrodynamics (see e.g. [46])
where there is a remnant of the non-linear parameter at the level of the equations. For
example in Born-Infeld electrodynamics (3.13), the equation for ψ is the same as (5.22),
but the equation for ϕ is [46]

ϕ′′ +
2

r
(1− β2ϕ′2)ϕ′ − 2q2ψ2

f̃
(1− β2ϕ′2)3/2ϕ = 0 , (5.34)

where β is the non-linear parameter and it is related to the tension T used in (3.13) by
β2 = T−1. It is clear that in this case one cannot do any rescaling such that the equations
(and boundary conditions) are the same as in the Maxwell case. Indeed, even defining
Ψ2 = ψ2(1 − β2ϕ′2)3/2 there will still be a β in the ϕ′ term and, most importantly, the
equation for the scalar will be different as we rescaled it by a non constant term. This
model can be extended to the combined Born-Infeld-ModMax theory (3.24) resulting in
the equation for ϕ (see Appendix B, in particular (B.35))

ϕ′′ +
2

r
(1− eγβ2ϕ′2)ϕ′ − 2q2ψ2

f̃
e−γ(1− eγβ2ϕ′2)3/2ϕ = 0 . (5.35)

In this case one can define Ψ = e−γ/2ψ (as did in the pure ModMax case) and β̃ = eγ/2β.
The system of equations and boundary conditions for Ψ and ϕ are then the same one
would get by starting in the pure Born-Infeld case with a parameter β̃.
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About the difference between q and e−γ/2

Here we would like to emphasise the different consequences of varying the charge q and
the value of γ. These two parameters can be removed from the equations (5.22) and
(5.23) by making the re-definitions Ψ = qe−γ/2ψ and Φ = qϕ. The effect on the boundary
conditions is only due to q which rescales the chemical potential to µ̃ = qµ. Thus, one is
left with studying the same system of equations (but with no γ and no q) for the unknowns
Ψ and Φ, at the chemical potential Φ(∞) = µ̃ = qµ, which is then the only scale available
other than the temperature. This is the reason why we focused on the ratio Tc

µ̃
= Tc

qµ
. Still

focusing on the rescaled fields Ψ and Φ, varying q does change the critical temperature
at which Ψ (and so ψ) condenses. On the other hand, varying γ has no affect at all on Ψ
and Φ. It is only when we come back to our “original” system of ψ and ϕ that we see the
effect of γ: it just enhanced ψ by a factor of eγ/2, everything else being unaltered with
respect to the case γ = 0.

5.4 Conductivity in the probe limit
In order to compute the conductivity in the dual CFT as a function of frequency, we first
add a perturbation5 Ax in the bulk. We assume Ax(r, t) = ax(r)e

−iωt and use results from
Appendix B to find

a′′x +
f̃ ′

f̃
a′x +

(
ω2

f̃ 2
− e−γ

2q2ψ2

f̃

)
ax = 0 , (5.36)

which coincides with the one found in previous works (e.g. [30]), with the difference that
the charge q2 now comes with a screening factor e−γ. In the above equation, ψ is the
solution of (5.22). Equation (5.36) can be solved numerically. However, in analogous way
to what we discussed before, defining Ψ = e−γ/2ψ results in a set of equations for Ψ, ϕ, ax
and a set of boundary conditions/asymptotic behaviours which are exactly the one for
the Maxwell case. Precisely, Ψ and ϕ are determined by (5.29)-(5.32) and ax by (5.36)
which now reads

a′′x +
f̃ ′

f̃
a′x +

(
ω2

f̃ 2
− 2q2Ψ2

f̃

)
ax = 0 . (5.37)

Once again we reduced to Maxwell (γ = 0) case. Indeed Ψ is the scalar field in Maxwell
electrodynamics, namely the solution found by Hartnoll, Herzog and Horowitz. This
means that regarding ax the dependence on γ drops out and the optical conductivity is the
same of the Maxwell case: numerical results confirm this statement. This is analogous to
what happened with ϕ and ρ and it is due to ψ appearing in (5.36) only in the combination
e−γ/2ψ.

We now review how to compute the optical conductivity. The boundary condition at
the horizon to be imposed is the same of Maxwell case (infalling wave) and it is given by
[86]

ax(r) ∝ f̃(r)−iω/3rh (r → rh) , (5.38)

while the asymptotic behaviour is

Ax(r → ∞, t) ∼ A(0)
x (t) +

A
(1)
x (t)

r
. (5.39)

5By “perturbation” we mean that ψ and ϕ are already determined as in the previous section and they
are used as inputs to determine Ax.
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The time dependence on both sides of the above equation is of course given by e−iωt.
Differently from the scalar field case, this time the solution behaves at radial infinity as
the sum of a normalisable mode plus a non-normalisable, and AdS/CFT dictionary states
that they are related to the expectation value of the dual operator in the boundary field
theory and to its source, respectively. Precisely,

A(0)
x = AQFT

x , A(1)
x = ⟨Jx⟩ . (5.40)

with AQFT
x source of the operator Jx. In order to compute the optical conductivity in the

boundary theory, we use Ohm’s law

σ(ω) =
⟨Jx⟩
Ex

=
A

(1)
x

−∂tAQFT
x

=
A

(1)
x

−∂tA(0)
x

= − ia
(1)
x

ωa
(0)
x

(5.41)

where a(0)x and a(1)x are defined by

A(i)
x (t) = a(i)x e

−iωt i = 0, 1 . (5.42)

Given that equation (5.36) is linear, the conductivity is independent of the proportionality
constant chosen in (5.38). Physically, since we are dealing with a perturbation, it seems
reasonable to set the proportionality constant to be sufficiently small. Equation (5.36)
with condition (5.38) are solved numerically. As anticipated before, the conductivity
found in this way is exactly the one for the Maxwell case. The results are shown in figure
5.2. Following [29, 30], we notice that the imaginary part of the conductivity has a pole
in ω = 0 for T < Tc. Using one of the Kramers-Kronig relations, holding for any causal
quantity, in particular for the optical conductivity, we see that the real and imaginary
part of σ are related by

Im[σ(ω)] = − 1

π
PV

[∫ ∞

−∞

Re[σ(ω′)]dω′

ω′ − ω

]
(5.43)

where PV denoted the principal value of the integral. In particular, if Im[σ(ω)] has a
pole in ω = 0 of the type c/ω, then Re[σ(ω)] must have contain a cπδ(ω), with c a
generic constant. This delta is invisible to the numerics because of its infinitesimal width,
as explained in [29]. This is characteristics of perfect conductors, and in particular of
superconductors6.

6The infinite DC, i.e. ω = 0, conductivity is a characteristic of translationally invariant systems. In
such cases the DC infinite conductivity is present at all the temperatures, since the system stays invariant
under translations. However, in this case the translation invariance is implicitly broken by adopting the
probe limit (see [29] for an argument). For this reason the infinite conductivity is associated directly with
the superconducting phase, and it is indeed present below Tc only.
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Figure 5.2: Real (left) and imaginary (right) part of the conductivity as function of ω/T ,
with L = 1, m2L2 = −2, q = 1 and µ = 1. In both graphs, the temperature increases
going from the rightmost curve (blue) to the horizontal line (black). The horizontal line
represents temperatures at and above Tc. The rightmost curve is for T/Tc = 0.4.
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Figure 5.3: Real (left) and imaginary (right) part of the conductivity for different values
of the charge q, independently of the value of γ. Here L = 1, m2L2 = 1, µ = 1 and
T/Tc = 0.4.
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Chapter 6

Conclusions and future directions

In this thesis we have studied applications of non-linear electrodynamics to condensed
matter in the framework of AdS/CMT. We first reviewed the main aspects of the AdS
spacetime and black hole solutions within it. The connection of its symmetries with the
conformal group was highlighted. Then we moved to the main proprieties of generic non-
linear electrodynamics, in view of their employment in the bulk system. In chapter 4 we
exposed how AdS/CFT provides a dual description of some strongly interacting quantum
field theories in terms of classical gravity, and justified its application in studying con-
densed matter problems. In chapter 5, following the master works of Hartnoll, Herzog and
Horowitz [29, 30], we provided a minimal holographic description of a 2+1 superconductor
with the employment of the recently found ModMax electrodynamics [53]. The charac-
teristic parameter γ of this theory was expected to modify in some way the holographic
superconductor model with respect to the standard one, where Maxwell electrodynamics
was adopted. Our computations were performed in the probe limit, where the matter
fields in the bulk do not back-react on the spacetime geometry, which was fixed to be
the AdS-Schwarzschild black brane. Also we worked in the grand canonical ensemble,
meaning that the chemical potential of the dual field theory was kept fixed while varying
the temperature. As expected, we found that the scalar operator dual to the scalar field
in the bulk acquires a finite vev when the temperature drops below a critical Tc, via a
second order phase transitions. At a given temperature, the introduction of ModMax in
place of Maxwell increases the value of the condensate in the boundary theory by a factor
of eγ/2, but it does not affect the critical temperature Tc. This two aspects are of course
related: since at a given temperature the values of the condensates in the two models
are proportional, they both vanish at the critical temperature. The latter is fixed by the
chemical potential µ and the charge q of the scalar via

Tc
µq

≈ 0.058748

according to already known results (as reported in e.g. [70]).
We then analyzed transport properties, in particular the optical conductivity, by per-

turbing the probe limit bulk with a harmonic perturbation ax(r)e
−iωt. The results ob-

tained show that the optical conductivity is independent of the value of γ. The real
part of the conductivity exhibits a Dirac delta for ω = 0 when the temperature is below
Tc. This was signalized by the imaginary part developing a pole at ω = 0 for T < Tc.
The infinite DC conductivity is characteristic of perfect conductors, and in particular of
superconductors.

We found that the critical temperature and the optical conductivity do not depend
on γ by observing that the scalar field can be rescaled as ψ = eγ/2Ψ in such a way
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that the whole system of equations and boundary conditions become unaware of γ. The
information due to γ is stored only in the proportionality between ψ and Ψ. This is a
consequence of conformal invariance of ModMax. It is important to recall that we worked
in the probe limit, as the rescaling may not have the same effect away from this limit. We
briefly investigated the 2+1 minimal holographic superconductor in presence of the Born-
Infeld-ModMax in the probe limit. In this case, the rescaling gives back the equations that
can be found starting with Born-Infeld alone, but with a rescaled non linear parameter
equal to β̃ = eγ/2β.

There are several ways in which this study can be continued. A first one is the analysis
of magnetic properties of the minimal holographic superconductor, such as Meissner effect,
vortex solutions and critical magnetic fields. In this regard, we have performed preliminary
calculations using the charged black brane solution found in chapter 3 that point out that
ModMax may predict lower critical magnetic fields with respect to Maxwell.

Another obvious extension of this work is the investigation of holographic supercon-
ductors in presence of ModMax away from the probe limit, where it may not be possible
to reduce to the Maxwell case by means of the rescaling of ψ. Similarly, one could in-
vestigate the Born-Infeld-ModMax superconductor away from the probe limit. Numerical
methods may be replaced by analytical techniques often used in the context of holographic
superconductivity as the matching method and the Sturm-Liouville eigenvalue problem.

Finally, this work places itself in the wider context of AdS/CFT with non-linear elec-
trodynamics. Holographic superconductors are an important subcategory but surely not
the only one. Application of ModMax electrodynamics in the holographic description
of other condensed matter systems (e.g. Fermi surfaces), are appealing ideas for future
research. The study of effects due to non-minimal couplings of the electromagnetic field
to gravity (as studied in e.g. [87, 88]) is a tantalizing future direction, in particular in the
case in which the electromagnetic field is ModMax, thus extending the results obtained
in this work.
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Appendix A

Christoffel symbols for black brane
metric

Since it is often required to compute Christoffel symbols when performing explicit calcu-
lations, we collect them here and they will serve as a reference. For simplicity we consider
a two-dimensional horizon and we use f(r) for the coefficient of −dt2, instead of f̃(r). We
distinguish two cases:

1. Cartesian coordinates on the horizon, corresponding to

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2) . (A.1)

The non-vanishing Christoffel symbols are given by

Γttr = Γtrt =
f ′

2f
;

Γrtt =
f ′f

2
; Γrrr = − f ′

2f
; Γrxx = Γryy = −rf ;

Γxrx = Γxxr =
1

r
;

Γyry = Γyyr =
1

r
.

(A.2)

2. Polar coordinates on the horizon, corresponding to

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(du2 + u2dϕ2) . (A.3)

In this case the non-vanishing Christoffel symbols are

Γttr = Γtrt =
f ′

2f
;

Γrtt =
f ′f

2
; Γrrr = − f ′

2f
; Γruu = −rf ; Γrϕϕ = −ru2f ;

Γuru = Γuur =
1

r
; Γuϕϕ = −u ;

Γϕrϕ = Γϕϕr =
1

r
; Γϕuϕ = Γϕϕu =

1

u
.

(A.4)
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Appendix B

Holographic superconductors - explicit
calculations

B.1 ModMax case

The probe limit equations of motion (5.22) and (5.23) are explicitly derived. The metric
used is (5.12). Since in this limit the metric is not dynamical, the action reduces to

Sprobe =

∫
d4x

√
−gL =

∫
d4x

√
−g
[
LModMax − |∇µψ − iqAµψ|2 −m2|ψ|2

]
, (B.1)

LModMax being given by (3.15). The equations of motion derived from this action are

∇µ
∂L

∂∇µAν
− ∂L
∂Aν

= 0 (B.2)

and

∇µ
∂L

∂∇µψ∗ − ∂L
∂ψ∗ = 0 , (B.3)

and of course the one for ψ∗.

ModMax equations

The first term in (B.2) can be computed as follows:

∂L
∂∇[µAν]

=
∂LModMax

∂Fµν
= −cosh γ

2

∂S
∂Fµν

+
sinh γ

2
√
S2 + P2

(
S ∂S
∂Fµν

+ P ∂P
∂Fµν

)
= − cosh γF µν + sinh γ

(
SF µν + P ∗F µν

√
S2 + P2

)
,

(B.4)

where Fµν = −Fνµ and the definition of ∗Fµν have been used in the intermediate passages,
resulting in

∂S
∂Fµν

= 2F µν ;
∂P
∂Fµν

= 2 ∗F µν . (B.5)

Having the antisimmetry of Fµν is analogous to solve ∇µ
∗F µν = 0; this produces the extra

factors of 2 in (B.5). Taking the covariant derivative of the first and last term in (B.4),
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gives

∇µ
∂L

∂∇[µAν]

= − cosh γ∇µF
µν

+ sinh γ

[
S∇µF

µν + P∇µ
∗F µν

√
S2 + P2

+ F µν∂µ

(
S√

S2 + P2

)
+ ∗F µν∂µ

(
P√

S2 + P2

)]
.

(B.6)

The equation is highly non-linear, but it linearizes for field configurations for which P ∼ S
[89]. For instance, specializing to the case in which ψ = ψ(r), At = At(r), Ar = Ax =
Ay = 0, the only non vanishing components of F are Frt = −Ftr = ∂rAt. With this
ansatz, the invariant S is negative:

S =
1

2
FµνF

µν = FrtF
rt = (Frt)

2gttgrr = −(∂rAt)
2 < 0 . (B.7)

The dual tensor ∗F and the invariant P are found to be
∗F µν =

1

2
ϵµνρσFρσ = ϵµνtrFtr ,

P =
1

2
Fµν

∗F µν = Frt
∗F rt = 0 ,

(B.8)

the last equation coming from the fact that ∗F rt = 0. Equation (B.6) reads

∇µ
∂L

∂∇[µAν]

= −(cosh γ + sinh γ)∇µF
µν = −eγ∇µF

µν . (B.9)

On the other hand, the second term in (B.2) is given by
∂L
∂Aν

= −2q2Aν |ψ|2 + iq(ψ∇νψ∗ − ψ∗∇νψ) . (B.10)

• Setting ν = t in (B.9) and (B.10) gives the Euler-Lagrange equation for the At:

−eγ∇µF
µt + 2q2At|ψ|2 − iq(ψ∇tψ∗ − ψ∗∇tψ) = 0 . (B.11)

The term ψ∇tψ∗ is zero and the covariant derivative is

∇µF
µt = ∂µF

µt + ΓµµαF
αt + ΓtµαF

µα

= ∂rF
rt + ΓµµrF

rt

= ∂rF
rt +

2

r
F rt ,

(B.12)

where in the last step we used (A.2). Using F rt = −∂rAt and At = gttAt = −At/f̃
(with f̃ defined as in (5.12)), from (B.11) we finally get the equation for At

A′′
t +

2

r
A′
t − e−γ

2q2|ψ|2

f̃
At = 0 . (B.13)

• Setting ν = r, the Euler-Lagrange equation is

−iq(ψ∇rψ∗ − ψ∗∇rψ) = 0 (B.14)

obtained from (B.9) and (B.10) by using ∇µF
µr = 0, which in turn comes from

Γµµt = 0 and ΓrµαF
µα = 0 (contraction of symmetric and antisymmetric indices).

The above equation implies that the phase of ψ is constant and so it can be removed
with a global transformation. Indeed, setting ψ = ρeiθ gives

∂rρ− i∂rθ − ∂rρ+ i∂rθ = 0 =⇒ ∂rθ = 0 . (B.15)
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Scalar equation

In analogy to the above derivation, the first term of (B.3) is obtained starting from

∂L
∂∇µψ∗ = −∇µψ + iqψAµ (B.16)

and then taking the covariant derivative

∇µ
∂L

∂∇µψ∗ = −∇µ∇µψ + iq∇µ(ψA
µ)

= −∂µ∂µψ − Γµµα∂
αψ + iqAµ∂µψ + iqψ∂µA

µ + iqψΓµµαA
α

= −∂r∂rψ − Γµµr∂
rψ + iqψΓµµtA

t

= −f̃ψ′′ − f̃ ′ψ′ − 2f̃

r
ψ′ ,

(B.17)

where in going from the second to the third line we exploited the hypothesis of the fields
discussed above, while in going from the third to the fourth we used Γµµt = 0 and Γµµr = 2/r.
The second term in (B.3) is

∂L
∂ψ∗ = −(m2 + q2AµA

µ)ψ

= −
(
m2 − q2A2

t

f̃

)
ψ ,

(B.18)

directly giving the equation for ψ

ψ′′ +

(
f̃ ′

f̃
+

2

r

)
ψ′ −

(
m2

f̃
− q2A2

t

f̃ 2

)
ψ = 0 . (B.19)

Adding the perturbation Ax

In order to compute the optical conductivity we used equation (5.36). We now prove how
it is obtained. The equation for the perturbation Ax(r, t) = ax(r)e

−iωt are obtained by
linearizing (B.2) around the background solution found above, where ψ and At satisfy
(B.19) and (B.13), respectively. The addition of Ax implies that we have to keep Frx and
Ftx at first order. The invariants S and P are unaffected by the perturbation as they are
quadratic in the fields. Thus we start from the kinetic term with S < 0 and P = 0:

∇µ
∂L

∂∇[µAx]
= −eγ∇µF

µx

= −eγ(∂µF µx + ΓµµαF
αx)

= −eγ
(
∂rF

rx + ∂tF
tx +

2

r
F rx

)
.

(B.20)

The potential term is taken from (B.10)

∂L
∂Ax

= −2q2Ax|ψ|2 , (B.21)
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where the derivatives of ψ do not appear as the background field ψ depends only on r.
The Euler-Lagrange equations obtained from (B.20) and (B.21) are

∂rF
rx +

2

r
F rx + ∂tF

tx − 2e−γq2Ax|ψ|2 = 0 . (B.22)

By lowering the indices of F rx

∂r(Frxg
rrgxx) +

2

r
(Ftxg

rrgxx) + ∂t(Ftxg
ttgxx)− 2e−γq2Axg

xx|ψ|2 = 0 . (B.23)

This is simplified observing that ∂rgxx = −2
r
gxx, leading to

F ′
rxg

rr + Frx(g
rr)′ + Ḟtxg

tt − 2e−γq2Ax|ψ|2 = 0 , (B.24)

where the prime is ∂r and the dot is ∂t. Now using grr = f̃ , gtt = −f̃−1 and that is
Ax = ax(r)e

−iωt we get the final equation

a′′x +
f̃ ′

f̃
a′x +

ω2

f̃ 2
ax − e−γ

2q2|ψ|2

f̃
ax = 0 . (B.25)

B.2 Generalized Born-Infeld case
We compute the equation for ϕ as given in (5.35). We do the calculations assuming
∗F = 0, Fµν = ∂µAν − ∂νAµ and Frt = ϕ′ is the only non-vanishing component of F . As
before, the electromagnetic invariants are given by

S = −F 2
rt = −ϕ′2 , P = 0 , (B.26)

and the ModMax Lagrangian is

LModMax = −cosh γ

2
S +

sinh γ

2

√
S2 + P2 = −eγS

2
(B.27)

In order to write the Euler-Lagrande equations for LγBI of (3.24) we start computing

∂LγBI

∂Fµν
=

∂

∂F µν

(
T −

√
T 2 − 2TLModMax

)
= T

∂

∂F µν

(
1−

√
1− 2LModMax/T

)
= −1

2

−2∂LModMax
∂Fµν√

1− 2LModMax/T

= −e
γ

2

∂S
∂Fµν√

1− 2LModMax/T

= −2eγ

2

F µν√
1− 2LModMax/T

.

(B.28)

In going from the third to the forth line we used (B.27) and from the fourth to the last
the derivative of S produced an extra factor of 2 because we already accounted for the
antisymmetry of F . The kinetic term of the Euler-Lagrange equation is

∇µ
∂LγBI

∂Fµν
= ∂µ

∂LγBI

∂Fµν
+ Γµµα

∂LγBI

∂Fαν
(B.29)
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The only contribution from the Christoffel symbol is when α = r, and Γµµr = 2/r. There
would have been another contraction with Christoffel symbols but it vanishes because of
the antisymmetry of F . The ν = t kinetic term is then

∂r
∂LγBI

∂Frt
+

2

r

∂LγBI

∂Frt
= −eγ

(
∂rF

rt√
1− 2LModMax/T

+
F rt∂rLModMax/T

(1− 2LModMax/T )3/2

+
2

r

F rt√
1− 2LModMax/T

)
.

(B.30)

From (B.26) and (B.27),

LModMax =
eγ

2
ϕ′2 ,

∂rLModMax = eγϕ′ϕ′′ ,

F rt = Frtg
ttgrr = −ϕ′ ,

∂rF
rt = −ϕ′′ ,

(B.31)

giving for the kinetic term the final expression

∇µ
∂LγBI

∂Fµt
=

−eγ√
1− eγϕ′2/T

(
−ϕ′′ − eγϕ′2ϕ′′/T

1− eγϕ′2/T
− 2

r
ϕ′
)

=
eγ√

1− eγϕ′2/T

(
ϕ′′

1− eγϕ′2/T
+

2

r
ϕ′
) (B.32)

The potential term in the same found in the previous section

∂L
∂At

= −2q2At|ψ|2 = 2q2|ψ|2

f̃
ϕ . (B.33)

The equation for ϕ is then

ϕ′′ +
2

r

(
1− eγϕ′2

T

)
ϕ′ − 2q2|ψ|2

f̃
e−γ

(
1− eγϕ′2

T

)3/2

ϕ = 0 (B.34)

or, introducing β2 = T−1

ϕ′′ +
2

r

(
1− eγβ2ϕ′2)ϕ′ − 2q2|ψ|2

f̃
e−γ

(
1− eγβ2ϕ′2)3/2 ϕ = 0 . (B.35)

In the weak field limit β2 → 0, ModMax equation (5.23) is correctly recovered. While for
γ → 0 we recover the usual Born-Infeld equation and equation (5.34) is recovered.
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Appendix C

Detailed numerical analysis

Here we describe in detail how the numerical analysis used for holographic superconduc-
tors was performed. We refer to the ModMax superconductor introduced in section 5.3.
Firstly, our input parameters are

• the AdS curvature radius L;

• the horizon radius rh;

• the charge q of the scalar;

• the mass m2 of the scalar;

• the boundary chemical potential µ;

• the value γ of the ModMax coupling constant.

Secondly, in all the numerical calculations we used L = 1, which makes everything turn
dimensionless, and m2L2 = m2 = −2. Thirdly, we used the variable z = r−1. With this
choice we have a finite range for the radial variable as the horizon is at zh = r−1

h and the
boundary is at z = 0.

Before discussing the numerics, we rephrase the problem in terms of the variable z.
The system we want to solve is that of section 5.3, which consists of a second order
differential equation (5.22) for ψ, a second order differential equation (5.23) for ϕ. We
do not write down the equations for ψ and ϕ in the variable z as it is not particularly
illuminating. The asymptotic behaviours (5.24) in the variable z read

ψ(z → 0) = ψ(1)z + ψ(2)z2 ,

ϕ(z → 0) = ϕ(0) − ϕ(1)z .
(C.1)

Notice that in this variable the falloffs can be easily expressed in terms of derivatives of
the fields. Indeed,

ψ(1) = ψ′(0) , ψ(2) =
1

2
ψ′′(0) ,

ϕ(0) = ϕ(0) , ϕ(1) = −ϕ′(0) ,
(C.2)

the prime being differentiation with respect to z. Recall that these are not conditions
to be imposed, but just the analytic solution in a region close to the boundary. In the
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variable z, the boundary conditions to be imposed at the horizon (5.25) and at infinity
(5.26) are much easier to handle. For the boundary conditions at the horizon we have ψ′(zh) = −m2

3zh
ψ(zh)

ϕ(zh) = 0
, (C.3)

while at the boundary {
ψ′(0) = 0
ϕ(0) = µ

. (C.4)

We stress again that the proportionality between ψ(zh) and ψ′(zh) is a regularity require-
ment. Actually, there can be different values of ψ(zh) for which the system can be solved.
The first boundary condition in z = 0 tells that the function ψ is a parabola near z = 0.

Now we move to the literal numerical procedure. The numerical analysis was done
using Wolfram Mathematica. The boundary conditions at the horizon cannot literally be
set there, as the emblackening factor in the equation is divergent and the numerics fail.
We thus set the boundary conditions just off the horizon, at zhb = r−1

hb with

rhb = rh(1 + 10−6). (C.5)

We considered 10−6 small enough for the precision needed. Similarly, the boundary con-
ditions at the boundary are not set at 0 but at ϵ = $MachineEpsilon ≈ 2 · 10−16. In
order to solve the system we set the following boundary conditions

ψ(zhb) = k ,

ψ′(zhb) = −m2

3zh
k ,

ϕ(zhb) = 0 ,
ϕ(ϵ) = µ .

(C.6)

Notice that we gave up the boundary condition ψ′(ϵ) = 0, but we now have a precise
boundary condition at zhb for ψ and ψ′, parametrized by k. Mathematica can solve
this parametric system using ParametricNDSolve (it does so by “shooting” ϕ) and gives
a numerical solutions {ψk(z), ϕk(z)} in the interval [ϵ, zhb]. Clearly this solution will not
satisfy ψ′

k(ϵ) = 0, as we would like. In order to find the solution with the desired property,
we construct the function of k

h(k) = ψ′
k(ϵ) (C.7)

and find the roots of h(k).1 The value k = 0 is always a root, and it corresponds to
having no scalar field at all. Below a critical value of rh (basically, of the temperature)
there will be more roots ki, each of which will correspond to a solution ψki(z) with the
desired property that ψ′

ki
(ϵ) = 0. We chose the root k̄ for which corresponding solution

ψk̄(z) has zero nodes. This is usually the largest of the ki’s, but we always checked that
the sign of ψk̄ did not change (i.e. it stayed positive) in [ϵ, zhb]. Once obtained the desired
solution satisfying all of the required properties (ψk̄ has no nodes, ψ′

k̄
(ϵ) = 0, and all other

boundary conditions satisfied), the fast falloffs ψ(2) and ϕ(1) can be computed using (C.2).
The solution {ψk(z), ϕk(z)} can also be used to compute the optical conductivity. About

1We use the letter h because this is basically (proportional to) the source of O2.
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Figure C.1: Example of h(k) and its roots. There are three roots. When k ≈ 3 the
solution ψ3(z) has no nodes. When k ≈ 1.1 the solution ψ1.1(z) has one node. When
k = 0 the solution ψ0(z) is trivial. The exact roots are found using FindRoot.

this, the numerics is very standard. We just mention that the boundary conditions for
ax(z) are taken from (5.38) and in our code read

ax(zhb) = f̃(zhb)
−iωzh/3 ,

a′x(zhb) =
[
f̃(z)−iωz/3

]′
z=zhb

.
(C.8)
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