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Introduction

Credit risk refers to the possibility of a default on a debt resulting from a
borrower’s failure to repay a loan or meet contractual obligations.
It is extremely difficult and complex to pinpoint exactly how likely a firm is
to default on their loan. At the same time, properly assessing credit risk can
reduce the likelihood of losses from default and delayed repayment.
Credit risk modeling is the best way for lenders to understand how likely a
particular loan is to get repaid. In other words, it’s a tool to understand the
credit risk of a borrower.
In this thesis we consider a network of firms linked by business relationships
and a financial institution, we can think of a bank, holding a large portfolio
with positions issued by the firms. We are in a situation where a bank buy
debts (that is equivalent to say that lends money) to a large number of firms
and then these firms should give the money back to the lender.
As the firms are linked among each others, a financial distress in one of these
firms can spread to the others causing the so called credit contagion effect.
Credit contagion indeed refers to the propagation of economic distress from
one firm or sovereign government to another. To understand how the finan-
cial distress spreads in our network of firms, we study a credit contagion
model proposed by Dai Pra, Runggaldier, Sartori and Tolotti [3].
This model, despite being only a qualitative model, describes the phenomenon
of credit risk and credit contagion well enough: we deal with a model where
the variables are binary and the interaction is supposed to be of the mean
field type.
Using this type of framework we explain the idea of credit crisis, how this
phenomenon depends on our model parameters and the consequences that
the clustering of defaults have on the portfolio hold by a bank with positions
issued by the firms.
With credit crises we mean that there is evidence, looking at real data, of
periods in which many firms end up in financial distress in a very short time.
More specifically, looking at the dynamics of particular variables and looking
at their variances, we are able to observe this phenomenon: how financial
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contagion can cause a sudden period characterized by a financial crisis.
We can observe for example how, during certain period of time, the variance
of different processes may increase sharply removing the possibility of pre-
dicting what will happen in the future.
After a good understanding about the meaning and the nature of a credit
crisis through mathematical approaches and numerical simulations, we shall
provide formulas to compute quantiles of the probability of excess losses in
the context of our contagion model. In other words we try to estimate the
fluctuation of aggregate credit losses for a bank holding large portfolios of
financial positions.
To study properly the portfolio losses topic we propose different types of sim-
ulations varying the parameters and the initial conditions. Our work consists
in giving first theoretical results that later have to be supplemented with nu-
merical simulations. In this way we are able to show the main topics of this
thesis completely.
To have some possible intuitions about the consistency of our model with
real market data, we show what happens historically to credit and financial
markets during period of credit crises.

The outline of the paper is as follows. In Chapter 1 we introduce the already
existing contagion models literature and we present our model. Chapter 2
is devoted to stating the main limit theorems on the stochastic dynamics,
in particular a Law of Large Numbers and a Central Limit Theorem. In
Chapter 3 we introduce the phenomenon of credit crises and we start show-
ing numerical simulations related to these. The financial application and the
idea of portfolio losses is explained in Chapter 4 through theoretical results
and numerical simulations. We end the paper with some concluding remarks
in particular related to the consistency of our model with real market data.
Appendix A and Appendix B contain respectively the main theoretical tools
used during the thesis and the Matlab codes to generate all the numerical
simulations.



Chapter 1

A model for contagion

1.1 Existing literature

Credit risk models play a fundamental role in properly assessing a firm’s
credit risk, reducing in this way the likelihood of losses due to defaults or de-
layed repayments. A credit risk model is used by a bank to estimate a credit
portfolio’s PDF (the probability density function). In this regard, credit risk
models can be divided into two main classes: structural and reduced form
models. Structural models are used to calculate the probability of default for
a firm based on the value of its assets and liabilities. The basic idea is that a
company (with limited liability) defaults if the value of its assets is less than
the debt of the company. Reduced form models typically assume an exoge-
nous cause of default. They model default as a random event without any
focus on the firm’s balance sheet. This random event of default is described
as a Poisson event. As Poisson models look at the arrival rate, or intensity,
of a specific event, this approach to credit risk modelling is also referred to
as default intensity modelling.
In other words, comparing structural and reduced form credit risk models
from an information based perspective, we can say that the difference be-
tween these two approaches can be characterized in terms of the information
assumed known by the modeler. Structural models assume that the modeler
has the same information set as the firm’s manager—complete knowledge of
all the firm’s assets and liabilities. In contrast, reduced form models assume
that the modeler has the same information set as the market—incomplete
knowledge of the firm’s condition. Structural models were originated with
Black and Scholes (1973), Merton (1974) whereas reduced form models were
due to Jarrow and Turnbull (1992), and subsequently studied by Jarrow and
Turnbull (1995), Duffie and Singleton (1999) among others.

8



1.1. EXISTING LITERATURE 9

The model we are going to study in this thesis is to be considered within
the class of reduced form models and is based on interacting intensities. The
probability of having a default somewhere in the network depends also on
the state of the other obligors.
Our model is based on different rating classes: the rating classes are published
by credit rating agencies and used by investment professionals to assess the
likelihood the debt of a certain firm will be repaid. The "Big Three" credit
rating agencies are Fitch Ratings, Moody’s and Standard & Poor’s (S&P) —
controlling approximately 95% of the ratings business.
Through the existing literature, different credit risk models can be taken into
consideration. Some of these are, for example, the "Bernoulli mixture mod-
els" that, in the context of contagion-based models, was first introduced by
Giesecke and Weber [8], a cascade contagion process described by Horst [9]
or the large-deviations approach by Dembo, Deuschel and Duffie [5].

"Bernoulli mixture models" is one of the credit risk models we are going
to use in the following chapters. In this approach, fluctuations of aggregate
losses are due to the fluctuation in some exogenous macro-economic variables.
This kind of modeling has been used in the context of cyclical correlations,
where cyclical correlation are due to the dependence of the firms on common
economic exogenous factors. This type of model is really useful to emphasize
both contagion and cyclical effects on the rating probabilities.
Horst’s model is an interactive model of credit ratings where external shocks
spread, by a contagious chain reaction, to the entire economy. Counterparty
relationships along with discrete adjustments of credit ratings, generate a
transition mechanism that allows the financial distress of one firm to spill
over to its business partners. Here it is emphasized how even small shocks,
initially affecting only a small number of firms, spread by a contagious chain
reaction to the rest of the economy, creating the so called cascade process.
In a large economy, this cascade can be described by a branching process.
Under the assumption that the interaction between different firms is weak
enough, the distribution of the total number of defaults can be given in closed
form.
In 2004, Dembo, Deuschel and Duffie provided in their paper a large-deviations
approximation of the tail distribution of total financial losses on large port-
folios of heterogenous credit securities. They depart from the classical ruin-
theory approach, as it ignores unrealistically the re-capitalization at low levels
of capital.

On the other hand, the paper we have taken into consideration for the frame-
work we are going to adopt, is Large Portfolio Losses: A dynamic contagion
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model written by Dai Pra, Runggaldier, Sartori, Tolotti in 2009 (see [3]).
This paper describes the problem of contagion in a different way: it uses
methodologies that belong to statistical mechanics, using particle systems
as a way to describe the idea of a network where agents interact with each
other. The next sections focus on introducing the main assumptions and the
methodology used in the contagion model that we take into account.
Our model is a mean field interacting model of the Curie-Weiss type, where
each particle interacts with all the others in the same way.

1.2 The mean field hypothesis

The mean field approach studies the behavior of high-dimensional random
systems by studying a simpler system that approximates the original one by
averaging over degrees of freedom.
What characterizes a mean field model, within a large class of particle sys-
tems, is the absence of a “geometry” in the configuration space, meaning that
each particle interacts with all the others in the same way. This approxima-
tion amounts to assume that each unit interacts with the rest of the network
in a homogeneous "average" way: instead of following the evolution of each
single unit, we describe the system through the evolution of a probability
measure which takes into consideration the fraction of the population shar-
ing a certain state.
Although it is a strong assumption, it can be seen quite reasonable in this
setting; the market, due to the technology that characterizes our present, is
deeply interconnected.
If we are considering a large group of firms belonging to the same sector,
then the ability of generating cash flows or the capacity of raising capital
from financial institutions may be considered as “homogeneous” characteris-
tics within the group. This approach allows us to describe the dynamics of
a large system with few aggregate statistics. The final aim of this work is to
study aggregate quantities for a large economy such as the expected global
health of the system and large portfolio losses as well as related quantities.
In literature other assumptions, different from the mean field one, have been
largely used: for example a local-interaction model, where the particles are
supposed to interact with a fixed number d of neighbors (see the Voter model
described by Giesecke and Weber [8]), or some random graph approach type,
meaning that the connections are randomly generated with some distribution
functions.
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1.3 Coming back to the Curie-Weiss Model
The Curie-Weiss model is an exactly solvable model of Ferromagnetism that
allows to study in detail the thermodynamic functions.
We start showing the main aspects of this model as, the one that we will use
in this paper, is a generalization of the Curie-Weiss one. The model assump-
tions are the following:

• We have N firms (we will think of N particles), with N large.

• State variables σ1, . . . , σN ∈ {-1,1} called "spins".

• Time interval: t ≥ 0 (continuous time)
σ(t) = (σ1(t), . . . , σN(t)) represents the configuration at time t of the
system.

• The mean field assumption: this approach leads to let the interaction
depends on the "magnetization" (e.g. the empirical mean)

mσ
N :=

1

N

N∑
i=1

σi ∈ {−1,−1 +
2

N
, . . . , 1− 2

N
, 1} ⊆ [−1, 1].

This variable plays a fundamental role on the study of the model; it is
the only aggregate variable that allows to describe the dynamics of the
whole system.
The transition from σi 7→ −σi is given by the following intensity

σi 7→ −σi with intensity e−βσim
σ
N , β > 0

where β represents the inverse of the temperature.

• The state variables form a continuous-time Markov Chain on the con-
figuration space {−1, 1}2. Its evolution is described by the infinitesimal
generator L acting on functions f : {−1, 1}2 → R as

Lf(σ) =
∑N

i=1 e
−βσimN [f(σi)− f(σ)]

where σi = (σ1, . . . , σi−1,−σi, σi+1, . . . , σN) represents the configura-
tion after the jump of the ith component.
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1.4 A more general model
Let consider a network of N firms. The state of each firm is identified by
two variables, (σi, ωi), that denotes the state of the ith firm, i = 1, . . . , N .
The variable σ may be interpreted as the rating class indicator: a low value
reflects a bad rating class, that is, a higher probability of not being able to
pay back obligations; this variable represents the perceived/observed state.
The variable ω represents a more intrinsic indicator of the financial health
of the firm and typically is not directly observable on the market. We can
think at ω as the real state (may be the liquidity or a well-being factor).
Inspired by the Curie-Weiss model, we assume the two indicators σi, ωi
are binary variables, i.e. they can take only two values, that we label by
1 ("good" financial state) and -1 (financial distress). Recalling that the
final aim of this work is to describe propagation of financial distress in a
network of firms linked by business relationships, we are naturally led to an
interacting intensity model, where we have to specify the intensities or rates
(inverse of the average waiting times) at which the transitions σi 7→ −σi
and ωi 7→ −ωi take place. Again, as in Curie-Weiss model, if we neglect
direct interactions between the ωi’s and we make the mean field assumption
that the interaction between different firms only depends on the value of the
global financial health indicator

mσ
N :=

1

N

N∑
i=1

σi

we are let to consider the following intensities

σi 7→ −σi with intensity e−βσiωi , β > 0

ωi 7→ −ωi with intensity e−γωim
σ
N γ > 0

where β represents how much the market gets aware of the change of ωi,
whereas γ indicates the strength of the contagion.
The variable mσ

N is a global financial health indicator that is simply an em-
pirical mean of the different perceived states of the N firms. It gives an idea
on how bad or good the firms are doing in their perceived states.

In order to have a full understanding of the parameters, we show how the
contagion works; the vehicle of contagion is given by:

ωi
1−−−−→ σi −−−−→ mσ

N
2−−−−→ ωj
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First the real state ω influences the perceived state σ (1), then σ, by defini-
tion of mσ

N , changes mσ
N itself. As last, if mσ

N gets better/worse, all firms are
affected in their real state (2).
From a theoretical perspective we are dealing with a {−1, 1}2-valued con-
tinuous Markov Chain (σi[0, T ], ωi[0, T ])Ni=1 with the following infinitesimal
generator:

Lf(σ, ω) =
N∑
i=1

e−βσiωi∇σ
i f(σ, ω) +

N∑
i=1

e−γωim
σ
N∇ω

i f(σ, ω) (1.1)

where ∇σ
i f(σ, ω) = f (σi, ω)− f(σ, ω) ( analogously for ∇ω

i ) , and where the
jth component of σi is

σij =

{
σj, for j 6= i
−σi, for j = i

1.5 Methodology
Our interacting particle system is described by the two variables (σ, ω). What
we are going to show now is that, however, our system is nonreversible: the
lack of reversibility will lead us to have an unusual approach to study the
behavior of our system, different from the classical approach in Statistical
Mechanics. First of all let’s recall some useful notions about stationary dis-
tributions.
All the following Definitions and Theorems about stochastic processes that
we are going to recall are at discrete time; the Markov process above instead
is in continuous time. However all the following statements can simply be
translated in similar definitions and theorems at continuous time too.

Definition 1.1. A probability distribution π = (π(1), . . . , π(k)) is a station-
ary distribution (or invariant distribution) for M = (mij)ij∈E if

π M = π

or equivalently ∑
i∈E

π(i) mij = π(j) ∀j

where E is the configuration space and M the transition matrix.

In other words a stationary distribution is a probability distribution that
remains constant as the time of the Markov Chain evolves.
To show that our model is nonreversible, let’s consider equation (1.1): the
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operator L given in (1.1) defines an irreducible, finite-state Markov chain. It
follows, from the following three theorems,

• Theorem Irreducible, finite-state Markov chain ⇒ positively recurrent

• Theorem Irreducible, homogeneous Markov chain is:
positively recurrent⇐⇒ has a stationary distribution

• Theorem The invariant measure of a irreducible, recurrent Markov
chain is unique except for a multiplicative factor.

that the process admits a unique stationary distribution µN .
From Kolmogorov’s equations, we know that if π is invariant then π A = 0
where A is the infinitesimal generator. By this implication we can state that
µN is a distribution such that, for each function f on the configuration space
of (σ, ω), ∑

σ,ω

µN(σ, ω)Lf(σ, ω) = 0. (1.2)

This distribution reflects the long-time behavior of the system, in the sense
that, for each f and any initial distribution,

lim
t→+∞

E[f(σ(t), ω(t))] =
∑
σ,ω

µN(σ, ω)f(σ, ω).

The previous stationary condition (1.2) is equivalent to

N∑
i=1

[
µN(σi, ω)eβσiωi − µN(σ, ω)e−βσiωi

]
+

N∑
i=1

[
µN(σ, ωi)eγωim

σ
N − µN(σ, ω)e−γωim

σ
N
]

= 0

for every σ, ω ∈ {−1, 1}N .

A simpler sufficient condition for stationarity is the detailed balance con-
dition.

Definition 1.2. Given a Markov Chain with transition matrixM = (mij)ij∈E,
we say that π satisfy DBE if

π(i) mij = π(j) mji.
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In other words we say that a probability v on {−1, 1}2N satisfies the detailed
balance condition for the generator L if

v(σi, ω)eβσiωi = v(σ, ω)e−βσiωi and

v(σ, ωi)eγωim
σ
N = v(σ, ω)e−γωim

σ
N

(1.3)

for every σ, ω.
To understand in a better way, we can say that, for example, v(σi, ω)eβσiωi

is the probability to start in (σi, ω) (v(σi, ω)) and go to (σ, ω) (in fact the
intensity of σi 7→ σ is eβσiωi)
The utility of the DBE is given by the following Theorem:

Theorem If π satisfy a DBE for M = (mij)ij∈E ⇒ π is invariant for the
matrix M .
About terminology, when the detailed balance conditions (1.3) hold, we say
the system is reversible: in the case (1.3) admits a solution, they usually al-
low to derive the stationary distribution explicitly. The following proposition
show us that our system is not reversible, showing that the detailed balance
equation (1.3) doesn’t admit a solution.

Proposition 1.1. The detailed balance equations (1.3) admit no solution,
except at most for one specific value of N .

Proof. By way of contradiction, assume a solution v of (1.3) exists. Then
one easily obtains

∇σ
i log v(σ, ω) = −2βσiωi
∇ω
i log v(σ, ω) = −2γωim

σ
N

Indeed, for example,

v(σi, ω)eβσiωi = v(σ, ω)e−βσiωi ⇒ v(σi, ω)

v(σ, ω)
=
e−βσiωi

eβσiωi
⇒

log

(
v(σi, ω)

v(σ, ω)

)
= −2βσiωi ⇒ ∇σ

i log v(σ, ω) = −2βσiωi

and the same computation for the second equation.
The previous two equations imply

∇ω
i ∇σ

i log v(σ, ω) = 4βσiωi
∇σ
i∇ω

i log v(σ, ω) = 4N−1γωiσi

This is not possible since ∇ω
i ∇σ

i log v(σ, ω) ≡ ∇σ
i∇ω

i log v(σ, ω)
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The nonreversibility of our model implies that an explicit formula for the
stationary distribution (t→ +∞) and its N → +∞ asymptotics is not avail-
able. Then, to understand the long-time behavior of our dynamic system, we
have to follow a more specific approach: instead of using a so-called "static"
approach we use a more dynamic one which we prefer, since we want to de-
scribe the dynamics of our system. We are indeed interested in describing
dynamically the credit quality of a large number of firms. First we study
the N → +∞ limiting distributions on the configuration space. To do this
we use a of Law of Large Numbers. Then we consider the equilibria of the
limiting dynamics (t → +∞); this leads to the study of phase transitions
whose main goal is to capture the transitions from one equilibrium to an-
other and to study the nature of such transitions. Finally we study the finite
volume approximation of the limiting dynamics using a specific version of
the Central Limit Theorem that allows to analyze the fluctuations around
the limit.
Summarizing, our approach proceeds according to the following three steps:

1. Study of the limit dynamics of the system (N → +∞) obtaining evo-
lution equations for the asymptotic system (with an infinite number of
firms).

2. Study of the equilibria of the limiting dynamics.

3. Study of the finite volume approximation: the system is not truly with
infinite dimension, meaning that the number of firms is large, but finite,
so we analyze the rate of convergence/the error that we commit using
the limiting system in place of the finite one.



Chapter 2

Going deeper in the model

2.1 Limiting Dynamics

In order to analyze the long-time behavior of our system, first of all, we study
the limit dynamics: we send N, the number of firms, to infinity.

Let the {−1, 1}2-valued continuous Markov Chain
(
σ

(N)
i [0, T ], ω

(N)
i [0, T ]

)N
i=1

with infinitesimal generator:

Lf(σ, ω) =
N∑
i=1

e−βσiωi∇σ
i f(σ, ω) +

N∑
i=1

e−γωim
σ
N∇ω

i f(σ, ω). (2.1)

We now rewrite the previous equation (2.1) in terms of the following statistics:

• mσ
N(t) = 1

N

∑N
i=1 σi(t).

• mω
N(t) = 1

N

∑N
i=1wi(t).

• mσω
N (t) = 1

N

∑N
i=1 σi(t)wi(t).

This allows to describe the dynamics of 2N variables ((σi, ωi)
N
i=1) using only

3 order processes (mσ
N ,mω

N ,mσω
N ).

Now we apply the infinitesimal generator to a function ϕ depending on these
3 processes and rewrite the infinitesimal generator as follows:

LNϕ (mσ
N ,m

ω
N ,m

σω
N ) = (KNϕ) (mσ

N ,m
ω
N ,m

σω
N ) ,

17
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where ϕ depends on σ and ω through the 3 order processes. In particular
this dependence is given by the fact that we are interested in the collective
behavior of the system.

LNϕ (mσ
N ,m

ω
N ,m

σω
N ) =

N∑
i=1

{
e−βσiωi

[
ϕ

(
mσ
N −

2

N
σi,m

ω
N ,m

σω
N −

2

N
σiωi

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]
+e−γωim

σ
N

[
ϕ

(
mσ
N ,m

ω
N −

2

N
ωi,m

σω
N −

2

N
σiωi

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
= (∗).

To rewrite the infinitesimal generator using only mσ
N ,m

ω
N ,m

σω
N , let’s split the

previous equation into these four different cases for the couple (σ, ω):
(1,1); (1,-1); (-1,1); (-1,-1)

Then:

(∗) =
N∑
i=1

1 + σi + ωi + σiωi
4

{
e−β

[
ϕ

(
mσ
N −

2

N
,mω

N ,m
σω
N −

2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]
+e−γm

σ
N

[
ϕ

(
mσ
N ,m

ω
N −

2

N
,mσω

N −
2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
+

N∑
i=1

1 + σi − ωi − σiωi
4

{
eβ
[
ϕ

(
mσ
N −

2

N
,mω

N ,m
σω
N +

2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]
+eγm

σ
N

[
ϕ

(
mσ
N ,m

ω
N +

2

N
,mσω

N +
2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
+

N∑
i=1

1− σi + ωi − σiωi
4

{
eβ
[
ϕ

(
mσ
N +

2

N
,mω

N ,m
σω
N +

2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]
+e−γm

σ
N

[
ϕ

(
mσ
N ,m

ω
N −

2

N
,mσω

N +
2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
+

N∑
i=1

1− σi − ωi + σiωi
4

{
e−β

[
ϕ

(
mσ
N +

2

N
,mω

N ,m
σω
N −

2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]
+eγm

σ
N

[
ϕ

(
mσ
N ,m

ω
N +

2

N
,mσω

N −
2

N

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
.

(2.2)

Now we can take the
{
.....
}
outside the sums

∑N
i=1 and notice that:
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1.
∑N

i=1
1+σi+ωi+σiωi

4
= N

4
(1 +mσ

N +mω
N +mσω

N ), if (σi, ωi) = (1, 1)

2.
∑N

i=1
1+σi−ωi−σiωi

4
= N

4
(1 +mσ

N −mω
N −mσω

N ), if (σi, ωi) = (1,−1)

3.
∑N

i=1
1−σi+ωi−σiωi

4
= N

4
(1−mσ

N +mω
N −mσω

N ), if (σi, ωi) = (−1, 1)

4.
∑N

i=1
1−σi−ωi+σiωi

4
= N

4
(1−mσ

N −mω
N +mσω

N ), if (σi, ωi) = (−1,−1)

Equation (2.2) becomes:

∑
(j,k)∈{−1,1}

N

4
(1 + j mσ

N + k mω
N + jk mσω

N )

{
e−βjk

[
ϕ

(
mσ
N −

2

N
j,mω

N ,m
σω
N −

2

N
jk

)

−ϕ (mσ
N ,m

ω
N ,m

σω
N )] + e−γkm

σ
N

[
ϕ

(
mσ
N ,m

ω
N −

2

N
k,mσω

N −
2

N
jk

)
− ϕ (mσ

N ,m
ω
N ,m

σω
N )

]}
We apply, now, the first order Taylor expansion centered at (mσ

N ,m
ω
N ,m

σω
N ) to

the terms ϕ
(
mσ
N − 2

N
j,mω

N ,m
σω
N − 2

N
jk
)
and ϕ

(
mσ
N ,m

ω
N − 2

N
k,mσω

N − 2
N
jk
)
.

For example, considering the first term above, we get:

ϕ

(
mσ
N −

2

N
j,mω

N ,m
σω
N −

2

N
jk

)
= ϕ (mσ

N ,m
ω
N ,m

σω
N )+

∂ϕ (mσ
N ,m

ω
N ,m

σω
N )

∂mσ
N

(
− 2

N
j

)

+
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mω
N

(0)+
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mσω
N

(
− 2

N
jk

)
+o

√(− 2

N
j

)2

+

(
− 2

N
jk

)2


where o
(√(

− 2
N
j
)2

+
(
− 2
N
jk
)2
)

= o
(√

8
N2

)
= o

(
1
N

)
. After having re-

placed the Tayolr expansion in the last equation we get:

∑
(j,k)∈{−1,1}

N

4
(1 + j mσ

N + k mω
N + jk mσω

N )

{
e−βjk

[
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mσ
N

(
− 2

N
j

)

+
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mσω
N

(
− 2

N
jk

)
+ o

(
1

N

)]
+e−γkm

σ
N

[
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mω
N

(
− 2

N
k

)
+
∂ϕ (mσ

N ,m
ω
N ,m

σω
N )

∂mσω
N

(
− 2

N
jk

)
+ o

(
1

N

)]}
If we consider again the 4 different cases (1,1), (1,-1), (-1,1), (-1,-1) and we

write, for simplicity, ∂ϕ
∂mσN

in place of
∂ϕ(mσN ,mωN ,mσωN )

∂mσN
(the same thing for the
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other magnetizations) we get

N

4
(1 +mσ

N +mω
N +mσω

N )

{
e−β

[
∂ϕ

∂mσ
N

(
− 2

N

)
+

∂ϕ

∂mσω
N

(
− 2

N

)
+ o

(
1

N

)]
+e−γm

σ
N

[
∂ϕ

∂mω
N

(
− 2

N

)
+

∂ϕ

∂mωσ
N

(
− 2

N

)
+ o

(
1

N

)]}
+
N

4
(1 +mσ

N −mω
N −mσω

N )

{
eβ
[
∂ϕ

∂mσ
N

(
− 2

N

)
+

∂ϕ

∂mσω
N

(
2

N

)
+ o

(
1

N

)]
+eγm

σ
N

[
∂ϕ

∂mω
N

(
2

N

)
+

∂ϕ

∂mωσ
N

(
2

N

)
+ o

(
1

N

)]}
+
N

4
(1−mσ

N +mω
N −mσω

N )

{
eβ
[
∂ϕ

∂mσ
N

(
2

N

)
+

∂ϕ

∂mσω
N

(
2

N

)
+ o

(
1

N

)]
+e−γm

σ
N

[
∂ϕ

∂mω
N

(
− 2

N

)
+

∂ϕ

∂mωσ
N

(
2

N

)
+ o

(
1

N

)]}
+
N

4
(1−mσ

N −mω
N +mσω

N )

{
e−β

[
∂ϕ

∂mσ
N

(
2

N

)
+

∂ϕ

∂mσω
N

(
− 2

N

)
+ o

(
1

N

)]
+eγm

σ
N

[
∂ϕ

∂mω
N

(
2

N

)
+

∂ϕ

∂mωσ
N

(
− 2

N

)
+ o

(
1

N

)]}
.

Now we group the terms together, finding the coefficients for ∂ϕ
∂mσN

, ∂ϕ
∂mωN

, ∂ϕ
∂mσωN

.

Coefficient of
∂ϕ

∂mσ
N

: −1

2
e−β

∂ϕ

∂mσ
N

(1 +mσ
N +mω

N +mσω
N )

− 1

2
eβ

∂ϕ

∂mσ
N

(1 +mσ
N −mω

N −mσω
N ) +

1

2
eβ

∂ϕ

∂mσ
N

(1−mσ
N +mω

N −mσω
N )

+
1

2
e−β

∂ϕ

∂mσ
N

(1−mσ
N −mω

N +mσω
N )

=
1

2

∂ϕ

∂mσ
N

[
e−β (−1−mσ

N −mω
N −mσω

N + 1−mσ
N −mω

N +mσω
N )

+eβ (−1−mσ
N +mω

N +mσω
N + 1−mσ

N +mω
N −mσω

N )
]

=
∂ϕ

∂mσ
N

[
eβ (−mσ

N +mω
N) + e−β (−mσ

N −mω
N)
]
.
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Coefficient of
∂ϕ

∂mω
N

: −1

2
e−γm

σ
N
∂ϕ

∂mω
N

(1 +mσ
N +mω

N +mσω
N )

+
1

2
eγm

σ
N
∂ϕ

∂mω
N

(1 +mσ
N −mω

N −mσω
N )− 1

2
e−γm

σ
N
∂ϕ

∂mω
N

(1−mσ
N +mω

N −mσω
N )

+
1

2
eγm

σ
N
∂ϕ

∂mω
N

(1−mσ
N −mω

N +mσω
N )

=
1

2

∂ϕ

∂mω
N

[
e−γm

σ
N (−1−mσ

N −mω
N −mσω

N − 1 +mσ
N −mω

N +mσω
N )

+eγm
σ
N (+1 +mσ

N −mω
N −mσω

N + 1−mσ
N −mω

N +mσω
N )
]

=
∂ϕ

∂mω
N

[
e−γm

σ
N (−1−mω

N) + eγm
σ
N (1−mω

N)
]
.

Coefficient of
∂ϕ

∂mσω
N

: −1

2
e−β

∂ϕ

∂mσω
N

(1 +mσ
N +mω

N +mσω
N )

− 1

2
e−γm

σ
N

∂ϕ

∂mσω
N

(1 +mσ
N +mω

N +mσω
N ) +

1

2
eβ

∂ϕ

∂mσω
N

(1 +mσ
N −mω

N −mσω
N )

+
1

2
eγm

σ
N

∂ϕ

∂mσω
N

(1 +mσ
N −mω

N −mσω
N ) +

1

2
eβ

∂ϕ

∂mσω
N

(1−mσ
N +mω

N −mσω
N )

+
1

2
e−γm

σ
N

∂ϕ

∂mσω
N

(1−mσ
N +mω

N −mσω
N )− 1

2
e−β

∂ϕ

∂mσω
N

(1−mσ
N −mω

N +mσω
N )

− 1

2
eγm

σ
N

∂ϕ

∂mσω
N

(1−mσ
N −mω

N +mσω
N )

=
1

2

∂ϕ

∂mσω
N

[
e−β (−1−mσ

N −mω
N −mσω

N − 1 +mσ
N +mω

N −mσω
N )

+eβ (+1 +mσ
N −mω

N −mσω
N + 1−mσ

N +mω
N −mσω

N )

+e−γm
σ
N (−1−mσ

N −mω
N −mσω

N + 1−mσ
N +mω

N −mσω
N )

+eγm
σ
N (+1 +mσ

N −mω
N −mσω

N − 1 +mσ
N +mω

N −mσω
N )
]

=
∂ϕ

∂mσ
N

[
e−β (−1−mσω

N ) + eβ (1−mσω
N )

+e−γm
σ
N (−mσ

N −mσω
N ) + eγm

σ
N (mσ

N −mσω
N )
]
.

Using the hyperbolic functions we rewrite the relations above and we get
that the infinitesimal generator LNϕ (mσ

N ,m
ω
N ,m

σω
N ) is given by:
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LNϕ (mσ
N ,m

ω
N ,m

σω
N ) =

=
∂ϕ

∂mσ
N

[2 sinh(β)mω
N − 2 cosh(β)mσ

N ] +
∂ϕ

∂mω
N

[2 sinh (γmσ
N)− 2 cosh (γmσ

N)mω
N ]

+
∂ϕ

∂mσω
N

[2 sinh(β) + 2 sinh (γmσ
N)mσ

N − 2 (cosh(β) + cosh (γmσ
N))mσω

N ] + o(1)

(2.3)
If now we consider the limN→∞ LNϕ (mσ

N ,m
ω
N ,m

σω
N ), as we are dealing with

continuous objects, we obtain:

Lϕ (mσ,mω,mσω) =
∂ϕ (mσ,mω,mσω)

∂mσ
[2 sinh(β)mω − 2 cosh(β)mσ]

+
∂ϕ (mσ,mω,mσω)

∂mω
[2 sinh (γmσ)− 2 cosh (γmσ)mω]

+
∂ϕ (mσ,mω,mσω)

∂mσω
[2 sinh(β) + 2 sinh (γmσ)mσ

N

−2 (cosh(β) + cosh (γmσ))mσω] ,

(2.4)

where (mσ,mω,mσω) ∈ [−1, 1]3(
(mσ

N ,m
ω
N ,m

σω
N ) ∈

{
−1,−1 + 2

N
, · · · , 1− 2

N
, 1
}3 ⊂ [−1, 1]3

)
Now limN→∞ supx∈E3 |LNϕ(x)− Lϕ(x)| = 0
then by Theorem A.1 (see Appendix A) that allows us to deduce, from the
convergence of the infinitesimal generators, the convergence in distribution
of the processes we are considering, we obtain:

(mσ
N(t),mω

N(t),mσω
N (t))

d−→
N→∞

(mσ(t),mω(t),mσω(t))

In particular as holds that

Lf(x) =
∑
i

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

(
σ(x)σ(x)t

) ∂2f

∂xi∂xj
(x)

for x a stochastic process such that dx(t) = b(x(t)) dt+ σ(x(t)) dB(t),
where B(t) is the Brownian motion, we get:

ṁσ
t = 2 sinh(β)mω

t − 2 cosh(β)mσ
t

ṁω
t = 2 sinh (γmσ

t )− 2 cosh (γmσ
t )mω

t

ṁσω
t = 2 sinh(β) + 2 sinh (γmσ

t )mσ
t − 2 (cosh(β) + cosh (γmσ

t ))mσω
t

(2.5)
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2.2 Equilibria of the limiting dynamics
After having obtained the differential equations that characterize the three
order processes for N → ∞, we provide a Theorem to study in detail what
happens to the equilibria of the limiting dynamic depending on the parame-
ters we consider.
We analyze three different possible choices for the parameters:

• γ ≤ 1
tanh(β)

: the case where the level of contagion is less or equal than
the critical value;

• γ = 1
tanh(β)

where they coincide;

• γ ≥ 1
tanh(β)

: where the contagion γ is greater than the critical value.

Theorem 2.1. (i) Suppose γ ≤ 1
tanh(β)

. Then (ṁσ
t , ṁ

ω
t ) = V (mσ

t ,m
ω
t ) with

V (x, y) = (2 sinh(β)y − 2 cosh(β)x, 2 sinh(γx) − 2y cosh(γx)) has (0,0) as a
unique equilibrium solution, which is globally asymptotically stable, that is,
for every initial condition (mσ

0 ,m
ω
0 ) , we have

lim
t→+∞

(mσ
t ,m

ω
t ) = (0, 0)

(ii) For γ < 1
tanh(β)

the equilibrium (0,0) is linearly stable. For γ = 1
tanh(β)

the linearized system has a neutral direction, that is, DV (0, 0) has one zero
eigenvalue (where DV (0, 0) is the Jacobian matrix evaluated in (0, 0)).
(iii) For γ > 1

tanh(β)
the point (0,0) is still an equilibrium for (ṁσ

t , ṁ
ω
t ) =

V (mσ
t ,m

ω
t ) but it is a saddle point for the linearized system, that is, the

matrix DV (0, 0) has two nonzero real eigenvalues of opposite sign. More-
over the previous two-dimensional system has two linearly stable solutions
(mσ
∗ ,m

ω
∗ ) , (−mσ

∗ ,−mω
∗ ) , where mσ

∗ is the unique strictly positive solution of
the equation

x = tanh(β) tanh(γx) (2.6)

and
mω
∗ =

1

tanh(β)
mσ
∗ (2.7)

(iv) For γ > 1
tanh(β)

, the phase space [−1, 1]2 is bipartitioned by a smooth
curve Γ containing (0,0) such that [−1, 1]2\Γ is the union of two disjoint
sets Γ+,Γ− that are open in the induced topology of [−1, 1]2. Moreover

lim
t→+∞

(mσ
t ,m

ω
t ) =


(mσ
∗ ,m

ω
∗ ) , if (mσ

0 ,m
ω
0 ) ∈ Γ+

(−mσ
∗ ,−mω

∗ ) , if (mσ
0 ,m

ω
0 ) ∈ Γ−

(0, 0), if (mσ
0 ,m

ω
0 ) ∈ Γ
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Proof. We first observe that the square [−1, 1]2 is stable for the flow of
(ṁσ

t , ṁ
ω
t ) = V (mσ

t ,m
ω
t ), since the vector field

V (x, y) = (2 sinh(β)y − 2 cosh(β)x, 2 sinh(γx) − 2y cosh(γx)) points inward
at the boundary of [−1, 1]2.
Let’s see why V (x, y) points inward at the boundary of [−1, 1]2. Let consider
the case where y = 1 is fixed and the other cases are similar.
V (x, 1) = (2 sinh(β)− 2 cosh(β)x, 2 sinh(γx)− 2 cosh(γx)) where
ẋ = 2 sinh(β)− 2 cosh(β)x. We consider the two following cases:

• if x is close to 1, we get that
2 sinh(β)− 2 cosh(β)x < 0 ⇐⇒ x > tanh(β)
but, as x is close to 1, the previous inequalities hold and we get ẋ < 0.
This means that x decreases and so tends to go inward;

• if x is close to -1, we get that
2 sinh(β)− 2 cosh(β)x > 0 ⇐⇒ x < tanh(β)
but, as x is close to -1, the previous inequalities hold and we get ẋ > 0.
This means that x increases and so tends to go inward.

Now it is immediately seen that the equation V (x, y) = 0 holds if and only if{
2 sinh(β)y − 2 cosh(β)x = 0
2 sinh(γx)− 2y cosh(γx)) = 0

and so if and only if x = tanh(β) tanh(γx) and y = 1
tanh(β)

x. Moreover a
simple convexity argument shows that x = tanh(β) tanh(γx) has x = 0 as
unique solution for γ ≤ 1

tanh(β)
, while for γ > 1

tanh(β)
a strictly positive solu-

tion, and its opposite, bifurcate from the null solution.
Let consider the fixed point equation x = tanh(β) tanh(γx); we want to
find how many solution this equation has. Let g (x) = x and f(x) =

tanh(β) tanh(γx); we have that f ′(x) = tanh(β)
cos2 h(γx)

γ, g′(x) = 1. Comparing
now f ′(0) = tanh(β)γ, g′(0) = 1 we get the following statements:

tanh(β)γ ≤ 1⇒ ∃! x = 0

tanh(β)γ > 1⇒ ∃ x = 0 and x∗,−x∗

We have therefore found all equilibria of (ṁσ
t , ṁ

ω
t ) = V (mσ

t ,m
ω
t ). We now

remark that The Poincaré-Bendixson Theorem states that every trajectory
of a 2-dimensional autonomous system, converges either to an equilibrium
point or to a periodic solution (see Theorem A.4 Appendix A). Here to prove
that (ṁσ

t , ṁ
ω
t ) = V (mσ

t ,m
ω
t ) has no cycles (periodic solutions), we use the
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Divergence Theorem. Indeed, suppose (xt, yt) is a cycle of period T. Then
by a 2-dimensional version of the Divergence Theorem (that is equivalent to
Green’s Theorem) we get∫ T

0

[V1 (xt, yt) ẋt + V2 (xt, yt) ẏt] dt =

∫
C

div V (x, y)dxdy, (2.8)

where V1, V2 are the components of V and C is the open set enclosed by the
cycle. But a simple direct computation shows that

divV (x, y) =
∂V1

∂x
+
∂V2

∂y
= −2 cosh(β)− 2 cosh(γx) < 0in all of[−1, 1]2.

On the contrary∫ T

0

[V1 (xt, yt) ẋt + V2 (xt, yt) ẏt] dt =

∫ T

0

[
V 2

1 (xt, yt) + V 2
2 (xt, yt)

]
dt ≥ 0

so that (2.8) cannot hold.

It follows by the Poincaré-Bendixson theorem that every solution must con-
verge to an equilibrium as t → +∞. This completes the proof of (i). If we
consider the matrix of the linearized system (ẋ, ẏ) = DV(x̄, ȳ)(x− x̄, y − ȳ),
where

DV (x, y) =

(
∂V1
∂x

∂V1
∂y

∂V2
∂x

∂V2
∂y

)
where V1 = 2 sinh(β)y − 2 cosh(β)x

V2 = 2 sinh(γx)− 2y cosh(γx)

and we evaluate it at (0,0), we get

DV (0, 0) =

(
−2 cosh(β) 2 sinh(β)

2γ −2

)
from which we obtain the following two eigenvalues:

λ1,2 =
−2(cosh(β) + 1)±

√
4
(
1 + cosh2(β) + 2 cosh(β)

)
− 16 cosh(β) + 16γ sinh(β)

2

λ1,2 = −(cosh(β) + 1)±
√

1 + cosh2(β)− 2 cosh(β) + 4γ sinh(β)

We have 3 different cases:
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• if γ = 1
tanh(β)

λ1,2 = −(cosh(β) + 1)± (cosh(β) + 1), then we have that
DV(0,0) has one zero eigenvalues;

• if γ < 1
tanh(β)

we have already understood what happens previously in
the proof;

• if γ ≥ 1
tanh(β)

, then DV(0,0) has two nonzero real eigenvalues of opposite
sign (λ1 > 0, λ2 < 0).

In this way we have shown also (ii) and (iii). It remains to show (iv).
For γ > 1

tanh(β)
, we let vs be an eigenvector of the negative eigenvalue of

DV (0, 0). By the Stable Manifold Theorem (see Theorem A.5 in Appendix
A), the set of initial conditions that are asymptotically driven to (0,0) forms
a 1-dimensional manifold Γ that is tangent to vs at (0, 0). Since any solution
converges to an equilibrium point, and solutions starting at Γ+ cannot cross
Γ (otherwise uniqueness would be violated), the remaining part of statement
(iv) follows.

2.3 Central Limit Theorem
The main purpose of this section is to understand at which rate mσ

N(t) con-
verges to mσ

t and the same for the other two order parameters mω
N(t) and

mσω
N (t). In the previous sections we have studied the case N → ∞, but we

have to consider that N can be a very large number, but finite since we are
dealing with a finite dimensional system.
Then we describe the finite volume approximations of the limiting dynamics
via a suitable version of the Central Limit Theorem (CLT). So, let, first,
define the 3 following variables:

xN(t) :=
√
N (mσ

N(t)−mσ
t )

yN(t) :=
√
N (mω

N(t)−mω
t )

zN(t) :=
√
N (mσω

N (t)−mσω
t )

In other words we amplify the error that we do considering the infinite dimen-
sional case instead of the large but finite one; this error depends obviously
on N. We add the right noise

√
N to see the fluctuation of the differences

(mN(t)−mt).
We state and prove the following theorem:
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Theorem 2.2. Consider the following 3-dimensional fluctuation process:

xN(t) :=
√
N (mσ

N(t)−mσ
t )

yN(t) :=
√
N (mω

N(t)−mω
t )

zN(t) :=
√
N (mσω

N (t)−mσω
t )

Then (xN(t), yN(t), zN(t)) converges as N →∞, in the sense of weak conver-
gence of stochastic processes, to a limiting 3-dimensional Gaussian process
(x(t), y(t), z(t)) which is the unique solution of the following linear stochastic
differential equation: dx(t)

dy(t)
dz(t)

 = A(t)

 x(t)
y(t)
z(t)

 dt+D(t)

 dB1(t)
dB2(t)
dB3(t)

 , (2.9)

where B1, B2, B3 are independent, standard Brownian motions,

A(t) = 2

 − cosh(β)
−γmω

t sinh (γmσ
t ) + γ cosh (γmσ

t )
sinh (γmσ

t ) + γmσ
t cosh (γmσ

t )− γmσω
t sinh (γmσ

t )

sinh(β) 0
− cosh (γmσ

t ) 0
0 − (cosh(β) + cosh (γmσ

t ))

 ,

D(t)D′(t)
2

=

 −mσω
t sinh(β) + cosh(β) 0

0 −mω
t sinh (γmσ

t ) + cosh (γmσ
t )

−mσ
t sinh(β) +mω

t cosh(β) mσ
t cosh (γmσ

t )−mσω
t sinh (γmσ

t )

−mσ
t sinh(β) +mω

t cosh(β)
mσ
t cosh (γmσ

t )−mσω
t sinh (γmσ

t )
−mσω

t sinh(β) + cosh(β)−mω
t sinh (γmσ

t ) + cosh (γmσ
t )

 ,

and (x(0), y(0), z(0)) have a centered Gaussian distribution with covariance
matrix  1− (mσ

λ)2 mσω
λ −mσ

λm
ω
λ mω

λ −mσ
λm

σω
λ

mσω
λ −mσ

λm
ω
λ 1− (mω

λ)2 mσ
λ −mσω

λ mω
λ

mω
λ −mσ

λm
σω
λ mσ

λ −mσω
λ mω

λ 1− (mσω
λ )2

 (2.10)
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Proof. The first part of this proof is quite similar to the one that we did
studying the limiting dynamics topic. We want to check that, if we apply
the generator L in (2.1) to a function of the form ϕ (mσ

N ,m
ω
N ,m

σω
N ) , we

obtain again a function of (mσ
N ,m

ω
N ,m

σω
N ). From the computation that we

did previously we know that we have

LNϕ (mσ
N ,m

ω
N ,m

σω
N ) = (KNϕ) (mσ

N ,m
ω
N ,m

σω
N )

where

(KNϕ) (ξ, η, θ)

=
∑

(j,k)∈{−1,1}

N

4
(1 + j ξ + k η + jk θ)

{
e−βjk

[
ϕ

(
ξ − 2

N
j, η, θ − 2

N
jk

)

−ϕ (ξ, η, θ)] + e−γkξ
[
ϕ

(
ξ, η − 2

N
k, θ − 2

N
jk

)
− ϕ (ξ, η, θ)

]}
.

(2.11)

This implies that KN is the infinitesimal generator of the 3-dimensional
Markov process (mσ

N ,m
ω
N ,m

σω
N ). Notice, now, that (xN(t), yN(t), zN(t)) is

obtained from (mσ
N ,m

ω
N ,m

σω
N ) through a time-dependent, linear invertible

transformation. We call Tt this transformation, that is,

Tt(ξ, η, θ) =
(√

N (ξ −mσ
t ) ,
√
N (η −mω

t ) ,
√
N (θ −mσω

t )
)

= (x, y, z).

The 3-dimensional process (xN(t), yN(t) zN(t)) is itself a (time inhomoge-
neous) Markov process, whose infinitesimal generator HN,t can be obtained
from (2.11) as follows:

HN,tf(x, y, z) = KN [f ◦ Tt]
(
T−1
t (x, y, z)

)
+
∂

∂t
[f ◦ Tt]

(
T−1
t (x, y, z)

)
First of all we show some useful computations for KN [f ◦ Tt]

(
T−1
t (x, y, z)

)
noticing that:

(f ◦ Tt)(ξ, η, θ) = f(x, y, z)

Tt

(
ξ − 2

N
j, η, θ − 2

N
jk
)

=

(√
N

(
ξ − 2

N
j −mσ

t

)
,
√
N (η −mω

t ) ,
√
N

(
θ − 2

N
jk −mσω

t

))
=

(
x− 2√

N
j, y, z − 2√

N
jk

)
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and so

(f ◦ Tt)
(
ξ − 2

N
j, η, θ − 2

N
jk
)

= f
(
x− 2√

N
j, y, z − 2√

N
jk
)
.

On the other hand

∂

∂t
[f ◦ Tt]

(
T−1
t (x, y, z)

)
=

∂

∂t
(f ◦ Tt) (ξ, η, θ) =

∂

∂t
f(x, y, z)

= fx
∂x

∂t
+ fy

∂y

∂t
+ fz

∂z

∂t
,

where x =
√
N (ξ −mσ

t ) ⇒ ∂x
∂t

= −
√
Nṁσ

t , and exactly in the same way for
the others.
With the previous calculations we get that:

HN,tf(x, y, z)

=
N

4

∑
(j,k)∈{−1,1}2

[
j
x√
N

+ k
y√
N

+ jk
z√
N

+ jmσ
t + kmω

t + jkmσω
t + 1

]

×
{
e−βjk

[
f

(
x− 2√

N
j, y, z − 2√

N
jk

)
− f(x, y, z)

]
+e−γ(x/

√
N+mσt )k

[
f

(
x, y − 2√

N
k, z − 2√

N
jk

)
− f(x, y, z)

]}
−
√
Nṁσ

t fx(x, y, z)−
√
Nṁω

t fy(x, y, z)−
√
Nṁσω

t fz(x, y, z),
(2.12)

where fx stands for ∂f
∂x
, and similarly for the other derivatives. At this

point we compute the asymptotics of HN,tf(x, y, z) as N → +∞, assum-
ing f : R3 → R a C3 function with compact support. First of all we apply a
Taylor expansion to the following terms:

f

(
x− 2√

N
j, y, z − 2√

N
jk

)
− f(x, y, z)

= − 2√
N
j fx(x, y, z)− 2√

N
jk fz(x, y, z)

+
2

N
fxx(x, y, z) +

2

N
fzz(x, y, z) +

4

N
fxz(x, y, z) + o

(
1

N

)
and

e−γ(x/
√
N) = 1− γ

(
x√
N

)
+ o

(
1√
N

)
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Now we can plug the two Taylor’s expansions above into (2.12) obtaining the
following equation:

HN,tf(x, y, z)

=
N

4

∑
(j,k)∈{−1,1}2

[
j
x√
N

+ k
y√
N

+ jk
z√
N

+ jmσ
t + kmω

t + jkmσω
t + 1

]

×
{
e−βjk

[
− 2√

N
j fx −

2√
N
jk fz +

2

N
fxx +

2

N
fzz +

4

N
fxz + o

(
1

N

)]
+e−γm

σ
t k

(
1− γ k x√

N
+ o

(
1

N

))[
− 2√

N
j fx −

2√
N
jk fz +

2

N
fyy

+
2

N
fzz +

4

N
fyz + o

(
1

N

)]}
−
√
Nṁσ

t fx −
√
Nṁω

t fy −
√
Nṁσω

t fz.

(2.13)

As we did in the proof of the Limiting Dynamic case, we separate the 4 dif-
ferent cases (1,1), (1,-1), (-1,1), (-1,-1).
In the following lines we give an idea on how we have to collect all the differ-
ent terms: in first place we show how the 3 terms −

√
Nṁσ

t fx, −
√
Nṁω

t fy,
−
√
Nṁσω

t fz are cancled with other terms of order
√
N coming from the sum

over (j, k) ∈ {−1, 1}2.

We recall that ṁσ
t = 2 sinh(β)mω

t − 2 cosh(β)mσ
t , then

−
√
Nṁσ

t fx = −
√
Nfx[(e

β − e−β)mω
t − (eβ − e−β)mσ

t ].

Now considering the following terms from (2.13)

N

4
mσ
t e
−β
(
− 2√

N

)
fx +

N

4
mω
t e
−β
(
− 2√

N

)
fx

+
N

4
(mσ

t −mω
t )eβ

(
− 2√

N

)
fx +

N

4
(−mσ

t +mω
t )eβ

2√
N
fx

+
N

4
(−mσ

t −mω
t )e−β

2√
N
fx

=
√
Nfx[(e

β − e−β)mω
t − (eβ − e−β)mσ

t ]

we can see they get cancled with −
√
Nṁσ

t fx; the same thing for the other
two terms.
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If now we look at the coefficients of the partial derivatives of f, it’s possible
to rewrite entirely equation (2.13). For example let’s do the computations
for the coefficients of fx, these are (without counting those that get cancled
with −

√
Nṁσ

t fx):
N

4

[
x√
N

+
y√
N

+
z√
N

]
e−β

(
− 2√

N

)
fx

+
N

4

[
x√
N
− y√

N
− z√

N

]
eβ
(
− 2√

N

)
fx

+
N

4

[
− x√

N
+

y√
N
− z√

N

]
eβ
(

2√
N

)
fx

+
N

4

[
− x√

N
− y√

N
+

z√
N

]
e−β

(
2√
N

)
fx

= −x(e−β + eβ) + y(eβ − e−β)

= 2fx[−x cosh(β) + y sinh(β)].

The other cases have long but straightforward computations; in this way we
get a rewrite of (2.13). Taking now the limit for N →∞ of HN,tf(x, y, z), as
we are dealing with continuous objects, we get easily Htf(x, y, z). It follows
then:

lim
N→∞

sup
t∈[0,T ]

sup
x,y,z∈R3

|HN,tf(x, y, z)−Htf(x, y, z)| = 0

where

Htf(x, y, z) =2 {fx[−x cosh(β) + y sinh(β)]

+ fy [−γxmω
t sinh (γmσ

t ) + γx cosh (γmσ
t )− y cosh (γmσ

t )]

+ fz [x sinh (γmσ
t ) + γxmσ

t cosh (γmσ
t )

−γxmσω
t sinh (γmσ

t )− z cosh(β)− z cosh (γmσ
t )]

+ fxx [−mσω
t sinh(β) + cosh(β)]

+ fyy [−mω
t sinh (γmσ

t ) + cosh (γmσ
t )]

+ fzz [−mσω
t sinh(β) + cosh(β)

−mω
t sinh (γmσ

t ) + cosh (γmσ
t )]

+ 2fxz [−mσ
t sinh(β) +mω

t cosh(β)]

+2fyz [mσ
t cosh (γmσ

t )−mσω
t sinh (γmσ

t )]}
(2.14)

is the infinitesimal generator of the linear diffusion process (2.9).
To complete the proof we need to show that (xN(0), yN(0), zN(0)) converges
as N → ∞, in distribution to (x(0), y(0), z(0)). This last statement follows
by the standard Central Limit Theorem for i.i.d. random variables; indeed,
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by assumption, (σi(0), ωi(0)) are independent with law λ, and (2.10) is just
the covariance matrix under λ of (σ(0), ω(0), σ(0)ω(0)).
First of all we check that the matrix coincides with the one of the statement of
the Theorem; for example consider V ar[σ(0)] = E[σ2(0)]−E[σ(0)]2 = E[1]−
(mσ

λ)2 = 1 − (mσ
λ)2 or Cov[σ(0) ω(0)] = E[σ(0) ω(0)] − E[σ(0)]E[ω(0)] =

mσω
λ −mσ

λm
ω
λ and in this way for all the entrances of the matrix (2.10).

Then we show how to apply the CLT Theorem. Let:

YN =

∑N
i=1 σi(0)−NE[σi(0)]√

1− (mσ
λ)2
√
N

=

√
N
(

1
N

∑N
i=1 σi(0)−mσ

λ

)
√

1− (mσ
λ)2

=

√
N (mσ

N(0)−mσ
λ)√

1− (mσ
λ)2

by the Central Limit Theorem YN −→ Y ∼ N(0, 1)

then xN(0)
d−→ x(0) ∼ N(0, 1 − (mσ

λ)2) and the same method for yN(0) and
zN(0).
It should be pointed out that here we are dealing with time-dependent genera-
tors. To fix this point is enough to introduce an additional variable τ(t) := t,
and consider the process α(t) := (x(t), y(t), z(t), τ(t)), whose generator is
time-homogeneous. This argument, together with the fact that the con-
vergence of HN,tf(x, y, z) to Htf(x, y, z) is uniform in both (x, y, z) and t,
completes the proof.

2.4 Covariance Matrix

Proposition 2.1. Denote by Σt the covariance matrix of (x(t), y(t), z(t)),
then Σt solves the Lyapunov equation:

dΣt

dt
= A(t)Σt + ΣtA

′(t) +D(t)D′(t) (2.15)

Proof. Denote by X(t) = (x(t), y(t), z(t))′. Then, by (2.9)

dX(t) = A(t)X(t)dt+D(t)dB(t)

dX ′(t) = (A(t)X(t))′dt+ (D(t)dB(t))′

Thus,

d (X(t)X ′(t)) = X(t)dX ′(t) +X ′(t)dX(t) +D(t)D′(t)dt
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where the equality comes from the Part Formula for stochastic processes:

d (X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d〈X, Y 〉t

where,

dXt = ϕt dB(t) + ξtdt

dY t = ft dB(t) + gtdt

d〈X, Y 〉t = ϕtft dt.

In this way we get

d (X(t)X ′(t)) = X(t) [X ′(t)A′(t)dt+ dB′(t)D′(t)]

+X ′(t) [A(t)X(t)dt+D(t)dB(t)] +D(t)D′(t)dt

=X(t)X ′(t)A′(t)dt+X(t)dB′(t)D′(t) + A(t)X(t)X ′(t)dt

+D(t)dB(t)X ′(t) +D(t)D′(t)dt

Now, Σt = E[(X(t)X ′(t))]− E[X(t)] E[X(t)]′

so,

dΣt = d (E[X(t)X ′(t)])− d (E[X(t)] E[X(t)]′) (2.16)

• We have that for the first term we can bring the derivative inside the ex-
pected value and we get:

d (E[X(t)X ′(t)]) = E[X(t)X ′(t)]A′(t)dt+A(t)E[X(t)X ′(t)]dt+D(t)D′(t)dt

since E (X(t)dB′(t)) = 0 and E (dB(t)X ′(t)) = 0

• For the second term we have that:

X(t) =
∫
A(x)X(t)dt+

∫
D(t)dB(t)

X ′(t) =
∫
X(t)′A(t)′dt+

∫
dB′(t)D(t)
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then E[X(t)] = E

[∫
A(t)X(t)dt

]
=

∫
A(t)E[X(t)]dt

since E
[∫

D(t)dB(t)dt

]
= 0 and d (E[X(t)]) = A(t)E[X(t)]dt

and the same calculus for X ′(t), thus

E[X ′(t)] =

∫
E[X ′(t)] A′(t)dt

d (E[X ′(t)]) = E[X ′(t)] A′(t)dt.

The second term can be rewritten as follow:

d (E[X(t)] E[X(t)]′) = d (E[X(t)]) E[X ′(t)] + E[X(t)] d (E[X ′(t)])

so d (E[X(t)] E[X(t)]′) = A(t)E[X(t)]E[X ′(t)]dt+ E[X(t)]E[X ′(t)] A′(t)dt

Thus, from equation (2.16),

dΣt = (E [X(t)X ′(t)]− E[X(t)]E [X ′(t)])A′(t)dt

+A(t) (E [X(t)X ′(t)]− E[X(t)]E [X ′(t)]) dt+D(t)D′(t)dt
then,

dΣt

dt
= A(t)Σt + ΣtA

′(t) +D(t)D′(t).

In order to solve (2.15) it is convenient to interpret Σ as a vector in R3×3 =
R3⊗R3. To avoid ambiguities, for a 3×3 matrix C we write vec (C) whenever
we interpret it as a vector.

Proposition 2.2. Equation (2.15) can be rewritten as follows:

d (vec (Σt))

dt
= (A(t)⊗ I + I ⊗ A(t)) vec (Σt) + vec (D(t)D∗(t)) (2.17)

where " ⊗” denotes the tensor product of matrices (Kronecker product).

Proof. We can write (2.15) as

d (vec (Σt))

dt
= vec (A(t) Σt I) + vec (I Σt A

′(t)) + vec (D(t)D∗(t))
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and, as the following property holds vec (A B C) = (C ′ ⊗ A) vec (B), we get

d (vec (Σt))

dt
= (A(t)⊗ I + I ⊗ A(t)) vec (Σt) + vec (D(t)D∗(t))

We, now, state a Corollary of Theorem 2.2 concerning the fluctuations of
the global health indicator; this will be usefulin the application on Portfolio
Losses.

Corollary 2.1. As N →∞ we have that
√
N [mσ

N(t)−mσ
t ]

converges in law to a centered Gaussian random variable Z with variance

V (t) = Σ11(t), (2.18)

where Σ(t) solves (2.15) and mσ
t solves (2.5).

The variable V(t), as in (2.18), is the variance of the process x(t) and will be
largely used to show simulations concerning different behaviors of the parti-
cle system under certain parameters. Often, instead of considering the whole
covariance matrix, we use V(t) as point of reference to understand how the
model we are considering evolves.

Now we study the behavior of Σt for large t.
In particular, equation (2.17) is linear, so its solution can be given with an
explicit expression and can be computed after having solved (2.5). The be-
havior of Σt for large t can be obtained explicitly as follows.

• Case γ < 1
tanh(β)

. As we have shown in Theorem 2.1 the solution
(mσ

t ,m
ω
t ,m

σω
t ) of (2.5) converges to (0, 0, tanh(β)) as t→ +∞. In par-

ticular we can easily compute the following limits:

A := lim
t→+∞

A(t), DD∗ := lim
t→+∞

D(t)D∗(t)

It follows from (2.17) that limt→+∞Σt = Σ.
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• Case γ > 1
tanh(β)

. Also in this case, by Theorem 2.1, the limit

lim
t→+∞

(mσ
t ,m

ω
t ,m

σω
t )

exists. Disregarding the exceptional case in which the initial condition
of (2.5) belongs to the stable manifold Γ introduced in Theorem 2.1,
the limit above equals either (mσ

∗ ,m
ω
∗ ,m

σω
∗ ) or (−mσ

∗ ,−mω
∗ ,m

σω
∗ ) , de-

pending on the initial conditions. In both cases one obtains, as in the
previous case, the limits A and DD∗.

• Case γ = 1
tanh(β)

. In this case, the limiting matrix A is singular; it
follows that the limit limt→+∞Σt does not exist. The meaning of this,
is the following: when we consider critical values of the parameters
the size of normal fluctuations around the deterministic limit grows in
time.



Chapter 3

Credit Crises

3.1 Intuitions

Before going into detail, presenting some simulation results related to the
behavior of our particle system and its financial meaning, we give some in-
tuitions about the quantities studied so far.
The main objects we are going to deal with are mσ

t and V (t).

The variablemσ
t represents the global financial health indicator for N → +∞

and takes values in the interval [−1, 1].
We can think of this variable as the quality of the debt of a certain set of
firms: for example mσ

t → −0.5 for t that goes to +∞ means the 75% of the
firms are in financial distress: the probability of default for the 75% of the
obligors (firms) is quite high, in other words a high probability of not being
able to pay back obligations.
If we have for example that limt→+∞ (mσ

t ,m
ω
t ) = (0, 0), this means that al-

most half of the firms are in a good financial state and almost half of the
them are in a bad financial state both in the perceived and real state.

The other important variable that we introduced in the previous chapter
is V (t), the variance of the process x(t) from Theorem 2.2. The meaning
of this variable is the following: V(t) is the variance of the deviations from
the average. It tells us how significant the average mσ

t is; if V(t) is big, the
average is not very reliable. We will show how the variance evolve through
different simulations: we are interested in understanding its limit behavior
and how the dynamics evolve before the stationarity.
To have a first intuition about V (t) unit of measure, we can think about
the standard deviation

√
V (t): this variable represents how much we deviate

37
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from 0 regarding the mistake we make considering mσ
t in place of mσ

N(t). In
other words, if V (t) = 0.3 for a certain time t, this means that we have to
consider the dynamics of mσ

t ±
√

0.3 and this is how much the system differs
considering the N-finite dimensional case, in place of the infinite dimensional
one.

3.2 Simulations

This section is going to be really useful to fully understand the meaning of
what we have found until now. We recall shortly the different steps we have
followed:

1. We have described the system through the process(
σ

(N)
i [0, T ], ω

(N)
i [0, T ]

)N
i=1

and then have taken into consideration the
three statistics (mσ

N ,mω
N ,mσω

N ).

2. We have found the Limiting Dynamics sendingN → +∞ and obtaining
(mσ

t ,mω
t ,mσω

t ).

3. Then we have studied the equilibria of the limiting dynamics sending
t→ +∞ (Theorem 2.1).

4. As last, we have used a specific version of the Central Limit Theorem
to go back to a finite-dimension N, to fully understand the error that
we commit considering the limit process in place of the N-finite process.

With that said, we now show some examples of how the dynamics of mσ
t and

of the variance of the process x(t) (V(t)), evolve. We show results only for
these two variables, avoiding to plot the other ones, just for clarity.
Let start giving some intuitions from the financial point of view that we will
explore in detail after having introduced the concept of portfolio losses.
The main aim here is to show and introduce the concept of credit crises based
on the different simulations we have done.
The function that we use to plot these graphs depends on 5 different inputs:
(tN , β, γ,m

σ
0 ,m

ω
0 ); we will consider a short analysis on how the simulations

change, based on the different parameters.
We distinguish the already mentioned 3 cases:

• Case γ < 1
tanh(β)

.
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– mσ
t converges to 0 as t→ +∞.

– The closer we are to the critical case, the slower we get to the
stable equilibrium 0. In other words, if we have that γ � 1

tanh(β)
,

we get to 0 faster.

– V(t) as t→ +∞ stabilizes at a certain value.

– The closer we are to the critical case, the more time V(t) needs
to get to a limit value and the bigger this limit value will be.

Figure 3.1: Trajectories of mσ
t and V(t) for the following parameters

(tN , β, γ,m
σ
0 ,m

ω
0 )=(15,1.5,-0.5,-0.5,0.395). In the subcritical case the vari-

ance V(t) is not a bell curve.

• Case γ = 1
tanh(β)

– mσ
t converges to 0 as t→ +∞ but really slowly.

– V(t) grows linearly with respect to time for short time frames and
has a polynomial growth with bigger time frames.
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Figure 3.2: Trajectories of mσ
t and V(t) for the following parameters

(tN , β, γ,m
σ
0 ,m

ω
0 )=(300,1.5,0,-0.5,0.395).

• Case γ > 1
tanh(β)

This is the most interesting case, the one that we will discuss more
because it represents the financial situation we want to explain.
As we showed in Theorem 2.1 there are two symmetric equilibrium
configurations in the space (mσ,mω), that we have defined as (mσ

∗ ,m
ω
∗ )

and (−mσ
∗ ,−mω

∗ ). We stated also that there exists a curve Γ that al-
lows to characterize the domains of attraction of these two equilibria
or rather the set of initial conditions that lead the trajectory to one of
the equilibria. The curve Γ can be obtained by simulations: we take
different initial conditions and we study which one of these leads the
trajectory to (mσ

∗ ,m
ω
∗ ) or to (−mσ

∗ ,−mω
∗ ). The following images are

the curve Γ for two specific choices of the parameters:
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Figure 3.3: The boundary Γ curve and the two domains of attraction Γ+ for
(mσ
∗ ,m

ω
∗ ) and Γ− for (−mσ

∗ ,−mω
∗ ) for β = 1.5 and γ = 2.1.

Figure 3.4: The boundary Γ curve and the two domains of attraction Γ+ for
(mσ
∗ ,m

ω
∗ ) and Γ− for (−mσ

∗ ,−mω
∗ ) for β = 1.5 and γ = 4.1.
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Here we emphasize some important facts regarding the supercritical
case for the particle system; we will discuss the financial main aspects
in the following section:

– The Γ curve depends on β and γ, but not on mσ
0 ,m

ω
0 .

– The dynamics of the variable mσ
t depend on the initial choices

(mσ
0 ,m

ω
0 ), but the equilibrium points don’t; depending on mσ

0 ,m
ω
0

and keeping fixed β and γ, mσ
t will get to a fixed mσ

∗ or to a fixed
-mσ
∗ possibly changing the trajectory.

– If we take tN big enough, we fix β, mσ
0 ,m

ω
0 and we change γ we

notice a lot of significant behaviors:
the closer we get to the critical case the smaller the absolute value
| mσ

∗ | becomes. The closer we are to the critical case the slower
mσ
t tends to its equilibrium (the equilibrium will change because

mσ
0 ,m

ω
0 are fixed, but γ changes).

– If γ is big enough, we notice that the variance V(t) forms a bell
curve; the bell happens earlier and earlier as we increase γ.

– The stationary value of V (t) doesn’t depend on the initial values
(mσ

0 ,m
ω
0 ), on the contrary instead the trajectories depend on the

initial conditions.

– About the size of the variance V (t) we will spend a lot of time
trying to explain the credit crises concept. The closer we get to
the critical case, the bigger the limit variances become; the closer
the initial conditions are to the Γ curve, the bigger the peaks of
the curve become.

Here we present some simulations just to give some intuitions about
what we just said:
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Figure 3.5: Trajectory of mσ
t for different initial conditions. As we stated

before, the trajectories change, but the limit value does not if the initial
conditions belong to the same manifold Γ+ or Γ−.

Figure 3.6: Trajectory of mσ
t for different initial conditions and different γ.

The absolute value | mσ
∗ | decreases as we get closer to the critical case

1/ tanh(β) = 1.1048.

From a financial point of view, the previous two images are represent-
ing the following phenomenon: as we increase γ, we are increasing the
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interaction among the firms. This means that the system is more un-
balanced towards particularly good situations (overall good financial
state) or particularly bad situations (overall financial distress).

In the last simulation of this section we show two variances curve,
using the same initial conditions but different γ.

Figure 3.7: Trajectory of V (t) for different values of γ.

In the simulation above we can observe the following behaviors: as we
increase γ, the bell of the Γ curve happens earlier and is narrower. We
have this behavior because, as already mentioned, with bigger γ, mσ

t

converges faster in time to an equilibrium. We can see also, just to have
a first intuition, how, as we get closer to the critical case, the variances
to the limit are bigger and bigger.
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3.3 Credit Crises
In this section we analyze in detail the dynamics of the variance V(t), de-
pending on the parameters we choose. As anticipated before, V(t) is an
important variable that allows us to describe the volatility of a market like
the one introduced in our model.

The model describes the phenomenon of credit crises, from a qualitative
point of view, well enough: we are able to observe some situations where the
variance increases a lot during a crisis and then re-stabilizes itself.
Before introducing the idea of credit crises, we define V ∗ as the asymptotic
variance (V (t) for t → +∞) and we introduce the two significant behaviors
that the variable V (t) has:

1. V ∗ grows as we get closer to the critical parameters.

2. The peaks of the variances depend on the initial conditions: the closer
we are to the Γ curve with mσ

0 ,m
ω
0 , the higher the value in the peak is.

The first of the two behaviors is well explained by the following simulations:
we plot the variance V(t) at time tN with respect to different values of γ.
The function we use has indeed (tN , β,m

σ
0 ,m

ω
0 ) as input arguments.

Now, instead of considering γ, we consider ξ such that γ = 1/ tanh(β) + ξ.
In this way for ξ = 0 we are in the critical case, if ξ > 0 we are in the
supercritical case and for ξ < 0 we are dealing with the subcritical one.
Figure 3.8 is obtained using (tN , β,m

σ
0 ,m

ω
0 ) = (50, 1.5,−0.5, 0.395). We can

observe more than one particular aspect from this graph. First of all we
consider tN = 50 and not a bigger value because already at time 50, also
for ξ really small in absolute value, we have reached the asymptotic variance
limit (we already showed previously that for parameters close to the critical
values the variance V(t) converges slower than for parameters far from the
critical ones).
In financial terms we see how, in a "stationary" condition, the variances
at the end time, become bigger as we get closer to the critical parameters;
moreover the values in the subcritical case are a little bit higher than the
supercritical one. For ξ = 0, if we increase tN we get always higher values
as we saw when we analyzed V (t) behavior depending on the three different
cases.
Another important point, is the fact that the variances to the limit don’t
depend onmσ

0 ,m
ω
0 : we can observe this, simply changing the initial conditions
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in the following simulation (this is true for supercritical and subcritical case
as at time, for example, tN = 50, we already reached a stationary value, but
not for the critical case that keeps getting bigger).

Figure 3.8: Asymptotic values of V (t) for (tN , β,m
σ
0 ,m

ω
0 ) =

(50, 1.5,−0.5, 0.395).

The second of the two behaviors is probably the most important one, as it
explains the idea of credit crises.
In the model, using particle system methodologies, we study the propagation
of financial distress in a network of firms facing credit risk.
Credit risk is the possibility of a loss resulting from a borrower’s failure to
repay a loan or meet contractual obligations. Traditionally, it refers to the
risk that a lender may not receive the owed principal and interest, which
results in an interruption of cash flows and increased costs for collection. In
our framework, the lender is a bank that, holding a large portfolio with po-
sitions issued by the firms, may suffer some losses due to the default of some
of these firms.
In the previous sections we have shown how financial distress may propagate
in a network of firms linked by business relationships. What we are inter-
ested in understanding now, is what is usually referred to as the clustering
of defaults (or credit crises), meaning that there is evidence, looking at real
data, of periods in which firms end up in financial distress in a short time.
More specifically, looking at the dynamics of mσ

t , the mean among an infinite
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quantity of variables that represent firms perceived financial states, and look-
ing at the variance V (t), we are able to see this phenomenon: how financial
contagion can cause a sudden period characterized by a financial crisis.
The model we propose exhibits the idea of a credit crisis with the following
connotation: for certain values of the initial conditions the system is driven
toward a symmetric equilibrium, in which half of the firms are in good fi-
nancial health. After a certain time that depends on the initial state, the
system is “captured” by an unstable direction of this symmetric equilibrium,
and moves toward a stable asymmetric equilibrium; during the transition to
the asymmetric equilibrium, the volatility of the system increases sharply,
before decaying to a stationary value.

To capture this phenomenon, we show some numerical simulations that de-
tect the crises when the values of the parameters are supercritical and the
initial conditions are close to the boundary of the domains of attraction, that
is, to Γ. The model is symmetric, this means that the behavior of the sys-
tem is perfectly symmetric when starting in either Γ+ or Γ−. The typical
connotation of a credit crisis is referred to what happens in Γ−, that’s why
we consider, for the following simulations, this latter case.

In Figure 3.9 we can observe the dynamics of mσ
t and V (t) with respect

to time, changing slightly the initial conditions.

Figure 3.9: Credit Crises phenomenon. The parameters are the one reported
in the figure. We can see how getting closer to the Γ curve, the credit crisis
is accentuated.
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In Figure 3.9 we use β = 1.5 and γ = 2.1 that are exactly the parameters
used in Figure 3.3; in this way we have a better understanding on what "close
to Γ" means.
In the mσ

t graph, we have plotted two trajectories starting at (mσ
0 ,m

ω
0 ) =

(−0.5, 0.39) ∈ Γ− and (mσ
0 ,m

ω
0 ) = (−0.5, 0.38) ∈ Γ− but near the boundary

(the first one closer to the boundary than the second one).
Note that the variable mσ

t (the same would happen also with mω
t that for

clarity is not plotted) is first attracted to the unstable value zero, around
which it spends a long time before moving to the stable equilibrium value
-mσ
∗ . This can be explained, in financial terms, as follows:

If we suppose that at the initial time the market conditions are such that
(mσ

0 ,m
ω
0 ) are in the manifold Γ− but close to the curve Γ, then for a while the

system moves toward (0, 0), where half of the firms are in a good financial
state and half are in a financial distress. This behavior lasts until the sys-
tem gets “captured” by the unstable direction of the equilibrium point (0, 0).
Since the system configuration belongs to Γ−, the new stable equilibrium
that the system is attracted to is given by (−mσ

∗ ,−mω
∗ ).

This situation represents, in a stylized manner, the idea of credit crises: the
unstable equilibrium (0, 0) can be seen as a ’credit bubble’ and the decay
toward the stable equilibrium mimics a credit crisis, a crash in the credit
market.
With "bubble" or "credit bubble" we mean an economic cycle characterized
by the rapid escalation of asset prices followed by a contraction. It is created
by a surge in asset prices unwarranted by the fundamentals of the asset and
driven by exuberant market behavior. When no more investors are willing
to buy at the elevated price, a massive sell-off occurs, causing the bubble to
deflate.
As soon as the system moves away from (0, 0), the uncertainty (volatility)
increases quickly and the credit quality indicators move to the stable con-
figuration changing completely the picture of the market (the speed of the
convergence depends on γ, the level of interaction among the firms).
This situation is well illustrated by Figure 3.9. As we can observe, getting
closer to the curve Γ with the initial conditions, we spend more and more
time around the unstable equilibrium and this means in terms of variances
that the peaks will get higher and higher. In other words, the volatility of
the market keeps increasing as we get closer to the boundary of the manifolds
Γ− and Γ+.

Another interesting simulation that gives the idea of a credit crisis is the
following one: with reference to Figure 3.9, we look at the variance V (t) at
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time t = 5. Obviously we have not reached yet the asymptotic values for
the variances but we are in the middle of a credit crisis for certain param-
eters (β = 1.5,γ = 2.1). Letting change the value of ξ, we observe that
for the particular initial conditions (−0.5, 0.39), when ξ = 1 (this means
γ = 1/ tanh(β) + ξ = 1.1 + 1 = 2.1), we get a huge value for the variance; we
are exactly in the middle of a credit crisis.

Figure 3.10: Credit Crises phenomenon. We can observe how the variance
reaches high values for certain parameters. The inputs used here are the
following: (tN , β, γ,m

σ
0 ,m

ω
0 ) = (5, 1.5, 2.1,−0.5, 0.39).



Chapter 4

Portfolio Losses

4.1 Credit risk modeling

As already mentioned at the beginning of this thesis, the main purpose of
this work is to describe the propagation of financial distress in a network of
firms linked by business relationships.
Once the model for financial contagion has been described, we quantify the
impact of contagion on the losses suffered by a financial institution holding
a large portfolio with positions issued by the firms.
To properly introduce the concept of portfolio losses, we first recall the idea
of credit risk; credit risk modelling is the best way for lenders to understand
how likely a particular loan is to get repaid. In other words, it’s a tool to
understand the credit risk of a borrower.
It is extremely difficult and complex to pinpoint exactly how likely a firm is
to default on their loan. At the same time, properly assessing credit risk can
reduce the likelihood of losses from default and delayed repayments.
There are many different factors that affect a firm’s credit risk. This makes
assessing a borrower’s credit risk a highly complex task; this is why credit
risk modeling comes into play.
Credit risk modelling refers to the process of using data models to evaluate
the probability of the borrower defaulting on the loan and the impact on the
financials of the lender if this default occurs.
Financial institutions rely on credit risk models to determine the credit risk
of potential borrowers. They make decisions on whether or not to sanction a
loan as well as on the interest rate of the loan based on the credit risk model
validation.
There are two major factors affecting the credit risk of a borrower (exactly
the two main aspects that credit risk modelling can analyze):

50
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• Probability of Default: This refers to the likelihood that a borrower
will default on their loans and it is obviously the most important part
of a credit risk model.

• Loss Given Default: This refers to the total loss that the lender will
suffer if the debt is not repaid. This is a critical component in credit
risk modeling.

There are many different credit risk models; when we will introduce the con-
cept and the definitions related to portfolio losses, we will show some possible
approaches that can be used.
There are two credit risk models in which we are particularly interested:
CreditMetrics of J.P. Morgan (1997) and CreditRisk+ of Credit Suisse Finan-
cial Products(1997). CreditRisk+ is a Default Model, under this approach
credit risk is the risk that security’s borrower defaults on their promised obli-
gations. Therefore, only borrowers’ defaults can cause losses in the portfolio.
On the other hand, CreditMetrics is a Rating Model. This approach defines
credit risk as the risk that the security holder does not materialise the ex-
pected value of the security due to the deterioration of the borrower’s credit
quality. Therefore in CreditMetrics, not only default can cause losses but
also downgrading in the credit quality of borrowers.

In our model each firm is identified by two variables, σ and ω, respectively
the perceived and the real financial state of the firm. The variable σ may be
interpreted as the rating class indicator. This variable represents exactly the
borrower’s credit quality: a low value reflects a bad rating class, that is, a
higher probability of not being able to pay back obligations.
We have to pay attention to one more detail. In our model companies don’t
fail but simply go through periods of crisis: if the firm "i" at time t is such
that σi(t) = −1, this means that the firm struggles more to repay the debt
to the bank.
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4.2 Portfolio Losses
We address now one of the major topics of the thesis: computing losses in
a portfolio of positions issued by N firms. We give some definitions and
useful Theorems to understand from a theoretical point of view the concept
of portfolio losses. Then we show simulations to explain, from a financial
point of view, the correlation between portfolio losses and credit crises.
We consider the total loss that a bank may suffer due to a risky portfolio at
time t as a random variable defined by

LN(t) =
∑
i

Li(t).

It is easy to understand that LN(t) is the total loss that a bank may suffer
considering all the N firms the bank lent money to, and Li(t) is the single
marginal loss caused by the ith firm.
Obviously different specifications for the marginal losses Li(t) can be chosen;
in this work the idea is to compute the aggregate loss as a sum of marginal
losses Li(t), of which the distribution is supposed to depend on the realization
of the variable σi, that is, on the rating class (the only observable process).
We assume that the marginal losses are independent and identically dis-
tributed if conditioned on σ.
We introduce now a conditional distribution function Gx, x ∈ {−1, 1},

Gx(u) := P (Li(t) ≤ u | σi(t) = x). (4.1)

Then we define the first and the second moments as follow,

l1 := E (Li(t) | σi(t) = 1) < E (Li(t) | σi(t) = −1) =: l−1, (4.2)

where the inequality comes from the fact that the expected value of the
marginal losses conditioned on σi(t) = 1 is less than what we expect to lose
when we are in financial distress (σi(t) = −1), and

v1 := Var (Li(t) | σi(t) = 1) , v−1 := Var (Li(t) | σi(t) = −1) . (4.3)

The aggregate loss of a portfolio of N firms at time t is then defined as men-
tioned before:

LN(t) =
N∑
i=1

Li(t)

We introduce now a deterministic time function (there’s no more dependence
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on N) that represents the ’asymptotic’ total loss when the number of firms
goes to infinity. In other words, we are in a situation where a bank lends
money to N firms and then these firms should give the money back to the
lender. The portfolio we are working with is a dynamic portfolio, so L(t),
defined below, is the loss at time t when the number of firms tends to infinity.
Let

L(t) =
(l1 − l−1)

2
mσ
t +

(l1 + l−1)

2
. (4.4)

We now state and prove the main result of this section that will be useful to
give a good approximation for the losses suffered by the bank portfolio.

Theorem 4.1. Assume Li(t) has a distribution of the form (4.1). Then for
t ∈ [0, T ] with T > 0 and for any value of the parameters β > 0 and γ > 0,
we have

√
N

(
LN(t)

N
− L(t)

)
d−→

N→∞
Y ∼ N(0, V̂ (t))

in distribution, where L(t) is defined in (4.4) and

V̂ (t) =
(l1 − l−1)2 V (t)

4
+

(1 +mσ
t ) v1

2
+

(1−mσ
t ) v−1

2
(4.5)

with V (t) as defined in (2.18).

Proof. To prove this Theorem we need, first of all, the following Lemma:

Lemma 4.1. For t ∈ [0, T ],

√
N

(∑
j lσj(t)

N
− L(t)

)
d−→

N→∞
X ∼ N

(
0,

(l1 − l−1)2 V (t)

4

)

where L(t) is defined in (4.4), l1, l−1 in (4.2) and V (t) in (2.18).

Proof. Let’s define, for x ∈ {−1, 1}, the quantity ANx (t) as the number of σi
that, at a given time t, are equal to x . Then we write 1+mσN

2
=

AN1 (t)

N
and

1−mσN
2

=
AN−1(t)

N
. Recall, moreover, that for N → ∞,m σ

N
(t) → mσ

t from the
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Limiting Dynamic Theorem. Then we have:

√
N

(∑
j lσj(t)

N
− L(t)

)
=
√
N

(
l1A

N
1 (t) + l−1A

N
−1(t)

N
− L(t)

)
=
√
N

(
l1

1−mσ
N

2
+ l−1

1−mσ
N

2
− L(t)

)
= −
√
N

(
(l1 + l−1)

2
+

(l1 − l−1)

2
mσ
N(t)− (l1 − l−1)

2
mσ
t −

(l1 + l−1)

2

)
=
√
N

(
(l1 − l−1)

2
(mσ

N(t)−mσ
t )

)
→ X ∼ N

(
0,

(l1 − l−1)2 V (t)

4

)
,

where the last convergence follows from Corollary 2.1.

Now let’s come back to the proof of Theorem 4.1: we want to check that

√
N

(
LN(t)

N
− L(t)

)
d−→

N→∞
Y ∼ N(0, V̂ (t))

where V (t) is defined in (4.5).
We separate the firms according to whether σj(t) is +1 or -1.

√
N

(∑
j Lj(t)

N
− L(t)

)
=
√
N

(∑
j:σj(t)=1 Lj(t) +

∑
j:σj(t)=−1 Lj(t)

N
− L(t)

)

We then add and subtract
∑

j lσj(t) to obtain

√
N

(∑
j:σj(t)=1 (Lj(t)− l1)

N

+

∑
j:σj(t)=−1 (Lj(t)− l−1)

N
+

∑
j lσj(t)

N
− L(t)

) (4.6)

We recall that, conditioned on the realization of σ, the marginal losses are iid..
Let’s apply Levy’s Theorem to show that the sequence of random variables
converges in distribution to Y , proving the convergence of the corresponding
characteristic functions:
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E

[
exp

{
ir
LN(t)−NL(t)√

N

}]
=

= E

[
E

[
exp

{
ir

(∑
j:σj(t)=1 (Lj(t)− l1)

√
N

+

∑
j:σj(t)=−1 (Lj(t)− l−1)

√
N

+

∑
j lσj(t) −NL(t)
√
N

)}
| σ(t)

]
(4.7)

where the equality comes from the Tower property:
For sub-sigma-algebras H1 ⊂ H2 ⊂ F , E (E (X | H2) | H1) = E (X | H1).
We consider now only the conditional expected value in (4.7): the last of the
three terms is measurable with respect to the sigma algebra generated by
σ(t) so we can take it out from the conditional expected value (that’s true
because lσj(t) = E (Li(t) | σi(t) = σj(t))). The remaining terms can now be
splitted using independence hypothesis in the product of conditional expec-
tations:

E

[
exp

{
ir

∑
j:σj(t)=1 (Lj(t)− l1)

√
N

}
| σ(t)

]

× E

[
exp

{
ir

∑
j:σj(t)=−1 (Lj(t)− l−1)

√
N

}
| σ(t)

]
By conditional independence and Taylor series,

E

[
exp

{
ir

∑
j:σj(t)=1 (Lj(t)− l1)

√
N

}
| σ(t)

]

=

AN1 (t)∏
j=1

E

[
exp

{
ir
Lj(t)− l1√

N

}
| σ(t)

]
=

[
1− v1

2

r2

N
+ o

(
1

N

)]AN1 (t)

,

where the first equality comes from conditional independence and the second
one from the following Taylor expansion:

E

[
exp

{
ir
Lj(t)− l1√

N

}
| σ(t)

]
= E

[
1 +

Lj(t)− l1√
N

− 1

2

r2

N
(Lj(t)− l1)2 | σ(t)

]

= 1 + ir
E [Lj(t) | σ(t)]− l1√

N
− 1

2

r2

N

(
E
[
L2
j(t)− 2Lj(t)l1 + l21 | σ(t)

])
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= 1− 1

2

r2

N

(
E
[
L2
j(t) | σ(t)

]
− l21

)
= 1− v1

2

r2

N
+ o

(
1

N

)
,

where we remember that l1 and v1 are the first two conditional moments of
Lj(t) and o

(
1
N

)
is the remainder obtained using Taylor series.

Recalling that AN1 (t)

N
=

1+mσN (t)

2
converges almost surely to 1+mσt

2
and that

limN→∞
[
1 + K

N

]N
= eK we have that:

lim
N→∞

[
1− v1

2

r2

N
+ o

(
1

N

)]AN1 (t)

= lim
N→∞

[
1− v1

2

r2

AN1 (t)

AN1 (t)

N
+ o

(
1

N

)]AN1 (t)

= exp

[
−r

2

2

1 +mσ
t

2
v1

]
.

In the same way for σj(t) = −1., since AN−1(t)

N
→ 1−mσt

2
, we get

lim
N→∞

[
1− v−1

2

r2

N
+ o

(
1

N

)]AN−1(t)

= exp

[
−r

2

2

1−mσ
t

2
v−1

]
.

Recalling from Lemma 4.1 that
∑
j lσj(t)−NL(t)
√
N

converges to

X ∼ N
(

0, (l1−l−1)2V (t)
4

)
, we have, from the Inverse of Levy’s Theorem, that

lim
N→∞

E

[
exp

{
ir

∑
j lσj(t) −NL(t)
√
N

}]
= E [exp {irX}] = exp

[
−r

2

2

(l1 − l−1)2 V (t)

4

]
,

where the second term is exactly the characteristic function of the limit vari-
ableX and the last term is the computed characteristic function for a variable
with Normal distribution.
We recall briefly how the characteristic function for a Gaussian variable can
be computed:
if we have the variable Z ∼ N (µ, σ2), its characteristic function is φ(r) =

eitµ−
1
2
σ2t2 .

Thus, E
[
exp

{
irL

N (t)−NL(t)√
N

}]
in (4.7) can be written as follows:

E

[
exp

{
ir
LN(t)−NL(t)√

N

}]
= E

[
exp

{
ir

∑
j lσj(t) −NL(t)
√
N

}
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×
[
1− v1

2

r2

N
+ o

(
1

N

)]AN1 (t)

×
[
1− v−1

2

r2

N
+ o

(
1

N

)]AN−1(t)
]
.

By the Dominated Convergence Theorem, taking the limit N → ∞, we
can interchange the limit with the expectation. As the three limits are all
finite, we send N →∞ for the last two terms and, as they become constant,
we can bring them out the expected value. Applying again the Dominated
Convergence Theorem we get:

lim
N→∞

E

[
exp

{
ir
LN(t)−NL(t)√

N

}]
= lim

N→∞
E

[
exp

{
ir

∑
j lσj(t) −NL(t)
√
N

}]
×

× exp

[
−r

2

2

1 +mσ
t

2
v1

]
× exp

[
−r

2

2

1−mσ
t

2
v−1

]
= exp

[
−r

2

2
V̂ (t)

]
The last term is exactly the characteristic function of Y .
The proof is completed using Levy’s Theorem (see Theorem A.6 in "Use-
ful Tools" Appendix A); from the pointwise convergence of characteristic
functions we obtain the convergence in distribution that we are aiming to
prove.

Now, to have a more concrete tool to compute the probability that the total
losses, suffered by the bank, are greater than a certain value α, we point out
the following calculus:

P
(
LN(t) ≥ α

)
= P

(
LN(t)√
N
− N L(t)√

N
≥ α√

N
− N L(t)√

N

)

= P

LN(t)−N L(t)
√
N

√
V̂ (t)

≥ α−N L(t)
√
N

√
V̂ (t)

 ≈ P

Z ≥ α−N L(t)
√
N

√
V̂ (t)

 = (∗)

where Z ∼ N(0, 1), Z = Y√
V̂ (t)

and the approximation comes from the Gaus-

sian approximation of Theorem 4.1.
Moreover by the symmetry of the Gaussian distribution, we get that

(∗) = P

Z ≤ N L(t)− α
√
N

√
V̂ (t)

 = N

NL(t)− α
√
N

√
V̂ (t)
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In this way we get the following approximation, useful to compute portfolio
losses:

P
(
LN(t) ≥ α

)
≈ N

NL(t)− α
√
N

√
V̂ (t)

 . (4.8)

To have a more concrete idea of what kind of results we obtain through the
model, we show some examples for possible specifications of the marginal
losses.
In all the following examples we describe large portfolio losses at a prede-
termined time horizon T for different specifications of the conditional loss
distribution, for specific parameters β, γ and for specific initial conditions.

EXAMPLE 1.

Let consider the following marginal loss:

Li(t) =

{
1, if σi(t) = −1
0, if σi(t) = 1

,

where we have that the expected marginal losses, conditioned on σi(t) = −1
or σi(t) = 1 are:

l1 := E (Li(t) | σi(t) = 1) = 0 < 1 = E (Li(t) | σi(t) = −1) =: l−1.

The total loss is given by:

LN(t) =
N∑
i=1

1− σi(t)
2

.

As we did for equation (4.8) we compute the following probability:

P
(
LN(t) ≥ α

)
= P

(
N −Nm σ

N
(t)

2
≥ α

)
= P

(
mσ
N(t) ≤ N − 2α

N

)

= P

(√
N (mσ

N(t)−mσ
t )√

V (t)
≤
√
N√
V (t)

(
N − 2α

N
−mσ

t

))

≈ P

(
Z ≤ N (1−mσ

t )− 2α√
N
√
V (t)

)
,



4.2. PORTFOLIO LOSSES 59

where
√
N(mσN (t)−mσt )√

V (t)

d−→
N→∞

Y√
V (t)

with Y ∼ N(0, 1) so,

≈ N

(
−2α + (1−mσ

t )N√
N
√
V (t)

)
= N

(
−2α + 2L∞(t)N√

N
√
V (t)

)
,

where L∞(t) := limN→∞
LN (t)
N

= limN→∞
∑

i
1−σi(t)

2N
=

1−mσt
2
.

Now, to give a first intuition, we plot the probability to lose, in total, more
than x, with respect to different values of x.
In other words we compute the quantiles P

(
LN(t) ≥ α

)
, where α is a "large"

integer. We consider a portfolio of N = 10, 000 firms and we show how the
excess loss probability changes for different values of the parameters.

Figure 4.1: Large Portfolio Losses in the subcritical case. The inputs used
here are the following: (tN , β,m

σ
0 ,m

ω
0 ) = (300, 1.5,−0.5, 0.395), where we

change γ.

In Figure 4.1 we consider the subcritical case (γ < 1/ tanh(β) = 1.1048);
what we can observe is that, when the dependence increases, i.e., the inter-
action among the firms, described by γ, increases, the variance V̂ (t) and risk
measure increase as well. In the figure we consider, first of all, the indepen-
dence case, where there is no interaction at all, corresponding to β = γ = 0.
As we are dealing here with parameters belonging to the subcritical case, it
makes sense to consider tN big enough: when we studied the behaviors of
mσ(t) and V (t), we observed that the variance V (t) in the subcritical case,
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increases until it reaches a stationary value after a while. In this way, as
V̂ (t) depends linearly on V (t), the bigger the variance V (t) gets, the bigger
the "asymptotic" variance when the number of firms goes to infinity (V̂ (t)),
becomes.
We know also, as shown before, that the closer we are to the critical case (in
the subcritical case this means get a bigger γ) the bigger the limit value of
V (t) is.
Note moreover, that here, unlike other future examples for the supercritical
case, the mean, for the different cases based on the parameters, is the same.
For a better comprehension, with mean we are talking about the variable
L(t) defined in (4.4): it is the "asymptotic" loss when the number of firms
goes to infinity. As we are in the subcritical case, if we consider time t big
enough, mσ

t reaches the limit value 0 and L(t) gets to the same value for all
the three choices of the parameters.

The next example is obtained starting from a very tractable class of models,
the "Bernoulli Mixture Models". Bernoulli mixture models have become a
standard for the measurement and management of credit loss risk in financial
institutions; we will apply our approach to this type of model.

We introduce this type of model because we aim at unifying two comple-
mentary approaches.
There are classes of models where the fluctuation of credit losses is due to
the variation of economic fundamentals only (σ and ω), so that firms’ inter-
dependence is related to cyclical correlation effects only. In other words we
neglect contagion effects; such an approach might underestimate the degree
of loss fluctuation to be expected. On the other hand, an approach focusing
exclusively on the contagion effects, as in Giesecke and Weber (2002), does
not explicitly account for cyclical correlation effects.
We model aggregate credit losses on large portfolios of financial positions
contracted with firms subject to both cyclical default correlation and direct
default contagion processes. Cyclical correlation is due to the dependence of
firms on common economic factors. Contagion is associated with the local
interaction of firms with their business partners.

Let the losses depend not only on the realization of σ, but also on a random
exogenous factor Ψ; more precisely, the marginal losses Li(t) are independent
and identically distributed conditionally to the realizations of the σi(t) and
of Ψ. We consider Gx, x ∈ {−1, 1}, the conditional distribution function, to
be
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Gx(u) := P (Li(t) ≤ u | σi(t) = x,Ψ). (4.9)

Both Gx and l1, l−1, v1, v−1 are random variables.

EXAMPLE 2.

We assume that the marginal losses Li(t) are Bernoulli Mixtures, that is,

Li(t) =

{
1, with probability P (σi(t),Ψ)
0, with probability 1− P (σi(t),Ψ)

,

where P (σi(t),Ψ) is the probability that the marginal loss at time t caused
by the ith firm is 1. The same thing for the other case.
As we can notice, the marginal loss doesn’t depend only on the rating class
indicator σi(t) anymore, but also on an exogenous factor Ψ, where the mixing
derives not only from the rating class indicator σi(t) of firm i, but also from
an exogenous factor Ψ ∈ Rp that represents macroeconomic variables that
reflect the business cycle and thus allow for both contagion and cyclical effects
on the rating probabilities.
With the above specification, we get that the variables l1, l−1, v1, v−1 depend
on the random factor Ψ:

l1 = E (Li(t) | σi(t) = 1,Ψ) = 1 · P (1,Ψ) + 0 · (1− P (1,Ψ)) = P (1,Ψ)

v1 = 12 · P (1,Ψ) + 0 · (1− P (1,Ψ))− P (1,Ψ)2 = P (1,Ψ)(1− P (1,Ψ))

and analogously for l−1, v−1.
Now, as the quantities just described depends on Ψ, also the asymptotic loss
function L(t) depends on the new exogenous factor. To be able to give some
concrete results and simulations to better understand what we are studying,
we give a possible expression for the mixing distribution for P (σ,Ψ). Let a
and bi, i = 1, 2, be nonnegative weight factors. We can now consider Ψ to be
a Gamma distributed random variable. Let

P (σ,Ψ) = 1− exp

{
−aΨ− b1

(
1− σ

2

)
− b2

}
.

The previous specification follows from some ideas behind Credit Metrix risk
models as we are in a framework where we deal with different rating classes.

We show now a simulation: in Figure 4.2 we plot excess loss probability.
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The main financial interpretation here is quite similar to the one of the pre-
vious picture: the loss may be higher in the case of high uncertainty about
the value of the macroeconomic factor Ψ ∼ Γ(1.25, 0.1) and in the case of
high level of interaction (level of contagion γ).

Figure 4.2: Large Portfolio Losses using Bernoulli Mixture Model. The val-
ues are rescaled to have the same average and to better compare the vari-
ances. The input used here are the following: (tN , β,m

σ
0 ,m

ω
0 , a, b1, b2) =

(300, 1.5,−0.5, 0.395, 0.1, 1, 0.2) where we change γ and Ψ.

In the Figure below we are dealing again with parameters belonging to the
subcritical case, but there is a big difference with the previous example. As
already mentioned, in the subcritical case, mσ(t) converges to 0, but this
time L(t) depends on Ψ so we are not sure anymore that the means are the
same. The picture is obtained avoiding to rescale.
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Figure 4.3: Large Portfolio Losses using Bernoulli Mixture Model. Here we
can observe the true values of the averages. The inputs used here are the
following: (tN , β,m

σ
0 ,m

ω
0 , a, b1, b2) = (300, 1.5,−0.5, 0.395, 0.1, 1, 0.2) where

we change γ and Ψ.
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4.3 Numerical Simulations
In this section we go into details about portfolio losses and in particular
about the phenomenon of credit crises: how they influence the quantifica-
tion of losses in a portfolio issued by a large number of firms. We already
explained what we mean with credit crises; here we emphasize how the possi-
bility of having a credit crisis is strictly related to the existence of particular
conditions, especially the levels of interaction between the firms.
We compute portfolio losses at a specific time horizon T ; we show, then, how
the quantiles P

(
LN(t) ≥ α

)
change depending on the time horizon that we

consider.
We are able to capture completely different behaviors about the loss esti-
mate by the bank, depending on the fact that the bank does the estimations
before, during, or after a credit crisis.
The simulation in Figure 4.5 is related to what we have seen in Figure 3.9
and what is reported in Figure 4.4: the input parameters are the same.

Recapping, we can say that the dynamics mσ(t) and V (t), shape the state
of a market that is undergoing a crisis. A possible idea is the following: we
consider some initial conditions mσ

0 ,m
ω
0 such that the firms’ state is not the

worst possible one. We choose then some parameters such that, the initial
state is not an equilibrium state, but the system goes through a credit crisis
to stabilize then in an equilibrium where many other firms are in financial
distress (mσ

t as t increases, reaches a bigger value in absolute value; see Fig-
ure 4.4). The concept above is exactly what we have called credit crisis.
At this point, if the bank wants to compute an estimate of the possible loss
that is going to suffer, the choice of the time at which compute this loss be-
comes crucial. As we can observe in Figure 4.5, the quantiles P

(
LN(t) ≥ α

)
have completely different behaviors depending on tN . First of all the average
loss in the three cases is different: this phenomenon is due to the dynamics
of mσ(t). We start with mσ(0) = −0.5, we get closer to the unstable equilib-
rium 0 and then we change direction to reach the stable equilibrium −0.8574
(this means that for different time horizons the average loss changes). For
these specific input parameters, we see how, as we increase tN , we increase
also the expected average loss.
In Figure 4.6 we simply rescale the means, to better compare the variances
V̂ (t) for different final times.
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Figure 4.4: Trajectory of mσ(t) and V (t) with initial conditions
(mσ

0 ,m
ω
0 )=(−0.5, 0.39) when β = 1.5 and γ = 2.1 (here the critic γ is

1/ tanh(β) = 1.105).

Figure 4.5: Large Portfolio Losses at different time horizons tN . Here we can
observe the true values of the average losses. The inputs used here are the
following: (β, γ,mσ

0 ,m
ω
0 , a, b1, b2) = (1.5, 2.1,−0.5, 0.39, 0.1, 1, 0.2) where tN

gets values in {1,3,10}.
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Figure 4.6: Large Portfolio Losses at different time horizons tN . Here we
force the curves to have the same average loss to better observe the vari-
ances. The inputs used here are the following: (β, γ,mσ

0 ,m
ω
0 , a, b1, b2) =

(1.5, 2.1,−0.5, 0.39, 0.1, 1, 0.2) where tN gets values in {1,3,10}.

More in financial terms, what the previous simulations want to emphasize
are the following ideas.
If the bank want to make some predictions about the possible losses that
may suffer and the prediction is done in the middle of a credit crisis, the
simulations above show that it is more difficult to have a reliable prediction.
During the crisis the volatility of the distribution of portfolio losses increases
extremely: if we interpret the transition from one equilibrium to another
one as a crisis, this phenomenon is captured by the model and during these
periods it is more difficult to have a reliable idea of what is going to happen.
On the other hand, if we wait until the market stabilizes, the number of firms
in financial distress may be higher (it is exactly the case), this means the av-
erage loss gets bigger, but at the same time the variance decreases because
we are outside the crisis period due to the change of equilibrium.

Now, observing closer the variances values V̂ (t) and the standard deviations√
V̂ (t) at tN = 1, 3, 10, we see that:

• V̂ (1) = 0.44 and
√
V̂ (1) = 0.66
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• V̂ (3) = 18.8 and
√
V̂ (3) = 4.34

• V̂ (10) = 0.19 and
√
V̂ (10) = 0.43.

The standard deviation is a symmetric measure of dispersion around the av-
erage portfolio value. The greater the dispersion around the average value,
the larger the standard deviation, and the greater the risk. If the portfolio
values are expressed in dollars, this standard deviation calculation also re-
sults in a dollar amount.
In our case, before and after the crisis the standard deviations have the same
order of magnitude, while during the crisis, at time tN = 3 for example, the
standard deviation grows by a multiplier almost 7 with respect to tN = 1
and 10 with respect to tN = 10.

Even if this model gives only a qualitative description of a real world market,
we can see how the standard deviation values are in line, more or less, with
what one would expect.
In the following chapter we are going to consider a particular volatility index
to show how the model is somehow reliable and consistent with what hap-
pens in real world markets.

One last important simulation that we consider relevant to show is Figure
4.7. We are in the supercritical case and the two dynamics below emphasize
how the possibility of having a credit crisis is strictly related to the exis-
tence of particular conditions, especially the levels of interaction between the
firms.
For different levels of interaction we can distinguish between two types of
crises: a smoothly varying business cycle and a real credit crisis. A business
cycle, also known as an economic cycle or trade cycle, is the downward or
upward movement of gross domestic product (GDP), a monetary measure of
the market value of all the final goods and services produced in a specific
time period.
As we can observe in Figure 4.7, considering sufficiently small parameters,
mσ(t) reaches the stationary value slowly and smoothly and the variance
V (t), the level of uncertainty about the number of bad rated firms, is lower
and comes later compared to the crisis case.
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Figure 4.7: Trajectories of mσ
t and V (t) for different values of β and γ. In

the case of smaller values the number of bad rated firms decreases smoothly
to a new equilibrium, that is, toward a bad business cycle. In the case of
higher values, we see a crisis and a corresponding peak in the uncertainty in
the market. The critical values for γ are, respectively, 1/ tanh(1.5) ' 1.105
and 1/ tanh(0.9) ' 1.396.



Chapter 5

Consistency with real data and
conclusions

5.1 Consistency with real market data

In this chapter we give a first look to the consistency between the model
and a real financial market: the aim is to show that the model, and the
simulations related to it, give an insight to what happens in real contexts.
The approach that we have used is qualitative but, at the same time, if we
compare the results with some real data, we get something sensible. What
we would like to observe is mainly if the unit of measure of the variance V̂ (t)
studied in the previous chapters, has a reasonable unit of size.
We would like to observe if some real volatility indexes, during period of
crises, crash as the model predicts.

In this chapter we just want to give an idea of the consequences that a
real world credit crisis may have on the fluctuation of variance/standard de-
viation; to do this we resort to some type of volatility indexes.
Just to simplify, we are going to consider only one type of volatility index:
The CBOE Volatility Index, or VIX.
Created by the Chicago Board Options Exchange (CBOE), the Volatility
Index, or VIX, is a real-time market index that represents the market’s ex-
pectation of 30-day forward-looking volatility. Derived from the price inputs
of the S&P 500 index options, it provides a measure of market risk and in-
vestors’ sentiments. It is also known by other names like "Fear Gauge" or
"Fear Index." Investors, research analysts and portfolio managers look to
VIX values as a way to measure market risk, fear and stress before they take
investment decisions.

69
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Figure 5.1 is the chart of the VIX behavior from 2004 to 2020. As we can
observe the volatility index increases significantly during the years 2008, due
to the global crisis, and 2020, due to Covid-19. What we want to emphasize
is the fact that the ratio between two VIX values, one captured during a
"normal period" and the other during a crisis, has the same magnitude of
the ratio that we obtain in Chapter 4, Section 4.3. To give a better expla-
nation we recall that in the previous chapter we analyzed the multiplicative
factor for the standard deviations to go from a "normal period" to a period
characterized by a credit crisis. We obtain that this multiplicative factor is a
value between 7 and 10 . Here, looking at the figure below, we can consider
a VIX=80 in 2008 (crisis period) and a VIX=10∼15 during a "quiet" period;
in this way we see how the difference between a period of time during a crisis
and one not during a crisis are characterized by a 7∼10 time, bigger/smaller
standard deviation.

Figure 5.1: CBOE Volatility Index (VIX) 2004–2020 (daily closings). The
chart is about VIX historical data from 2004 to 2020; the data are obtained
from Yahoo-Finance. We can see how, during certain periods of time, the
graph has some peaks in volatility due to period of crises.

We, now, want to point out that in the previous example we use data from a
financial market instead of data from a credit market. The reason is why it
is difficult to obtain data for credit markets and so we decided to use stock
markets volatility as an approximation. In the following figure, we show a
statistic that presents the mortgage delinquency rates for subprime conven-
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tional loans in the United States from 2000 to 2016. Subprime (Subprime
lending), B-Paper, near-prime or second chance are terms that indicate those
loans that, in the US financial context, are granted to a person who cannot
access market interest rates, as he had previous problems, in his history, as a
debtor. The term subprime refers to a variety of credit instruments, such as
subprime mortgages, subprime auto loans, subprime credit cards. What we
are aiming to show is how many defaults the banks had in their credit port-
folios during the American subprime crisis started at the end of 2006, when
the US housing bubble began to deflate and simultaneously, many subprime
mortgage holders became insolvent due to rising interest rates. In Figure 5.2
we show some data about subprime mortgages.

Figure 5.2: Subprime Mortages 2000–2016. The chart is about mortgage
delinquency rates for subprime conventional loans in the United States from
2000 to 2016.

With Figure 5.2, we just want to emphasizes in a qualitative way, how the
delinquency rates for some risky loans (subprime mortgages) change drasti-
cally during a period of crisis: the behavior of the delinquency rates doesn’t
follow exactly the dynamics of mσ

t , meaning the quality of the debt of a cer-
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tain set of firms. We can observe that, recalling for example Figure 3.9, the
graph above shows that the period before the 2008 crisis is characterized by
a housing bubble, that starts deflating causing many mortgage holders to
become insolvent due to the rising rates. Before the crisis, several banks had
many "junk bonds" in their portfolios, often priced as safe bonds. There were
lots of defaults, but limited (10 % of the graphs that we make correspond to
mσ
t about 0). At some point the contagion starts, the variances of our model

increase and the defaults explode. mσ
t leads to a highly negative value and

stays constant to that value for t that goes to infinity.
In the figure we presented before, we can observe the credit bubble and
credit contagion phenomena with the main difference that, as time goes by,
the delinquency rates start to touch some normal values again instead of at
25 % of defaults as stationary value. The main reasons are two: first of all
mσ
t does not represent a delinquency rate but the percentage of the N firms

that have a higher probability to default. Secondly, the model for losses de-
scribes the performance of a bank portfolio formed at t = 0 with a certain
number of loans and monitors its performance; Figure 5.2, instead, describes
a reality where, as time goes by, new firms may come into play, allowing the
delinquency rates to drop.

5.2 Conclusions

The main aim of this work is to introduce a direct contagion model, where a
large number of firms interact with each other and quantify the losses suffered
by a bank holding a large portfolio with positions issued by those firms after
a credit crisis. Through theoretical results and numerical simulations we
have been able to show the idea of credit crises and to provide formulas to
compute quantiles of the probability of excess losses in the context of our
contagion model. We have shown how, both for financial and credit markets,
the results obtained with our model, even if we deal with a qualitative model,
are consistent with real world market data.
The peculiarity of our model is that the changes in rating class (the variable
σ) are related to the degree of health of the system (the global indicator mσ).
The firms are described also by a second characteristic that is summarized by
the variable ω that describes the real state of the firms (a liquidity indicator).
Our model, unlike many others, uses methodologies that belong to statistical
mechanics, in fact we have used an interacting particle system to represent
the different firms that interact with each other.
The model we have proposed in this thesis exhibits some stylized facts typical
to financial settings. We now present some possible extensions that allow the
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model to be more realist and flexible.
In this thesis we do not consider the issue of calibration to real data, but
rather present some numerical simulation results related to credit crises and
portfolio losses behaviors for different values of the parameters. Only in
the end of our work we touch the topic of consistency with real data giving
a quick look at what has happened historically, during times of crisis, to
financial and credit markets.
Some possible extensions are the following:

• The mean field assumption may be weakened by considering less re-
strictive assumptions.

• In real applications, the pair (σ, ω) is not binary. Although the restric-
tion to only two possible values may be unrealistic, we believe that
many aspects of the qualitative behavior of the system we consider, do
not really depend on this choice. However the results shown by our
model can easily be extended to the case where the pair above assumes
an arbitrary finite number of values.

• Instead of considering the intensities in Section 1.4 as deterministic, we
can use random functions to represent the transitions σi 7→ −σi and
ωi 7→ −ωi.



Appendix A

Useful Tools

In this chapter we list some useful tools to approach to the different chapters
of this work.
We state a useful Theorem about convergence of stochastic processes know-
ing the convergence of their infinitesimal generators.
In Theorem 2.1 we use the 2-dimensional Divergence Theorem, the Poincare’-
Bendixson Theorem and the Stable Manifold Theorem.
In Theorem 4.1 we use Levy’s Continuity Theorem and its inverse.
Here we write all the statements and some useful ideas behind them:

The following Theorem on stochastic processes gives us a result about con-
vergence of stochastic processes from convergence of their generators:

Theorem A.1. Let (Xn(t))t∈[0,T ] be a sequence of Markov processes with
values in En and denote by LN the infinitesimal generator of (Xn(t)) (defined
on D(LN) : [0, T ]→ En that denotes the space of right-continuous piecewise
constant functions).
Let L be the infinitesimal generator of another Markov process X(t) with
values in E (defined on D(L)).
Assume that ∀n En ⊂ E. If the condition:

lim
N→∞

sup
x∈En
|LNf(x)− Lf(x)| = 0

holds ∀f ∈ C1
b and if Xn(0)

d−→ X(0), then the sequence of processes Xn(t)
converges in distribution to the process X(t).

The original Divergence Theorem states:
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Theorem A.2. The superficial integral of a vector field over a closed surface,
which is called the flux through the surface, is equal to the volume integral of
the divergence over the region inside the surface.∫

V

∇ · FdV =

∮
∂V

F · d~S where d~S = ~nds

Now we want to consider a 2-dimensional version of the Divergence Theorem.
The Divergence Theorem in 2-dimension is equivalent to Green’s Theorem.
We recall this Theorem below:

Theorem A.3. Let C be a positively oriented, piecewise smooth, simple
closed curve in a plane, and let D be the region bounded by C. If L and
M are functions of (x, y) defined on an open region containing D and having
continuous partial derivatives there, then∮

C

(Ldx+Mdy) =

∫∫
D

(
∂M

∂x
− ∂L

∂y

)
dxdy

where the path of integration along C is anticlockwise.

Considering only two-dimensional vector fields, Green’s Theorem is equiva-
lent to the 2-dimensional version of the Divergence Theorem; here we prove
one direction of this fact (Green implies Divergence). To see this, consider
the unit normal ~n in Theorem A.2. Since in Green’s Theorem dr=(dx,dy) is
a vector pointing tangential along the curve and the curve C is the positively
oriented (i.e. anticlockwise) curve along the boundary, an outward normal
would be a vector which points 90 degrees to the right of this; one choice
would be (dy,-dx). The length of this vector is

√
dx2 + dy2 = ds. So (dy,-

dx)=~n ds.
If we consider F = (L,M) we get that:∮

C

F · ~n ds =

∮
C

−Mdx+ Ldy =

∫∫
D

(
∂L

∂x
+
∂M

∂y

)
dxdy

=

∫∫
D

∇ · F dA ⇒ we get

∮
C

F · ~n ds =

∫∫
D

∇ · F dA

that is exactly the 2-dimensional Divergence Theorem.

The Poincare’ Bendixson Theorem is a classical result in the study of con-
tinuous dynamical system. This Theorem states that every trajectory of a
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2-dimensional autonomous system converges either to an equilibrium or to a
periodic solution.

Theorem A.4. Suppose f a C2-function and consider the dynamical system

ẏ = f(y) in 2 D

If y(t) is a bounded solution that does not approach to a steady state, then
y(t) is either a periodic solution or it approaches a periodic solution.

About the Stable Manifold Theorem:

Theorem A.5 (Stable Manifold Theorem). Let E be an open subset of Rn

containing the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear
system ẋ = f(x). Suppose that f(0) = 0 and that Df(0) has k eigenvalues
with negative real part and n − k eigenvalues with positive real part. Then
there exists a k -dimensional differentiable manifold Γ tangent to the stable
subspace EΓ of the linear system ẋ = Ax (where A = Df(0)) at 0 such that
for all t ≥ 0, φt(Γ) ⊂ Γ and for all x0 ∈ Γ

lim
t→∞

φt (x0) = 0

and there exists a n− k dimensional differentiable manifold U tangent to the
unstable subspace Eu of ẋ = Ax at 0 such that for all t ≤ 0, φt(U) ⊂ U and
for all x0 ∈ U

lim
t→−∞

φt (x0) = 0

The Levy’s continuity Theorem connects convergence in distribution of a se-
quence of random variables, with pointwise convergence of their characteristic
functions:

Theorem A.6 (Levy’s continuity Theorem). Let {Xn} be a sequence of ran-
dom variables with characteristic functions {ϕn(t)} and X a random variable
with a characteristic function ϕ(t), pointwise convergence ϕn(t) → ϕ(t) im-
plies convergence in distribution Xn

d−→X.

The converse result holds too and is really easy to prove:
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Lemma A.1. Let {Xn} be a sequence of random variables with character-
istic functions {ϕn(t)} and X a random variable with a characteristic func-
tion ϕ(t), convergence in distribution Xn

d−→X implies pointwise convergence
ϕn(t)→ ϕ(t) of the characteristic functions.

Proof. It follows from the fact that ifXn → X in distribution then E [f (Xn)]→
E[f(X)] for every bounded continuous f (this is often taken as the definition
of convergence in distribution). If we take f(x) = eitx we obtain immediately
that ϕn → ϕ pointwise.
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Matlab Codes

1 function[y]=DensityFunction(x,m,v)
2 %m="mean"
3 %v="variance"
4 xx=x-m;
5 z=xx.*xx;
6 y= (1/sqrt(2*pi*v)) *exp(-(z)/(2*v));
7 end

Note: This function is useful to write the density function for a Gaussian
variable.

1 function [x,y,yy]= Norm(N,NN,r,v,t0,x0,xN)
2 %r= what we have called in the thesis L(t)
3 %x=what we have called in the thesis alpha
4 h=(xN-x0)/N;
5 x=0;
6 y=0;
7 yy=0;
8 x(1)=x0;
9 yy=(sqrt(NN)*r-NN^(-0.5)*x0)/(sqrt(v));

10 y(1)=integral(@(t)DensityFunction(t,0,1),t0,yy);
11 for i=2:N
12 x(i)=x0+h*i;
13 yy(i)=(sqrt(NN)*r-NN^(-0.5)*x(i))/(sqrt(v));
14 y(i)=integral(@(t)DensityFunction(t,0,1),t0,yy(i));
15

16 end
17 end

Note: This piece of code uses the previous function DensityFunction and
corresponds exactly to the transposition of what we observe in Equation
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(4.8).

1 function [x,y,yy] = CovarianceMatrix(tN,b,e,ms,mw,A1,A2,A3,K)
2

3 g=((exp(2*b)+1)/(exp(2*b)-1))+e;
4

5 %tN="Final time"
6 %b="beta"
7 %g="gamma"
8 %e="epsilon"
9 %ms=m_sigma_t

10 %mw=m_omega_t
11 %mp=m_sigma omega _t=E[sigma x omega]
12 %cs=Cov[sigma,sigma]=Var[sigma]=E[sigma^2]-E[sigma]^2=1-ms^2
13 %cp=Cov[sigma x omega,sigma x omega]
14 %csw=Cov[sigma,omega]=E[sigma omega]-E[sigma]E[omega]
15 %csp=Cov[sigma ,sigma x omega]
16 %cwp=Cov[omega ,sigma x omega]
17

18

19 mp=ms*mw;
20 cs=1-ms^2;
21 cw=1-mw^2;
22 cp=1-mp^2;
23 csw=mp-ms*mw;
24 csp=mw-ms*mp;
25 cwp=ms-mw*mp;
26

27 options= odeset('RelTol',1e-4,'AbsTol',1e-6);
28 [T,M]=ode45(@medvar,[0 ...

tN],[ms,mw,mp,cs,csp,csw,cp,cwp,cw],options);
29

30

31 function dm = medvar(s,m);
32

33 dm=zeros(9,1);
34 dm(1)=2*[sinh(b) *m(2) - cosh(b)* m(1)]; %ms(t)
35 dm(2)=2*[sinh(g*m(1)) - cosh(g*m(1))* m(2)]; %mw(t)
36 dm(3)=2*[sinh(g*m(1)) *m(1) + sinh(b)- (cosh(g*m(1))+ ...

cosh(b))*m(3)]; %msw(t)
37 dm(4)=2*[m(4)*2*(-C)+m(6)*2*sinh(b)-m(3)*S+C]; %Var(x(t))
38 dm(5)=2*[m(5)*(-2*C-cosh(g*m(1)))+m(4)*(sinh(g*m(1))+ ...
39 +g*m(1)*cosh(g*m(1))-g*m(3)*sinh(g*m(1)))+m(8)*sinh(b)+...
40 -m(1)*S+m(2)*C];
41 dm(6)=2*[m(6)*(-C-cosh(g*m(1)))+m(4)*(-g*m(2)*sinh(g*m(1))+...
42 +g*cosh(g*m(1)))+m(9)*S];
43 dm(7)=2*[m(7)*2*(-C-cosh(g*m(1)))+m(5)*2*(sinh(g*m(1))+...
44 g*m(1)*cosh(g*m(1))-g*m(3)*sinh(g*m(1)))-m(3)*S+C+...
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45 -m(2)*sinh(g*m(1))+cosh(g*m(1))];
46 dm(8)=2*[m(8)*(-C-2*cosh(g*m(1)))+m(6)*(sinh(g*m(1))+...
47 +g*m(1)*cosh(g*m(1))-g*m(3)*sinh(g*m(1)))+...
48 +m(5)*(-g*m(2)*sinh(g*m(1))+g*cosh(g*m(1)))+...
49 +m(1)*cosh(g*m(1))-m(3)*sinh(g*m(1))];
50 dm(9)=2*[m(9)*(2*-cosh(g*m(1)))+2*m(6)*(-g*m(2)*sinh(g*m(1))+..
51 g*cosh(g*m(1)))-m(2)*sinh(g*m(1))+cosh(g*m(1))];
52

53 end
54 %Where:
55 %m(1)=ms(t)
56 %m(2)=mw(t)
57 %m(3)=msw(t)
58 %m(4)=Var(x(t)) where x(t) is the process described in ...

Theorem 2.2
59 %m(5)=Cov(x(t),z(t))=Cov(z(t),x(t))
60 %m(6)=Cov(x(t),y(t))=Cov(y(t),z(t))
61 %m(7)=Var(z(t)) where z(t) is the process described in ...

Theorem 2.2
62 %m(8)=Cov(y(t),z(t))=Cov(z(t),y(t))
63 %m(9)=Var(y(t)) where y(t) is the process described in ...

Theorem 2.2
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 %Portfolio Losses
66

67 MM=M(length(M),1);
68 CC=M(length(M),4);
69 %MM is the value of ms(t) for t=tN
70 %CC is the value of Var(x(t)) for t=tN
71

72 g=((exp(2*b)+1)/(exp(2*b)-1))+e;
73

74

75 % We compute the Portfolio Losses for a bynomial model as ...
in the thesis.

76 % We assume the probability of default to be of ...
exponential trend

77 % LP = Probability of default for the case "sigma=1"
78 % LN = Probability of default for the case "sigma=-1"
79 % A1,A2,A3 positive parameters.
80 % K = varibale that for the moment we suppose to be constant
81

82 LP=1-exp(-(A1*K+A3)); % LP corresponds to the expected ...
marginal loss

83 LN=1-exp(-(A1*K+A2*(1)+A3));
84 %LP=0; % LP for the non stochastic case!!!!!
85 %LN=1;
86

87 VP=LP*(1-LP); % marginal variance expected for the ...
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single loss
88 VN=LN*(1-LN);
89

90 D=(LP-LN)/2;
91 L=D*MM+(LP+LN)/2; % loss asintotica L(t)
92 V=D^2*CC+(1+MM)/2*VP+(1-MM)/2*VN % asymptotic variance V(t)
93

94 %We calculate the distribution of joint losses as in the ...
example in the thesis on a portfolio of 10,000 entries ...
and compare it with a loss distribution where there is ...
no interaction (indipendence case).

95

96 [x,y,yy]= Norm(1000,10000,L,V,-10,L*10000-1000,L*10000+1000);
97 end

Note: Here, using the Covariance Matrix introduced in 2.4, first we obtain
the values ofmσ(t) and V (t) at different times and then we compute portfolio
losses both for stochastic and non stochastic cases, depending which example
we are studying.
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