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“Regardless of the staggering dimensions of the world about us, the density of our
ignorance, the risks of catastrophes to come, and our individual weakness within the
immense collectivity, the fact remains that we are absolutely free today if we choose
to will our existence in its finiteness, a finiteness which is open on the infinite. And
in fact, any man who has known real loves, real revolts, real desires, and real will
knows quite well that he has no need of any outside guarantee to be sure of his

goals; their certitude comes from his own drive.”

— Simone de Beauvoir



Abstract

This thesis addresses the over-smoothing issue common in deep graph neural networks
(GNNs), a topic of considerable interest over the past decade. Despite the expansion
of GNN models aiming to capture richer representations of graph-structured data, the
deep variants often encounter the issue of over-smoothing. This phenomenon inhibits
their performance potential, limiting their ability to extract and preserve meaningful
information from graph inputs. To tackle this challenge, we propose the Hierarchical
Line Graph Neural Network (HLGNN), a novel framework that leverages the
concept of iterated line graphs from graph theory. While line graph transformation—a
method for converting a graph into its line graph representation to capture higher-
order connectivity patterns—has gained attention in graph theory, its application
within the realm of graph neural networks remains under-explored. Inspired by the
principles of hierarchical and higher-order GNNs, we introduce a message-passing
mechanism within HLGNN that facilitates the flow of information across both
intra-graph and inter-graph levels. This hierarchical approach enables HLGNN
to address the over-smoothing problem effectively while enhancing the model’s
capacity to capture complex graph structures. The versatility of HLGNN extends
to various graph-related tasks, including node classification, graph classification,
and community detection. Throughout this thesis, we conduct theoretical research
along with practical experiments to evaluate the efficacy of the proposed framework,
focusing particularly on node classification tasks.
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There’s a crack in everything, that’s how the light gets in.

— Leonard Cohen
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Introduction

Graph Neural Networks (GNNs) have become a powerful tool for modeling complex
relational data structures. In the last decades, the demand for effective graph repre-
sentation learning methods has grown significantly. They are widely used in various
areas such as social networks [19], recommendation systems [26, 31], and biological
[9] and chemical networks [29, 21]. Simple graph kernels and heuristics cannot cap-
ture the complex relations present in the graph and the traditional neural network
architectures like Convolutional Neural Networks (CNNs) designed for visual data
and Recurrent Neural Networks (RNNs) designed to learn from sequences, cannot be
applied to graph-structured data due to its non-Euclidean nature. Therefore, GNN
models that introduce a learned representation of the data while preserving the
graph’s structural information, are dominantly more effective that other approaches.

Despite their effectiveness, existing GNN models have some limitations. One of the
challenges that GNN models, especially flat ones face is the over-smoothing problem.
Over-smoothing often happens in deep GNN models, where after several layers of
message-passing, the node representations become similar and lose their initial diver-
sity, resulting in a low performance model. Another problem often present in GNN
models is their inability to capture long-range interactions in the graph. Often-times
there are dependencies between nodes that are not directly connected. Capturing
long-range interactions are essential to understand the higher-order patterns in the
graph. Traditional GNN architectures like Graph Convolutional Networks GCNs [16],
operate on local information aggregation where each node aggregates information
only from its immediate neighbors. Thus, this limits a model’s ability to capture
long-range dependencies effectively.

Hierarchical GNNs have shown to be more resilient toward over-smoothing prob-
lem since they tend to capture higher-order representations of the graph [23, 20, 32].
Moreover, line graphs have always been an interesting topic in graph theory. Infor-
mally, a line graph of a graph is a graph in which the edges of the original graph are
nodes in the transformed graph [2]. Our approach, Hierarchical Line Graph Neural
Network (HLGNN), integrates iterations of line graphs to construct a hierarchy of
graphs to learn. These factors have motivated us to construct a hierarchical model
that can widen the receptive field through alternative representations of the graph
and also transmit messages between sparsely connected components in the graph.

In the following chapters, we provide a comprehensive theoretical background
on GNN models and line graphs. We then review some existing GNN models,

1
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highlighting their contribution and acknowledging their drawbacks. Following that,
we introduce our novel GNN architecture along with detailed explanation of its
components. The subsequent chapters explain our experimental design and provide
analysis of the results to demonstrate the effectiveness of our approach compared to
other baseline methods. Finally, we will discuss the implications of our findings and
outline potential future works in the graph representation field.



Chapter 1

Theoretical Background

1.1 Introduction

It is beneficial to present a theoretical background of the fundamentals discussed
in this thesis, to present a comprehensive overview in Chapter 2, and explain the
proposed methodology in Chapter 3 thoroughly. Therefore, this chapter covers a
brief review of graph concepts, followed by the basic definition of the graph neural
network model and the message-passing scheme which can be considered the standard
way of information aggregation. The second section of this chapter is dedicated
to the definition of the line graph transformation, its important properties, and
its relevance to graph neural network model. To demonstrate this relevance, we
mention some earlier works done to integrate the line graphs into a GNN module.

1.2 Table of Notations

In this section, we provide a table of notations that lists the key symbols and their
descriptions used throughout this thesis. This table serves as a reference to help the
reader understand the terminology and symbols consistently.

3
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Symbol Description

G A graph

L(G) Line graph of G

V Set of vertices in graph

E Set of edges in graph

u A vertex (node) in graph

e An edge in graph

deg(u) Degree of vertex v

A Adjacency matrix of the graph

B Incidence matrix of the graph

D Degree matrix of the graph

N (u) The set of neighbors of vertex u

I(u) The set of incident edges to vertex u

Kn Complete graph on n vertices

Cn Cycle graph on n vertices

Pn Path graph on n vertices

Gt t-th graph in the hierarchy

S Set of hierarchical line graphs

xu Input feature vector of vertex u in the graph

X Input feature matrix of the graph

d Feature dimension

h
(k)
u Feature vector of vertex u at the k-th layer

H(k) Matrix of feature vectors of all vertices at the k-th layer

W (k) Weight matrix at the k-th layer

b(k) Bias term at the k-th layer

Ã Activation function

Table 1.1: A table of notations containing the key symbols used in this thesis and their
description.

1.3 The Graph Neural Network Model

To define a GNN model, we first need to understand graph data-structure and
its limitations. Graph-structured data contains nodes that are connected to each
other and their relations are represented as edges. These relations can be directed,
undirected, heterogeneous, etc. and form various types of graphs [13]. The contextual
information of the graph-structured dataset is dependent on both the node features,
and structural properties present in the graph. Ignoring the relations between
nodes and assuming the nodes independent, causes a loss of structural information,
and results in a less expressive, interpretable model. Therefore, it is important to
integrate the structure of graph into our model. We first review the permutation
invariance concept and discuss how it is a feasibility factor in GNN models. We then
define the message-passing scheme for GNNs and explain how it integrates both
feature-based and structural information utilizing local feature extraction. Lastly,
we discuss the different tasks that GNNs can be applied to.
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1.3.1 Permutation Invariance

A GNN model should be permutation invariant or permutation equavariant in order
to be feasible. That is, the function f should not depend on the arbitrary ordering
of the rows/columns in the adjacency matrix.

Definition 1.3.1. Any function f that takes an adjacency matrix A as input should
satisfy one of the two following properties:

1. f(PAP T ) = f(A) (Permutation Invariance)

2. f(PAP T ) = Pf(A) (Permutation Equavariance)

where P is a permutation matrix.

In other words, we cannot feed the adjacency matrix of a graph into a neural
network to generate an entire graph embedding because this approach depends on
the arbitrary ordering of the node in the adjacency matrix.

1.3.2 Neural Message-passing

To understand how a GNN works, we first need to define its crucial property, neural
message-passing. Message-passing is a key defining feature in all GNN models [10].
In general, all GNN models operate based on a message-passing scheme in which
the nodes exchange vector messages in their neighborhood. The idea is to transmit
information between nodes that are locally connected. This locality usually expands
based on the number of the layers of the GNN model. Therefore, a GNN with
K layers, aggregates messages from each node’s K-hop neighborhood. There are
various versions of message-passing depending on the approach and the application,
but almost all of them can fit into the following generalization.
The book Graph Representation Learning, a comprehensive introductory study on
GNN models, defines the message-passing operation by two arbitrary different func-
tions, UPDATE and AGGREGATE [10]. In each message-passing iteration, a hidden
embedding for each node in the graph is generated by combining (1) the node’s
previous embedding and (2) the message aggregated from the node’s neighborhood. In
other words, first a message is aggregated from a node’s neighborhood by AGGRE-
GATE function, and then it is combined with node’s previous embedding through
UPDATE function. Formally, the aggregated message for node u in the kth layer
can be written as

µ
(k)
N (u) = AGGREGATE(k)({h(k−1)

v ,∀v ∈ N (u)}) (1.1)

Finally, the kth embedding of node u is obtained by combining h
(k−1)
u and the

aggregated message µ
(k)
N (u):

h(k)
u = UPDATE

(

h(k−1)
u , µ

(k)
N (u)

)

(1.2)

The choice of AGGREGATE and UPDATE functions can vary depending on the

task. It is notable that regardless of the type of the operations, the message µ
(k)
N (u) is

permutation invariant by definition since it is computed from a set of u’s neighbors.
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We can stack these layers of message-passing embedding to form the hidden layers
of a neural network. The first hidden embedding is usually initialized to each node’s

own feature vector, h
(0)
u = xu. After K iterations of message-passing, we can set the

output embedding zu = h
(K)
u .

1.3.3 The GNN Module

There are various methods and theoretical approaches for implementing a GNN
model. We refer to [24] as the foundational GNN, representing the most general form
of the GNN module. Formally, a graph-structured dataset can be represented as a
graph G(|V|, |E|) along with the node embedding feature matrix X ∈ R

|V|×d where
d is the feature dimension. The basic GNN model proposed in [24] is described as
follows:

h(k)
u = Ã



W
(k)
self h(k−1)

u + W
(k)
neigh

∑

v∈N (u)

h(k−1)
v + b(k)



 (1.3)

where Ã is a non-linear activation function. W
(k)
self , W

(k)
neigh ∈ R

d(k)×d(k−1)
are trainable

weight matrices, and b(k) ∈ R
d(k)

is the bias term.

1.3.4 Over-smoothing Problem

After every iteration k, each node in the graph has aggregated information from its
k-hop neighborhood. The intuition behind message-passing is straightforward: since
nodes are not entirely independent, it benefits the model when nodes in a graph
update their embeddings based on their neighborhood information. In essence, nodes
become aware of their context. By context, we mean the two types of information
that nodes exchange: structural and feature-based.

Structural information refers to the structural properties of the nodes within the
graph. For instance, each node can acquire information regarding the degrees of the
nodes in its neighborhood. Feature-based information, on the other hand, involves
aggregating feature vectors from the neighborhood. While exchanging these pieces of
information can enhance the model’s performance, over multiple iterations, nodes in
the graph tend to lose their diverse properties. This decrease in diversity diminishes
the model’s expressiveness and results in over-smoothing.

The issue of over-smoothing often arises in GNNs due to the way message-passing
is utilized. Over-smoothing is particularly problematic in deep GNNs, where after
several layers of message-passing, node representations become similar and lose
their initial diversity, leading to poor model performance. As stated in [10], "Over-
smoothing is problematic because it makes it impossible to build deeper GNN
models—which leverage longer-term dependencies in the graph—since these deep
GNN models tend to just generate over-smoothed embeddings."

1.3.5 GNN Task Types

Generally, the majority of GNN tasks can fit into one of these categories:
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1. Node classification. The nodes of a graph are classified based on their
features and structural information. Predicting the category of a user in a
social network is an example of node classification.

2. Graph classification. Sometimes, we need to classify an entire graph based
on its overall properties. Graph classification GNNs are used in studies on
molecular structures, biological graphs, etc.

3. Link prediction. GNNs can predict the likelihood of a possible edge between
nodes in the graph. They are useful for constructing recommender systems for
social media platforms or advertisement strategies.

4. Community detection or graph clustering refers to the process of identifying
underlying structures in the graph. These "clusters" represent subsets of nodes
that share similar characteristics in the graph. Hierarchical methods are
often utilized for community detection tasks as they can represent high-level
connectivity patterns.

As the field of GNNs expands, their applications also become broader. Graph
generation, graph regression, and graph representation learning are examples of
other tasks that GNNs are utilized for.

1.4 Line graphs

In this section, we provide the formal definition of line graphs and some of their
useful properties, and we discuss how message-passing in the context of GNNs can
be done in (a series of) line graphs and why it can be beneficial to do so.

1.4.1 Definition

The line graph transformation can be considered one of the most interesting trans-
formations in graph theory. “The concept of the line graph of a given graph is
so natural that it has been independently discovered by many authors" [13]. The
line graph has appeared in the literature by various names like interchange graph,
edge-to-vertex dual, covering graph, derivative, etc. Informally, the line graph L(G)
of a graph G is the result of taking the edges of a graph as the vertices of the new
graph and joining the new vertices if the corresponding edges are incident by a
vertex in graph G (Figure 1.1). The line graph represents an alternative structure
of the original graph, and integrating it in GNNs can be beneficial and increase the
model’s expressiveness. Formally, the line graph of a graph is defined by [2] below.

Definition 1.4.1. Given a graph G(N , E) with at least one edge, the line graph of
G, denoted by L(G), is a graph whose vertices are the edges of G, with two of these
vertices being adjacent if the corresponding edges are incident in G.

If G2 = L(G1), we denote G1 as the root graph of G2. Since the line graph of a
graph is still a graph, the process can be iterated and result in a sequence of line
graphs (see Figure 1.2). Moreover, if G is a non-trivial graph that is connected, the
line graph L(G) is also connected.
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Figure 1.1: Example of a graph and its line graph.

1.4.2 Basic Properties

Although line graphs of special graphs like cycles and paths have interesting attributes,
our aim is not to discuss any of the specified properties but rather to maintain the
generality of this section. One of the useful properties of line graphs is the ability to
determine the number of nodes and edges, which is desirable when defining a class
of graphs [13].

Theorem 1.4.1. Let G be a non-null graph with n vertices and m edges. Then

1. L(G) has m vertices and
1

2

∑

(deg v)2 −m edges.

2. The degree of a vertex e = uv in L(G) is deg e = deg u + deg v − 2.

The proof of the theorem can be found in [2]. We also mention briefly the
properties of line graphs of some elementary families of graphs:

1. Paths: L(Pn) ∼= Pn−1 for n ≥ 2. (The line graph of a path Pn with n vertices
is isomorphic to another path Pn−1.)

2. Cycles: L(Cn) ∼= Cn. (The line graph of a cycle Cn is isomorphic to the same
cycle Cn.)

3. Stars: L(K1,s) ∼= Ks. (The line graph of a star graph K1,s is isomorphic to a
complete graph Ks.)

The property concerning paths, which refers to the reduction of path length
in the line graph, can be considered useful in capturing long-range interactions in
GNN models, particularly in scenarios involving sparse graphs. This transformation
essentially operates as an edge contraction, without loss of information, enabling the
detection of distant interactions. However, it is important to limit the number of
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transformations, as excessive iterations can over-simplify the graph structure, leading
to information loss. Regarding cycle and star graphs, the ability to identify these
patterns or sub-structures in the graph is valuable, especially in graph classification
tasks. By employing a distinct transformation, the process of recognizing these
specific patterns becomes much easier.

To understand the scope of the line graph, it’s useful to know the smallest and
largest degrees among its vertices. As we know, the degree of a vertex e = uv in the
line graph L(G) is deg u + deg v. We denote ¶(L(G)) and ∆(L(G)) as the smallest
and largest degrees of the line graph L(G), respectively. The observation below was
made by [6], and it follows from Theorem 1.4.1.

Theorem 1.4.2. Let G be a graph with at least one edge:

1. ¶(L(G)) ≥ 2¶(G)− 2 with equality if and only if G has two adjacent vertices
of degree ¶(G).

2. ∆(L(G)) ≤ 2∆(G)− 2 with equality if and only if G has two adjacent vertices
of degree ∆(G).

Intuitively, the first bound suggests that the line graph L(G) tends to have higher
minimum degrees compared to the original graph G. This implies that, in general,
the connectivity between edges in L(G) is stronger than the connectivity between
vertices in G. The second bound indicates that the maximum degree in the line graph
L(G) is typically lower in comparison to the maximum degree in the original graph
G. This suggests that the line graph L(G) tends to have a more balanced degree
distribution compared to the original graph G. In summary, the transformation
into a line graph tends to redistribute the degrees of nodes, potentially leading to
a graph with stronger local connectivity and a more balanced degree distribution
compared to the original graph.

1.4.3 Transformation Complexity

The line graph transformation can be divided into two transformations, (1) vertex
transformation and (2) edge transformation. The line graph L(G) has a vertex for
each edge in G. Therefore, the complexity of vertex transformation is proportional
to the number of edges in G, which is O(m). Moreover, we know that for each
vertex v in G, its incident edges contribute to the edges in L(G), and the number of
edges in L(G) is related to the sum of squares of the degrees of vertices in G (see
Theorem 1.4.1). The computation involves traversing all vertices in G, resulting in
the edge transformation being O(n). Finally, the overall complexity of transforming
a non-null graph G into its line graph L(G) is O(m) + O(n) = O(m + n).

1.4.4 Spectral Properties

In this section, we discuss some of the important spectral properties of graphs and
line graphs, along with defining some necessary matrices. We begin by defining the
adjacency matrix, an important matrix in graph theory.
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Definition 1.4.2. Given a graph G(V, E) where |V| = n and |E| = m, the adjacency
matrix, denoted as A = A(G), is an n × n matrix where aij is 1 when vertices vi

and vj are adjacent and 0 otherwise.

The adjacency matrix contains some of the properties of the graph itself. It can
be shown by an induction proof that "the (i, j) entry of the kth power of A is the
number of walks of length k from vertex vi to vertex vj" [2]. It is also widely used
in GNN message-passing as it contains information about each node’s neighbors.
As the line graph is the main focus of this work, the incidence matrix is another
graph matrix that has significant importance because it focuses on edges and their
relations with vertices.

Definition 1.4.3. Given a graph G(V, E) where |V| = n and |E| = m, the incidence
matrix, denoted as B = B(G), is an n×m matrix where bij is 1 when vertex vi and
edge ej are incident and 0 otherwise.

To define a line graph’s adjacency matrix, we can make use of the incidence
matrix in the following theorem proved by [2].

Theorem 1.4.3. For any graph G,

1. A(G) = BBT −D

2. A(L(G)) = BT B − 2I

where D ∈ R
n×n is the diagonal degree matrix of G and I is the identity matrix.

The theorem provides insights into how the connectivity patterns and node-
edge relationships in G are transformed when constructing the line graph L(G).
Understanding how information flows and propagates in G and L(G) can aid in
designing more effective graph embedding methods. Spectral embedding techniques,
in particular, can benefit from insights provided by the theorem to capture structural
similarities. Moreover, the theorem’s description of the relationships between the
adjacency matrices can be useful in identifying isomorphic graphs.

1.4.5 Iterated Line Graphs

Since the line graph is a graph itself, a sequence of iterated line graphs can be
generated. Formally, we define the iterated line graphs of a graph G as L1(G) = L(G),
L2(G) = L(L(G)), etc. In general,

Ln(G) = L(Ln−1(G)).

Figure 1.2 shows a graph and its sequence of iterated line graphs. These sequences
can reveal underlying structural information in the graph. It is proved by [2] that
if a graph is prolific, then the number of vertices in the iterated line graphs grows
indefinitely by iteration. A prolific graph is defined by [2] as "a graph that is
connected, has a vertex of degree at least 3, and is not K1,3, in other words, if it is
connected and not a path, cycle, or claw."

Theorem 1.4.4. Let G be a prolific graph, and let nk be the number of vertices in
Lk(G). Then

lim
k→∞

nk =∞.
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Figure 1.2: Example of a graph and its iterated line graphs.

The theorem implies that the line graphs of prolific graphs become increasingly
expansive as the iteration proceeds. There’s no upper bound to the growth of
vertices in the iterated line graphs. This suggests that the iterations of line graphs
continue to reveal new structural information about the original graph. In the next
section, we discuss the implications of utilizing iterated line graphs to construct rich
hierarchical graph representations. It is notable that the iterated line graphs tend
to get larger at each iteration, causing considerable computational complexity.

1.4.6 Line Graphs in Graph Neural Networks

Despite the line graph’s potential for building more representative learning schemes,
the concept has not been thoroughly investigated. The work by [5] introduces
LGNN (Line Graph Neural Network), a framework designed for the link prediction
task. It converts the link prediction task to a binary classification task using line
graph transformation and then leverages node classification approaches to solve the
binary classification task on the transformed graph. Another work by [7], among
other contributions, presents a GNN model based on a family of multi-scale graph
operators that utilizes line graphs for the community detection problem.

The line graph, a straightforward graph transformation, has been particularly
interesting in graph theory. However, its potential in the graph representation
domain remains largely unexplored. With promising theoretical properties, line
graphs suggest the possibility of creating more robust representations of their original
graph, emphasizing edge connections and alternative representations. In this study,
our objective is to develop a hierarchical graph neural network built upon iterated
line graphs. We aim to establish an efficient flow of information by leveraging
incidence matrices.



Chapter 2

Literature Review

2.1 Introduction

Graph representation learning is a field of research in the category of deep learning
that has risen in popularity over the last two decades. The increasing amount of
large graph-structured datasets, such as social networks and recommender systems,
has driven the demand for effective graph representations. Moreover, the impressive
performance of deep learning models in other areas, such as CNNs and RNNs, has
motivated many to integrate the fundamentals of neural networks with graph data.

Initial works by [25] and [24] utilized recurrent networks to construct graph
neural network models. However, it was the introduction of Graph Convolutional
Networks (GCNs) by [16] that revolutionized graph data processing. Inspired by
CNNs (Convolutional Neural Networks) [18], which prioritize local feature extraction
and weight sharing to widen the receptive field, GCNs utilize local message-passing
to build node representations that integrate local information.

Since then, many contributions have been made in this field, each derived from a
different theoretical motivation. The comprehensive analysis of GNN models carried
out by [36] classifies the existing computation modules for graph neural networks
into three primary categories: (1) propagation modules, consisting of convolution
and recurrent operators; (2) sampling modules, which prioritize inductive and more
general solutions; and (3) pooling modules, or hierarchical modules, that construct
hierarchical representations of the input graph to capture higher-level activities
within the graph.

In this chapter, we review the aforementioned GNN modules, highlighting the
most influential works in this domain. We recognize their contributions as well as
their limitations. Our focus is particularly on the hierarchical modules and their
diverse approaches and motivations. We then introduce our approach, HLGNN,
which adopts a hierarchical methodology by constructing line graphs. We argue
how this approach can address certain shortcomings of earlier models, notably the
over-smoothing issue.

12
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2.2 Propagation and Sampling Modules

In the context of Graph Neural Networks (GNNs), propagation modules play a
critical role in adapting convolution operators from traditional domains to the graph
domain, facilitating effective information aggregation across graph structures. These
modules are inspired by both spectral and spatial approaches, aiming to generalize
convolutional operations for graph-structured data. Notable examples include Graph
Convolutional Networks (GCNs) [16] and Graph Attention Networks (GATs) [28],
which enhance node representations by aggregating information from neighboring
nodes with varying degrees of attention. Moreover, recurrent network architectures
such as LSTM and GRU modules have been seamlessly integrated into graph models
such as TreeLSTM [27] and GraphRNN [33], enabling sequential processing and
capturing long-range dependencies within graph contexts.

Addressing the challenge of neighbor explosion in GNNs, particularly in deep
architectures where the size of neighboring sets grows exponentially with network
depth, sampling modules mitigate computational complexity by selectively sampling
and aggregating information. Notably, GraphSAGE [4] exemplifies this approach,
demonstrating its effectiveness in scaling GNNs for large-scale and inductive learning
tasks while ensuring efficient transformation of graph data.

2.2.1 GCN (Graph Convolutional Network)

Inspired by CNNs in images, [16] proposes GCN (Graph Convolutional Net-
work). GCN operates by aggregating feature information from a node’s local
neighborhood, allowing each node to learn representations based on its neighbors’
features. It simplifies spectral graph convolutions [12] by limiting dependence on the
neighborhood of nodes. It also utilizes a single weight matrix per layer and keeps
the learning stable by normalization techniques. The message-passing operation of
GCN is defined as:

h(k)
u = Ã



W (k)
∑

v∈N (u)∪{u}

hv
√

|N (u)||N (v)|



 (2.1)

where instead of taking the sum as aggregation, it takes the mean of neighbor nodes
by applying symmetric normalization.

This approach has proved to be one of the popular and effective baseline GNN
architectures, however, it has some limitations. The memory requirement of GCN
grows linearly with the size of the dataset. For large and densely connected graph
datasets, it might be beneficial to apply further approximations. It inherently does
not support edge features and is only applicable to undirected graphs. The authors
suggest handling this limitation by representing the original graph as an undirected
bipartite graph with additional nodes that represent edges in the original graph,
which interestingly, mirrors our approach.

Moreover, GCN’s message-passing allows exposure to only the Kth order neighbor-
hood of a node for K layers, and all of the contributing nodes have equal importance.
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This property can limit the model from capturing long-range interactions and also
cause over-smoothing in a deep GCN model.

2.2.2 GraphSAGE

Instead of training individual embeddings for each node, GraphSAGE, introduced
by [11], learns to generate embeddings. The proposed framework, GraphSAGE
(Sample and Aggregate), is designed to work with inductive node embedding prob-
lems. Inductive problems are especially difficult as the model needs to learn effective
node representations that generalize to unseen data while preserving the graph’s
structural properties.

GraphSAGE trains "a set of aggregator functions" that extract information from
a node’s local neighborhood instead of learning a node embedding for each node.
For instance, a mean aggregator in GraphSAGE can be expressed as :

hk
u ←− ³(W.MEAN({hk−1

u } ∪ {hk−1
v ,∀v ∈ N (u)})). (2.2)

The authors also experimented with two other aggregators, LSTM (inspired by
RNNs) and MAX. Although GraphSAGE is inherently feature-based, it can learn
the structural properties of the graph, even if the nodes are sampled randomly.

2.2.3 GAT (Graph Attention Network)

GATs utilize masked attentional layers. In each attentional layer, nodes perform
self-attention using a shared attention mechanism. The importance of node v’s
feature to node u is determined by attention coefficients:

auv = a(WhuWhv). (2.3)

By stacking such layers, nodes attend over their neighborhood features, implicitly
assigning weights to the neighboring nodes. GATs don’t depend on graph structure
and are suitable for both inductive and transductive problems. In general, the
model allows every node to attend to every other node, discarding all structural
information. The structural properties are included through performing masked
attentions, computing auv for nodes v ∈ N (u).

Overall, GATs are versatile, applicable to directed and undirected graphs, and
handle inductive and transductive tasks. They offer computational efficiency through
parallelization. Nonetheless, they overlook the graph’s structural properties, which
can be critical in graphs with complex structures or underlying patterns.

2.2.4 GIN (Graph Isomorphic Network)

In their study, [30] examine how GIN (Graph Isomorphic Network) challenges
the expressive limitations of models such as GCN [16] and GraphSAGE [11]. Inspired
by GNNs and the Weisfeiler-Lehman (WL) graph isomorphism test, GIN introduces
a straightforward yet powerful framework for graph representation learning. The
proposed approach integrates multi-layer perceptrons (MLPs) as an aggregation
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function, enabling information aggregation not only from neighboring nodes but also
from the node itself, thus preserving graph structure and local information:

h(k)
u = MLP (k)((1 + ϵ(k)) · h(k−1)

u +
∑

v∈N (u)

h(k−1)
v ). (2.4)

The authors theoretically demonstrate that GIN’s expressive power is equivalent
to that of the Weisfeiler-Lehman (WL) test, achieving a high discriminative power
among GNN models. However, challenges may arise in scaling GIN to large-scale
graphs due to increased computational complexity and memory requirements. Ad-
ditionally, GIN’s reliance on initial node features could undermine its robustness
when confronted with noisy data.

2.3 Hierarchical Modules

The inspiration behind the graph pooling operation derives from the pooling lay-
ers found in convolutional networks, aiming to capture more concise, higher-level
representations. Flat GNN message-passing suffers from several limitations. It
predominantly focuses on local feature extraction, leading to over-smoothing in deep
networks and an inability to effectively capture complex structures within large-scale
graphs. To address these challenges, hierarchical message-passing approaches have
been introduced.

Hierarchical and pooling GNNs typically establish a sequence of alternative graph
representations, known as the graph hierarchy, based on specific transformation
schemes. This involves adapting message-passing to enable the transmission of
messages both within each graph (intra-level propagation) and between graphs in
the hierarchy (inter-level propagation). By incorporating this approach, GNNs gain
access to various representation levels of the graph, ultimately resulting in a more
expressive model. In this section, we review some of the important studies conducted
on hierarchical GNNs.

2.3.1 Diff-Pool

Introduced by [32], Diff-Pool was the first graph pooling mechanism. Diff-Pool
employs a differentiable soft cluster assignment technique within each layer of a
GNN, assigning nodes to clusters based on their learned embeddings, analogous to
the spatial operation in CNNs [17]. Through the learned cluster assignment S(k), it
coarsens the graph as expressed by:

H(k+1) = S(k)T

P (k) ∈ R
nk+1×d, (2.5)

A(k+1) = S(k)T

A(k)S(k) ∈ R
nk+1×nk+1 . (2.6)

Here, H(k+1) and A(k+1) are the new embedding and adjacency matrices, respectively.
The assignment matrix S(k) and the node embedding matrix P (k) are learned
independently using separate GNN modules:

P (k) = GNNk,embed(A(k), H(k)), (2.7)
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S(k) = GNNk,pool(A
(k), H(k)). (2.8)

Diff-Pool learns meaningful node clusters, enabling the development of deeper GNN
models while preserving high-order patterns and capturing hierarchical community
structures. It performs well in densely connected graphs, aggregating information
with minimal loss. However, it may struggle to capture sparse graph structure,
particularly interesting structures such as paths, cycles, and tree-like structures.

2.3.2 Att-Pool

Att-Pool, presented by [15], offers an attention-based pooling strategy aimed at
generating hierarchical feature representations. By leveraging attention mechanisms,
Att-Pool dynamically selects and aggregates node features, enabling the creation of
more informative hierarchical representations. The authors propose two attention
modules: global attention, which considers all nodes in the graph, and local attention,
which focuses on extracting local features to keep the attention balanced across all
regions of the graph.

The approach can effectively be integrated with various GCNs in a hierarchical
manner. Additionally, Att-Pool enables the model to prioritize relevant nodes while
discarding less informative ones, thereby enhancing representation learning. The
heavy reliance on attention mechanisms in the approach can lead to scalability issues
when applied to large-scale graphs. This is because attention mechanisms introduce
computational overhead, which becomes more problematic as the size of the graph
increases.

2.3.3 Graph Transformers

In their 2019 paper, [34] introduced Graph Transformer Networks (GTNs), which
extend graph neural networks (GNNs) to handle heterogeneous graphs by generating
new graph structures. GTNs identify useful connections between unconnected
nodes and create effective node representations through an end-to-end learning
process. The core component, the Graph Transformer layer, selects edge types and
composite relations to form meta-paths, enabling powerful node representations
without domain-specific preprocessing.

2.3.4 HGNet

HGNet (Hierarchical Graph Net), introduced by [23], tackles the limitations of flat
message-passing modules commonly used in most GNN architectures. The method
utilizes edge contraction [8] or the Louvain method [3] to construct a hierarchical
structure. Similar to other hierarchical GNNs, HGNet employs two-directional
hierarchical message-passing. This involves an upward pass through the hierarchy
and a subsequent downward pass, utilizing GCN layers and contraction methods.

HGNet demonstrates superior performance compared to stacking of GCN lay-
ers, especially in molecular property prediction benchmarks. It achieves this by
propagating information within O(log |V (G)|) steps instead of O(diam(G)), thereby
effectively capturing long-range interactions in sparse graphs with large diameters.
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2.3.5 HGNN

The work done by [20] presents another hierarchical GNN architecture utilized specif-
ically for particle tracking. To construct the hierarchical representation, the authors
propose GMPool, a method that integrates the connected components algorithm
and Gaussian Mixture Model (GMM). Initially, GMPool computes node similarities
based on their embeddings, followed by GMM-based classification of edges into
in-cluster or out-of-cluster categories. The connected components algorithm then
identifies remaining node groups, forming super-nodes with embeddings defined as
centroids. Super-edges are formed by connecting nodes to their respective super-
nodes, maintaining sparsity with a bipartite graph approach.

Regarding the message-passing mechanism, each node aggregates information
from (1) adjacent node features, (2) super-node features weighted by bipartite graph
weights, and (3) its own features. HGNN demonstrates better tracking efficiency
performance and enhanced robustness against inefficient input graphs. It not only
reduces the distance between nodes through its hierarchical approach but also
effectively expands the receptive field, enabling message-passing between weakly
connected components.

2.3.6 HC-GNN

HC-GNN exploits the Louvain method [3] to build up the hierarchical structure,
which is then used for the hierarchical message-passing mechanism. Like other
approaches, [35] presents a global message-passing for a hierarchical GNN. The
structure is constructed by grouping the high-density inter-connected nodes. The
message-passing is done in three phases: (1) within-level propagation, (2) bottom-up
propagation, and (3) top-down propagation.



Chapter 3

Methodology

3.1 Introduction

Flat message-passing GNNs struggle to capture long-term interactions between
nodes, often overlooking multi-level information within the graph due to their re-
liance solely on aggregating messages across the observed topological structure [35].
Additionally, over-smoothing issue is evident in many popular GNN models, where
node representations lose their distinctiveness after several layers of GNN message-
passing. Thus, it is beneficial to construct a hierarchical message-passing mechanism,
integrating multi-level information present in the graph into node representations.
This approach not only preserves locality through intra-level communication but
also is able to capture high-level neighborhood properties by facilitating inter-level
interactions between hierarchical layers.

To address the mentioned issues, we present HLGNN (Hierarchical Line
Graph Neural Network), a hierarchical GNN framework inspired by line graphs
and their inherent properties. The hierarchical structure is formed through iterative
line graphs, wherein each graph Gt at level t represents the line graph of the graph
from the previous layer t− 1 (Gt = L(Gt−1)). Subsequently, a hierarchical message-
passing mechanism is developed by utilizing GCN layers [16] and incidence matrices.
The key concept involves constructing a hierarchical framework that contains (1)
iterations of line graphs, and (2) intra and inter-level propagation schemes [35].

In most hierarchical GNN studies, the graphs in the hierarchy typically serve as
a coarsened version of the original graph, intended to create shortcuts for capturing
interactions between distant nodes. However, the coarsening process often leads
to information loss, particularly structural details [32]. Conversely, iterated line
graphs tend to expand with each iteration. As discussed in Chapter 1, line graphs
address the issue of node degree imbalance, as stated in Theorem 1.4.1, thereby
avoiding bias towards high-degree nodes. Furthermore, they have the capability to
enhance the representation of specific sub-graphs, making them more noticeable,
and ultimately reducing path lengths, resulting in a more balanced representation.
Employing iterated line graphs for a hierarchical GNN framework offers several
additional advantages:

18
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1. The line graph of a graph focuses on edge properties, which are often overlooked
in traditional GNNs. However, these properties can provide crucial information
if aggregated effectively.

2. GNNs incorporating line graphs can expand their receptive field twice as fast
as flat GNNs by aggregating information from a 2k-hop neighborhood rather
than just a k-hop neighborhood. This is because each node in the line graphs
represents the intersection of two nodes in the original graph.

3. Iterated line graphs tend to expand in size, which is beneficial when dealing
with small graphs in graph classification tasks. They can unveil information
that might be obscured to a flat GNN and diminished due to the over-smoothing
issue in deep GNN models.

Leveraging simple matrix multiplication operations, we construct a hierarchical
GNN based on iterated line graphs. Intra-level aggregations can be interpreted as
flat message-passing operations, that aggregate information within the graph. On
the other hand, inter-level aggregations employ incidence matrices, serving as a
bridge between the levels of hierarchy.

3.2 Hierarchy Construction

Our novel framework, HLGNN, leverages the iterative nature of line graphs to
construct a hierarchical framework utilizing GNN layers. In the context of a line
graph, the edges of the original graph become the vertices of the line graph, with
line vertices connected if the corresponding edges in the original graph are incident
to a vertex. Recognizing that the line graph itself is also a graph, one can generate
a series of iterative line graphs (see Chapter 1).

The inherent predictability of line graph theory enables us to pre-compose the
iterated line graphs, thereby enhancing the overall efficiency of the model. To generate
the series of iterated line graphs, given the input graph G0 = G(|V| = n, |E| = m)
with a node feature matrix X ∈ R

n×d and the desired hierarchy level T , we establish a
set of hierarchical graphs S = {G0, G1, G2, ..., GT } where G1 = L(G0), G2 = L(G1),
and so forth. According to the definition of the line graph, we observe that VL(G) = EG

implying nL(G) = mG. For any arbitrary graph Gt within the hierarchy 0 < t < T ,
the graph’s adjacency matrix A and incidence matrix B can be denoted as

At ∈ R
nt×nt , Bt ∈ R

nt×nt+1 . (3.1)

HLGNN is designed to create more expressive node representations applicable to
diverse graph-structured tasks such as node classification, graph classification, and
community detection. In subsequent chapters, we delve into the model’s application
to node classification tasks.
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3.3 Message-passing Mechanism

Let’s delve into the concept of simple message-passing as outlined in Chapter 1. In
the context of a graph G(|V| = n, |E| = m), the computation of hk

u, representing
the hidden embedding of node u at layer k, involves two primary operations AG-
GREGATE and UPDATE. Initially, we perform AGGREGATE by gathering the
message µN (u) from the neighboring nodes of u, followed by combining it with the
node’s embedding using the UPDATE function.

µ
(k)
N (u) = AGGREGATE({h(k−1)

v ,∀v ∈ N (u)}), (3.2)

h(k)
u = UPDATE(h(k−1)

u , µ
(k)
N (u)). (3.3)

When adapting GNN message-passing for line graphs, we introduce a modification
by performing message passing on both the input graph and its line graph. This
entails employing simple message-passing operations to facilitate the exchange of
information between the two graphs. We achieve this by utilizing the incidence
matrix B to establish a bipartite graph between each graph and its corresponding
line graph.

Illustrated in Figure 3.1, this process forms a bipartite graph between each pair
of graphs in the hierarchy. We can draw a straightforward analogy: given that
each vertex in L(G) corresponds to an edge in G, the incidence matrix constructs
a bipartite graph where the neighbors of nodes in G align with the nodes in L(G),
thus creating a meaningful connection between the two graphs.

Analogous to message aggregation from neighbor nodes, for any graph within the
hierarchy Gt (1 < t < T ), we aggregate messages from the corresponding nodes in
graphs Gt−1 and Gt+1 through bottom-up and top-down message-passing mechanisms.
It’s worth noting that for G0 and GT , we exclude bottom-up and top-down message
aggregation, respectively. We utilize GCN (Graph Convolutional Network) layers
[16] to effectively propagate information throughout the network.

3.3.1 Within-level Aggregation

The process involves aggregation within each graph, where the message µ
(k)
N (u) is

computed based on the neighborhood of the nodes within the same graph, represented
by:

µ
(k)
N (u) = AGGREGATE({h(k−1)

v ,∀v ∈ N (u)}). (3.4)

3.3.2 Bottom-up Fusion

The operation involves a bottom-up strategy, where the message is aggregated for
a line graph Gt = L(Gt−1) from its root graph Gt−1 using the bipartite graph
constructing according to the transpose of the incidence matrix Bt−1 ∈ R

nt×nt−1 of
graph Gt−1 (see Figure 3.2). For each node u in Gt, the bottom-up message at layer
k is computed as:

µ
(k)
It−1(u) = AGGREGATE({h(k−1)

v ,∀v ∈ It−1(u)}). (3.5)
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Figure 3.1: The construction of the bipartite graphs between the graphs in the hierarchy
using the incidence matrix. On the left, we have a graph G and its line graph
L(G), and on the right, another iteration of line graphs, L(G) and L(L(G)).
A bipartite graph is then formed between the graphs throughout the hierarchy
using the incidence matrices. The blue dashed lines represent the edges of the
bipartite graph.

where ∀v ∈ It−1(u) are all the nodes in Gt−1 that correspond (are neighbors) to
node u in the bipartite graph constructed by the incidence matrix BT

t−1.

3.3.3 Top-down Fusion

The top-down fusion is employed when transmitting messages from the line graph
Gt+1 to its root graph Gt. This process operates in reverse compared to bottom-up
fusion, utilizing the incidence matrix Bt ∈ R

nt×nt+1 of graph Gt (See Figure 3.2).
For every node u in graph Gt, the top-down message is aggregated from graph Gt+1

as follows:
µ

(k)
It(u) = AGGREGATE({h(k−1)

v ,∀v ∈ It(u)}). (3.6)

where ∀v ∈ It(u) are all the nodes in Gt+1 that correspond (are neighbors) to node
u in the bipartite graph constructed by the incidence matrix Bt.

3.3.4 Update Function

Finally, h
(k)
ut

, representing the kth embedding of node u in graph Gt, is defined as:

h(k)
ut

= UPDATE(h(k−1)
u , µ

(k)
N (u), µ

(k)
It−1(u), µ

(k)
It(u)). (3.7)

The update function in the proposed approach can vary depending on the task or
the data. However, three widely used methods are primarily employed: sum, mean,
and max.

3.4 Theoretical Analysis

In this section, we conduct a theoretical analysis of our model, focusing on key
properties and computational complexities. We begin by examining the permutation
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Figure 3.2: Illustration of the message-passing mechanism for node u in Graph Gt within
the hierarchy. The orange dashed lines depict the bottom-up fusion operation,
aggregating information from Gt−1, while the blue dashed lines represent the
top-down fusion operation, aggregating information from corresponding nodes
in Gt+1. These fusion operations, combined with within-level aggregations in
Gt, are integrated using the UPDATE function.

invariance property of our model, which is crucial for maintaining consistency in fea-
ture aggregation and update mechanisms across different levels of hierarchical graphs.
Furthermore, we analyze the computational complexities involved in constructing
hierarchical graphs and implementing the message-passing mechanism.

3.4.1 Permutation Invariance

Our model f(G, X) satisfies the permutation invariance property. Within-level
aggregation processes consider sets of neighbors for each node, and regardless of
the order of the nodes, the resulting aggregation remains unchanged. Similarly,
bottom-up and top-down aggregations aggregate features from sets of nodes in the
bipartite graphs, independent of their order. The update rule, typically involving
summation or averaging, is also permutation invariant as it operates on all messages
without relying on any specific ordering. Given that both aggregation and update
functions demonstrate permutation invariance, we can conclude that the overall
model maintains this property. A proof on permutation invariance provided by [7]
can be readily extended to our approach.

3.4.2 Computational Complexity

The complexity of constructing the hierarchical graphs primarily depends on the
size of the input graph and the desired hierarchy level T . Generating each iterated
line graph involves transforming the edges of the original graph into vertices and
establishing connections based on incidences, which can be done in linear time (see
Chapter 1). Therefore, the overall complexity for constructing the entire hierarchy
S = {G0, G1, G2, . . . , GT } is O(T · (n + m)), where n is the number of nodes and m

is the number of edges in the original graph.
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The computational complexity of message-passing depends on the number of
nodes and edges in the graphs involved and the number of layers in the GNN.
Within-level message-passing involves aggregating messages from neighboring nodes
within the same graph, which typically has a complexity of O(n · d) where d is the
dimensionality of the node embeddings.

Bottom-up and top-down message-passing require aggregating messages across
different graphs using the incidence matrix, which involves matrix multiplication
and has a complexity of O(nt−1 · nt · d) where nt is the number of nodes on graph
Gt and nt−1 is the number of nodes in graph Gt−1.

Therefore, the overall complexity for message-passing across all layers and graphs
is O(K · (n · d +

∑T −1
t=1 nt−1 · nt · d)), where K is the number of layers in the GNN

and T is the number of hierarchical levels.



Chapter 4

Experiments

4.1 Introduction

In this chapter, we delve into the experiments conducted to evaluate the feasibility,
applicability, and effectiveness of our proposed framework, HLGNN, in enhancing
the expressiveness, robustness, and overall performance of graph neural networks.
Our experimentation primarily focuses on fully-supervised node classification tasks,
although our approach is applicable to a broader range of graph-structured tasks.

We begin by formulating the task and discussing the utilized loss function,
followed by a brief introduction of the datasets employed in our experiments: Cora,
Pubmed, and Citeseer, which are widely used to assess the performance of innovative
approaches in the GNN domain. We provide a comprehensive overview of the
experimental setup, including implementation details supported by flowcharts and
diagrams, model selection procedures, hyper-parameter grid search, and training
settings.

4.2 Task Setup

We utilize our model for the node classification task. A node classification task in
graphs can be formally defined as follows: Given a graph G(V, E) and a feature
matrix X, where each node in the graph belongs to one of c classes and has a feature
of dimension d, the objective is to predict a node’s class based on its learned node
embedding.

4.2.1 Fully-supervised vs. Semi-supervised

Node classification can be conducted in fully-supervised or semi-supervised settings.
In fully-supervised settings, the model is trained on a dataset where the majority
of nodes are labeled, enabling the model to learn from these labeled examples to
make accurate predictions on unseen data. However, in semi-supervised settings,
only a small subset of the data is labeled, and the model leverages both labeled and
unlabeled data to enhance its performance. In our experiments, we set up our model
to function under fully-supervised conditions. This results in an 80% training,
10% validation, and 10% test data partition.

24
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4.2.2 Loss Function

We utilize the cross entropy loss as the loss function in our experiments. The cross
entropy loss is a common choice for classification tasks, including node classification
in graphs. It measures the difference between the predicted probability distribution
and the target distribution. For a multi-class classification task, where yi is a binary
indicator if class label i is the true label for the observation, and pi is the predicted
probability that observation is of class i, the cross-entropy L is given by:

L = −
∑

i

yi log(pi). (4.1)

4.3 Datasets

In the experiment phase, we utilize three widely recognized citation graphs that have
been extensively employed in GNN frameworks. Below, we offer a brief description
of each dataset.

Cora is a graph-based dataset that represents citations among scientific papers.
Widely utilized for node classification tasks, it stands as a cornerstone dataset for
evaluating GNN models. The version of Cora used in the experiments comprises
2708 scientific publications classified into seven classes, with a total of 5429 citation
connections. Each node symbolizes a scientific paper, while edges represent citations,
denoting one paper citing another. With a feature dimensionality of 1433, Cora
encapsulates a dictionary of unique words, each assigned a binary value (0/1) to
denote its presence or absence in a paper’s content.

Pubmed database is a widely recognized repository of biomedical literature,
containing vast amounts of information on research articles, abstracts, and citations
from various biomedical fields. It serves as a vital resource for researchers and
scholars in the medical domain. The Pubmed dataset consists of 19717 scientific
publications derived from the Pubmed database, focusing on diabetes research and
categorized into three classes. The citation network within this dataset is composed
of 44,338 links. Each publication is represented by a TF/IDF weighted word vector
derived from a dictionary containing 500 unique words.

Citeseer is a well-known digital library and search engine for academic and
scientific literature in the computer and information science field. It contains a vast
collection of research papers, articles, and citations from various conferences and
journals. With 3312 publications classified into 6 distinct classes, Citeseer offers a
comprehensive resource for researchers and scholars. The citation network consists
of 4732 links. Each publication in the dataset is represented by a 0/1-valued word
vector, where the presence or absence of words from the dictionary is indicated. This
dictionary contains 3703 unique words, providing a detailed characterization of the
content of each publication.
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Figure 4.1: A scheme of the implementation of the HLGNN layer. The diagram highlights
the important parts of the model construction, including inter-level fusions
and convolution operators.

4.4 Implementation

We implemented our model using the Python language, leveraging well-known ma-
chine learning libraries like PyTorch and NumPy. Additionally, we utilize the Deep
Graph Library (DGL), designed for graph-data processing, to access datasets and
perform various graph processing tasks, such as line graph transformations and
graph convolution operations. The central component of the implementation is what
we refer to as the HLGNN Layer, which encompasses all message passing operations,
convolutional layers, as well as the incorporation of non-linearities and normalization
techniques.

Each layer is structured to accommodate a maximum of three hidden embed-
ding matrices: (1) representing the current graph, and (2) and (3) representing
the preceding and succeeding graphs in the hierarchy. Illustrated in Figure 4.1,
within each layer, the aggregated messages from the graphs are merged using the
UPDATE function. This function, which could be either a sum, max, or mean
operation, is adaptable based on the specific task and dataset and is determined
as a hyper-parameter during the model selection phase. Following the merging of
embeddings, a layer-normalization is applied for stabilization, followed by the ReLU
activation function, and finally, a layer-wise dropout operation is performed.

The hierarchical connection between graphs is facilitated through two message
passing operators: (1) top-down fusion and (2) bottom-up fusion. As their names
imply, top-down fusion transmits messages from the upper or subsequent graph in
the hierarchy, or the line graph of the current graph. Similarly, bottom-up fusion
maintains connections from the preceding graph in the hierarchy, or the root graph
of the current graph. As detailed in Chapter 3, the inter-level message passing is
executed leveraging the incidence matrix. The functionality of these operations is
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Figure 4.2: An example of the HLGNN architecture, with a hierarchical level of 3, and
two hidden (HLGNN) layers. The generated line graphs’ embeddings are
initialized as zero, and the hidden layers are applied to the graphs
independently. The output embedding is constructed by feeding the
concatenation of the final embeddings into a fully connected layer.

depicted in Figure 4.3.

Finally, we can assemble the HLGNN layers to form the complete neural network
architecture. Starting from the input graph, a series of iterated line graphs is
generated, collectively constructing a hierarchy. This hierarchy, or the collection of
graphs, is then fed into the network. Each graph undergoes the operations within
HLGNN independently, with their embeddings influenced solely by the top-down
and bottom-up fusion mechanisms (see Figure 4.2). The embedding matrices of
the line graphs are initialized as zeros, gradually learning the embeddings from the
original graph through information flow within the neural network. The hierarchy
level, representing the number of line graphs, can be regarded as a hyper-parameter,
varying across different tasks. To construct the final embedding, all embeddings are
concatenated and subsequently fed into a fully connected layer.

4.4.1 GraphConv

The convolution layer is implemented using the DGL library’s built-in GraphConv
layer, which is based on the work of [16]. Mathematically, it is defined as follows:

GraphConv(h(k)
u ) = ³





∑

v∈N (u)

1
√

|N (v)|
√

|N (u)|
h(k)

v W (k) + b(k)



 (4.2)

where b(k) is the bias term and ³ is the activation function, which is set to none in our
implementation, as we found performance improvement when applying non-linear
activation after the update function. The update function combines the information
aggregated from the convolution layer, and the top-down and bottom-up fusions.
We initially selected GraphConv for its straightforward operation and effectiveness
in preserving locality. However, the method can be adapted to work with any
convolution method.
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Figure 4.3: A scheme of the message-passing operations leveraging the incidence matrix
B. On the left, the top-down fusion is shown, transmitting messages from the
next graph. On the right, the bottom-up fusion is illustrated, aggregating
messages from the previous graph. Both operations utilize the incidence
matrix and subsequently apply a convolution layer, GraphConv, to generate
the new embeddings.

4.4.2 Fusions

Fusions facilitate the integration of information flow within the hierarchical structure
and enable message-passing between graphs in the hierarchy. In our method, we

employ two types of fusions: bottom-up and top-down. Let H
(k)
t ∈ R

nt×d denote
the hidden node embedding matrix of Gt. To integrate information from the graphs
Gt−1 and Gt+1, the fusions are defined as follows:

Bottom-up Fusion

Bottom-up fusion integrates the embeddings of the previous graph Gt−1 within a
hierarchical graph structure using the transpose of the incidence matrix of Gt−1. Let

H
(k)
t−1 ∈ R

nt−1×d represent the hidden embedding matrix of Gt−1, where nt−1 is the
number of nodes and d is the feature dimension. The bottom-up fusion is defined as:

BottomUpFusion(H
(k)
t−1) = GraphConv(BT

t−1H
(k)
t−1) (4.3)

where BT
t−1 ∈ R

nt×nt−1 is transpose of the incidence matrix of Gt−1, and mt−1 = nt

according to the definition of the line graph. This ensures that BT
t−1H

(k)
t−1 ∈ R

nt×d

matches the dimensionality of the node embeddings of Gt, facilitating their integration
in the update phase.

Top-down Fusion

Top-down fusion integrates the embeddings of the next graph Gt+1 within a hi-

erarchical graph structure using the incidence matrix of Gt. Let H
(k)
t+1 ∈ R

nt+1×d

represent the hidden embedding matrix of Gt+1, where nt+1 is the number of nodes
and d is the feature dimension. The top-down fusion is defined as:

TopDownFusion(H
(k)
t+1) = GraphConv(BtH

(k)
t+1) (4.4)

where Bt ∈ R
nt×nt+1 is the incidence matrix of Gt, and mt = nt+1 according to

the definition of the line graph. This ensures that BtH
(k)
t+1 ∈ R

nt×d matches the
dimensionality of the node embeddings of Gt, facilitating their integration in the
update phase.
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4.4.3 Update Function

The goal of the update function is to integrate the information aggregated from
the convolution layer, as well as the bottom-up and top-down fusions, to generate
the node embeddings of the graph. Each component’s contribution is weighted by
learnable parameters, and three different operations can be applied: sum, mean,
and max. The choice of the update function is considered a hyper-parameter in the
model selection process. The overall structure of the update function is as follows:

H
(k+1)
t = UPDATE

(

WconvGraphConv(H
(k)
t ),

Wbottom-upBottomUpFusion(H
(k)
t−1),

Wtop-downTopDownFusion(H
(k)
t+1)

)

(4.5)

where Wconv, Wbottom-up, and Wtop-down are learnable weights determining the
contribution of each component. The UPDATE function can be implemented using
sum, mean, or max operations.

4.4.4 ReLU Activation

For the activation function, we use ReLU (Rectified Linear Unit), is a popular
activation function used in neural networks and deep learning models. It introduces
non-linearity to the model by allowing the neuron to pass through values greater
than zero unchanged while setting all negative values to zero. The function can be
expressed as:

ReLU(x) =

{

x if x > 0,

0 otherwise.
(4.6)

4.4.5 Normalization

Using a normalization layer in the neural network provides several key benefits,
including stabilizing gradients, speeding up convergence time, and improving overall
performance. Normalization prevents issues with excessively large or small updates
during back-propagation, such as gradient vanishing or exploding. Additionally,
normalization enhances the model’s performance by ensuring balanced learning
across features, reducing the risk of poor local minima, and making the model more
robust to variations in input data. We utilize PyTorch’s built-in Layer Normalization,
which is implemented as described in [1]:

y =
x− E[x]

√

Var[x] + ϵ
· µ + ´. (4.7)

Here, E[x] represents the expectation (mean) of x, Var[x] represents the variance
of x, ϵ is a small constant added for numerical stability, and µ and ´ are learnable
parameters.
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4.4.6 Dropout

Dropout is a regularization technique used in neural networks to prevent over-fitting.
It works by randomly "dropping out" a fraction of the neurons during each training
iteration, which helps the model learn more robust features and prevents it from
becoming overly reliant on specific neurons. This technique also enhances general-
ization, leading to better performance on unseen data. Additionally, dropout breaks
co-adaptations, which occur when neurons adjust to compensate for each other’s
presence, resulting in a more independent and distributed learning process.

We utilize PyTorch’s built-in function for Dropout, in which the zeroed elements
are chosen independently for each forward call and are sampled from a Bernoulli
distribution. The approach is proven to be effective for regularization and preventing
co-adaptation of neurons as described in [14]. We apply the dropout layer as shown
in Figure 4.1, after the non-linear activation. The dropout rate is determined as a
hyper-parameter during the model selection procedure.

4.4.7 Weight Decay

Weight decay, also known as L2 regularization, is a technique used to prevent over-
fitting by penalizing large weights in the model. It achieves this by adding a term
to the loss function that is proportional to the sum of the squared weights. This
encourages the model to find simpler and more generalized patterns in the data,
thereby reducing the likelihood of fitting noise and irrelevant patterns present in the
training data.

In PyTorch, weight decay can be implemented using the built-in method in the
Adam optimizer. The modified loss function with weight decay is expressed as:

L′ = L +
¼

2

∑

i

w2
i (4.8)

where L is the original loss function, ¼ is the weight decay coefficient, and wi

represents the weights in the model.

4.5 Model Selection

We carry out the model selection process by engaging in hyper-parameter tuning
and adjusting training settings. With a focus on the node classification task, our
experiments are conducted across three datasets: Cora, Pubmed and Citeseer. The
optimal model is chosen independently for each dataset and may vary in settings.
The selection is based on the highest validation accuracy achieved.

4.5.1 Hyper-parameters

Hyper-parameters are essential in the experimentation phase as they uncover a
model’s genuine abilities. Without fine-tuning these parameters, it’s challenging
to understand a model’s full potential. Hence, during model selection, we employ
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techniques like grid search to identify the optimal combination of hyper-parameters,
refining the model for specific tasks.

Many of these hyper-parameters are commonly employed across various machine
learning models, with some tailored to specific aspects like line graphs. This enables
us to experiment with different configurations and determine the most effective ones
for each task.

Hyper-parameter Cora Pubmed Citeseer

Hierarchy Levels 1, 2 1, 2 1, 2
Number of Layers 4, 6, 8 4, 6, 8 4, 6, 8
Hidden Units 16, 32 16, 32 16, 32
Dropout Rate 0.0, 0.2, 0.5 0.0, 0.2, 0.5 0.0, 0.2, 0.5
Weight Decay 0.0, 5e-3, 5e-6 0.0, 5e-3, 5e-6 0.0, 5e-3, 5e-6
Activation Function ReLU ReLU ReLU
Back-Tracking True, False True, False True, False
Update Function Sum, Mean, Max Sum, Mean, Max Sum, Mean, Max
Learning Rate 0.01 0.01 0.01
Epochs 250 250 250

Table 4.1: Hyper-parameters used for training models on the Cora, Pubmed, and Citeseer
datasets.

4.5.2 Training Settings

For each test configuration, we conduct 5 runs and aggregate the results by computing
the mean. During each run, the model undergoes training for a maximum of 250
epochs, employing an early stopping policy set with a tolerance of up to 150 epochs.
We utilize the Adam optimizer, a default optimizer function in PyTorch, with a
learning rate of 0.01.



Chapter 5

Results

5.1 Introduction

In this chapter, we present and analyze the results of our experiments designed to
assess the effectiveness of our proposed approach in enhancing the performance of
GNN models. Our objective is to determine whether HLGNN effectively mitigates
the over-smoothing issue. We evaluate various aspects of the model, including
comparisons with baseline models, training performance, and additional assessments
to demonstrate the efficacy of our approach.

5.2 Baseline Comparison

To ensure a precise comparison with baseline models, we followed the experimental
settings outlined in [22]. For effective hyper-parameter tuning, we employed grid
search on the set of hyper-parameters discussed in previous sections. Table 5.1
presents the accuracy comparison of the proposed HLGNN model against three
baseline models (GCN, GraphConv, GAT) on the fully-supervised node classification
task across three datasets: Cora, Pubmed, and Citeseer.

Model Cora Pubmed Citeseer

GCN 88.5±0.70 88.5±0.50 77.7±0.80
GraphConv 87.6±0.20 89.0±0.40 76.2±1.20
GAT 87.3±1.10 87.2±0.40 76.0±1.44

HLGNN 88.8±0.04 89.2±0.00 77.3±0.01

Table 5.1: Accuracy comparison of the proposed model (HLGNN) against three baseline
models (GCN, GraphConv, GAT) on a fully-supervised node classification task.
ask. Model selection is based on results from the validation set. The highest
accuracy is highlighted in bold for each dataset.

For the Cora dataset, HLGNN achieved an accuracy of 88.8±0.04, which is the
highest among all models tested. The GCN model follows closely with an accuracy
of 88.5±0.70, while GraphConv and GAT models have slightly lower accuracies of
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87.6±0.20 and 87.3±1.10, respectively. This demonstrates that HLGNN outperforms
the baseline models, providing a slight edge in accuracy over GCN and a more
noticeable improvement over GraphConv and GAT.

On the Pubmed dataset, HLGNN also shows superior performance with an accu-
racy of 89.2±0.00. This is slightly higher than the GraphConv model, which has an
accuracy of 89.0±0.40. The GCN model achieved an accuracy of 88.5±0.50, and
the GAT model had the lowest accuracy at 87.2±0.40. Therefore, HLGNN again
surpasses all baseline models, with a particularly significant improvement over GAT.

For the Citeseer dataset, GCN holds the highest accuracy at 77.7±0.80, followed
closely by HLGNN with an accuracy of 77.3±0.01. GraphConv and GAT models
have accuracies of 76.2±1.20 and 76.0±1.44, respectively. While HLGNN does
not outperform GCN in this case, it still demonstrates competitive performance,
significantly exceeding the accuracies of GraphConv and GAT.

In summary, the best baseline model changes with each dataset: GCN for Cora
and Citeseer, and GraphConv for Pubmed. However, HLGNN consistently shows
high performance across all datasets, surpassing or closely matching the best baseline
model in each case. This indicates the effectiveness and robustness of HLGNN across
different datasets.

5.3 Training Performance

Our approach, HLGNN, demonstrated a significant convergence rate across all
datasets. Its hierarchical structure allows HLGNN to extract complex data repre-
sentations without requiring multiple layers, as explained in Chapter 1.

Hyper-parameter Cora Pubmed Citeseer

Number of Layers 6 8 6
Hidden Units 32 32 32
Dropout Rate 0.2 0.2 0.5
Weight Decay 0.0 0.0 0.0
Learning Rate 0.01 0.01 0.01
Activation Function ReLU ReLU ReLU
Back-Tracking True False True
Update Function SUM SUM MAX
Epochs 250 250 250

Table 5.2: Hyper-parameters used for training models on the Cora, Pubmed, and Citeseer
datasets.

Figure 5.1 displays the learning curves for the three datasets. For the Cora
dataset, there is a rapid increase in accuracy during the initial epochs. Training
accuracy stabilizes around 0.95 after approximately 100 epochs, while testing and
validation accuracies peak around 0.9, with slight fluctuations. The model for the
Cora dataset utilizes the hyper-parameters listed in Table 5.2, with the SUM update
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function and backtracking operation enabled. This configuration focuses on robust
training and leverages locally connected patterns, which accounts for the model’s
stable and strong performance on this dataset.

The accuracy plot for the Pubmed dataset (Figure 5.1) shows a continuous upward
trend in training accuracy. The smaller gap between training and testing/validation
accuracies compared to other datasets indicates the model’s effectiveness in general-
izing to unseen data. The selected model for the Pubmed dataset, as outlined in
Table 5.2, incorporates a non-backtracking operator, using sparse connections to
capture long-range interactions between nodes.

For the Citeseer dataset, the accuracy and loss plots indicate that the model
converges within the first 50 epochs, with performance stabilizing afterward. There
is a notable gap between training and validation/test accuracy after convergence,
suggesting a slight over-fitting issue. The selected model uses the MAX update
function, which explains the fluctuations in the validation/test trends.

Overall, the model demonstrates robust performance, achieving high accuracy
across training, testing, and validation sets, with some variations reflecting dataset-
specific challenges.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Accuracy and loss curves for the training, validation, and test sets on the three
datasets. For the Cora dataset, (a) the accuracy plot shows rapid convergence
and stable performance across all sets, while (b) the loss plot demonstrates a
steady decrease in loss, indicating effective learning. For the Pubmed dataset,
(c) displays consistent improvement in accuracy, and the loss plot (d) shows a
continuous reduction in loss, reflecting the model’s robust training process
and generalization capability. For the Citeseer dataset, both (e) and (f)
illustrate the model’s convergence and stabilization, with slight fluctuations.
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5.4 Model Evaluation

Assessing a model’s performance requires looking at various factors. While accuracy
and loss are essential for understanding learning capability, they alone don’t offer
a comprehensive view. Therefore, we incorporate additional metrics such as ROC
curves and confusion matrices to assess the model’s robustness, and utilize t-SNE
for node embedding visualizations to examine the model’s interpretability.

5.4.1 Confusion Matrices

For a multi-class classification task, the confusion matrix will be a C × C, where C is
the number of classes in the dataset. Each row of the confusion matrix represents the
instances of the true label and each column represents the instances of the predicted
label.

The confusion matrix heat-maps for the three datasets are displayed in Figure
5.2. For the Citeseer dataset, the classifier exhibited strong performance with
high precision and recall for most classes, particularly for Class 2 and Class 5,
with F1-scores of 0.833 and 0.881 respectively. However, notable misclassifications
occurred between Classes 2 and 3, as well as Classes 1 and 0/4, indicating potential
feature overlap or similarity between these classes. In the Cora dataset, the classifier
demonstrated robust performance with F1-scores exceeding 0.94 for most classes,
though there were some misclassifications between Classes 5 and 6, suggesting areas
for further feature refinement.

For the Pubmed dataset, the classifier showed excellent performance, particularly
for Class 1, with an F1-score of 0.963, highlighting its ability to accurately distinguish
this class. Nevertheless, minor misclassifications were observed between Classes 0 and
2, which could be attributed to shared feature characteristics. Overall, the analysis
indicates that while the classifiers are generally effective, there are specific class pairs
with higher confusion rates that warrant further investigation and potential model
adjustments to enhance classification accuracy across all classes.

(a) (b) (c)

Figure 5.2: Confusion matrices for the three datasets, (a) Cora, (b) Pubmed, and (c)
Citeseer. The diagonal elements represent the number of correct predictions
for each class. The darker colors along the diagonal indicate high number of
correct predictions. Off-diagonal elements represent misclassifications, the
intensity of colors can show which classes are commonly confused with each
other.
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5.4.2 ROC Curves

A Receiver Operating Characteristic (ROC) curve is a graphical representation used
to evaluate the performance of a binary classification. It plots the True Positive Rate
(TPR) against the False Positive Rate (FPR). The ROC curve helps to understand
the trade-off between sensitivity (recall) and specificity (precision). To apply to
our multi-class classification task, we extend the binary ROC computation through
One-vs-Rest (OvR) approach. In the OvR approach, the multi-class problem is
broken down into multiple binary classification problems. For each class, we consider
that class as the positive class and all other classes as the negative class.

Mathematically, for a given class k, the True Positive Rate TPRk(t) and and
False Positive Rate FPRk(t) for a given threshold t can be expressed as follows:

TPRk(t) =
TPk(t)

TPk(t) + FNk(t)
(5.1)

FPRk(t) =
FPk(t)

FPk(t) + TNk(t)
(5.2)

The ROC curves for the the three datasets are depicted in Figure 5.3. The ROC
curve for the Cora dataset indicates exceptional performance by the classification
model, particularly with six out of seven classes achieving a perfect AUC of 1.00.
This near-perfect performance suggests that the model has an excellent capability to
distinguish between the different classes in the Cora dataset. The high AUC values
reflect the model’s high accuracy and reliability in classifying these data points
correctly.

The ROC curve for the Pubmed dataset also shows strong model performance
across three classes. The high AUC scores indicate that the model is very effective
at distinguishing between the classes in the Pubmed dataset. The slightly lower
AUC for Class 0 and Class 2 compared to Class 1 suggests that the model is almost
equally robust across all classes, with minimal variance in performance.

For the Citeseer dataset, the AUC value for the ROC curves indicate that the
model performs reasonably well across all classes, with Class 0 having the lowest
performance. Compared to the near-perfect scores of the Cora and Pubmed datasets,
the Citeseer dataset shows slightly lower AUC values. Despite this, the high AUC
values for most classes still indicate that the model performs reasonably well, sug-
gesting a solid capability to distinguish between different classes.

Overall, the model demonstrates outstanding performance in the Cora and
Pubmed datasets, with near-perfect AUC values indicating high accuracy and re-
liability in classification tasks. While the Citeseer dataset shows a slightly more
varied performance, the model still maintains a strong capability to distinguish
between classes. These ROC curves collectively underscore the model’s robustness
and effectiveness across different datasets, highlighting areas of excellence as well as
opportunities for further enhancement.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The ROC curves depicted for the three datasets. In (a), (c), and (e)
individual barbarized ROC curves are presented for each class, while (b), (d),
and (f) showcase the Micro-average ROC curve. The area under the ROC
curve indicates the model’s ability to discriminate between positive and
negative classes, and a curve closer to the top-left corner indicates a better
performing model. Both visualizations highlight a notable sensitivity rate,
indicating that the model effectively distinguishes between positive and
negative instances across various classes, contributing to its robust
performance in classification tasks.
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5.4.3 Node Embedding Visualizations.

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality reduction
technique designed to maintain the local structure of data points. It works by
calculating a similarity probability for each pair of high-dimensional points using
a Gaussian distribution centered on each point. In the lower-dimensional space
(typically 2D or 3D), t-SNE defines a similar probability distribution using a Stu-
dent’s t-distribution, which has heavier tails than the Gaussian. The algorithm
then minimizes the difference between these high-dimensional and low-dimensional
distributions using the Kullback-Leibler divergence as the cost function. This process
ensures that points close to each other in the high-dimensional space remain close
in the lower-dimensional space. Gradient descent is employed to iteratively adjust
the positions of the points in the low-dimensional space to minimize this cost function.

The t-SNE visualizations of node embeddings for three datasets, both before and
after training, are shown in Figure 5.4. Overall, these visualizations demonstrate
the model’s ability to distinguish different classes by forming clusters based on
similarities. In the Citeseer embedding visualization, the well-separated clusters for
classes 2 and 5 corroborate the high precision observed in the confusion matrix. In
the Cora embedding visualization, some overlap between classes 5 and 6 suggests
similarities between these classes. In the Pubmed embedding visualization, the
classes are generally well-distinguished, with minor overlaps in the central part of
the plot.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: Visualization of Node Embeddings across three datasets: Cora, Pubmed, and
Citeseer. In the left column, (a), (c), and (e) display the initial (pre-training)
node features. Correspondingly, (b), (d), and (f) on the right column
represent the output embeddings generated by the trained model. Class
distinctions are illustrated through varied coloring in each plot. The closeness
of the nodes suggest they have similar properties while the separation between
the groups of clusters indicate dissimilarities.
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5.5 Discussion

Based on the results of our experiments, the proposed approach, HLGNN, appears
to show promising effectiveness as a neural network model for processing graph-
structured data in node classification tasks. It shows competitive performance
compared to baseline models such as GCN, GAT, and GraphConv across the tested
datasets, outperforming the baseline models in two out of the three datasets.

5.5.1 Addressing Over-smoothing

Our model aims to address the issue of over-smoothing in a structural manner.
Instead of relying on deep convolutional layers, which are often associated with
over-smoothing, our model employs a hierarchical architecture with multiple layers,
each designed to learn independently. We believe this design allows the model
to extract more complex representations, potentially mitigating over-smoothing
issues. In this architecture, levels of graph hierarchies are intended to be learned
independently, which we hypothesize could result in more robust representations.
The bottom-up and top-down fusions for inter-level message passing are intended to
enable controlled, meaningful information flow between graph levels. This approach
aims to allow HLGNN to increase the number of parameters while maintaining a
shallow network structure, potentially leveraging the third dimension—levels of line
graphs.

5.5.2 Advantages of Line Graph Transformation

The line graph transformation balances the original graph and facilitates long-
range interactions between distant nodes. It integrates edge-based representations
and highlights specific patterns that might be useful. As discussed in Chapter
1, line graphs can shorten paths in graphs and emphasize patterns like stars and
circles during iterations. Generally, line graph transformation reinforces connectivity
and creates a more nuanced degree distribution within graphs (refer to Theorem
1.4.2). These attributes are highly desirable in the context of graph neural networks,
where the goal is to avoid bias towards high-degree nodes and maintain long-range
interactions.

5.5.3 Computational Complexity

One disadvantage of the model is its potential high computational complexity,
which can limit its application to larger, well-connected graphs. Although the
transformation itself is linear in complexity and can be computed pre-training,
learning representations of increasingly large and connected graph levels can become
unsustainable for very large graphs.

5.5.4 Interpretability and Robustness

The training plots demonstrate the model’s fast convergence and stabilized, consistent
improvement over epochs across all datasets, confirming the model’s ability to learn
the datasets effectively while the ROC curves and confusion matrices display the



5.5. DISCUSSION 42

model’s classification performance, highlighting its robustness across all classes in
the datasets. Moreover, the t-SNE representations showcase the model’s learned
representations compared to initial representations, implying the model’s ability to
interpret the dataset in a meaningful way.

5.5.5 Versatility and Future Work

The architecture of the model is versatile and can be integrated with various GNN
layers, not limited to GCN. Due to time and resource constraints, we focused
on GCN, a proven effective GNN mechanism. The model can also be applied to
other graph-related tasks such as graph classification, community detection, and
link prediction. It is particularly promising for graph classification tasks, as line
graph transformation can highlight special patterns. Additionally, edge attributes,
if available, can be incorporated into the neural network architecture instead of
learning edge embeddings for line graphs from scratch. Further exploration of the
non-backtracking operator and other desirable operators for the transformation
could reveal additional structural properties or reduce computational complexity.



Conclusion

In this thesis, we proposed a novel approach to addressing the over-smoothing
problem in Graph Neural Networks (GNNs). Over-smoothing is one of the major
issues in GNNs as it limits the development of deeper, more expressive models. Over-
smoothing happens often because of how the neural message-passing is operated in
GNN model, where after several iterations, the nodes of the graph lose their diverse
representations. This is particularly an issue when implementing a deep GNN model,
as it limit a model’s capacity to learn.

Among the solutions that address this problem, the hierarchical GNN models
have shown to be effective in addressing this issue. Hierarchical models generate
alternative representations of the original graph, aiming to capture higher-order rep-
resentations, establish long-range interactions between distance nodes, and address
over-smoothing issue, by creating other ways of information flow through hierarchical
message-passing. Our main objective was to address this issue by proposing a novel
hierarchical framework, leveraging hierarchical GNNs and line graphs. Line graph is
a graph transformation technique, that highlights edge properties, and provides an
alternative representation.

Inspired by hierarchical GNNs and line graph theory, we designed and imple-
mented HLGNN, a hierarchical GNN model that constructs a hierarchy by iteratively
creating a series of line graphs from the given graph. We also introduced message-
passing mechanisms to maintain the flow of information within the hierarchical
graphs. To enable low-cost inter-level message transmission, we utilized incidence
matrices. Our implementation incorporates GraphConv, a widely used GNN convo-
lution model, along with various regularization and optimization techniques.

By employing a hierarchical structure, HLGNN aims to capture complex re-
lationships within the graph, potentially leading to faster convergence. The line
graph transformation is intended to enhance connectivity within the graph and
facilitate long-range interactions. Additionally, the design attempts to address the
over-smoothing issue by regulating the flow of information through bottom-up and
top-down fusions.

Our results suggest that HLGNN exhibits promising performance compared to
baseline models across most tested datasets, indicating its potential as a GNN
model. Training trends indicate the model’s tendency for fast convergence and
consistent improvement throughout the training phase. Analysis using ROC curves
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and confusion matrices further highlights the model’s robustness and its ability to
generalize effectively. Moreover, the model processes datasets in an interpretable
manner, as evidenced by visualization of embeddings.

Our approach can be further investigated for other tasks such as graph classi-
fication, community detection, and link prediction. It can be particularly useful
in graph classification tasks, as it enriches the graph’s structure while proposing
balanced alternatives. Moreover, the proposed framework’s versatility allows for the
integration of any convolutional layer, enhancing its applicability across different
scenarios. The transformation itself can be integrated with various operators (both
backtracking or non-backtracking) to generate graphs tailored to the specific needs
of a problem.

Overall, our proposed model opens a new pathway towards improving graph data
processing. The line graph, a fascinating yet simple transformation, has remained
under-explored in the realm of machine learning and graph neural networks. Our
work showcases a glimpse of the potential these transformations hold, and it remains
a promising area for future exploration.



Appendix A

Algorithms

A.1 HLGNN Forward pass

Algorithm 1 HLGNN Forward Pass

1: Input: features, num_hidden_layers
2: lg_hidden← Make a list of hidden layer tensors, each for one graph in the hierarchy
3: for layer in num_hidden_layers do
4: lg_hidden← HLGNN(lg_hidden)
5: end for
6: z← self.nn.Linear(concat(lg_hidden))
7: z← F.relu(z)
8: return z

A.2 HLGNN Fusion Operations

Algorithm 2 HLGNN Fusion Operations

1: function forward(graph, curr_h, prev_h, next_h, curr_inc, prev_inc_T ,
update)

2: graph← dgl.add_self_loop(graph)
3: conv_layer ← GraphConv(g, curr_h)
4: bottom_up_layer ← GraphConv(g, prev_inc_T ∗ prev_h)
5: top_down_layer ← GraphConv(g, curr_inc ∗ next_h)
6: result← update(conv_layer, bottom_up_layer, top_down_layer)
7: result← self.layer_norm(result)
8: result← F.relu(result)
9: result← self.dropout(result)

10: return result

11: end function
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A.3 HLGNN Training Algorithm

Algorithm 3 HLGNN Training Algorithm

1: Input: model, features, labels, train_mask, epochs, patience, lr, weight_decay
2: Initialize optimizer with Adam algorithm using model parameters
3: learning rate (lr), and weight decay (weight_decay)
4: no_improv← 0
5: for epoch← 1 to epochs do
6: if no_improv > patience then
7: break
8: end if
9: Set model to training mode

10: Zero the gradients of the optimizer
11: model_out, logits← model(features)
12: loss← CrossEntropyLoss(logits[train_mask], labels[train_mask])
13: Perform back-propagation on the loss
14: Update the model parameters using the optimizer
15: end for
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