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Abstract

Towards the world of Internet of Things, people utilize knowledge from sensor
streams in various kinds of smart applications including, but not limited to smart
medical information systems. The number of sensed devices is rapidly increasing
along with the amount of sensing data. Consequently, the bottleneck problem
at the local gateway has become a huge concern given the critical loss and de-
lay intolerant nature of medical data. Orthogonally to the existing solutions, we
propose sensor data prioritization mechanism to enhance the information qual-
ity while utilizing resources using Value of Information (VoI) at the application
level. Our approach adopts signal processing techniques and information theory
related concepts to assess the VoI. We introduce basic yet convenient ways to
enhance the efficiency of medical information systems, not only when consider-
ing the resource consumption, but also when performing updates, by selecting
appropriate delay for wearable sensors to send data at optimal VoI. Our analysis
shows some interesting results about the correlation and dependency of differ-
ent sensor signals, that we use for the value assesment. This preliminary analysis
could be an initiative for further investigation of VoI in medical data transmission
using more advanced methods.
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Chapter 1

Introduction

Remote healthcare monitoring is based on non-invasive wearable sensors and
actuators that are integrated with modern communication and information tech-
nologies, which allow people to stay in their comfortable home environment in-
stead of forcing them to visit expensive healthcare facilities for clinical monitor-
ing. It allows healthcare personnel or caregivers to monitor important physio-
logical signs including heartbeat, blood pressure, respiratory rate, temperature,
glucose level and movements of their patients in real time, to diagnose health
conditions and provide feedback from distant facilities [4],[5]. While enabling
an efficient and cost-effective facility, these systems need to satisfy certain medi-
cal and ergonomic requirements. For example, they should generate reliable and
timely medical information ensuring measurement accuracy, efficient data pro-
cessing, information security, and low power consumption as well as the Quality
of Service (QoS) [6].

However, developing such an efficient system suitable for medical applica-
tions is quite challenging. The applications can be driven by not only a high vol-
ume of collected values and metadata, but also by the variety and velocity of the
streams that are continuously being transmitted through the local area network
as well as the Internet [7]. It is often likely that the capacity of a communication
link between a gateway at monitoring field and a faraway server is limited. Due
to limited available hardware resources, such a large amount of data coming from
different sensor nodes may generate heavy time-varying traffic. This can cause
significant impact on the system reliability and QoS. The delay in providing re-
sults and generating alerts due to data loss, buffering, network communication
errors, monitoring or processing could be intolerable in sensitive healthcare ap-
plications. Thus, it is essential to prioritise and limit the data transmission using
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appropriate mechanisms in order to increase the efficiency.
As a result of dedication and contribution of many researchers over the last

decade, several optimization models and techniques which can be used on ser-
vice level and application level are already available. A resource optimization
could be accomplished on service level by aggregation and compression tech-
niques related to the Quality of Service (QoS) such as specifying and controlling
throughput and delay. On the other hand, the optimization on application level
focuses on data contents and contexts [7].

Considering the existence of various types of wireless channels as well as dif-
ferent control loops, many of which have their own advantages and disadvan-
tages, it is possible to achieve better and more efficient results in terms of net-
work efficiency using control metrics for network design[8]. In particular, we
will focus on two performance metrics that have raised the interest in sensor data
optimization recent years. Age-of-Information (AoI) is a metric for network op-
eration with sensor applications, which measures the information freshness from
the application layer perspective and is applicable for any kind of network con-
trol scenario[9]. In order to maximize the target application utility while using
limited transmission resources, a discrimination based on the Value of informa-
tion (VoI) [10] can also applied[11].

In this thesis work, we will give an overview to the VoI and AoI in the medical
context and discuss efficient data distribution methods based on VoI and AoI, to
prioritize data transmission and enhance the efficiency of the Internet of Medical
Things (IoMT)[12]. Further, we exploit signal processing techniques to extract
the characteristics and pair wise similarities of sensor data and visualize them for
better comparison. Preliminary, the Pearson’s correlation was applied in the per-
spective of homogeneous and heterogeneous data sources and those results were
compared in order to prioritize the sensors according to the uniqueness of infor-
mation they could provide to the receivers. Based on the autocorrelation results
of the signals, an appropriate transmission delay was calculated for each sensor.
Later the Information Theory was applied to calculate the mutual information of
sensor data over time and then the value of information was derived based on
mutual information.

The objective of all these analyses was to prioritize data transmission of the
sensor signals according to the degree of value of information obtained through
simple yet interesting techniques which can be easily applied before proceed-
ing with further analysis using advanced methods proposed in the literature. A
publicly available data set called OPPORTUNITY activity recognition, that was
recorded in an indoor scenario where a number of sensors acquired human and
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environmental data was used for the simulation.
The rest of this thesis work is organized as follows:
Chapter 1 - Section §1.1 gives an overview to the IoMT and in section §1.2

we describe the Wireless Sensor Networks(WSN) and communication standards.
In section §1.3 Requirements for WSN in healthcare, we explain the problem do-
main which is the efficiency of data distribution in smart medical applications
and possible approaches to address the issue and why we chose VoI.

Chapter 2 - Background: In section §2.1 we talk about the motivation for this
study. In sections §2.2 we introduce the idea of VoI and AoI in the medical con-
text and important attributes. In §2.3, Information Theory related concepts such
as entropy and mutual information and in §2.4 the signal processing techniques
which will be used in the analysis are explained. Final section §2.5 of this chapter
contains a list of papers from the review of the State of Art.

Chapter 3 - Data analysis and results: An explanation to our contribution in
this context can be found in section §3.1 , An introduction to the data set, data
collection methods and sensor types are described in section §3.2. Sections §3.3
is dedicated to the data analysis, pre-processing techniques and graph interpre-
tation of the results obtained.

Chapter 4 - Discussion and Conclusion: summarize the thesis and discuss the
limitations and future perspectives.

1.1 Internet of Medical Things (IoMT)

In recent years, the internet of things (IoT) [13] has gained a huge popularity
in various domains such as entertainment, health, smart cities, sustainability
and many others due to its low cost autonomous sensor operations [14]. Since
the health industry is always at the forefront of innovation adoption, it has be-
come one of the most promising industries for IoT applications. There are nu-
merous IoT applications in the medical field such as Ambient Assisted Living
(AAL), remote monitoring, medication control, personal health devices, ubiq-
uitous health monitoring system, support for elderly and disabled people, mo-
bile health, Telemedicine, improvement of quality of care and patient safety etc
[12]. Particularly in the healthcare domain, it is defined as the Internet of Med-
ical Things (IoMT) [13] which is a platform consisting of sensors and electronic
devices to acquire biomedical signals from patients, processing units to process
the signals, network devices to transmit the data over a network, temporary or
permanent storage units and artificial intelligence analytics to diagnose and take
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medical decisions according to the convenience of physicians [13][15]. Moreover,
IoMT is not only an optimization tool for hospitals and healthcare centers that
allow for a faster and better way of gathering valuable data and make a bet-
ter use of physicians’ time, but also it can assist medical professionals in clinical
decision-making with Machine Learning and Deep Learning techniques [16]. The
revolution of IoMT has improved the well being of people and quality of life by
offering cost effective smart health care services in a huge range of applications
that utilize the potential of existing technologies and ultimately increase the life
expectancy.

1.1.1 Basic architecture of IoMT

A typical IoMT system has three main stages, the first one being the device layer
(sensor network) which establishes an effective and accurate sensing technology
to collect distinct types of health-based data such as electrocardiogram (ECG),
electromyogram (EMG), heart rate (HR), body temperature, electrodermal activ-
ity (EDA), arterial oxygen saturation (SpO2), blood pressure (BP) and respiration
rate (RR) [4]. These data is usually acquired using bio-sensors and exists in the
form of analog signals, which often have a low amplitude and are contaminated
by noise [16]. Therefore, these signals need to be preprocessed and digitized us-
ing amplification and filtration operations.

It is essential to ensure that the information is well persevered and not lost
during the acquisition stage because it may lead to wrong decisions during di-
agnosis. For example, if it happens that the data acquired from a cardiac event
device that records the electrical activity of your heart such as heart rate and
rhythm, is lost or not well preserved in the acquisition stage, it can lead to dis-
astrous scenarios. By reading this erroneous data, doctors might think that the
patient is affected by heart diseases such as the cardiomyopathies.

The second layer is the communication gateway that connects the sensors,
intelligent devices, cloud and data systems to one another[17]. Since the data
transferred to the cloud/data system or vice versa goes through the gateway, it
can be viewed as a communication bridge between the smart devices in the med-
ical field. Generally, the gateway has a processing unit (CPU) and wireless field
connectors (WFC)[16] such as Bluetooth, ZigBee, Radio Frequency Identification
(RFID), WI-FI or some other connection types which acquire information from
wireless sensors. The gateway is responsible for data collection, pre-processing
and data management. After the data is pre-processed and filtered out, the IoMT
gateway sends the data to the cloud/data center for further processing and anal-
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ysis.
The third layer is the cloud service layer (data layer). In this layer, the cloud

acquires patients’ information to analyze, process and store the data. [18]. Data
processing includes signal identification, enhancement, feature extraction, clas-
sification and analysis of results using Data Mining techniques such as Machine
learning, Artificial intelligence, Statistics, Probability [16]. The data is then stored
and made available to users for diagnosis and feedback.

As shown in Fig.1.1 wireless sensors are attached to the persons body and
textile and these sensors will connect to the mobile device (the central node) and
will form the Wireless Body Area Network (WBAN)[1]. Through WBAN it is
possible to remotely monitor the status of patients’ health while communication
technologies are used to send the information to the interested third parties via
local gateways and the Internet.

Figure 1.1: Basic structure of an e-health system [1]

1.2 Wireless sensor networks (WSN)

As we have stated before, the first layer is concerned with wireless sensors. Gen-
erally, in the IoT field, the wireless sensor networks (WSNs) are made of lightweight,
usually small low power sensor nodes with sensing, computational, and wire-
less communication capability that are spatially deployed in the areas of inter-
est for the purpose of monitoring environmental and physical conditions [19].
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WSNs in modern IoT applications, often use the Micro-Electro-Mechanical Sys-
tems (MEMS) technology [20] which has smart sensor nodes where low power
devices are equipped with one or more sensors, a processor, memory, power sup-
ply, radio and an actuator. Smart sensors are enhanced by the use of MEMS tech-
nology, as it allows many different types of micro sensors to be included in a
device or a single chip. In WSNs, it is utterly important to have intelligent sen-
sor components with the capability to sense multiple parameters, at a lower cost,
even remotely. MEMS technology is considered as a very good solution to match
all these requirements and it seems to offer an appropriate flexibility in remote
health monitoring.

The WSNs used in health applications and generally in the IoMT field how-
ever, may include different types of smart medical sensors and devices called
wearables [21] that are integrated into textile fiber, clothes, smart watches and
elastic bands or directly attached to the human body, which can monitor and
record real-time information about patient’s physiological condition and motion
activities. As the wearables are installed to continuously monitor the medical
parameters in real-time, they offer better physical flexibility and mobility to the
patient without any interruption to the daily living.

Physiological signals such as electrocardiogram(ECG), electromyogram (EMG),
heart rate (HR), body temperature, electrodermal activity (EDA), arterial oxygen
saturation (SpO2), blood pressure (BP) and respiration rate (RR) could help to de-
tect and diagnose several cardiovascular, neurological and pulmonary diseases at
their early stages [4]. MEMS based motion sensors such as accelerometers, gyro-
scopes, and magnetic field sensors measure activity related signals to be used in
health applications like fall detection, quantifying sports exercise, management
of chronic diseases, and monitoring the elderly to ensure that they maintain suf-
ficient activity in the daily routine etc. Apart from these wearable sensors, envi-
ronmental sensors such as barometric pressure sensors, ambient light sensors, hu-
midity and temperature sensors that measure the surrounding information could
also be highly useful in some IoMT systems like safety applications. Data from
these sensors can be collected, analyzed and made available to the wearers, care-
givers, healthcare professionals or any other responsible parities with the goal of
improving the management and delivery of care, engaging patients and encour-
aging independent living.

Basically we can identify two types of WSN applications in IoMT, one which
is designed for vital status monitoring and the other one which is used for re-
mote healthcare surveillance. In vital status monitoring applications, patients
wear sensors that measure their vital parameters in order to identify emergency
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situations such as cardiac arrest, sudden fall or epilepsy seizure detection. In such
events, sensed data are sent to the responsible parties such as hospitals and emer-
gency treatment centers where doctors need to respond effectively. In remote
healthcare surveillance, wireless sensors can be used to gather clinically relevant
information that are not vital, for applications such as rehabilitation supervision
or elderly monitoring. Moreover, they can also be used to address the issues of
managing chronic diseases or to monitor postoperative rehabilitation patients or
persons with special disabilities who are forced to stay at home for long periods
of time where falling or getting hurt cannot be disregarded.

The majority of wearable systems in remote health monitoring and activity
recognition applications, use multiple sensor types to collect data from a single
body location (multimodality single-location) [22]. The rationale behind this idea
is to select sensors that are complementary and allows to recognize wide range
of activities. For example, using an accelerometer and a gyroscope together can
differentiate whether the person is walking forward or walking left/right while
an accelerometer used alone can only determine that the person is walking [23].
This multi-modal sensor systems are convincing in terms of performance, since
the information gained from multi-modal sensors can offset the information lost
when activity data is collected from a single location [22]. According to the pur-
pose of IoMT application, most relevant and convenient heterogeneous sensors
can be chosen to create an intuitive virtual environment in order to accurately
observe motion of the human body.

1.2.1 Communication standards of IoMT

Overall transmission of measured sensory data in a remote health monitoring
system needs to be performed through two different phases. First, to transfer the
collected physiological signals from the biosensors to the central node of WSN,
and then to send the aggregated measurements from the WSN to a remote server
or emergency services. Within the WSN, short-range transmission can be handled
by multiple wireless links where sensor nodes can form a Body Area Network
(BAN) in the basic configuration of a star topology. The central node of BAN
can be a Personal Digital Assistant (PDA), a smart-phone, personal computer or
a microcontroller device [24].

The most used wireless communication standards in BANs are IEEE 802.15.1
(Bluetooth Low Energy) and 802.15.4 (Zigbee) [24]. In regards to Zigbee, It is
a standard that is more suitable for low cost, low complexity and low data-rate
solutions. It operates in 16 channels in the 2.4 GHz band, in 10 channels in the 915



8 1.3. Requirements for WSN in healthcare

MHz band and in 1 channel in the 868 MHz band. The transmission range can
go as far as 75 meters. It is also important to mention that Zigbee uses a complex
encryption algorithm (AES) in order to protect the privacy and the integrity of
the messages.

As for the BluetoothLE standard (IEE 802.15.1), it is an industry specification
for short range connectivity between usually portable but also fixed devices. Sim-
ilarly to Zigbee, it is also a low cost and low power standard, but it only operates
in the 2.4 GHz band. The maximum transmission range in this case is bigger than
that of Zigbee since it can arrive to 100 meters but it usually works best in the 10
meters range. Since encryption is optional, the Bluetooth framework is usually
more vulnerable than Zigbee and more susceptible to possible attacks [24], [25].

Apart from Zigbee and BluetoothLE, other communication technologies can
be used. One of these is the infrared (IrDA) [24], an extremely low cost communi-
cation protocol for exchange of information over infrared light. The main disad-
vantage in this case is that the range is even shorter than the ones of BluetoothLE
and Zigbee. Moreover it requires line-of-sight communication. Although less
popular, it’s also worth mentioning other communication technologies in the
medical field such as medical implant communication service (MICS), primarily
used to transmit data for devices such as pacemakers, and UWB, which operates
in the frequency range of 3.1-10.6 GHz .

For the long-range communication between the WSN and a remote station,
there is a wide variety of available wireless technologies which can offer wide
coverage and ubiquitous network access. Such technologies include Wireless
Local Area Network (WLAN), Cellular Network Communication (GSM, GPRS,
UMTS), and Worldwide interoperability for Microwave Access (WiMAX) [25].
Furthermore, future advances in 5G (fifth generation) mobile communication
systems are expected to guarantee worldwide seamless access to the Internet at
much higher data rates, and thus to facilitate more efficiently the need for gath-
ering real-time measurements from a wearable health-monitoring system at a re-
mote location.

1.3 Requirements for WSN in healthcare

However, like in every other WSN system, IoMT has various requirements that
must be met in order to guaranty a reliable and effective service. Providing high
bandwidth, low energy consumption, QoS, node mobility, congestion control, de-
tection and mitigation, reliability, scalability, data aggregation, information secu-
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rity, availability and integrity are some of the general challenges in WSNs [19]. In
particular, for healthcare applications, WSNs need to combine different sensing
modalities and must handle several types of traffic with different characteristics
such as continuous real-time health data, critical alerts and multimedia streams,
etc. On the other hand resource limitation of the sensor nodes (battery, mem-
ory, available bandwidth and processing capabilities) and unreliability of low-
power wireless links can be major concerns in designing an efficient communi-
cation mechanism. For example, when WSNs are integrated with the hospital
information systems, the critical information such as alarm notifications share
the bandwidth with less important data such as room temperature. In such cases,
traffic prioritizing is essential to make sure that the critical information is deliv-
ered with the minimum loss and delay. Indeed, WSNs used in healthcare must
guarantee to have minimum real time data delivery delays while supporting the
QoS because, in an early detection of life-critical emergencies such as cardiac ar-
rest and sudden fall, the real-time data transmission is crucial. In such events,
situation identification and decision-making must be done as quickly as pos-
sible to save the person’s life. In terms of data delivery, network reliability is
also a critical aspect. Especially in vital signal monitoring, packet losses during
the medical data transmission may have disastrous impacts on a patient’s diag-
nosis.Traditionally, mechanisms such as multi path routing, local retransmission
and reliable transport protocols are used in data transmission to overcome loss of
packets [26]. Another important requirement for wireless healthcare applications
is the node mobility support [27], which ensures the continuity of service when
both patients and caregivers are on the move. Let us consider an ambulance or
a vehicle, which is moving through different e-health domains and also support-
ing different e-health applications. The monitoring applications and the medical
data source may be connected through different wireless technologies available,
while the vehicle is moving. Thus, the decision of the proper channel assignment
for the connection may be based on optimal network requirements and on the
emergency nature of information according to the application requirements [26].
However, in an emergency condition or a time critical situation the prime con-
dition that would be checked is the network availability together with the QoS
constraints of the application.

In numerous cases, energy consumption is not a major concern for QoS in
healthcare applications as the sensors are reachable and thus easy to replace the
batteries. Nevertheless, it is still important to minimize the power consumption
to reduce the burden of maintenance.

QoS in the context of WSN for healthcare may refer to the degree to which the
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system performs its intended functions along with the mechanisms implemented
to provide them[26]. And supporting QoS is undoubtedly a challenging task as
the different applications may have different requirements, thus no single QoS
model can fit all the applications. Moreover, QoS provisioning is required in all
layers of WSN architecture to guarantee the efficiency and reliability of health
monitoring system.

Over the years, a number of researches have been carried out and came up
with lot of reliable solutions. Various QoS provisioning frameworks [28] , en-
ergy efficient and QoS aware multi path routing protocols and congestion control
methods [29] are just to name a few attempts to fulfill end-to-end delay and band-
width requirements [30]. However these solutions have their own drawbacks
which open other issues to be addressed such as data redundancy[31] and design
complexity. On the other hand, with the rapid advancements in sensor devices
and technologies, WSNs generate large volumes of data. Hence, these traditional
mechanisms fail to satisfy the expected QoS in IoMT applications.

As a result, modern approaches such as cloud enabled health monitoring, Mo-
bile Edge Computing(MEC)[32] and 5G enabled health monitoring have become
promising solutions for the efficient information distribution in IoMT.

Recent advances in integrated cloud computing enables flexible and energy-
efficient solutions for remote health monitoring. Some examples include person-
alized health monitoring frameworks which can distinguish emergencies from
normal circumstances with the assistance of cloud computing and big data [33].
Moreover machine learning based classifiers for pattern recognition and activity
recognition, and also cloud-based health monitoring infrastructures can be used
to decrease the loads of data analysis at the central base station [34]. However, in
cloud based health monitoring systems, data transmission to the distance cloud
data centers will always be an impact to the latency.

MEC satisfies the delay constraint of the time sensitive tasks for medical in-
formation analysis by offloading the medical analysis task to the edge server in
proximity [32]. It releases the burden of local devices and thus improves the ca-
pability of IoMT by providing sufficient computation resources. Nevertheless,
this can results lack of information in the end server.

The prominent rise of 5G technology has enhanced the channel spectrum uti-
lization efficiency, thanks to millimeter waves which enables the communica-
tion through 5G networks [35]. Uniformly, the signal frequency is high, usually
3.5GHz, as opposed to traditional cellular communication where the signal fre-
quency is definitely lower. In the paper [36] the author explains the need for in-
telligence in the future IoT-based 5G networks and argues that there is a genuine
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need for AI in the future cellular networks. Further, the necessity of networks
that are capable to self-organize, and to learn from the environment and make
decisions using machine learning, game theory and optimization algorithms.

Even though these modern approaches have some significant influence to-
wards the efficiency and resource utilization in IoMT, none of these can guaran-
tee the maximum QoS. As a result of that, researchers focus on context aware
solutions to deliver information to consumers by filtering, prioritizing and trans-
mitting only the useful subsets. In fact, determining the Value of Information
(VoI) [37] as an enabler for the effective decision making and thus enabling effi-
cient information distribution in IoT applications has become a trending research
area. Solutions that can analyze information and infer its value related to the
application requirements, can ensure that important and high-priority medical
information will reach the users in a timely manner. Also, it can reduce the band-
width requirements, communication latency[30] and information overload.





Chapter 2

Background methods

In this chapter we discuss the idea of VoI and AoI in the context of IoT for health
applications and some of the possible approaches that other researchers have
used to asses the VoI in different applications. Further we explain the signal pro-
cessing techniques and Information theory related concepts with formulas which
will be used in later part of the thesis.

2.1 Motivation

Recent technological advances in sensors, low-power integrated circuits, and wire-
less communications have enabled the design of low-cost, lightweight, and intel-
ligent physiological sensor nodes. These nodes are capable of sensing, process-
ing, and communicating integrated with wireless personal or body networks for
health monitoring. These networks allow inexpensive, non-invasive, continuous
health monitoring with almost real-time updates of medical records via the Inter-
net.

However, developing flexible, reliable, secure, and power-efficient systems
suitable for medical applications is quite challenging. Because the applications
can be driven by not only a high volume of collected values and metadata, but
variety and velocity of the streams. Such streams are continuously transmitted
to the cloud service to obtain some knowledge about patients behavior according
to user requirements. Different data sources may generate heavy time-varying
traffic which may lead to intolerant abeyance in wireless wearable sensors [38].
One of the most common issues with wearable systems is the delay in providing
results and generating alerts due to data loss, buffering, network communication,
monitoring or processing.

13
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Throughout the last decade, many researchers have dedicated their contri-
butions to handling this bottleneck issue. Thanks to their effort in many years
of experiments, it has become evident that significant benefits can be obtained
by limiting the amount of information which broadcasts over bandwidth con-
strained communication channels [11]. However there is no uniform superstruc-
ture which provides an information centric mechanism to serve this purpose.
Existing application requirement based data dissemination methods, often con-
sider a common usage context of the sensor data while ranking the transmission
against different requirements of the application. For example, low latency is
considered to be common for the QoS requirements of all the applications. But
in reality, not every application query is executed in real-time and thus, low la-
tency can not be a generic temporal requirement. It can be considered more as an
application-specific usage context of the real time data streams [39].

In service level, a data reduction could be accomplished by aggregation and
compression techniques, regardless of application information. Along with re-
ducing amount, the QoS such as throughputs and delays could also be specified
and controlled [7]. Not only in the service level but also the solutions on appli-
cation level can be exploited according to user specified requirements to draw
only requested data streams. For example, in a lighting control system of smart
building, the data from movement and occupancy sensors are significant while
data from temperature and heat detectors are disregardable. The key idea is that
the importance of any specific sensing data for one application can be different
for the other applications.

Giordani et al [11], introduces two reliable approches to use the limited trans-
mission resources in a way that maximizes the utility for the target applications,
particularly in vehicular networks. One approach is to set a bound on the age
of information (AoI) to make sure the broadcast is never older than the inter-
transmission period. The other approach is to discriminate the value of infor-
mation (VoI). Four effective methods that are ideal to efficiently disseminate the
most valuable pieces of information over wireless networks have been summa-
rized as Heuristic Approaches, Adaptive Approaches, Machine Learning (ML)
Approaches and Analytic Approaches where each approach has its fors and again-
sts.

Motivated by this vehicular network investigation research, we focus on pri-
oritizing sensor data based on the VoI and AoI, for the efficient information dis-
tribution of IoMT. In this context we use the analytical approach where VoI esti-
mation is achieved through signal processing techniques and information theory
mathematical models.
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However, the prioritizing mechanisms we used in this context are, prelimi-
nary on-board processing of sensor observations, which allow the sender to val-
idate the integrity of the acquired information and determine whether it embeds
valuable characteristics for receiver(s), which will also prevents the transmission
of redundant or duplicate data. This basic analytical approach could be used as
an initiative to the further analysis using Machine Learning algorithms or Ana-
lytical Hierachy Process (AHP). Which can be employed to value information of
wearable sensor data based on pairwise comparisons of specific criteria and to
ultimately score the different data dissemination alternatives [11].

2.2 Value of Information

The concept VoI was originated in economic and decision making research com-
munities, with the purpose of investigating the advantages that additional in-
formation provided to decision makers. Eventually, many domains such as ve-
hicular networks [40][11], underwater sensory networks [41] [42], tactical edge
networks [43], tracking systems or smart cities have been evaluated using differ-
ent methods to assess VoI for the purpose of efficient data transmission. As a
result of diversity of these domains, it is still difficult to give a precise definitions
for VoI. However, VoI is formally defined as an assessment of the utility of an
information product when used in a specific usage context [44]. Moreover, Value
of an information product associated with a sensor service can be defined as its
importance in the particular application usage context [39]. In other words, a sen-
sor service that is more valuable in one usage context can be mildly important in
another. This importance or the value can be determined by the attributes specific
to each usage context or the application of the particular information.

In remote health monitoring domain, there are several types of applications
such as safety, sleep monitoring, drive monitoring and fall detection which use
wearable sensor data for decision making. According to the taxonomy of VoI
(figure 2.1), there are several important attributes which influence the value as-
sessment of these applications. The attributes can be listed as timeliness, quality
of information, space dependency, dataset heterogeneity, signal variance, age of
information, urgency and novelty. As mentioned earlier, significance of these at-
tributes can differ from one medical application to another. In this research we
contemplate three main attributes which can be considered more important for
the VoI in fall detection application that are the dataset heteroginity, time depen-
dency and AoI. These on the other hand are convenient to analyze using the
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Figure 2.1: Taxonomy of VoI in IoMT presented in thesis by Anselmi
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2.2.1 Age of Information

Generally, in the medical field it is very important to keep track of the novelty
or the freshness of information. AoI is a novel concept that has been introduced
around 2010 which can be used to estimate the obsolescence and freshness of
information in communications, and information systems [45]. Until recent years,
researchers have focused their studies mainly on delay or latency in information
systems, when it comes to the data transmission efficiency and freshness of data
that are receiving.

It is extremely valuable to have such kind of an approach, specially in the
medical field where it is nearly impossible to update the information in real time,
due to the constraints of wireless communication channels. Thanks to AoI’s tools
and metrics, researchers can keep the monitored health information updated and
avoid information starvation.

However it is important to notice that AoI gives us information on how ob-
solete or fresh the data are, but it does not provide any information on the use-
fulness of the current data. Although the AoI grows over time with a unit rate,
the performance degradation caused by information aging may not be a linear
function of time. Thus we have to consider other metrics such as cost of updating
delay and/or data staleness based on the specific applications. Even though it is
a bad practice, most of the mechanisms focus on only one kind of requirement to
be fulfilled when ranking the importance of data to be transmitted. As a better
mechanism, VoI based information dissemination has been investigated recently
in several application areas where wireless sensor networks are involved.

2.3 Information theory

The information theory is a branch of probability and statistics that has been de-
veloped since the 1920s and has found wide application in different fields such
as telecommunication, physics, bio engineering and many others [46][47]. In the
case of communication of information over a noisy channel, Information can be
thought of as the resolution of uncertainty [48]. The fundamental quantities of in-
formation theory are entropy and mutual information which are defined as func-
tional of probability distributions [49]. They characterize the behavior of long
sequences of random variables and allow us to estimate the probabilities of rare
events. Entropy is a measure of information in a single random variable, and
mutual information is a measure of information in common between two ran-
dom variables.
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2.3.1 Entropy

Entropy is the avarage level of ”information surprise” or the ”uncertainity in-
herent to the possible outcome of a random variable[48]. [49]. Let X and Y
be the discrete random variables with the respective probability mass function
p(x) = Pr{X = x}, x ∈ X and p(y) = Pr{Y = y}, y ∈ Y. Thus, p(x) and p(y)
refer to two different random variables and are in fact different probability mass
functions, pX(x) and pY(y), respectively. The entropy H(X) of a discrete random
variable X is defined by;

H(X) = − ∑
x∈X

p(x) log p(x) (2.1)

Entropy is measured in bits, and it is a functional of the distribution of X, which
does not depend on the actual values taken by the random variable X, but only
on the probabilities. We denote expectation by E. Thus, if X ∼ p(x), the expected
value of the random variable g(X) is written;

Epg(X) = ∑
x∈X

g(x)p(x) (2.2)

2.3.2 Joint entropy and conditional entropy

The definition of entropy of a single random variable can be extended to a pair
of random variables. The joint entropy H(X, Y) of a pair of discrete random vari-
ables (X, Y) with a joint distribution p(x, y) is defined as;

H(X, Y) = EX,Y[− log p(x, y)] = −∑
x,y

p(x, y) log p(x, y) (2.3)

which can also be expressed as

H(X, Y) = −E log p(X, Y) (2.4)

The conditional entropy quantifies the amount of information needed to describe
the outcome of a random variable Y given that the value of another random vari-
able X is known.

H(X|Y) = EY[H(X|y)] = − ∑
y∈Y

p(y) ∑
x∈X

p(x|y) log p(x|y) = ∑
x,y

p(x, y) log(
p(y)

p(x, y)
)

(2.5)
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H(X|Y) = H(X, Y)− H(Y) (2.6)

The naturalness of the definition of joint entropy and conditional entropy is
exhibited by the fact that the entropy of a pair of random variables is the entropy
of one plus the conditional entropy of the other [49].

2.3.3 Relative entropy or Kullback-Leibler distance

The entropy of a random variable is a measure of the uncertainty of the random
variable; it is a measure of the amount of information required on the average to
describe the random variable. The relative entropy is a measure of the distance
between two distributions. In statistics, it arises as an expected logarithm of the
likelihood ratio. The relative entropy D(p||q) is a measure of the inefficiency of
assuming that the distribution is q when the true distribution is p. For example,
if we knew the true distribution p of the random variable, we could construct a
transmission code with average description length H(p). If, instead, we used the
code for a distribution q, we would need H(p) + D(p||q) bits on the average to
describe the random variable.

The relative entropy or Kullback–Leibler distance between two probability
mass functions p(x) and q(x) is defined as

D(p||q) = ∑
x∈X

p(x) log
p(x)
q(x)

= Ep log
p(X)

q(X)
. (2.7)

2.3.4 Mutual information

Mutual information is a measure of the amount of information that one random
variable contains about another random variable. It is the reduction in the un-
certainty of one random variable due to the knowledge of the other. If we con-
sider two random variables X and Y with a joint probability mass function p(x, y)
and marginal probability mass functions p(x) and p(y), the mutual information
I(X; Y) is the relative entropy between the joint distribution and the product dis-
tribution p(x)p(y). By combining equations 2.3, 2.3, 2.4 and 2.5:
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I(X; Y) = ∑
y∈Y

p(y) ∑
x∈X

p(x|y) log
p(x|y)
p(x)

= ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X)− H(X|Y)
= H(X) + H(Y)− H(X, Y)
= Ep(y)[DKL(p(X|Y = y))]|p(X))]

= DKL(p(X, Y)||p(X)p(Y))

(2.8)

2.4 Correlation Coefficient

In statistical terms, correlation is a method of assessing a possible linear associa-
tion between two continuous variables [50]. Correlation is measured by a statistic
called the correlation coefficient, which represents the strength of the putative lin-
ear association between the variables in question. It is a dimensionless quantity
that takes a value in the range −1 to +1 [51]. A correlation coefficient of zero in-
dicates that no linear relationship exists between two continuous variables, and
a correlation coefficient of −1 or +1 indicates a perfect linear relationship. The
strength of relationship can be anywhere between −1 and +1. The stronger the
correlation, the closer the correlation coefficient comes to ±1. If the coefficient
is a positive number, the variables are directly related (i.e., as the value of one
variable goes up, the value of the other also tends to do so). If, on the other hand,
the coefficient is a negative number, the variables are inversely related (i.e., as the
value of one variable goes up, the value of the other tends to go down).

Size of Correlation Interpretation
.90 to 1.00 (-.90 to -1.00) Very high positive (negative) correlation
.70 to .90 (-.70 to -.90) High positive (negative) correlation
.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation
.30 to .50 (-.30 to -.50) Low positive (negative) correlation
.00 to .30 (.00 to -.30) negligible correlation

Table 2.1: Rule of Thumb for Interpreting the Size of a Correlation Coefficient [3]
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2.4.1 Pearson’s correlation

Pearson’s correlation can be considered as a measure of the linear relationship be-
tween the random variables. The Pearson Correlation Coefficient, which can be
calculated using the expression given in the below equation 2.9, is used to eval-
uate the linear correlation between two variables X, Y. The function cov(X, Y) is
the covariance of X and Y. σX and σY are the deviations of X and Y, respectively,
while µX and µY are the respective means. ρX,Y ranges from +1 to −1. A value of
+1 implies that X is completely positively linearly correlated to Y. On the other
hand, a value of 0 indicates that X is not linearly correlated to Y at all. Finally, a
value of −1 implies that X is completely negatively linearly correlated to Y. In
most cases, X and Y show an extremely strong correlation to each other when
ρ(X, Y) is greater than 0.8. Further, X and Y can be said to be strongly correlation
to each other when ρ(X, Y) is greater than 0.6 [52].

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
. (2.9)

2.4.2 Auto correlation

Autocorrelation can also be referred to as lagged correlation or serial correlation,
as it measures the relationship between a variable’s current value and its past
values. In other words it represents the degree of similarity between a given time
series and a lagged version of itself over successive time intervals. When com-
puting autocorrelation, the resulting output can range from −1 to 1. An auto-
correlation of +1 represents a perfect positive correlation (an increase seen in one
time series leads to a proportionate increase in the lagged time series). An auto-
correlation of −1, on the other hand, represents perfect negative correlation (an
increase seen in one time series results in a proportionate decrease in the lagged
time series).

2.5 Review of the State of the Art

In this subsection, a review of some of the recent and important research pa-
pers that employed the sensor data prioritizing in IoMT are presented. The table
summarizes the studies and the techniques employed in the experimental and
analysis setup.
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REF DESCRIPTION
Efficient Dynamic
Sensing for Continu-
ous Activity Monitor-
ing, Lawrence K et al.,
2011 [53]

Dataset: 2 subjects, sensors: triaxial accelerometers on
right wrist, waist and right ankle analysis method: Par-
tially Observable Markov Decision Process (POMDP)
Performance: classification accuracy 95%, energy reduc-
tion 40%

Viterbi-based context
aware mobile sensing
to trade-off energy and
delay, Amiri et al., 2020
[54]

Dataset: 1subj / 25 different activities, 12min each. sen-
sors: PPG sensor (HR, Respiration rate, SPO2), IMU Ac-
quired analysis method: MDP method compared to my-
opic strategy Performance: average of 12% reduction in
energy consumption.

Scalable and energy-
efficient context mon-
itoring framework for
sensor-rich mobile en-
vironments, Kang et al.,
2008 [55]

Dataset: Acquired dataset, (1 / 12h). sensors: Light
sensor, temperature/humidity sensor, 2-axial accelerom-
eter, software sensors for time and indoor location, GPS
(Blood Volume Pulse sensor, Galvanic Skin Response
sensor) analysis method: Context dynamics are moni-
tored through the analysis of selected sensors that can
reveal a change in the current state. Performance: Re-
duction of more than 90% of data transmission. Find a
trade-off between processing efficiency and energy effi-
ciency

The Jigsaw continuous
sensing engine for
mobile phone appli-
cations, Lu et al., 2010
[56]

Dataset: acquired dataset (16 / -). sensors: Accelerom-
eter, microphone, GPS Accelerometer analysis method:
different processing pipelines for the three sensors , Per-
formance: accuracy: 95.1% , Microphone recall:85.35%,
Significant reduction of the power usage while keeping
the average error low.

Power-aware comput-
ing in wearable sensor
networks: An opti-
mal feature selection,
Ghasemzadeh et al.,
2014 [57]

Dataset: acquired dataset (3 / 14 transitional movements
for 10 times each) sensors: three-axis accelerometer and
a two-axis gyroscope analysis method: Information the-
ory measure (symmetric uncertainty) to quantify corre-
lation between two features or between a feature and a
class, Performance: 30.7% energy savings, 96,7% classifi-
cation accuracy, can be applied to sensor selection (elim-
inating redundant sensor nodes).
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A context-aware
mhealth system for
online physiological
monitoring in remote
healthcare, Zhang et
al., 2016 [58]

Dataset: acquired dataset, (5 / 24h ) sensors: Accelerom-
eter, ECG analysis method: context-aware physiologi-
cal analysis with regard to daily activities Performance:
95.56% classification accuracy for activity recognition..





Chapter 3

Data analysis and results

This chapter contains a description about the data set which includes data col-
lection methods, environmental set up and locomotion sensor details. Moving
forward with the data prepossessing and analysis part, it explains the correlation,
mutual information and VoI analysis results with relevant numerical and graph
interpretations. The analysis was conducted using signal processing methods to
compare the sensor signal correlation and their characteristics.

3.1 OPPORTUNITY Activity Recognition Dataset

The OPPORTUNITY activity recognition dataset is a benchmark for human activ-
ity recognition algorithms which offers a rich playground to assess methods for
sensor selection, feature extraction, classifier calibration and adaptation, multi-
modal data fusion, automatic segmentation, among others[2][59].

The dataset consists of complex naturalistic activities with a particularly large
number of atomic activities collected in a sensor rich environment using net-
worked sensor system integrated in the environment, in objects, and on the body.
The activity recognition environment and scenario were designed to generate
many activity primitives in a realistic manner[60]. In this research we use the
same subset employed in the OPPORTUNITY Activity Recognition Challenge[61]
which contains recordings of four subjects performing activities of daily living,
ranging from simple motion primitives to complex gestures. We take into ac-
count only the locomotion data collected by body worn sensors. This includes 5
commercial RS485-networked XSense inertial measurement units (IMU) attached
in a custom-made motion jacket (figure 3.1), 2 commercial InertiaCube, 3 inertial
sensors located on each foot (figure3.2b) and 12 Bluetooth acceleration sensors on

25
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Figure 3.1: wearable motion jacket [2]

(a) Tri-axial Accelerometer placement (b) Inertial Measurement Unit placement

Figure 3.2: Multi model on-body sensor placement over the subjects’ body [2]
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the limbs (figure3.2a). Each IMU is composed of a 3D accelerometer, a 3D gyro-
scope and a 3D magnetic sensor, offering multimodal sensor information. Each
sensor axis is treated as an individual channel yielding an input space with a
dimension of 113 channels at the sample rate of these sensors is 30 Hz.

For each subject there have been recorded six different runs where five of them
are activity of daily living (ADL) and subjects are free to perform the activities
without any restriction, by following a loose description of the overall actions to
perform. For example, prepare a coffee with milk and sugar using the coffee ma-
chine and take coffee sips, move around in the environment. The remaining run
is a drill run where subjects were instructed to perform 20 repetitions of the given
activity sequence which has been designed to collect many activity instances. For
the simulations we have considered four different modalities that are sit, walk,
stand and lie.

ADL run

The ADL run consists of the following sequence of activities:

1. Start: lying on the deckchair, get up.

2. Relax: go outside and have a walk around the building.

3. Prepare coffee: prepare a coffee with milk and sugar using the coffee ma-
chine.

4. Drink coffee: take coffee sips, move around in the environment.

5. Prepare sandwich: include bread, cheese and salami, using the bread cutter
and various knifes and plates.

6. Eat sandwich.

7. Cleanup: put objects used to original place or dish washer, cleanup the ta-
ble.

8. Break: lie on the deckchair.

Drill run

The drill run consists of the following sequence of activities:

1. Open then close the fridge.
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2. Open then close the dishwasher.

3. Open then close 3 drawers (at different heights).

4. Open then close door.

5. Switch on and switch off the light.

6. Clean the table.

7. Drink while standing.

8. Drink while seated.

3.2 Sensor types

In this study we analyse locomotion sensor data collected by motion sensors
which sense the movements, such as tilt, shake, rotation, or swing. Basically
the accelerometers and gyroscopes. They have become the most used motion
sensors in the study of human movement because they are small, light, wearable
and non-invasive [62]. These sensors are commonly used with a micro controller
that is able to process the measurements obtained, and peripherals such as Blue-
tooth modules to enable communication with other devices [63]. Systems made
up from a combination of these characteristics are called Inertial Measurement
Units (IMU) that can work autonomously for long periods [64], [63]. Apart from
the main sensor components of wearable sensor systems, there are InertiaCubes
and Quaternions which provide real-time orientation data and represents the de-
vice orientation.

3.2.1 Accelerometer

Accelerometers can be used for body position and posture sensing. In particular,
using triaxial accelerometer, we can measure the linear acceleration of movement
by reading the data it provides on the three Cartesian axes X, Y, Z, thanks to which
velocity and displacement can also be calculated. An example for this, is the Ap-
ple’s iLife Fall Detection sensor, that uses an accelerometer and a microcomputer
in order to detect falls, shocks or other movements [65]. Another important use
of accelerometer is the safety application of the elderly. When walking, frail or
elderly patients may suddenly lose consciousness and fall, especially in hospi-
tals. The fall may cause or lead to paralysis or even death. By using special types
of fall detection accelerometers, it is possible to understand if and when the fall
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occurs and provide timely assistance thus saving their lives [66]. Because of these
and other reasons, accelerometers are considered amongst the most interesting
sensors in the IoMT field. The main problem with the data provided by them
however, is that they do not provide information on the lateral orientation or tilt
during the movement. Moreover, sometimes the data we receive from the ac-
celerometer can be affected by noise. To solve this problem, the 3-axis accelerom-
eter information is combined with the 3-axis gyroscope data, another important
sensor of which we will talk below, in order to get an output that is both clean
and responsive.

3.2.2 Gyroscope

Gyroscope sensor is a device that can measure the orientation and angular ve-
locity of an object. These are more advanced than accelerometers, because gyro-
scope sensors can measure the tilt and lateral orientation of the object whereas
accelerometer can only measure the linear motion. Usually these sensors are in-
stalled in the applications where the orientation of the object is difficult to sense
by humans. Thanks to their ability to provide dynamic information through the
angular speed, gyroscope sensor measurements have been useful in the analysis
of human movements such as gait posture transitions or falls. In some activity
recognition researches, where gyroscope is used to assist the mobile orientation
detection, the rotation angle produced by gyroscope is identified to be the key
performance booster for fall detection [65]. Gyroscope sensor outputs are analog,
which results a considerable decrease of power consumption compared with the
digitization of the signal[67]. While the accelerometers can only detect whether
an object has moved or is moving in a particular direction, Gyroscopes can ob-
tain accurate measurements of complex motion in multiple dimensions, tracking
the position and rotation of a moving object. Another important characteristic
compared to accelerometers and compasses, is the fact that gyroscopes are not
affected by errors related to external environmental factors such as gravity and
magnetic fields. Due to these reasons, gyroscopes can highly influence the mo-
tion sensing capabilities of advanced motion sensing applications in consumer
devices such as full gesture and movement detection and simulation in video
gaming.
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3.2.3 Magnetometer

A magnetometer sensor is also known as a compass sensor that measures mag-
netic fields and the magnetization of materials. It can also be employed to mea-
sure direction, strength, or relative change of a magnetic field at a given location.
This sensor is usually based on the electromagnetic property of the Earth. Just
like a simple compass can detect the direction with respect to the North pole
of the Earth by the use of magnetism, a magnetometer sensor for smart-phones
works with a similar functionality. For example, compass sensors are used in
consumer devices for reorienting a displayed map to match up with the direction
where user is facing. In other words compass readings can be used to detect the
direction change in the user’s motion. [22]. Magnetic sensors can also be used to
correct errors from other sensors such as accelerometers. An advantage of using
a magnetometer over accelerometer for breathing rate measurement is that the
magnetometer data does not require complex processing to obtain movements of
the chest. In the case of the accelerometer, the movement of the chest must be
obtained from integration of the acceleration using sophisticated algorithms [68].
Hence, the magnetometer and signal processing algorithm can be programmed
in a low-power on-site microcontroller, without using an external computational
unit. This enables transmitting real-time processed data to a gateway while sav-
ing the battery lifetime and bandwidth.

However, the magnetometer measurements are very sensitive to external in-
terference and magnetic changes produced by nearby ferromagnetic objects. For
this reason, magnetometers are often used as a complement to gyroscopes and
accelerometers by means of fusion algorithms [67].

3.3 Data analysis

The analysis was carried out under the signal processing and Information the-
ory related methods discussed in section 2.3 and 2.4 to favor the main objective
of this research which is to identify reliable mechanisms to prioritize the sensor
data transmission based on VoI. Each analysis was performed on both of the
homogeneous and heterogeneous perspective of sensory data.

3.3.1 Data Pre-processing

To evaluate the correlation, mutual information, entropy and VoI we used the
ADL run dataset relative to one representative subject, to which we will refer
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to as ”test subject”. We selected ADL run dataset, because its subjects execute
daily activities without thorough instructions thus it is richer in activities than
the drill run dataset. The ADL run dataset can be represented as a matrix, where
every column is containing data coming from a sensor. In the dataset, there were
no sensor names to identify the data in each column, instead there were labels,
and the meaning of those labels were given in a separate text file. So first we
extracted sensor names and assigned to the columns in order to ease the analysis
using Python. There was a considerable amount of missing data in the dataset
mainly due to disconnection of wireless sensors. The missing data are indicated
by ”NaN” (not-a-number) in the dataset. First we identified the columns which
have more than 50% of NaN values and discarded those columns. Although
many complex methods have been proposed to tackle this issue, in this study
we simply replaced the missing values with mean imputation. Mean imputation
involves replacing any missing value with the mean of the present values, which
has the benefit of preserving the mean of the observed data. So, if the data are
missing completely at random, the estimate of the mean remains unbiased. Plus,
by imputing the mean, we can keep our sample size up to the full sample size
[69].

(a) Acceleration of right knee in 3 dimensions

(b) Combined acceleration of right knee

Figure 3.3: Converting 3 axis sensor data into one axis

Since each axis of three dimensional and two dimensional sensors are treated
as one channel in the data set, first we combined them in to single channels. There
is no such hard or fast rule but several approaches such as normalizing the data,
in other words converting all data into values between 0 and 1. But the sim-
plest and perhaps one of the best and commonly used approaches is squaring the
data and combining as one dimension. For combining, the data was squared and
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summed up and finally the square root of the sum was taken as the reading:

Acc =
√

acc2
x + acc2

y + acc2
z (3.1)

In figure 3.3a we show the acceleration on the X, Y, and Z axes, respectively of
the right knee. Figure 3.3b shows the combined acceleration calculated as the
square root of the sum of the squares of the component accelerations. It is more
convenient to use the combined acceleration data in the analysis as shown in
figure 3.3b.

3.3.2 Correlation analysis

3.3.2.1 Homogeneous sensor signal analysis

The most common technique used in the analysis of signals or time series data is
autocorrelation. In technical terms, autocorrelation means how much the data at
time stamp T is correlated with T-1 of a signal. The higher the value, the higher
the positive correlation and the data is redundant.

Figure 3.4 shows the autocorrelations of body worn sensors. The entire sig-
nal has been taken in to account and calculated the autocorrelation using default
lag(33ms) or the original transmission delay. It is less efficient to transmit data
using those particular sensors continuously, because more or less the same in-
formation is being transmitted. In order to increase the value of information or
optimize the usage of bandwidth we can decide which sensors should be trans-
mitting data continuously and which should not, based on autocorrelation of the
signal.

According to table 2.1 the sensors with more than 0.7 of autocorrelation are
considered as highly correlated and thus transmit redundant information. Con-
tinuous data transmission should be delayed for such sensors. For instance, Lo-
cationTags sensors have autocorrelation close to 1. We can assume the reason for
such higher correlation for Location Tags is, because a person cannot change his
position (move) that much in every 33 milliseconds. Therefore, the data transmit-
ted by these sensors is highly redundant, their transmission should be delayed.

The strategy can be derived by calculating autocorrelation at different lags
and find which one is the most suitable delay for each sensor. The correlation
values in figure 3.4 has been calculated after every 33 milliseconds (lag=1). Here
we test autocorrelation coefficient for different lags( from 1 to 1000) in ascending
order. If the autocorrelation coefficient on a particular lag is less than 0.5 , we
assume at that exact lag, the signal is not highly correlated and information sent
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Figure 3.4: Autocorrelation of each sensor

is valuable. Then that lag value has been converted into milliseconds to decide
the delay. If the sensor is not highly correlated at lag = 1 then we could say that
its transmission should not be delayed anymore. Likewise we can come to a con-
clusion that is, when the autocorrelation of a signal is more than 0.5, we should
delay the transmission by (lag − 1) ∗ 33 milliseconds. Ideal transmission delay
according to the autocorrelation of each signal is given in table 3.1 For instance,
Quaternion sensors data is highly uncorrelated and the transmission should not
be delayed for the sensors, while Locomotion tags are highly correlated and their
transmission can be delayed from 10 to 32 seconds.

Sensor Delay(ms)
InertialMeasurementUnit L-SHOE Compass 5445
InertialMeasurementUnit R-SHOE Compass 7557
Accelerometer-RKN-acc 33
Accelerometer-HIP-acc 33
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Accelerometer-LUA-acc 66
Accelerometer-RUA-acc 66
Accelerometer-LH-acc 66
Accelerometer-BACK-acc 33
Accelerometer-RUA-acc 66
Accelerometer-LUA-acc 66
Accelerometer-LWR-acc 66
InertialMeasurementUnit-BACK-acc 33
InertialMeasurementUnitLUAacc 33
InertialMeasurementUnitRUAacc 66
InertialMeasurementUnitLUAgyro 297
InertialMeasurementUnitRUAgyro 264
InertialMeasurementUnitLUAmagnetic 5181
InertialMeasurementUnitRUAmagnetic 3993
InertialMeasurementUnitLLAacc 33
InertialMeasurementUnitRLAacc 66
InertialMeasurementUnitLLAgyro 264
InertialMeasurementUnitRLAgyro 231
InertialMeasurementUnitLLAmagnetic 4422
InertialMeasurementUnitRLAmagnetic 3663
InertialMeasurementUnitL-SHOEEu 6336
InertialMeasurementUnitR-SHOEEu 16962
InertialMeasurementUnitL-SHOENavA 99
InertialMeasurementUnitR-SHOENavA 99
InertialMeasurementUnitL-SHOEBodyA 66
InertialMeasurementUnitR-SHOEBodyA 33
InertialMeasurementUnitL-SHOEAngVelBodyFrame 231
InertialMeasurementUnitR-SHOEAngVelBodyFrame 231
InertialMeasurementUnitL-SHOEAngVelNavFrame 231
InertialMeasurementUnitR-SHOEAngVelNavFrame 231
LOCATIONTAG1 9999
LOCATIONTAG2 6930
LOCATIONTAG3 32934
LOCATIONTAG4 32934
InertialMeasurementUnitLUAQuaternion 0
InertialMeasurementUnitRUAQuaternion 0
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InertialMeasurementUnitLLAQuaternion 0
InertialMeasurementUnitRLAQuaternion 0

Table 3.1: Appropriate delay of transmission based on autocorrelation

3.3.2.2 Heterogeneous sensor signal analysis

Pearson correlation method is commonly used for finding cross-correlations be-
tween two independent variables, in this case two different sensors. We have
presented the cross correlations values between each different pair of sensors be-
long to the same category in heat maps (figure 3.8). Given color bar indicates the
corresponding Pearson correlation value with color shades (-0.4 to 1) where the
darkness increases with the value. The assumption here is same as before, the
higher the correlation (negative and positive), the more redundant the data.

Figure 3.5: Cross correlation of InertialMeasurementUnit Shoe Compass sensors

For example, the Right Shoe Compass (InertialMeasurementUnit R-SHOE Com-
pass) and the Left Shoe Compass (InertialMeasurementUnit L-SHOE Compass)
has lower correlation with each other with Pearson correlation value of 0.37933
(figure 3.5). Based on that we can assume both of these sensors are sending dif-
ferent yet valuable information about the particular activity instance and both of
them should be transmitting data in order to make accurate decisions.

As shown in figure 3.6 the Hip Accelerometer is highly correlated (more than
0.7) with Accelerometr BACK, Accelerometer Left Upper Arm and Accelerometr
Right Upper Arm sensors while moderately correlated (more than 0.5) with Ac-
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Figure 3.6: Cross correlation of Accelerometer sensors

celerometr Left Wrist, Accelerometer Left Hand sensors. According to that ob-
servation we could say the Hip Accelerometer is not a critical sensor in deci-
sion making and its data would not severely affect the final decision, since the
other highly correlated sensors can be used in such incidence. Another possibil-
ity of optimizing the resources would be selecting one or two sensors of theses
accelerometers rather than use all of them for transmitting data at once. In that
case the other aspects can be considered such as cost, complexity, durability, etc.
As discussed in the examples, using this comparison of correlation values, we
can decide many efficient ways to broadcast information through sensors. When
an attribute (signal) is highly uncorrelated with other signals, it is important to
prioritize the transmission of that signal. Let’s assume a sensor is highly corre-
lated with two other sensors; then only one of those 3 sensors should transmit-
ted given that the signal characteristics are quite similar. In that case selecting
the most useful and convenient sensor is challenging. We can check the missing
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values for each sensors and the one that with the lowest number of missing val-
ues should be chosen. Again, if two or more sensors have identical number of
missing values then we can choose based on sensor quality, sensor manufacturer,
sensor implantation location (where the sensor is on body or object) etc. If such
choice is difficult to be made, then the sensor can also be chosen randomly or cost
effectively.

Moving forward, we calculated the cross correlation of randomly selected
baseline sensors with other heterogeneous sensors placed in the same area of the
test subjects body. In 3.7 we can see the cross correlation of each different sensor
placed on the left upper 3.7a and lower 3.7b arms with the base line sensor called
Left hand accelerometer. As we can see in the graph, the left hand accelerome-
ter sensor has higher positive correlation with the left lower arm accelerometer
sensor. In fact, the position of hand and lower arm are very close and they move
together and both of the sensors are accelerometers. It explains why there is such
a high correlation. However, graph shows there are some points where the data
has no correlation, which means in some intervals both sensors are transmitting
different data.

Figure 3.8 shows the cross correlation of Left shoe compass sensor with the
other sensors placed in the same shoe. It is safe to say there is a moderate corre-
lation between the sensors.

Figure 3.9a presents the cross correlation of Location tag 1 with the other lo-
cation tag sensors. It seems to be is highly correlated with location tag 2 (both
positively and negatively). For tag 3, there is an inconclusive pattern, half of the
time it is highly correlated and then it has moderate or low correlation with tag
1. Location tag 4 does not have much correlation with tag 1 for most of the time.
However it is difficult to say whether they are highly correlated witch each other
or not, as they drastically vary over time. In figure 3.9 we can see the cross corre-
lation of Location tag 2 with the other locomotion sensors and the observation is
quite similar to the figure3.9a.

Cross-correlation only tells us how similar two different signals are from one
another. It doesn’t tell us however anything about the information carried by
these signals. If we want to understand the amount of information carried by
these signals and how important the information of a certain signal is with respect
to the information of another signal, we have to use the concepts of Information
theory. Mutual Information (MI) can be thought of as a non-linear function of
correlation. As introduced in section 2.3.4 , MI between two random variables is
the amount of information that one gains about a random variable by observing
the value of the other. It is linked to another key concept in Information Theory,
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(a)

(b)

Figure 3.7: Correlation of Left hand accelerometer with other sensors
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Figure 3.8: Correlation of L Shoe Compass with other sensors

(a)

(b)

Figure 3.9: Correlation of Location Tag with other sensors
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that is the entropy, which can be thought of as how surprised one can be on aver-
age when observing a random variable. MI and entropy are measured in bits. It
is considered more general than correlation and handles nonlinear dependencies
and discrete random variables. Thus, we move on to the next part of our analysis
towards the VoI, using MI.

3.3.3 Mutual information based VoI analysis

Initially we computed the MI between different pairs of sensors in the dataset.
Then evaluated those values under three categories. First approach was to com-
pute MI between two homogeneous sensors placed on two parts of the body,
over time. Secondly, we determine the MI of one sensor shifted in time. Finally
we calculate the MI between two heterogeneous sensors.

MI depends on the time window of interest: ideally, we have computed the
mutual information between one sample t of the first signal and the same sam-
ple t + T of second signal. In practise, we should consider a time window T,
and evaluate the mutual information within that window. Different values of T
could be considered in simulations. We used a window of 1000 samples and then
segmented or made sliding windows of 100 samples from that window.

At first, we set the VoI as VoI = 1 - MI. This preliminary evaluation will
indeed help us identify the most valuable signals. For example, if the MI between
two heterogeneous signals is higher, it means that they are quite correlated and
that we can reconstruct the former with the latter with quite high accuracy. This
could be the initial step for more advanced analyses in which we can define more
sophisticated methods to evaluate the VoI from the mutual information. MI and
VoI are inversely proportional, in other words if VoI is increasing then MI would
be decreasing and vice versa. For a better visualization, the calculated MI and
VoI were plotted in line graphs where x-axis is corresponding time-stamp and
y-axis is the values of MI and VoI.

Figure 3.10 represents the VoI and MI between two gyropass sensors: IMU
Left Lower Arm gyropass and the IMU Right Lower Arm gyropass which are
homogeneous sensors placed on left and right arms. As we can see in the graph,
within 30 seconds the VoI is drastically vary, which means the two sensors are
not much dependent on each other and both of them should be transmitting data
despite the fact that they are homogeneous sensors.

Figure 3.11 represents the VoI and MI between two heterogeneous sensors
that are IMU Left Lower Arm accelerometer and Right Shoe Navigator sensors.
Within the time window considered, the overall VoI seems to be very high be-
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Figure 3.10: VoI and MI between two gyropass sensors: IMU Left Lower Arm
gyropass and the IMU Right Lower Arm gyropass

Figure 3.11: VoI and MI between two heterogeneous sensors that are IMU Left Lower
Arm accelerometer and Right Shoe Navigator

Figure 3.12: VoI and MI of Right Shoe Compass while subject is walking
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Figure 3.13: VoI and MI of Right Shoe Compass while subject is sitting

tween two signals while MI is significantly low. Which indicates the two signals
are not much correlated, which proves the fact that heterogeneous sensors placed
on different body parts are important to increase the value of information of the
system.

We considered walking and sitting activities performed by subject in order to
analyse the MI and VoI comparatively using the same sensor. Figure 3.12 and
figure 3.14 represent the VoI and MI of Right Shoe Compass while subject is
walking and sitting respectively. According to the graph, value of information is
very high (more than 0.8) during the considered sample window where subject
is walking. On the other hand value of information suddenly decreases lower
than 0.4 and then gradually increases while the subject is sitting. Given to the
two different observations we can decide that this sensor should be transmitting
data over the entire time.

It is possible to analyze the correlation between the signals in the various com-
binations we have considered and more. Consequently, we can determine the VoI
of each signal, on the impact of other signals as well as the variation of the signal
itself according to subjects physical activity. In figures 3.14, 3.15 and 3.16 contains
the graph representations of MI and VoI of selected Accelerometer, Gyroscope
and Compass sensors compared to their exact opposite sensors placed on the
other side of the body. In particular, left and right upper arms accelerometer sen-
sors, left and right lower arms gyroscope IMU sensors and left and right shoes
compass IMU sensors. Here we observe how the MI and VoI vary over time with
respect to the activity performed. According to the results observed, it is easy to
comprehend that, high MI implies a low VoI and, on the contrary, low MI implies
a high VoI and requires the transmission of both signals at equal priority.
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(a) Lying.

(b) Walking.

(c) Sitting.

Figure 3.14: VoI and MI of Right upper arm and Left upper arm accelerometers, when
different activities were performed in different time windows
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(a) Lying.

(b) Walking.

(c) Sitting

Figure 3.15: VoI and MI of left lower arm and right lower arm IMU gyroscopes, when
different activities were performed in different time windows
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(a) Lying.

(b) Walking.

(c) Sitting.

Figure 3.16: VoI and MI of left shoe and right shoe IMU compass sensors, when
different activities were performed in different time windows





Chapter 4

Discussion

In this thesis, we have considered a publicly available activity recognition dataset
called OPPORTUNITY dataset to study the correlation and mutual information of
motion sensor signals. Our goal was to identify a reliable mechanism to prioritize
the sensory data transmission in order to minimize the cost and bandwidth con-
sumption without degrading the quality and the importance of a given piece of
information. To achieve that, first we studied newly recognized concepts which
are used for content aware data dissemination of smart communication networks
called AoI and VoI. These concepts are already used in smart vehicular networks,
underwater communication systems and other IoT applications for efficient data
transmission over limited available resources. We realized this notion could be
very useful in IoMT or smart healthcare applications where the timely available
accurate medical data is priceless.

AoI is simply the freshness of information, while VoI is the importance of data
according to its use of the particular application context. We introduce several ba-
sic methods using signal processing techniques and Information theory to asses
the value of information of sensor data, and based on that we suggest optimal
transmission delay for each sensor.

In our data analysis, first we pre-processed the dataset and calculated the au-
tocorrelation and cross correlation of sensor signals using selected data sample.
Based on those results we proposed appropriate data transmission lags for each
sensor and we suggested how to prioritize the data transmission when two or
more sensors are highly correlated.

Our next method was to calculate the Mutual information of selected sensors
while the test subject performed different activities. Afterwards we computed
the VoI of those sensor data. Here we suggest that the higher the VoI, the higher
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the priority we should give to the particular sensor.
However, the preliminary methods and results of this thesis could be used as

an initiative for further analysis using advanced algorithms to harness the VoI
for efficient information distribution in IoMT.

4.1 Main findings

The sensors are transmitting data every 33 Milliseconds. Higher the autocorrela-
tion value means that sensor data is, to some extent, redundant. In other words,
a sensor at time T sends the same or very similar information of the signal that
has already sent at time T-1. Due to redundant information or the signal with
less VoI, the associated radio resources are wasted, and the cost, which we can
think of as the bandwidth and storage required to send and store the signals, is
increased. For instance, sending each signal 33 milliseconds has cost C = 1, and
the VoI is nearly zero. Therefore, on full cost the VoI achieved is minimum. In
order to avoid this and to provide maximum VoI, we will calculate appropriate
time interval for each highly autocorrelated signal by analyzing the autocorrela-
tion at different lags. When the autocorrelation values become less than 0.5, we
suggest that this is the optimal time interval for transmitting a particular signal.

Looking at the suggested time intervals for the autocorrelated signals, it was
noticed that most of the signals are sending valuable information at time interval
equals to 5 seconds. By considering the optimal time interval as t; t=5 seconds
(5000 milliseconds) while the original time interval as 0.033 (33 milliseconds), the
cost can be cut off up to 152 times (5000/33 = 151.5). This cost however can be
enormous, considering there can be hundreds of such signals as in the case of the
Opportunity dataset that we have used.

Let us now look at the cross correlation of one signal with the others at differ-
ent T. The goal here is two dimensional. One thing we want to find is, the sensors
that are highly correlated with one another and based on that, decide which one
of them is more appropriate to transmit. This way we can reduce the cost and
increase VoI by choosing the most efficient sensor. On the other hand we can
find the optimal time interval using the autocorrelation analysis for the selected
sensor (that will be in charge of the transmission) in order to further reduce the
cost and increase the VoI.

By using MI, methods can be implemented to check the dependency of two
signals and also check whether the information sent by two sensors are similar
or can be derived by using only one signal. MI, by definition, quantifies the



”amount of information” obtained about one random variable by observing the
other random variable.

We have used MI in conjunction with Pearson correlation to check the VoI
we obtain by sending two signals at different T. Our results show that even at
different delays, the VoI obtained by sending two signals is quite low, and both
of the signals are highly correlated, moreover the MI of both signals is also high.
Therefore, it is better to use only one of such signal at an optimal T to cut the cost
and maximize VoI.

4.2 Limitations and future perspectives

The limitations of the study mostly arise because of the shortcomings of the data.
It includes the unavailability of real-life data. The data used for the study were
acquired from a lab environment simulating real-life situation, however, such
data do not necessarily mimic the real-world situations. For instance, the dataset
have very limited updates for some activities, such as walking. As a result of
that, two problems occurred, one of which is class-imbalance while the other is
little variance. Even for these kinds of activities, the data are gathered in a closely
monitored atmosphere. Therefore, the yielded data do not necessarily reflect the
real-world situation. The dataset do not indicate any real cost values related to
the sensor data transmission such as bandwidth used, latency, etc. Therefore,
we only managed to make assumptions in terms of cost. Had there been the
real costs associated with each update, more analysis would have been possi-
ble in this area. The performed analysis, therefore, includes the assumption of
the costs involved. Hence, imaginary values have been suggested in this area.
Another limitation of the work is that the dataset used has the sensors worn by
a subject all over its body. The jacket and other apparels worn by subject has
tightly setup sensors, and also the environment is tightly monitored, therefore,
there is very little chance that the sensors outputs readings other than expected
readings. In contrast, the wearable sensors in real-world situation have a good
chance of misplaced location. Therefore, calculating VoI on the basis of Age of
Information on such situations is missing in the included analysis. The Future
work should include the collection and analysis of a real-world dataset which
should be rich enough to give results that can help in the decision-making pro-
cess. In such dataset, the cost should be associated with the updates. Some of
the indicators for cost can be bandwidth required to make each or some updates,
the approximate consumption of battery to make some updates, the storage ca-
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pacity to require the updates, etc. Moreover, there should be lesser and more
appropriate sensors used for the collection of such dataset. More importantly,
the dataset should be collected by keeping in mind the analysis of VoI. Future
works on this field should include the improvement of existing techniques and
also the research of new and different approaches. These approaches should in-
clude finding VoI using the Pearson correlation, auto-correlation, MI, Entropy,
and Information Gain. An ensembles model of such different techniques can be
more accurate and more useful for such analysis. Another shortcoming of this
work, and possible improvement for future research, could be the investigation
of more advanced methods, e.g., based on machine learning, to estimate the cor-
relation among signals, and assess the VoI based on that. There are many differ-
ent possibilities to use these for the calculation of VoI and associated variables.
Some of these works, for example, can include the use of Regression Models to
predict the VoI.
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