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Prefazione

Lo scopo di questa tesi è quello di analizzare, in modo sistematico, i sistemi di estrazione di
potenza eolica chiamati crosswind airborne wind energy systems. Questi sistemi estraggono
potenza dal vento grazie a velivoli connessi a terra tramite un cavo: si distinguono in
Ground-Generation e Fly-Generation airborne wind energy systems.

I sistemi Ground-Generation producono potenza sfruttando le forze aerodinamiche del
velivolo per esercitare una forza di trazione sul cavo e srotolarlo. L’energia elettrica è
prodotta con un generatore piazzato al suolo. La produzione di potenza, in questo caso, è
composta da due fasi: una fase di produzione, in cui l’energia è prodotta e il velivolo si
allontana dalla stazione a terra, e una fase di recupero, in cui il velivolo ritorna al punto di
partenza.

I sistemi Fly-Generation producono potenza con delle piccole turbine eoliche montate a
bordo del velivolo. In questo caso, la potenza elettrica può essere prodotta in maniera
continuativa.

Nel mondo della ricerca e imprenditoriale questi due metodi sono studiati separatamente.
Un confronto è spesso fornito da considerazioni qualitative o in base alle prestazioni finali.
Un metodo di confronto sistematico è proposto in questa tesi. In questo modo, uno studio
dei design di massima dei due sistemi può essere ottenuto.

Nella prima parte della tesi le equazioni di potenza dei due sistemi sono unificate in un’unica
equazione, con l’assunzione di volo stazionario. In questo modo, le due tipologie possono
essere studiate con un’unica trattazione. Questa formulazione analitica tiene in conto della
massa del sistema: consente infatti la stima delle perdite di potenza dovute alla massa. Un
design di massima della struttura, dell’elettronica di bordo e del cavo fornisce una stima
della massa in volo, necessaria per il calcolo della potenza estraibile. Il modello proposto
in questa tesi comprende gli aspetti salienti dei vari sotto-sistemi.

Una volta presentato il modello, i metodi usati per studiarlo sono mostrati. Due metodi
sono usati in maniera sequenziale. Il primo consiste in un’ottimizzazione mediante un
algoritmo gradient-based. L’algoritmo modifica delle variabili per massimizare una funzione
obbiettivo. Facendo ciò, realizza un design del sistema. L’ottimizzazione può essere
considerato un processo totalmente deterministico che, per dei valori di alcuni parametri,
fornisce un design di configurazione del sistema. Il secondo metodo stima quindi come
questi parametri influenzano il design. Questo studio è svolto con una analisi di sensitività
globale, in particolare con una tecnica chiamata variance-based decomposition. Questa
tecnica stima la sensitività della varianza degli output, che descrivono gli ottimi design,
con rispetto alla varianza degli input. La varianza degli input è assegnata e rappresenta
le incertezze dei parametri. Queste incertezze rappresentano fonti di incertezza dovute
a parametri aleatori, diversi design, sviluppi tecnologici di componenti, prestazioni di
componenti non sviluppati e cos̀ı via. In questo modo, è possibile studiare le configurazioni
robuste e gli aspetti critici dei design nel futuro.



I risultati, per il caso in cui i sistemi sono ottimizzati per massimizzare la produzione
annua, sono mostrati, evidenziando i trend chiave nei design.

Sucessivamente, un modello economico è proposto per valutare il costo di questi sistemi.
Gli stessi metodi sono utilizzati per studiare i design ottimizzati per massimizare il profitto.
I risultati, per questo caso, sono mostrati per sistemi Ground-Generation e Fly-Generation,
evidenziando le interessanti possibilità che queste tecnologie, una volta mature, possono
avere da un punto di vista commerciale.



Abstract

The aim of this thesis is to analyse in a systematic way the design of crosswind airborne
wind energy systems. Ground generation and Fly generation airborne wind energy systems
should be seen from one perspective, to identify the common critical design drivers. The
strong configurations and the sub-systems that need to be developed should be determined.
Thus, this work is looking into optimal crosswind AWES into the future.

A generalization of the Loyd power equations is derived, to model a system with ground
and onboard generation. The main sub-systems and physics are considered: reel-in phase,
additional drag due to tether and lifting line theory, tether sag, structural design of the
aircraft, take-off strategy and dimension of onboard turbines. Once the flying mass is
found, the relative power losses are evaluated. To evaluate the power losses due to mass
an analytic model is proposed. This model can be useful to AWES designers to estimate
the influence of the flying mass on the power production with analytic equations.

The physical model of a generic crosswind AWES is implemented into an optimisation
algorithm, which performs the kite design to maximise the annual energy production. Many
aleatory and epistemic uncertainties are present in the problem. Thus, a global sensitivity
analysis outlines how these uncertainties propagate throughout the design.

To maximise the AEP , the kite wing area and the aerodynamic coefficients are found to
be the design drivers. The main sub-systems are analysed, outlining the critical issues and
main characteristics.

In the second part of the thesis, a cost model is included. The cost model takes into
account kite structure, tether, generators, electronics, take-off and landing structure, tower,
fix cost and operation costs. A life for tether and kite is considered. The cost model is
implemented in the optimisation algorithm, to find designs that maximise the profits.

A global sensitivity analysis shows the key trends in the optimal designs, outlining the
characteristics that commercial AWES will have in the future and their strength.
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Chapter 1

Introduction

The first news related to the use of a kite to pull a load dates back to the early 1800,
when George Pocock (1774–1843) [1] invented the ”Charvolant”, a kite-drawn carriage
patented in 1826. Only in 1980, almost two centuries later, the kites were brought back to
the attention of the scientific community by M. L. Loyd [2], with a short paper describing
the physics of kites flying crosswind. In this paper [2], discussed in Section 3.1 and 3.2, the
author shows that the potential power output from an ideal kite flying crosswind is much
higher than a traditional wind turbine, for the same lifting area. However, the absence of
a cheap and reliable control system in the 1980-s, has made it difficult to commercialize
the concept.

Loyd pointed out that kites flying crosswind can harvest power from the wind in two
ways. In the first way, the kite pulls and unwinds a tether. The power is generated on the
ground, using an electrical generator. In this thesis this system is called Ground Generation
Airborne Wind Energy System (GG-AWES). In the second way, the kite generates power
onboard with some wind turbines and transmits it to the ground through an electric
cable. In this thesis this system is called Fly Generation Airborne Wind Energy System
(FG-AWES). Figure 1.1 outlines the two concepts.

Figure 1.1: Distinction between GG-AWES (a) and FG-AWES (b) [3].

Only in the last two decades, the computational and sensory progress have been making
kites a realistic way of extracting power from the wind. Moreover, society is asking more
and more to enhance the renewable energy production, thus incentives are available for
new companies aiming to produce green energy. All these factors have promoted the birth
of many start-ups, developing slightly different concepts from each other, and stimulating
researcher’s interest. Figure 1.2 gathers all the researcher groups and the companies
worldwide. Most of the activities are concentrated in Europe and USA.

1



Figure 1.2: AWE research and development activities in 2017. [4]

1.1 Motivations

Researches and companies are studying and developing GG-AWES or FG-AWES. A
comparison between the two crosswind generation types is often driven by qualitative
considerations or by a comparison between the final design performances. The motivation
of this thesis is to look for a systematic method to evaluate crosswind AWESs, studying
them from one perspective. The impact of uncertainties, new technologies, unknown
performances, different designs and design constraints on the design should be estimated.
In this way, one can evaluate the strong configurations and understand the level of
technology that needs to be developed. So, this work is looking into optimal crosswind
AWES designs in the future.

1.2 Overview of the work

This thesis is divided into nine chapters.

Chapter 2 is giving an overview on the main characteristics of crosswind AWES.

Chapter 3 shows the physical model used in this thesis. Initially, the power equations
for GG-AWES and FG-AWES are derived with a refinement of the Loyd [2] formulation.
Later, one unified power equation for a generic crosswind AWES is derived. A structural
and a take-off model allow the computation of the system mass. A refinement of the power
equation for a generic crosswind AWES is then proposed, to take into account the system
mass.

Chapter 4 presents the methods used to evaluate the model. A gradient based optimisation
algorithm is used to perform the kite design. Multiple sensitivity analysis techniques are
proposed in the chapter. These techniques aim to give a complete picture of the kite optimal
designs. The local sensitivity analyses, performed by taking the gradients and by looking
at the Lagrange multipliers of the optimal solutions, give a local understanding of the kite
design. The global sensitivity analysis, performed with a variance based decomposition,
gives an understanding on how the designs change with a large change of the inputs. In
this way, the impact of uncertainties, new technologies, unknown performances, different
designs and design constraints can be evaluated.

Chapter 5 shows the results for the annual energy production maximisation. The model
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presented in Chapter 3 is implemented in an optimisation algorithm. The optimiser
preforms the kite design, maximising the energy production. With the global sensitivity
analysis, it is investigated how the uncertainties related to the model propagate. In this
way, the design drivers and the strong configurations can be found.

Chapter 6 presents the cost model of a generic crosswind AWES. The main subsystems are
considered and the cost functions given.

Chapter 7 shows how kite designs look like, if profit is maximised. With the global
sensitivity analysis, how the physical and economical uncertainties propagate throughout
the designs is studied.

Chapter 8 proposes future works.

Finally, Chapter 9 gathers the main findings of this thesis.
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Chapter 2

Background

The aim of this chapter is to give an overview of the characteristics of Airborne Wind
Energy Systems flying crosswind. Initially, some considerations related to the wind power
at high altitudes are presented. Later, a classification of the crosswind AWES is shown
and the main take-off strategies introduced.

2.1 Wind resources at high altitude

One of the reasons why AWES is so interesting is the possibility of accessing high wind
resources located at high altitudes. Different concepts of AWES have different technical
limits in altitude, ranging from some hundred meters to several kilometres [3]. Thus, it is
interesting to study how much kinetic power can be extracted from the wind at different
heights. Archer in [5] and [6] tries to give an estimation of the available power and proposes
some atmospheric models. Later Bechtle [7] assesses the wind potential all over Europe,
showing wind profiles and wind distributions for AWES.

To compare wind resources at different altitudes, the available power should be considered,
instead of the wind speed. The power carried from the wind passing through an area A is
indeed function of the air density ρ and the wind velocity Vw:

P=
1

2
ρAV 3

w (2.1)

The air density is decreasing with the altitude, while the wind speed is generally increasing.

At high altitude (h > 1000 m) the wind speed is due to geographic differences in pressure
and Coriolis Forces. These forces produce high wind speed with low turbulence.

In Figure 2.1, the power available at different altitudes is shown for three percentiles.
The percentiles are showing with which frequency the power density is higher than the
highlighted one. Clearly, an increase in the power density can be seen with an increase in
altitude. The first image, at a level of 80 m, is representative of a traditional wind turbine:
only in a few location across the globe, the median power density is about 0.3 kW/m2.
With increasing altitude, more and more locations have the same power. This highlights
another important aspect, accessing wind at higher altitudes makes wind energy feasible in
more locations.
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Figure 2.1: 50th, 68the and 95th percentiles of wind power density at three heights above
the ground. [6]

2.2 Classification of Airborne Wind Energy Systems

Airborne Wind Energy Systems AWESs are generally composed of two main parts: a
ground station and at least one aircraft mechanically connected to the ground station. The
main distinction between AWES is the way in which power is harvested.

Ground Generation Airborne Wind Energy Systems (GG-AWES) produce power on the
ground: the aerodynamics force on the kite pulls and unwinds a tether. The mechanical
power is transmitted by means of the pulling force and the reel-out velocity. Finally, it is
transformed into electricity using an electrical generator (Figure 1.1(a)). Once the tether is
completely unwound, the kite needs to go back to the starting point. The power generation
is then composed of a generation and a recovery phase.

Fly Generation Airborne Wind Energy Systems (FG-AWES) can be classified as crosswind
systems and non-crosswind systems depending on how they produce power [8]. FG-AWES
flying crosswind generate power on-board with some small wind turbines and transmit
it to the ground through an electric cable (Figure 1.1(b)). In this case, the tether is not
reeled out: power is produced continuously. In this thesis only crosswind FG-AWES are
considered.

2.3 Ground-Generation Airborne Wind Energy Systems
2.3.1 Generation strategies

Considering Ground Generation Airborne Wind Energy System, different strategies are
studied for the power conversion. This leads to a distinction between fixed ground station
systems, where the ground station is fixed, and moving ground station, where the mechanical
force is moving a vehicle.

One of the characteristics of the fixed ground station GG-AWES is the periodicity of the
power output. The power generation cycle is indeed composed of a generation and a
recovery phase.
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Referring to Figure 2.2, in the generation phase, the aircraft is pulling and unwinding
the tether, connected to a generator. In the recovery phase, the aircraft changes the
aerodynamic configuration to close the loop going back to the initial point, while the tether
is wound back. In this phase, a small amount of power is spent. To analyse the total power
output both phases need to be taken into consideration.

Figure 2.2: Graphical representation of the two GG-AWES phases [3].

For moving ground station GG-AWES, the main concepts are represented in Figure 2.3.
The aim of having the power production on a moving ground station is to continuously
produce energy, avoiding the recovery phase.

Figure 2.3: Three concepts of moving ground station GG-AWES.Carousel (a), closed loop
rail (b) and open loop rail (c) [3].

The carousel configuration (a) consists of multiple GG-AWESs connected to the same rotor.
All the GG-AWESs drive the generator, allowing a continuous power production. With
the closed loop rail configuration (b) a number of wagons are carried by the kites along a
closed track [9]. The wagons are generating power when the wind is perpendicular to the
direction of the movement. They exploit aerodynamic drag when the movement is in the
same direction of the wind and they spend some power when the movement is opposite to
the wind direction. Finally, the open loop rail concept (c) is similar to the closed loop rail,
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the wagons move only perpendicular to the wind direction. However, the wagon has to
stop and change direction when the rail ends and this system can operate only with wind
perpendicular to the rail direction.

In this thesis, only fixed ground station GG-AWES are considered.

2.3.2 Aircraft types

Different aircraft types could be suitable for a Ground Generation Airborne Wind Energy
System. Figure 2.4 gathers the main concepts. The main characteristics of each of them
are listed below.

Figure 2.4: Different aircraft types for Ground Generation Airborne Wind Energy Systems
[3].

LEI Kite This concept of soft kite was patent in 1987 [10], it is still used mainly for
sub-components testing of AWES and on small scale prototypes. It consists of a
single layer kite with an inflatable structure on the leading edge. The main problem
of this kite is the scalability to bigger size, that makes this design less attractive [3].

Foil kites This concept is based on two layers, constituting canopy cells from leading to
trailing edge. [11] The cells are inflated through some opening on the leading edge.
Comparing this design with the LEI Kite, the foil wings have better aerodynamic
performances and the size can be much bigger. The main problem for fabric wing is
the durability, besides an automated launching and landing. It has been estimated
that the lifetime is around several hundred hours [12].

Semi-rigid wings This concept is composed of many short rigid parts together with some
fabric parts. The results is a structure lighter than a rigid wing and more durable
than a fabric one [3].

Sailplane or Gliders This concept is based on a solid structure, that leads to high
aerodynamics performances. Compared to soft kites, they are heavier, more expensive
but they can be designed to infinite lifetime [13].

Swept rigid wings This concept is similar to gliders, but without any fuselage and tail.
The stability is more challenging, it has to be attained with the bridle system and
the sweep angle [3].
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2.4 Fly-Generation Airborne Wind Energy System

A Fly Generation Airborne Wind Energy System produces electric energy on-board,
while flying, using turbines. The power is transmitted to the ground trough an electric
cable. Compared to GG-AWES, this concept produces power continuously (with still some
fluctuations due to the trajectory), and the tether is unrolled only during the take-off and
landing manoeuvres.

Only a few aircraft designs have been proposed for this concept: a glider from Makani
Power [14] and a biplane, initially from Joby Energy [3] and recently from KiteKraft [15].

Cherubini [3] and the Danish Company KiteX [16] are investigating a possible solution to
drastically reduce the drag due to the tether by flying two drones on the same line (Figure
2.5). By reducing drag, multiple drones could fly at a higher altitude, with more available
wind power.

Figure 2.5: Comparison between different wind energy technologies [3].

2.5 Take-off

Take-off is known to be one of the critical phases of the design of an AWES. According to
the power production technique, different take-off strategies are investigated in literature.

The state of art of take-off for FG-AWES is the vertical take-off, using the turbines as
propellers [14] [15]. This strategy is considered to be the best, as the turbines have already
the dimensions to lift the kite vertically. Thus no significant modification to the structure
has to be done. The control system, making the kite to fly as a drone, takes care of taking
off and landing on the platform. A high reliability of the procedure can be attained. It is
worth mentioning the researches related to take-off of multiple drones connected to the
same line. For this concept, Cherubini [3] proposes a rotational take-off.

For GG-AWES, there are different techniques currently being investigated. The first
distinction is between soft and hard kites. For soft kites, a telescopic mast that holds the
kite can be used, while the canopy inflates [17]. Also the landing exploits the same mast.
For hard kites three solutions are studied: linear, rotational and vertical take-off:

Linear The kite has to be equipped with on-board propellers. This technique is currently
implemented by Ampyx Power [13], and is studied initially in [17] and [18]. The
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aircraft is initially accelerated along a runway by an external device, that usually is
the winch itself. Once the kite has started to flight, the necessary thrust to climb is
given by on-board propellers.

Rotational This strategy is studied in literature in [17] and [18]. It is implemented by
the German company EnerKite [19]. With this technique, the aircraft is accelerated
using a rotating arm. Exploiting the lift given by the tangential velocity, the aircraft
takes off and the tether is released accordingly. No on-board propeller is needed.

Vertical This technique is studied widely, since can used by both GG-AWES [20] [21] and
FG-AWES [14]. The on-board propellers carry the kite up to the necessary altitude.
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Chapter 3

Physical modelling of a generic
crosswind AWES

In this chapter, the physical modelling related to the power production is presented.

Initially, a refined model for GG-AWES and for FG-AWES from literature are introduced.
These models are based on the assumptions of steady state flight and negligible mass.

After, a unified model, which can handle ground and on-board generation at the same time,
is derived. Then, the flying mass is estimated with a structural model and a take-off model.
Once the flying mass is computed, the unified model is modified to take into account the
power losses due to mass.

The model presented in this chapter aims to resolve the main characteristics and the most
important physics of crosswind AWES, without looking at the details of each sub-system.

Since in this work the model is implemented in an optimisation algorithm, analytical
equations are needed to make the computation fast. The unified model is derived to let
the optimiser to choose how to generate power and to look at crosswind AWES as a whole.
Moreover, the optimiser should be able to perform a structural design and decide on the
take-off strategy.

The models proposed in this work are only representative of hard kites.

In this chapter the wing area is defined as A for readability.

3.1 Power equation of Ground-Gen Airborne Wind Energy
System

In this section, the main passages of a refined derivation for the power equation of a
GG-AWES proposed by Loyd [2] are shown. The aim of this section is to make the reader
familiar with the terminology and to introduce the main physical principles used later in
this chapter. The main assumptions of this derivation are:

1. The external forces acting on the kite are considered in equilibrium and the inertia
forces are insignificant. In this analysis, the mass and the trajectory are neglected.
However, in many efficient systems, the effects of these are small during the production
phase [22] [23] [24].

2. The tether is considered straight and without mass.

10



3. The power equation is describing only the production phase. Thus, when considering
the whole cycle, the power output is lower.

The last two assumptions will be addressed later in this section, with additional models
available in literature.

3.1.1 Derivation

Considering Figure 3.1, the wind is blowing from left to right (along the x-axis) and the
kite is moving out of the page (along the y-axis). The wind speed seen from the kite
is reduced by the factor cos(θ), where θ represents the inclination of the tether at the
connection with the kite (Vw‖ = Vw cos θ).

z

x

β

θ Vwcosθ

Vw
Ra

Figure 3.1: Tether elevation and relative wind velocity seen from the kite.

Looking at Figure 3.2, L represents the kite lift, D the drag and Ra the resultant aerody-
namic force. The tether force T is equal to the resultant aerodynamic force Ra. Vout is the
reel-out velocity of the tether. The wind speed along the tether direction seen from the kite
is therefore: Vr = Vw‖ − Vout. The power for a GG-AWES can be found by multiplication
of the tether force T and the reel-out velocity Vout [2]:

PGG = T · Vout (3.1)

y

x Vout

Vwcosθ

Vout

Va
Vτ

α

α

L

D

Ra

Figure 3.2: Velocity triangle and aerodynamic forces seen from the top for a GG-AWES.
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Considering that the system is in equilibrium, Ra is in the opposite direction of the tether
and D is parallel to the relative velocity Va, the following proportion can be found:

L

D
=

1
2ρairACLV

2
a

1
2ρairACdV

2
a

=
CL
Cd

=
Vτ
Vr

(3.2)

Where ρair is the air density, A the kite lifting area, CL and Cd are lift and drag coefficient
of the kite and Va is the relative wind velocity seen from the kite.

The tangential velocity Vτ can be expressed as a function of the wind speed, the aerodynamic
coefficients and the reel-out velocity:

Vτ = Vr ·
CL
Cd

= (Vw‖ − Vout) ·
CL
Cd

(3.3)

Defining the glide ratio Ge = CL
Cd

the relative velocity is:

V 2
a =

(
(Vw‖ − Vout) ·Ge

)2
+
(
Vw‖ − Vout

)2
= (Vw‖ − Vout)2 · (1 +G2

e) (3.4)

The tether force, as function of the reel-out speed, is:

T = Ra =
√
L2 +D2 =

1

2
ρair A Cd

√
1 +

C2
L

C2
d

· (Vw‖ − Vout)2
(
1 +G2

e

)
=

1

2
ρair A Cd (Vw‖ − Vout)2

(
1 +G2

e

)3/2 (3.5)

The power equation can now be derived:

PGG = T · Vout =
1

2
ρair A Cd (Vw‖ − Vout)2 Vout

(
1 +G2

e

)3/2
(3.6)

By taking the derivative of PGG with respect to Vout, it can be demonstrated that the
maximum power is harvested when Vout = Vw‖/3. The maximum power is:

PGG,max =
4

27
Pw cos θ3 A Cd

(
1 +G2

e

)3/2
(3.7)

With the power density:

Pw =
1

2
ρairV

3
w (3.8)

Considering high glide ratios, the power output can be approximated as:

PGG,max ≈
4

27
Pw cos θ3 A CL G

2
e (3.9)

When the production power is maximised (Vout = Vw‖/3), the tether force becomes:

TGG,max =
2

9
ρair A V 2

w cos θ2Cd
(
1 +G2

e

)3/2
(3.10)

Given the importance of CL, glide ratio and elevation, additional models are developed for
these terms.

12



3.1.2 Finite wing aerodynamics

To model the aerodynamics of a finite wing, Pradtl lifting-line theory [25] is considered.
With this theory, the lift and drag coefficient of a wing can be found, given the properties
of the airfoil and the aspect ratio AR = s2

A (s is the wing span and A the area).

With the assumption of elliptical wing, the lift distribution along the span is also elliptical
and the downwash velocity is constant for the whole wing [25]. Considering thin airfoils the
slope of the lift coefficient CL with respect to the angle of attack (a0) can be approximated
to a0 ≈ 2π.

With these considerations, the aircraft drag has a component of induced drag. It is function
of the square of the lift coefficient and of the wing aspect ratio:

Cdi =
C2
L

πARe
(3.11)

where e is the Oswald efficiency, considered to be 0.9 [26]1.

3.1.3 Additional drag due to the tether

Since the power is increasing with the square of Ge, particular attention should be given
to the estimation of the glide ratio. The drag coefficient is representative of the drag of
the whole system, not only of the kite itself. Thus, a contribution from the tether has to
be evaluated.

The line normal force per length dF (crossflow principle) is given by:

dF =
1

2
ρaird C⊥V

2
n (3.12)

where the diameter is indicated by d, the perpendicular aerodynamic drag coefficient of
the tether by C⊥ and the tether transverse velocity by Vn.

Vn is equal to Vτ at the kite level and null at the ground: Vn = Vτ
l
r . r is the tether length

and l the tether longitudinal coordinate. The equivalent force acting on the kite can be
found matching the torque around the generator point [22]:

Ftether · r =
1

2
ρaird C⊥

∫ r

0

(
Vτ l

r

)2

l dl

Ftether =
1

2
ρaird C⊥ V

2
τ

r

4

(3.13)

The additional drag coefficient is then [22]:

Cd,tether = C⊥
d r

4 A
(3.14)

Finally the total drag is expressed as:

Cd = Cd0 +
C2
L

πARe
+
C⊥dr

4A
(3.15)

Cd0 is the drag coefficient at zero lift of the kite. The second term represents the lift
induced drag introduced in the previous section.

1For a straight infinite wing e = 1. Non-ideal load shapes for a flat wing make the Oswald efficiency to
become smaller. Non-planar wings, for instance winglets, can have e > 1. This expression can thus be used
to simulate all kinds of different wing shapes.
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3.1.4 Elevation angle & tether sag

z

x

β

θ
Vwcosθ

Vw Ra

Figure 3.3: Tether elevation β, wind speed and total aerodynamic force on a kite flying
crosswind considering the tether sag. θ is the inclination of the tether at the kite connection.

The tether sag can be found by considering the mass per unit length of the tether and the
normal force. The mass per unit length is:

mr = Aσρσ + ηisAelρel (3.16)

Where the tether area Aσ represents the section carrying the load, the electric cable area
Ael transmits the power onboard generated. The term ηis takes into account the isolation
coating needed for the cable [3]. ρσ and ρel are respectively the mass densities of the
structural and electrical material.

To model the inclination of the tether at the kite connection, the tether sag is approximated
with a parabola [3]. Using a parabola instead of the catenary curve is a good approximation
with small sag [27]. Considering the parabola equation z = a x2 + a b x, the a term is
given by [27]:

a =
mr · g

2T
(3.17)

where T is the tether force and g the gravity acceleration. The b term is [27]:

b =
tanβ

2a
− r cosβ

2
(3.18)

Finally, the angle between the tether and the x axis at the kite point is [27]:

θ = arctan (2a(r cosβ + b)) (3.19)

3.1.5 Influence of the recovery phase

To maximize the cycle power, the power equation of production and of recovery phases
should be included into one model.

Considering Eq. (3.6), a non-dimensional coefficient γout = Vout
Vw

can be used to express the
power equation during the production phase:

Ppr = Pw A γout (cos(θ)− γout)2 Cd
(
1 +G2

e

)3/2
(3.20)

with Pw = 1
2ρairV

3
w (Eq. (3.8)).
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z

x

Vw

Vwcosβ

Ra

Vin

Vin

Va
D

L

β

Figure 3.4: Velocity triangle and aerodynamic forces during the reel-in phase. β is the
tether elevation.

More strategies are available for the retraction phase [28], the one modelled in this work is
possible only for a solid aircraft. It is assumed that the kite is brought back to the initial
position with a straight path (Figure 3.4) [29]. This solution is not suitable for a soft kite,
because the wing cannot be oriented in this configuration and the reel-in forces would
be too high for an efficient overall power production [30]. The transition phases between
production and recovery are neglected. The relative velocity seen from the kite is:

V 2
a = V 2

w + V 2
in + 2VwVin cosβ (3.21)

Where Vin = γinVw. Assuming the kite to be in equilibrium during the reel-in, the
aerodynamic resultant force Ra lays along the tether direction and D is parallel to Va, the
angle between Va and the tether is equal to the angle between Ra and D:

L

D
=

Vw sinβ

Vw cosβ + Vin
=

sinβ

cosβ + γin
(3.22)

The tether force during the retraction phase is then:

Tr =
√
D2 + L2 = D

√
1 +

(
sinβ

cosβ + γin

)2

(3.23)

Considering that β is typically less that 30◦ and γin typically above 1, a good approximation
is Ra ≈ D [29]. Thus:

Tr =
1

2
ρairA Cd0

(
V 2
w + V 2

in + 2VwVin cosβ
)

=
1

2
ρair V

2
wA Cd0

(
1 + γ2

in + 2γin cosβ
) (3.24)

The power spent during the recovery is then:

Pr = Pw A Cd0 γin
(
1 + γ2

in + 2γin cosβ
)

(3.25)

The mean power can be finally derived, considering that the ratio between the production
time and the recovery is proportional to the ratio between reel-out and reel-in velocities.
The ratio of the time of the production phase τout and of the recovery phase τin are:

τout = γin/(γin + γout) τin = γout/(γin + γout) (3.26)
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The mean power can now be derived, considering Eq. (3.20):

Pcycle =Ppr τout − Pr τin

=PwA
(

(cos(θ)− γout)2 Cd
(
1 +G2

e

)3/2 − Cd0

(
1 + γ2

in + 2γin cosβ
))
·(

γinγout
γin + γout

) (3.27)

The maximum value of the mean power output during a cycle is then the maximum value
of the function Pcycle(γin, γout).

3.1.6 Other losses

To model the efficiency of the conversion from mechanical to electric power and to take
into account a power loss due to trajectory, some efficiency factors are introduced. During
the reel-out phase, the losses due to conversion are:

ηout = ηgenηtr (3.28)

Where ηgen is the electric generator efficiency and ηtr the trajectory efficiency

During the reel-in phase, the power loss due to motor and to the batteries on the ground
that store energy:

ηin = ηmotηbatt (3.29)

Where ηmot is the efficiency of the generator used as a motor. ηbatt is the efficiency of the
storage of the power used during the reel-in, if this strategy is used. This efficiency ηin
can be additionally reduced, to consider the transition phases and the low model accuracy
with a low efficiency.

Finally the power equation for the cycle power:

Pcycle = PwA
[
ηout (cos(θ)− γout)2 Cd

(
1 +G2

e

)3/2−
− Cd0

ηin

(
1 + γ2

in + 2γin cosβ
) ]
·
(

γinγout
γin + γout

) (3.30)

3.2 Power equation of Fly-Gen Airborne Wind Energy Sys-
tem

The power equation for a FG-AWES can be derived taking the same assumptions listed at
the beginning of Section 3.1.

3.2.1 Derivation

Considering Figure 3.1, the wind is blowing from left to right (along the x-axis) and the kite
is moving out of the page (along the y-axis). The wind speed seen from the kite is reduced
of the factor cos(θ), where θ represents the inclination of the tether at the connection with
the kite (Vw‖ = Vw cos θ).

The velocity triangle and the force balance for a Fly Generation Airborne Wind Energy
System are presented in Figure 3.5.
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Figure 3.5: Velocity triangle and aerodynamic forces seen from the top for a FG-AWES.

The presence of on-board turbines, extracting power, can be modelled as an additional
drag Dturb applied to the kite. The maximum possible power is:

PFG = Dturb · Va (3.31)

Considering that the system is in equilibrium, Ra is in the opposite direction of the tether
and D and Dturb are parallel to the relative velocity Va, the following proportion can be
found:

L

D +Dturb
=

1
2ρairACLV

2
a

D +Dturb
=

Vτ
Vw‖

(3.32)

Where L is the lift force and D the drag.

Dturb can be formulated considering the kite area A as reference:

Dturb =
1

2
ρairACd turbV

2
a (3.33)

Defining γt = Dturb/Dkite = Cd turb/Cd, the relative wind velocity is:

V 2
a = V 2

w‖ +

(
Vw‖

L

Dkite +Dturb

)2

= V 2
w‖

(
1 +

(
Ge

1 + γt

)2
)

(3.34)

Considering Eq. (3.31), the ideal power production for a FG-AWES is:

PFG =

(
1

2
ρairA Cd,turb V

2
w‖

(
1 +

(
Ge

1 + γt

)2
))
·

Vw‖
√

1 +

(
Ge

1 + γt

)2


PFG = PwA γt Cd cos θ3

(
1 +

(
Ge

1 + γt

)2
)3/2

(3.35)

Where Pw = 1
2ρair V

3
w .
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By taking the derivative of PFG with respect to γt, it can be demonstrated that for high
glide ratios the maximum power is harvested when Dturb = Dkite/2 (i.e. γt = 1/2), thus
the maximum power production for a FG-AWES is [2]:

PFG,max ≈
4

27
PwA cos θ3 CL G

2
e (3.36)

It can be seen that the power equation with the assumption of high glide ratio is the same
for a FG-AWES as it is for a GG-AWES (eq. (3.9)).

The tether force can be derived, considering the vectorial summation of the lift and drag
forces:

T =
1

2
ρair A

√
(Cd(1 + γt))2 + C2

L · V
2
w‖

(
1 +

(
Ge

1 + γt

)2
)

=
1

2
ρair V

2
w A Cd(1 + γt) cos θ2

(
1 +

(
Ge

1 + γt

)2
)3/2 (3.37)

The tether force at the maximum production (γt = 1/2) and for high glide ratio is:

TFG,max ≈
2

9
ρair A CL GeV

2
w cos θ2 (3.38)

3.2.2 Additional drag due to the tether & tether sag

The influence of the tether on the total drag and the tether sag are the same as for
GG-AWES, thus the equations in Section 3.1.2, 3.1.3 and 3.1.4 can be used.

3.2.3 Other losses

Later in this chapter, a model for the disc theory power losses and for the power losses due
to mass are included. At this stage, to take into account the efficiency of the turbine, the
power losses due to mass, trajectory and the power transmission, an efficiency ηt can be
defined.

Finally, the maximum power that can be harvested for high glide ratio is:

PFG,max =
4

27
ηt Pw A CL G

2
e cos θ3 (3.39)

3.3 Unified model

3.3.1 Derivation

In this section, the power equation for a system with ground and on-board generation is
derived.

Considering Figure 3.6, the wind speed seen from the kite is reduced of the factor cos(θ),
where θ represents the inclination of the tether at the connection with the kite (Vw‖ =
Vw cos θ). Vout represents the reel-out velocity, Dturb the drag induced by the on-board
turbines and Va the relative wind velocity. In equilibrium, the tether force is equal to the
aerodynamic force T = Ra. The power production in this model has two contributions:

P = T · Vout +Dturb · Va (3.40)
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Figure 3.6: Velocity triangle and aerodynamic forces seen from the top for a generic
crosswind AWES.

To find a power equation for this system, all the terms in the latter equation should be
re-formulated. Considering the proportions between forces and velocities, the relative
velocity Va can be expressed as:

V 2
a =

(
Vw‖ − Vout

)2
+

(
(Vw‖ − Vout)

CL
Cd + Cd,turb

)2

(3.41)

Where CL and Cd are defined in Section 3.1.2 and 3.1.3, they take into account the tether
and the finite wing. Defining γout = Vout

Vw
and γt =

Cd,turb
Cd

:

V 2
a = V 2

w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

(3.42)

A general expression for the aerodynamic force can be found with a vectorial summation
of the lift and drag forces:

Ra =
√

(D +Dturb)2 + L2

=
1

2
ρairA

√
C2
L + (Cd + Cd,turb)2 · V 2

a

=
1

2
ρair A Cd

√
(1 + γt)2 +Ge2 · V 2

w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

Ra =
1

2
ρair A Cd V

2
w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2

(3.43)

The drag force due to the turbines Dturb = 1
2ρair A γtCd V

2
a can be expressed as:

Dturb =
1

2
ρair A γt Cd V

2
w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

(3.44)

The power equation of the ground generated power Pgr can be expressed as the product
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between the tether force T and the reel-out speed Vout:

Pgr =

[
1

2
ρair A Cd V

2
w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2 ] · [Vwγout] =

=
1

2
ρair A Cd V

3
w γout

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2 (3.45)

The power generated on board Pob can instead be expressed as the product between drag
produced by the on-board turbines Dturb and the relative velocity Va:

Pob =

[
1

2
ρair A γt Cd V

2
w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
) ]
·[

Vw

(
cos θ − γout

1 + γt

)√
(1 + γt)2 +Ge2

]
=

=
1

2
ρair A Cd V

3
w γt

(
cos θ − γout

1 + γt

)3 (
(1 + γt)

2 +Ge2
)3/2

(3.46)

Finally, the total power during the production phase is the sum of Pgr and Pob:

Pout =
1

2
ρair A V 3

w Cd
(
(1 + γt)

2 +Ge2
)3/2 [

γout

(
cos θ − γout

1 + γt

)2

+ γt

(
cos θ − γout

1 + γt

)3
]

(3.47)

For high glide ratio, the latter equation can be formulated as:

Pout ≈
1

2
ρair A CL G

2
e V

3
w

[
γout

(
cos θ − γout

1 + γt

)2

+ γt

(
cos θ − γout

1 + γt

)3
]

(3.48)

It can be demonstrated that the power equation for Ground Generation Airborne Wind
Energy System and for Fly Generation Airborne Wind Energy System are special cases of
this last general power equation. The case with γt = 0 and γout = cos θ/3 describes the
maximum power for GG-AWES, while with γt = 1/2 and γout = 0 the power for FG-AWES.

To conclude the unified derivation of the power output, the recovery phase should be
considered (Section 3.1.5). Equation (3.24) is then necessary to model the power during
the reel-in phase.

The mean power over a cycle is then:

Pcycle =
γin

γin + γout
· Pout +

− γout
γin + γout

(
1

2
ρair A V 3

w γin Cd0

(
1 + γ2

in + 2γin cosβ
)) (3.49)

Finally, considering Eq (3.47) the power equation of a generic crosswind AWES can be
written as:

Pcycle =
1

2
ρair A V 3

w

[
Cd

(
(1 + γt)

2 +Ge2
)3/2 ((cos θ − γout

1 + γt

)2

+
γt
γout

(
cos θ − γout

1 + γt

)3
)

+

− Cd0

(
1 + γ2

in + 2γin cosβ
) ]
· γinγout
γin + γout

(3.50)
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3.3.2 Example

To understand the influence of the glide ratio Ge on the power equation (3.47), Figures 3.7
show how the power varies with γt and γout for a glide ratio of 5 and of 15. Considering
only on-board generation (γout = 0) and high Ge (Figure 3.7a), the highest power can be
harvested with γt ≈ 1/2. The region ranging from 0.42 and 0.60 has a power higher that
99 % of the maximum, highlighting that the neighbour of the maximum is an almost flat
region. With a decrease of Ge (Figure 3.7b) the optimum value of γt increases. Considering
only ground generation (γt = 0), the optimum is always at γout = cos(θ)/3.

For low glide ratios, a FG-AWES can reach higher powers compared to a GG-AWES. This

is due to the presence of the term
(
(1 + γt)

2 +Ge2
)3/2

in Equation (3.47).

0.4
0.4

0.5

0.5

0.6
0.6

0.6

0.7

0.7

0.7
0.8

0.8

0.8

0.8
0.9

0.9

0.9

0.9

0.925

0.925

0.925

0.95

0.95

0.95

0.97

0.97

0.97

0.99

0.99

0.99

0.99

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P

(a)

0.4

0.4

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

0.925

0.925

0.925

0.95

0.950.97

0.97
0.99

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P

(b)

Figure 3.7: Normalized power during the generation phase as function of γout and γt for
θ = 20◦ for Ge = 15 (a) and Ge = 5 (b).

3.4 Mass model

In this section, a mass model is introduced. There are many reasons for the introduction
of a mass model, all of them aim to penalize heavy designs. A high mass kite should
be penalized because it can hardly be built (i.e. really high aspect ratio and high lift
coefficients), it needs more power to take off and has relevant power losses due to gravity.

Many designs are possible for the manufacturing of the kite, thus the structural model
should be general enough to capture the main physics. Later, through a sensitivity analysis
the influence of the structural model on the power output is investigated. Only hard kites
are represented by the model proposed in this work.

In Figure 3.8, an approximation of the loads on the wings is shown. It is assumed that
the aerodynamic load has an elliptical distribution, following the assumptions introduced
during the aerodynamic modelling (Section 3.1.2).

The wings should be designed for the maximum aerodynamic forces. Therefore, the integral
of the distributed load is equal to the maximum aerodynamic force Ramax =

∫ s
0 qaer(xw)dxw.

It can be described by:

qaer(xw) =
4

π

Ramax
s

√
1−

(
2xw
s
− 1

)2

(3.51)
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s

Figure 3.8: Aerodynamic load on the kite wing.
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M

Figure 3.9: Loads on the wing, represented as a simply supported beam.

To lighten the structure, the tether is often split in two and connected to the structure as
in Figure 3.8. The wings can be represented by a simply supported beam. The connection
of the tether with the structure can be considered a support since it is constraining the
structure displacement but not the rotation.

With this simplification, the bending moment distribution can be found, as function as the
distributed load qaer(xw) and of the support position xc. The bending moment, given by
the the aerodynamic load, can be computed as:

M (aero)
x (xw) =

∫ x=xw

x=0
(x− xw)qaer(x)dx (3.52)

Performing the variable substitution t = 2x
s − 1, the integral can be solved:

M (aero)
x (tw) =

Ramaxs

π

∫ t=tw

t=−1
(t− tw)

√
1− t2dt

= −Ramaxs
π

(
πtw
4

+
t2w
√

(1− t2w)

6
+
tw arcsin(tw)

2
+

√
(1− t2w)

3

) (3.53)

The contribution on the bending moment, given by the reaction forces of the supports, is
instead linear with the distance:

M (support)
x = −Ramax

2
(xc − xw) xw > xc (3.54)

Once the loads are found, a model for the structure should be considered.
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The structures that withstand the load are considered to be the spar caps. In the aerospace
industry wings are usually manufactured to carry normal load with booms, here represented
by spar caps. In Figure 3.10 the spar caps dimensions of a generic section are shown.

It should be remarked that the height h and the width b are considered functions of the
chord (h = 0.1c, b = 0.25c), which has an elliptical trend:

c(xw) =
4A

πs

√
1−

(
2xw
s
− 1

)2

(3.55)

h p

t

b

A-A

Figure 3.10: Spar cap dimensions.

The inertia can be found:

I(xw) =
bh3

12
− bp3

12
(3.56)

Once the inertia is found, the stress in the spar caps can be compared to the strength of
the material (usually carbon fibre-epoxy composite material):

σlim >
h/2 ·Mx

I
(3.57)

Where σlim in this work is fixed to 570 MPa, typical value of carbon fibre-epoxy composite
material. An other constraint should be set on the displacement, which can be found with
a double integration of the curvature:

δ =

∫ s

0

∫ s

0

M

EI
dxw +Ax+B (3.58)

Where E is the material Young Modulus, in this work fixed to 70 GPa, typical value of
carbon fibre-epoxy composite material. The integration constants A and B can be found
by setting the boundary conditions:

dδ(xw = s/2)

dx
= 0 δ(xw = xc) = 0 (3.59)

In Figure 3.11, a typical trend of the aerodynamic load (qaer), of the bending moment
applied to the wing Mx and of the deflection δ are shown.

Finally, the structural mass of the wing can be found:

mwing = 2 · ρcarbon ·
∫ s

0
b(xw) · t(xw)dxw (3.60)

In this work, no constraint on the buckling is considered.
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Figure 3.11: Typical aerodynamic load, bending moment and deflection along half span.
The red circle highlights the support position.

The total flying mass takes into account the mass of the structural material not included
in the model, the mass of the power electronic, the mass of the tether and the additional
mass of the take off system.

The mass of the structural material, not included in the model (wing skin, shear webs,
support structure, fuselages), is considered a fixed percentage of the spar caps mass. The
total aircraft mass is then:

mgl = mwing + k ·mwing (3.61)

The factor k is estimated to be k ≈ 1.5 [31].

The mass of the power electronic is a function of the power produced on board. It can be
approximated with the mass of the generators. Thus, considering a power density of the
on board generators, the mass can be found.

The mass needed to take off and to land is instead computed with the model proposed in
the following section.

3.5 Take-off model

To complete the flying mass estimation, a model for the take-off has to be included. The
aim of this model is to estimate the additional on-board mass needed to take off and to
determine which take-off strategy is preferable from a system perspective.

For hard kites, three take-off strategies are studied in literature: vertical take-off with
rotors, rotational take-off and linear take-off with on-board propellers. Fagiano [18] shows
the key equations for these three methods with respect to GG-AWES. By comparing the
power, the additional on-board mass and the area on the ground needed to take off, the
author concludes that vertical and linear take-off are favourable, compared with rotational.
Thus, in this work these two strategies are considered.

To include the take-off into the optimisation problem, the vertical and linear model are
incorporated into one model. The climbing can be characterised by a climb angle αTO,
that can vary between low values, simulating a linear take-off, and αTO = 90◦, representing
a vertical take-off. The system is considered in equilibrium and the initial acceleration
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phase neglected.

z

x

Vξ

mg

D

L

αTOξ
αTO

ζ

Q

(a)

z

x

Vξ

mg

D

αTO=90°

ξ

ζ

Q

(b)

Figure 3.12: Forces acting during linear (a) and vertical (b) the take-off.

Considering Figure 3.12a, a force balance can be written with respect to the coordinate
system (ξ, ζ): {

Q = D +mg sin(αTO)

L = mg cos(αTO)
(3.62)

Q is the thrust force given by the propellers, D and L the aerodynamic drag and lift, m the
flying mass and g the gravitational acceleration. The wind velocity is neglected, following
the assumption from [18]. This assumption is conservative, since a take-off facing the wind
requires less power. The CL is considered the maximum used during the production phase.
The drag coefficient Cd does not include the tether contribution, because the tether is
considered parallel to the kite climbing direction: this can be considered true during the
first part of the climbing. An accurate modelling would include a variable mass to account
for the changing mass of the tether. The total mass of the tether is instead assumed always
active. The tether tension, necessary to have a reasonable sag, is neglected in Equation
(3.62).

From the second equation, the climbing velocity can be found:

Vξ =

√
2mg cos(αTO)

ρairACL
(3.63)

The first equation gives an expression for the necessary thrust Q.

In the extreme case of vertical take off (Figure 3.12b), the second equation loses meaning,
the thrust force can be set to a multiple of the gravity force.

The thrust needed to take off Q can be provided by on-board turbines Q(turb), used as
propellers, and at the same time by propellers Q(prop), used only during the climbing phase.
To find the power and the additional mass needed to take-off, the first step is to design the
turbines area necessary during the production phase. The turbines should be designed to
give a thrust force equal to Dturb (Eq. (3.44)) during the production phase:

Dturb =
1

2
ρairV

2
a · 4a(1− a)Aturb (3.64)
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Where the right hand side formulation comes from disc theory of wind turbines: a represents
the induction factor, Aturb the turbine area and Va the tangential velocity of the kite:

V 2
a = V 2

w

(
cos θ − γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

The turbines are considered to be orientated in the same direction as the relative velocity.
Defining a minimum allowed efficiency due to disc theory ηmind , the power at the rotor can
be defined as:

Prot =
1

2
ρairV

3
a · 4a(1− a)2Aturb = ηmind Pob (3.65)

Where Pob (Eq. (3.46)) is the power that would be harvested without disc losses.

Equation (3.64), considering Eq. (3.44), can be reformulated as:

4a(1− a) Aturb =

1
2ρair A γt Cd V

2
w

(
cos θ−γout

1+γt

)2 (
(1 + γt)

2 +Ge2
)

1
2ρair V

2
w

(
cos θ−γout

1+γt

)2
((1 + γt)2 +Ge2)

= A γt Cd (3.66)

In a similar fashion, equation (3.65), considering Eq. (3.46), can be expressed as:

4a(1− a)2 Aturb =ηmind

1
2ρair A Cd V

3
w γt

(
cos θ−γout

1+γt

)3 (
(1 + γt)

2 +Ge2
)3/2

1
2ρair V

3
w

(
cos θ−γout

1+γt

)3
((1 + γt)2 +Ge2)3/2

=ηmind A γt Cd

(3.67)

Aturb can be found, by considering Eq. (3.66):

Aturb = max

(
A γt Cd

4a(1)(1− a(1))

)
(3.68)

Where γt(Vw) and Cd(Vw) are function of the wind speed. a(1) is found by dividing Equation
(3.67) with (3.66):

a(1) = 1− ηmind (3.69)

Finally the induction factor, for all the wind speeds, can be derived by Eq. (3.66):

4a(1− a) =
A γt Cd
Aturb

a =
1−

√
1− A γt Cd

Aturb

2
(3.70)

Once the turbine area is evaluated, the propulsion power Pt, pr that allows the turbine to
give the thrust Q(turb) should be computed. To do this, the impulse disc theory can be used
to have an upper bound of the efficiency ηt, pr, disc [32] of the turbines used as propellers.

Thus, the upper limit for the efficiency given by disc theory is:

ηturb, prop, disc =
2

1 +

√
1 + Qturb

1/2ρairAturbV
2
ξ

(3.71)

To have a realistic value of thrust, considering that the turbine is likely optimised for the
power production phase and not the propulsion, another efficiency should be applied ηt pr.
Therefore the power necessary to produce the thrust force is:

Pt, pr =
Q(turb)Vξ

ηt pr ηt, pr, disc
(3.72)
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The remaining thrust Q(prop) = Q−Q(turb) can be given from on-board propellers, with an
additional mass. The power requested by the propellers Ppr can be estimated in a similar
fashion, by assuming a propeller area proportional to the average chord.

The additional mass, needed to take-off, can be found using the energy density of batteries
and motors [18]:

mTO = Pprop

(
h

VzEbatt
+

1

Emotors

)
(3.73)

3.6 Influence of flying mass on the power production

3.6.1 Derivation

Once the flying mass is estimated, a model to include the power losses due to mass in the
power production is necessary to penalize high mass solution. Referring to Figure 3.13, θ
represents the inclination of the tether at the connection with the kite. Thus, the tether
force T lays in this direction. The total aerodynamic force Ra has an higher inclination, to
compensate the gravity, acting along the vertical direction.

z

x

θ
Vwcos(θ+Δ)

Vw

Ra

θ

mg

T

Δ

Figure 3.13: Force balance and relative wind velocities considering the mass.

In equilibrium, the forces are in balance. The projections on the x and z axes are:{
T cos(θ) = Ra cos(θ + ∆)

T sin(θ) +mg = Ra sin(θ + ∆)
(3.74)

The sines and cosines can be written again, noticing that ∆ is small for a good design:

cos(θ + ∆) ≈ cos(θ)−∆(cos(θ) + sin(θ))

sin(θ + ∆) ≈ sin(θ)−∆(sin(θ)− cos(θ))
(3.75)

Modifying eq. (3.74) with these formulations of sines and cosines, the tether traction force
is: {

T = Ra (1−∆−∆ tan(θ))

T = Ra

(
1−∆ + ∆

tan(θ)

)
− mg

sin(θ)

(3.76)

The angle ∆ can be derived subtracting the two previous equations:

∆ =
mg

Ra cos(θ) (tan(θ)2 + 1)
(3.77)
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Ra is a function itself of the angle ∆ (Eq. (3.43) modified into Eq. (3.83)):

Ra =
1

2
ρair A Cd V

2
w

(
cos(θ + ∆)− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2

Defining, for readability, M∗ as:

M∗ =
mg

cos(θ) (tan(θ)2 + 1)
(3.78)

and Q∗ as:

Q∗ =
1

2

ρair A Cd V
2
w

(
(1 + γt)

2 +Ge2
)3/2

(1 + γt)2
(3.79)

Eq. (3.77) can be re-written as:

∆ (cos(θ + ∆)− γout)2 =
M∗

Q∗
(3.80)

Considering the Taylor series approximation (eq. (3.75)), the angle needed to compensate
gravity is finally expressed as:

∆3 (sin θ + cos θ)2 − 2∆2 (sin θ + cos θ) (cos θ − γout) + ∆ (cos θ − γout)2 − M∗

Q∗
= 0

(3.81)

3.6.2 Example

To understand the order of magnitude of the angles, an example is presented. In Table
3.1 the magnitude of the parameters necessary to evaluate the additional inclination ∆ is
given. The two cases of pure on-board generation (case FG) and ground generation (case
GG) are investigated. For these two cases the angles are:

Case FG ∆ = 3.34◦

Case GG ∆ = 4.29◦

Interestingly, for the same geometry and mass the GG case has an higher additional
inclination due to mass compared to the FG case. However ∆ is not defining the magnitude
of the power losses: a reformulation of the unified model is necessary to take into account
this additional angle.
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Case Name Value Units Description

θ 20 ◦ Inclination of the tether at the kite connection
Ge 10 - Glide ratio
Cd 0.15 - System drag coefficient
A 100 m2 Kite area
m 2000 kg System mass
ρair 1.225 kg/m3 Air density
Vw 10 m/s Wind speed

GG
γt 0 -
γout 0.33 -

FG
γt 0.5 -
γout 0 -

Table 3.1: Parameters for the evaluation of the additional inclination ∆ for the GG and
FG example.

3.7 Unified model including mass losses

3.7.1 Derivation

In this section a modification of the power production model to take into account the
influence of the mass is presented. The derivation is similar to the one presented in Section
3.3, thus only the main equations are shown. Referring to Figure 3.14 the wind velocity
seen form the kite is now reduced by a factor cos(θ + ∆): Vw‖ = Vw cos(θ + ∆).

y

x Vout

Vwcos(θ+Δ)
Vout

Va
Vτ

α

Dturb

Ra

L

D α

Figure 3.14: Velocity triangle and aerodynamic forces seen from the top for a generic
crosswind AWES, including the mass effects.

Defining γout = Vout
Vw

and γt =
Cd,turb
Cd

, the relative velocity is:

V 2
a = V 2

w

(
cos(θ + ∆)− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

(3.82)

A general expression for the aerodynamic force Ra can be found:

Ra =
1

2
ρair A Cd V

2
w

(
cos(θ + ∆)− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2

(3.83)
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Considering that T = Ra (1−∆−∆ tan(θ)) (eq. (3.76)), the tether force can be expressed
as:

T =
1

2
ρair A V 2

w Cd

(
cos(θ + ∆)− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2

(1−∆−∆ tan(θ))

(3.84)

The drag force due to the turbines Dturb = 1
2ρair A γtCd V

2
a can be expressed as:

Dturb =
1

2
ρair A γt Cd V

2
w

(
cos(θ + ∆)− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)

(3.85)

Defining η∆ = (1−∆−∆ tan(θ)) and φ = θ + ∆, the power ground generated Pgr can be
expressed as:

Pgr =

[
1

2
ρair A V 2

w Cd

(
cosφ− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
)3/2

η∆

]
·

[
Vwγout

]

Pgr =
1

2
ρair A V 3

w η∆ γout Cd
(
(1 + γt)

2 +Ge2
)3/2(cosφ− γout

1 + γt

)2

(3.86)

The power onboard generated Pob can be expressed as:

Pob =

[
1

2
ρair A γt Cd V

2
w

(
cosφ− γout

1 + γt

)2 (
(1 + γt)

2 +Ge2
) ]
·[

Vw

(
cosφ− γout

1 + γt

)√
(1 + γt)2 +Ge2

]

Pob =
1

2
ρair A V 3

w γt Cd
(
(1 + γt)

2 +Ge2
)3/2 (cosφ− γout

1 + γt

)3

(3.87)

The total power generated is the summation of Pgr and Pob:

Pout =
1

2
ρair A Cd V

3
w

(
(1 + γt)

2 +Ge2
)3/2 · [γoutη∆

(
cosφ− γout

1 + γt

)2

+

+ γt

(
cosφ− γout

1 + γt

)3 ] (3.88)

The reel-in phase and the relative efficiency ηin model the whole cycle. The efficiency
of the reel-out phase ηout (Section 3.1.6) takes into account the power losses due to the
trajectory and to the ground power conversion. The induction factor a (Eq. (3.70)) models
the disc theory losses of the on board wind turbines. Finally, the efficiency γt includes
generation and transmission power losses of the on board power generation. Therefore, the
mean power equation is:

Pcycle =
1

2
ρair V

3
w A

[
Cd

(
(1 + γt)

2 +Ge2
)3/2 ·(

ηoutη∆

(
cosφ− γout

1 + γt

)2

+
ηt (1− a) γt

γout

(
cosφ− γout

1 + γt

)3
)

+

− Cd0

ηin

(
1 + γ2

in + 2γin cosβ
) ]
· γinγout
γin + γout

(3.89)
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3.7.2 Example

Referring to the data in Table 3.1, the two cases are considered to analyse the power losses.

For the GG-AWES case, the angle ∆ is found to be 4.29◦. Thus the term η∆ =
(1−∆−∆ tan(θ)) = 0.90. The power for this case, not including power losses due
to mass, is found to be: PGG = 1.14 MW. Considering the power losses, the power is
computed with eq. (3.86) to be: PGG = 0.93 MW. The power is therefore reduced by 18
%, if the mass losses are included.

Considering the FG-AWES case, the angle ∆ is 3.34◦. The power not including losses is
PFG = 1.16 MW. Including the losses: PFG = 1.09 MW. Thus, the power is reduced by 7
%.

This example is showing that for the same geometry and mass a FG-AWES has less power
losses due to mass. However, it should be remarked that often a FG-AWES is heavier
than a GG-AWES, because of the presence of the on-board turbines. Thus, this should be
considered when the systems are compared.

3.8 Atmospheric model

In this work, the atmospheric model proposed by Arecher [5] [6] is used. As both air
density and wind speed vary with the altitude, both components are considered. The air
density is described by:

ρ(z) = ρ0e
− z
Hp (3.90)

with ρ0 = 1.225 kg/m3 and Hp = 8550 m [23]. The wind speed at altitude z is instead
computed through a friction coefficient α:

vw(z) = vw(zref )

(
z

zref

)α
(3.91)

It is assumed that above 500 m the wind speed remains constant, as the boundary layer
effects terminate [6]. A list of friction coefficients, with the relative terrain type, is presented
in Table 3.2.

Terrain characteristics Friction coefficient α

Smooth hard ground, calm water 0.10
Tall grass on level ground 0.15
High crops, hedges and shrubs 0.20
Wooded countryside, many trees 0.25
Small town with trees and shrubs 0.30
Large city with tall buildings 0.40

Table 3.2: Friction coefficient a for various terrain types [6].

In Figure 3.15a, the typical trends of the atmospheric quantities are displayed. With this
wind model, the maximum power is set to 500 m. Bechtle [7] shows that, depending on
the time of the day, the maximum power can be found also at lower altitudes. Thus, the
kite should be able to adjust the operational altitude to harvest the maximum power.

The location is characterized also by a wind distribution, often described with a Weilbull
probabilistic function [33]:

31



f(vw) =
k

A

(vw
A

)k−1
exp

(
−
(vw
A

)k)
(3.92)

where f(vw) represents the frequency for each wind speed at the reference altitude, k the
form Weibull parameter and A the scale parameter [33].

In this work, the nominal values are a reference height of 20 m with a wind shear of α = 0.2,
a form Weibull parameter k= 2.12 and a scale parameter A =9.5 m/s 2. The Weibull
probabilistic function for these values is shown in Figure 3.15b.
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Figure 3.15: Typical profiles of air density (Eq. (3.90)), wind speed (Eq. (3.91)) and Power
density (a). Nominal Weibull probability density function considered in this work (b).

3.9 Model limitations

The main limitations of the physical model are due to the necessity of have simple analytic
models.

The steady state flight assumption leads to neglect the trajectory and thus the relative
losses. The effects of the tether sag in the direction of the kite velocity (sag due to
aerodynamic forces) is also neglected. These losses are included in the present model as
efficiencies, instead of being function of the trajectory.

The reel-in model is also approximative if compared to reality. It indeed neglects the
transition phase between retraction and generation phases.

The structural model does not include the design of shear panels, shear webs, fuselages
and tail. Moreover, no constraint on the bucking is included. However, the main physic is
modelled.

The take-off model describes approximative the climbing phase. However, the main physic
is considered.

3.10 Model development history

The model has been developed in an iterative way, the development steps are:

1. Derivation of the unified model for high glide ratios.

2These values represent the Weibull distribution in Beldringe, Denmark [34]
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2. Introduction of a structural model, considering a uniform distributed load.

3. Derivation of the function for the additional inclination angle ∆ due to mass.

4. Derivation of the unified model for high glide ratios including the mass losses.

5. Introduction of the take-off model.

6. Refinement of the structural model, after a global analysis highlighted an high
importance of the mass. Introduction of the elliptical load distribution.

7. Removal of the high glide ratio assumption from all the derivations. This hypothesis
is not always met.

3.11 Summary & Contributions

In this chapter, the physical model of a generic crosswind AWES is presented. Initially,
two refined models for the power production of FG-AWES and GG-AWES are shown with
the assumption of steady state flight.

In Section 3.3, the power equation for a generic crosswind AWES is derived by the author,
with the assumption of steady state flight.

In Section 3.4 a structural model, performed with Euler–Bernoulli beam theory, is presented.
Section 3.5 presents a take-off model. The on-board wind turbines area is modelled using
disc theory. The structural and take-off models aim to estimate the flying mass.

The additional kite inclination due to the flying mass can be found with the derivations,
performed by the author, presented in Section 3.6.

Finally, in Section 3.7, a refinement of the unified power equation to include the power
losses due to mass is derived by the author. This derivation can be useful to crosswind
AWES designers, providing an analytic formulation to estimate the power losses due to
mass. This formulation does not use the assumption of high glide ratios. To the best
knowledge of the author, no literature sources are showing these equations.
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Chapter 4

Design evaluation methods

In this chapter, the methods used to evaluate the model proposed in the previous chapter
are described and explained. Given the complexity of the system, some advanced analysis
techniques are needed to help the understanding of the model.

In this chapter, one example is presented in order to make the methods clear to the reader
and make easier the understanding of the results. The example concerns the design of a
rectangular cantilever beam with a distributed load. The design is subject to structural
constraints.

GLOBAL SENSITIVITY ANALYSIS

OPTIMISATION PROBLEM

Rectangular 
cantilever 

beam model

Thickness: t
Objective function: m

Design outputs

Model parameters

Design Trends

Model parameters 
revelance

Influence of model 
parameters on designWidth: b 

Lagrange multipliers

Design outputs

Figure 4.1: Design evaluation framework for the cantilever beam example.

Referring to Figure 4.1, the design of the cantilever beam is performed by means of an
optimisation algorithm. The optimisation is meant to model the design process. In Section
4.1, the methods to solve an optimisation problem are presented.

The design process is influenced by some model parameters that are fixed within an
optimisation problem. For instance, two model parameters for the cantilever beam example
can be the the Young modulus and the strength of the material. Given the model
parameters, the design process, performed by the optimiser, is fully deterministic. The
design is characterised by the objective function, which is the function the optimiser
minimises, by design outputs, which describe the solution, and by Lagrange multipliers,
which are properties of the optimal solution. Once the optimisation is performed, the
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design can be analysed with a local sensitivity analysis. In this way, an investigation on
the sensitivity of the design with respect to the model parameters can be carried out. In
Section 4.2 the methods to analyse the optimum design are shown.

The optimisation problem is a design process that for some given model parameters is
performing the design. Some model parameters have high uncertainty. A local sensitivity
analysis cannot capture the non-linearity of the model, thus a global approach is proposed.
The uncertainties of the model parameters are initially to be evaluated. Later, a global
sensitivity analysis can assess how these uncertainties propagate throughout the design
process. The aim of the global sensitivity analysis is to give a complete picture of the
design, considering the uncertainties. In Section 4.3, the methods to perform a global
sensitivity analysis are shown.

4.1 Optimisation

4.1.1 Problem formulation

To understand the methods to solve an optimisation problem, the example is introduced
here. A rectangular cantilever beam has to withstand a distributed load, not exceeding
the maximum stress level σlim at the root and a maximum deflection δmax at the tip.
Moreover, the beam cannot be designed with an aspect ratio higher that a fixed value,
for manufacturing reasons. With these three constraints, the mass of the beam should be
minimized.

The generalized problem can be expressed as:

minimize
x

f(x)

subject to l ≤ x ≤ u
g(x) ≤ 0
h(x) = 0

(4.1)

Where f is the objective function, l and u are the lower and upper bounds of the design
variables, g represents the inequality constraints and h are the equality constraints.

Letting b to be the width and t the thickness of the cross-section of the cantilever beam,
the problem ,in this case, can be expressed as:

minimize
q

m = ρ · qb · qt · L

subject to tmin ≤ qt ≤ tmax bmin ≤ qb ≤ bmax

δtip =
wL4

8EI
≤ δmax

σroot =
wL2t

4
≤ σlim

t

b
≤ ARlim

b

t
≤ ARlim

(4.2)

Where q indicates the design variables, ρ the material density, w the distributed load, L
the length of the beam, E the Young Modulus and I the inertia:

I =
1

12
qbq

3
t (4.3)

Taking the numerical values of the parameters given in Table 4.1, the optimisation problem
can be solved by an optimisation algorithm.
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Name Value Units Description

tmin 0 m Minimum beam thickness
tmax 1 m Maximum beam thickness
bmin 0 m Minimum beam width
bmax 1 m Maximum beam width
w 100 kN/m Distributed load
L 10 m Beam length
ρ 1600 kg/m3 Material density
E 70 GPa Young Modulus
σlim 570 MPa Stress limit
δmax 0.2 m Maximum deflection
ARlim 3 - Maximum aspect ratio

Table 4.1: Numerical values of the model parameters used in the example.

4.1.2 Optimisation algorithm

In this section, the optimisation algorithm used in this work is introduced. Since the nature
of the model, presented in the previous chapter, is continuous, a gradient-based algorithm
is suitable for the problem.

Gradient-based algorithms are first order iterative algorithms that find minima of a given
objective function.

One of the most effective methods for non-linearly constrained optimisation generates steps
by solving quadratic sub-problems [35]. Sequential Quadratic Programming (SQP), used
in this work, solves a sequence of optimisation sub-problems. Each sub-problem optimises
a quadratic model of the objective, subject to a linearisation of the constraints [35].

SQP methods are well-known to be efficient, robust and accurate for continuous optimisation
problems of the sizes considered in this thesis.

Coming back to the example of the cantilever beam, Figure 4.2 shows a contour plot of the
objective function. The lines represent the constraints and the dot the optimum solution,
found with the usage of a SQP method. In this thesis, the MATLAB function fmincon [36]
is used.
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Figure 4.2: Mass as function of the two design variables. The red line represents the limit
of the stress constraint, the black of the tip displacement and the green the aspect ratio.
The optimum mass, defined by a circle ◦, is 3023 kg.
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4.2 Design sensitivity analysis

Once the design is evaluated with the optimisation algorithm, a local sensitivity analysis
can help the understanding of the optimum solution. Thus, a local sensitivity analysis
can be carried out in two ways. The first (Post-optimal sensitivity analysis) is to analyse
the Lagrange multipliers of the solution, to understand how the constraints influence the
objective function. The second is to compute the gradients of some outputs with respect
to some inputs in order to study the sensitivity.

4.2.1 Post-optimal sensitivity analysis

The solution, as shown in Figure 4.2, is determined by the constraint on the deflection
and by the constraint on the aspect ratio. Since these limits are arbitrary determined,
the variation of the mass according to a small change of the constraint limit should be
analysed. A simple way to do this is to look at the Lagrange multipliers of the solution.

The KKT conditions [35] must be satisfied for a locally optimal solution:

∇f +∇gλi +∇hλe = 0
g(0) ≤ 0
g(0)λi = 0
λi ≥ 0

(4.4)

Where λi and λe are the Lagrange multipliers on the inequality and equality constraints
respectively. The meaning of the Lagrange multiplier λ is explained with the help of the
example. The first KKT condition (eq. (4.4)), called stationary condition, for the two
dimensional example of the cantilever beam, can be written as:

[
∂m
∂b
∂m
∂t

]
+

[
λupperb

λuppert

]
+

[
λlowerb

λlowert

]
+

∂cM∂b ∂cδ
∂b

∂c
(1)
AR
∂b

∂c
(2)
AR
∂b

∂cM
∂t

∂cδ
∂t

∂c
(1)
AR
∂t

∂c
(2)
AR
∂t



λCM
λCδ

λ
(1)
CAR

λ
(2)
CAR

 =

[
0
0

]
(4.5)

Considering the numerical values given in Table 4.1, only λCδ and λ
(1)
CAR are different from

zero, highlighting the fact that these two constraints are active:

[
∂m
∂b
∂m
∂t

]
=

∂cδ∂b ∂c
(1)
AR
∂b

∂cδ
∂t

∂c
(1)
AR
∂t

[ λCδ
λ

(1)
CAR

]
(4.6)

The Lagrange multipliers give an estimation of how much the objective function changes
with a change of the constraint limit, or in other words how strongly the constraint is
limiting the solution. The Lagrange multiplier of the tip deflection is:

λCδ = 7550
kg

m
≈ ∂m

∂cδ
(4.7)

If the designer changes the maximum allowed displacement of 0.01 m, the gain in mass is:

λCδ · 0.01 = 75.5 kg (4.8)
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Figure 4.3: Contour plot of the mass showing
the two optimum solutions with δmax = 0.2
m and δmax = 0.21 m.

If the optimisation problem is solved with a
new maximum displacement of 0.21 m (0.01
m of difference), the saved mass is ∆m =
73 kg, similar to the one predicted by the
Lagrange multipliers. In Figure 4.3, a zoom
on the reference solution with δmax = 0.2 m
and on the new solution with δmax = 0.21
m is shown, outlining a decrease of about
75 kg.

If the same procedure is applied to a change
in the maximum displacement of 0.1 m (i.e.
maximum displacement of 0.3 m), the La-
grange multiplier predicts a mass change of
755 kg, while the optimum found by solving
a new optimisation problem has a saved
mass of 554 kg. This highlights the fact
that this sensitivity analysis works only locally.

Another interpretation of the Lagrange multiplier is related to the strength of the constraint.
If a Lagrange multiplier is high, it means that it is strongly constraining the solution,
preventing the objective function to decrease of a high quantity. On the other hand, if a
Lagrange multiplier is low, the constraint is weak and the objective function would decrease
of a small quantity with a change of the limit. If a Lagrange multiplier for the inequality
constraint is zero, the relative constraint is not active. A strong constraint is therefore
driving the design, while a weak one can often be neglected in the analyses.

When Lagrange multipliers are compared, one should consider the units of the constraints.
Therefore, in this thesis, the Lagrange multipliers are normalized with the constraint
limit value. They show how the objective function changes with a relative change of the
constraint limit. In this way, different Lagrange multipliers with different units can be
compared.

4.2.2 Sensitivity analysis with gradients

The classical way of doing sensitivity analysis is to look at the partial derivative of the
outputs with respect to the inputs.

Thus, some interesting outputs describing the design should be selected. For the cantilever
beam example, the mass m, which is the objective function of the optimisation problem,
and the two beam dimensions b and t, the design variables, are considered.

To understand how the design varies locally with some model parameters, one can take the
gradients of the outputs with respect to them. Thus, a study on how the maximum aspect
ratio ARlim, the maximum tip deflection δmax, the Young modulus E and the material
strength σlim are influencing the outputs is carried out by taking the gradients.

To do this, the selected model parameters are varied of a small increment and the opti-
misation is run with the new set of model parameters. The gradients can be attained
numerically.

In Table 4.2, the gradients evaluated in the reference point (Table 4.1) of three considered
design outputs with respect to the four inputs (model parameters) is shown. The gradients
have been normalised with the nominal value to make a comparison possible. Thus they
show how a non-dimensional change of the model parameter Xi impacts the output.
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X ARlim δmax E σlim
∂m
∂Xi

-1542 -1000 -902 0

∂b
∂Xi

-0.19 -0.03 -0.02 0

∂t
∂Xi

0.20 -0.21 -0.22 0

Table 4.2: Gradient of mass m in kg/-, width b and thickness t in m/- with respect to the
model parameters X.

The mass m is strongly influenced by the aspect ratio ARlim, by the maximum tip deflection
δmax and the Young modulus E. The mass is not sensitive to the material strength σlim
because the relative constraint is not active. Thus, a change in the limit is not influencing
the result. Similar conclusions can be drawn for the width and the thickness.

This way of performing sensitivity analysis is a point evaluation. It could be interesting
to understand how the outputs vary with a big variation of the inputs. A way to study
the model sensitivity, considering the model parameter ranges, would be to look at the
gradients in many points. An other is to perform a variance based sensitivity. The basic
idea of this method is to understand how much of the outputs variance is due to the inputs
variance.

4.3 Global sensitivity analysis

In many engineering models, the model parameters are subject to high uncertainties and a
local sensitivity analysis would not capture the non-linearities of the model. Thus, a global
sensitivity analysis, where the model parameters can vary within all the ranges, would be
more informative.

A graphical representation of the framework to carry a global sensitivity analysis is presented
in Figure 4.4.

Figure 4.4: The general uncertainty quantification framework [37].

Step A in this work represents the optimisation problem itself. Looking at other engineering
problems related to kites, the computational model could be a dynamic model, a CFD of
the wings, a FE structural analysis, an electrical design and so on. The computational
model is seen from the global sensitivity framework as a black box, with inputs (model
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parameters) and outputs (design outputs).

Step B refers to the understanding of the uncertainties: the sources of uncertainty should
be identified and quantified.

Once Step A and B are completed, the uncertainty in the outputs can be evaluated, and
by relating this to the sources of uncertainty, the sensitivity analysis can be completed
(Step C ).

Some quantitative examples are given later in this section. To perform the global sensitivity
analysis, the MATLAB toolbox UQLab [38] is used.

4.3.1 Uncertainty Quantification

Every model engineers are dealing with is influenced by the numerical values of the model
parameters. Often these parameters are subject to uncertainty, or even unknown. Thus,
when dealing with models, particular attention should be given to the estimation of these
parameters and to the understanding of which are more relevant for the final result. The
estimation of the parameters uncertainty comes first, later a global sensitivity analysis can
establish the most critical parameters.

The uncertainty quantification, during the modelling phase, can also be a decision tool
to understand when it is necessary to develop a more sophisticated model or when an
approximate one is enough. For example, in the design of kites, the designer does not
know a priori if the mass is relevant for the power output, thus a simple structural model
with a high uncertainty is sufficient at the beginning. If the mass uncertainty has a strong
influence on the results, then a more accurate model is justified. Therefore, high uncertainty
on some parameters can be representative of many possible modelling strategies.

The uncertainty quantification can also be useful during the design phase. The performance
of an undeveloped component can be modelled as a source of uncertainty. If a subsystem
is not relevant for the final output, there is no need of spending time and money on the
detailed design and optimisation of that specific subsystem.

Another application of the uncertainty quantification is to model the technological devel-
opment of a component. For example, talking about kites, an uncertainty on the tether
strength can represent the technological development of the component. By studying how
this uncertainty propagate throughout the model, one can understand the benefit of a
technological improvement.

Coming back to the design of the cantilever beam, the uncertainties of the model parameters
are given in Table 4.3. If the model parameter is a material property, a Gaussian distribution
can be assigned (aleatory uncertainty). If the parameter represents a design limit, then
a uniform distribution may be a good choice (epistemic uncertainty). In other words,
parameters with epistemic uncertainties are sources of uncertainty because they are unknown
at a first design stage, but in the future they will be fixed. For example, the maximum tip
deflection of the beam during the first analysis is unknown. In the future, the designer,
with the help of the considerations given by the sensitivity analysis, will fix this value.

The aim of the global sensitivity analysis is to understand how these uncertainties influence
the design.
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Name Min Max Units Distribution

ARlim 1.5 4.5 m Uniform
δmax 0.05 0.35 m Uniform

Name Mean Std Units Distribution

E 70 5 GPa Gaussian
σlim 570 57 MPa Gaussian

Table 4.3: Uncertainly of the model parameters for the cantilever beam example.

4.3.2 Statistics of the evaluations over the model parameter space

Once the uncertainties are defined, the design can be evaluated in many points of the
model parameter space. Considering the example, one could sample many points based on
the uncertainties given in Table 4.3. Then, the design can be evaluated for each point.

The first analysis is to look at mean and variance of the outputs of these evaluations. The
mean of the optimal outputs is the expected optimal design configuration, this can also be
considered the centre of the design space. The variance of the outputs is showing which
outputs are more or less sensitive to uncertainty.

Considering the cantilever beam example, multiple outputs of the optimisation problem
can be considered for the uncertainty propagation:

m: This is the objective function for the optimisation problem.

b: The beam width of the optimum solution. For the optimisation problem it is a design
variable, but it can be seen as an optimisation output.

t: The beam thickness of the optimum solution. For the optimisation problem it is a design
variable, but it can be seen as an optimisation output.

λδ: The Lagrange multiplier of the deflection constraint. This is a property of the optimum
solution, but it can be seen as an optimisation output.

λAR: The Lagrange multiplier of the aspect ratio constraint. This is a property of the
optimum solution, but it can be seen as an optimisation output.

λσ: The Lagrange multiplier of the strength constraint. This is a property of the optimum
solution, but it can be seen as an optimisation output.

Multiple outputs help the understanding of the design. In Table 4.4 the mean and the
standard deviation of the selected outputs are shown.

m b t λδ λAR λσ
units kg m m kg/- kg/- kg/-
mean 3557.2 0.26 0.86 1973.8 1583.4 0
std 772.9 0.06 0.09 849 610.2 0

Table 4.4: Means and standard deviations of the evaluation outputs for the cantilever beam
example.

The mass m, width b and thickness t represent the most likely design, while the average La-
grange multipliers give information on how strong the constraints are. Lagrange multipliers
are normalized with the constraint limit. Thus a change of 1 % of the maximum deflection
would, on average, change the mass of λs · 0.01 = 20 kg. Comparing the three Lagrange
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multipliers, it turns out that the constraint on the tip displacement is, on average, stronger.
The statistics of Lagrange multiplier of the strength constraint outline that this constraint
is never active.

Generally speaking, by looking at the standard deviation, it is possible to understand if
the outputs are sensitive to uncertainty or not. If a parameter has low standard deviation,
then it is not sensitive to the inputs uncertainties and it can be fixed to the mean value.
On the opposite, if a certain output has high variance, then this output deserves extra
studies to understand it. Similar considerations can be done for Lagrange multipliers. If a
Lagrange multiplier has low mean and low variance, then the respective constraint is rarely
design driving and it can most of the times be ignored. If a Lagrange multiplier has high
mean and low variance, then this constraint is always active and it should be included in
all the studies. If a Lagrange multiplier has high mean and high variance it means that
some aspects in the design influence the constraint. In other words, this constraint can be
really important in some cases, but in others not.

4.3.3 Average gradients over the model parameter space

It can be interesting to investigate how the sensitivity varies in the model parameter
space. One could evaluate the gradient in many points, according to the model parameters
uncertainties. Then, the mean and the standard deviation of the absolute value of the
gradients can be found. The mean represents the average sensitivity of one output with
respect to a model parameter. The standard deviation gives an indication on how the
sensitivity varies in the model parameter space.

In Table 4.5 the mean and the standard deviation of the absolute values of the gradients of
mass and beam dimensions with respect to the model parameters are given.

X ARlim δmax E σlim

mean ∂m
∂Xi

1609 2110 2140 0

std 525 1088 1556 0

mean ∂b
∂Xi

0.198 0.099 0.105 0

std 0.062 0.069 0.106 0

mean ∂t
∂Xi

0.18 0.175 0.171 0

std 0.025 0.042 0.058 0

Table 4.5: Average and standard deviation of the absolute value of the gradient of mass m
in kg/-, width b and thickness t in m/- with respect to the model parameters X.

The mass has, on average, a high sensitivity to the Young modulus E. Second, it is sensitive
to the maximum tip displacement and to the maximum aspect ratio. The mass is not
sensitive to the material strength. The constrain on the material strength is indeed never
active, as shown in the previous section. Thus, the design is not modified by a change in
the constraint limit itself.

The gradient of the mass with respect to the Young modulus has high standard deviation
compared to the mean value. This outlines that in some cases the mass is highly sensitive
to E, in other it is less.

However, to carry out this analysis, many evaluations of the design are to be performed.
With an increase of the model parameter space dimension and of the computational time
for the design process (the optimisation), this approach is too computational demanding.
Thus, the methods explained in the next two sections are used in this work.
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4.3.4 Uncertainty propagation & surrogate models

Referring to Figure 4.4, many techniques are available for uncertainty propagation. The
most famous is Monte Carlo Simulation [39], where the input variables are sampled based
on random numbers simulations. Unfortunately, this method requires a high number
of evaluations and can be carried out only when the model is not too computational
demanding

Other more efficient methods, based on surrogate models, are nowadays studied, making
possible a small number of evaluations (typically 2-3 order of magnitude less than Monte
Carlo [37]). A surrogate model, or metamodel, is a function that emulates the real model
with a negligible computational cost and can be produced by a number of evaluations.

The first step for the creation of a metamodel is the sampling. It is done with different
techniques. The most common are Latin hypercube sampling for its attractive space filling
property and quasi-random sequences [37]. Since the evaluation points are not related to
each other, the computations can be performed in parallel. Once the model is evaluated
in various points, a functional shape of the metamodel has to be chosen. Some common
shapes are Polynomial chaos expansions, Low-rank tensor approximations, Kriging (a.k.a
Gaussian processes) and Support vector machines. The one used in this work is Polynomial
chaos expansions. This metamodel consists in a polynomial approximation of the output
made of multivariate orthogonal polynomials [37].

After the sampling, the metamodel can be created and finally, using it, a variance based
sensitivity analysis carried out. For the creation of the metamodels the MATLAB toolbox
UQLab [38] is used in this work.

4.3.5 Variance based sensitivity analysis

In this section, the technique used for the interpretation of the sensitivity in the whole
model parameter space is introduced, with the help of the cantilever beam example.

The methods used in this work is the variance based sensitivity analysis. The aim of this
technique is to quantify how much of the output variance is due to each of the model
parameter variance. This information can be really valuable to the designer, by identifying
where the greatest focus is. To determine the sensitivity of the model, the Variance Based
Decomposition (VBD), is presented.

Considering a random input vector with mutually independent variables X = (X1, . . . , Xd),
a deterministic model f and the output Y = f(X), the variance of the output can be
decomposed as:

Var(Y ) =
d∑
i=1

Di(Y ) +
d∑
i<j

Dij(Y ) + · · ·+D12...d(Y ) (4.9)

where Di(Y ) represents the variance of the expected value of Y , given Xi: Di(Y ) =
Var [E (Y |Xi)], Dij(Y ) = Var [E (Y |Xi, Xj)]−Di(Y )−Dj(Y ) and so on for higher order
interactions. The so-called ”Sobol’ indices” or ”variance based sensitivity indices” [40] are
obtained as follows:

Si =
Di(Y )

Var(Y )
, Sij =

Dij(Y )

Var(Y )
, . . . (4.10)

In this work, the first-order Sobol’ indices Si and the total Sobol’ indices are used. The
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total are defined as:

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k
Sijk + . . . =

∑
l∈#i

Sl (4.11)

The total Sobol’ indices give an indication of the contribution of the model parameter
Xi to the output Y , including all its interactions with any other model parameter. The
first-order Sobol’ indices are a measure of the contribution of varying Xi alone to the
output variance. In other words, the first-order Sobol’ index depicts how much the output
variance is influenced by an input, if all the other inputs are fixed. The total Sobol’ index
outlines how much the output variance is influenced by an input.

To better understand the meaning of these, a variance based decomposition has been
carried on the cantilever beam example. Considering the uncertainties listed in Table
4.3, a metamodel has been created thanks to a number of evaluations of the optimisation
problem. Using the metamodel, the Sobol’ indices are computed. To understand the
whole potential of this tool, the six outputs of the optimisation problem considered for the
statistical analysis (Section 4.3.2) are considered. Since the Lagrange multiplier on the
material strength is always null (Table 4.5), it is not considered in this analysis.

(a) (b)

Figure 4.5: Total and first order Sobol’ indices graphical representation. A darker colour
highlights a strong influence between the model parameter variance (x-axis) and the output
variance (y-axis).

Considering Figure 4.5, it is possible to understand how much of the outputs variance
(y-axis) is due to the inputs variance (x-axis). Looking at the Total Sobol’ indices, Figure
4.5a, it is clear that the mass variance is strongly influenced by the variance on the deflection
limit, secondly by the variance on the aspect ratio. The uncertainties in Young modulus E
and material strength σlim are not influencing the mass compared to the other two model
parameters.

This information is slightly different from the one obtained by taking the mean of the
absolute value of the gradients (Table 4.5). The mean gradient over the model parameter
space indicates how sensitive are, on average, the outputs with respect to the inputs. The
Sobol’ indices indicate how sensitive are, on average, the outputs variances with respect to
the input variances.

For instance, the mass is highly sensitive to the Young modulus, as shown in Table 4.5.
Considering the model parameters uncertainties given in Table 4.3, the variance on the
Young modulus is influencing less the mass variance compared to the maximum aspect ratio
and the maximum tip deflection variance. This is because the variance based decomposition
takes into account also the distributions and the ranges of the model parameters.
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Similar considerations can be done by looking at the other outputs and at the first order
Sobol’ indices. This information can be used by the designer in many ways. At a modelling
level, it can be useful to understand which parameters are driving the design, to spend
more efforts on the modelling and design of a critical sub-system. At a system design level,
it can be useful to understand where to change the design to have the biggest benefits.
Hence, in many engineering applications, this can be a useful decision making tool.

In this thesis, the MATLAB toolbox UQLab [38] is used to evaluate the Sobol’ indices.

4.3.6 Generic sensitivity analysis

A simple method to explore the model parameter space is to look at the correlations
between the outputs and interpret them. In Figure 4.6, the evaluations computed to
generate the metamodel are displayed.
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Figure 4.6: Scatter plots of the model evaluations, showing the main trends.

In the top figures, the mass is displayed with the two most relevant model parameters,
according to the Sobol analysis. In both cases, the trend is decreasing. In the figures in
the second row, the Lagrange multipliers of the displacement constraint are shown. A
group of evaluations for high AR and low δmax have significant higher λδ, and λAR equal
to zero. This fact shows that, in this region, the aspect ratio constraint is not active and
the maximum deflection is driving the design.

If two model parameters turn out to be important for one output, then a surface plot
can be a useful visualisation of trends. The metamodel created for the evaluations of the
Sobol’ indices can be used to visualize the output. Figure 4.7 shows the contour plot of the
mass as function of the maximum tip deflection δmax and maximum aspect ratio ARlim
When these two values are small, then a high mass is found. The trends of the isolines
can be a useful indication on how to obtain the same output (mass in this case) with
different strategies. It should be remarked that these plots show the average trends of the
evaluations.
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Figure 4.7: Contour plot of metamodel of the mass as function of maximum tip displacement
δmax and maximum aspect ratio ARlim .

4.4 Summary

In this chapter, the methods used in this thesis are introduced with the help of one example.

Initially, the optimisation problem formulation is presented. Later, all the methods used
to analyse the results are introduced.

The techniques for a local design sensitivity analysis are proposed. It is shown how to
interpret Lagrange multipliers and how to carry out a sensitivity analysis with gradients.

In the last part of the chapter, the framework of a global sensitivity analysis is introduced.
The sources of uncertainty can be classified as epistemic and aleatory. To evaluate how
these uncertainties propagate throughout the model, a variance based decomposition can
be performed and the key trends analysed.
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Chapter 5

Annual energy production
maximisation

In this chapter, the crosswind AWES designs, which maximise the annual energy production
given a rated power, are analysed. Initially, the optimisation problem formulation is shown.
Some tests aim to validate the code and to benchmark it with some commercial solutions.
Later, one example of a typical result is shown. One evaluation can be useful to the reader
to get familiar with the results, but it is not very informative because many parameters
have high uncertainty. Finally, a global sensitivity analysis is carried out to understand
how the chosen model parameters are influencing the design.

GLOBAL SENSITIVITY ANALYSIS

OPTIMISATION PROBLEM

Generic 
crosswind 

AWES 
model

Design Variables

Epistemic 
Uncertainties

Aleatory 
Uncertainties

Design outputs

Kite Design 
Configuration Trends

Model Parameters 
Revelance

Influence of Model 
Parameters on Kite 

Design Configuration

Model parameters

Objective function

Configuration design outputs

Lagrange multipliers

Figure 5.1: Evaluation framework of the generic crosswind AWES model.

In Figure 5.1, the evaluation framework of the model is summarized. The light orange box
represents the model introduced in the Chapter 3. An optimisation algorithm can modify
the design variables to minimise the objective function. Once the minimum is found, a
kite design configuration is also obtained.

The optimisation problem can be seen as an engineering computational model, influenced
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by some model parameters. These parameters are uncertain, thus the global sensitivity
analysis evaluates how these uncertainties propagate throughout the optimisation problem.

5.1 Problem formulation

The model, as introduced in Chapter 3, is suitable for a gradient based optimisation
algorithm: it is indeed continuous. Moreover, the model uses only analytic equations that
allow a fast computation of the design. All the parameters describing the physics should
be optimised with respect to an objective function, defined accordingly to the stage of the
problem. In this chapter, the objective function represents the annual energy production
(AEP ).

5.1.1 Design Variables

The design variables are given in Table 5.1. Some of them are related to the geometry of
the system: span, aspect ratio, tether diameter, tether length. Others are referring to the
structural design, such as the thickness of the spar caps and the position of the supports.
Most of them are performance parameters, that will drive a more accurate design. These
are the elevation and the climbing angle, the velocities of cut-in and out, the percentage of
the thrust given by the on-board turbine during the take-off, the lift coefficient and the
parameters describing the ground and on-board generation.

DV Dim Units Description

qs 1x1 m Kite wing span
qAR 1x1 - Kite wing aspect ratio
qd 1x1 m Tether diameter of the
qr 1x1 m Tether length
qα 1x1 rad Climbing angle during the take-off
qβ 1x1 rad Elevation angle
qVin 1x1 m/s Cut-in wind speed
qVout 1x1 m/s Cut-out wind speed
qQturb 1x1 - Percentage of the thrust given by the on-board turbine during the take-off
qtA 1x1 m Spar cap thickness (Fig. 3.10) in Section A (Fig. 3.8)
qtB 1x1 m Spar cap thickness (Fig. 3.10) in Section B (Fig. 3.8)
qtC 1x1 m Spar cap thickness (Fig. 3.10) in Section C (Fig. 3.8)
qxC 1x1 m Position of the support (Fig. 3.9)
qγt 1xn - Coefficient of induced drag from on-board production
qCL 1xn - Lift coefficient of the kite
qγout 1xn - Reel-out velocity coefficient
qγin 1xn - Reel-in velocity coefficient

Table 5.1: Description of the design variables. n represents the number of wind speeds
between cut-in and cut-out considered in the design.

5.1.2 Constrains

A few constraints are included in the optimisation: one on the tether strength, one on
the rated power, one on the wing area, one on the minimum operational altitude and two
related to the structural design.

The tether has two components. A section carries the load and a section transmits power.
To design the section of the electric cables, the power generated on-board is estimated.
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Considering the on-board maximum power Pob, max, the section of the electric cables Ael is
computed with the following equations [3]:

I =
V

Pob, max
R =

Ploss
I2

Ael = 2
r ρcu
R

(5.1)

Where V represents the Voltage, Plosses the maximum power that can be lost during the
transmission. ρcu the resistivity of copper and the factor 2 represents the two cables needed
for the transmission.

Once the section for the electric cables Ael, that is not carrying any load, is computed, the
constraint on the tether strength is:

T− σlim ·
(
π
q2
d

4
−Ael

)
≤ 0 (5.2)

Where T is a vector with the reel-out tether force (eq. (3.84)) and the reel-in (eq. (3.24))
for each wind speed. σlim is the tether strength, set to 1.5 GPa.

The constraint of the rated power Prated limits the power to a fixed value. Also the power
during the reel-in phase cannot exceed a fixed value.

The constraint of the kite area forces the aspect ratio and the span to give a defined wing
area.

A constraint on the minimum operational altitude is added: h ≥ hmin.

Finally, the constraints related to the structural design of the wing are due to the strength
of the material and of the displacement (Section 3.4).

5.1.3 Objective function

The objective function is the Annual Energy Production AEP minus the energy spent to
take off, with the assumption of one take-off a day. AEP is computed as the integral of
the power production curve times the Weibull wind distribution.

5.2 Model implementation

The physical model introduced in Chapter 3 is implemented in MATLAB. The code has to
compute the annual energy production, AEP, given the design variables listed in Table 5.1.
Figure 5.2 shows the flowchart of the code.

The aerodynamic drag coefficients are computed with Equations (3.15) for each wind speed.
The wind speed (Eq. (3.91)) and the air density (Eq. (3.90)) is computed knowing the
operational altitude. With an approximation of the on-board power generation, the section
for the electric power can be found and the tether sag computed with the model proposed
in Section 3.1.4. The structural design is carried out with the model in Section 3.4. The
take-off sub-system design follows the procedure shown in Section 3.5. Once the total
flying mass is evaluated, the additional angle due to mass can be found with Equation
(3.77). Finally, the power curve can be found with Equation (3.89). The AEP is then the
integral of the product between the power curve and the Weibull distribution.
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Figure 5.2: Flowchart of the code to evaluate the objective function AEP .

5.3 Algorithm validation

In this section, the validation of the optimisation is presented. Initially, a test to understand
if the problem is well posed is performed. Later, a validation with literature benchmarks is
carried out.

5.3.1 Algorithm reliability

A first test that can be performed to prove the reliability of the code is now presented. A
single parameter, which is expected to influence the objective function, is varied within
a range. The objective function should be a continuous and smooth function of this
parameter.

This problem can be written as:

min f(x, η)

s.t. g(x, η) < 0
(5.3)

where η represents the parameter to vary. The solution f(x, η), if plotted as function of
the parameter η, is expected to be continuous and smooth. On the contrary, the norm of
the design variables ‖x‖(η) can have discontinuities.

This test is performed by making the upper bound of the design variables qCL (Figure
5.3a) and the kite wing area (Figure 5.3b) to vary. To avoid local minima, each blue cross
in Figure 5.3 is the best of 10 converged optimisation problems run with random initial
conditions. CL max has been found to be critical for the convergence when it is higher than
about 3. Thus, in this case, 15 optimisation problems are considered for the convergence
(red crosses). The objective function, considering the scale of the images, is considered
smooth enough.
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Figure 5.3: Objective function and norm of the design variables as function of the maximum
lift coefficient (a) and of the kite wing area (b). The blue line represents the best of 10
optimisation problems, the red of 15.

5.3.2 Validation

To validate the optimisation problem two benchmark solutions should be considered: one
for the FG-AWES and one for the GG-AWES. The aim of the validation is not to perfectly
replicate the literature design, but to verify if the model produces expected results.

The verification is based on two commercial designs, where only parts of the design and
performance are published. Since not all the information are available, two procedures can
be performed for the validation. The first is to set all the known parameters to reference
values and to manually tune the others till when the the reference power curve is similar
to the optimisation output. This first approach is difficult and time-consuming because
the reference power curves are not necessary thought to maximise the power production
and then the results may be very different.

The second is to set all the known parameters to reference values and the unknown to
reasonable values. The objective function is changed to be the difference between the
reference power curve and the optimisation output. In this way the two power curves lay
on the top of each other. Finally, the design variables should be checked to be reasonable.

The second procedure is then used, as it is considered faster to implement and more precise.

Validation of FG-AWES

To validate the FG-AWES model, the simulated power curve of the Wing 7 from Makani
Power [41] is considered. The specifications of this technological demonstrator are given
in Table 5.2. These information are taken from Table 28.8 of the book: Airborne Wind
Energy 2013 [42] and from other sources [43] [44].

The design variables for this problem are the lift coefficient and γt for all the wind speeds.

By running the optimisation, the main outputs are showed in Figure 5.4. Vander Lind
in [41] showed that the design of Wing 7 was performed by dividing the power curve into
4 regions according to the wind speed:

Maintenance of flight In this region, the tether tension is constant and the power
increases linearly with the wind speed. The power could also be negative.
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Generation In this region, the power and the tether tension are unconstrained, thus they
are set to the Loyd optimum.

Tension contrained generation In this region, the tether tension is maximum and the
power is linear.

Maximum power In this last region, the power is constant and the tether tension is
decreasing.

par Units Description

A 3.96 m2 Wing area
s 8 m span
m 60 kg Wing mass
CL max 2 - Maximum lift coefficient
β 40 ◦ Mean elevation angle
r 144 m Tether length
Prated 20 kW Rated power

Table 5.2: Model parameters for the FG-AWES validation.

Referring to Figure 5.4, these four regions can be spotted. In the first part the tether
tension is nearly constant and the power varies linearly. Between 7 and 9 m/s the power
generation is unconstrained. Later, at around 10 m/s, the system reaches the maximum
tether force and power output. Thus, optimisation outputs are found to have similar trends
to the literature ones.
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Figure 5.4: Relevant plot for the FG-AWES validation. On the top-left plot, the tether
force is shown. On the top-right, the lift coefficient trend is plotted. On the bottom-left,
the reference power curve and the optimisation outputs are shown. On the bottom-right,
the coefficient for the on-board production is plotted.

Validation of GG-AWES

Concerning GG-AWES, the model has been validated with the second prototype AP2 of the
company Ampyx Power [13]. This prototype consists in a rigid wing aircraft, suitable for a
comparison with the model. The power reference curve is taken from the simulations to
optimize the trajectory proposed by Licitra [45], with the aircraft data given in a previous
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work [46]. The simulations from Licitra are validated with the experimental data presented
by Ruiterkamp [47]. The model parameters are given in Table 5.3.

par Units Description

A 3 m2 Wing area
s 5.5 m span
c 0.55 m chord
mgl 36.8 kg Wing mass
d 2 mm Tether diameter
mt 1.5 kg Tether mass
cd⊥ 1.2 - Tether drag coefficient

Table 5.3: Model parameters for the GG-AWES validation.

The design variables for this optimisation problem are the tether length, the elevation, the
lift coefficient and γout and γin for all the wind speeds.

The plots in Figure 5.5 show the reference power curves and some relevant trends out
of the optimisation. Interestingly, the reel-out tether force is nearly constant, showing
that the system is designed to have the constraint on the tether strength active for the
investigated wind speeds. The lift coefficient is decreasing, to make the tether force to stay
constant. The reel-in tether force highlights that this constraint is not active, thus γin is
likely selected to maximise the cycle power. The tether length r is found to be 204 m. The
elevation has a mean value of 20 ◦. Thus, the optimisation outputs have reasonable trends.
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Figure 5.5: Relevant plot for the GG-AWES validation [45]. On the x-axis the wind speed
refers to the operational altitude. On the top-left plot, the reel-out and reel-in tether force
is shown. On the top-right, the lift coefficient trend is plotted. On the bottom-left, the
reference power curve and the optimisation outputs are shown. On the bottom-right, the
coefficient for reel-out and reel-in is plotted.
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5.4 Optimisation results

In this section, the results of one optimisation problem are presented. The outputs of
one optimisation problem are useful to understand in which way the design variables
combine with each other to maximise AEP. This evaluation can be representative of a
design performed by a engineer totally informed of the magnitude of all the parameters
influencing the results.

In Figure 5.6 the main trends and outputs of an optimisation problem are shown. The
rated power is set to 3 MW, the wing area to 70 m2 and the maximum CL max to 2. The
other parameters (i.e. material densities, efficiencies and so on) are set to the nominal
values.

By looking at the figure, it can be noticed that part of the power is generated on-board
(red line in the top-left plot) and part on the ground (blue line in the top-left plot). The
combination of these power curves results in a smooth curve reaching the rated power at
about 11 m/s. On the left, the main optimisation outputs are displayed. This system has
a capacity factor of about 56 % and produces in one year 14.7 GWh. The total mass is
influencing the ∆ angle, showed in the bottom-right plot: at low wind speeds this angle is
larger because the aerodynamic forces are smaller. At the cut-in wind speed the power is
only ground generated: this can be noticed by looking at the power curves but also at the
performance coefficients γout and γt. The lift coefficient is set to the upper bound, when
the rated power is not reached. Later, it decreases to lower the glide ratio and thus the
kite speed. Finally, the thrust needed to take-off is provided by the on-board turbines: the
optimiser discards the configuration with on-board mass not useful for the power generation
or for structural reasons.

This solution is not investigated in details because a more informative analysis is presented,
with the help of the global sensitivity analysis, in the next sections.

--- DESIGN VARIABLES ---
s = 32.21 m
d = 24 mm
AR = 14.8 
r = 630 m
beta = 21 deg
alpha_TO = 9.1 deg
thrust from turb = 100 %
hook postion = 8.23 m

--- OUTPUTS ---
AEP = 14.7 GWh
Capacity f. = 55.9 %
perc GG = 62.5 %
perc FG = 37.5 %

h = 227 m
area = 70 m^2
mass = 1402 kg
glider mass = 798 kg
tether mass = 421 kg
electronic mass = 183 kg
A turbine = 11.6 m^2
r 8 turbines = 0.68 m
TO Thrust = 3 kN
TO mass = 0 kg
A propeller = 0 m^2
r 2 propellers = 0 m
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Figure 5.6: Typical results of an optimisation problem for the maximisation of the annual
energy production.
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5.5 Uncertainty quantification

In this section, the uncertainty quantification is presented. A utility scale system, with a
rated power of 3 MW, is considered as study case.

Sixteen model parameters are selected as possible design drivers. Later, the importance of
these is investigated with a variance based decomposition analysis. The description and
the ranges of the parameters are given in Table 5.4. The research and design questions for
each of them are outlined below:

SFσ lim Is the strength of the tether a design driver parameter? Should researchers focus
on the development of a stronger material? This parameter can range from low values
to quite high ones.

cd0 Is the kite drag coefficient at zero lift a design driver? It is expected to be so, to which
extent? This parameter can range from really low values to quite high ones.

cd⊥ Is the tether drag coefficient a design driver? Does the designer need to think about a
way to reduce it, using airfoil-shaped coating [3]? To model these kind of solutions
this parameter can reach a lower bound of 0.6.

V Is the voltage of the power transmission lines relevant? Is the model for the electric
cable design relevant for the output? A high voltage would decrease the electric
cables section in the tether and therefore reduce the system drag. A big uncertainty
is given to this parameter to simulate different scenarios.

ρcarb Is the structural material density a design driver? A big uncertainly is given to this
parameter, to include different possible design strategies that scale in a similar way
(glider, biplane).

ηout Is the efficiency of reel-out a design driver? To which extent should the trajectory be
optimised and the generator efficiency increased? Values from literature are assigned
to this parameter [48] [49].

ηt Is the efficiency of on-board generation a design driver? To which extent should the
trajectory be optimised, the generator efficiency increased and the transmission losses
reduced? The range of this parameter is assigned after consultation with experts [16].

ηin Is the reel-in efficiency a design driver? In particular, to which extent is the reel-in
model influencing the result? A big uncertainty to this efficiency is given.

ηt pr Is the efficiency of the turbines used as propellers with respect to disc theory a design
driver?

ηpr Is the efficiency of the propellers with respect to disc theory a design driver? Values
from literature are assigned to this parameter [18].

CL max Is the maximum lift coefficient a design driver? To which extent should the
aerodynamics be optimised? The mass of high aerodynamic performances will
penalize high lift coefficients? This parameter can range between typical airfoil to
multi-elements airfoil lift coefficients [50].

Egen Is the power density of the generators a design driver? Should the designer look
for really light and innovative solutions, or a traditional generator design would
be enough? This parameter can range between typical [18] to really extreme and
innovative values [51].
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δ Is the maximum displacement of the structure a design driver? This parameter can
range within typical values.

ηmind Is the maximum allowed induction factor and turbine dimension relevant for the
output? This parameter can range between typical values according to wind energy
sector.

hmin Is the minimum allowed operational altitude relevant for the output? Considering that
a kite producing 3 MW is expected to have big dimensions, a minimum operational
altitude for safety reasons should be included in the analysis.

Akite To which extent is the kite area influencing the power production? It is expected
to be the most impacting parameter, with which trends? This parameter can range
between small area values and large one, if a rated power of 3 MW is considered.

No uncertainty on the atmospheric model have been considered at this stage.

par Min Max Units Description

SFσ lim 1.1 2 - Safety factor on the tether strength a

cd0 0.01 0.1 - Drag coefficient at zero lift
cd⊥ 0.6 1.2 - Cable drag coefficient
V 2 40 kV Line voltage.
ρcarb 800 2000 kg/m3 Structural material density.

ηout 0.75 0.9 - Efficiency of reel-out b

ηt 0.7 0.85 - Efficiency of the on-board generation c

ηin 0.3 0.85 - Efficiency of reel-in.
ηt pr 0.5 0.7 - Efficiency of the turbine used in propeller mode with respect to

disc theory (Section 3.5).
ηpr 0.7 0.9 - Efficiency of the propellers with respect to disc theory
CL max 1 4 - Upper bound of the lift coefficient design variables (qCL)

Egen 2.5 16 kW/kg Power density of the motor/generatorsd

δ 1 10 % Percentage of the span: this value times the span is the maximum
tip and central displacement.

ηmind 0.8 0.95 - Minimum efficiency due to induction factor (eq. (3.65)) of the
on-board turbines.

hmin 150 250 m Minimum allowed operational altitude.
Akite 15 100 m2 Kite wing area.

aCherubini [3] uses a safety factor of 1.25 on a tether strength of 1.5 GPa for FG-AWES. Bosman [52]
gives an accurate description of how to design the cable for GG-AWES. The author highlights that the
creep and the bending curvature in the winch are relevant for the design, requiring high safety factor.

bThe value is comprehensive of losses due to generation and to the trajectory. Fechner [48] predicted
that for big generators the efficiency could be of approximately 0.9, Argatov [49] computed a trajectory
efficiencies higher than 0.9.

cThis efficiency excludes disc theory losses, includes trajectory losses, aerodynamic efficiency of the
turbines, generation efficiency and transmission.

dThe reference literature value is 2500 W/kg [18], but a Belgian start-up with a new generator design is
able to achieve more than 15000 W/kg [51].

Table 5.4: Model parameters ranges, distributions and descriptions.

5.6 Local sensitivity analysis with gradients

The simplest way to perform a sensitivity analysis is to look at the gradients of the outputs
with respect to the inputs (model parameters). This information is showing how the design
outputs are influenced by each of the inputs locally. The solution obtained with the mean
values of the model parameter ranges (Table 5.4) is considered as reference. To compute the
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gradients, each model parameter is varied of a small increment and the new optimisation
problem is solved.

The gradients of AEP , of total mass mtot and of tether length r with respect to the
model parameters are shown in Table 5.5. The gradients have been normalized to make
a comparison possible. Thus, they show how a non-dimensional change of the model
parameter Xi impacts the output.

X SFσ lim cd0 cd⊥ V ρcarb ηout ηt ηin
∂AEP
∂Xi

-0.9 -2.36 -0.98 0.21 -0.58 0.53 0 0

∂mtot
∂Xi

0 341.5 0 0 925.3 0 0 5.7

∂r
∂Xi

-22.5 75.2 -13.7 80.2 0 -15.7 20.2 11.1

ηturb prop ηprop CL max Egen δ ηmaxmon hmin Akite
∂AEP
∂Xi

0 0 2.30 0 0 0.22 -0.42 4.22

∂mtot
∂Xi

710 0 1663.1 0 0 0 -250 4116.8

∂r
∂Xi

1.4 -34.3 96.6 15.7 0 0 159.6 120.2

Table 5.5: Gradient of AEP in GWh/-, mtot in kg/- and r in m/- with respect to the
model parameters X.

From this analysis the most relevant parameter for the annual energy production is the
wing area Akite. The drag coefficient at zero lift cd0 and the maximum lift coefficient
CL max follow. Concerning the mass, the highest sensitivity is also with the wing area. For
the tether length, the minimum operational altitude hmin is the most important model
parameter.

However, this analysis works only locally. To investigate how the model parameter
uncertainties influence the outputs, a global approach should be considered.

5.7 Global sensitivity analysis

The procedure explained in Section 4.3.4 is considered to perform a global sensitivity
analysis.

5.7.1 Evaluation procedure

A number of evaluations of the optimisation problem (computational model in Figure 4.4)
has to be performed. These evaluations are taken in points filling the model parameter
space.

In Figure 5.7, the process for the evaluation is presented. In Section 5.5, the model
parameters that could be design drivers are selected and an uncertainty is assigned. Using
the Latin hypercube sampling technique, a number Nsample of inputs are generated. Each
input is a set of model parameters and, if a parallel computing approach is used, is sent
to a worker. Each worker has to find the global maximum, given the problem with the
selected model parameters. To find the global maximum, a number N max of optimisation
problems with different random initial conditions has to converge. Finally, the global
maximum for each model parameters set (input) is considered to be the best of the N max
converged optimisation problems.
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Figure 5.7: Flowchart of the evaluation procedure for a global sensitivity analysis, for the
AEP maximisation case.

5.7.2 Output parameters

To describe the kite design, performed by the optimisation algorithm, many parameters
can be considered as outputs. The outputs include the performance of the solution (i.e.
annual energy production), the design parameters that describe the solution (i.e. mass,
tether length etc.) and the Lagrange multipliers of the solution.

These outputs are:

AEP : annual energy production

AEPGG : AEP ground generated

AEPFG : AEP on-board generated

CF : capacity factor

mtot : total mass

mgl : structural mass

mel : electronic mass

mte : tether mass

mTO : take-off equipment mass

r : tether length

β : elevation angle

d : tether diameter

Q : thrust to take-off

Vin : cut-in wind speed

Vout : cut-out wind speed

B : support position (Fig 3.9)

αTO : climbing angle (Figure 3.12a)

h : operational altitude

s : span

AR : aspect ratio

δout : tip deflection

δin : inner deflection

Aturb : on-board turbines area

Qturb : percentage of the thrust to climb
provided by the turbines

ETO : energy spent to take-off

Aprop : propellers area

tAA : spar caps thickness in A (Fig 3.9)

tBB : spar caps thickness in B (Fig 3.9)

tCC : spar caps thickness in C (Fig 3.9)

λte : Lagrange multiplier of the tether
strength constraint

λPrated : Lagrange multiplier of the rated
power

λM : Lagrange multiplier of the structural
material strength

λδout : Lagrange multiplier of the deflection
at the tip

λδin : Lagrange multiplier of the deflection
in the centre

λCL : Lagrange multiplier of the CL upper
limit

λAkite : Lagrange multiplier of the kite area
constraint

λhmin : Lagrange multiplier of operational
altitude lower bound
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5.8 Global sensitivity analysis results

Once the uncertainties and the outputs are defined, the global sensitivity analysis can be
performed, following the methods explained in Section 4.3. To test how many evaluations
are necessary for the Sobol’ indices to reach stable values, three global sensitivities are
carried out with 400, 650 and 900 evaluations. Figure 5.8 shows the total Sobol’ indices
for the AEP , considering the three cases. The magnitude of the indices is considered
stable with 400 evaluations. However, the results obtained with 650 points is shown in this
chapter 1.
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Figure 5.8: Total Sobol’ indices for the AEP , considering 400, 650 and 900 evaluations.

Each of these points is the best (in term of objective function) of 10 converged optimisation
problems run with random initial conditions (i.e. N max = 10 in Figure 5.7). If the
CL max exceed 3, N max is modified to 15. This is in accord with the tests performed in
Section 5.3.1.

5.8.1 Statistics of design outputs

Once the evaluations of the kite design, for each set of model parameters, are carried out,
a statistical approach to analyse the outputs can be used. Thus, the mean and standard
deviation of the outputs is found.

The mean of the outputs is showing how kites would most likely look like, if AEP is
maximised. This is the centre of the design space for future crosswind AWES development.

The standard deviation shows the sensitivity of the outputs to uncertainty. If an output
variance is small, that output is likely going to be fixed in the future. If an output variance
is high, that output is sensitive to uncertainties. Therefore, it is interesting to understand
how it is influenced by the model parameter uncertainties.

In Table 5.6 the mean and standard deviation of the outputs are given.

Design performance

The average AEP is of 21.1 GWh, corresponding to a capacity factor of CF = 0.80. This
shows the expectation of the system performances.

The average capacity factor is really high, a detailed analysis is necessary.

Design outputs

It can be noticed that most of the power is usually ground generated. All the outputs related
to mass have big standard deviation, highlighting that the mass is strongly influenced
by the input uncertainties. The tether length suggests that often the optimum is found

1To estimate the number of evaluations Nsample, one could use: Nsample = 2n2
p + 4np + 1; np is the

number of model parameters.
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AEP AEPGG AEPFG CF mtot mgl mel mte mTO ∆
units GWh GWh GWh - kg kg kg kg kg ◦

mean 21.1 15.8 5.3 0.80 3684 2884 160 626 14 8.4
SD 3.6 3.28 1.97 0.14 1705 1475 106 314 48 2.6

r d h β Vin Vout s AR B δout
units m mm m ◦ m/s m/s m - m m
mean 463 38 211 27.4 2.21 19.32 34.91 22.5 8.55 1.34
SD 116 8 45 2.6 0.82 0.61 8.62 3.9 2.16 1.76

δin Aturb Qturb αTO Q ETO Aprop tAA tBB tCC
units m m2 - ◦ kN Wh m2 mm mm mm
mean 1.88 83.6 0.92 24.27 15.69 6311.3 0.11 3 16 29
SD 1.08 59.0 0.19 20.5 12.04 4515.22 0.39 8 14 11

λte λPrated λM λδout λδin λCL λAkite λhmin
units GWh/- GWh/- GWh/- GWh/- GWh/- GWh/- GWh/- GWh/-
mean 1.94 33.27 0.54 0.12 0.29 3.82 4.56 0.91
SD 1.67 10.56 0.58 0.17 0.31 5.47 3.09 1.14

Table 5.6: Mean and standard deviation of the outputs for the AEP maximisation.

for short tethers and thus the altitude is low. However, the standard deviations of these
two parameters are big, showing that they can vary. Also the tether diameter has a big
uncertainty. On the contrary the elevation angle β has a low variance, showing that the
configuration with β ≈ 27.4◦ is often optimum. The average cut-in wind speed is really
low, with a low variance. Considering the given Weibull distribution (Figure 3.15b), the
configuration covering all the wind range is, on average, optimum. The span s has a big
uncertainty. The aspect ratio AR has an average of 22.5, with a standard deviation of 3.8.
The percentage of thrust given by on-board turbines is of 92%, showing that most of the
times a take-off with propellers is not convenient.

Constraints

The Lagrange multipliers show how the objective function (AEP ) is influenced by a change
in the constraint limit. In other words, they outline how strong the constraints are. In
this case, the Lagrange multiplier are normalized, to point out how the objective function
changes with a relative change of the limit. The constraint with the highest Lagrange
multiplier is the power rated constraint. It is limiting the most the power production, but
it has also a high variance. Second, the Lagrange multiplier on the kite wing area: by
changing this limit of 1%, on average a gain of 45 MWh is attained. However, it has high
variance as well. The Lagrange multiplier on the maximum lift coefficient λCL and on
the tether strength λte have also relevant means with big standard deviations. Finally,
the Lagrange multiplier related to the minimum operational altitude λhmin and to the
structural design (material strength λM , and deflections λδin & λδout) have low mean and
relative low variance. These constraints are not influencing the results, if compared to the
others. Thus, they can be ignored in most of the cases.

5.8.2 Sobol analysis and design trends

It is interesting now to look at the sensitivity in the whole model parameter space. The
sensitivity of the outputs variance with respect to the model parameters variance is
evaluated with a variance based decomposition, explained in Section 4.3.5.

Figures 5.9 and 5.12 show the total Sobol’ indices. Some plots, showing the key trends in
the design, are presented to help the understanding of the indices. Clearly, the uncertainty
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Figure 5.9: Graphical visualization of the total Sobol’ indices for the AEP maximisation
(first part).

of the wing area (Akite) has the highest impact on almost all the kite subsystems.

The annual energy production AEP variance is mainly influenced by Akite, followed by
the maximum lift coefficient CL max, the drag coefficient at zero lift Cd0 and the drag
coefficient of the tether C⊥: these three last parameters are related to the aerodynamics.

It is interesting to look at the model parameters that are not influencing the outputs.
The Sobol’ indices on the AEP and on the CF outline that some parameters variance is
contributing a little to the performance variance. For instance, the safety factor on the
material strength SFσlim variance is not impacting the AEP variance. If SFσlim is fixed
to high values, one can design a kite able to give an AEP equal to the one found with
SFσlim fixed to low values.

Similar analyses can be carried out for: line voltage V , structural material density ρcarb,
efficiency of reel-out ηout and reel-in ηin, efficiency of on-board generation ηt, efficiency
of the propellers ηpr and of turbines used as propellers ηt.pr, generators power density
Egen, maximum structural displacement δ, minimum efficiency due to disc theory ηmind

and minimum operational altitude hmin.

Many considerations can be drawn from this analysis. When designing a kite, aiming to
maximise AEP , the parameters with a low Sobol’ index can be fixed to conservative values.
Then, a preliminary kite design can be performed by designing the parameters with high
Sobol’ indices. Once the preliminary design is performed, one can consider the parameters
with low Sobol’ indices to evaluate them for the specific kite design.

Thus, an investigation of the high Sobol’ indices parameters can give guidelines to the
designer.

The metamodels created for the variance based decomposition (see Section 4.3.4 for details)
can be used to understand the dependencies outlined by the Sobol’ indices. In Figure
5.10a, the capacity factor CF is plotted as a surface, function of Akite and CL max. An
increase of the wing area, when the area itself is small, can be really beneficial for the CF .
A similar consideration can be derived for CL max. Really high capacity factors can be
attained with an increase of area and maximum lift coefficient. When a crosswind AWES
is designed, a big focus should be given to the selection of the airfoil and of the wing area.
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For a given rated power, the choice of these two parameters is essential to a obtain high
capacity factors.
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Figure 5.10: Contour plot of the metamodel of the capacity factor as function of the wing
area and the maximum lift coefficient (a) Evaluations density of the combination of annual
energy production generated on-board (AEPFG) and on the ground (AEPGG) (b).

It is interesting to understand where the generation of power would be optimum from a
physical point of view. Figure 5.10b shows the density of the evaluations of the two annual
energy productions types. Most of the time, the power is mainly ground generated (AEPGG)
and all the solutions present both the generation types at the same time. The reason why
the two generation types coexist is the same as the one given for the optimisation problem
result (Section 5.4): it would be optimum, from a physic point of view, to have turbines
big enough to take off and use them during the generation phase.

Looking at the power ground and on-board generated, they are highly influenced by the
respective efficiencies ηt and ηout, besides that by the line voltage V , the aerodynamics
and the wing area. In Figure 5.11 the evaluations are shown together with a polynomial
fit, highlighting the trends with respect to the efficiencies of reel-out and of on-board
generation. As expected more power is ground generated if the efficiency of reel-out ηout
increases and more power on-board generated is the relative efficiency ηt increases.
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Figure 5.11: Evaluation of the annual energy ground and on-board production as function
of the reel-out (a) and on-board efficiency (b).

The variance of structure, tether and total mass are strongly influenced by the wing area
and the maximum lift coefficient.

The tether length and the operational altitude variances are mainly influenced by minimum
operational altitude hmin and the maximum lift coefficient. The diameter has a dependence
on the safety factor SFσ lim, the wing area and the maximum lift coefficient.

The wings geometric dimensions (span s and aspect ratio AR) have to combine to give the
wing area Akite. Interestingly the aspect ratio AR is mainly influenced by the maximum

62



structure deflection while the span by the wing area.
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Figure 5.12: Graphical visualization of the total Sobol’ indices for the AEP maximisation
(second part).

The turbine area is mainly influenced by the minimum allowed efficiency due to disc theory
ηmind . The design of the propulsion system is instead of not so clear interpretation. This is
because the take-off sub-system mass is generally small (Table 5.6). The climbing angle
αTO variance has not any clear dependence. This means that the climbing angle can be
any value and the objective function is not influenced. In other words, the take-off strategy
does not impact the AEP .

The dimensions of the spar caps in section B are influenced by the maximum structure
deflection, while in section C by density of the structural material ρcarb and by the maximum
lift coefficient. In section A the thickness and the relative variance are small (Table 5.6).

Finally, the Lagrange multipliers of the structural constraints are on average small (see
Table 5.6). They depend manly on the maximum structure deflection. The other Lagrange
multipliers depend on the wing area and on the maximum lift coefficient. It is interesting
to plot them as surfaces function of these two model parameters.

In Figure 5.13a, the Lagrange multiplier of the tether strength constraint is shown, high-
lighting that, with an increase of area and maximum lift coefficient, this constraint is
weaker and weaker.

Lagrange multipliers are a property of the design, performed by the optimiser. They show
how strong the constraint is, once the design is carried out.

In the first part of this section, the Sobol’ indices of AEP are analysed. One outcome is
that SFσlim is not influencing AEP . One can fix this value and perform the design, based
on the high Sobol’ indices model parameters. Once the design is performed, the Lagrange
multiplier on the tether strength shows how strong this constraint is. In other words, it
shows how AEP is sensible to a change in the tether strength (i.e. to a change in the safety
factor SFσlim). Interestingly, the Lagrange multiplier on the tether strength is not highly
dependent on SFσlim, according to the Sobol’ indices. This means that an improvement
on the tether strength would not make the constraint strength to decrease. Instead, an
increase of the wing area and of high maximum lift coefficient make the constraint weaker.
Thus, the easiest way to have the constraint of the tether strength weak is to design big
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kites with high CL max, it is not to improve the tether strength.

To summarize, the variance of SFσlim is not influencing neither AEP nor the λte. Thus,
high safety factors could be used, not influencing the design performance and the constraint
strength. This is because the kite can be designed in other ways, still having the same
performance.

In Figure 5.13b, the constraint of the rated power is shown. Clearly, this constraint is
stronger when the wing area and the maximum lift coefficient are higher because the system
would have a bigger benefit to increase the rated power.
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Figure 5.13: Contour plot of the metamodel of the Lagrange multiplier of the constraint
on the tether strength λte (a) and on the rated power λPrated (b) as function of the wing
area Akite and the maximum lift coefficient CL max.

In Figure 5.14a, the Lagrange multiplier of the upper bound of the lift coefficient is shown.
It should be reminded that CL max in the optimisation problem is the upper bound of the
design variables qCL. Clearly, this constraint is active and strong when the upper bound
itself CL max is low. For big wing areas and high CL max this constrain is not active or
very weak. In other words, a high maximum lift coefficient CL max would often not bring
any benefit to the annual energy production. The structural material density variance,
representing aircraft standard designs and designs with lower mass such as multi-planes,
does not influence λCL. This is showing that the strength of the constraint on the maximum
lift coefficient is not influenced by the material density. In other words, designs with low
material densities, such as multi-planes, require high lift coefficient as normal aircrafts.
However, this analysis is not modelling in an accurate way a multi-plane design, neither
the structural design of a high lift coefficient airfoil. These observations are carried out to
investigate on the necessity of extremely high lift coefficients in multi-planes [50].
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Figure 5.14: Contour plot of the metamodel of the Lagrange multiplier of the constraint
on the lift coefficient λCL (a) and on the wing area λAkite (b) as function of the wing area
Akite and the maximum lift coefficient CL max.

In Figure 5.14b, the Lagrange multiplier of the wing area constraint is shown. Also in this
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case, the constraint is stronger for low Akite and CL max.

Finally, to conclude the understanding of the results, the correlations between all the data
(inputs and outputs) can be spotted in a statistical way. A polynomial fit can be performed
between each pair of data and, if a good correlation is found, the output can be displayed
and interpreted. For instance, in Figure 5.15a, the evaluations of the operational altitude
h are plotted as function of the tether length r, showing the expected correlation between
the two. The operational altitude is, most of the times, set by the optimiser to the lower
bound (varying in the global sensitivity analysis between 150 and 250 m). This is because
a short tether is contributing less to the system drag than a long one: a reduction of the
drag is bringing more benefits to the system, compared to an increase in altitude. However,
the Lagrange multiplier on this lower bound, is on average small (Table 5.6). This means
that this constraint is weak. It is interesting to notice that λhmin is almost not influenced
by the minimum operational altitude variance. Figure 5.15b shows the trend with the wing
area Akite and CL max. For big kites with high maximum lift coefficient, this constraint
is weak. It should be remarked that a model of the trajectory, not available in this work,
would discard solutions with extremely short tether.
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Figure 5.15: Evaluations of operational altitude h as function as tether length r (a) and
contour plot of the metamodel of the Lagrange multiplier of the constraint on minimum
operational altitude as function of the wing area Akite and the maximum lift coefficient
CL max (b).

Other trends can give an understanding of the results. Figure 5.16 shows the evaluations
of the mass density as function of the aspect ratio. The red crosses represent commercial
gliders [53], while the blue represent the output of the optimisation problems. The
mass densities for crosswind AWES are higher than for commercial gliders because the
aerodynamic loads are much larger.
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Figure 5.16: Mass density as function of aspect ratio.
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5.9 Global sensitivity analysis results for a fixed wing area

It can be useful to look at a global sensitivity analysis with a fixed wing area. In this case,
the wing area is fixed to 30 m2. The Sobol’ indices for this case are shown in Appendix
A.1.

The most important parameter, if the wing area is fixed, is the maximum lift coefficient
CL max. It is the main responsible for the increase in AEP : Figure 5.17a shows how it
increases. The annual energy production does not have any relevant benefit, if the CL max
is increased higher than about 3. This can be noticed by looking at the AEP trend (Figure
5.17a), as well as at the Lagrange multiplier of the CL max trend (Figure 5.17b). As soon
as the AEP reaches a plateau, λCL goes close to zero, highlighting that a small increase in
the CL max would not influence the objective function (AEP ).
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Figure 5.17: Evaluations of AEP (a) and λCL (b) as function of maximum lift coefficient
CL max.

According to the Sobol’ indices, after CL max, Cd0 is the main responsible for the CF
variance. In Figure 5.18a, the metamodel of CF is shown as function of these two
aerodynamic coefficients. The highest capacity factors can be obtained with low Cd0 and
relative low CL max. To have a high capacity factor, the aerodynamics of the kite should be
designed to have a low Cd0 and, at the same time, a high enough maximum lift coefficient
according to Figure 5.18a. It should be remarked that Figure 5.18a is created for a rated
power of 3 MW and a wing area of 30 m2. With other parameters, the contour lines would
be shifted.

Figure 5.18b shows how the aspect ratio varies with the maximum structure deflection δ.
If the maximum tip and central deflection is set to 1 % of the span, AR is of about 15 to
make the structure stiff. If this limit is increased, the aspect ratio rises as well. For small δ,
the aspect ratio evaluations are close the the mean, showing that the maximum deflection
is the main model parameter driving AR. For higher δ, the evaluations are sparser: the
maximum deflection is not any more the only parameter driving the aspect ratio. When
designing a kite to maximise AEP , one could consider an aspect ratio according to Figure
5.18b, if the maximum structure deflection is low. For high δ, one should consider also
CL max, Cd0 and the structural material density ρcarb, according to the Sobol’ indices.
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Figure 5.18: Contour plot of the metamodel of the capacity factor as function of the
CL max and Cd0 (a). Evaluations and polynomial fit of the aspect ratio as function of the
maximum structure deflection (b).

5.10 Global sensitivity analysis results considering wind re-
sources uncertainties

It is interesting to see how the design is influenced by the wind conditions. Thus, a global
sensitivity analysis is run, considering the wind-related uncertainties. In Table 5.7 a range
is given to the wind shear coefficient α and to the Weibull parameters. All the uncertainties
presented in Table 5.4 are also considered.

par Min Max Units Description

α 0.1 0.3 - Wind shear coefficient
A 6 15 m/s Weibull scale parameter (eq. (3.92))
k 1 3 - Weibull form parameter (eq. (3.92))

Table 5.7: Wind resources parameters ranges.

5.10.1 Statistics of design outputs

The mean and the standard deviations of design performance, design outputs and Lagrange
multipliers are given in Table 5.8.

Similar conclusions to the ones presented for Table 5.6 can be drawn. The outputs have
similar magnitude, showing that the optimum designs are generally not changing if the
wind resources change. The only output parameter that changes significantly is the cut-out
wind speed (Vout). In this case, the average value increases, and the standard deviation
changes from 0.6 to 5.9 m/s. This outlines the fact that the optimiser look for high capacity
factor by moving the Vout according to the Weibull distribution.
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AEP AEPGG AEPFG CF mtot mgl mel mte mTO ∆
units GWh GWh GWh - kg kg kg kg kg ◦

mean 20.39 15.55 4.83 0.78 3445 2638 161 625 20 8.3
SD 4.33 3.89 2.16 0.16 1681 1482 113 326 68 2.6

r d h β Vin Vout s AR B δout
units m mm m ◦ m/s m/s m - m m
mean 467 38 217 27.88 2.34 22.66 34.36 22.01 8.38 1.15
SD 123 8 53 2.55 0.88 5.88 8.65 4.52 2.09 1.91

δin Aturb Qturb αTO Q ETO Aprop tAA tBB tCC
units m m2 - ◦ kN Wh m2 mm mm mm
mean 1.92 78.11 0.88 24.04 14.77 6380 0.2 3 15 27
SD 2.36 61.48 0.27 21.49 12.27 4654 0.66 9 12 11

λte λPrated λM λδout λδin λCL λAkite λhmin
units GWh/- GWh/- GWh/- GWh/- GWh/- GWh/- GWh/- GWh/-
mean 2.08 37.8 0.49 0.11 0.27 3.85 4.28 0.95
SD 1.79 17.07 0.57 0.17 0.32 5.76 3.21 1.3

Table 5.8: Mean and standard deviation of the outputs considering wind resources uncer-
tainties.

5.10.2 Sobol analysis and design trends

The Sobol’ indices can now be investigated. Figure 5.19 shows the first part of the outputs,
Figure A.3 the second.
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Figure 5.19: Graphical visualization of the total Sobol’ indices considering the wind
resources uncertainties (first part).

The annual energy production is influenced by the the wind resources uncertainties.
However, the wing area Akite and the maximum lift coefficient CL max are still driving the
performance. Figure 5.20a shows the surface plot of the metamodel relating the Weibull
scale parameter A and the wing area Akite to the capacity factor. For low wind resources
regions, a high capacity factor can be obtained by increasing the wing area.

Figure 5.20b shows how the Lagrange multiplier on the rated power varies with the scale
parameter. Increasing A, the constraint is stronger: it would be more and more convenient
to have a bigger rated power.

By analysing the mean and standard deviation of the outputs (Table 5.8) and the Sobol’
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Figure 5.20: Contour plot of the metamodel of the capacity factor as function of the scale
parameter A and the wing area Akite (a) and Lagrange multiplier of the rated power as
function of the scale parameter (b).

indices, it tuns out that the design of the kite and of the tether is not influenced by the
wind resources. Thus a kite can be designed keeping the wind resources fixed, and it can
be used in all the scenarios.

This section is showing that, to achieve high capacity factors in low wind regions, a large
wing area is necessary. Given a wing area, the design of the kite is not influenced by the
wind resources uncertainties. Thus, a big kite can be used with a large rated power in high
wind regions, and with lower rated power in low wind regions. In this way, high capacity
factors are obtained in both regions.
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5.11 Discussion

In this chapter, the methods presented in Chapter 4 are used to evaluate the model
proposed in Chapter 3. A detailed analysis on the optima designs, with respect to AEP ,
is presented.

First, the optimisation problem formulation is described. The optimiser performs a design
of the kite to maximise the annual energy production. Some tests to validate the model
are carried out. One optimisation result is shown, to introduce typical trends.

The uncertainties of model parameters, influencing the kite design, are given. Most of the
parameters uncertainties are epistemic uncertainties: in the future they will be fixed, but
at this stage it is interesting to understand how the design varies with them.

How these uncertainties influence the configuration design is investigated. The design,
performed by the optimisation algorithm, is evaluated in many points, according to the
model parameter uncertainties. As a first analysis, the mean value of the outputs defines
the expected configuration. The standard deviation of the outputs indicates if they are
more or less sensitive to the model parameter uncertainties.

After, a global sensitivity analysis shows how the outputs variances are influenced by the
model parameters variances. This analysis brings to the following discussion.

A crosswind AWES designer, at a first stage, should focus on the design of wing area
and of kite aerodynamics. These characteristics can be designed, by assuming the other
parameters with conservative values. In other words, to design a system for a given
capacity factor, one could assume the model parameters with low Sobol’ indices (e.g. the
tether strength safety factor, efficiencies due to the trajectory and so on) and perform a
preliminary design based on the high Sobol’ indices parameters. Once the preliminary
design is performed, an accurate estimation of the model parameter with low Sobol’ indices
for the given design can be carried out. In this way, strong configurations can be obtained.

In this chapter, some information useful to determine interesting research areas can be
found. To maximise AEP , it would be interesting to study kites with really low Cd0 and
high enough lift coefficients. As shown in this chapter, extremely high lift coefficients are,
on average, not attractive. It is also shown that a reduction of the structural material
density, representing kite design with lower mass such as multi-planes, does not require
high lift coefficients. However, the structural model is not accurate for these designs. Thus,
a research topic could be on the investigation of optimal aerodynamic designs, considering
the structural properties. An accurate aerodynamic and structure study could give also
information related to the wing cost. The design of the wing area of the kite is indeed
driven by cost considerations. Thus, it could be interesting to develop some accurate cost
models for the kite structure. Studies on how to decrease of the tether drag coefficient can
also bring benefits, according to the Sobol’ indices.

It is shown that the kite design does not depend on wind resources, the wing area is.
The same capacity factor can be obtained in different regions, by designing the wing area
accordingly.

If in the future some regulations will impose high safety factors on the tether, the kite
could be designed to produced high capacity factors anyway. Same conclusions can be
drawn for a regulation on the minimum operational altitude. These two considerations
show the strength of crosswind AWES, with respect to these two possible regulations.

The analyses presented in this chapter, show the big potential of crosswind AWES, in term
of power production. They point out the strength that this technology will have in the
future.
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Chapter 6

Cost modelling of a generic
crosswind AWES

In this chapter, the cost models for a generic crosswind AWES are presented. The presented
cost models refer to GG-AWES and FG-AWES. Some cost functions are common between
the two generation strategies, some others are typical of one solution.

In literature, a cost model related to GG-AWES is introduced by the master thesis of
Heilmann [54] and used to economically assess a kite wind farm by Heilmann himself [55],
Grete [56] and De Lellis [57]. All these works deal exclusively with soft kites. Thus a
generalization is necessary.

Concerning FG-AWES, Bauer [50] proposes a model that is distinguishing between driv-
etrain cost, including generators and power electronics, and a unique cost, including
airframe, tether, ground station, development costs and the profit margin of the power
plant manufacturer. No other models, to the best knowledge of the author, are available
for FG-AWES. Thus, in this work a simple cost model is proposed, using the available
models as much as possible.

In this chapter, the cost functions of each subsystem are given with the relative numerical
values of the parameters. The considered uncertainties on the cost model parameters are
also shown. If the standard deviation of one parameter is null, no uncertainty is given to
it. The cost of the components is estimated in 2019 euros.

6.1 Kite structure

To describe the cost of an aircraft in an accurate way, an accurate structural design should
be developed, to assess the cost of each sub-component. In this work a simple cost function
is assumed, relating the cost to the kite mass.

To give an appropriate range to the material cost, an investigation on the costs of some
existing gliders is performed [53]. It should be noted that commercial glider prices also
include non-structural components. The trend relating the empty mass and the price are
showed in Figure 6.1. The cost function is thus:

Cglider = pgl ·mwing (e) (6.1)

Where the mass of the glider is estimated with the structural model. The coefficient pwing
is varying between 20 and 200 e/ kg.

71



0 100 200 300 400 500 600
0

50

100

150

200

250

Figure 6.1: Price of commercial gliders as function as the manufacturer’s empty weight [53].

6.2 Tether

The cost of the tether is proportional to its mass [54]. Once the mass is estimated, the
cost can be found. In Table 6.1 the estimated mean and the standard deviation of price
per kg are reported [54].

The electric cable is considered to be made of aluminium, because it is lighter than copper [3].
The presence of both the structural and electrical components needs a customised design
and manufacturing, that increase the cost. A manufacturing factor fte is applied to the
cable costs, if it needs the specific design.

Mean SD Units

Structural tether: pte 200 50 e/kg
Electrical cables: pel cable 2 - e/kg

Minimum Maximum

Manufacturing cost fte 1.2 2 -

Table 6.1: Structural tether cost [54] [58], electrical cable cost [59] and manufacturing
factor.

Depending on the fibres types and on the operational stress, a working life due to creep
can be determined for the structural component of the tether.

Bosman [52] proposed a tether design considering one single stress level, showing that the
load cycles during the generation phase are small. Therefore, the stress can be considered
constant. The author considers that the tether is not operating at the nominal tension all
the time, due to the reel-in phase. Moreover, during night and during winter the average
temperature is reduced and therefore it increases the life. In Figure 6.2a the curves relating
the tether stress to the life for three different ropes are shown [52].

In this analyses, the tether stress is not constant, but varies with the wind speed. Thus,
it would be too approximative to estimate the tether life just by considering the maxi-
mum tether stress. Moreover, this approach would lead the optimisation algorithm to
unreasonable designs. Bosman [52] suggests the usage of a Miner’ Rule approach, thus a
reformulation of this rule for creep damage is proposed.

The Miner’s Rule [60] is an empirical rule used to compute the life of a structural component
when load cycles, with different stress levels, are applied to it. Considering a generic material,
a plot similar to the one presented in Figure 6.2b can be experimentally found. To explain
this rule, it is considered a case in which two load levels S1 and S2 are applied for a number
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Figure 6.2: Working life as function of tension stress for different types of Dyneema tether
at T=20◦ C [52](a) and Wöhler curve for a generic material with in the x-axis the number
of cycle and in the y-axis the stress level (b).

of cycles n1 and n2. If the stress S1 was applied a number N1 of cycles, the material would
have failed. The same for S2 and N2. The Miner’s Rule states that the material fails when:

nloads∑
i=1

ni
Ni

= 1 (6.2)

In the example when n1
N1

+ n2
N2

= 1. A similar approach is used to compute the life of
the tether, with respect to Figure 6.2a. According to the wind speed, a different stress
level is applied to the tether σ(Vw). If only this stress was applied to the tether, the life
would have been L(σ(Vw)) (the functions plotted in Figure 6.2a). Considering the function
describing the wind speed frequency f(Vw) (Weilbull distribution, Equation (3.92)), it is
possible to find for how long a stress level is applied to the tether in one generic period of
time Tte:

l(Vw) = f(Vw) · Tte (6.3)

Considering the Miner’s Rule, and the safety factor SFσ lim the tether fails when:

nV w∑
i=1

l(Vw i)

L(SFσ lim · σ(Vw i))
= Tte

nV w∑
i=1

f(Vw i)

L(SFσ lim · σ(Vw i))
= 1 (6.4)

Considering continuous functions, the summation becomes:

Tte

∫ Vout

Vin

f(Vw)

L(SFσ lim · σ(Vw))
dVw = 1 (6.5)

Using the latter equation, the frequency of tether replacement fte = 1
Tte

(1/year) can be
found. In this work the creep curve for the DM20 material in Figure 6.2a is used.

6.3 Winch

6.3.1 GG-AWES: Winch drum, Line Handling and Winch Bearings

The winch drum is found to be a relevant cost for GG-AWES systems. A good design can
avoid the damaging of the tether and elongate its life. The winch should not be too big to
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lower the manufacturing cost and to avoid a low generator speed.

The winch cost is proportional to its material mass [54]:

CWinch = mdrum cal (6.6)

Assuming that the thickness of the drum is 5% of the diameter and that all the tether is
lying on the first layer [54], the mass is:

mdrum =
π
(
D2
drum − (0.9 ·Ddrum)2

)
4

r d

Ddrumπ
ρal (6.7)

Parameter Mean SD Units

Ddrum/d 50 - -
cal 1.6 - e/kg

Table 6.2: Parameters ranges related to the winch drum cost [54].

6.3.2 FG-AWES: Winch drum, Line Handling and Winch Bearings

For a FG-AWES, the cost related to the winch is lower: it does not need to be designed
for power production. The winch should be big enough to avoid damaging the tether, but
the tether could be stored in many layers, limiting the axial dimension.

The drum mass can be then computed as:

mdrum =
π
(
D2
drum − (0.9 ·Ddrum)2

)
4 nlayers

r d

Ddrumπ
ρal (6.8)

considering Ddrum/d = 100 and nlayers = 4.

6.4 Electrical system

6.4.1 GG-AWES

The cost function for the generator is estimated from Heilmann [54]. It is proportional to
the rated power and it is function of the generator speed:

Cgen = agen · Prated · w
bgen
nom (6.9)

with wnom in rpm, P in W.

The power electronics cost can be considered proportional to the rated power [54]:

Cel = Prated · ael (6.10)

With the power expressed in W.

Concerning the take-off sub-system, a power density is considered for the motors (cmot) [17]
and the batteries (cbatt) [61].

The parameters describing the cost of the electrical system for a GG-AWES are given in
Table 6.3.
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Parameter Mean SD Units

agen 1.2 0.2 e/W
bgen -0.6 - -
ael 0.09 - e/W
cmot 90 - W/e
cbatt 0.19 - e/Wh

Table 6.3: Cost parameters related to the GG-AWES electrical system.

6.4.2 FG-AWES

For FG-AWES, the on-board generators and electronics cost is modelled with the same
equations proposed for GG-AWES. However, to take into account an additional cost if the
electronic generation is on-board, a factor fFG, ranging from 1.2 to 1.8, is applied to the
equivalent GG-AWES cost.

6.5 Launching and landing structure

The launching and landing structure should be designed according to the take-off strategy.
In this work two strategies are considered: linear and vertical take-off.

6.5.1 Linear take-off

A linear take-off requires the design of the take-off and landing system. Ampyx Power [13]
has designed a catapult to launch the kite into the wind. The catapult can rotate on
the platform to face the wind. For the landing, the tether pulls the aircraft down on the
platform with a patented system. The rail is 20 m long for a 12 m span kite.

Unfortunately, a design driver is not clear for the linear take-off and landing. A meaningful
strategy for the cost estimation could be to evaluate the cost of a simple take-off method,
assuming that a customized lunching and landing system would reduce the costs. Once a
simple method is implemented, a large uncertainty on the model parameters is used to
model the many design strategies.

mg

Q

D LFf V

Figure 6.3: Force balance during the acceleration on the strip.

Referring to Figure 6.3, the kite is modelled as a classical aircraft taking off. The thrust Q,
needed to accelerate, is given by the on-board propellers used during the climbing. The
drag D and the friction force Ff = µ(mg−L) are acting along the opposite direction. The
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equation of motion, assuming a constant thrust Q, is therefore:

mv̇ = Q− µ(mg − L)− 1

2
CdρAv

2

v̇ −Av2 −B = 0
(6.11)

By setting v(t = 0) = 0, the solution of the first order differential equation is:

v =

√
B

A
tan(
√
ABt) (6.12)

The strip length Ls can be found by looking at the distance swept by the kite till the
achievement of the stall velocity (velocity for which L = mg). The thrust Q is considered
70% of the thrust provided during the climbing phase, µ is set equal to 0.1 [17].

The area on the ground is approximately [18]:

Ag,lin '
πL2

s

4
+
πs2

4
(6.13)

6.5.2 Vertical take-off

For vertical take-off, the kite is supported by a static structure holding the kite [14] or it
can take off directly from the ground [21]. The initial acceleration is performed by the
turbines and/or propellers. The area on the ground is then approximately equivalent to a

circle with the diameter equal to the kite span: Ag,vert ' πs2

4 .

The cost range of the launching and landing structure is given in Table 6.4. 1

Minimum Maximum Units

Ground structure pAg 20 200 e/m2

Table 6.4: Launching and landing cost per unit area.

6.6 Tower

A tower could be beneficial for AWES [62]. The technical advantages for a tower are:

• Reduction of the tether inclination. Therefore, reduction of the angle between the
kite and the wind. The power equation is proportional to the cosine of this angle
raised to the power of three, as shown in Eq. (3.88). If the inclination is reduced,
more power can be harvest.

• The autonomous take-off and landing manoeuvres could be simplified [62].

• The energy needed to reach the operational altitude is lower [62].

• Wind sensors can be mounted on the tower, to have a better estimation of the shear
and of the operational conditions. Moreover, the tower can be used to support other
functions, such as antennas [62].

1These values are estimated to have an average take-off structure cost equal to approximately 10 % of
the total initial capital cost.
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• The kite can be used over a forest [62].

• The kite can reach higher operational altitude.

A model for the structural design of the tower can give information also about the costs.
Looking at Figure 6.4, some suspensions lines reduce the bending moments on the tower.

β

Vw

T

βs

Ts

T cos(β)

Ts  cos(βs)

Figure 6.4: Forces acting on the tower and on the suspension lines for a FG-AWES or a
GG-AWES with the generator set at the tower top.

As an approximate first design, the tower is considered to absorb only compression forces
and not bending moments. A buckling constraint is neglected at this stage. Therefore, the
tension force on the suspension lines is [62]:

Ts =
Ts cos(βs)

cos(βs)
=
T cosβ

cos(βs)
(6.14)

The compression force acting on the tower is [62]:

Tcomp = Ts sinβs − T sinβ = T (tanβs cosβ − sinβ) (6.15)

With these two expressions, the tower and the suspension lines can be designed. Assuming
a suspension lines inclination of 60◦, the lines and the tower cross section should be thick
enough to not exceed the material strength. The material of the cables is considered to be
steel. The tower could be a truss structure manufactured in aluminium. A truss structure
would allow a cost-effective transportation, mounting and disposal.

For a GG-AWES, the design is more complex and could be done in two ways. The first
is similar to the FG-AWES design: the winch and the generator are set on the top of
the tower. For this design, the tower should withstand an additional torque due to the
power generation. It could be a bending moment or a twist, depending on the generator
orientation.

If the generator is set at the tower base, a pulley has to change the direction of the tether
(Figure 6.5). This is leading to a new force resultant that need to be supported by the
tower and the suspension lines.
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Figure 6.5: Forces acting on the tower and on the suspension lines for a GG-AWES with
the generator set at the tower bottom.

In this case, the forces on the suspension lines are the same as in the previous case. The
normal force that the tower needs to withstand is:

Tcomp = Ts sinβs + T (1− sinβ) = T (1 + tanβs cosβ − sinβ) (6.16)

In this work the generator is suppose to be placed on the tower top.

The price per kg of the suspension lines cSL and of the tower frame ctw are given in Table
6.5. A factor ct, which multiplies the tower material cost, is used for manufacturing,
transportation and installation.

Mean SD Units

cSL 1.5 - e/kg
ctw 1.6 - e/kg

Minimum Maximum Units

ct 1 3 -

Table 6.5: Steel [63] and aluminium prices per kg and manufacturing factor.

6.7 Fixed costs

The fixed costs include all the costs of components not related to the specific system
design, such as transformer, cover frame, electrical grid connection, assembly, transport,
installation, operation and maintenance and decommissioning. Faggiani [64] proposes cost
models for each of these components for a GG-AWES with soft kites. Since these costs are
considered the same for all the designs, they are used in this work. The main costs are
listed in Table 6.6.
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Units

Transformer [65] 12′000
(
Prated/106

)0.4
e

Cover frame [54] 0.03P 0.8
rated + 3000 e

Electrical connection [66] 25’000 e
Cable installation 120’000 e
Transport and installation 0.005Prated e
Civil works 5000 e
Units and cable removal 100′000 e

Table 6.6: Fixed costs for all the designs [64].

6.8 Operation and maintenance

Typically, operation and maintenance costs constitute a relevant share of the total annual
costs of a wind turbine. It is expected to be similar for AWES.

Operation and maintenance costs are related to insurance, regular maintenance, reparation,
spare parts and administration. A typical value for wind turbines is about 12 to 15
e/MWh [67].

In this work the operation costs OC (insurance, regular maintenance and administration)
are considered to have a mean of 9 e/MWh and a standard deviation of 3 e/MWh.

The maintenance costs (reparation and spare parts) are related to components with a
working life. The tether life is estimated with the procedure shown in Section 6.2. A
frequency of replacement of the kite fr. gl is considered as well. This is to take into account
possible crashes.

6.9 Levelized cost of energy (LCOE)

Once all the costs are computed, the initial capital costs ICC and the operational and
maintenance costs OMC can be found. The Levelized cost of energy (LCOE ) is then the
ratio between the annual costs and the produced energy [66]:

LCOE =
ICC × CRF +OMC

AEP
(6.17)

Where AEP is in MWh/y and OMC in e/y. The capital recovery factor CRF can be
expressed as function as the discount rate i:

CRF =
i(1 + i)ny

(1 + i)ny − 1
(6.18)

where ny is the number of years of operation.
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Chapter 7

Profit maximisation

In this chapter, the cost model is included in the optimisation. Thus, some interesting
economics outputs can be analysed. The aim of this investigation is to spot trends that
relate the system designs to LCOE.

Initially, the new problem formulation is proposed. Some tests to understand how many
optimisation problems are to be run to find a global minimum are carried out. Later,
two typical optimisation outputs are shown. The uncertainty quantification include the
cost-related uncertainties. Finally, the global sensitivity analysis is performed. Initially,
GG-AWES, FG-AWES and systems with both the generation types are analysed. Later,
two global sensitivity analyses on GG-AWES and FG-AWES outline the characteristics of
the two generation types.

7.1 Problem formulation

The problem formulation is slightly different from the one proposed in Section 5.1. In this
case, the cost of the design is considered.

7.1.1 Design variables

To the design variables presented for the AEP maximisation, given in Table 5.1, the tower
height qht in m is added.

7.1.2 Constraint

The constraints are related to the tether strength, the rated power, the minimum operational
altitude and to the structural design, as in the previous case. However, no constraint on
the wing area is here considered. In this way, the optimiser designs the kite dimensions.

7.1.3 Objective function

The objective function is represented by the annual profit:

Π = pel ·AEP − (ICC × CRF +OMC) (7.1)

Where pel is the price of electricity and the term in the brackets is the annual costs (Eq.
(6.17)). This objective function is robust from an optimisation algorithm point of view. The
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optimiser tries to maximise AEP and minimise the costs. pel, for the optimiser, represents
a weight between revenues (pel ·AEP ) and the costs (ICC × CRF +OMC).

This objective function is preferable compared to LCOE. A minimisation of LCOE is highly
dependent on the fix costs, here known with high uncertainty. In this case, the minimum
LCOE could be found with small AEP and small costs, leading to not interesting designs.

7.1.4 Optimisation algorithm

A gradient-based optimisation algorithm can still be suitable for this problem, with some
considerations. This family of algorithms cannot handle discontinuity in the design space:
the cost functions are not always continuous. For instance, some costs are present only if
the system has on-board or ground generation. To still use these algorithms, the generation
type is chosen before starting the optimisation. Therefore, the generation types can ground
generation (GG-AWES), on-board generation (FG-AWES) or both at the same time. After
this initial decision, the optimisation problem can be solved. To compare the results, the
three generation types should be evaluated.

7.2 Model implementation

The physical model is similar to the one presented in Section 5.2. The only difference is
that the tower height is included in the altitude computation.

Once the annual energy production AEP is computed, the cost associated to the design
can be evaluated.

7.3 Algorithm validation

Some tests to understand if the problem is well posed can be performed. Moreover, these
tests point out how many optimisation problems are to be run to find the global minimum.

7.3.1 Algorithm reliability

To understand how many optimisation problems are to be run to find a global minimum,
the test presented in Section 5.3.1 is carried out. The rated power Prated and the electricity
price pel are considered two parameters that highly influence the objective function. Thus,
they are varied. The objective function should be checked to be a continuous and smooth
function of these parameters. Figure 7.1a shows how the objective function varies with
Prated and Figure 7.1b with the electricity price pel. To make these plots, 21 optimisation
problems are run. Within these 21, 7 are ground generation, 7 fly-generation and 7 have
both the generation types. The objective function is considered to be a smooth and
continuous function of the selected parameters, according with the scale of the plot.
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Figure 7.1: Objective function and norm of the design variables as function of the rated
power (a) and of the electricity price (b).

7.3.2 Reference LCOE

To validate the cost model, the finals LCOE is compared with reference values. Drexler
in [68] shows the LCOE of the main existing AWES technologies. The LCOE ranges
between about 20 to 120 e/MWh. However, this thesis is analysing costs and performances
in the future, when the technology will be mature. So, the LCOE is expected to be lower.
Ahrens in [9] shows that AWES can have a LCOE ranging between 10 and 20 e/MWh
with a mature technology.

7.4 Optimisation results

In this section, two typical results of the optimisation problem are shown. The rated power
is set to 2 MW, the maximum lift coefficient to 2. The kite is supposed to have a failure
every 10 years and to be replaced. All the other parameters are set to nominal values.

These solutions are not investigated in details because a more informative analysis is
presented with a global sensitivity analysis in the next sections.

7.4.1 GG-AWES

Figure 7.2 shows the main outputs for the optimisation of a GG-AWES. The pie chart
outlines that most of the initial capital costs are related to electronics. The kite structure
and the tether have a low share of the total cost. A span of 32 m and an aspect ratio
of 8 combine for a wing area of 128 m2. However, the total kite mass is low. The low
aspect ratio makes the airfoil thickness to be large. Thus, the spar caps are far from each
other, increasing the inertia. By looking at the power curve, the rated power is achieved at
around 9 m/s. This is leading to a capacity factor of 46 %. On the first plot on the right,
the trend of the lift coefficient and of the tether stress can be seen. The tether stress gets
close to the limit of 1.5 when the rated power is reached. The operational tether life is 2.4
years. The second plot on the right shows the reel-out coefficient γout and the additional
inclination due to mass ∆. Finally, this system has a LCOE of 16 e/MWh.
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--- DESIGN VARIABLES ---
s = 32.78 m
d = 0.02833 m
AR = 8.412 
r = 464.7 m
h_tower = 0 m
beta = 25.43 deg
alpha = 12.16 deg
hook postion = 8.285 m
--- OUTPUTS ---
AEP = 8.143e+09 Wh
Capacity f. = 46.48 %
LCOE = 16 euro/MWh 
OMC = 43 k euro/year 
h = 199.6 m
area = 127.8 m^2
mass = 987.4 kg
wing loading = 5.09 kg/m^2
glider mass = 649.9 kg
tether mass = 292 kg
TO mass = 45.5 kg
TO Thrust = 2991N
A propeller = 6 m^2
r 2 propellers = 0.69 m
life tether = 2.4 years 

wing 3 %
tether 2 %

electr 61 %
launch 5 %

fix 29 %
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Figure 7.2: Typical trends for a GG-AWES optimised to maximise the profit.

7.4.2 FG-AWES

Figure 7.3 shows typical trends for a FG-AWES. In this case the electronics have a lower
cost share, if compared to the GG-AWES case. The Initial Capital Cost (ICC) is lower. A
span of 42 m and an aspect ratio of 13 combine for a wing area of 140 m2. The structure
mass (glider mass in figure) is higher than for the GG-AWES case. Looking at the power
curve, the rated power is reached at around 9 m/s, leading to a capacity factor of 54 %.
The first plot on the right shows the lift coefficient and the stress, as function of the wind
speed. The stress reaches the maximum when the rated power is attained. This is in accord
with the power curve description proposed by Vander Lind [41], explained in Section 5.3.2.
The tether has an operational life of 6.3 years. Finally, a LCOE of 17 e/MWh can be
obtained with this system.

--- DESIGN VARIABLES ---
s = 42.75 m
d = 0.03862 m
AR = 13.06 
r = 542 m
h_tower = 0 m
beta = 21.65 deg
alpha = 66.88 deg
thrust from turb = 100 %
hook postion = 10.8 m
--- OUTPUTS ---
AEP = 9.601e+09 Wh
Capacity f. = 54.8 %
LCOE = 17 euro/MWh 
OMC = 87 k euro/year 
h = 200 m
area = 140 m^2
mass = 4320 kg
wing loading = 17.5 kg/m^2
glider mass = 2454 kg
tether mass = 900.2 kg
electronic mass = 966 kg
A turbine = 26.97 m^2
r 8 turbines = 1.036 m
TO mass = 0 kg
TO Thrust = 4.047e+04N
A propeller = 0 m^2
r 2 propellers = 0 m
life tether = 6.3 years 

wing 16 %

tether 8 %

electr 34 % launch 8 %

fix 34 %
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Figure 7.3: Typical trend for a FG-AWES optimised to maximise the profit.
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7.5 Uncertainty quantification

In this section, the uncertainty quantification is presented. All the model parameter
uncertainties related to the physical model, given in Table 5.4, are considered. To these,
the economic related uncertainties are added. These uncertainties are mainly related to
the uncertain cost parameters given in the previous chapter. To these cost parameters, the
epistemic uncertainties on the rated power, on the number of operational years and on
the maximum tower height are added. A frequency of kite replacement is also considered.
This is to investigate how the control system failures, and the relate crashes of the kite,
impact on the design.

In Table 7.1, the uncertainties, added to ones presented in Table 5.4, are given.

par Min Max Units Description

pwing 20 200 e/kg Price per unit mass of the structural material of the aircraft (eq
(6.1))

fte 1.2 2 - Cable manufacturing additional price in case of both structural
and electrical components (Table 6.1 )

pAg 20 200 e/m2 Coefficient for the launch and landing system cost (Table 6.4)
ct 1 3 - Coefficient for the manufacturing of the tower (Table 6.5).
fr. gl 0 0.5 - Number of aircraft replacement in one year.
fFG 1.2 1.8 - Factor for the on-board electronic cost (Section 6.4.2).
hmaxt 150 250 m Maximum tower height
ny 15 25 - Number of operational years.
Prated 1.5 4.5 MW Rated power

par Mean SD Units Description

pte 200 50 e/kg Price per unit mass of the structural material of the cable (Table
6.1)

ael 1.2 0.2 e/MW Coefficient for the generator cost (Table 6.3)
Cfix 150 80 ke Fix cost (Table 6.6)
OC 9 3 e/MWh Operation costs
i 0.09 0.015 - Discount rate [69]
pel 40 10 e/MWh Price of electricity [70]

Table 7.1: Model parameters ranges and descriptions for the economic analysis. The first
parameters group has a uniform distribution, the second a Gaussian.

7.6 Global sensitivity analysis

The global sensitivity analysis is now considered, using the procedure explained in Section
4.3.4.

7.6.1 Evaluation procedure

A number of evaluations of the optimisation problem (computational model in Figure 4.4)
has to be performed. These evaluations are taken in points filling the model parameter
space.

In Figure 7.4, the process for the evaluation is presented. In Section 7.5, the model
parameters that could be design drivers are selected and an uncertainty is given. Using
the Latin hypercube sampling technique, a number Nsample of inputs are generated. Each
input is a set of model parameters and, if a parallel computing approach is used, is sent to
a worker. Each worker has then to find the global maximum, given the problem with the
selected model parameters. To find the global maximum, a number N max of optimisation
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problems, with different random initial conditions, has to converge for each generation type.
Finally, the global maximum for each input is considered to be the best of the 3×N max
converged optimisation problems.

Inputs 1

Sampling

Inputs 2 Inputs 3 Inputs 4 ... ... ... ... Inputs
Nsample

Worker 1 Worker 2 Worker 3

Worker 4

FG-AWESFG-AWES & 
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Random 
initial 

conditions

Input 
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No
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n=n+1
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No Yes

objFG = min {obj1,...objNmax}
solFG = arg min{obj}

Optimisation
problem

Random 
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Input 
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Input 
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sol* = arg min{objGG-FG, obj,GG, objFG}

Uncertainty 
quantification

Figure 7.4: Flowchart of global sensitivity for profits maximisation.

7.6.2 Output parameters

To describe the solution from a physical and economical point of view, additional outputs
to the one presented in Section 5.7.2 are considered. These are:

Π : Annual profit

LCOE : Levelized cost of energy

fr. te : Frequency of tether replacement

Akite : Wing area. In the AEP maximisa-
tion case it was a model parameter,
here it is an output.

ht : Tower height

Ag : Ground area needed to take-off.

λht : Lagrange multiplier of the maximum

tower height.

ICC : Initial Capital Cost

OMC : Operation and Maintenance Cost

costkite : Kite structure cost

costte : Tether cost

costel : Electronics cost

costTOs : Take-off structure cost

costt : Tower cost
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7.7 Global sensitivity analysis results

Once the uncertainties and the outputs are defined, the global sensitivity analysis can be
performed, following the methods explained in Section 4.3. The wind resources are fixed
to the nominal values for this case.

2400 points (i.e. Nsample = 2400 in Figure 7.4) are considered a sufficient number to
have a good representation of the model parameter space and to build a metamodel. Each
of these points is the best (in term of objective function) of 21 converged optimisation
problems run with random initial conditions (i.e. N max = 7 in Figure 7.4), in accord
with the results of Section 7.3.1.

7.7.1 Statistics of design outputs

Initially, a statistical approach to analyse the outputs is performed. Thus, the mean and
standard deviation of the outputs are given in Table 7.2.

Π LCOE CF AEP mtot mgl mel mte mTO

units ke e/MWh - GWh kg kg kg kg kg
mean 439 19.75 0.8 20.9 1649 672 50 878 50
SD 270 3.39 0.1 6.46 925 468 145 442 62

r d fr.te h ht β Vin Vout Akite
units m mm 1/year m m ◦ m/s m/s m2

mean 426 50 0.09 209.24 0.52 29.42 1.86 18.96 149.4
SD 84 10 0.07 37.34 5.56 1.44 0.82 0.98 99.53

AR s B δout δin Aturb Qturb αTO Q

units - m m m m m2 - ◦ kN
mean 8.73 33.13 7.99 0.26 0.82 45.2 0.21 35.09 10
SD 2.87 8.79 2.17 0.41 0.39 115.41 0.4 30.52 9

Ag ETO Aprop λte λPrated λM λδout λδin λCL
units m2 kWh m2 ke/- ke/- ke/- ke/- ke/- ke/-
mean 941.1 5 6.68 0 834 23.7 0.6 1.5 15.3
SD 516.24 3 6.58 0.3 563 21.2 3.4 6.6 32.4

λhmin λht ICC OMC costkite costte costel costTOs costt
units ke/- ke/- ke ke ke ke ke ke ke
mean 19.7 0 1711 221 68 194 1159 121 0
SD 54.2 0 576 93 52 122 466 73 5

Table 7.2: Mean and standard deviation of the outputs for the profit maximisation case
with fixed wind resources.

Design performance

The performance is the objective function of the optimisation problem: the profit Π. The
mean value is 439 ke per year. The standard deviation highlights that Π is generally
positive: AWES are interesting from a investors point of view, without any incentives.

Design outputs

The design outputs describe the average solution. The LCOE is found to be really low,
with a small standard deviation. This outlines that it is generally possible to have small
cost of energy, in accord with the reference values given in Section 7.3.2. Interestingly, the
capacity factor is really high, with a relative small standard deviation. This means that a
power curve with a small rated wind speed is economically attractive.
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The masses have high variances. They are expected to vary with the rated power. The
operational altitude is low. The tether is replaced on average every 10 year, but the
variance is high. The elevation angle β has a value similar to the average of the AEP
maximisation case. Moreover, the variance is small, outlining that this value can be fixed
in future designs and studies. The average cut-in wind speed is low: this is to increase the
operational wind speed range and the capacity factor. The aspect ratio is smaller than
the one for the AEP maximisation. A smaller AR makes the chord larger and the wing
thicker. In this way, the weight reduces. The variables related to the take-off have high
uncertainties, showing that no take-off strategy is, on average, preferable. All the variables
related to the tower are small, highlighting that building a tower is not convenient from an
economic point of view.

Finally, the costs can be analysed. By looking at the component costs, the most expensive
sub-system is the electronic sub-system with more than 1 million euro on average. The
tether and the take-off structure follow. Interestingly, the cheapest sub-system is the kite
structure.

Constraints

The Lagrange multipliers of the constraints give an overview of the constraints strength.
They are normalized with the constraint limit themselves to make a comparison possible.
Clearly, the constraint limiting the most the objective function Π is the rated power.
However, it has a big standard deviation.

The constraints on the structural material strength λM , on the minimum operational
altitude λhmin and on the maximum lift coefficient λCL have similar magnitude between
each other. They also have high standard deviation. Therefore, a detailed investigation is
necessary.

The Lagrange multiplier on the tether strength is small, showing that this constraint is
weak. The material strength is not driving the design of the tether, the creep life is. Finally,
the Lagrange multipliers on the structure displacement are small. The structural design is
indeed driven by the structural material strength.

7.7.2 Sobol analysis and design trends

The Sobol’ indices are now analysed. In Appendix B.1 the visual representation of the
Sobol’ indices is given. The variance of the profit Π is mainly influenced by the rated power
and by the electricity price. The variance of LCOE is highly sensitive to the operation
costs OC variance. In order to visualize a high number of evaluations, a density plot can
help to understand where most of the points are. In Figure 7.5a, the evaluations density
highlights the dependence between LCOE and OC.

The capacity factor variance is highly influenced by the price of electricity variance. In
Figure 7.5b this dependence is shown. Interestingly, when the electricity price is low, some
evaluations show a low capacity factor. In this case, the profit cannot be positive and the
optimiser looks for minimising the costs.

It is now interesting to understand which generation type the optimiser chooses to maximise
the profit. Figure 7.6a shows the evaluations for the LCOE as function of the frequency of
replacement of the kite, highlighting the generation type chosen by the optimiser. If the kite
is not replaced at all or less than once in 10 year, FG-AWES seems to be convenient from
a cost prospective. If the kite needs to be replaced more often, GG-AWES is preferable.
This is related to the cost of the flying mass that needs to be replaced after a crash. Figure
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Figure 7.5: Density plot of the LCOE as function of the operation costs (a) and CF as
function of the electricity price (b).

7.6b shows the evaluations of the flying mass cost. The costs, which are needed to be paid
after a crash, are much higher for a FG-AWES compared to a GG-AWES.

In accord with this analysis, GG-AWES and FG-AWES are expected to have different
designs. Therefore, a global sensitivity analysis, considering one single generation type,
is carried out in Section 7.9 and 7.10. First, a investigation on how the wind resources
influence the design is performed.
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Figure 7.6: Evaluations of LCOE (a) and of cost of the flying mass (b) as function of the
frequency of kite replacement.

7.8 Global sensitivity analysis results considering wind re-
sources uncertainties

To understand in which way the wind resources influence the design, a sensitivity analysis
including them is carried out. The ranges for the wind shear α and the Weibull parameters
is given in Table 5.7.

The statistics of the outputs are given in Table 7.3. Interestingly, the average and the
standard deviation of the outputs look similar to the ones presented in Table 7.2. The
standard deviation of the cut-out wind speed has a larger magnitude: to have high capacity
factor the power curve terminates when the Weibull distribution goes to zero.

In Appendix B.2, the Sobol’ indices for this case are given. The wind resource uncertainties
have an influence on the design and on the LCOE. In Figure 7.7a the metamodel, used for
the Sobol’ indices evaluation, is used to show how LCOE varies with the scale parameter
A and the operation costs OC. Clearly, with higher wind speed and lower operation costs,
LCOE is lower. However, a low LCOE can be obtained also in low wind speed regions.
Figure 7.7b shows how the wing area varies with the maximum lift coefficient and the
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Π LCOE CF AEP mtot mgl mel mte mTO

units ke e/MWh - GWh kg kg kg kg kg
mean 425 20 0.77 20.2 1550 631 41 830 48
SD 270 4.19 0.14 6.83 907 472 139 427 54

r d fr.te h ht β Vin Vout Akite
units m mm 1/year m m ◦ m/s m/s m2

mean 432.21 47.9 0.1 213.13 0.35 29.56 2 22.41 144.56
SD 86.29 10.6 0.07 40.96 5.02 1.16 0.86 5.98 116.25

AR s B δout δin Aturb Qturb αTO Q

units - m m m m m2 - ◦ kN
mean 8.78 32.37 7.79 0.25 0.82 36.3 0.16 32.79 9
SD 2.77 9.86 2.38 0.36 0.39 110.35 0.36 29.68 8

Ag ETO Aprop λte λPrated λM λδout λδin λCL
units m2 kWh m2 ke/- ke/- ke/- ke/- ke/- ke/-
mean 917.85 5 6.56 0.8 945.8 22.2 0.4 1.2 19.4
SD 595.69 3 7.58 21.2 696.5 21 1.8 3.8 124.8

λhmin λht ICC OMC costkite costte costel costTOs costt
units ke/- ke/- ke ke ke ke ke ke ke
mean 20.3 0.3 1663 213 64 180 1134 117 0
SD 67.7 9.6 585 93 52 114 460 74 4

Table 7.3: Mean and standard deviation of the outputs for the profit maximisation case
including wind resources.

Weibull scale parameter. For low A a big area is optimal. In this region, a high lift
coefficient is beneficial to reduce the kite area. With an increase of the scale parameter,
smaller wing areas are optimum, from a cost point of view. Thus, depending on the wind
resources, the kite size can vary. However, the aspect ratio is not influenced by the wind
resources. This information is elaborated in the next two sections.
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Figure 7.7: Contour plot of the metamodel of LCOE as function of the Weibull scale
parameter and the operation costs (a) and of the wing area as function of the Weibull scale
parameter and the maximum lift coefficient (b).

7.9 Global sensitivity analysis results for GG-AWES

In this section, the results of a global sensitivity analysis, carried out on a GG-AWES, are
presented. The rated power is fixed to 3 MW, the frequency of kite replacement ranges
from fr.gl = 0 to fr.gl = 0.1 1/year. The wind resources uncertainties are considered in this
analysis.
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7.9.1 Statistics of design outputs

In Table 7.4 the statistics of the evaluations are given.

Π LCOE CF AEP mtot mgl mel mte mTO

units ke e/MWh - GWh kg kg kg kg kg
mean 438 19.58 0.78 20.4 1614 724 0 813 77
SD 243 4.01 0.13 3.52 660 412 0 302 68

r d fr.te h ht β Vin Vout Akite
units m mm 1/year m m ◦ m/s m/s m2

mean 430 48.6 0.11 212 0.3 29.6 2 22.28 142
SD 91 7.8 0.08 42 4.0 1.23 0.83 6.02 101

AR s B δout δin Aturb Qturb αTO Q

units - m m m m m2 - ◦ kN
mean 9.39 33.5 8.09 0.36 0.89 0 0 33.44 9
SD 2.81 9.75 2.35 0.42 0.43 0 0 28.04 5

Ag ETO Aprop λte λPrated λM λδout λδin λCL
units m2 kWh m2 ke/- ke/- ke/- ke/- ke/- ke/-
mean 982 6 7.08 0.3 958.2 15.4 0.5 1.1 18.9
SD 585 4 6.43 5.3 615.3 12.5 2.2 3.6 45.5

λhmin λht ICC OMC costkite costte costel costTOs costt
units ke/- ke/- ke ke ke ke ke ke ke
mean 18.5 0 1737 202 75 163 1207 124 0
SD 29.1 0 374 68 52 74 255 75 3

Table 7.4: Mean and standard deviation of the outputs for GG-AWES.

Design performance

The system has a positive profit, meaning that a GG-AWES can be convenient from an
investor point of view, without any incentives.

Design outputs

structure: 4 %
tether: 9 %

electronics: 70 %

TO structure: 7 %

fix costs: 10 %

Figure 7.8: Cost breakdown of GG-
AWES.

The LCOE is small, with a relative small vari-
ance. The optimal capacity factors are high.
The power curve has then a small rated wind
speed. The masses have still high uncertainties:
a detailed study on what is driving the struc-
tural design is needed. The average frequency
of tether replacement fr.te is of 0.11, meaning
that the tether is replaced every about 10 years.
However, the standard deviation is large. The
operational altitude is still low. To build a tower
is not convenient, from an economic point of
view. The elevation angle is with small stan-
dard deviation. The kite area is high, with high
uncertainty. The aspect ratio is low compared to
typical glider values, but of the same magnitude
of civil aircraft [71]. The statistics of the take-off climbing angle show that no strategy is
generally preferable, from an economic point of view. Figure 7.8 shows the cost breakdown
of the initial capital cost. The highest cost is due to the electronics, followed by the tether
and the take-off structure costs. The kite structure is generally low.
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Constraints

The highest Lagrange multiplier is on the rated power. The others are almost two orders
of magnitude smaller. The mean of the Lagrange multiplier on the structural material
strength λM is higher compared to the deflection multipliers. Therefore, the structural
design is driven by the material strength. The Lagrange multiplier on the maximum lift
coefficient and on the minimum operational altitude present a high standard deviation: a
detailed study is then necessary. The Lagrange multipliers on the tether strength and on
the maximum tower height are small, showing that these constraints are weak.

7.9.2 Sobol analysis and design trends

The visual representation of the total Sobol’ indices is given in Appendix B.3.

The profit Π is highly influenced by the electricity price. The operational costs and the
wind resources follow. This is an important finding for policy makers. To finance the
significant research and development of AWES, investors want high expectation of profit,
with low risk. Thus, policy makers could make sure that a minimum price of electricity will
be paid for green energy produced by AWES. In this way, investors are sure to have high
profits, with a mature technology. Investors should also notice that high capacity factors
imply power generation with low wind conditions. In countries where wind energy have
a big share of the energy market, the hours with low wind speeds have a high electricity
price. Thus, power fed into the grid in these hours is really profitable.

LCOE is, as in the previous section, influenced by the the operation costs OC and the
wind resources. The capacity factor CF variance is mainly influenced by the electricity
price and by the Weibull form parameter k. In Figure 7.9a, this dependence is shown.
Extremely high capacity factors are optimum in regions with high Weibull form parameter
and high electricity price.

The frequency of tether replacement variance is highly influenced by the tether material
cost variance. Figure 7.9b shows the evaluation density of this dependence. Two clusters
can be identified. Some optima designs have a tether frequency of replacement close to
zero, meaning that the tether has a higher life than the operation system lifetime. Others
have a higher frequency of replacement. In this cluster, the tether life ranges from about 5
to 20 years.
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Figure 7.9: Contour plot of the metamodel of CF as function of the Weibull form parameter
and the electricity price (a). Density plot of the tether replacement frequency as function
of the tether material cost (b).

The kite dimensions are highly influenced by the Weibull form parameter and the maximum
lift coefficient. Figure 7.10a shows the metamodel of the wing area, as function of the scale
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parameter and the maximum lift coefficient. Similar considerations to the one given for
Figure 7.7b can be drawn. For low A, a high lift coefficient is beneficial to reduce the wing
area.

The aspect ratio variance is influenced by CL max, Cd0 and by the structural material
density ρcarb. Figure 7.10b shows the metamodel of AR as function of Cd0 and CL max.
Higher aspect ratios are optimal, if high maximum lift coefficients are used. For low value
of CL max, Cd0 is almost not influencing AR, while for higher CL max it is. For the AEP
maximisation, the aspect ratio design is driven by the structural deflection constraint.
For the profit maximisation, it is driven by the material strength (see average Lagrange
multiplier). Thus, for different optimisation problem, different constraints are strong.
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Figure 7.10: Contour plot of the metamodel of the wing area as function of the Weibull
scale parameter and the maximum lift coefficient (a) and of AR as function of the drag
coefficient at zero lift and the maximum lift coefficient (b).

The variables related to the take-off do not show any clear dependence. No take-off strategy
is then optimum from an economic perspective, according to these analysis.

The constraint on the rated power is the strongest. The Lagrange multiplier of this limit
mainly depends on the Weibull scale parameter and on the electricity price variance. Figure
7.11a shows this dependence. For high Weibull scale parameters and high electricity prices,
an increase in the rated power is more and more beneficial for the profit. The variance of the
Lagrange multiplier on the structural material strength λM depends on many parameter,
while the Lagrange multipliers on the structure deflections λδ depend on the maximum
allowed deflection. The Lagrange multiplier on the maximum lift coefficient λCL depends
on many parameters, but mainly on CL max and Cd0. Figure 7.11b shows this dependence.
The constraint on the maximum lift coefficient is strong when Cd0 is high and CL max is
low. For high CL max it is generally weak. In general, high lift coefficient are not highly
beneficial for the profit. This is in accord with the finding for the AEP maximisation case.
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Figure 7.11: Contour plot of the metamodel of the Lagrange multiplier on the rated power
as function of the Weibull scale parameter and the electricity price (a) and of the Lagrange
multiplier on the maximum lift coefficient as function of the drag coefficient at zero lift
and the maximum lift coefficient (b).
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7.10 Global sensitivity analysis results for FG-AWES

In this section, the optimisation of a FG-AWES with respect of the profit is shown. The
rated power is fixed to 3 MW, the frequency of kite replacement ranges from fr.gl = 0 to
fr.gl = 0.1 (1/year). This is to study the range where a FG-AWES can be convenient. The
wind resources uncertainties are considered in this analysis.

7.10.1 Statistics of design outputs

In Table 7.5 the statistics of the evaluations are listed.

Π LCOE CF AEP mtot mgl mel mte mTO

units ke e/MWh - GWh kg kg kg kg kg
mean 411 19.9 0.72 19 3375 1216 483 1627 49
SD 248 4.52 0.16 4.19 1249 790 289 590 106

r d fr.te h ht β Vin Vout Akite
units m mm 1/year m m ◦ m/s m/s m2

mean 433 64.4 0.01 208 2.46 28.6 2.68 21.51 153
SD 92 10.5 0.04 37 11.22 2.38 1.02 5.92 145

AR s B δout δin Aturb Qturb αTO Q

units - m m m m m2 - ◦ kN
mean 9.7 33.82 8.26 0.42 0.86 251 0.8 56.49 27
SD 3.5 11 2.77 0.57 0.52 194 0.33 26.48 13

Ag ETO Aprop λte λPrated λM λδout λδin λCL
units m2 kWh m2 ke/- ke/- ke/- ke/- ke/- ke/-
mean 1031 7 1.91 1.5 862.4 21.6 1.2 2.3 24
SD 708.56 4 5.64 12.1 604.2 20.3 4.3 7 44.2

λhmin λht ICC OMC costkite costte costel costTOs costt
units ke/- ke/- ke ke ke ke ke ke ke
mean 50.8 0 1441 209 119 426 594 130 2
SD 126.9 0 324 73 78 180 102 94 11

Table 7.5: Mean and standard deviation of the outputs for FG-AWES.

Design performance

FG-AWES have generally positive profit, meaning that these systems can be economically
attractive and be cost competitive without any incentives.

Design outputs

LCOE is small, similar to the one found for GG-AWES. However the average capacity
factor is slightly lower. The total mass is, on average, about the double of the total mass
of a GG-AWES. The tether is designed to infinite life. The operational altitude is low. No
tower is needed from an economic perspective. The average elevation is slightly smaller
than for GG-AWES. The wing area is high, with high standard deviation. The aspect
ratio is similar to civil aircraft values [71]. The take-off variables shows that often all the
thrust needed to take-off is provided by onboard turbines (Qturb = 0.8), but in some cases
additional propellers are required. Also the climbing angle αTO shows that not always a
vertical take-off is convenient. However, when analysing results related to the take-off, one
should consider the simplistic cost model. Finally, the cost breakdown is shown in Figure
7.12. The electronics and the tether have the biggest share on the initial capital cost.
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structure: 8 %

tether: 30 %

electronics: 41 %

TO structure: 9 %

fix costs: 12 %

Figure 7.12: Cost breakdown of FG-AWES.

Constraints

The rated power is the strongest constraint. The constraints on the minimum operational
altitude, on the maximum lift coefficient and on the material strength follow.

7.10.2 Sobol analysis and design trends

The visual representation of the Sobol’ indices is given in Appendix B.4. The profit is
mainly influenced by the electricity price, the operation costs and the wind resources.
LCOE is mainly influenced by the operation costs OC and the wind resources. The capacity
factor CF is mainly influenced by the electricity price and by the Weibull scale parameter
k.

Similar considerations to the ones presented for the GG-AWES can be drawn. Policy
makers and investors could be interested in the high profits given by a mature technology.

Figure 7.13a shows how the structural mass varies with the price per kg of the structural
material and the electricity price. For cheap materials and high electricity prices the
optimal designs are with higher mass. This figure is pointing out that, if cheap materials
are used in the manufacturing of a kite, the optimal mass increases. However, in this thesis
the material properties are not related to the material costs. Thus, an accurate structural
design and material cost model could show different trends.

The geometry is influenced by the aerodynamic coefficients, the price of the structural
material and the electricity price. Figure 7.13b shows how the wing area is influenced by
the drag coefficient and by the maximum lift coefficient. For small Cd0 and low CL max,
the optimal wing area is way smaller than for high Cd0. This figures is showing that, when
designing a kite for a given rated power, the wing area and the aerodynamics should be
designed at the same time.

Figure 7.14a shows how the aspect ratio is influenced by the price of the structural material
pwing and by CL max. AR increases with a cheaper material and for high CL max. For
the AEP maximisation, the average of the optimal AR over the model parameter space
is 22 (Table 5.6). Figure 7.14a outlines that, if the structural material cost is low, the
optimal designs are going towards the optimal designs for the AEP maximisation. This
analysis shows that a high aspect ratio is, on average, not convenient from a cost point of
view. Considering that for GG-AWES similar results are found, researches could focus on
optimisation of high aspect ratio kites, to make them also economically attractive.

Figure 7.14b shows how the radius of one onboard turbine varies with the Weibull scale
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Figure 7.13: Contour plot of the metamodel of structural mass mgl as function of the
structural material price and the electricity price (a). Contour plot of the metamodel of
wing area as function of the drag coefficient at zero lift and the maximum lift coefficient
(b).

parameter and the minimum efficiency due to disc theory. The radius of the wind turbines
is computed with the assumption of 8 onboard turbines. ηmind gives an indication on the
losses due to disc theory. If ηmind = 0.8, a maximum power loss of 20 % due to disc theory
is considered for the turbines design. For high ηmind , the wind turbines size increases. For
low ηmind and high A, the size decreases. However, low ηmind implies high losses due to disc
theory. Referring to the Sobol’ indices, the variance of ηmind is not influencing the variance
of Π, LCOE and CF . This means that low ηmind can be chosen and the main economics
outputs are not influenced. Hence, if the designer wants small onboard turbines, he can
perform a kite design with low ηmind , still having the same cost of energy.
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Figure 7.14: Contour plot of the metamodel of the aspect ratio as function of the structural
material price and the maximum lift coefficient (a) and of the turbines radius as function
of the Weibull scale parameter and the minimum disc theory efficiency (b).

Finally, the Lagrange multipliers are analysed. The Lagrange multiplier on the minimum
operational altitude λhmin is influenced by hmin and the wind shear. Figure 7.15a shows
this relationship. The constraint is stronger when the limit itself is high and for low wind
shear. If a regulation will impose a minimum operational altitude, kites placed in regions
with low wind shears will be penalised more than kite in high shear regions.

λCL has a high dependence with CL max. It can be interesting to see how λCL varies with
the structural material density ρcarb. A low structural material density models aircraft
with low mass, such as multi-planes. Figure 7.15b shows how λCL varies with CL max and
ρcarb. As highlighted by the Sobol’ indices, the variance of ρcarb does not influence strongly
λCL. Interestingly, for high material density, representing standard aircraft design, λCL is
higher than for low densities. This means that a standard aircraft needs higher CL max
than a multi-plane aircraft.
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Figure 7.15: Contour plot of the metamodel of the Lagrange multiplier on the minimum
operational altitude as function of the minimum operational altitude and the wind shear
(a) and of the Lagrange multiplier on maximum lift coefficient as function of the structural
material density and the maximum lift coefficient (b).

7.11 Discussion

In this chapter, a detailed analysis of the optimal designs, with respect to the profit, is
presented.

First, the optimisation problem formulation is described. The optimiser performs a kite
design to maximise the profit. Two typical optimisation results are shown. How the
physical and economic uncertainties influence the design is investigated with a global
sensitivity analysis.

Three generation types (GG-AWES, FG-AWES and both at the same time) are considered
at a first stage. If the kite control system is reliable, a FG-AWES is convenient. However,
these results are based on an approximate cost model. The electronics cost for FG-AWES
is indeed found to be lower than for GG-AWES. This is because the on-board electrical
generators spin faster than the generator on the ground. More studies could be needed for
the cost modelling of the on-board electronics. If the kite needs to be replaced often, a
GG-AWES is preferable. In this case, kites should be designed to be really cheap. Investors
are attracted from low rick projects. With the assumption that the first commercial
AWESs will not have a control system fully reliable, investors could be more interested in
GG-AWES, to lower the consequences of frequent failures.

For high kite replacement frequency, the kite optimal designs have low structural mass, to
reduce the costs after a replacement. For GG-AWES, high aerodynamic performances are
not required, from an economic point of view. Thus, these two information suggest that
soft kites could be optimal design for GG-AWES. Further investigations are necessary.

The LCOE of GG-AWES and FG-AWES are similar and low, outlining that both the
generation types, with a mature technology, could be disruptive in the energy market. The
strength of these technologies is the high capacity factor. For a given rated power, the
kite structure is, on average, a small portion of the initial capital cost. Thus, large kites
can be designed, without a big impact on the total costs. This is the key to reach high
capacity factors. High capacity factors imply power generation with low wind conditions.
The hours with low wind speeds have typically a high electricity price. Therefore, power
fed into the grid in these hours is really profitable.

For GG-AWES, the tether should be designed to have a working life, according to the
tether cost. For FG-AWES, it is convenient to have tether designed to infinite life. The
tether is found to have a big share in the total cost. A study on how to reduce this cost
can have a big impact on LCOE. Cheaper tethers will be likely replaced more often. Thus,
it could be interesting to study in details the creep phenomenon in the tether.
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Aspect ratios similar to the ones of commercial aircraft are found to be optimal. However, for
the AEP maximisation, higher AR are found. Researches could focus on the optimisation of
high aspect ratio kites, in order to make them attractive also from an economic perspective.
For both the generation types, extremely high maximum lift coefficients are found to be
not attractive.

From these analyses, building a tower is never convenient. No take-off strategy is found to
be cost effective. The cost model related to the take-off and landing structure is considered
too simplistic to give any interesting information.
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Chapter 8

Future works

Within this work, many open questions and future works are outlined. In the following list,
the main are given:

• To improve the structural model a buckling constraint could be considered. This con-
straint would likely prevent the optimiser from finding really light optimal solutions.

• It could be interesting to estimate the tether life in the physic model. A constraint
on the minimum number of operational years can be considered. In this way, the
tether life can be included in the AEP maximisation case. The Lagrange multiplier
on this constraint would give information on the constraint strength.

• A more accurate cost model for all the sub-systems is needed.

• It could be interesting to evaluate the accuracy of the reel-in model used in this
thesis. The high uncertainty, given to this model, is showing that it is not impacting
the results. However, the physics is modelled in a really approximate way.

• It could be interesting to create a FE model of the wings, idealising it with booms
and skin panels [72]. This simple FE could be used in an optimisation algorithm to
perform a more accurate structural design.

• It could be interesting to couple the FE model, just proposed, with a geometric
parametrisation of the airfoil in an optimisation algorithm. In this way, the optimiser
should be able to design the wing, considering the aerodynamics and structure at
the same time.

• The model could be improved by including soft kites. An optimisation algorithm
that can handle discontinuities could be used to find the optimal designs for multiple
scenarios.

• The environmental impact of a AWES could be evaluated by considering the emissions
needed to produce it. Thus, an environmental comparison with traditional wind
turbines and other technologies could be performed. A multi-objective optimisation
could show how the design would look like if the cost of energy and the environmental
impact are minimised.

• It could be interesting to use a multi-objective approach to minimise the cost and, at
the same time, the power per unit area of an AWES wind farm.
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Chapter 9

Conclusions

In this thesis, the design of the main sub-systems of crosswind AWES are studied.

In Chapter 3, the derivation of the power equation for a generic crosswind AWES is shown.
This power equation takes into account the flying mass and the relative power losses. It
can be used by system designers to give a quantitative estimation of the power losses due
to mass for both FG-AWES and GG-AWES. Moreover, the proposed formulation does not
include the assumption of high glide ratio: it can model all kite types. In this chapter, a
structural and a take-off model are presented. They are used to estimate the flying mass.

In Chapter 5, the methods, presented in Chapter 4, are used for the evaluation of the
physical model. These methods allow a detailed understanding of the design trends. The
key parameters for the maximisation of AEP are the wing area, the maximum lift coefficient
and the drag coefficient at zero lift. They determine the capacity factor, thus they should
be carefully designed. A method to design strong configurations is proposed. A really high
maximum lift coefficient is found to be not so interesting for the AEP maximisation: the
Lagrange multiplier on the maximum lift coefficient is low in this case. Finally, it is shown
that large area kites could be placed in low wind regions, to obtain high capacity factors.

In Chapter 7, the same methods are applied to study the configuration designs that
maximise the profit. A cost model is proposed in Chapter 6. From the design analyses, it
turns out that GG-AWES and FG-AWES, with a mature technology, will be extremely
competitive in the energy market, without any incentives. Since the kite structure does not
represent a big share in the total costs, large area kites can ensure high capacity factors.
This is the key to reach low cost of energy. From this analysis, FG-AWES can give higher
profit if the kite is rarely replaced. Interestingly, building a tower is found to be not
convenient: the optimiser chooses really small tower height.
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Appendix A

Sobol’ indices for the
maximisation of AEP

A.1 Analysis with Akite = 30 m2
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Figure A.1: Graphical visualization of the total Sobol’ indices for a fixed wing area (first
part).
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Figure A.2: Graphical visualization of the total Sobol’ indices for a fixed wing area (second
part).

A.2 Analysis considering wind resources uncertainties
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Figure A.3: Graphical visualization of the total Sobol’ indices considering the wind resource
uncertainties (second part).
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Appendix B

Sobol’ indices for the profit
maximisation

B.1 Analysis with fixed wind resources

108



S
F

 lim cd
0

cd
V

carb
o

u
t

t
in

t p
r

p
r C

L
 m

ax E
g

en
h

m
in h

t m
ax

d m
axp

w
in

g
p

te
f
te

a
el

p
A

g
c

t
C

fix
O

C
f
r. g

l
f
F

G
n

y
i

P
rated

p
el

L
C

O
E

C
F

A
E

P
m

to
t

m
g

l
m

el
m

te
m

T
Ord

f
r. tehh

t

V
in

V
o

u
ts

A
R

A
k

iteBo
u

t

in
0 0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Figure B.1: Graphical visualization of the total Sobol’ indices for the profit maximisation
case (first part).
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Figure B.2: Graphical visualization of the total Sobol’ indices for the profit maximisation
case (second part).
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B.2 Analysis considering wind resources uncertainties
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Figure B.3: Graphical visualization of the total Sobol’ indices considering wind resources
uncertainties (first part).
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Figure B.4: Graphical visualization of the total Sobol’ indices considering wind resources
uncertainties (second part).
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B.3 Analysis for a GG-AWES
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Figure B.5: Graphical visualization of the total Sobol’ indices for the GG-AWES case (first
part).
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Figure B.6: Graphical visualization of the total Sobol’ indices for the GG-AWES case
(second part).
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B.4 Analysis for a FG-AWES
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Figure B.7: Graphical visualization of the total Sobol’ indices for the FG-AWES case (first
part).
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Figure B.8: Graphical visualization of the total Sobol’ indices for the FG-AWES case
(second part).
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