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Abstract

Several industrial applications deal with wall-bounded multi-phase flows,

typical examples are oil pipelines and pharmaceutical industrial processes.

These industrial flows are generally composed by an homogeneous mixture of

a dispersed solid phase in a Newtonian fluid, called suspension, and are usu-

ally characterized by high velocities. Large part of previous studies consid-

ered the rheological properties of such flows in the laminar/viscous regime,

whereas there is still a lack of knowledge of their behavior in the turbu-

lent/inertial regime. Various parameters affect the properties of the flows of

suspensions, e.g. the volume and the mass fractions of the suspended phase,

or the shape and the density of the dispersed particles. This project aims

to study the impact of the solid to fluid density ratio in a turbulent flow of

suspensions. This effect is still unclear since both seminal and more recent

investigations on turbulent suspensions mainly focus on the unitary density

ratio. A suspension of rigid spheres in a Newtonian fluid at relatively high

volume fractions is here studied in a plane channel geometry. Different val-

ues of the solid to fluid density ratio are considered in the range between 1

and 1000. The multi-phase flow is integrated through an Immersed Bound-

ary Method to perform accurate Direct Numerical Simulations. The results

show two different flow regimes occurring at relatively low and high density

ratios and peculiar transport properties driven by the particle inertia.
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Introduction

Suspensions of solid particles in liquid or gaseus flows are largely encoun-

tered in industrial applications and environmental flows. Typical examples

of flows of suspensions are sediment transports, slurries, avalanches, gas and

oil transports. These fluids normally flow at very high velocity. In these

conditions, even restricting to a single-phase fluid, the inertia becomes im-

portant and gives rise to a chaotic regime with eddies and vortices called

turbulence. More than a century of investigations testifies the difficulty in

studying this regime. When a second phase is added, the analysis of this

flow regime becomes even more complex. The present work aims both to

recap the state of the art regarding the behavior of a flowing suspension and

to investigate the response of the system to changes in the suspended phase

properties and in particular in the solid to fluid density ratio.

Suspensions are generally constituted by a Newtonian liquid laden with

solid particles that may differ for size, shape, density and stiffness. Their

rheological properties were widely studied in the Stokesian regime, where the

inertial effects are small compared to the viscous effects and can be safely ne-

glected. Since simple analytical approaches are available for this regime, the

behavior of suspensions in motion at negligible inertia is well understood

(see Guazzelli and Morris, 2011 for a complete review on the topic). On

the other hand, experimental and computational difficulties in the turbu-

lent regime analysis have delayed the study of the flows of suspensions when

their inertia becomes important. Previous studies focused on the behavior

of these systems when the dispersed phase has a very low volume fraction

φ. In this very dilute regime the particles slightly affect the suspension and

they have a small effect on the flow. When the volume fraction increases,

the behavior of the suspension dramatically changes. Lashgari et al. (see

Lashgari et al., 2014) recently showed that the laminar-turbulent transition

of a particle-laden flow is different from the single-phase problem: a third

regime, called “inertial shear-thickening” appears in very dense suspensions.

A first attempt to characterize the behavior of dense suspensions in the iner-
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INTRODUCTION 10

tial regime can be traced back to Bagnold (see Bagnold, 1954), who deduced

the non-dimensional parameter Ba describing the transition from the vis-

cous to the inertial regimes as a function of many suspension parameters,

such as the volume fraction, the particle diameters, the dimensions of the do-

main and the density ratio. Recent numerical studies investigated the bulk

properties of turbulent flows of suspensions when some of these parameters

change. e.g. the volume fraction (see Picano et al., 2015). Nevertheless, the

effects of a change of the suspended particle density are still not well char-

acterized. The results reported in this work show that the changes in the

particle density can produce similar effects to those found in previous studies

where the volume fraction was much higher, e.g. an inertial shear-induced

migration may occur. Different regimes are observed changing the density

ratio R: the former typical of relatively light particles (R ≤ 10), the latter

of denser particles (R ≥ 100). Moreover, the Bagnold number was found to

be unable to describe the viscous-inertial transition when the density ratio

is changed keeping fixed the other conditions.

The thesis is divided in four chapters. In the former the single-phase

flows are introduced. The laws governing a simple flow in motion are shown

and a brief introduction to turbulence and to channel flows is provided. The

second chapter focuses on multi-phase flows and on all the problems related

to the add of a second phase in the carrier fluid. In this chapter a review of

the recent and more classical results about the flows of suspensions is out-

lined. The third chapter presents the methodology used in this project. In

particular, the Computational Fluid Dynamics is briefly presented and then

the main features of the Immersed Boundary Method are provided giving

some specific details about the code used for the simulations carried out

in this work. The last chapter shows the results obtained and discusses the

consequence of the present findings in relation with the research background.



Chapter 1

Single-Phase Flows

In this first chapter the single-phase flows are introduced. After a brief

introduction, the main equations describing a fluid flow are shown and the

need of a mathematical approach for their resolution is explained. In the

next sections a particular flow configuration called turbulence is examined

and the theory depicting its behavior is provided. The last part of the

chapter focuses on a particular class of bounded flows, the channel flows,

representing the key subject of the following chapters of this work.

1.1 Fluids

Fluid is the state of matter which includes liquids, gases and plasmas:

Figure 1.1: States of matter and transitions

between different phases (Wikipedia).

Although it seems unambiguous, the distinction between solids and flu-

ids is sometimes not obvious. It is common use to call solid a material

which owns a preferred shape, and a fluid a material which takes the shape

of its container. Mechanically, a fluid is defined as a substance that con-

tinually deforms under an applied shear stress, however small. The latter
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CHAPTER 1. SINGLE-PHASE FLOWS 12

specification is fundamental: in fact, even a solid material deforms contin-

ually if the applied shear stress exceeds a limiting value, corresponding to

its “yield point”. Anyway, below this value, solids tend to go back to their

preferred shape, if the stress is no longer applied: they have a “perfect mem-

ory”. Fluids instead never return to a preferred shape, after the stress is

pulled back: they have “zero memory”. This different behavior is not always

pronounced: there are some materials presenting an intermediate behavior,

with a “partial memory”. In other words, they present both solid and fluid

characteristics. Even tough solids and fluids behave very differently when

subjected to shear stresses, they behave similarly under the application of

compressive normal stress. Nevertheless, whereas a solid can support both

tensile and compressive normal stresses, a fluid usually supports only com-

pressive stresses. Fluids may be divided in three classes: liquids, gases and

plasmas. A gas always expands and occupies the entire volume of any con-

tainer. On the contrary, the volume of a liquid does not change much, so

that it cannot always fill a large container. Plasmas are ionized gases, and

mechanically they behave similarly to normal gases.

A fluid can be studied in rest (fluid statics) or in motion (fluid kine-

matics and fluid dynamics). Fluid statics, or hydrostatic, is fundamental

to hydraulics, geophysics and medicine. On the other hand, fluid kine-

matics and fluid dynamics are applied in many engineering fields, such as

mechanical and aerospace, and are fundamental for other disciplines such as

meteorology and astrophysics. Fluid kinematics is the branch of mechanics

which studies fluids and quantities involving space and time only. It treats

variables such as displacements, velocities, accelerations, deformations and

rotations of fluid elements without referring to the forces responsible for

these motions. On the other hand, fluid mechanics is the branch of mechan-

ics which studies the fluids and deals with the forces acting on them.

The laws governing fluid mechanics, and especially fluid dynamics, are

complicated to treat and some of them still have no analytical solutions. For

this reason, in many cases it is necessary to exploit numerical methods to

compute their solution. A relatively new discipline, called Computational

Fluid Dynamics (CFD), is dedicated to the numerical resolution of the prob-

lems involving the fluid motion. Although the mathematical basics of this

discipline are quite old, the CFD has shown its potentially only in the second

part of the last century, with the increase of computer power.
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1.2 Fluid Dynamics

Fluid dynamics is the branch of fluid mechanics focused on the study of fluid

flows. Let us consider a spatial domain D ∈ R3 and a temporal interval

[0, T ] ∈ R. Fluid dynamics is based on three conservation laws:

-conservation of mass:

∂ρ

∂t
+∇· (ρu) = 0 (1.1)

-conservation of linear momentum:

ρ
∂u

∂t
+ ρu· ∇u = ∇·σ + ρf (1.2)

-conservation of energy:

ρ
∂h

∂t
+ ρu· ∇h = ρ

∂p

∂t
+ ρu· ∇p+∇· (k∇T ) + φ (1.3)

where, in the above equations, the field ρ (x, t) is the density of the fluid,

the field u (x, t) is its velocity, σ is the tensor of the stresses, h is the enthalpy,

p is the pressure, k is the thermal conductivity, T is the temperature and φ

is the viscous dissipation function. Note that, if the flow is steady, meaning

that its properties do not change over time, all time-dependent terms in the

above equations disappear.

For a fluid in motion, the tensor σ is given by:

σ = −pI + τ (1.4)

where I is the identity tensor and τ is the tensor of viscous stresses. Sub-

stituting Eq. (1.4) in Eq. (1.2), it is easy to obtain the following expression

of the conservation of the linear momentum:

ρ
∂u

∂t
+ ρu· ∇u = −∇p+∇· τ + ρf (1.5)

In Eq. (1.5), the terms of right hand-side represents the pressure force,

the viscous forces and the mass forces acting on the fluid, respectively. For

most of the usual fluids, such as air or water, the tensor of viscous stresses

is given by the well-know Newtonian law:

τ = λI∇·u+ 2µD (1.6)

where µ is the dynamic viscosity and D is the tensor of strain rate:
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Di,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.7)

If the fluid has a tensor of viscous stresses linearly dependent to the

tensor of strain rate, i.e. given by Eq. (1.6), it is called Newtonian fluid,

otherwise it is said to be non-Newtonian. If the tensor of viscous stresses τ

is instead null, the flow is said to be non-viscous.

The flows studied in this work are incompressible: a flow is compressible

if a change in pressure or temperature results in a change of the density; if

this does not happen, or if the change of the density is negligible, the flow is

incompressible. For an incompressible flow it easy to obtain from Eq. (1.1)

the following expression:

∇·u = 0 (1.8)

If the fluid is Newtonian and the flow is incompressible, its motion is

governed by the well-know Navier-Stokes equations:

∂u

∂t
+ u· ∇u = −1

ρ
∇p+ ν∇2u+ f (1.9a)

∇·u = 0 (1.9b)

In Eq. (1.9a) each term has a proper physical meaning:

-the first term on the left hand side represents the temporal evolution of

an instantaneous field of velocity;

-the second term on the left hand side is the convection of the velocity

field, which is nonlinear and responsible for fluctuations;

-the first term on the right hand side describes the effect of the gradient

of the pressure on the fluid;

-the second term on the right hand side represents the effect of viscous

forces, i.e. the momentum diffusion and the dissipation of kinetic energy

into thermal energy;

-the last on the right hand side is the mass force term.

The system of Equations (1.9a)-(1.9b) needs specific initial and boundary

conditions to be solved. The initial conditions, which should be necessarily

a solenoidal field, can be generally expressed in the domain D as:

u (x, t) = u0 (x) per x ∈ D (1.10)

For the boundary conditions, both velocity or strain can be assigned. It

is in fact possible to divide the border of the domain in a part where the

quantity assigned is the velocity and another where it is the strain:
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u (x, t) = u∂ (x, t) per x ∈ ∂DV , (1.11a)

t (x, t) = t∂ (x, t) per x ∈ ∂DT (1.11b)

The system of Equations (1.9a)-(1.9b), together with the boundary con-

ditions (1.11a)-(1.11b), and initial conditions (1.10), is said to be a well

posed problem if:

-the solution exists;

-the solution is unique;

-the solution depends continuously on the data.

For the Navier-Stokes equations, none of these three points has been

mathematically demonstrated so far, although the experimental datas sug-

gest that the first two points are generally verified. The third condition

is strictly related to the sensitivity to the initial data. Let us consider two

generic initial states uo (x) and u′o (x), which differ for a small value less than

an assigned arbitrarily small δε, and their respective solutions u = u(x, t)

and u′ = u′(x, t); if the maximum of the difference between these last solu-

tions is smaller than ε, then the third point is verified.

if ‖ uo (x)− u′o (x) ‖ ≤ δε

⇒ max
t
‖ u (x, t)− u′ (x, t) ‖ ≤ ε ∀t ≥ 0. (1.12)

This is the typical behavior of the so-called “laminar flows”: two “near”

initial conditions evolve into two “near” solutions. On the other hand, in a

so-called “turbulent flow” this condition takes place only for t ≤ Tε , where

Tε is a typical time called separation time, dependent on δε : smaller δε are

associated to longer time length, beyond which it is not possible to define ε

anymore. Therefore laminar flows are said to be stable; for turbulent flows

instead, after the time Tε (which decreases with the non-dimensional pa-

rameter Re, called the Reynolds number), the solutions are instantly totally

different: they are unstable. The phenomenon that is observed at a generic

instant t > Tε is called developed turbulence phenomenology; this fact in-

troduces the existence of stochastic solutions, although the Navier-Stokes

equations are purely deterministic.

The unsimplified Navier-Stokes are then impossible to solve analytically.

To this date, their complete resolution is possible only with mathematical

methods, and this represents the main reason of using computers to perform

calculations. However, sometimes even for computers the direct resolution

of Navier-Stokes problem is too demanding. In these cases, some simpli-

fications can be made upon the equations: these simplifications lead to an

easier and faster resolution of the Navier-Stokes equations and some of them,

under appropriate conditions, allow to solve the fluid flow in a closed form.
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1.3 Dynamic Similarity

Dynamic Similarity is the discipline consecrated to the study of problems

through non-dimensional parameters. For fluid dynamics in particular the

idea is to relate two flows having different length-scales, flow speed or fluid

properties, if the values of these non-dimensional parameters are compa-

rable. The principle of dynamic similarity is at the heart of experimen-

tal fluid mechanics, in which the datas should be unified and presented in

non-dimensional terms. The concept of similarity is also indispensable for

designing models in which tests can be conducted for predicting the flow

properties of full-scale objects.

Non-dimensional parameters can be deduced directly from the governing

differential equations, when known. From the Navier-Stokes equations it is

easy to obtain a crucial non-dimensional parameter for Fluid Dynamics, the

Reynolds number:

Re =
ul

ν
(1.13)

In Eq. (1.13) u represents the velocity, l the characteristic length and

ν = µ
ρ the kinematic viscosity. The Reynolds number represents the ratio

between inertial and viscous forces: if it is much lower than the unity, the

inertial forces can be neglected in comparison with the viscous forces; on the

contrary, if the Reynolds number is high, the viscous forces are negligible if

compared to the inertial forces and the approximation of non-viscous flow

can be assumed.

Through the Navier-Stokes equations it is possible to deduce another

important non-dimensional parameter, representing the weight of the local

acceleration compared to the viscous term of Equations (1.9a)-(1.9b):

St =
l2

Tν
(1.14)

where T is the characteristic time-scale. This parameter is called the

Stokes number.

If Re � 1 and St � 1, the system of Equations (1.9a)-(1.9b) can be

reduced to the so-called Stokes Equations:

−1

ρ
∇p+ ν∇2u+ f = 0 (1.15a)

∇·u = 0 (1.15b)

If Re� 1 but the Stokes number is not negligible, it is necessary to keep

from Eq. (1.9a) the unsteady term ρ∂u∂t . In this case, the resulting equations

are called the unsteady Stokes Equations.
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1.4 Turbulence

A key subject of this thesis work is the turbulence. The are many possibil-

ities to observe turbulent flows in everyday experiences: the smoke arising

from a burning cigarette, the water skimming aside a boat in rapid motion,

the buffeting of a strong wind are only a few examples of turbulent flows.

In engineering applications, turbulent flows are prevalent: flows of liquids or

gases in pumps, compressors, pipe lines, flows surrounding airplanes, auto-

mobiles and ships are generally turbulent.

Figure 1.2: Example of a transition to turbulence in a

subsonic co-axial jet flow (Prof. Dr. L.Kleiser).

1.4.1 Reynolds Equations

A turbulent flow is characterized by an irregular fluid velocity change over

both time and space. In each direction i, the velocity field ui (xi, t) can be

decomposed in a mean term Ui (xi, t) and in a fluctuations term u′i (xi, t),

which can be over a quarter of the mean velocity value:

ui (xi, t) = Ui (xi, t) + u′i (xi, t) (1.16)

The mean term is defined by the ensemble average:

Ui = 〈ui (x, t)〉 = lim
N→∞

1

N

N∑
n=1

uni (x, t) (1.17)

where N is the number of used realizations. A direct consequence of this

definition is the zero value of the ensemble average of the fluctuating term:

〈
u′i (xi, t)

〉
= 0 (1.18)
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It is anyway important to underline that the ensemble average of the

square of the fluctuation is generally not null:〈
u′i

2
(xi, t)

〉
6= 0 (1.19)

In fact, the root square of this quantity can be used as a significant

reference value of the fluctuations:

urms =

√〈
u′i

2
〉

(1.20)

This decomposition, called the Reynolds decomposition, can be applied

in the same way to every physical quantity, for example to the pressure p ,

to the stress tensor σ and to forces f .

With the Reynolds decomposition, the Navier-Stokes equations (1.9a)-

(1.9b) are transformed in the Reynolds equations:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

−
∂
〈
u′iu
′
j

〉
∂xj

+ fi (1.21a)

∂Ui
∂xi

= 0 (1.21b)

The only difference with Eq. (1.9a)-(1.9b) is the term
∂〈u′iu′j〉
∂xj

. In order

to understand its meaning, let us rewrite Eq. (1.21a) as follow:

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
=

∂

∂xi

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− pδi,j − ρ

〈
u′iu
′
j

〉]
(1.22)

The first term of the right hand side represents the viscous stress, arising

from momentum transfer at the molecular level. The second term is the

isotropic stress, appearing from the mean pressure field. The last term

is the so-called Reynolds stress term and represents the stress given by the

fluctuating velocity field. More precisely, it arises from the mean momentum

flux due the fluctuating velocity. This value represents the key problem of

turbulent flow: if it is not zero, the system is nevermore set in a closed-

form. The four equations of the Reynolds problem (the three components

of the Reynolds equations and the continuity equation) have more than four

unknowns: in addition to the velocity (three components) and the pressure,

there are also the Reynolds stresses. In this form, the Reynolds equations

cannot be solved unless the Reynolds stresses are somehow determined.
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1.4.2 The Scales of Turbulence

Turbulent flows are rotational. A flow is rotational if the vorticity is not

equal to zero. The vorticity is the quantity that describes the local spinning

motion of a fluid near some point, in other words its tendency to rotate.

Many phenomena, such as the blowing out of a candle by an air gust, are

more readily explained in terms of vorticity rather than the basic concepts

of pressure and velocity.

The vorticity ω (x, t) is found to be equal to the curl of the velocity:

ω = ∇× u (1.23)

The curl of the momentum equation results in the following equation:

∂ω

∂t
+ (ui· ∇)ω = (ω· ∇)uj − ω∇·uj +

1

ρ2
(∇ρ×∇ρ) + ν∇2ω (1.24)

Eq. (1.24) is the vorticity transport equation. In this equation, the

four terms on the right hand side represent physical different mechanism

affecting the transport of the vorticity: the first of these terms describes the

mechanism of the energy cascade, the second term represents the impact of

compression and expansion on vorticity, the third terms is responsible for

generating a torque due to dissimilar acceleration of light and high density

fluid, and the last term describes the viscous diffusion of vorticity.

Because of their rotational nature, turbulent flows are characterized by

the presence of eddies of many different length-scales. An eddy is loosely

defined as coherent patterns of velocity, vorticity and pressure. The extent

of an eddy is described with a characteristic length, l. Eddies of size l have

a characteristic velocity u(l) and timescale τ(l) = l/u(l). Largest eddies are

characterized by a length-scale l0 comparable to the flow scale L, and their

velocity u(l0) is on the order of the r.m.s. turbulence intensity, u′ = 2
3k

1
2 ,

where k = 2π/l is the wavelength.

Large eddies are unstable and normally break up, and transfer their

energy to smaller eddies. As represented in Fig. (1.3), the energy continues

to pass on to smaller eddies until a very small spatial scale at which the

molecular viscosity is effectively dissipating the kinetic energy into heat.

The whole process was summarized by Richardson in 1922:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls.

And so on to viscosity

(in the molecular sense).
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Figure 1.3: Representation of the energy cascade (Frisch).

At large flow scales, the rate of energy dissipation ε is governed by the

energy transfer from the large eddies, in other words the whole process is

governed by the first process in sequence. Furthermore, the kinetic energy of

the eddy scales quadratically with the characteristic eddy velocity u20. The

energy cascade is then found to scale with
u20
τ0

.

A big contribute to the study of scales of turbulent motion was given by

the studies of Kolmogorov. His theory (see Kolmogorov 1941a,b) is stated

in the form of two hypotheses:

-the first hypotheses states that the small scale flow motion is statically

isotropic in high Reynolds number and uniquely governed by the kinematics

viscosity ν and the dissipation rate ε. Note that the isotropy entails that

the directional biases of the large scales are completely lost in the chaotic

scale-reduction process, by which the energy is transferred to smaller eddies.

The length-scale where the transition anisotropic-istropic eddies is found to

appear is lEI (around 1/6l0). As a consequence to this first hypotheses,

given the two parameters ε and ν, there are only one length, one velocity

and one time-scale that can be formed for the small scale flow. These are

the Kolmogorov scales:

η =
(
ν3/ε

)1/4
(1.25a)

uη = (ε/ν)1/4 (1.25b)

τη = (ν/ε)1/2 (1.25c)

-the second hypotheses states that in every turbulent flow at sufficient

high Reynolds number, the statistics of the motion of scale l in the range
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η � l� l0 have a universal form that is uniquely determined by ε, indepen-

dent of ν. From Eq. (1.25a)-(1.25c) it is possible to obtain the scaling from

large to small eddies based on the Reynolds number:

η/l0 ∼ Re(−3/4) (1.26a)

uη/u0 ∼ Re(−1/4) (1.26b)

τη/τ0 ∼ Re(−1/2) (1.26c)

At sufficiently high Reynolds number, there is a range of scales l that

are very small compared to l0 but very large compared to η. In this case,

the high Reynolds number makes their motion only slightly affected by the

viscosity. Hence, the unique key parameter for such eddies is ε.

Let us now introduce the length-scale lDI . From the above hypotheses,

it is then possible to to divide the equilibrium range (for high Reynolds

number flows) in two parts:

-the dissipation range: the motion experiences significant viscous effects;

-the inertial subrange: the motion is determined only by inertia.

Figure 1.4: Eddy size l (on a logarithmic scale) at very high Reynolds

number, showing the various length-scales and ranges (Pope).

Summarizing, through the energy cascade, a turbulent flow can be re-

alized as a superposition of a spectrum of velocity fluctuations and eddies

upon a mean flow. It may be viewed as made of an entire hierarchy of ed-

dies over a wide range of length-scales and the hierarchy can be described

by the energy spectrum that measures the energy in velocity fluctuations

for each length-scale (wavenumber). Dimensional analysis implies that the

energy spectrum E of homogeneous turbulence in the equilibrium range can

be expressed as:

E(k) ∼ g
(
ν3/4ε−1/4k

)
ε2/3k−5/3 (1.27)

where, as already stated, k is the wavelength of length-scale l flow.
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1.5 Channel Flows

Most of turbulent flows appearing in engineering applications are bounded

(at least in part) by one or more solid surface. Examples are internal flows

such as the flow through pipes and ducts, external flows such as the flow

around aircraft and ships’ hulls and flows in the environment such as the

atmospheric boundary layer. Key parameters of these problems are the form

of velocity profiles and the friction laws, describing the shear stress exerted

by the fluid on the wall. This paragraph focuses on the channel flow. Since

this study concerns only this kind of flow, other important examples of in-

ternal bounded flows, such as pipe flows, are not treated.

Let us consider a flow through a rectangular duct, which has height

h=2δ , large length (L� δ) and aspect ratio (b� δ). The mean flow is

predominantly in the spanwise (x = x1) direction, with the mean velocity

varying mainly in the wall-normal (y = x2) direction. The bottom and top

walls are at y = 0 and y = 2δ, respectively, with the mid-plane being y = δ.

The extent of the channel in the spanwise (z = x3) direction is large com-

pared with δ so that (remote from the end walls) the flow is statistically

independent of z. The centerline is defined by y = δ, z = 0. The velocities

in the three coordinate directions are (u, v, w) = (u1, u2, u3), with mean val-

ues (U, V,W ) = (U1, U2, U3) and fluctuations (u′, v′, w′) = (u1, u2, u3). The

mean spanwise velocity w is zero.

Figure 1.5: Sketch of a channel flow (Pope).

The attention focuses on fully developed region, far from x = 0. The

flow is treated as statically stationary and statically one-dimensional, with

velocity statistics depending only on y.
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The Reynolds numbers used to describe the flow are:

Reb = ub2δ/ν (1.28)

Re0 = u0δ/ν (1.29)

where u0 is the centerline velocity and ub is the bulk velocity:

ub =
1

δ

∫ δ

0
U dy (1.30)

The flow is laminar for Reb < 1350 and fully turbulent for Reb > 3000.

1.5.1 Forces in Channel Flows

The mean continuity equation (1.21b), reduces to:

dv

dy
= 0 (1.31)

since w = 0 and u is not dependent of x. The boundary condition vy=0

leads to say that v is zero for all y.

The mean-momentum equations (1.21a) reduce to:

-Lateral:

0 = −1

ρ

∂p

∂y
−
∂
〈
v′2
〉

dy
(1.32)

-Axial:

0 = −1

ρ

∂p

∂y
+ ν

d2u

dy2
− ∂ 〈u′v′〉

dy
(1.33)

The combination of these equations leads to an important result:

dτ

dy
=
dpw
dx

(1.34)

where the total shear stress is:

τ = ρν
dU

dy
− ρ

〈
u′v′

〉
(1.35)

Since τ is a function only of y and pw is a function only of x, it follows

from Eq. (1.34) that both solutions have to be constants. The solution

for both τ(y) and dpw/dx can be written in terms of the wall shear stress

τw = τ(0), leading to:
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dpw
dx

= −τw
δ

(1.36)

τ(y) = τw

(
1− y

δ

)
(1.37)

To summarize: the flow is driven by a drop in pressure between the

entrance and the exit of the channel. In the fully developed region there is a

constant (negative) mean pressure gradient, which is balanced by the shear

stress gradient. For a given pressure gradient dpw/dx and channel half-

width δ, the linear shear stress profile is independent of the fluid properties

(e.g., ρ and ν), and independent of the state of fluid motion (i.e., laminar

or turbulent). If the flow is defined by p, v, δ, and dpw/dx, then u0 and ub
are not known a priori.

From Eq. (1.35), the shear stress is found to be equal to the sum of the

viscous stresses and the Reynolds stresses. However, at the wall the velocity

is zero, so the Reynolds stresses disappears. In proximity of the wall is then

useful to define some parameters representing the velocity scales and length-

scales of this region:

-the friction velocity:

uτ =

√
τw
ρ

(1.38)

-the viscous length:

δν = ν

√
ρ

τw
=

ν

uτ
(1.39)

-the friction Reynolds number:

Reτ =
uτδ

ν
=

δ

δν
(1.40)

-the distance from the wall measured in viscous lengths:

y+ =
y

δν
=
uτy

δν
(1.41)

-the mean fluid velocity measured in inner units:

u+ =
u

uτ
(1.42)
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1.5.2 Velocities in Channel Flows

Using some of the new parameters above described, it is possible to find

different regions of the flow:

-inner layer: there is a direct effect of molecular viscosity on the shear

stress;

-outer layer: the direct effect of molecular viscosity on the shear stress

is negligible.

Within these regions it is also possible to define:

-viscous sublayer (inner layer): the Reynolds shear stresses are negligible

compared to the viscous stresses;

-buffer layer (inner layer);

-log law region (inner layer);

-overlap region (outer layer).

Each of these regions is defined by a particular mean velocity profile. In

order to study the profile of the velocity, it is more appropriate to look at

the quantity dU/dy. There are many reasons to do so, one of them is that

the viscous stress and the turbulence production are both determined by

that quantity. dU/dy is found to depend on just two parameters, so it is

possible to write:

dU

dy
=
uτ
y

Φ

(
y

δν
,
y

δ

)
(1.43)

where Φ is a universal non-dimensional function. These two parameters

are chosen because δν is the appropriate length-scale in the inner layer, and

δ is the appropriate scale in the outer layer.

Near the wall, the mean fluid velocity in inner units results:

U+ = y+ + O
(
y+2
)

(1.44)

The departures from the linear relation U+ = y+ are negligible in the

viscous sublayer, but are significant (greater than 25%) starting from the

buffer layer region.

Getting away from the wall, in the so-called log-law region, the viscosity

has no longer direct effects on the velocity. The new expression of the mean

fluid velocity is:

U+ =
1

k
ln y+ +B (1.45)

where k is the so-called von Karman constant and B an additive coeffi-

cient. Typical values of these two constants are:

k = 0.41 and B = 5.2 (1.46)
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The region between the viscous sub-layer and the log-law region is called

the buffer layer. This region is characterized by the transition from the

viscosity-dominated and the turbulence-dominated parts of the flow.

Unlike the inner part of the channel, for higher values of y+ (outer layer)

there are no universal expressions describing the evolution of the mean fluid

velocity: each flow is governed by its own law.

Figure 1.6: Mean velocity profile in fully developed turbulent channel flow:

◦:Re0 = 2970, �:Re0 = 14914, 4:Re0 = 22276, ∇:Re0 = 39582,

Line: Log-Law Eq. (1.45) (Pope).



Chapter 2

Multi-Phase Flows

In this second chapter the multi-phase flows and the flows of suspensions are

treated. Firstly, the general equations governing the different phases in a

multi-phase flow are presented. In the second part the interactions between

different phases and between two different parts of the discontinue phase

are examined. In the following section some hypothesis, and in particular

the approximation of finite inertia, are overcame and the consequences of

this change is shown. The last section focuses on multi-phase channel flows,

both in laminar and turbulent regime, with particular attention given to

recently published results. Large part of the present chapter was extracted

by the Guazzelli and Morris book “A Physical Introduction to Suspension

Dynamics” to which the reader can refer for more details.

2.1 General Equations

In fluid mechanics, a multi-phase flow is a flow where two or more phases

are present. The most common situation is a two-phases flow. The latter

occurs for example in a system containing solid particles immersed in a con-

tinuous fluid, with a meniscus separating the two phases. In this case, if

the mixture is heterogeneous and the solid particles are sufficiently large for

sedimentation, the system is called suspension. In a multi-phase flow each

of the phases is considered to have separately defined volume fractions (the

sum of which is equal to one) and velocity fields.

Let us consider a bi-phase flow composed by spherical solid spheres dis-

persed in a general continuous fluid. The motion of the fluid is governed

by the Navier-Stokes equations. The influence of the presence of a differ-

ent phase arises from the boundary conditions which they impose upon the

fluid motion. The first set of boundary conditions (at infinity or at wall)

27
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remains unchanged, but a new set of boundary conditions at the interface

particles-fluid is needed. The usual condition is that there is no slip at the

surface of the particle, meaning that the velocity of the fluid at a point in

contact with a particle surface is the same as the particle velocity at this

point. This condition can be written at the surface of the particle as:

u (x) = uP + ωP × (x− xcom) (2.1)

where xcom is the coordinate of the center of mass, uP is the translational

velocity and ωP is the rotational velocity of the particle. This condition must

be indicated for each particle, and since the particles are usually in motion,

the problem is time-dependent.

In many practical flows of suspensions the Reynolds number (1.13) and

the Stokes number (1.14) are small: for a grain of sand of size l = 1µm, for

example, the settling velocity in water is about u = 1µm/s and the char-

acteristic sedimenting time is T � 10−6s. It is then admissible to reduce

the Navier-Stokes equations (1.9a)-(1.9b) to the simpler Stokes equations

(1.15a)-(1.15b). The advantage of using the Stokes approximations is the

lost of the nonlinear convective acceleration and of the time-dependent terms

in the Navier-Stokes equations. The suppression of the nonlinear term makes

the new equations linear, so that a change in the magnitude of the forcing

is linearly reflected in the fluid velocity: a doubling of the driving pressure

gradient in a pressure-driven Stokes channel flow, for example, yields a dou-

bling of the flow rate. Moreover, the linearity allows the use of the principle

of the superposition: the motion of the suspended particle can be decom-

posed in a translation plus a rotation around its center of mass.

Figure 2.1: Summation of rotation and translation (Guazzelli).
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The linearity implies also that the motion is reversible in the driving

force, so that if the driving force is reversed, the particle velocity must be

reversed too. On the other hand, the suppression of the time-dependency

implies that the predicted motion is quasi-static, and that there is no his-

tory dependence of the fluid motion. The boundary conditions, both inner

(fluid-solid interface) and outer (fluid and environment), are instantly com-

municated to the entire fluid. Obviously, this is just a mathematical simpli-

fication and the physical reality is slightly different, since it is well-known

that every information needs a finite time to propagate within a medium.

2.2 Stokes flows

2.2.1 One sphere in Stokes flow

In order to understand how a bi-phase flow globally behaves, it is necessary

to first understand how the two phases, fluid and solid in this case, interact.

Let us firstly consider the simplest situation: a single spherical particle

immersed in a Stokes flow. The fluid motion near a point x0 can be described

by a Taylor series:

u∞ (x) = u∞ (x0) +∇u∞ (x0) · (x− x0) + ... (2.2)

where u∞ is the velocity field in absence of any disturbance due to the

presence of the particle. Neglecting the higher order terms in the series,

assuming x− x0 small, the velocity results a sum of an uniform translation

plus a linearly varying field. Taking x0 as the origin and u∞ (x0) = u∞, the

expression of the velocity can be therefore expressed as:

u∞ (x) = u∞ + Ω∞·x+E∞·x (2.3)

where the two tensors are defined as follow:

Ω∞i,j =
1

2

[
∂u∞i
∂xj

−
∂u∞j
∂xi

]
E∞i,j =

1

2

[
∂u∞i
∂xj

+
∂u∞j
∂xi

]
(2.4)

The first tensor is the rate of rotation tensor while the second is the

rate of strain tensor. The particle is then subjected at the same time to a

translation, to a rotation and to a strain.

The presence and the motion of a particle within a fluid flow generate

a disturbance field for both velocities and pressures, from those existing in

the imposed flow in absence of the body:
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u (x) = uact (x)− u∞ (x) (2.5)

p (x) = pact (x)− p∞ (x) (2.6)

where uact and pact are the the actual fluid motion and the actual pres-

sure field, respectively.

Let us consider separately the disturbance fields caused by translation,

rotation and straining. The problem to solve is given by the homogeneous

Stokes equations for the disturbance fields:

µ∇2u = ∇p (2.7a)

∇·u = 0 (2.7b)

These three situations have different boundary conditions:

-for translation:

u = −u∞ at r = |x| = a (2.8a)

u, p→ 0 as r = |x| → ∞ (2.8b)

-for rotation:

u = −ω∞ × x at r = |x| = a (2.9a)

u, p→ 0 as r = |x| → ∞ (2.9b)

-for straining:

u = −E∞·x at r = |x| = a (2.10a)

u, p→ 0 as r = |x| → ∞ (2.10b)

where a is the radius of the particle.

The disturbance velocity and the disturbance pressure for a general co-

ordinate (i, j, k) are given by:

-for translation:

p (xi) = −3µa

2

U∞j xj

r3
(2.11a)

ui =
3a

4
u∞j

(
δij
r

+
xixj
r3

)
− 3a3

4
u∞j

(
δij
3r3

+
xixj
r5

)
(2.11b)

The disturbance fields decay very slowly away from the translating sphere,

as r−2 for the pressure, as r−1 for the dominant portion of the velocity and

as r−3 for the other portion of the velocity;
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-for rotation:

p (xi) = 0 (2.12a)

ui = −εijkω∞j xk
(a
r

)3
(2.12b)

The disturbance field for velocity decays as r−2, while there is no pressure

induced by the presence of a rotating particle in a static fluid (or symmet-

rically by the presence of a fixed particle in a rotating fluid);

-for straining:

p (xi) = −5µa3
xiE

∞
ij xj

r5
(2.13a)

ui = −5a3

2

xixjE
∞
jkxk

r5
− a5

2
E∞jk

[
δijxk + δikxj

r5
− 5xixjxk

r7

]
(2.13b)

The disturbance field for pressure decays as r−3, while the disturbance

field of the velocity has a portion decaying as r−2 and another one decaying

more rapidly as r−4.

The fluid stress field acting from the fluid on the particle results in a:

-hydrodynamic force:

F h =

∫
Sp
σ·n dS (2.14)

-hydrodynamic torque:

T h =

∫
Sp
x× σ·n dS (2.15)

-hydrodynamic stresslet: this term, less known than the previous, form

the complete first moment together with the torque:

Mij =

∫
Sp
σiknkxj dS = Sij +Aij (2.16)

where S is the symmetric portion (called stresslet):

Sij =
1

2

∫
Sp

[σikxj + σjkxi]nk dS (2.17)

and A is the anti-symmetric portion, related to the value of the torque:

Aij =
1

2

∫
Sp

[σikxj − σjkxi]nk dS (2.18)
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In particular, for a spherical particle immersed in a general flow field

these three quantities result:

-hydrodynamic force:

F = 6πµa

[(
1 +

a2

6
∇2

)
u∞ (x = 0)− uP

]
(2.19)

This value scales linearly with the size of the sphere;

-hydrodynamic torque:

T = 8πµa3
[
ω∞ (x = 0)− ωP

]
(2.20)

This value scales linearly with the cube of the size of the sphere;

-hydrodynamic stresslet:

S =
20

3
πµa3

(
1 +

a2

10
∇2

)
E (x = 0) (2.21)

This value scales linearly with the cube of the size of the sphere.

If a single particle, and in particular a freely mobile particle (meaning

that it has no external influence upon the fluid and experiences no hydrody-

namic forces and torques) is immersed in a simple shear flow, i.e. a flow of

the form u∞ = (γ̇, 0, 0), the situation is different. In this case, the velocity

at the surface of the particle is found to be equal to the sum of the ambient

shear flow and the disturbance flow generated by the particle. The latter is

due only to its resistance to the straining component of the shearing flow.

Figure 2.2: Decomposition of a sphere in a shear flow

by a sphere in a rotation plus a sphere in strain (Guazzelli).
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2.2.2 Two spheres in Stokes flow

If there is more than one particle, not only the fluid-particle interaction has

to be considered. An hydrodynamic interaction between the particles arises:

the fluid motion induced by one particle affects the motion of the other

particles and vice-versa. More in detail, the velocity field created by one

particle considered in isolation induces a velocity disturbance at the center

of the other particle which causes this latter to move; this movement have

in turn influence on the first particle and so on.

If there are two particles, this interaction can be described as follow:{
u1

u2

}
=

[
M11 M12

M21 M22

]
·

{
F e

1

F e
2

}
(2.22)

where the above tensors depend on the flow analyzed and on the prop-

erties of the particles. The off-diagonal tensors M12 and M21 are the new

quantities introduced by the hydrodynamic interaction above mentioned.

The interaction between the particles becomes more and more relevant

as they approach. When their surfaces get closer, they experience a phe-

nomenon called lubrication:

Figure 2.3: Squeezing and shearing problem (Guazzelli).

Lubrication is here described in two particular situations: in the squeeze

flow problem two spheres with the same radius a move along their line of

centers with relative velocity wsq. In the shear flow problem instead, the

two spheres move on the same direction, so the relative velocity wsh is per-

pendicular to the line of centers. The distance between the two surface is ε

and in both cases is very small. In either case, the force necessary to impose

the motion at the same speed w diverges as ε approaches to zero:
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Fsq ∼ µawε−1 in squeeze flow problem (2.23a)

Fsh ∼ µaw ln ε in shear flow problem (2.23b)

Physically, as the gap decreases the pressure becomes very large on a

small area surrounding the two spheres. Even though this area is very small,

it is not small enough to avoid the divergence of the imposed force. In the

same way, since the motion is reversible, as the gap between the particles

increases, an equally large negative pressure is imposed and the resulting

force has the same magnitude but opposite sign.

2.2.3 Suspensions in Stokes flow

When the number of particles suspended in the main continuous fluid starts

to become remarkable, the overall viscosity of the new flow increases as the

volume fraction of the particles becomes large. This increase is due to the

opposition made by every single particle to the flow strain. In other words,

the stress on the non-deforming particle surface results in a disturbance flow,

which enhance the dissipation energy. The growth of the viscosity value is

given by the following equation:

µS = µ

[
1 +

5φ

2

]
(2.24)

This is the so-called Einstein viscosity. This expression was found to fit

the real viscosity only for low volume fraction, i.e. below 5%. For higher

values of the volume fraction, the experimental results diverge from this

prediction and a more accurate expression is necessary. A second-order

model for predicting the suspension viscosity as a function of the volume

fraction was proposed by Batchelor and Green (see Bachelor and Green,

1972):

µS = µ

[
1 +

5φ

2
+ 6.95φ2

]
(2.25)

For a multi-phase flow, the value of the volume fraction cannot increase

up to the unity. There is in fact a limit, under a simple shear flow, above

which the viscosity is so high that the fluid can nevermore flows. This value

was found to be equal to about 0.55.

When the number of suspended particles increases, other important phe-

nomena arises. In particular, if a shear flow is imposed, two unexpected and

irreversible behaviors appear: shear-induced diffusion and shear-induced mi-

gration. These effects were found to be due to the combined effects of non-

hydrodynamic and hydrodynamic interactions among suspended particles.
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Shear-induced diffusion is characterized by significant fluctuations of par-

ticles paths from their average motion: this means that there are generally

lateral (y and z) components of any particle velocity. For purely hydrody-

namically interacting suspensions of spheres, this shear-induced diffusion is

unexpected: the diffusion should in fact be reversible, based on the linearity.

Shear-induced migration is a phenomenon firstly described by Leighton

and Acrivos (see Leighton and Acrivos, 1987): the particles tend to migrate

irreversibly from the high shear rate region towards the low shear rate re-

gion. This migration was observed even for suspensions of non-Brownian

spheres carefully designed to be neutrally buoyant in the suspending fluid.

Figure 2.4: Shear induced migration

in a pressure-driven flow (Guazzelli).

Moreover, various applications (see Koh et al., 1994 and Nott and Brady,

1994) showed this migration even at small Reynolds number. This observa-

tion is crucial since it shows that inertia is not the leading parameter of the

phenomenon. A simple equation was proposed by Leighton and Acrivos (see

Leighton and Acrivos, 1987) to model the shear-induced migration flux:

j⊥ ∼ −a2∇γ̇ (2.26)

where a indicates the value of the particle radius. This equation was

found to match well with the experimental results for linear flows, but it is

no longer valid for curvilinear flows.
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2.3 Finite-inertia flows

The approximations of Stokes flows assumed up to this point is not always

valid. In particular, in a real multi-phase flow it is necessary to take into

account the influence of fluid and particle inertia on the overall process.

The inclusion of the inertia changes the form of motion equations, even if

the value of this inertia is small.

Let us consider the simple situation of a fixed spherical particle in an

uniform flow u. Far from the sphere, the velocity field for zero Reynolds

number is given by u+ O(ua/r) and the disturbance is u′ = O(ua/r). The

ratio between inertial and viscous effects is then given by:

|[(u+ u′) · ∇] (u+ u′)|
|ν∇2 (u+ u′)|

∼ ua

ν

r

a
= Re

r

a
(2.27)

From this equations it is easily deduced that when r/a� Re−1 the in-

ertial effects can be neglected. On the contrary, at positions far from the

sphere they become comparable to the viscous effects. The approximation

of Stokes flow is thus not valid for uniform flows past the sphere when

r/a ≥ Re−1. This result was obtained and summarized by Oseen (see Os-

een, 1910). He proposed, even for high Reynolds number flows, to consider

the inertial forces only in the far field, where their value are comparable

with them of the viscous forces, and to neglect them in the region of the

flow near the particle, where the influence of the inertia on the process is

minimal. The method of resolution for the resulting Navier-Stokes equa-

tions involves simultaneous consideration of locally valid expansions in the

inner (near the particle) and in the outer (far from the particle) regions of

the flow. The inner expansion is required to satisfied the no-slip condition

on the particle, while the outer expansion needs to satisfy the uniform-flow

condition at infinity. These expansions are then combined through a process

called matching to obtain an approximate solution for the whole domain.

In pressure-driven flows, when finite-inertia is considered, another mi-

grational phenomenon arise. However, contrary to shear-induce migration,

which is driven by the particle-particle interaction, this inertial migration

results from the fluid-particle interaction within the confining geometry of a

conduit. In pressure-driven flows at small-finite inertia the particles tend to

pinch to a preferred position. In tubes (or channels), for example, particles

which initially are at a larger r (or h) are driven inward, whereas particles

to the centerline are driven outward. There is an equilibrium position where

the particles tend to align into extended and long-lived trains forming a sort

of annulus (see Segré and Silberberg, 1962). This annulus becomes unstable
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when the Reynolds number increases: in this case the particles tend to form

another annulus but closer to the centerline.

If the considered flow is a simple-shear flow under finite-inertia, the sit-

uation is slightly different. Two different cases have to be considered: the

first is the case of finite particle inertia (St > 0) and negligible fluid iner-

tia (Re = 0), while the second case includes similar density for fluid and

solid phases (Re > 0 and Re ≈ St). In the first case, it was recently found

by Subramanian and Brady (see Subramanian and Brady, 2006) that if a

pair of dense particles is placed in such a flow, their trajectory deviate from

the trajectory followed by a neutrally-buoyant pair when the trajectory is

curved, resulting in an accelerating flow. The second case, when the fluid

inertia is not neglected anymore, is more complicated, since the fluid flow is

not governed anymore by the Stokes equations. The complete form of the

Navier-Stokes equations has to be considered and this leads to important

results: the lost of linearity causes the lost of symmetry of fluid streamlines,

which results in a inflow of fluid along the vorticity axis, with spiraling

motion in the other two directions.

2.4 Suspensions in channel flows

Let us focus again on a particular type of flow, the channel flow, already an-

alyzed in Section (1.5) for single-phase flows. In real applications it is more

common that a channel flow results formed by more than one phase mixed

together: examples of such situations are pipelines for oil and pharmaceuti-

cal applications. The study of a multi-phase flow within a channel is much

more complicated than the single-phase one: first of all, more parameters

are involved in the analysis, and the effects of each one on the overall process

are far from being completely understood. Secondly, it is common opinion

that the influence of these parameters changes if the volume fraction φ of

the suspended solid phase increases, but it is still not clear how and why

these changes show up. Moreover, while many previous studies investigated

the properties of dense particle suspensions in the laminar regime, little is

known on the behavior of these suspensions in the turbulent regime.

This section is dedicated to recap the results on the behavior of suspen-

sion flows published up to this date. The first part concerns the definition

of the regimes of a suspension flow, and in particular the laminar-turbulent

transition problem. The second part focused on the differences between di-

lute and dense suspension behaviors: the specific background representing

the starting point of this thesis is here showed, the main results obtained

are presented and the reason of this work is eventually explained.
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2.4.1 Laminar-turbulent transition

When a flow of suspensions is considered, the particle-particle interactions

significantly alter the bulk behavior, in particular in the transition regime.

Recent works such as Matas et al. (see Matas et al., 2003) and Yu et al. (see

Yu et al., 2013) underlined the difficulties to distinguish unambiguously the

flow regime of dense suspensions since they manifest important fluctuations

even at low velocities. The recent publication of Lashgari et al. (see Lash-

gari et al., 2014) focused on this topic and characterized the flow regimes of

suspensions of finite-size rigid particles in a viscous fluid at finite inertia.

Lashgari et al. identified three different flow regimes for a channel flow

of suspensions, with a smooth transition between them:

-a “laminar like” regime (Blue zone in Fig.(2.5)), at low Re and low φ,

dominated by viscous forces;

-a “turbulent like” regime (Red zone in Fig.(2.5)), at high Re and suffi-

ciently low φ, where the wall friction due to the turbulent transport increases;

-an “inertial shear-thickening” regime (Green zone in Fig.(2.5)), at high

Re and high φ, characterized by a significant increase of the wall friction (and

then of the effective viscosity), larger than in the“turbulent like”regime: this

enhancement is not related to the increase of the Reynolds stresses, but to

an increase of the particle-induced stress, which indicates a transport mech-

anism different than that of the turbulence.

Figure 2.5: Phase diagram for a channel flow of suspensions.

The black lines represents the boundary of the regions where each term in

the stress budget is over 50% of the total stress.

The purple lines are the isolevels of Bagnold number (Lashgari et al.).

Summarizing, at low volume fractions φ, the flow becomes turbulent

when increasing the Reynolds number, transitioning from the laminar regime

dominated by viscous forces to the turbulent regime characterized by en-

hanced momentum transport by turbulent eddies. At larger volume fractions

φ, Lashgari et al. identified a new regime characterized by an even larger
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increase of the wall friction. The wall friction increases with the Reynolds

number (inertial effects) while the turbulent transport is weakly affected,

as in a state of intense inertial shear-thickening: this state may prevent the

transition to a fully turbulent regime at arbitrary high speed of the flow.

2.4.2 Dilute and dense suspensions in turbulent flows

If the volume fraction of the suspended phase is low, the suspension is said

to be a dilute suspension, otherwise it is called a dense suspension. For

dilute suspensions the most important interactions arising in a flow are the

particle-fluid interactions, while for dense suspensions the hydrodynamics

and collisional interactions among the particles become crucial.

The work entitled “Two-way coupled turbulence simulations of gas- par-

ticle flows using point-particle tracking”by Eaton (see Eaton J.K., 2009) well

summarizes the numerical and experimental results achieved for dilute sus-

pensions and demonstrates the effects of particle loadings on a multi-phase

flow in turbulent regime. Many experiments (see Kulick et al., 1994, Paris

and Eaton, 2001) carried out at Stanford University showed that carrier

phase turbulence properties are highly influenced by the presence of dis-

persed particles even in very simple flows. In particular, suspensions with

low volume fraction but high density ratio (then high mass fraction) were

tested. Kulick et al. found that increasing the mass loading ration up to

80% the turbulence was essentially eliminated near the channel centerline.

Moreover, Paris and Eaton found that the turbulence attenuation was de-

pendent also on the particle Reynolds number. In particular, the biggest

attenuations of the turbulence were found in those cases where the particle

diameter was of the same order as the Kolmogorov scale. On the other hand,

many issues arose in numerical simulations: first of all, the typical grid sizes

in direct numerical simulation codes were found to be not fine enough to

fully resolve the flow around an individual particle, and at the same time

the particles were too large to reasonably be represented as a point; the

second problem concerned the inter-particle spacing for dilute suspensions

flows: if the grid had the resolution of the particle diameter, then most grid

cells would not contain any particles. This issue is particularly crucial for

bounded flows, where the presence of walls require a very high grid resolu-

tion. The fully resolved simulations reported in the work of Eaton checked

the local turbulence modification around individual particles in a dispersed

flow: the three dimensional and time-dependent fluid motion was calculated

in an Eulerian frame, while a large number of particles were tracked in a

Lagrangian frame. The main result was the demonstration that the local
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affects of the particle were reducing the turbulence over a fluid volume of at

least 1000 times the particle volume. However, for small volume fractions,

this local reduction was not found to be spread in the global field.

When the volume fraction increases the situation changes. The recent

work of Picano et al. (see Picano et al., 2015) investigated the turbulent

channel flow at high volume fractions φ. The results obtained were very

interesting: as shown in Fig. (2.6(a))-(2.6(b)), if the volume fraction (then

the mass fraction) is increased with a unitary density ratio, the turbulence

is attenuated in the same way described by Eaton. Moreover, they noticed

that the increase of the number of particles in the channel leads to a redis-

tribution of the energy towards a more isotropic state: in fact, while in the

streamwise direction the fluctuations were found to decrease with φ, in the

wall-normal and spanwise directions they increased. Only at very high val-

ues of φ the fluctuations were found to decrease with respect to all the other

cases, with the exception of a thin region close to the wall. In this small

region the fluctuations enhanced because of the squeezing motion occurring

between the wall and an incoming or outgoing particle.

(a) (b)

Figure 2.6: a) Mean fluid velocity and b) fluctuation velocity components

in the streamwise direction.

In many previous works the mean local particle distribution was studied.

Fig. (2.7) shows a first local maximum around y = 0.05− 0.1 ' a(= 1/18),

and a local minimum at y = 0.1− 0.15 ' 2a(= 1/9). As shown in Fig.

(2.7(a)), if the volume fraction increases, the particles arrange along the

channel height in the same way: their distribution over the wall-normal di-

rection is thus not directly driven by a change of φ. On the contrary, as

shown in Fig. (2.7(b)) when the Reynolds number increases, the particles

move to the center of the channel, thus pinching to a preferred position.
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(a) (b)

Figure 2.7: Mean local volume fraction a) Picano et al. and b) I.Lashgari.

Picano et al. showed also that although the turbulent intensities are

attenuated by the presence of a suspended part, the total drag, i.e. the

friction Reynolds number (1.40) increases. In order to study the origin of

this enhancement, they introduced the turbulent friction Reynolds number:

ReT =
UTτ h

ν
where UTτ =

√
d 〈u′cv′c〉
dy

(2.28)

While the friction Reynolds number Reτ is a measure of the overall drag,

the turbulent friction Reynolds number ReT indicates only the portion of the

drag directly introduced by the turbulent activity. These two Reynolds num-

bers were found to change differently when the volume fraction increases:

Figure 2.8: Friction Reynolds number and

turbulent friction Reynolds number (Picano et al.).

Fig. (2.8) shows that at high volume fractions there is an important

reduction of ReT . Picano et al. concluded that the drag enhancement was

not linked to an increase of the turbulence activity but to the solid phase

dynamics, and in particular to the increase of the particle-induced stress.
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Two important non-dimensional parameters widely used for multi-phase

flow analysis are the particle Stokes number Stp and the Bagnold number

Ba, given respectively by:

Stp =
particle characteristic time

fluid characteristic time
=

(
d2pρp

18µf

)
/

(
h

ub

)
(2.29)

Ba =
inertia stress

viscous stress
=
λ1/2ρpd

2
pdu/dy

µf
(2.30)

where:

λ =
1(

φ0
φ

)1/3
− 1

(2.31)

In Eq. (2.31) φ0 is the maximal possible static volume fraction (which

is equal to 0.74 for spherical particles) and φ is the actual volume fraction.

In his work Bagnold (see Bagnold, 1954) defined different regimes for the

dense suspension flows studied:

-macro-viscous regime: in this regime, which appears below the value

Ba = 40, the most important interactions are the particle-fluid interactions;

moreover, Bagnold noticed that in this regime the shear rate varies linearly

with the shear stress;

-grain-inertial regime: in this regime, which appears above the value

Ba = 450, the most important interactions are the particle-particle interac-

tions; in this case, Bagnold pointed out that the shear rate varies quadrati-

cally with the shear stress;

-transitional regime: between Ba = 40 and Ba = 450 the fluid is char-

acterized by both particle-fluid and particle-particle interactions.

Using the definition of the bulk Reynolds number (1.28), it is possible

to write the particle Stokes number and Bagnold number as follows (see

Appendix A and B):

Stp =

(
dp
h

)2 1

18
RebR (2.32)

Ba = 4λ1/2
(
dp
h

)2

RebR (2.33)

where R is the ratio between the particle and the fluid densities.

In his experiments Bagnold deduced the values of Ba only by changing

the volume fraction of the suspended phase. He was not able to judge the

effects of the variation of other parameters. Starting from this remark and

from Eq. (2.33), a big question arises: what happens to the flow if R varies?

Are the Bagnold results valid even in this situation? Is the particle Stokes

number important in this case?
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Methodology

This chapter is dedicated to the methodology used for solving fluid dynam-

ics problems. The first part introduces the Computational Fluid Dynamics

(CFD), the discipline whose aim is to solve numerically the equations gov-

erning a fluid in motion. The second part focuses on the Direct Numerical

Simulations (DNS), and briefly describes the numerical code used for the

present analysis. The latter were developed by W.P. Breugem at TU-Delft

and is based on the Immersed Boundary Method. Every detail about the

code can be found in Breugem’s work, while a brief description extracted by

this work is provided in this chapter for the sake of completeness.

3.1 Introduction to CFD

As already discussed, fluid dynamics problems are very complicated to treat.

The unsimplified Navier-Stokes equations do not have any closed-form so-

lution, so their resolution is possible only with mathematical methods. In

particular, around a century of experience has shown that the turbulence

problem is the most demanding to handle. Computational Fluid Dynamics

is the discipline aimed to analyze and to solve the problems involving fluid

flows with the aid of numerical methods and mathematical algorithms.

In all the possible approaches to the fluid dynamics equations, the pro-

cedure to solve them is the same:

-the first part, called the pre-processing part, involves the definition of

the geometry, the discretization of the volume occupied by the fluid, the

definition of the physical model and the setting of boundary conditions;

-the second part involves the simulations;

-the last part, called the post-processing part, involves the analysis and

the presentation of the results.

43
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There are many discretization methods available. The most used are:

-Finite Difference Method (FDM);

-Finite Volume Method (FVM);

-Finite Element Method (FEM).

The first method uses finite difference equations to approximate the

derivatives. The other two methods involve the partition of the whole do-

main into simpler parts, called Finite Volumes or Finite Elements, and the

calculation of the results at discrete places of these new sub-domains.

Physical modeling of turbulent problems represents another key tool in

the CFD. The range of length-scales and the complexity of phenomena in-

volved in turbulence make most of the modeling approaches prohibitively

expensive. In some cases, the resolution required to solve all the scales

involved in the turbulence and this is beyond what is computationally pos-

sible. The primary approach in such cases is to create numerical models to

approximate the unresolved phenomena. The most used models are:

-RANS (Reynolds-Averaged Navier-Stokes equations): as already said in

the first chapter, a flow velocity field can be decomposed in a mean (time-

averaged) component and in a fluctuating component; the resulting Reynolds

equations (Eq. (1.21a)-(1.21b)) can then be solved to determine the mean

fluid velocity field. In this model, the Reynolds stresses are obtained from

a turbulent-viscosity model and the turbulent viscosity is computed either

through algebraic relations or through turbulent quantities such as the ki-

netic energy or the rate of dissipation;

-LES (Large Eddy Simulation): in this model, the smallest scales of the

flow are removed through low-filtering operations: only the largest and most

important scales of turbulence are kept into the filtered velocity field used

for the resolution.

The third most common method in Computational Fluid Dynamics is the

DNS (Direct Numerical Simulation): in this case, the Navier-Stokes equa-

tions are solved directly: all length-scale and time-scales are maintained and

no hypothesis are made upon the velocity field.

As one may see from Fig. (3.1), the results obtained with these three

methods are very different: in particular, the results obtained through a DNS

are the most accurate, while the RANS ones are the most unsatisfactory

(only the mean velocity field is shown). Nonetheless, the DNS simulations

are the most computationally expensive, and sometimes the computational

cost is too high for available computers. For this reason, RANS and above

all LES algorithms are more used in applied problems, e.g. problems with

high Reynolds number fluid flows.
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Figure 3.1: Difference in the results of a numerical simulation

of a jet flow with DNS, LES and RANS approaches (ENEA).

Digital computers are used to perform the calculations. Given the nature

of resolution methods, the more powerful the computer is, the fewer approx-

imations can be made and the better the solution obtained results. Most of

modern computers uses more than one processors to carry out their tasks.

More than one calculation at the same time can be effectuated: the idea is

then to reduce a single big problem into many smaller problems, solved si-

multaneously by different processors. Splitting a main task in many smaller

tasks is called multithreading: the “master thread” is divided in various

“slave thread”, within the same processor. Multithreading programs have

several advantages over single threading programs: better responsiveness to

inputs, faster execution, lower resource consumption, better system utiliza-

tion and simplified sharing and communication. The simultaneous resolution

of single parts of a problem on different processors is called parallel com-

puting: once the split of the master thread is done, the run-time system

allocates the slave threads onto the available processors. Many different

types of parallel computing can be employed. The most famous are: shared-

memory multiprocessing (OpenMP) and distributed-memory multiprocess-

ing (MPI); for the first case, the parallel processors have access to a common

memory; for the second case, the parallel processors have their own memory

and the informations are interchanged between processors through messages.

Exactly as multithreading, parallel computing programs have many advan-

tages over sequential computing programs, e.g. the drop of computational

time. However, caution must be used: parallel computing programs are

much more complicated to write than sequential ones and if the program is

not perfectly written, many new bugs, such as in race conditions, can arise.
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3.2 DNS of multi-phase flows

Let us focus on the method of the Direct Numerical Simulations (DNS) for

the flow motion resolution. As already stated, a DNS consists in solving

the Navier-Stokes equations with all the scales of motion. The level of

description that they can reach is unrivaled, although their computational

cost made them impossible to solve until the 1970s.

The large computational cost of a Direct Numerical Simulation is due

to its high accuracy solution requirements. First of all, the domain size

L must be large enough to represent the energy-containing motions and

the grid spacing ∆x must be small enough to resolve the dissipative scales.

Moreover, the time step ∆t must be limited in order to maintain a sufficient

numerical accuracy. With respect to these parameters, the lowest and the

biggest wavenumber represented in a DNS are:

kmin = 2
π

L
(3.1a)

kmax = N
π

L
(3.1b)

where N is the number of grid points: it is an indicator of the simulation

size and consequently of the Reynolds number that can be attained.

Reasonable values for the above mentioned quantities L, ∆x and ∆t were

found to be respectively:

L ≈ 6.4/kmin (3.2a)

∆x ≈ 3.1/kmax (3.2b)

∆t ≈ ∆x/20kmax (3.2c)

The spacial requirements on the domain size and on the grid spacing

determine the necessary number of grid nodes N3 for a DNS, while the

time requirement fixes the computational time T . Both can be expressed as

functions of the Reynolds number as follows:

N3 ∝ Re9/4 (3.3a)

T ∝ Re11/4 (3.3b)

Eq. (3.3a)-(3.3b) explain the reason why a DNS cannot be used for all

the simulations. For high Reynolds number flows, the computational cost

becomes too high for most of available computers. In these situations, it is

necessary to reduce the computational time through a widening of the grid

spacing. This leads to a diminution of the number of grid nodes and then

of the computational time, but also to a deterioration of computed results,

since in this case the smallest scales of motion are ignored.
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Immersed Boundary Method

As already described in the previous chapter, when a second phase is added,

the study of a flow and then its simulation becomes much more complicated.

The mean difficulty of a multi-phase flow simulation arises from the coupling

that has to be imposed between the the different phases of the flow. One

of the most used method of two-phase coupling is the Immersed Boundary

Method (IBM), firstly developed by Peskin (see Peskin, 1972).

In order to describe the IBM, let us refer again to the case of spherical

particles suspended in a main fluid flow. The fluid phase is governed by the

Navier-Stokes equations (1.9a)-(1.9b). For the solid phase, the velocity uP

of an infinitesimal particle segment at position x can be decomposed into a

linear and an angular part:

uP = uc + ωc × r (3.4)

where r = x− xc is the relative position to the particle centroid, uc and

ωc are the translational and the rotational velocities of the centroid, respec-

tively. These velocities evolve according to the Newton-Euler Lagrangian

equations, which for a sphere reduce to:

ρpVp
duc
dt

=

∮
∂VP

τ ·n dS + (ρp − ρf )Vpg − Vp∇pe + F c (3.5a)

Ip
dωc
dt

= ρf

∮
∂VP

r × τ ·n dS + T c (3.5b)

where ρp and ρf are the particle and the fluid densities, respectively,

VP = 4πa3/3 is the particle volume, with a the value of the particle radius,

τ = −pI + 2µE is the fluid stress, with E =
(
∇uf + ∇uTf

)
/2 the defor-

mation tensor, pe is the contribution to the total pressure from a constant

pressure gradient that can be imposed to drive a flow, IP = (2/5) ρVpa
2 is

the moment of inertia, r is the distance vector from the centroid of the

sphere, n is the unity vector normal to the particle surface ∂Vp, and F c and

T c are respectively the force and the torque acting on the particle as a result

of collisions and physical contact with other particles or solid walls.

Unlike the other numerical methods, in a IBM the coupling between

the fluid and the solid phase is not directly imposed through a no-slip/no-

penetration condition, which would results in the following expression:

u = uP (x) ∀x ∈ ∂V (3.6)
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But instead, in the immediate vicinity of the particle a body force is

added on the right-hand side of Eq. (1.9a), thus resulting on a good approx-

imation of the above mentioned condition:

∂u

∂t
+ u· ∇u = −1

ρ
∇p+ ν∇2u+ f (3.7)

For a DNS, the solid and the fluid phases need to be followed through

two different approaches: the Lagrangian approach for the particles (each

single point of the particle is followed) and the Eulerian approach for the

fluid (the whole field is followed as a unique entity). It is then necessary

to use two different grids, a continuous Cartesian grid for the fluid phase

(Eulerian grid) and an uniform grid attached to and moving with the surface

of the particles (Lagrangian grid).

The IBM force f in Eq. (3.7) is computed in three steps:

1- Interpolation of a first prediction of the velocity from the Eulerian to

the Lagrangian grid: this first step is carried out finding the index of the

nearest Eulerian grid point to each Lagrangian grid point of the particle

interface, then evaluating the velocities of all the Eulerian points within a

preset neighborhood (two grid point in each direction), and finally calcu-

lating the Lagrangian grid point velocity through a regularized Dirac delta

function;

2- Computation of the IBM force on the Lagrangian grid based on the

difference between the interpolated first prediction of the velocity and the

particle velocity;

3- Spreading of this force from the Lagrangian to the Eulerian grid.

The numerical code PARCHAN developed by W.P. Breugem

The numerical code adopted in the present thesis has been developed at

TU-Delft by W.P. Breugem (see Breugem, 2012). The Navier-Stokes equa-

tions are solved using a second order finite-difference scheme associated to a

direct-forcing IBM to couple fluid and solid phases. Short-range interactions

occurring below the mesh size are considered using lubrication corrections

and a soft-sphere collision model. The main feature of the present algorithm

is that it can achieve a global second order accuracy in space. The numer-

ical code were validated in several studies where test cases can be found,

e.g. [9], [26]. The algorithm is coded in Fortran using both OpenMP and

MPI paralleling methods in order to reduce the computational time and

the memory utilization. The calculations are set to be carried out through

parallel computing on multi-processor machines with distributed memory.
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Results

This last chapter is dedicated to the discussion of the results obtained by the

Direct Numerical Simulations carried out during this project. In the first

section the set-up of the simulations is fully described. In the second section

the results are shown with the following order: first of all a comparison

between the different regimes detected through the simulations is displayed.

Thereafter each of the two regimes is separately analyzed: firstly the so-

called hydrodynamic regime and secondly the so-called ballistic regime. The

last part focuses on the analysis of the results through the non-dimensional

parameters normally used to describe the multi-phase flows: the particle

Stokes number and the Bagnold number.

4.1 Simulation Set-up

The case studied in this work is a pressure driven channel flow developing be-

tween two infinite flat walls located at y = 0 and y = 2h. With reference to

Fig. (4.1(a))-(4.1(c)), the domain sizes are Lx = 6h, Ly = 2h and Lz = 3h in

the streamwise, wall-normal and spanwise directions, respectively. Periodic

boundary conditions are imposed in in the streamwise, x, and spanwise, z,

directions. A mean pressure gradient acting in the streamwise direction im-

poses a fixed value of the bulk velocity ub across the channel, which leads to

a constant value of the bulk Reynolds number: Reb = ub 2h/ν = 5600. This

value of the bulk Reynolds number corresponds to a friction Reynolds num-

ber equal to Reτ = uτh/ν = 180 for the single phase case (uτ =
√
τw/ρ the

friction velocity). Gravity and buoyancy effects are neglected in this study

to focus only on the inertial effects of different density ratios. It should

be noted however that at sufficiently high velocity buoyancy effects become

negligible with respect to inertial dynamics (high Froude number).

49
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The domain is discretized by a cubic mesh of 864 x 288 x 432 point

in the streamwise, wall-normal and spanwise directions. The typical mesh

size is of the order of the viscous and Kolmogorov lengths. Non-Brownian

spherical rigid particles are considered. The value of their radius is fixed

to the channel half-width value, given by a/h = 18. The particle radius a

spans about 8 points of the Eulerian mesh which corresponds to around 800

points used to discretize the particle surface in the Lagrangian frame.

The following simulations have been carried out:

Volume Fraction φ 0.05 0.02 0.002

Number of particles Np 2500 1000 100

Density Ratios R 1, 2, 4, 10, 100, 1000 100 100

Domain Sizes Lx Ly Lz 6h × 2h × 3h

Mesh Points Nx Ny Nz 864 × 288 × 432

Table 4.1: Summary of the Direct Numerical Simulations reported in

this work. The number of particles is given by Np =
6φLxLyLz

π ,

where Lx, Ly and Lz are the domain sizes.

The simulations with φ = 0.05 start from a turbulent and statistically

stationary regime for the particle-laden flow with unitary ratio between par-

ticle and flow densities (see Picano et al., 2015). The new density ratio is

then imposed and the statistics are collected after the transient phase. The

simulations with φ 6= 0.05 start instead from a turbulent and statistically

stationary regime for the flow phase without any particle. The new volume

fraction as well as the new density ratio is then set and the statistics are

collected again once the statistically stationary regime is reached.

All the simulations have been performed using 576 cores of a CRAY

XE6 supercomputer LINDGREN hosted at the Center for High Perfor-

mance Computing, PDC, KTH, Stockholm. Each simulation needed around

100.000 core-hours to obtain enough samples of the statistical steady regime

in order to have convergent statistics.
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(a)

(b)

(c)

Figure 4.1: Snapshot of the streamwise velocity on different orthogonal

planes together with the particle distribution for φ = 0.05 and

a) R = 1, b) R = 10 and c) R = 100. All the datas for these figures were

collected in the statistically stationary regime.
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4.2 Results

For all the cases above mentioned, the study focused on the velocity statis-

tics, for both phases, and on the single-point dispersions, for the solid phase.

Velocitiy Statistics

As already analyzed in Section (1.4), the velocity of a fluid in motion can be

decomposed in a mean term Ui (xi, t) and in a fluctuations term u′i (xi, t).

Through the investigation of their statistics it is possible to understand how

the different parameters affect the mean flow behavior, the turbulent activity

and where, along the height of the channel, this activity is more important.

Dispersions

The analysis of the dispersions, i.e. the average displacements of the parti-

cles from their initial positions, allows to study how the particles move and

spread around the channel. Moreover, from their profiles it is possible to

deduce the so-called correlation time, i.e. the time at which the actual value

of the velocity has no longer relation with the initial value.

According to Taylor (see Taylor, 1922), it is possible to express the dis-

placement of a particle along a general i direction through a series:

xi(t)− xi(0) = vit+O(t2) (4.1)

Within the neighborhood of t = 0 it is possible to neglect the value of the

O(t2), while this approximation for longtime behaviors is no longer valid.

Investigating the mean square value of the displacement (MSD), Taylor ob-

tained the following expression:

〈
|xi(t)− xi(0)|2

〉
=

{
σ2ut

2 t� TL (4.2a)

2σ2uTLt t� TL (4.2b)

where σu is the variance of the velocity and TL is the correlation time:

after this time TL the approximation to the first order of Eq.(4.1) is not

valid anymore.

The above system can be simplified using the so-called diffusion coeffi-

cient Dt:

Dt(t) =

{
σ2ut t� TL (4.3a)

σ2uTL t� TL (4.3b)

Thus, in the neighborhood of t = 0, the MSD is proportional to the

square of t, while after TL the MSD varies linearly with t.
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4.2.1 Hydrodynamic regime vs Ballistic regime

The snapshots of Fig. (4.1) presented the streamwise velocity displayed in

some orthogonal planes together with the particle position. The cases at

R = 1 and R = 10 showed the typical turbulent behavior with high level of

fluctuations and velocity streaks close to the wall. On the contrary at R =

100 the velocity field is almost uniform with a low level of fluctuations. This

strong change suggests the appearance of a new regime when the particle

density is high enough. These aspects are discussed in the present section.

Velocity Statistics

Let us firstly the case shown in Fig. (4.2(a))-(4.2(d)) of the channel flow at

φ = 0.05, with the density ratio increasing from R = 1 to R = 1000.
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Figure 4.2: Mean fluid velocities in a) outer units and c) inner units and

mean particle velocities in b) outer units and d) inner units.

At density ratio R = 1 ÷ 10, the presence of the particles weakly alters

the mean velocity profile which is similar to that of the single-phase flows. It

displays the usual linear viscous sub-layer Eq. (1.44) (U+ ' y+) at y+ < 5

and the log-law Eq. (1.45) (U+ = (1/k)log(y+) + B) at y+ > 40. The

particles tend in mean to move with the flow apart from the first layer of

particles close to the wall which shows higher velocity with respect to the

flow. Actually, these are friction-less particles that can slide on the wall

so this situation is expected. On the other hand, above a certain value



CHAPTER 4. RESULTS 54

of density ratio (R ≥ 100), the situation radically changes: the particles

move along the streamwise direction with a uniform nearly-constant veloc-

ity and the correspondent mean fluid velocity approaches the profiles of

the so-called plug-flows in the bulk region. The log-layer region completely

disappears suggesting a very different behavior with respect to the usual

turbulent channel single-phase flow. We will refer to the former case as “hy-

drodynamic regime”, where particles and fluid still mutually interact and

the overall behavior is still similar to the unladen case. We will refer to the

second case as “ballistic regime” instead, in which the particles owing a high

inertia do not “feel” anymore the presence of the fluid and where the leading

interactions are the particle-particle collisions.

A further confirm of the previous behavior can be found in the fluctuat-

ing velocity statistics, both for the fluid phase in Fig. (4.3(a))-(4.3(e)) and

for the solid phase in Fig. (4.4(a))-(4.4(e)).
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Figure 4.3: Intensity of the fluctuation velocity components

for the fluid phase in a), c), e) outer units and b), d), f) inner units.
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These figures show that while in the hydrodynamic regime the fluctu-

ating velocities are influenced by the changes of the density ratio value, in

the ballistic regime the increase of the particle density does not affect their

behavior. Moreover, the fluctuating velocity profiles are completely different

in the two cases: while in the hydrodynamic regime the fluctuations change

over the height of the channel, in the ballistic regime they are almost con-

stant and have similar values in the three directions. This behavior confirms

that the large inertia of the particles with high R make the move ballistically

similar to the molecules of a dilute gas. This regime does not depend any-

more on R since the particles do not feel the fluid flow, though they affect

the whole flow behavior. In the hydrodynamic regime instead since the two

phases mutually interact the change of R alters the flow dynamics.
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Figure 4.4: Intensity of the fluctuation velocity components

for the solid phase in a), c), e) outer units and b), d), f) inner units.

All the velocity statistics here briefly explained are studied and analyzed

more in-depth in next sections for each of the two regimes, in order to better

understand how the change of the particle properties affects the flow.
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Dispersions

As last statistics to show the important differences between the two regimes,

the particle dispersion is here reported in the streamwise direction mea-

sured as the mean square displacement of the streamwise particle position

subtracted of the mean displacement, 〈∆x2p〉. As shown in Fig. (4.5) the

dispersion of the particles in the hydrodynamic regime is much more effec-

tive than in the ballistic regime. The wall-normal inhomogeneity and the

turbulent fluctuations are much more effective to mix the particles during

their motion. On the contrary the flat mean velocity of the particles together

with the low and flat velocity fluctuations of the ballistic regime make the

particles moving as a plug flow without mix.
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Figure 4.5: Mean square fluctuating displacement 〈∆x′2p 〉(t) vs t.

.

More details about these aspects of the dispersions will be presented in

the section of the specific regimes.

4.2.2 Hydrodynamic regime

Velocity Statistics

Let us now focus on the so-called hydrodynamic regime. Four cases are here

analyzed: R = 1, 2, 4, 10, all of them at φ = 0.05 considering 2500 particles

in the computational domain.

As one can see from Fig. (4.6), changing the value of the density ratio

has a small impact on the properties of the flow. It appears that a change

even by one order of magnitude of the density ratio R and in turns in the

mass fraction M = Rφ does not produce significant effects. This leads to

the conclusion that in the hydrodynamic regime the changes in the overall

properties are driven by the changes in the values of the volume fraction

(see Picano et al., 2015) rather than in the values of the density ratio.
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Figure 4.6: Mean fluid velocities in a) outer units and c) inner units and

mean particle velocities in b) outer units and d) inner units.

A very interesting result for these cases were obtained with the anal-

ysis of the particle distribution on the wall-normal direction, see Fig. (4.7).
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Figure 4.7: Mean local volume fraction

as a function of the wall-normal position.

When the density of the solid phase increases, the particles tend to move

toward the centre of the channel. This behavior is due to a combination of

shear-induced and inertial migrations. A similar behavior has been found
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for much denser suspensions at φ = 0.3 of neutrally buoyant particles, see

Fig.(2.7(a)) . The inertial shear-induced migration can be phenomenolog-

ically interpreted considering the high collision rate occurring among non

aligned particles in high shear region. The collided particles result scattered

away in the shear direction creating a mean drift. The large particle inertia

of high R induces an enhanced collision rate which probably becomes similar

to that of denser cases with R = 1 where these effects have been observed.

Let us now focus on the intensity of the fluctuating velocities in the hy-

drodynamic regime, both for the fluid phase in Fig. (4.8(a))-(4.8(e)) and for

the solid phase in Fig. (4.9(a))-(4.9(e)).
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Figure 4.8: Intensity of the fluctuation velocity components

for the fluid phase in a), c), e) outer units and b), d), f) inner units.

The increase of the density ratio usually leads to a diminution of the

turbulence activity. In particular, the intensity of the first peak of the
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fluid turbulent intensities near the wall is reduced. Beyond this region,

the diminution of the turbulent activity follows a similar path for the rest

of the channel for all the components reaching also a 20% of reduction at

R = 10. Once again, it is interesting to notice that the diminutions of the

turbulence activity are less important than them found when changing the

volume fraction of a factor 2-4, meaning that the reduction of the turbulence

is driven more by the changes in the value of the volume fraction rather than

by the changes in the value of the density ratio. The particle velocity fluc-

tuation intensities show a similar behavior with the exception of the near

wall region where the increase of R can lead to a growth of the fluctuation

level. This can be attributed to the higher momentum induced by the larger

inertia of the particles reaching the wall from the bulk of the flow.
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Figure 4.9: Intensity of the fluctuation velocity components

for the solid phase in a), c), e) outer units and b), d), f) inner units.
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Dispersions

Let us now focus on the different profiles of the mean square displacement

fluctuations for the cases with φ = 0.05 and R increasing from 1 up to 10.
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Figure 4.10: Dispersion on a), b) streamwise, c), d) wall-normal and e),

f) spanwise directions.

As one can see from Fig. (4.10(b)), (4.10(d)) and (4.10(f)), the density

ratio does not affect significantly the mean square displacement fluctuations

in log-log plots. This means that the general dispersion mechanisms remain

unaltered with small difference in the correlation time scale TL and in the

diffusion coefficient Dt. These aspects are not unexpected given the similar

level of velocity fluctuation intensities shared by the cases at different R.

Nonetheless, looking to the same plots in linear scale allow to discern more

easily the differences. An anisotropic behavior of the dispersion rate for the

three directions changing R can be observed: while the streamwise mean
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square displacement fluctuation 〈∆x′2〉 is larger increasing R, the other two

components reduce. These aspects are associated to the diffusive uncorre-

lated dynamics, resulting in different diffusion coefficients Dt,i. The diffusion

coefficient results almost the double at R = 10 than R = 1 in the streamwise

direction, while it is the half in the spanwise direction. It should be noted

that the wall-normal mean square displacement will always saturate given

the fixed distance between the walls. In other words at high R particles tend

to separate more in the streamwise direction than in the transversal ones.

4.2.3 Ballistic regime

Velocity Statistics

Let us now consider the so-called ballistic regime. Four cases are analyzed:

two cases with φ = 0.05 and R = 100, 1000 and two cases at R = 100 with

φ = 0.02 and φ = 0.002.
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Figure 4.11: Mean fluid velocities in a) outer units and c) inner units and

mean particle velocities in b) outer units and d) inner units.

As one can see from Fig. (4.11(b))-(4.11(d)), the mean velocity of the

particles is more or less constant for all the four cases along the stream-

wise direction. The differences with respect to the mean value for the dilute

cases at φ = 0.02 and φ = 0.002 are negligible after the first particle layer
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at the wall and however, everywhere lower than the 20% of the mean value

of the velocity. The mean fluid velocity profiles of these dilute cases (Fig.

(4.11(a))-(4.11(c))) are less interesting: the small amount of particles in-

volved on the simulations for the cases with φ = 0.02 and φ = 0.002 is not

able to affect the properties of the fluid. The mean value of the fluid velocity

is then only slightly altered by the presence of the particles. It should be

remarked however that though quite dilute in volume fractions, these cases

still have high mass fraction M = Rφ, so it is not completely expected a

small effect on the flow statistics. The case at φ = 0.05 is different, since

presents a plateaux in the bulk region, typical of a plug flow. In this central

region the flow behaves more as a solid without a mean shear. The high

inertia of the particles tend to froze the suspension.

The particle average distribution is shown in Fig. (4.12). In this case,

the mean local volume fraction has been divided by the number of the par-

ticles, in order to have an effective comparison of the particle distribution

along the wall-normal direction for the different cases. This figure clearly

shows that in the ballistic regime the particles spread along the height of

the channel in the same way, for all the cases without showing anymore any

preferential concentration.
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Figure 4.12: Mean local volume fraction as a function of the

wall-normal position normalized by the number of particles.

Let us now consider the intensities of the fluctuating velocities, both for

the fluid phase in Fig. (4.13(a))-(4.13(e)) and for the solid phase in Fig.

(4.14(a))-(4.14(e)).
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Figure 4.13: Intensity of the fluctuation velocity components

for the fluid phase in a), c), e) outer units and b), d), f) inner units.

In all the cases there is an important turbulent activity near the wall.

Differently of the mean field, Fig. (4.13(a))-(4.13(f)) show that the presence

of few dense particles can alter the turbulent dynamics. A first reduction

of the turbulent intensities is seen starting from the case with φ = 0.02,

which tends toward the trends already analyzed of the cases with φ = 0.05,

where all the three components of the turbulent intensity presented an al-

most constant value. At φ = 0.05 the fluctuations intensities of the particle

velocity are constant and almost identical for each component being equal

to that of the fluid phase in the bulk region. The particles behave as a dense

gas with isotropic velocity fluctuations. The dilute cases at R = 100 show

some differences. The streamwise particle velocity fluctuation tends to be

higher than the corresponding quantity for the fluid phase, while the oppo-
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site occurs for the other components. The particle velocity dynamics of these

dilute cases seems to be coupled with the mean motion which is a source for

the streamwise velocity fluctuation. This mechanics induces higher fluctua-

tions in the streamwise then in the transversal directions. When the particle

concentration increases, the collisions start to dominate and tend to equally

distribute the kinetic energy of the particles. In other words, at high R the

particle dynamics is weakly affected by the motion of the fluid phase and

feels only the mean flow behavior. When the concentration is high enough a

collision dominated regime occurs. The collision tend to equally distribute

the particles and their kinetic energy.
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Figure 4.14: Intensity of the fluctuation velocity components

for the solid phase in a), c), e) outer units and b), d), f) inner units.
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Dispersions

Let us now focus on the different profiles of the mean square fluctuating

displacements for the four cases of ballistic regime above mentioned.
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Figure 4.15: Dispersion on a), b) streamwise, c), d) wall-normal and e),

f) spanwise directions.

In the ballistic regime, the diffusion phenomenon seems to evolve dif-

ferently to the other cases. As easily expected, in the case of φ = 0.002,

the few particles are more “free” to move, so they tend to drift apart from

their starting point more than the other cases. However, it seems that in

this case the correlation time is bigger, meaning that the particle velocities

are correlated to the initial values longer for the dilute cases than the others

cases. This can be explained with the higher freedom that they have in their

motion, leading to a reduced probability of collisions with the other particles

moving in the channel.
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4.3 Total stress balance

In order to better understand the momentum exchange between the fluid

and the solid phase in dense suspensions, the streamwise momentum budget

was examined. Following the rationale on the mean momentum budget given

in Appendix C, it is possible to write the whole budget as a sum of three

terms:

τ = τV + τT + τP (4.4)

where τ = u2τ (1 − y) is the total stress, τV = ν(1 − φ)(dUf/dy) is

the viscous stress, τT = −〈u′cv′c〉 is the turbulent Reynolds shear stress

(〈u′cv′c〉 = Rφ〈u′pv′p〉+ (1− φ) 〈u′fv′f 〉, with the terms on the right hand side

representing the particle Reynolds stress and the fluid Reynolds stress, re-

spectively) and τP = (φ/ρ) (〈σp,xy〉) the particle induced stress.

The coefficient R is source of numerical issues: the statistical noise aris-

ing from the results of the simulations is amplified by R; this would require

a computation much longer than in the other cases. For this reason, only

the mean value of the stresses is here reported, as a function of R.
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Figure 4.16: Momentum budget for different density ratio R at φ = 0.05.

All the values are averaged along the height of the channel.

From Fig. (4.16) it seems that the results obtained by Picano et al. can

be extended also when the volume fraction is fixed and R is increased. When

the value of the density ratio (and then of the mass fraction) is increased, the

viscous stress is almost constant, and the particle induced stress enhances.

Interestingly, while in the hydrodynamic regime the particle Reynolds stress

increases until R = 10, in the ballistic regime the fluid and the particle

Reynolds stress decreases with R and the particle stress increases becoming

the leading term. This demonstrate that the hydrodynamics regime is con-
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trolled by the turbulence with the particles affecting this regime mainly via

the solid phase Reynolds stress: the particles transport a large amount of

momentum with their correlated turbulent motions. In the ballistic regime

instead Fig. (4.16) shows the dominance of the particle stress similarly as

discussed by Lashgari (see Lashgari et al., 2014) for high φ at R = 1.

4.4 Interpretation

Using the definitions of Eq. (2.30), (2.29) and (1.40), for the simulations

above described the following values were found:

Case Ba Stp Reτ

φ = 0.05, R = 1 115 1.92 196

φ = 0.05, R = 2 229 3.84 201

φ = 0.05, R = 4 458 7.68 202

φ = 0.05, R = 10 1 146 19.20 203

φ = 0.05, R = 100 11 462 192.04 223

φ = 0.05, R = 1000 114 628 1920.4 224

φ = 0.002, R = 100 5 562 192.04 183

φ = 0.02, R = 100 9 054 192.04 191

Table 4.2: Values of the Bagnold number, the particle Stokes number

and the friction Reynolds number for all the cases studied.

In his work, Bagnold stated that his non-dimensional parameter was able

to describe the transition from the hydrodynamic to the ‘grain dominated’

regimes and he found that this transition appeared between Ba = 40 and

Ba = 450. As one can see from Table (4.2), the situation is now different. In

his work Bagnold did not investigated the behavior of the suspension when

the density ratio changes, while his theory has been proven several time at

fixed R and changing φ and Reτ . The results of Table (4.2) clearly show

that the values found by Bagnold are not anymore valid in this case.
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At the same time the Stokes number, which is the other parameter nor-

mally used for the description of the particle dynamics in dilute particle-

laden flows, seems not to completely describe the transition between the

hydrodynamic and the ballistic regimes. On one hand, when the particle

Stokes number Stp > 100, it was found that the particle dynamics tend to

be uncoupled with the fluid phase dynamics, so it seems to give a criterion

to discern these situations. However, the particle Stokes number does not

take into account the changes in the values of the volume fraction of the

dispersed phase. For this reason, since different values of the volume frac-

tion were found to lead to very different flow behavior (see for example Fig.

(4.11(b)) and (4.14(b))), with these datas it is possible to conclude that the

Stokes number alone cannot describe the transition.

In order to show that the Bagnold number does not well describe the

transition between the hydrodynamic and the ballistic regimes for the cases

reported in this work, the effective viscosity has been calculated as a function

of the Bagnold number and has been compared to the same function when

the volume fraction is increased. This quantity should increase linearly with

Ba in the particle dominated regimes following the Bagnold theory.

0 50 100 150 200
1

2

3

4

5

6

 

 

Φ = 0.1
Φ = 0.15
Φ = 0.2
Φ = 0.3

(a)

Ba
0 2000 4000 6000 8000 10000 12000

E
ff
e
c
ti
v
e
 V

is
c
o
s
it
y

0

2

4

6

(b)

Figure 4.17: Effective viscosity

a) for different bulk volume fractions φ and R = 1 (courtesy of Iman

Lashgari) and b) for different density ratios R.

While in Fig. (4.17(a)) fixing R = 1 the effective viscosity approached

a linear dependance with Ba at sufficiently high Bagnold number (exactly

as described by Bagnold), in Fig. (4.17(b)) there are not such dependences

anymore. It is then possible to conclude that the Bagnold number does not

describe the transition from the hydrodynamic to the ballistic regimes when

R is changed.



Conclusions

This Master thesis project focused on the study of a turbulent channel flow

laden with finite-size particles at relatively high volume fractions φ and

different solid to fluid density ratios R. The direct numerical simulations

reported in this work were performed by a parallel code developed by W.P.

Breugem at TU-Delft (see Breugem, 2012), using 576 cores of the CRAY

Supercomputer LINDGREN at PDC, KTH, Stockholm. The coupling be-

tween the fluid and the solid phases was set through an Immersed Boundary

Method. The aim of the present work was to clarify the effect of the density

ratio R on the suspension dynamics. The bulk Reynolds number has been

kept constant at Re = 5600 and the volume fraction has been initially set

to φ = 0.05, with the density ratio increasing from R = 1 to R = 1000. The

results suggested to test suspensions at lower volume fractions (φ = 0.002

and φ = 0.02) with high particle density.

Two different flow regimes were detected. As long as the density ratio

remains under a certain value (∼10), we observe a regime where the fluid-

particle interactions and the particle-particle interactions drive together the

flow behavior. In this “hydrodynamic” regime the enhancement of the par-

ticle density tends to slight decrease the turbulence activity. The dynamics

remains similar to that of the single-phase flows with some small differences.

An interesting aspect of this regime is the inertial migration towards the cen-

ter of the channel observed when R increases. This result may suggest that

considering heterogeneous suspensions made of particles with different den-

sity ratio, we will find denser particle in the middle of the channel. When

the density ratio crosses a threshold value (∼100), we found a regime where

the particles tend to be uncoupled with the fluid motions. In this “ballistic”

regime the particle-particle interactions (collisions) are much stronger than

the fluid-particle interactions and a further increase of the value of the den-

sity ratio slightly affects the general flow properties.

When the results were analyzed, various non-dimensional parameters

were evaluated in order to find the best formula describing the transition
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between the hydrodynamic and the ballistic regimes. The particle Stokes

number St ∼ 100 well discerns the conditions when the particle dynamics

become uncoupled with the flow. However, since it does not include any

relation with the volume fraction, it is not able to describe the different be-

haviors of the suspensions when φ is small but R is still large. Meanwhile,

the Bagnold number does not perform well to describe the different flow

behaviors when φ is kept constant and R is changed.

4.5 Future Developments

For a full comprehension of the present results further investigations are

needed. Starting from the actual datas, it would be interesting to run

longer the simulations with high density ratio, in order to analyze prop-

erly the local stresses along the wall-normal direction and to compare these

results with those recently published by Picano et al. 2015 . Moreover, for a

complete understanding of the physics driving the process additional simu-

lations would be needed. For example, from the analysis of other cases with

different values of φ and different density ratios it will be possible to fully

characterize the transition from the hydrodynamic to the ballistic regimes.

Meanwhile, a deeper analytical analysis would be requested in order to find

a parameter well describing the whole transition process. Both the particle

Stokes number and the Bagnold number failed in the interpretation of the

results, but with the present datas it is not possible to conclude neither that

they are completely unable to describe the transition when R increases, nor

if a modification of their expressions would lead to a better match with the

present results.



Appendix A

The Bagnold number

The Bagnold number was defined in Eq. (2.30):

Ba =
inertia stress

viscous stress
=
λ1/2ρpd

2
pdu/dy

µf
(A.1)

The simplified expression found in Eq. (2.33) is deduced as follows:

Ba =
λ1/2ρpd

2
pdu/dy

µf

= λ1/2
ρp
ρf

ρf
νf
h2
du

dy

d2p
h2

= λ1/2
(
dp
h

)2 du
dyh

2

νf
R

= 4λ1/2
(
dp
h

)2

RebR (A.2)

where Reb is the bulk Reynolds number (1.28). In the previous derivation

the following approximation was used:

du

dy
h2 ' 4ubh (A.3)

where the coefficient 4 is an approximation of the maximal value of the

derivative of du
dy at the wall.
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Appendix B

The Stokes number

The Stokes number was defined in Eq. (2.29):

Stp =
particle characteristic time

fluid characteristic time
=

(
d2pρp

18νf

)
/

(
h

ub

)
(B.1)

The simplified expression found in Eq. (2.32) is deduced as follows:

Stp =

(
d2pρp

18νf

)
/

(
h

ub

)
=

d2p
18νf

ρp
ρf

ub
h

=

(
dp
h

)2 1

18

ubh

νf
R

=

(
dp
h

)2 1

18
RebR (B.2)

where Reb is the bulk Reynolds number (1.28).
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Appendix C

Total stress

The present appendix has been adapted from Picano et. al 2015 with the

permission of the authors. In this work we used the framework developed

by Prosperetti and co-workers to examine the stresses in the suspension (see

Marchioro et al., 1999). Two different densities for the fluid (ρf ) and for the

particles (ρp) were assumed. Following Zang and Prosperetti (see Zang and

Prosperetti, 2010), the phase indicators ξ = 0 for the fluid phase and 1 for

the solid one were defined. The force balance for the volume V delimited by

the surface S(V) reduces to:

ρp

∫
V
ξap + ρf

∫
V

(1− ξ)af dV =

∮
S(V)

[ξσσσp + (1− ξ)σσσf ] · n dS (C.1)

with n the outer unity vector normal to the surface S(V), the subscripts

‘f’ and ‘p’ denoting the fluid and the particle phases, ai and σσσi the accel-

eration and the general stress in the phase i. Applying the phase ensemble

average to Eq. (C.1), hereafter denoted as ‘〈〉’, it easy to obtain:

ρp

∫
V
〈ξap〉 dV + ρf

∫
V
〈(1− ξ)af 〉 dV =

=

∫
V
∇ · [〈ξσσσp〉+ 〈(1− ξ)σσσf 〉] dV (C.2)

where the divergence theorem was used to the differentiable integrand on

the right hand side. Since the last equation holds for any mesoscale volume

V, it is possible to use the corresponding differential form of the equation:

ρp〈ξap〉+ ρf 〈(1− ξ)af 〉 = ∇ · [〈ξσσσp〉+ 〈(1− ξ)σσσf 〉] (C.3)

Considering the definition of the volume fraction φ = 〈ξ〉, the expression

above can be further simplified:

ρpφ〈ap〉+ ρf (1− φ)〈af 〉 = ∇ · (φ〈σσσp〉+ (1− φ)〈σσσf 〉) (C.4)
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Assuming the constitutive law of a Newtonian fluid σσσf = −pI + 2µE

with p the pressure and E the symmetric part of the fluid velocity gradient

tensor and considering that both the fluid and the particle velocity fields are

divergence-free, Eq. (C.4) can be re-written as:

ρp
ρf
φ

[
〈up〉
∂t

+ 〈up · ∇up〉
]

+ (1− φ)

[
〈uf 〉
∂t

+ 〈uf · ∇uf 〉
]

=

= ∇ ·
(
φ〈σ
σσp
ρ
〉
)
− (1− φ)

∇〈p〉
ρf

+ ν(1− φ)∇2〈uf 〉 (C.5)

The statistically stationary mean fluid and particle velocities are denoted

as Uf/p = 〈uf/p〉 and the fluctuations around these mean values are indi-

cated as u′f/p = Uf/p − 〈uf/p〉, so that the average momentum equation

becomes:

ρp
ρf
φ
[
Up · ∇Up + φ∇ · 〈u′pu′p〉

]
+ (1− φ)

[
Uf · ∇Uf + 〈u′fu′f 〉

]
=

= ∇ ·
(
φ
〈σσσp〉
ρf

)
− (1− φ)

∇P
ρf

+ ν(1− φ)∇2〈uf 〉, (C.6)

with P the mean pressure.

Exploiting the symmetries of a fully developed parallel channel flow,

characterized by two homogeneous directions (the streamwise, x and span-

wise, z), it is possible to project Eq. (C.6) in the wall-normal direction y:

d

dy

[
(1− φ)〈v′2f 〉+Rφ〈v′2p 〉+ (1− φ)

P

ρf
− φ

ρf
〈σp yy〉

]
= 0. (C.7)

Integrating Eq. (C.7) in the y direction and denoting by Pw(x) the wall

pressure, it is easy to obtain:

(1− φ)〈v′2f 〉+Rφ〈v′2p 〉+
PT
ρf

=
Pw
ρf
, (C.8)

where PT = (1 − φ)(P/ρf ) − φ〈σP yy〉/ρf is the mean total pressure. It

should be noted that PT coincides with Pw at the wall and that:

∂PT
∂x

=
∂Pw
∂x

. (C.9)

Eq. (C.6) projected in the streamwise direction x reduces to:

d

dy

[
(1− φ)〈u′fv′f 〉+Rφ〈u′pv′p〉 − ν(1− φ)

dUf
dy
− φ

ρf
〈σp xy〉

]
= − d

dx
(
Pw
ρf

),

(C.10)
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where the terms (∂/∂x)
[
(φ/ρf )(〈σp xx−σp yy〉)

]
are neglected because of

the streamwise homogeneity.

Integrating Eq. (C.10) in the wall normal direction and the denoting

the Reynolds shear stress of the combined phase 〈u′Cv′C〉 = (1− φ)〈u′fv′f 〉+

Rφ〈u′pv′p〉, the equation for the total stress τ(y) is obtained:

τ(y) = −〈u′Cv′C〉+ ν(1− φ)
dUf
dy

+
φ

ρ
〈σp xy〉 = ν

dUf
dy

∣∣
w(1− y

h
), (C.11)

where the boundary condition at the wall is τw = τ(0) = ν(dUf/dy)|y=0.

Eq. (C.11) shows that the total stress of a turbulent suspension in a chan-

nel geometry is given by three contributions: the viscous part, τV = ν(1 −
φ)(dUf/dy), the turbulent part τT = −〈u′Cv′C〉 = −(1−φ)〈u′fv′f 〉−Rφ〈u′pv′p〉
and the particle-induced stress, τP = φ〈σp xy〉/ρ. It should be noted that

the turbulent stress accounts for the coherent streamwise and wall-normal

motion of both fluid and solid phases. The particle induced stress is origi-

nated by the total stress exerted by the solid phase, see Eq. (C.1), and takes

into account hydrodynamic interactions and collisions.

In the absence of particles, i.e. φ→ 0, Eq. (C.11) reduces to the classic

momentum balance for single-phase turbulence.
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Grazie Anna, perché sei la sorella migliore di tutte.

Grazie al fantastico gruppo di Aerospaziali che l’Università mi ha fatto
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