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Abstract

Entangled photon pairs play a key role in various technological applications, such as quantum com-
munications, quantum optical computing, and quantum sensing, while also providing insights into
the fundamental properties of entanglement in bipartite systems. This thesis focuses on designing,
developing, and realizing a pulsed polarization-entangled photon-pair source operating at a wave-
length of 1550 nm. The photons are generated through the collinear and degenerate type-II spon-
taneous parametric down-conversion (SPDC) process within a periodically poled potassium titanyl
phosphate (PPKTP) crystal, with a Sagnac interferometer ensuring high-quality entanglement. The
source has been implemented on the optical table and meticulously examined to enhance performance
through a fine characterization of the optical elements while accounting for the constraints imposed
by the system geometry. After the realization of the source, the focus shifted to the optimization of its
performance in terms of brightness, heralding ratio, and visibility of the generated entangled states,
which heavily depend on the specific optical setup configuration. To achieve this, a theoretical model
of the collinear SPDC process is extended and then employed to estimate the impact of the lenses used
to focus the pump beam within the crystal and to collect the 1550nm photons on the brightness and
heralding ratio. Simulation results are compared with experimental data from four selected source
configurations to validate the theoretical predictions.
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Introduction

Entanglement remains one of the most intriguing and enigmatic aspects within the realm of quan-
tum mechanics. This phenomenon, which emerges from the mathematical description of specific
multipartite systems, gives rise to long-range correlations that cannot be classically explained with-
out abandoning some fundamental concepts such as locality and realism. Notably, some scientists,
including A. Einstein, B. Podolsky, and N. Rosen, opposed this interpretation of quantum mechanics,
believing it to be incomplete. In an article of 1935 [1] they proposed a theory of quantum mechan-
ics based on the existence of local hidden variables, able to explain the experimental results while
retaining the principles of realism and locality. In 1964, J. Bell formulated Bell’s theorem [2], which
mathematically established the limits of theories of local hidden variables, demonstrating that cer-
tain predictions of quantum mechanics cannot be explained by any local-realistic theory. Subsequent
experiments, such as those conducted by A. Aspect, J. Clauser, and A. Zeilinger in the 1980s, have
provided evidence of the violation of Bell’s inequalities [3,4] thus confirming the validity of quantum
mechanics (for these discoveries they were awarded the 2022 Nobel Prize in Physics). Consequently,
entanglement has progressively become an important research object, offering insights into the nature
of quantum mechanics and also paving the way for innovative quantum technologies.

There exist several techniques to generate entangled states, each tailored to specific practical ap-
plications. One approach involves encoding quantum correlations in specific photon properties, such
as their polarization state [5], the path they traverse in a medium [6], or the relationship between their
energy and emission time [7]. Another avenue explores solid-state implementations in quantum hard-
ware and quantum computers, harnessing entangled atomic energy states [8]. Polarization-entangled
photon states offer wide-ranging utility across various domains, due to their compatibility with stan-
dard optical setups and ease of production. They play a pivotal role in diverse quantum communi-
cation scenarios, ranging from Quantum Key Distribution (QKD) [9–11] to teleportation [12]. These
new technologies exploit the properties of entanglement to guarantee more secure communications
and will be the basis for the development of the future quantum network. Furthermore, these kinds
of sources assume a significant role in advancing optical quantum computers [13, 14], quantum sen-
sors [15], and facilitating the exploration of fundamental properties of quantum mechanics.

In this thesis, I will describe the implementation of a 1550nm polarization-entangled photon source
based on the collinear and degenerate type-II SPDC process in a PPKTP crystal. Specifically, I will
carefully motivate the choices I made for the design of the experimental setup, the process of select-
ing the optical components, and I will provide an accurate description of the procedure I personally
devised to assemble and characterize this source. This thesis work goes beyond the mere construc-
tion of a high-performance entangled photon source. In fact, it also includes an in-depth theoretical
analysis of the SPDC process, aimed at evaluating the optimal conditions for the source. Starting from
the existing literature, I have developed a comprehensive theoretical model to simulate the source’s
performance and compared the results with the experimental data. This enhanced comprehension
of SPDC helps to optimize the source for practical applications. This work indeed marks the initial
phase of a long-term research project funded by the Agenzia Spaziale Italiana (ASI) aimed at applying
the source for the implementation of innovative entanglement-based protocols in quantum commu-
nications.

Although prebuilt commercial devices are available, a custom system offers greater versatility
and performance. However, this requires a careful design phase to choose between various possible
architectures and select items that are compatible with one another. The goals of the project allow
some flexibility in the features of the source, but some are preferable, especially from the point of
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INTRODUCTION

view of interoperability with other components. First, the degree of freedom in which entanglement
is expressed should be polarization, as it propagates very well in free space and is compatible with
fiber channels. One of the most commonly employed physical processes for producing polarization-
entangled photon pairs is Spontaneous Parametric Down-Conversion (SPDC). This mechanism in-
volves the interaction of higher-energy photons, known as pump, with a nonlinear crystal possessing
a strong second-order optical susceptibility χ(2). The resulting photons, referred to as the signal and
idler photons, exhibit distinct polarizations and are subsequently guided into an optical configura-
tion based on Sagnac interferometer to establish entangled states. A second important consideration
is the wavelength of operation. The choice is dictated by the availability (in nature and on the mar-
ket) of suitable light emitters and absorbers, and by the transmittance in the optical medium used for
communication. Hence, the most commonly used wavelengths in optical communications are in the
800-900 nm band, 1270-1340 nm band, and 1500-1600 nm band. For our uses, 1550 nm seems prefer-
able as it offers the best transmittance in free-space and fibers, is less affected by solar background,
and is compatible with the wealthiest selection of telecom components. Moreover, there are several
devices that operate at this wavelength, motivating this choice. The third aspect is the temporal distri-
bution of the light. Although continuous wave (CW) is a common choice especially because it allows
a finer spectral distribution, pulsed operation straightforwardly provides a temporal reference which
greatly simplifies the synchronization of remote devices and improves noise rejection.

In the literature, the characteristics of various sources of this kind are examined, primarily dif-
fering in terms of wavelength and the quality of the emitted entangled photon pairs, which can be
achieved through diverse optical configurations. The setup that I have devised is robust and effi-
cient, and it also allows for easy interchangeability of lens sets that determine the focusing of both
the pump and emitted photon beams. This is crucial as it enhances the ability to better focus these
beams within the crystal, approaching the optimal conditions as predicted by the theoretical model.
The properties of the emitted entangled photons are influenced by multiple factors, including crystal
type, phase-matching, momentum and energy conservation, and the configuration of the pump laser
beam. All these parameters have been taken into account in the simulations I conducted to evaluate
the properties of the SPDC process, which I utilized to identify the optimal source configurations.

The thesis is structured as follows. Chap. 1 provides an introduction to the essential concepts of
quantum mechanics and quantum information, fundamental for the comprehension of the content of
this work. In Chap. 2, the focus shifts to the SPDC process. This section aims to elucidate aspects of
the source’s performance, emphasizing the theoretical description of the model employed for simu-
lating the source’s behavior. Moving forward, Chap. 3 delves into the design considerations behind
the source. This encompasses topics ranging from the choice of the optical setup to the selection and
usage of the experimental instruments. Chap. 4 directs attention to the experimental realization of
the source, detailing the methodologies employed to achieve precise alignment of the optical compo-
nents. Finally, in Chap. 5, the experimental results for the chosen source configurations are presented
and analyzed.
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Chapter 1

Quantum Information

This chapter aims to introduce the theoretical preliminaries necessary to understand the basic
working principles of the source and its applications. The theoretical framework is that of quantum
information, which aims to exploit the properties of quantum mechanics to modify, store, and com-
municate information that is appropriately encoded in quantum states. The first concept which will
be introduced is the quantum bit (qubit). In this work the quantum information is encoded in the
polarization of photons. The information can be extracted with suitable quantum measurements. In
particular, we will explain the experimental procedure to manipulate and measure the quantum states
emitted by the source. Additionally, a general overview of the entanglement properties is presented
together with an explanation of the experimental procedure employed to prove its existence in quan-
tum states. Finally, we will present some useful methods to characterize the quality of the emitted
states. The introductory concepts of quantum information presented in this chapter are taken from
some textbooks of quantum mechanics and quantum optics [16–18].

1.1 Quantum States and Quantum Bits
Quantum states are described in terms of projective rays in a Hilbert spaceH. In particular, using

Dirac’s notation, we can identify a state of the system as a ket |ψ⟩ ∈ H and its dual wavevector as a bra
⟨ψ| ∈ H∗. A quantum state is uniquely identified by a normalized vector in the Hilbert space, since
the state |ψ⟩ ∼ c |ψ⟩ ∀c ∈ C. In the following, we focus on finite-dimensional systems. In particular,
for any d-dimensional Hilbert space, we can define a basis {|0⟩ , ..., |d− 1⟩} and rewrite the quantum
state in terms of the basis vectors:

|ψ⟩ =
d−1

∑
n=0

ψn |n⟩ ψn ∈ C (1.1)

While the dual wavevector is described as ⟨ψ| = ∑d−1
n=0 ψ∗n ⟨n| with ψ∗n the complex conjugate of ψn.

Any Hilbert space has a scalar product which is defined as follows:

⟨ϕ|ψ⟩ =
d−1

∑
m=0

d−1

∑
n=0

ϕ∗mψn ⟨m|n⟩ =
d−1

∑
m=0

d−1

∑
n=0

ϕ∗mψnδm,n =
d−1

∑
n=0

ϕ∗nψn (1.2)

A vector of unit length is usually chosen as representative of the ray |ψ⟩, meaning that

||ψ||2 = ⟨ψ|ψ⟩ =
d−1

∑
n=0
|ψn|2 = 1 (1.3)

The particular case of d = 2 corresponds to the two-level system also known as qubit:
|ψ⟩ = α |0⟩+ β |1⟩ α, β ∈ C (1.4)

Another important property of quantum mechanics is the superposition principle which derives from
the linearity of the Hilbert space. Given two quantum states |ψ1⟩ and |ψ2⟩, any linear combination of
these states is a quantum state:

|Ψ⟩ = c1 |ψ1⟩+ c2 |ψ2⟩ ∈ H (1.5)
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1.1. QUANTUM STATES AND QUANTUM BITS CHAPTER 1. QUANTUM INFORMATION

1.1.1 Bloch Sphere Representation

Given a basis for a two-dimensional Hilbert space {|0⟩ , |1⟩}, a qubit is completely represented by
two complex coefficients α and β which must satisfy the normalization condition |α|2 + |β|2 = 1. For
this reason, a qubit can be parametrized in a more convenient way using only two real coefficients,
satisfying the normalization condition and a relative phase factor eiϕ between the components |0⟩ and
|1⟩. Another convenient parametrization for a qubit is the following:

|ψ⟩ = cos
(

θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (1.6)

with θ ∈ [0, π] and ϕ ∈ [0, 2π]. The qubit is represented as a point on the surface of a unit sphere
called Bloch sphere. In this representation, a one-to-one correspondence emerges between a state |ψ⟩
and the pair of angles {θ, ϕ}. Moreover, two points diametrically opposite on the surface of the Bloch
sphere represent vectors that are orthogonal to each other.

In this thesis, the quantum particles are photons, and their state is encoded in their polarization. In
this framework, one can arbitrarily choose two orthogonal polarization states as basis of the Hilbert
space: they are conventionally denoted as |0⟩ = |H⟩ and |1⟩ = |V⟩. In general, a Hilbert space
can be represented by an infinite number of orthonormal bases. However, given one of these bases
{
∣∣ej
〉
}j=0,...,d−1 there exists only a finite number of orthonormal bases {

∣∣ f j
〉
}k=0,...,d−1 which satisfy the

following property:

|⟨ej| fk⟩|2 =
1
d

∀j, k ∈ {0, ..., d− 1} (1.7)

When this condition is satisfied, these bases are called mutually unbiased. The probability that a sys-
tem is found in an element of a basis is the square of the coefficient that that element has in the state
of the system (Born rule). When a system is prepared in one state of a mutually unbiased basis, then
the measurement outcomes performed on the other bases are expected to occur with equal probabil-
ity. In a two-dimension system, there exist three mutually unbiased bases, which correspond to the
eigenvectors of the Pauli matrices listed below:

σ̂x =

(
0 1
1 0

)
(1.8)

σ̂y =

(
0 −i
i 0

)
(1.9)

σ̂z =

(
1 0
0 −1

)
(1.10)

Conventionally, the basis of the eigenvector of σ̂z is denoted as Z = {|H⟩ , |V⟩}, while the eigenvectors
of σ̂x and σ̂y are denoted as X = {|D⟩ , |A⟩} and Y = {|R⟩ , |L⟩} 1. These states can be represented in
the Z basis as:

|D⟩ = 1√
2
(|H⟩+ |V⟩)

|A⟩ = 1√
2
(|H⟩ − |V⟩)

|R⟩ = 1√
2
(|H⟩+ i |V⟩)

|L⟩ = 1√
2
(|H⟩ − i |V⟩)

(1.11)

1This notation stands for: horizontal (|H⟩), vertical (|V⟩), diagonal (|D⟩), anti-diagonal (|A⟩), right-handed (|R⟩), left-
handed (|L⟩) polarizations.
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CHAPTER 1. QUANTUM INFORMATION 1.1. QUANTUM STATES AND QUANTUM BITS

Figure 1.1: Representation on the Bloch sphere of
the eigenvectors of the Pauli matrices.

Figure 1.2: Bloch sphere representation of a qubit
|ψ⟩ as a function of angles θ and ϕ.

1.1.2 Density Matrix

There are situations, especially in the experimental context, where the knowledge of quantum
states is incomplete. The formalism introduced to deal with these situations is that of density matrix.
In this case, the experimentalist does not know the state of the system, but he knows that it comes from
an ensemble of possible states {ψk}k∈{1,...,N} with probabilities {pk}k∈{1,...,N}. Thus the expression for
the quantum state is the following:

ρ̂ =
N

∑
k=1

pk |ψk⟩ ⟨ψk| (1.12)

This density matrix representation of a quantum state satisfies the following three properties:

• Hermiticity: This property ensures that the eigenvalues of the matrix are real.

ρ̂† =
N

∑
k=1

pk(|ψk⟩ ⟨ψk|)† =
N

∑
k=1

pk |ψk⟩ ⟨ψk| = ρ̂ (1.13)

• Normalization: This condition guarantees the conservation of the total probability.

Tr(ρ̂) =
d−1

∑
i=0

N

∑
k=1

pk⟨i|ψk⟩⟨ψk|i⟩ =
N

∑
k=1

pk

d−1

∑
i=0
⟨ψk|i⟩⟨i|ψk⟩ =

N

∑
k=1

pk = 1 (1.14)

where we used the normalization condition of each state, namely ∑d−1
i=0 ⟨ψk|i⟩⟨i|ψk⟩ = 1 (Eq.

(1.3)).

• Non-negativity: All eigenvalues of the density matrix are non-negative. This implies that the
probabilities associated with the quantum states represented by the density matrix are always
non-negative. For any state |ψ⟩ we get:

⟨ψ| ρ̂ |ψ⟩ =
N

∑
k=1

pk⟨ψ|ψk⟩⟨ψk|ψ⟩ =
N

∑
k=1

pkΨ∗k Ψk ≥ 0 (1.15)

with Ψk = ⟨ψk|ψ⟩ ∈ C.

This representation of a quantum state is a generalization of that introduced in the previous sec-
tion and it becomes crucial to treat the generalized evolution of a mixed state. The density matrix
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1.2. EVOLUTION OF QUANTUM STATES CHAPTER 1. QUANTUM INFORMATION

formalism can be used also to describe a pure state. In this case, the whole definition of Eq. (1.12)
reduces to a projector ρ̂ = |ψ⟩ ⟨ψ|.

A general representation for the density matrix of a qubit system is given by:

ρ̂ =
1
2
(I + r⃗ · σ⃗) = 1

2
(I + rxσ̂x + ryσ̂y + rzσ̂z) (1.16)

with r⃗ ∈ R3, ||⃗r|| ≤ 1. In the particular case of a pure state, this representation directly derives from
the calculation of ρ̂ = |ψ⟩ ⟨ψ| using the representation of the qubit |ψ⟩ in a Bloch sphere (Eq. (1.6))
with:

r⃗ =

sin θ cos ϕ
sin θ sin ϕ

cos θ

 (1.17)

We can see a correspondence between a point on the surface of the Bloch sphere, represented by the
vector r⃗ and a pure state. For a mixed state the interpretation of Eq. (1.16) is the same: in this case,
however, the state is represented as a vector r⃗ with ||⃗r|| ≤ 1 (inside the Bloch sphere).

r⃗ =

Tr(ρ̂σ̂x)
Tr(ρ̂σ̂y)
Tr(ρ̂σ̂z)

 (1.18)

which directly comes from the definition of density matrix provided in Eq. (1.16), together with the
properties of the Pauli matrices: Tr(σ̂2

i ) = 2, Tr(σ̂i) = Tr(σ̂iσ̂j) = 0 with i, j ∈ {x, y, z} and i ̸= j. The
state ρ̂ = I

2 is called a maximally mixed state and it can be represented as a point at the center of the
Bloch sphere.

1.2 Evolution of Quantum States
The quantum state of a system can evolve in time due to interactions with a potential, other sys-

tems or the environment. The evolution of a quantum state was firstly described by E. Schrödinger,
with the famous equation [19]:

ih̄
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (1.19)

where Ĥ is the Hamiltonian describing the interaction of the system. This equation predicts the time
evolution of a pure state:

|ψ(t)⟩ = e−
i
h̄ Ĥt |ψ(0)⟩ (1.20)

More generally, in quantum mechanics the evolution of pure states is described in terms of unitary
operators Û: |ψ⟩ −→ Û |ψ⟩ = |ψ′⟩. This kind of transformations, indeed, maps quantum states to
other quantum states, preserving the scalar product:

⟨ϕ′|ψ′⟩ = ⟨ϕ|Û†Û|ψ⟩ = ⟨ϕ|ψ⟩ (1.21)

Using the density matrix formalism, we have a wider scenario of possible transformations. A unitary
transformation can be applied to all the states of the ensemble:

ρ̂ =
N

∑
k=1

pk |ψk⟩ ⟨ψk| −→ ρ̂′ =
N

∑
k=1

pkÛ |ψk⟩ ⟨ψk| Û† = Ûρ̂Û† (1.22)

This formalism has the advantage of treating more general kind of state evolution, including non-
isolated systems that can interact with the environment. In this case, we need to introduce some new
operators called superoperators E which represent a transformation between operators:

ρ̂ −→ ρ̂′ = E(ρ̂) (1.23)

which satisfy the following properties:
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• Linearity: Superoperators are linear maps, meaning the linear combination of density matrices
is mapped to the linear combination of their transformed E(αρ̂1 + βρ̂2) = αE(ρ̂1) + βE(ρ̂2),
α, β ∈ C;

• Preserve trace: A trace-preserving superoperator preserves the trace of a density matrix. This
is necessary because density matrices have unit trace. Tr[ρ̂] = Tr[E(ρ̂)];

• Preserve hermiticity: They preserve the hermiticity of a density matrix, thus allowing to map
a density matrix to another density matrix. If ρ̂ = ρ̂† −→ E(ρ̂) = E(ρ̂)†;

• Completely positive: This includes the case of positivity if ρ̂ ≥ 0 then E(ρ̂) ≥ 0. Moreover, a
completely positive superoperator ensures that when applied to a composite system consisting
of a principal system H and an ancillary system Henv, such that the map acts locally on the
system leaving unchanged the state of the environment, this is a positive map: if ρ̂ ≥ 0 is defined
inH, then the map (E ⊗ I)(ρ̂) ≥ 0.

It is possible to show that every superoperator which satisfies the properties listed above can be writ-
ten in Kraus representation [20] as a sum of N terms:

E : ρ̂→ ρ̂′ = E(ρ̂) =
N

∑
n=1

K̂nρ̂K̂†
n (1.24)

with the condition ∑N
n=1 K̂†

nK̂n = I. The operators {K̂n}n=1,...,N are called Kraus operators. These
kinds of transformations are called generalized evolutions. The particular case in which there is only
one Kraus operator corresponds to the unitary transformation (indeed in this case it must satisfy the
condition K̂†K̂ = I).

From an experimental point of view, we need to manipulate the quantum state of a photon,
through rotations on the Bloch sphere (which are unitary transformations). However, the experi-
mental setups are not ideal and can introduce distortions and losses of the produced states: such
transformations can be effectively treated as generalized evolutions.

1.3 Quantum Measurements
Quantum measurements are fundamental operations in quantum mechanics that allow us to ex-

tract information about a quantum system. A quantum measurement involves interacting with a
quantum system and obtaining a result. In quantum mechanics, a measurement is described by a
collection of operators {M̂i}, which map the state of the system |ψ⟩ into various possible states |ψi⟩.
When a measure is performed the probability of each outcome is given by:

pi = ⟨ψ|M̂†
i M̂i|ψ⟩ = Tr(M̂†

i M̂iρ̂) (1.25)

It is important to note that quantum measurements are inherently probabilistic. In general, the out-
come of a measurement cannot be predicted with certainty and the probabilities of obtaining different
outcomes are determined by the quantum state of the system prior to the measurement. For proba-
bility conservation we need to impose also the condition:

N

∑
n=1

pn = 1←→
N

∑
n=1

M̂†
n M̂n = I (1.26)

After the measurement, the state of the system collapses to the i-th outcome obtaining

ρ̂→ ρ̂′ =
M̂iρ̂M̂†

i
pi

(1.27)

In the particular case in which the operators {M̂i} are projectors {Π̂i}, namely self-adjoint (Π̂i = Π̂†
i ),

idempotent (Π̂2
i = Π̂i), and orthogonal2 we find the so called projective measurements. In this case,

2Two projectors are orthogonal when the subspaces onto which they project are mutually perpendicular.
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the measurement is described with a hermitian operator Ô, called observable. We can think of this
operator, at least for finite dimension systems, as a matrix. To better understand how it works, we
can rewrite it in terms of its spectral decomposition (which is always admitted since it is assumed to
be hermitian).

Ô =
d−1

∑
i=0

λi |λi⟩ ⟨λi| =
d−1

∑
i=0

λiΠ̂i (1.28)

where λi ∈ R is the i-th eigenvalue corresponding to the eigenvector |λi⟩. The eigenvalues are the
possible outcomes of the measurements. The probability of getting the outcome λi is given by:

pi = ⟨ψ|Π̂i|ψ⟩ (1.29)

or, using the density matrix formalism,
pi = Tr(Π̂iρ̂) (1.30)

Another important quantity, strictly related to the experimental measurement, is the expectation value
of an observable evaluated for a state |ψ⟩:

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩ =
d−1

∑
n=0

λn⟨ψ|λn⟩⟨λn|ψ⟩ (1.31)

More in general, with the formalism of density matrix, we have

⟨Ô⟩ = Tr(ρ̂Ô) (1.32)

The role of the measurements is that of extracting information from a system. The state of a system
living in a Hilbert spaceH can be fully characterized by certain observables. In the two-dimensional
case, a qubit can be always written in terms of the eigenvectors of one of three Pauli matrices. Typi-
cally, a qubit is written in terms of the states |H⟩ and |V⟩ (eigenstates of σ̂z). Moreover, every observ-
able in a two-dimensional Hilbert spaceH can be written in terms of the Pauli matrices:

Ô = γ0I + γ⃗ · σ⃗ γ0, γ1, γ2, γ3 ∈ R (1.33)

Each Pauli matrix represents an observable, which can be decomposed using their spectral decompo-
sition (see Eq. (1.28)) as follows:

σ̂x = |D⟩ ⟨D| − |A⟩ ⟨A| = Π̂D − Π̂A

σ̂y = |R⟩ ⟨R| − |L⟩ ⟨L| = Π̂R − Π̂L

σ̂z = |H⟩ ⟨H| − |V⟩ ⟨V| = Π̂H − Π̂V

(1.34)

with the definitions of the states {|H⟩ , |V⟩ , |D⟩ , |A⟩ , |R⟩ , |L⟩} given in Eq. (1.11). From now on,
we will indicate as measurements on bases {X, Y, Z} the measurements performed on the relative
observables3, represented by the corresponding Pauli matrices {σ̂x, σ̂y, σ̂z}.

1.3.1 Experimental Polarization Projective Measurements

Projective measurements of polarization are widely used in quantum optics because they provide
a direct and simple way to extract information about the polarization state of a quantum system. A
common instrument employed to perform projective measurements of the polarization of a photon is
the polarizing beam splitter (PBS), which is an optical device that separates a beam of light into two
components with different polarizations: the transmitted light is horizontally polarized, while the
reflected is vertically polarized. This instrument provides a projective measurement on the Z-basis.
Given a quantum state |ψ⟩ = α |H⟩ + β |V⟩, if the photon is transmitted, it is projected in the state

3In quantum information, we often refer to measurement on a basis as a measurement on the corresponding observable.
This correspondence is valid when the observable has fixed eigenvalues and all the projectors in the spectral decomposition
have rank 1. This is the case of the Pauli matrices.
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|H⟩, while in the case of reflection, the final state is |V⟩: the corresponding probabilities are |α|2 and
|β|2 respectively.

Two fundamental instruments employed for manipulating the polarization state of photons are
the quarter-wave plate (QWP) and half-wave plate (HWP) which both belong to a category of optical
devices known as retardation plates. These devices are designed to alter the polarization state of light
by introducing a phase delay between two orthogonal polarization components. A QWP is designed
to introduce a phase difference of one-quarter wavelength between the two orthogonal polarization
components of the incident light, while for the HWP this retardation is of half a wavelength.

The action of a retardation waveplate can be described in terms of a unitary operator. Assuming
the fast axis to be parallel to the |H⟩ component (which now corresponds to the zero of the waveplate),
the matrix describing the effect of the waveplate, using Jones calculus, becomes:

ŜWP (δ) =
(

1 0
0 e−iδ

)
(1.35)

In the case of a quarter-wave plate (QWP) δ = π
2 , while for a half-wave plate (HWP) it becomes

δ = π. If the fast axis is rotated of an angle θ the action of the waveplate can be derived by applying
the rotation matrix:

R̂(θ) =
(

cos θ − sin θ
sin θ cos θ

)
(1.36)

And the corresponding waveplate acts on the state with a transformation described by the unitary
operator:

ÛWP (θ, δ) = R̂(θ)ŜWP (δ)R̂T(θ) =

(
cos2 θ + e−iδ sin2 θ (1− e−iδ) cos θ sin θ

(1− e−iδ) cos θ sin θ e−iδ cos2 θ + sin2 θ

)
(1.37)

With a proper combination of the retardation waveplates and a PBS it is possible to perform projective
measurements in the bases {X, Y, Z}.

Measure in Z-basis

A PBS can be used as a device that projects the state of the photon on |H⟩ or |V⟩. If we place
two detectors at the output branches of the PBS we are able to understand what the outcome of the
measurement is depending on which of the two detectors has revealed the photon.

Mathematically, a projection on the state |H⟩ is described by

Π̂H = |H⟩ ⟨H| =
(

1 0
0 0

)
(1.38)

which corresponds to the transformation induced by the PBS on the transmitted branch. Equivalently,
one can place a detector on the reflected path. In this case, the quantum state of the system is projected
on |V⟩. The corresponding transformation is given by the projector

Π̂V = |V⟩ ⟨V| =
(

0 0
0 1

)
(1.39)

Alternatively, it is possible to use only one detector positioned, for example, on the transmitted path
of the PBS. The same projection on |V⟩ is achieved by positioning before the PBS a HWP rotated of
θ = π

4 , indeed the corresponding transformation is:

ŜV = Π̂HÛWP (
π

4
, π) =

(
0 1
0 0

)
(1.40)

The probability of detecting a photon following this transformation is the same that would be obtained
by applying the projector Π̂V , since Tr(ŜV ρ̂Ŝ†

V) = Tr(Π̂V ρ̂).
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Measure in X-basis

The sole PBS allows to perform measurements in the Z-basis. However, with a HWP positioned
before the PBS, it is possible to perform projective measurements also in the X-basis. The projectors
of this basis are:

Π̂D = |D⟩ ⟨D| = 1
2

(
1 1
1 1

)
(1.41)

Π̂A = |A⟩ ⟨A| = 1
2

(
1 −1
−1 1

)
(1.42)

These transformations can be achieved by setting the HWP at θ = π
8 and using two detectors. The

transformation induced on the transmitted path is:

ŜD = Π̂HÛWP (
π

8
, π) =

1√
2

(
1 1
0 0

)
(1.43)

and on the reflected one is
ŜA = Π̂V ÛWP (

π

8
, π) =

1√
2

(
0 0
1 −1

)
(1.44)

In this case we have that Tr(ŜDρ̂Ŝ†
D) = Tr(Π̂Dρ̂) and Tr(ŜAρ̂Ŝ†

A) = Tr(Π̂Aρ̂). In a similar way, if we
use only one detector we need to set two angles for the HWP. For θ = π

8 we get the projection on |D⟩,
while the projection on |A⟩ in this case is obtained setting θ = 3π

8 :

Ŝ ′A = Π̂HÛWP (
3π

8
, π) =

1√
2

(
−1 1
0 0

)
(1.45)

with Tr(Ŝ ′Aρ̂Ŝ ′†A ) = Tr(Π̂Aρ̂).

Measure in Y-basis

To perform measurements in the Y-basis we need to add a QWP before the HWP of the previous
configuration. In this case, the two projectors are:

Π̂R = |R⟩ ⟨R| = 1
2

(
1 −i
i 1

)
(1.46)

Π̂L = |L⟩ ⟨L| = 1
2

(
1 i
−i 1

)
(1.47)

If we have two detectors it is sufficient to set the angle of the HWP to θ = π
4 and the angle of the

QWP to ϕ = π
4 . We obtain the following transformations for the transmitted and reflected paths

respectively:

ŜR = Π̂HÛWP (
π

4
, π)ÛWP (

π

4
,

π

2
) =

1
2

(
1 + i 1− i

0 0

)
(1.48)

ŜL = Π̂V ÛWP (
π

4
, π)ÛWP (

π

4
,

π

2
) =

1
2

(
0 0

1− i 1 + i

)
(1.49)

In this case we have that Tr(ŜRρ̂Ŝ†
R) = Tr(Π̂Rρ̂) and Tr(ŜLρ̂Ŝ†

L) = Tr(Π̂Lρ̂). Equivalently, we can
use just one detector positioned on the transmitted path. In this case, the projection on the state |L⟩
is achieved by setting the angle of the QWP to ϕ = 3π

4 :

Ŝ ′L = Π̂HÛWP (
π

4
, π)ÛWP (

3π

4
,

π

2
) =

1
2

(
−1− i 1− i

0 0

)
(1.50)

with Tr(Ŝ ′Lρ̂Ŝ ′†L ) = Tr(Π̂Lρ̂).
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Figure 1.3: Scheme of the measurement of a photon polarization [21].

1.4 Entanglement

So far, we have considered only the case of an isolated system defined on a given Hilbert spaceH.
We can generalize the previous formalism to multipartite systems. The simplest case is a bipartite sys-
tem, composed of two spacesHA andHB. We choose the orthonormal bases {|0⟩A , |1⟩A , ..., |dA − 1⟩A}
forHA and {|0⟩B , |1⟩B , ..., |dB − 1⟩B} forHB. The Hilbert space of the bipartite system is given by the
tensor product of the two subsystemsH = HA ⊗HB and a pure state can be defined on this space as

|ψ⟩AB =
dA−1

∑
a=0

dB−1

∑
b=0

ψab |a⟩A ⊗ |b⟩B (1.51)

with ψab complex coefficients. In the following, we will equivalently denote the tensor product of two
states as |a⟩A ⊗ |b⟩B = |a⟩A |b⟩B = |ab⟩AB.

In the composite Hilbert space, we have operators defined on H. Local operators acting on the
two subsystems are written in terms of Ô = Â ⊗ B̂. If these operators act as Â |a⟩A = |α⟩A and
B̂ |b⟩B = |β⟩B, the action of Ô on the state |ψ⟩AB of Eq. (1.51) becomes:

Ô |ψ⟩AB =
dA−1

∑
a=0

dB−1

∑
b=0

ψab Â |a⟩A ⊗ B̂ |b⟩B =
dA−1

∑
a=0

dB−1

∑
b=0

ψab |α⟩A ⊗ |β⟩B (1.52)

Pure states defined in a composite Hilbert space H that can be written as the tensor product of two
states |ψa⟩A and |ψb⟩B defined in HA and HB respectively are said to be separable states. Mathemati-
cally, a pure separable state is expressed as |ϕ⟩AB = |ψa⟩A⊗ |ψb⟩B. In this case, a local operator acting
on one of the two subsystems doesn’t affect the other subsystem.

However, most of the states defined on H do not satisfy this property: these states are said to be
entangled. These states behave differently from the separable states since local operations can change
the state of the whole system giving long-range correlations that cannot be classically explained. A
crucial point is to distinguish the separable states from the entangled ones. In bipartite systems, we

11



1.4. ENTANGLEMENT CHAPTER 1. QUANTUM INFORMATION

can employ the Schmidt decomposition. Let HA and HB two Hilbert spaces of dimension dA and dB
respectively. For any state |ψ⟩AB defined on the composite Hilbert spaceHA ⊗HB there exist a set of
orthonormal bases {|v1⟩A , ..., |vdA⟩A} ∈ HA and {|w1⟩B , ..., |wdB⟩B} ∈ HB such that

|ψ⟩AB =
k

∑
i=1

√
λi |vi⟩A |wi⟩B

k

∑
i=1

λi = 1 (1.53)

where k ≤ min{dA, dB} is called Schmidt rank. If k = 1 the state is separable, otherwise it is entangled.
The scalars λi are positive and unique up to re-ordering and they correspond to the eigenvalues of
the reduced density matrix, obtained by the partial trace of the state ρ̂AB = |ψ⟩ ⟨ψ|AB:

ρ̂A = TrBρ̂AB =
k

∑
i=1

λi |vi⟩ ⟨vi|

ρ̂B = TrAρ̂AB =
k

∑
i=1

λi |wi⟩ ⟨wi|
(1.54)

Given a quantum state |ψ⟩AB one can evaluate the eigenvalues of the reduced density matrix of one
of the two subsystems. In this way, it is possible to distinguish a separable state from an entangled
one.

If we have an entangled state, it means that we have a non-separable superposition of multipar-
tite states in such a way that their states become interdependent. The interesting aspect is that once
entangled, the state of one particle is correlated with the state of the others in such a way that if an ob-
server measures one particle, the state with which that observer describes the other particles changes
instantaneously. For instance, if a system is described by |ψ⟩AB like in Eq. (1.53), and Alice measures
it to find her subsystem in |vi⟩A, she instantly knows that Bob’s state will be found in |wi⟩B.

1.4.1 Bell Inequalities

The fact that a measurement of a system can instantaneously change the state of a remote one has
been subject of debate. Some scientists, including Einstein, Podolsky, and Rosen, found this inter-
pretation of quantum mechanics unacceptable, considering the theory to be incomplete: the famous
Einstein-Podolsky-Rosen (EPR) paradox [1]. They suggest the existence of additional, unknown prop-
erties or variables that determine the outcomes of quantum measurements. These hidden variables
would provide a more complete description of the quantum state and its behavior than what is al-
lowed by the standard formalism of quantum mechanics. Besides the different interpretations of the
entanglement, the main problem was the experimental verification of these theories. In 1964, J. Bell
introduced an inequality, famously known as Bell’s inequality, which relates the results of specific mea-
surements conducted on an entangled state. Bell’s inequality allows to distinguish the predictions of
quantum mechanics from those of any hidden-variables theory. In the experiment proposed by Bell,
two particles are prepared in an entangled state and then separated, such that each particle is sent
to a different observer who can perform measurements on their respective particles. Bell’s inequal-
ity examines the statistical correlations between the measurement outcomes of the two observers. It
compares the correlations predicted by quantum mechanics with those that would be expected from
hidden-variable theories. If the experimental results violate Bell’s inequality, the observed correla-
tions between the entangled particles cannot be explained by classical theories that obey the princi-
ples of locality and realism. These violations, which have been observed in numerous experiments,
manifest the property known as quantum nonlocality, which shows the failure of classical theories to
explain quantum phenomena and provides strong evidence for the existence of entanglement.

Afamous formulation of Bell’s inequality is that provided by J.F. Clauser, M.A. Horne, A. Shimony,
and R.A. Holt in 1969, known as CHSH inequality [22], valid in the case of bipartite systems. The
objective is to define a quantity, experimentally accessible, that assumes different values depending if
the system is classical or quantistic. Now we provide a description of this experiment. We have a two-
particle system and we send each particle to a different experimentalist physically separated, let’s call
them Alice and Bob. We assume that Alice and Bob can perform only two possible measurements,

12
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denoted as x, y ∈ {0, 1} with outcomes that can assume the values a, b ∈ {−1,+1}, We define the
following experimental quantity:

S = ⟨a0b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩ (1.55)

with ⟨axby⟩ = ∑a,b abp(ab|xy). The prediction of quantum mechanics can be different from that pre-
dicted by the hidden variable theory. Now we provide more details about the different predictions of
the two theories, which is the key point to verify the non-locality of quantum mechanics.

The principle of locality suggests that we should be capable of identifying a specific collection of
past factors, represented by variables λ, that have a combined causal impact on both outcomes, a and
b [23].

p(ab|xy, λ) = p(a|x, λ)p(b|y, λ) (1.56)

With this condition, we state that the probability of the outcome a depends only on the past variable
λ but not on long-distance measurements. The hidden variable λ may change from one experiment
to another, and we can write it in terms of a distribution probability q(λ):

p(ab|xy) =
∫

Λ
dλq(λ)p(a|x, λ)p(b|y, λ) (1.57)

If the probabilities p(ab|xy) satisfy the locality condition stated in Eq. (1.57), then we have that S ≤ 2,
which is the CHSH inequality. This can be simply proved using the definition of local theory previ-
ously stated. Indeed, the expectation values of the possible measurements performed on the system
become:

⟨axby⟩ = ∑
a,b

∫
Λ

dλq(λ)p(a|x, λ)p(b|y, λ)ab =

=
∫

Λ
dλq(λ)∑

a
ap(a|x, λ)∑

b
bp(b|y, λ) =

∫
Λ

dλq(λ)⟨ax⟩λ⟨by⟩λ
(1.58)

We can write S =
∫

Λ dλq(λ)Sλ, where:

Sλ = ⟨a0⟩λ⟨b0⟩λ + ⟨a0⟩λ⟨b1⟩λ + ⟨a1⟩λ⟨b0⟩λ − ⟨a1⟩λ⟨b1⟩λ (1.59)

Since ⟨a0⟩λ, ⟨a1⟩λ ∈ [−1,+1], the following inequality is always satisfied:

Sλ ≤ |⟨b0⟩λ + ⟨b1⟩λ|+ |⟨b0⟩λ − ⟨b1⟩λ| ≤ 2 (1.60)

and finally we get that S =
∫

Λ dλq(λ)Sλ ≤ 2 since for normalization
∫

Λ dλq(λ) = 1. The formalism
of quantum mechanics predicts the existence of entangled states which violate the CHSH inequality
providing a maximum value for S of 2

√
2 (Cirel’son’s bound [24]). There are only four states, in the

bipartite scenario, which maximally violate the CHSH inequality and they are called Bell states:

∣∣Φ+
〉
=

1√
2
(|HH⟩+ |VV⟩)∣∣Φ−〉 = 1√

2
(|HH⟩ − |VV⟩)∣∣Ψ+

〉
=

1√
2
(|HV⟩+ |VH⟩)∣∣Ψ−〉 = 1√

2
(|HV⟩ − |VH⟩)

(1.61)

To verify this, we need to use the formalism of quantum mechanics to calculate S. In this case, the
observables are written in terms of operators Âx and B̂y, which represent local measurements on the
bipartite state. In this framework, S becomes an operator, expressed in the following way:

Ŝ = (Â0 + Â1)⊗ B̂0 + (Â0 − Â1)⊗ B̂1 (1.62)

13



1.4. ENTANGLEMENT CHAPTER 1. QUANTUM INFORMATION

The experimentally accessible value is the expectation value of Ŝ:

S = ⟨Ŝ⟩ = ⟨Â0 ⊗ B̂0⟩+ ⟨Â1 ⊗ B̂0⟩+ ⟨Â0 ⊗ B̂1⟩ − ⟨Â1 ⊗ B̂1⟩ (1.63)

To achieve the maximum violation we need to choose as local measurements certain anticommuting
observables ({Â0, Â1} = {B̂0, B̂1} = 0). More specifically, a particular choice is:

Â0 = σ̂z

Â1 = σ̂x

B̂0 =
σ̂z + σ̂x√

2

B̂1 =
σ̂z − σ̂x√

2

(1.64)

In this case, it is trivial to verify that the value of S for |ϕ+⟩ is equal to S = 2
√

2. The operators acting
on the composite system are:

⟨Â0 ⊗ B̂0⟩ =
1√
2


1 1 0 0
1 −1 0 0
0 0 −1 −1
0 0 −1 1



⟨Â0 ⊗ B̂1⟩ =
1√
2


1 −1 0 0
−1 −1 0 0
0 0 −1 1
0 0 1 1



⟨Â1 ⊗ B̂0⟩ =
1√
2


0 0 1 −1
0 0 −1 −1
1 −1 0 0
−1 −1 0 0



⟨Â1 ⊗ B̂1⟩ =
1√
2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0



(1.65)

Then, in the case of |ϕ+⟩, the expectation values become:〈
ϕ+
∣∣ Â0 ⊗ B̂0

∣∣ϕ+
〉
=
〈
ϕ+
∣∣ Â0 ⊗ B̂1

∣∣ϕ+
〉
=
〈
ϕ+
∣∣ Â1 ⊗ B̂0

∣∣ϕ+
〉
= −

〈
ϕ+
∣∣ Â1 ⊗ B̂1

∣∣ϕ+
〉
=

1√
2

(1.66)

As a consequence, we get S = 4√
2
= 2
√

2. The result is the same for the other Bell states up to
relabeling of the observables and sign changes. Now, one can be interested in verifying that this is the
maximal violation (a proof is shown in [25]). We can apply the sum of squares (SOS) decomposition to
the operator 2

√
2I− Ŝ and rewrite it as:

2
√

2I− Ŝ =
1√
2

( Â0 + Â1√
2
− B̂0

)2

+

(
Â0 − Â1√

2
− B̂1

)2
 (1.67)

In particular, it is easy to see that 2
√

2I − Ŝ ≥ 0 and, as a consequence the value of S ≤ 2
√

2. The
CHSH inequality is maximally violated when 2

√
2I− Ŝ = 0, which is possible if:

Â0 ± Â1√
2
|ψ⟩ = B̂0/1 |ψ⟩ (1.68)

Moreover, one can prove that all the possible local measurements that maximally violate the CHSH
inequality are equivalent to Eq. (1.67) up to a unitary transformation.
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Experimentally, it is possible to evaluate S in terms of polarization measurements performed through
an HWP and a PBS on the biphoton state (see also Sec. 1.3.1). Both parties, Alice and Bob, receive one
of the two photons and they can perform a projective measurement on it. We denote as θ1 and θ′1 the
two possible settings on side Aand, in a similar way, θ2 and θ′2 on side B. Both parties can arbitrarily set
one of the two possible measurement configurations and then perform a measurement on their part
of the system getting as result ±1. When the statistic is sufficiently large the two parties can compare
the results obtained for each particular combination of the selected operators. The correlation of the
particle pairs for any possible choice of the operators is denoted as E(θ(a)

1 , θ
(b)
2 ) (where a and b denote

the possible choice of the measurement settings in each party) which is the expectation value of the
product of the outcomes of the experiment for that choice of the operators. The CHSH inequality can
be written as:

S = |E(θ1, θ2) + E(θ1, θ′2) + E(θ′1, θ2)− E(θ′1, θ′2)| ≤ 2 (1.69)

We can relate the operators in Eq. (1.64) to certain polarization projective measurements and then
estimating the correlators E(θ(a)

1 , θ
(b)
2 ) for any choice of the angles θ

(a)
1 and θ

(b)
1 (see Appendix A for

further details). For any configuration of the polarization measurement operators, we can evaluate the
number of coincidences Nc(θ

(a)
1 , θ

(b)
1 ) between the events recorded in each party which is proportional

to the probability p(ab|xy). After some manipulations, we get an expression for the correlators

E(θ(a)
1 , θ

(b)
1 ) =

Nc(θ
(a)
1 , θ

(b)
2 ) + Nc(θ

(a)⊥
1 , θ

(b)⊥
2 )− Nc(θ

(a)⊥
1 , θ

(b)
2 )− Nc(θ

(a)
1 , θ

(b)⊥
2 )

Nc(θ
(a)
1 , θ

(b)
2 ) + Nc(θ

(a)⊥
1 , θ

(b)⊥
2 ) + Nc(θ

(a)⊥
1 , θ

(b)
2 ) + Nc(θ

(a)
1 , θ

(b)⊥
2 )

(1.70)

where θ⊥ = θ + 90◦ and Nc(θ
(a)
1 , θ

(b)
2 ) is the number of experimental coincidences measured in a

unit of time for a certain choice of the polarization measurement (θ(a)
1 , θ

(b)
2 ). Consistently with the

operators in Eq. (1.64) the choice of the polarization measurements which allow to maximally violate
the CHSH inequalities are (θ1, θ′1, θ2, θ′2) = (0, 45◦, 22.5◦, 157.5◦) (see Fig. 1.4).

Figure 1.4: Scheme of the measurements for CHSH inequality.

1.5 Quality of Entangled States

Several methods are used to evaluate the quality of the entanglement of a two-qubit system. Here,
we introduce some of the most significant quantities employed in this work, which are all related to
the experimental measurement of visibility in different bases.
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1.5.1 Polarization Correlation Visibility

When dealing with the features of a quantum system a suitable choice of projective measurements
allows to characterize the presence of entanglement. The key point consists in performing measure-
ments in different bases. Consider, for example, the maximally entangled state |Φ+⟩. This state can
be written in different bases as:∣∣Φ+

〉
=

1√
2
(|HH⟩+ |VV⟩) = 1√

2
(|DD⟩+ |AA⟩) = 1√

2
(|RR⟩+ |LL⟩) (1.71)

We observe that if we measure this state in the Z-basis, the corresponding probabilities are pHH =
pVV = 1

2 and pHV = pVH = 0. Similarly, measuring in the X and Y bases we get pDD = pAA = pRR =

pLL = 1
2 and pDA = pAD = pRL = pLR = 0. The experimental count rates, which are proportional

to the probabilities of the corresponding projective measurement, depend on the particular choice of
projection performed on the system. In the Z-basis we have that the maximum count rate is Nmax =
NHH = NVV and Nmin = NHV = NVH = 0. A similar approach can be applied for the measurements
performed on the other two bases. The same procedure is valid also for the other Bell states, but in
this case, the maxima and minima count rates can be found with different measurements.

A useful quantity, strictly related to the experimental results, is the polarization correlation visi-
bility, defined as follows:

V =
Nmax − Nmin

Nmax + Nmin
(1.72)

However, count rates may vary due to differences such as the presence of different optical elements,
or misalignments in the optics and due to a non maximally entangled state. To address this, it is
advisable to remove any bias in the measurement of visibility. We can redefine the visibility in a
given basis {|a⟩ , |b⟩} as

V =
|Naa + Nbb − Nab − Nba|
Naa + Nbb + Nab + Nba

(1.73)

The absolute value has been employed, as depending on the specific decomposition of the state in
terms of |a⟩ and |b⟩, the numerator could be either positive or negative.

Measuring the visibility of a state in a set of mutually unbiased bases is crucial for assessing the
presence of entanglement. Only a maximally entangled state exhibits a visibility equal to one in each
of these bases. In practice, demonstrating a change in visibility in two distinct mutually unbiased
bases is sufficient to indicate that we do not have a Bell state. For this purpose, we choose the Z and
X bases, which are simpler to experimental measure, since it is sufficient the use of only an HWP and
a PBS (as shown in Sec. 1.3.1).

With this parametrization, we can rewrite the state of a two-qubit system as

|ψ⟩ = cos ϕ |HH⟩+ sin ϕ |VV⟩ (1.74)

In this way we can write the maximally entangled states |Φ±⟩ setting ϕ = ±π
4 and the separable

states |HH⟩ (for ϕ = 0) and |VV⟩ (for ϕ = π
2 )4 This approach allows to show how the visibilities on

the Z (VZ) and X (VX) bases change varying the parameter ϕ. This goal is achieved, by evaluating the
probability of each measurement: pi = ⟨ψ| Π̂i |ψ⟩. The visibilities are related to these probabilities,
once simplified by the common multiplicative constant, in the following way:

VZ =
pHH + pVV − pHV − pVH

pHH + pVV + pHV + pVH
VX =

pDD + pAA − pDA − pAD

pDD + pAA + pDA + pAD
(1.75)

The probabilities of each measurement, as a function of ϕ are listed in Tab. 1.1 Therefore the visibilities
as a function of ϕ, become:

VZ = 1 VX = sin 2ϕ (1.76)
4With a similar approach one can also write

∣∣Ψ±〉, with the parametrization |ψ⟩ = cos ϕ |HV⟩+ sin ϕ |VH⟩. The follow-
ing arguments are the same.
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Z p X p
HH cos2 ϕ DD [1 + sin(2ϕ)]/4
HV 0 DA [1− sin(2ϕ)]/4
VH 0 AD [1− sin(2ϕ)]/4
VV sin2 ϕ AA [1 + sin(2ϕ)]/4

Table 1.1: Measurement probability of a generic two-qubit state.

While the visibility VZ is always equal to one, the visibility in the X-basis changes depending on the
value of ϕ. VX = 1 only in the case of a maximally entangled state (ϕ = π

4 ) and it is equal to zero in
the case of a separable state (ϕ = 0, π

2 ). This argument shows the importance of the visibility measure,
performed on two independent bases. This quantity is used to evaluate the quality of the entangled
photons produced by the source.

1.5.2 Fidelity

The fidelity is a measure of the closeness of two quantum states [26]. It is defined as

F(ρ̂, σ̂) =

(
Tr
√√

σ̂ρ̂
√

σ̂

)2

(1.77)

where ρ̂ and σ̂ are the density matrices of the two states. If they are pure, the fidelity can be written
as

F(ρ̂, σ̂) = |⟨ψρ|ψσ⟩|2 (1.78)
which represents the projection probability of the state

∣∣ψρ

〉
on |ψσ⟩. One can simply observe that in

the case of two identical states F(ρ̂, ρ̂) = 1, and in the case they are orthogonal their fidelity is zero.
Some of the most important properties of quantum state fidelity are:

• Limited values: The values of the fidelity are 0 ≤ F(ρ̂, σ̂) ≤ 1 for any choice of the density
matrices ρ̂ and σ̂. In particular F(ρ̂, σ̂) = 1 if and only if ρ̂ = σ̂;

• Symmetry: The fidelity of two quantum states is symmetric in its arguments F(ρ̂, σ̂) = F(σ̂, ρ̂);

• Composite systems: If we have a composite Hilbert space HA ⊗ HB and the density matri-
ces ρ̂1, σ̂1 describe two states in HA, while ρ̂2, σ̂2 two states in HB we get F(ρ̂1 ⊗ ρ̂2, σ̂1 ⊗ σ̂2) =
F(ρ̂1, σ̂1)F(ρ̂2, σ̂2);

• Invariance under unitary transformations: unitary transformations of the states don’t change
their fidelity F(Ûρ̂Û†, Ûσ̂Û†) = F(ρ̂, σ̂);

The fidelity is not a distance, as the triangle inequality does not apply. Moreover, we have seen
that F(ρ̂, ρ̂) = 1 instead of zero, as for a usual distance. However, fidelity remains one of the most
commonly employed measures for quantifying the closeness of two quantum states. In this thesis, we
will assess the fidelity between the states emitted by the source and a maximally entangled state. One
can demonstrate that this quantity, also known as Bell-state fidelity can be estimated from the measure
of the visibilities as follows [27, 28]

F(ρ̂) =
1 + VZ + VX + VY

4
(1.79)

It is possible to bound the inferior limit of the fidelity, given an estimation of the visibility on the
Z and X bases [26, 29]. This result is important because these measurements typically provide more
precise results since we can perform a lower number of measurements. Moreover, these two bases
require only a HWP reducing the error due to the correct positioning of the QWP for the visibility VY.
The inferior limit of the Bell-state fidelity becomes

F(ρ̂) ≥ VZ + VX

2
(1.80)
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1.5.3 Concurrence

Concurrence, introduced by Hill and Wootters [30], is a measure of entanglement for a two-qubit
quantum system. It is defined as

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4} (1.81)

where {λ1, λ2, λ3, λ4} are the eigenvalues of the matrix R̂ =
√√

ρ̂ ˆ̃ρ
√

ρ̂, taken in decreasing order.
Given the state ρ̂ the matrix R̂ is defined in terms of :

ˆ̃ρ = (σy ⊗ σy)ρ̂
∗(σy ⊗ σy) (1.82)

This definition, which appears quite complicated, arises as a generalization of concurrence for pure
states. Given a pure state |ψ⟩, the concurrence is defined as:

C(|ψ⟩) =
√

2[1− Tr(ρ̂2
A)] (1.83)

where ρ̂A is the reduced state of |ψ⟩ on one of the two subsyestems. The idea is that when the state
is maximally entangled, ρ̂A = 1

2 I and the concurrence is one. In the opposite case, if the state is
separable Tr(ρ̂2

A) = Tr(ρ̂A) = 1 and the concurrence is equal to zero.
The most important properties of this measure are:

• Limited values: For any bipartite state 0 ≤ C(ρ̂) ≤ 1. In particular, any separable state has a
concurrence equal to zero, while for a maximally entangled state, it is equal to one.

• Symmetry: The concurrence is symmetric under the interchange of the two subsystems. In
other words, if we swap the labels of the two qubits, the concurrence remains the same.

• Monotonicity: this measure is a monotonic function of entanglement. This means that any
operation that does not increase the entanglement between two qubits also does not increase
the concurrence.

• Invariance under local unitary transformations: Local unitary operations are transformations
that only affect one of the subsystems and do not change the entanglement properties. Concur-
rence remains unchanged under local unitary operations applied independently to each sub-
system.

Similarly to the fidelity, also the concurrence can be estimated via lower bound, using the results of
the visibilities in the Z and X bases [26, 29]:

C(ρ̂) ≥ VZ + VX − 1 (1.84)

1.6 Quantum State Tomography
The information carried by a quantum particle is encoded in its state and it’s accessible through

measurements. Quantum state tomography is a technique employed to fully reconstruct the quan-
tum state of a system, obtaining a detailed and accurate description of its properties. The approach
of quantum state tomography involves performing a series of measurements on the system in differ-
ent ways, thus obtaining a set of experimental data. These data are then analyzed using specialized
mathematical algorithms to extract information about the original quantum state.

For the purpose of this thesis, here we describe the quantum tomography of a two-qubit system.
The general expression of a two-qubit system state is a 4× 4 matrix density ρ̂:

ρ̂ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 (1.85)
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Quantum tomography aims at providing a way to relate the coefficients ρij with experimental
measurable quantities. A simple experimental approach consists in performing projective measure-
ments on the bases {X, Y, Z}. We need to relate these quantities with the coefficients of the density
matrix in Eq. (1.85). A useful approach is the one described by James et. al [31], which consists of a
parametrization of the density matrix through an auxiliary matrix T̂:

T̂ =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 (1.86)

The density matrix can be written as:

ρ̂ =
T̂†T̂

Tr(T̂†T̂)
(1.87)

which can be easily proved to satisfy the properties of a density matrix:

• Positive definite: ⟨ψ| T̂† T̂
Tr(T̂† T̂) |ψ⟩ ≥ 0, ∀ |ψ⟩ ∈ H;

• Normalization: Tr T̂† T̂
Tr(T̂† T̂)

= 1;

• Hermitian: T̂† T̂
Tr(T̂† T̂)

= (T̂† T̂)†

Tr(T̂† T̂)
;

The density matrix is related to the parameters ti with i ∈ {1, ..., 16}. This approach shows that
any density matrix can be completely characterized by 16 real quantities. The object of quantum state
tomography consists in finding the optimal set of parameters based on certain experimental measure-
ments. Given the complete set of mutually unbiased bases {X, Y, Z}, we can perform 6 projective
measurements (two for each basis) along orthogonal vectors, which are: {|H⟩, |V⟩, |D⟩,|A⟩,|L⟩,|R⟩}.
Therefore we can perform at most 36 measurements of the bipartite system, considering all the pos-
sible combinations. However, the system can be fully characterized by 16 measurements while the
others are redundant. Each projective measurement, indeed, is represented by a 4× 4 matrix: to fully
characterize the state of the system it is sufficient to select a set of 16 linearly independent operators.
The description of the projective operators, together with the experimental realization of these mea-
surements, is discussed in Appendix B. Given the experimental results, we need to provide a method
to reconstruct the quantum state of the system.

1.6.1 Maximum Likelihood Estimation

This method consists in the definition of a likelihood function containing the parameters which
characterize the quantum state t⃗ = (t1, ..., t16) and the experimental measurements: it estimates the
agreement of a certain density matrix ρ̂(⃗t) with the experimental measurements. The simpler ap-
proach to build this function consists in assuming Gaussian probability distributions of the experi-
mental results.

P(⃗t) =
1
N

16

∏
ν=1

exp

{
− [n̄ν (⃗t)− nν]2

2σ̂ν (⃗t)2

}
(1.88)

whereN is a normalization constant, while the normalized ν-th measurement, performed by project-
ing the bipartite system in the state |ψν⟩ is:

n̄ν (⃗t) = Tr(ρ̂(⃗t)Π̂ν) (1.89)

where Π̂ν = |ψν⟩ ⟨ψν| is the projector on the state |ψν⟩ . The experimental normalized results are nν

which are obtained from the experimental coincidence counts Nν as

nν =
Nν

Nnorm
(1.90)
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The normalization constant is experimentally obtained from all the counts obtained in a given basis,
for example, the Z-basis: Nnorm = NHH + NVV + NHV + NVH. The uncertainty of the ν-th mea-
surement is obtained assuming that the probability distribution of the counts is Poissonian σ̂ν (⃗t) =√

n̄ν (⃗t)5. The likelihood obtainable from the experimental values is:

P(⃗t) =
1
N

16

∏
ν=1

exp

{
−
[
Tr(ρ̂(⃗t)Π̂ν)− nν

]2

2Tr(ρ̂(⃗t)Π̂ν)

}
(1.91)

The maximization of the likelihood function allows us to determine the best estimation of the quan-
tum state. Alternatively, this problem is equivalent to the minimization of −log(P(⃗t)):

L(t1, ..., t16) =
16

∑
ν=1

(Tr(ρ̂(t1, ..., t16)Π̂ν)− nν)2

2Tr(ρ̂((t1, ..., t16)Π̂ν)
(1.92)

Once the minimum is found for certain parameters (t′1, t′2, ..., t′16), the density matrix of the state can
be reconstructed.

Uncertainty Analysis

A non-trivial problem related to the maximum likelihood method is the error analysis. Every
experiment inherently possesses finite accuracy, and it is essential for an experimenter to provide a
report on this accuracy alongside the results. However, maximum likelihood tomography lacks an
analytical solution for estimating the accuracy of the procedure and, more critically, the uncertainty
in the derived parameters caused by experimental uncertainties due, for example, to the correct po-
sitioning of the waveplates and to the fluctuations of the experimental counts. In the literature, the
prevailing approach to estimate these uncertainties consists in the use of Monte Carlo simulations.
These techniques enable the simulation of the experiment multiple times, providing an estimate of the
associated experimental uncertainties without the need to actually repeat the experiment hundreds of
times. With this approach, we can effectively predict the uncertainties due to statistical fluctuations of
the counts but we ignored that due to the positioning of the waveplates (that may be also systematic).

For each measurement, we get an estimated nν, which is assumed to be normally distributed with
a standard deviation √nν. Given the set of experimental results nν one can associate a Gaussian
distribution with the experimental result as mean value and the standard deviation √nν. Therefore,
we can simulate many experiments repeating the quantum tomography many times using as input
values the ones extracted in each run by the individual Gaussian distribution of each measurement.
In this way, after many iterations, we can quantify the dispersion of the optimal parameters that
characterized the reconstructed quantum state.

1.6.2 Experimental Effective Model

A complete quantum state tomography is typically difficult to perform due to the uncertainties
related to this method. In Sec. 1.5 we stressed the importance of the visibilities in the Z and X bases
to evaluate the quality of entangled states. Through these values, moreover, we are able to estimate
a lower bound of the Bell-state fidelity and that of the concurrence. In this section, we will show that
these two measurements can provide deeper information on the state of the photons emitted by the
source. Consider the scenario where the source emits the Bell state |Φ+⟩6. The ideal state emitted by
the source should be described in the formalism of density matrices as ρ̂ = |Φ+⟩ ⟨Φ+|. In practice,
there are some contributions that ruin the degree of entanglement of the system. They are:

5The statistical distribution related to the detected counting rates is a Poissonian. Generally, for high statistic samples,
this distribution converges to a Gaussian.

6The source can be configured to emit any Bell state. Specifically, in the experimental tests summarized in Sec. 5, the
source was set up to emit the state

∣∣Φ+
〉
, which is why we will focus on this particular case. The others can be treated

similarly.
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• Depolarization: The optical elements of the source, the optical fibers, and the PBSs used for
the polarization measurements partially depolarize the transmitted states, destroying quantum
correlations. Mathematically, this process introduces a uniform noise in the density matrix, that
can be represented as p

4 I. The parameter p is a measure of the strength of the depolarization
process.

• Decoherence: Experimentally, it is difficult to create maximally entangled states. The source,
due to misalignments, could introduce a small distinguishability between the states of the two
photons, thus reducing the coherence. This effect can be modeled, in the formalism of the den-
sity matrices, by an additional factor c

2 (|HH⟩ ⟨HH|+ |VV⟩ ⟨VV|), regulated by the parameter
c.

The effective model for the states emitted by the source, considering the effects of depolarization
and decoherence, can be written as:

ρ̂AB = (1− p− c)
∣∣ϕ+

AB
〉 〈

ϕ+
AB

∣∣+ p
4

I + c
|HH⟩ ⟨HH|+ |VV⟩ ⟨VV|

2
p, c ∈ R (1.93)

The parameters p and c can be derived from the experimental measurements of the visibilities
VZ and VX. To show this, we can start by defining the probabilities of each projective measurement
on the Z and X bases using the model introduced in Eq. (1.93). In the Z-basis we get the following
probabilities:

pHH = Tr(ρ̂AB |HH⟩ ⟨HH|) = 2− p
4

pHV = Tr(ρ̂AB |HV⟩ ⟨HV|) = p
4

(1.94)

For symmetry pVV = pHH and pVH = pHV . Therefore, the visibility VZ can be written in terms of the
p parameter as

VZ =
pHH + pVV − pHV − pVH

pHH + pVV − pHV − pVH
= 1− p (1.95)

Similarly, the probabilities for the measurements in the X-basis are:

pDD = Tr(ρ̂AB |DD⟩ ⟨DD|) = 2− p− c
4

pDA = Tr(ρ̂AB |DA⟩ ⟨DA|) = p + c
4

(1.96)

and for symmetry pAA = pDD and pDA = pAD. The visibility VX becomes

VX =
pDD + pAA − pDA − pAD

pDD + pAA + pDA + pAD
= 1− p− c (1.97)

The coefficients which characterize the effective model of the biphoton state are expressed in terms of
the visibilities as

p = 1−VZ

c = VZ −VX

(1.98)

This model allows also to predict the value of S in CHSH inequality. To do this we can directly
calculate S in Eq. (1.63) by evaluating all the correlators in the state ρ̂AB of the Eq. (1.93). Finally, we
get:

⟨Â0B̂0⟩ = ⟨Â0B̂1⟩ =
1− p√

2
=

VZ√
2

⟨Â1B̂0⟩ = −⟨Â1B̂1⟩ =
1− p− c√

2
=

VX√
2

(1.99)

The expression that relates S to the experimental visibilities VZ and VX is

S =
√

2(VX + VZ) (1.100)
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Chapter 2

Spontaneous Parametric
Down-Conversion

Spontaneous Parametric Down-Conversion (SPDC) is a fundamental process extensively used in
quantum communications to generate entangled photons. This second-order nonlinear optical pro-
cess involves the conversion of a single high-energy pump photon into two lower-frequency photons
passing through an optical material. The properties of the emitted photons, and thus of the source,
strongly depend on the characteristics of both the nonlinear crystal and the pump beam. In this chap-
ter, we will explore the physical origin of SPDC, with a particular emphasis on characterizing its
properties. Specifically, we will describe the model used to analyze the source’s performance under
different configurations.

2.1 Electromagnetism in a Nonlinear Medium

To study nonlinear optics, it is necessary to describe the behavior of an electromagnetic field in a
medium. In the absence of free charges and currents, Maxwell’s equations within a medium are given
as [32]: 

∇ · D(r, t) = 0
∇ · H(r, t) = 0
∇× E(r, t) = − ∂B(r,t)

∂t

∇× H(r, t) = ∂D(r,t)
∂t

(2.1)

where E(r, t) is the electric field, B(r, t) is the magnetic field and the vector field H(r, t), in non-
ferromagnetic media, is defined as H(r, t) = 1

µ B(r, t) (where µ is the magnetic permeability). An
important quantity is the electric displacement vector field D(r, t) which is written as

D(r, t) = ϵ0E(r, t) + P(r, t) (2.2)

where ϵ0 is the electric permittivity of vacuum and P(r, t) is the polarization field induced on the
material under the action of an external electric field. In a nonlinear medium the polarization field
can be expressed as a series of powers of the electric field:

P(r, t) = ϵ0χ(1)E(r, t) + ϵ0χ(2)E(r, t)E(r, t) + ϵ0χ(3)E(r, t)E(r, t)E(r, t) + ... (2.3)

The linear susceptibility χ(1) characterizes the dominant factor for low intensities of the electric field.
When the applied electric field becomes sufficiently intense, higher-order terms become significant
and as a result, we can see nonlinear effects. These contributions depend on the susceptibility tensors
χ(i) (with i ≥ 2), whose components are typically several orders of magnitude smaller than those of
χ(1). Second-order nonlinear effects can only occur in noncentrosymmetric crystals, which are crystals
that do not display inversion symmetry [33]. These effects are relevant for the SPDC process as we
will explain in the following sections.
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2.2 SPDC Theoretical Model
When an electromagnetic wave interacts within a medium, dipolar interactions can occur between

the dipoles of the medium and the electromagnetic field of the radiation. As a result, the electric
dipoles oscillate at well-defined frequencies, acting, if the relative phase is correct, as a source of new
electromagnetic radiations. More precisely, starting by Maxwell’s equations (2.1) we can derive the
wave equation of an electromagnetic field propagating in a medium:

∇2E(r, t)− 1
c2

∂2E(r, t)
∂t2 =

1
ϵ0c2

∂2P(r, t)
∂t2 (2.4)

where the polarization field P(r, t) is defined in Eq. (2.3). When dealing with second-order nonlinear
effects, we can focus only on the second-order term, whose components are:

P(2)
i (r, t) = ϵ0χ

(2)
ijk Ej(r, t)Ek(r, t) (2.5)

where we employed Einstein’s notation to simplify the tensor product. Eq. (2.4), which describes the
evolution of an electromagnetic wave in a medium, is a nonhomogeneous differential equation due
to the presence of a nonzero polarization term on the right-hand side.

The polarization field depends on the electric field of the radiation incident on the nonlinear
medium and can be considered as the source of the emitted radiation as described before. Following
this concept, the emitted electromagnetic field, in turn, induces polarization in the medium, which
results in a modification of the radiation itself, and so on. This physical process suggests an iterative
solution for Eq. (2.4). We begin by solving the homogeneous differential equation (which corresponds
to a wave propagating in vacuum), leading to a plane wave solution. This wave corresponds to the
electric field which is incident on the nonlinear medium. Subsequently, we insert it into the polariza-
tion term finding, at the first order, the radiation source. This type of approach to solve the differential
equation (2.4) represents the first step of the Born approximation. [34].

Suppose for example, the incident radiation E0(r, t) on the nonlinear medium has two different
frequency components, ω1 and ω2. The polarization term, which is quadratic in E0(r, t) will then
have components at five angular frequencies: 0, 2ω1, 2ω2, ω+ = ω1 + ω2, and ω− = ω1 − ω2 [34].
According to Born’s first approximation, the polarization term contains the same spectral components
as the emitted radiation ω3 [34]. In the literature, these correspond to different processes, commonly
known as optical rectification (ω3 = 0), second harmonic generation (ω3 = 2ω1, 2ω2), sum frequency
generation (ω3 = ω+), and difference frequency generation (ω3 = ω−) [33]. However, in order to
be effectively generated it is important to notice that the three waves involved in these processes
must satisfy the energy and momentum conservation, which correspond to ω3 = ω1 + ω2 and k⃗3 =

k⃗1 + k⃗2 (this condition is known as phase-matching1). As we will discuss later, this condition could be
quite stringent, and usually only one of the frequency components in the polarization term can be
generated. Once this wave is generated, it starts interacting with the input waves, in a process called
three-wave mixing process.

A similar process, involving the interaction of three waves in a nonlinear medium, which is the
topic of this thesis, is the SPDC. In this process, a single high-frequency input photon, called the
pump photon, interacts with a nonlinear crystal and spontaneously splits into two photons of lower
frequencies, referred to as the signal and idler photons. The term spontaneous refers to the intrinsic
probabilistic nature of this process, while parametric indicates that the material’s optical parameters,
such as refractive indexes, vary based on the energy and polarization of the photons involved. The
parametric variation plays a fundamental role in the conservation of energy and momentum during
the photon generation process, resulting in photons with lower energy than the pump photon (hence
referred to as downconverted). In the particular case where the two photons are emitted in the same
direction, parallel to the pump beam, it is referred to as collinear SPDC, which is the case of interest
for this thesis. An illustration of the collinear and non-collinear SPDC processes is shown in Fig. 2.1.

1In the literature, commonly, phase-matching is associated with momentum conservation. However, wavevectors are
also constrained by energy conservation. Therefore, for brevity, we denote phase-matching as the combination of both these
conditions.
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Figure 2.1: Schematic diagrams of SPDC showing the relationship between frequency and polarization of
pump, signal and idler beams in a non-collinear (a) and a collinear (b) SPDC process.

The previous discussion on nonlinear effects already introduced, in a classical and intuitive way,
some crucial features of SPDC, i.e. the role of the nonlinear terms in the polarization and the phase-
matching condition. However, a complete treatment of this phenomenon involves the concept of
quantum vacuum, which clearly can not be explained through classical models. A deeper under-
standing of this phenomenon can only be achieved through a quantum treatment, which will be the
object of the model described in the following sections.

2.2.1 SPDC Interaction Hamiltonian

In this section, we will begin a formal description of the SPDC process using the formalism of
quantum mechanics. The first step consists in deriving the interaction Hamiltonian for the process.
In classical physics, the energy density of an electromagnetic field in a medium is given by [32, 35]:

H(r, t) =
∫
[H(r, t) · dH(r, t) + E(r, t) · dD(r, t)] (2.6)

while the Hamiltonian can be obtained by integrating over the volume of the system (V) the corre-
sponding energy density:

H(t) =
∫
V
H(r, t)d3r (2.7)

Now, we assume that our medium is nonmagnetic which means that the magnetic field is H(r, t) =
B(r,t)

µ0
. The electric field, instead, can be expressed in terms of the displacement vector field as

E(r, t) = ζ(1)D(r, t) + ζ(2)D(r, t)D(r, t) + ζ(3)D(r, t)D(r, t)D(r, t) + ... (2.8)

where ζ(i) represent the inverse optical susceptibility tensors. With these two assumptions, we are
now able to rewrite the energy density of Eq. (2.6):

H(r, t) =
B2(r, t)

2µ0
+

1
2

ζ(1)D(r, t)D(r, t) +
1
3

ζ(2)D(r, t)D(r, t)D(r, t) + ... (2.9)

This expression can be interpreted as a perturbative expansion of the Hamiltonian density of the form:

H(t) = H0(t) +H(tot)
I (t) (2.10)

whereH0(t) is the zero-order term which corresponds to:

H0(t) =
B2(r, t)

2µ0
+

1
2

ζ(1)D(r, t)D(r, t) (2.11)
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This term regulates the interaction of the pump photons with the medium without generating new
photons. The interaction part of the Hamiltonian density contains infinite terms involving the expan-
sion of the electric field as a function of the displacement vector field Eq. (2.8). These terms describe
the multiphoton interaction induced by the crystal. The SPDC process is related to the production of a
photon pair induced by a stimulating photon. To describe this process we can focus on the lower order
term of the total interacting Hamiltonian H(tot)

I (t). Explicitly, the interaction Hamiltonian involved
in the SPDC process is:

HI(t) =
1
3

∫
V

ζ
(2)
ijk (r)Di(r, t)Dj(r, t)Dk(r, t)d3r (2.12)

We observe that in this equation there are three displacement vector fields that correspond to pump,
signal, and idler photons. Until now we have used only arguments derived by classical physics. In
quantum mechanics formalism, however, the interaction is mediated by a Hamiltonian operator. The
procedure consists of deriving such an operator through the quantization of the displacement vector
fields, which are now denoted as p, s, and i (which stand for pump, signal, and idler, respectively) [36]:

ĤI(t) =
1
3

∫
V

ζ(2)(r)D̂p(r, t)D̂s(r, t)D̂i(r, t)d3r (2.13)

Following the approach of R. Glauber [37] we can write the quantized field operator D̂ as:

D̂(r, t) =
∫ 0

−∞

ˆ̃D(r, ω)e−iωtdω +
∫ +∞

0

ˆ̃D(r, ω)e−iωtdω = D̂(−)(r, t) + D̂(+)(r, t) (2.14)

where D̂(+)(r, t) and D̂(−)(r, t) are the positive and negative frequency parts of the displacement field
operator. In particular, the positive frequency part is:

D̂(+)(r, t) =
∫ +∞

0

ˆ̃D(r, ω)e−iωtdω =
∫ +∞

0
dω

√
h̄ω

4πcϵ0
D(r, ω)e−iωt â(r, ω) (2.15)

and D̂(−)(r, t) = D̂(+)(r, t)†. The characteristics of the displacement field function at a given fre-
quency ω are described by D(r, ω), while â(r, ω) and â†(r, ω) are the annihilation and creation oper-
ators that destroy or create, respectively, a photon with angular frequency ω at the position r. At this
point, the displacement field operators of the pump, signal, and idler photons can be decomposed as:

D̂p(r, t) = D̂(−)
p (r, t) + D̂(+)

p (r, t)
D̂s(r, t) = D̂(−)

s (r, t) + D̂(+)
s (r, t)

D̂i(r, t) = D̂(−)
i (r, t) + D̂(+)

i (r, t)

(2.16)

Substituting these relations in Eq. (2.13) we find:

ĤI(t) =
1
3

∫
V

ζ(2)
[
D̂(−)

p (r, t) + D̂(+)
p (r, t)

] [
D̂(−)

s (r, t) + D̂(+)
s (r, t)

] [
D̂(−)

i (r, t) + D̂(+)
i (r, t)

]
d3r

(2.17)
There are eight different terms with all possible coupling of three displacement field operators, how-
ever, it is possible to demonstrate that the only two terms which contribute to the summation are
D̂(+)

p (r, t)D̂(−)
s (r, t)D̂(−)

i (r, t) and D̂(−)
p (r, t)D̂(+)

s (r, t)D̂(+)
i (r, t) while the other six terms are averaged

out when the Hamiltonian is integrated over time [38]. It is thus possible to reduce the Eq. (2.17) in
the following way:

ĤI(t) =
1
3

∫
V

ζ(2)(r)D̂(+)
p (r, t)D̂(−)

s (r, t)D̂(−)
i (r, t)d3r + H.c. (2.18)

where H.c. stands for Hermitian conjugate. This interaction Hamiltonian is able to describe two
processes: the sum frequency generation (SFG) and the spontaneous parametric-down conversion
(SPDC) processes. The first of these two processes, SFG, operates in a contrary fashion to SPDC. It
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involves the interaction of two photons with lower energy, resulting in the emission of one photon
with higher energy. However, since we are interested in describing the SPDC, we focus only on the
first term of Eq. (2.18), neglecting the H.c. part. Now, further simplifications can be adopted to write
the interaction Hamiltonian operator in a more compact way.

The pump field, due to its high intensity, can be treated as a classical field. In this case, the quantum
operator D̂(+)

p (r, t) assumes the form of a classical field D(+)
p (r, t) and the destruction operator â(r, ω)

can be replaced by the complex amplitude a(ωp) = s(ωp)
√

Np, where the spectral amplitude of the
pump is represented by s(ωp) (it must satisfy the condition

∫
dω|s(ω)|2 = 1) and Np represents the

number of pump photons per unit time.

D(+)
p (r, t) =

∫ +∞

0
dωp

√
h̄ω

4πcϵ0
Dp(r, ωp)e−iωpts(ωp)

√
Np (2.19)

These manipulations allow to rewrite the interaction Hamiltonian operator as

ĤI(t) =
1
3

(
h̄

4πcϵ0

) 3
2 ∫ +∞

0

∫ +∞

0

∫ +∞

0
dωpdωsdωis(ωp)

√
Npωpωsωie−i(ωp−ωs−ωi)t

×
∫
V

d3rζ(2)(r)Dp(r, ωp)D∗s (r, ωs)D∗i (r, ωi)â†(r, ωs)â†(r, ωi)

(2.20)

Now that we have derived the expression for the Hamiltonian in the SPDC process, we can pro-
ceed to describe the evolution of the pump photon after the interaction and subsequently derive an
expression for the biphoton wave function of the downconverted photons.

2.2.2 Generation of a Two-Photon Field

The unitary evolution of the initial quantum state |initial⟩, in the interaction picture, is given by:

|Ψ(t)⟩ = e−
i
h̄

∫ t
0 ĤI(t′)dt′ |initial⟩ ≈ (I− i

h̄

∫ t

0
ĤI(t′)dt′) |initial⟩ = |initial⟩+ |Ψsi(t)⟩ (2.21)

where in the second step we performed a first-order Taylor expansion. Each order n of the expan-
sion corresponds to the generation of 2n photons, while the zero-order is the non-interacting case: in
this discussion, we neglect the contribution of multi-pairs production. For our scope, since we are
interested in the study of SPDC, we focus only on the first-order term.

Before the interaction, the initial state of the signal and idler photons is |initial⟩ = |0⟩s |0⟩i. The
two-photon state after the interaction is obtained by combining the Eq. (2.21) and 2.20:

|Ψsi(t)⟩ = −
i

3h̄

(
h̄

4πcϵ0

) 3
2 ∫ t

0
dt′
∫ +∞

0

∫ +∞

0

∫ +∞

0
dωpdωsdωis(ωp)

√
Npωpωsωie−i(ωp−ωs−ωi)t′

×
∫
V

d3rζ(2)(r)Dp(r, ωp)D∗s (r, ωs)D∗i (r, ωi)â†(r, ωs)â†(r, ωi) |0⟩s |0⟩i
(2.22)

Here we can directly see the action of the two creation operators on the vacuum state |0⟩s |0⟩i:

â†(rs, ωs)â†(ri, ωi) |0⟩s |0⟩i = |rs, ωs⟩s |ri, ωi⟩i (2.23)

where |rs, ωs⟩s and |ri, ωi⟩i represent the states of the signal and idler photons generated in this pro-
cess.

Since the interaction time t is assumed to be much longer than the time required by the SPDC
process to generate the photons, we can extend the integration time to −∞ and +∞ and the corre-
sponding integral can be written as:∫ +∞

−∞
dt′ei(ωs+ωi−ωp)t′ =⇒

∫ +∞

−∞
dt′ei(ωs+ωi−ωp)t′ = 2πδ(ωs + ωi −ωp) (2.24)
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This condition formally states the conservation of the energy: ωp = ωs + ωi.
The Eq. (2.22) can be further simplified using the results found in Eqs. (2.23) and (2.24):

|Ψsi(t)⟩ = −
2πi
3h̄

(
h̄

4πcϵ0

) 3
2 ∫ +∞

0

∫ +∞

0

∫ +∞

0
dωpdωsdωis(ωp)δ(ωs + ωi −ωp)

×
√

Npωpωsωie−i(ωp−ωs−ωi)t′
∫
V

d3rζ(2)(r)Dp(r, ωp)D∗s (r, ωs)D∗i (r, ωi) |rs, ωs⟩s |ri, ωi⟩i =

= −
∫ +∞

0

∫ +∞

0
dωsdωiψ(ωs, ωi) |rs, ωs⟩s |ri, ωi⟩i

(2.25)

where in the last step we have defined the biphoton spectral distribution ψ(ωs, ωi) which can be
rewritten up to a complex phase as:

ψ(ωs, ωi) :=
2π

3h̄

(
h̄

4πcϵ0

) 3
2 √

(ωs + ωi)ωsωi s(ωs + ωi)O(ωs, ωi) (2.26)

where the spatial overlap of pump, signal, and idler modes in the medium is represented by the
following quantity:

O(ωs, ωi) :=
∫
V

d3rζ(2)(r)Dp(r, ωp)D∗s (r, ωs)D∗i (r, ωi) (2.27)

which strictly depends on the particular modal expansion of displacement vector fields of the pump,
signal, and idler photons. At this point, in order to assess the spectral distribution of the emitted
photons (Eq. (2.26)), we need to incorporate the spatial modes Dp(r, ωp), Ds(r, ωs), and Di(r, ωi) of
the pump, signal, and idler fields.

2.2.3 Gaussian Beams Treatment

In the experiment described in this work of thesis, the pump is derived from a laser beam in a
Gaussian mode. Additionally, the signal and idler modes are collected using single-mode optical
fibers, which are designed to ideally select Gaussian modes. As a consequence, for the subsequent
calculations, the spatial modes of the pump, signal, and idler photons are assumed to be Gaussian
beams. The electric field of a linearly polarized paraxial Gaussian beam propagating along the z-axis
focused at the origin of the reference system can be written as2:

E(r) =
e√
π/2

w
q

exp
{
− x2 + y2

q
+ ikz

}
(2.28)

where w is the waist size, e is the polarization versor, q = w2 + 2iz/k, k = nω
c is the wavenumber in the

medium, and n is the refractive index of the medium along the direction defined by the polarization
versor. The relation between the displacement vector field and the electric vector field is given by Eq.
(2.2). In particular, neglecting the higher-order terms of the susceptibility tensor we have

D(r) ≈ ϵ0(1 + χ(1))E(r) = ϵ0n2E(r) (2.29)

where in the second step we used the known relation between the refractive index and the linear
susceptibility n =

√
1 + χ(1). In this case (as described in Sec. 2.2.4) the three photons are linearly

polarized along two crystallographic axes (z-axis for signal and y-axis for pump and idler). The dis-
placement vector field of each beam can be written as:

Dk(r) =
ϵ0n2

kek√
π/2

w
q

exp
{
− x2 + y2

q
+ ikz

}
(2.30)

with k = p, s, i and np = ni.
2Here and in the following calculations, we will often use the notations of R. Bennink [39].
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A further simplification of the spatial mode overlap in Eq. (2.27) is given by the tensorial product
of the term ζ(2)(r)epesei = ζ

(2)
e f f (r). This quantity is defined as the effective inverse susceptibility and

depends on the polarization of the photons and the type of material. The most commonly reported
quantity in the literature is the susceptibility tensor χ(2), as it is the one that can be experimentally
measured. The effective inverse electric susceptibilities can be related to the effective susceptibilities
using the approximation [36, 40]:

ζ
(2)
e f f (r) ≈ −

χ
(2)
e f f (r)

ϵ2
0n2

pn2
s n2

i
(2.31)

where the effective susceptibility, similarly to the effective inverse susceptibility, is defined as χ
(2)
e f f (r) =

χ(2)(r)epesei. At this point we are able to rewrite the spatial mode overlap (Eq. (2.27)), using the
Gaussian modes introduced in Eq. (2.30) and the effective inverse susceptibility in Eq. (2.31):

O(ωs, ωp) = ϵ0
wpwswi

(π/2)
3
2

∫
V

dxdydz
qpq∗s q∗i

χ
(2)
e f f (r) exp

[
−(x2 + y2)

(
1
qp

+
1
q∗s

+
1
q∗i

)
+ i∆k z

]
(2.32)

where we introduced the quantity ∆k = kp − ks − ki which is called wavevector (or momentum)
mismatch [33] and it represents the variation of the total momentum between the generated photons
and the initial pump photon along the z-axis.

2.2.4 Phase-Matching

The SPDC process is heavily influenced by the principles of momentum and energy conservation.
It involves the generation of two photons with specific frequencies, ωs and ωi, and their probability
distribution is determined by the squared modulus of the biphoton wave function in Eq. (2.26). To
proceed with the calculations, the first crucial step involves solving the spatial integral in Eq. (2.32).
We begin by assuming that the spatial variation of the effective nonlinear coefficient χ

(2)
e f f (r) can be

considered negligible, approximating it as a constant (χ(2)
e f f ). The initial focus is on solving the integral

specifically along the z-axis:

∫ L/2

−L/2
ei∆kzdz = L

sin
(
∆k L

2

)
∆k L

2

= L sinc
(

∆k
L
2

)
(2.33)
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Figure 2.2: Plot of sinc2
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)
contained in the spectral distribution |ψ(ωs, ωi)|2.
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The spectral distribution of the biphoton state is directly proportional to the spatial mode overlap
|O(ωs, ωi)|2 (Eq.2.32), resulting in |ψ(ωs, ωi)|2 ∝ sinc2 (∆k L

2

)
. The behavior of the sinc2 function (as

shown in Fig. 2.2) reaches its maximum when the momentum mismatch ∆k = 0, rapidly declining to
zero when this condition is not met. This particular trend arises due to the finite integration range of
Eq. (2.33), which is constrained by the crystal’s finite length. In the limit of an infinitely large crystal,
it approaches a Dirac’s delta distribution. Based on these considerations, as expected, the emitted
photons that satisfy the momentum conservation condition ∆k = 0 are strongly favored3.

The wavenumber in a medium is given by k = 2πn
λ , where n is the refractive index and λ is the

wavelength. In the case of anisotropic crystals, the refractive indexes vary with different crystallo-
graphic axes. Furthermore, these refractive indexes also depend on the wavelength of the incident
radiation. Consequently, in the collinear SPDC process, the phase-matching condition, which encom-
passes both momentum and energy conservation, can be expressed as follows:{

np(λp)ωp
c = ns(λs)ωs

c + ni(λi)ωi
c

ωp = ωs + ωi
(2.34)

The phase-matching condition is challenging to satisfy since the refractive indexes of many media
monotonically decrease with the wavelength of the photons. For instance, let’s consider a situation
where ωp = 2ωs = 2ωi, resulting in n(λs) = n(λi). In this case, Eq. (2.34) can be simplified to:

n(λp)ωp

c
= 2

n(λs)ωs

c
(2.35)

However, this equation leads to the condition n(λp) = n(λs), which is clearly not possible since
λp < λs (we expect n(λp) > n(λs)). More generally (as discussed in Boyd [33]), let’s consider three
photons with angular frequencies ωs ≤ ωi ≤ ωp which constrain the values of the refractive indexes
to be ns ≤ ni ≤ np. The first condition in Eq. (2.34) can be rewritten as:

np =
nsωs + niωi

ωp
(2.36)

By subtracting ni from both sides and using the second condition of Eq. (2.34), we obtain:

np − ni =
nsωs + niωi − niωp

ωp
=

nsωs + ni(ωi −ωp)

ωp
= (ns − ni)

ωs

ωp
(2.37)

This equation cannot be satisfied since the first term is positive while the second term is negative. One
way to address this challenge is by leveraging the birefringence commonly found in anisotropic crys-
tals. In such media, the refractive indexes are polarization-dependent for the transmitted radiation.
By carefully selecting the crystal’s orientation, it becomes possible in certain cases to optimize it in a
way that satisfies the phase-matching condition in Eq. (2.34) for a specific combination of wavelengths
and polarizations of the pump, signal, and idler photons.

An important category of anisotropic birefringent crystals is the uniaxial crystals, such as BiBO,
which exhibit two refractive indexes referred to as ordinary (no) and extraordinary (ne). Typically, the
pump photons, having the highest frequency, are polarized along the direction that corresponds to
the lowest refractive index. The remaining photons can be polarized in two different ways. In 1965,
Midwinter and Warner [41] classified them into two classes (see Tab. 2.1):

• Type-I: The generated photons have the same polarization.

• Type-II: The generated photons are polarized along two orthogonal directions.

Another important category of nonlinear crystals employed for SPDC sources are the biaxial crys-
tals, such as KTP. Biaxial crystals possess three distinct refractive indexes. Due to this property, it

3Note that the momentum conservation is expressed with a less restrictive condition, unlike the energy conservation,
which is represented by δ(ωp −ωs −ωi).
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Positive uniaxial (ne > no) Negative uniaxial (ne < no)
Type-I no

pωp = ne
sωs + ne

i ωi ne
pωp = no

s ωs + no
i ωi

Type-II no
pωp = no

s ωs + ne
i ωi ne

pωp = ne
sωs + no

i ωi
no

pωp = ne
sωs + no

i ωi ne
pωp = no

s ωs + np
i ωi

Table 2.1: Phase-matching in uniaxial crystals.

becomes easier to achieve the phase-matching condition, as it requires less birefringence compared to
uniaxial crystals. The nomenclature of the possible phase-matching conditions presented in Tab. 2.1
remains valid but with an increased number of combinations due to the presence of three refractive
indexes. In uniaxial crystals, the refractive index of the ordinary wave is independent of the angle θ
between the wavevector and the optical axis. However, the orientation of the wavevector affects the
extraordinary refractive index ne f f (θ) [26]:

1
n2

e f f (θ)
=

cos2 θ

n2
o

+
sin2 θ

n2
e

(2.38)

In biaxial crystals, all the refractive indexes depend on the orientation of the wavevector. In such
situations, achieving phase-matching requires precise alignment of the crystal’s optical axis with re-
spect to the pump beam. Furthermore, the refractive indexes in these crystals are frequently highly
temperature-dependent, making temperature tuning a critical factor that must be taken into consid-
eration to achieve optimal phase-matching in a wide range of applications.

2.2.5 Quasi-Phase-Matching

The previous techniques to achieve the phase-matching condition can be difficult to be practically
realized: the crystal could be not birefringent or its birefringence could be insufficient to satisfy the
phase-matching condition of Eq. (2.34). When the birefringence of the crystal is inadequate to achieve
complete phase-matching, the widely used technique is quasi-phase-matching. This method involves
the use of periodically poled (PP) crystals that are structured with multiple layers, and the optical axes
are oriented in a periodic manner. The period of alternation of the crystallographic axis is called poling
(Λ) (see Fig. 2.3).

Figure 2.3: Schematic representation of the SPDC process in a periodically poled crystal. The m-order quasi-
phase-matching is achieved by the additional wavevector km = 2πm

Λ which depends on the poling period Λ.
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A detailed mathematical description of this technique is presented by R. Boyd [33]. While in a bulk
crystal, the effective susceptibility can be approximated to a constant χ

(2)
e f f , in a periodically poled

crystal, the effective susceptibility is alternately inverted for each layer. Mathematically, its spatial
dependence can be described as a square wave along the z-axis.

χ(2)(z) = χ
(2)
e f f sign

[
cos

(
2πz
Λ

)]
(2.39)

It is usefut to rewrite the spatial dependence of χ(2)(z) using the Fourier series:

χ(2)(z) = χ
(2)
e f f

+∞

∑
m=∞

Gmeikmz (2.40)

where km = 2πm
Λ is the wavevector associated with the m-th Fourier coefficient along the z-axis, while

the coefficient factors Gm are given by:

Gm =
2

mπ
sin
(mπ

2

)
(2.41)

As the value of m increases, the coefficients Gm decrease. The first-order coefficient G1 is the domi-
nant term, with G1 = 2

π . Therefore, the effective susceptibility in a periodically poled crystal can be
approximated by stopping the Fourier expansion in Eq. (2.40) at the first order:

χ(2)(z) = χ
(2)
e f f

2
π

ei 2π
Λ z (2.42)

Finally, by substituting the expression of the effective susceptibility (Eq. (2.42)) into the spatial mode
overlap (Eq. (2.32)), we obtain:

O(ωs, ωp) = ϵ0χ
(2)
e f f

2
π

wpwswi

(π/2)
3
2

∫
V

dxdydz
qpq∗s q∗i

exp
[
−(x2 + y2)

(
1
qp

+
1
q∗s

+
1
q∗i

)
+ i
(

∆k +
2π

Λ

)
z
]

(2.43)
In this scenario, the wavevector mismatch becomes Φ = ∆k+ 2π

Λ . In such cases, we have the flexibility
to adjust the phase-matching by choosing an appropriate poling period Λ that satisfies the following
conditions: {

np(λp)ωp
c − ns(λs)ωs

c − ni(λi)ωi
c + 2π

Λ = 0
ωp = ωs + ωi

(2.44)

2.3 Performance Parameters of an SPDC Source
We are now able to explicitly derive the biphoton wave function. Much of the notation and cal-

culations in this section are based on R. Bennink’s work [39]. To begin, we simplify Eq. (2.43) by
integrating over x and y:

O(ωs, ωp) = ϵ0

√
32
π3 χ

(2)
e f f wpwswi

∫ L/2

−L/2
dz

exp
[
i(∆k + 2π

Λ )z
]

q∗s q∗i + qpq∗i + qpq∗s
(2.45)

Furthermore, we need to consider the spectral amplitude of the pump beam s(ω). For a laser beam,
we can approximate this quantity with a Gaussian profile [42]:

s(ωp) =

√
τp

4
√

π
e−

τ2
p
2 (ω−2ω0)

2 (2.46)

Here, τp represents the pulse duration, which is related to the coherence time of the laser, and 2ω0
is the central frequency of the pump pulse. The multiplicative terms ensure that

∫
|s(ω)|2dω = 1,

satisfying the normalization condition.
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When the laser operates in a continuous wave (CW) regime, the pulse duration becomes infinitely
long4, and we can perform the following approximation:

|s(ω)|2 = δ(ω) (2.47)

The biphoton wave function can be obtained from Eq. (2.26) using the expression forO(ωs, ωi) in Eq.
(2.45) and the pump spectral amplitude from Eq. (2.46):

ψ(ωs, ωi) =

√
2h̄ϵNp

9ϵ0π4c3

√
(ωs + ωi)ωsωi s(ωs + ωi)χ

(2)
e f f wpwswi

∫ L/2

−L/2
dz

exp
[
i(∆k + 2π

Λ )z
]

q∗s q∗i + qpq∗i + qpq∗s
(2.48)

where ϵ is an experimental coefficient that quantifies the losses in this process due to the transmis-
sivity of the crystal and the reflections that can occur inside it. The biphoton wave function is the
fundamental ingredient for evaluating the performance parameters of SPDC, which include:

• Brightness

• Heralding ratio

• Spectral purity

These parameters are of significant importance in characterizing the performance of an SPDC source,
as they are directly related to specific applications. In the following paragraphs, we will provide
a more detailed description of these properties and how they are related to the wave function of
downconverted photons.

2.3.1 Brightness

The first quantity that we can estimate from the biphoton wave function (Eq. (2.48)) is the joint
spectral density |ψ(ωs, ωi)|2 which corresponds to the expected number of photons pairs, per signal
bandwidth per idler bandwidth, emitted into the Gaussian collection modes. As a consequence, the
rate of pairs emitted by the source can be easily calculated by integrating over ωs and ωi the joint
spectral density:

Rsi =
∫ +∞

0

∫ +∞

0
|ψ(ωs, ωi)|2 dωsdωi (2.49)

This quantity is called brightness. It is a crucial parameter in numerous applications, particularly in
quantum communications, where it becomes significant due to the high losses encountered in vari-
ous telecommunication channels. When the collected photons pass through spectral filters of narrow
bandwidth, the effective brightness of the source is determined by integrating the joint spectral den-
sity over the range of frequencies covered by the filters.

2.3.2 Single-Photon Collection and Heralding Ratio

In certain applications of SPDC, the detection of a photon in the signal mode is used as an indica-
tion of the presence of a photon in the idler mode. However, even though photons are always emitted
in pairs, they may be emitted in different spatial modes. Since the optical setup is designed to collect
only Gaussian modes, there may be situations where only one of the two photons is collected. This
can happen when one of the two photons is emitted in a Gaussian mode, while its partner is emitted
into a different spatial mode and remains uncollected. These events reduce the number of effective
entangled states produced by the source compared to the total number that each channel is capable
of emitting. To quantify this, we can define the heralding ratio (or heralding efficiency), which estimates
the probability that, once a photon (signal/idler) is emitted in a Gaussian mode, its partner is also
emitted in the same mode. To start, let’s define the rate of emission of photons in a Gaussian mode

4In our experimental setup, the pulse duration in CW becomes on the order of O(ns), whereas in the pulsed mode, it is
on the order ofO(ps). The difference between these time scales is significant enough to justify the following approximation.
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regardless of the spatial mode of its partner as Rs (for signal) and Ri (for idler). The heralding ratios
for signal (ηs) or idler (ηi) photons can be estimated as follows:

ηs =
Rsi

Rs
ηi =

Rsi

Ri
(2.50)

To estimate the heralding ratios, we initiate the calculation of Rs and Ri. For now, let’s focus on
Rs. The approach is similar to what we used for estimating brightness, but in this case, the spatial
mode overlap (Eq. (2.27)) is different since only the signal photon is emitted in a Gaussian mode. To
characterize the spatial mode of the idler photon Di(r), we can express it in terms of Laguerre-Gauss
modes, which form an orthonormal basis set of solutions for the paraxial wave equation [39,43]. The
spatial mode of the idler photon Di

(n,l)(r) as a function of the associated Laguerre polynomial Ll
n is:

Di
(n,l)(r) =

ϵ0n2
i ei√

π/2

(
wi

qi

)l+1 (q∗i
qi

)n

Ll
n

(
2w2

i (x2 + y2)

|qi|2

)
exp

[
− x2 + y2

qi
+ ikiz + ilϕ

]
(2.51)

where ϕ = arctan
(

x
y

)
. The Gaussian mode defined in Eq. (2.30) can be obtained by setting n = l = 0.

As the pump and signal photons are emitted in Gaussian modes, which are azimuthally symmetric,
the only contributions that do not vanish after the integration over the entire volume are the modes
Di

(n,l)(r) that are azimuthally symmetric as well. Hence, the possible modes of the idler photon are
those that satisfy the condition l = 0. In particular, the spatial overlap now depends solely on n, and
using an approach similar to the one described in Sec. 2.2.3, the n-order overlap is given by:

On(ωs, ωp) = ϵ0χ
(2)
e f f

2
π

wpwswi

(π/2)
3
2

∫
V

dxdydz
qpq∗s q∗i

Ll
n

(
2w2

i (x2 + y2)

|qi|2

)
× exp

[
−(x2 + y2)(

1
qp

+
1
q∗s

+
1
q∗i

) + i(∆k +
2π

Λ
)z
] (2.52)

which can be further simplified by employing the Laguerre polynomial expansion. After simplifica-
tion, we obtain:

On(ωs, ωp) = ϵ0

√
32
π3 χ

(2)
e f f wpwswi

∫ L/2

−L/2
dz

exp
[
i(∆k + 2π

Λ )z
]

q∗s q∗i + qpq∗i + qpq∗s

(
q∗s qi + qpqi − qpq∗s
q∗s q∗i + qpq∗i + qpq∗s

)n
(2.53)

For the n-th idler mode, we have the correspondent spatial overlap On and thus a wave function
ψn(ωs, ωi) defined, similarly to Eq. (2.26), as:

ψn(ωs, ωi) =
2π

3h̄

(
h̄

4πcϵ0

) 3
2 √

(ωs + ωi)ωsωi s(ωs + ωi)On(ωs, ωi) =√
2h̄ϵNp

9ϵ0π4c3

√
(ωs + ωi)ωsωi s(ωs + ωi)χ

(2)
e f f wpwswi

×
∫ L/2

−L/2
dz

exp
[
i(∆k + 2π

Λ )z
]

q∗s q∗i + qpq∗i + qpq∗s

(
q∗s qi + qpqi − qpq∗s
q∗s q∗i + qpq∗i + qpq∗s

)n

(2.54)

It is straightforward to verify that if n = 0, we obtain the biphoton wave function obtained in Eq.
(2.48). The signal rate Rs is given by:

Rs =
∫ +∞

0

∫ +∞

0

+∞

∑
n=0
|ψn(ωs, ωi)|2dωsdωi (2.55)

Using the above expression, we can calculate the signal heralding ratio as given in Eq. (2.50). Similarly,
the idler rate Ri can be obtained by interchanging the labels s and i everywhere.
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2.3.3 Spectral Purity

The spectral purity of an SPDC source refers to how well the generated photons are confined to
a specific wavelength with a narrow bandwidth. In an ideal SPDC process, all generated photons
would have the exact same wavelength, resulting in a perfectly pure spectral state. However, in
practice, the SPDC process can lead to some broadening of the photon’s spectral bandwidth due to
factors like the characteristics of the pump beam and the pulse duration. The spectral purity of an
SPDC source is crucial for various applications, particularly those that rely on interference between
nominally identical sources. These applications include generating multiphoton entangled states for
quantum computing [44] and utilizing quantum properties like the Hong-Ou-Mandel [45] or Bell-
state measurements [46].

To quantify spectral purity, one can calculate the spectral bandwidth of the emitted photons. A
lower spectral bandwidth corresponds to higher spectral purity, indicating that the photons are con-
fined to a narrower range of frequencies. Alternatively, spectral purity can be quantified in terms
of the degree of spectral entanglement between the signal and idler frequencies, providing a more
quantitative measure of its quality. In this case, the spectral purity is expressed as:

ρ =
∑j σ2

j

(∑j σj)2 (2.56)

where σj are the eigenvalues of the Schmidt decomposition of the biphoton wave function, which can
be written as:

ψ(ωs, ωi) = ∑
j

√
σjuj(ωs)vj(ωi) (2.57)

This formula is analogous to Eq. (1.53), but with ωs and ωi treated as continuous variables. To find
the values of σj, uj, and vj, one can solve the corresponding eigenvalue equations [47].∫

K1(ω, ω′)uj(ω
′)dω′ = σjuj(ω)∫

K2(ω, ω′)vj(ω
′)dω′ = σjvj(ω)

(2.58)

where:
K1(ω, ω′) =

∫
ψ(ω, ωi)ψ

∗(ω′, ωi)dωi

K2(ω, ω′) =
∫

ψ(ωs, ω)ψ∗(ωs, ω′)dωs

(2.59)

The spectral purity and spectral entanglement of the signal and idler photons are inversely related.
When a state is separable, it has only one eigenvalue, σ = 1, indicating no spectral entanglement. As
a result, the spectral purity reaches its maximum value, namely ρ = 1.

2.4 Optimization of the Source Performances
The performance parameters listed above strictly depend on the focussing condition of pump,

signal, and idler photons inside the crystal that can be expressed in terms of the waists of the cor-
responding beams wp, ws and wi. These quantities play a key role in the biphoton wave function
and, as a consequence, they deeply affect all the properties previously described of an SPDC source.
The analysis of these properties can be used to predict the optimal source configuration to maximize
its performance, which could depend on the practical application. The most interesting result in the
work of Bennink [39] consists in the description of a procedure to optimize the individual properties
varying the focusing conditions. Some of these properties can be jointly optimized while others re-
quire a trade-off.
To simplify the notation, Bennink introduced an adimensional variable, called focal parameter defined
as

ξ j ≡
L

k jw2
j

(2.60)
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where L is the crystal length, wj the waist and k j =
ωnj

c is the wavenumber of the field j (j = p, s, i) in
the medium. For ξ j ≫ 1 (ξ j ≪ 1) the beam is strongly (weakly) focused in the crystal.

In order to simplify the computations, Bennink rewrote the biphoton wave function Eq. (2.48) in
terms of adimensional quantities, which are defined as follows:

A±(ωs, ωi) = 1 +
ks

kp

ξs

ξp
± ki

kp

ξi

ξp
(2.61)

B±(ωs, ωi) =

(
1− ∆k

kp

)(
1 +

ks + ∆k
kp − ∆k

ξp

ξs
± ki + ∆k

kp − ∆k
ξp

ξi

)
(2.62)

C(ωs, ωi) =
∆k
kp

ξ2
p

ξsξi

A+

B+
(2.63)

ξ(ωs, ωi) =
B+

A+

ξsξi

ξp
(2.64)

The frequency dependence is incorporated through the wavenumbers k j and focal parameters ξ j. In
this way, the biphoton wave function can be written as:

ψ(ωs, ωi) =

√
ns(ωs)ni(ωi)EpϵL
np(ωs + ωi)ϵ0ω0

ωsωiχ
(2)
e f f s(ωs + ωi)

6π2c2
1√

A+(ωs, ωi)B+(ωs, ωi)

×
∫ 1

−1
dl

√
ξ(ωs, ωi) exp{iΦl/2}

1− iξ(ωs, ωi)− Cξ2(ωs, ωi)l2

(2.65)

where we have rewritten the number of pump photons incident on the crystal per unit time in terms
of the corresponding energy Ep as Np =

Ep
2h̄ω0

, where ω0 represents the angular frequency of the
emitted photons (the energy of a pump photon is given by 2h̄ω0). The phase mismatch is denoted as
Φ = ∆k + 2π

Λ . From this notation, we observe that |ψ(ωs, ωi)|2 ∝ L, indicating that the brightness also
linearly scales with the length of the crystal.

With these notations, we can proceed with the optimization procedure, relying on the following
approximations:

1. We can assume that the momentum mismatch ∆k is much smaller than k j. This assumption
arises from the fact that when ∆k + 2π

Λ = 0, the SPDC process is maximized. Consequently, we
can approximate ∆k ≈ − 2π

Λ , which is typically much smaller than k j. Based on this approxima-
tion, we find:

1± ∆k
k j
≈ 1 (2.66)

C ≈ 0 (2.67)

2. The frequency dependence of ψ(ωs, ωi) (Eq. (2.65)) is mainly determined by the pump spectrum
s(ωs + ωi) and the frequency dependence of the momentum mismatch ∆k. We can assume that
near phase-matching conditions:

A±, B±, ξ j,
√

nsni

np
χ
(2)
e f f ωsωi ≈ const (2.68)

For this relationship to hold, the bandwidths of the photons must be significantly smaller than
the optical frequency.

3. Another important assumption for the calculations is the approximately linear frequency de-
pendence of ∆k:

δk j ≈
n′j
c

δωj (2.69)

where n′j ≡ c ∂k j/∂ω and δωj (δk j) denotes a small variation from the nominal frequency
(wavenumber) of mode j.
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These approximations are valid for SPDC sources that have a crystal of length L ≳ 1 mm, refrac-
tive indexes n ≳ 1.5, a poling period Λ ≳ 5 µm and the wavelength of the photons is λp ≲ 0.8 µm
and λs,i ≲ 1.6 µm. In particular, the following optimization procedure has been performed with a
reference source consisting of degenerate type-II SPDC in a PPKTP crystal with length L = 10 mm
and a 750 nm pump beam (which is quite similar to the source realized in this thesis work) [39].

2.4.1 SPDC Optimization

Bennink optimizes four quantities as a function of the focal parameters ξp, ξs, and ξi: the peak of
the joint spectral density, the brightness, the heralding ratio, and the spectral purity. The main result
of this analysis is the identification of a trade-off optimal focusing condition, which maximizes the
performance of the source.
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Figure 2.4: Peak of the joint spectral density, normal-
ized to the global maximum, as a function of the pump,
signal, and idler focal parameters [39].

The primary objective is to maximize the am-
plitude of the peak of the joint spectral den-
sity. A well-defined peak in the spectral distri-
bution typically corresponds to a narrow band-
width. This characteristic becomes particularly
important in certain applications where narrow
filters are employed to reduce the bandwidth of
emitted photons. In such scenarios, a broader
spectral distribution would significantly reduce
the brightness, which is obtained by integrat-
ing the spectral distribution over a limited range
of frequencies. Exploiting the approximations
mentioned before (Eqs. (2.66), (2.67), (2.68)),
one can optimize the peak of the joint spectral
density with respect to (ξp, ξs, ξi, Φ), given by
max(ξp,ξs,ξi ,Φ) |ψ(ωs, ωi)|2. The maximum value
is obtained when (refer to Fig. 2.4):

ξs ≈ ξi ≈ ξp ≈ 2.84 (2.70)
Φ ≈ −1.04π (2.71)

Brightness

In numerous applications, the use of narrow filters may not be necessary, and instead, it is prefer-
able to employ only broadband spectral filters to effectively filter noise. Therefore, in such cases, the
primary focus lies in maximizing the brightness rather than the joint spectral density peak. By em-
ploying the approximation C ≈ 0, there are no finite values of ξp, ξs, and ξi that can maximize Rsi. The
brightness indeed grows with increasing field focusing. However, at high focusing one can demon-
strate that the approximation C ≈ 0 is not valid anymore and the brightness is upper bounded. If we
consider the condition where the signal and idler focal parameters are fixed (ξs = ξi), which is quite
common in many SPDC sources, the optimal focusing for the pump is given by ξp = ξs(= ξi). On
the other hand, if we fix ξp, then the optimal value of ξs is nearly equal to ξp when ξp ≳ 10, and it is
slightly larger than ξp when ξp ≲ 10. The relationship of Rsi with ξp and ξs = ξi is shown in Fig. 2.5.

Heralding ratio

In a similar manner to Rsi, the local maximization of Rs occurs when ξs ≈ ξp (see Fig. 2.5). How-
ever, compared to Rsi, Rs exhibits slower variations with ξs and ξp (Fig. 2.6). The broader nature of Rs
in comparison to Rsi implies that collecting the signal in a non-optimal Gaussian mode will project
the idler onto a mode that does not couple well to any Gaussian mode of any size, i.e., a non-Gaussian
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mode. When setting ξs = ξi = ξp, which locally maximizes both Rsi and Rs, the signal heralding ratio
can be expressed simply as:

ηs =
ki

kp

(
ks

kp
+ 1
)

. (2.72)

A similar expression exists for ηi. For near-degenerate SPDC, where ks ≈ ki ≈ kp/2, these expres-
sions give ηs = ηi = 0.75, and for the non-degenerate case, the values are less than 0.75. However, it
is possible to achieve higher heralding ratios with different focusing conditions. The optimal source
configuration concerning both heralding and brightness is not defined by a single set of parameter val-
ues but rather a curve in the parameter space. This curve has the property that ηs cannot be increased
without decreasing Rsi, and vice versa. Thus, there exists a trade-off between heralding efficiency and
brightness in the optimization of the source configuration.
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Figure 2.5: Brightness Rsi versus the focal param-
eters of pump and signal/idler photons [39].
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Figure 2.6: Single-photon collection Rs versus the
focal parameters of pump and signal/idler pho-
tons [39].

Spectral purity

Finally, it is intriguing to investigate the connection between spectral purity and beam focusing, in
order to understand how this quantity is related to the brightness and the heralding ratio. Specifically,
this parameter is associated with the factorability of ψ(ωs, ωi) ∝ u(ωs)v(ωi), which is achieved when
the joint spectral density is narrow. Consequently, we observe a similar trend to that which maximizes
the peak of the joint spectral density. Through numerical calculations, in the case where ξp ≈ ξs ≈
ξi(= ξ), promoting high brightness and heralding ratios, an optimal value of ξ ≈ 2 is obtained.

Optimal focusing condition

These quantities exhibit optimal values for different focal parameters, creating a trade-off between
brightness and heralding ratio. As the pump is collimated (ξp → 0), the signal heralding ratio ηs (and
equivalently the idler heralding ratio ηi) approaches unity since all the photons are emitted in Gaus-
sian modes. However, in this limit, the brightness is minimized, as it benefits from a highly focused
pump beam. Additionally, spectral purity is optimized for ξ ≈ 2. One of the most significant findings
of this study is the existence of specific focusing conditions (ξp, ξs, ξi ∼ 2.5) that simultaneously opti-
mize brightness, heralding ratio, and spectral purity, bringing them close to their maximum values.
This condition will be fundamental for the design and experimental realization of the SPDC source,
leading to the selection of particular optical configurations.
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Chapter 3

Design of the Experimental Apparatus

The realization of a polarization-entangled photon source requires the use of suitable instrumenta-
tion and a meticulous selection of constituent elements. In this chapter, we will provide an overview
of the most important experimental tools employed to create and characterize the source, such as
the pump laser Mira 900, the optical fibers, and the highly efficient single-photon detectors (SNSPD).
Moreover, we will delve into the selection process for key elements used in the source, such as the
PPKTP crystal and the focusing lenses for the pump, signal, and idler beams. Particular attention
will be given to the design choices made for the source, as they significantly impact its performance.
Although the general design based on the Sagnac interferometer is known in the literature, we made
several optimizations for this specific case.

3.1 Pump Laser

A fundamental instrument for this experiment is the Mira 900 laser from Coherent (Fig. 3.2).
This laser offers tunable wavelengths in the range from 700 nm to 1000 nm and can operate in both
continuous wave (CW) and pulse mode. These features make it an ideal candidate as a pump photon
source for the SPDC process.

The Mira 900 laser is a Ti:Sapphire laser, a type of solid-state laser that employs a titanium-doped
sapphire crystal to convert light from a primary laser source into a different wavelength. This conver-
sion is based on the principle of stimulated emission of photons. When the titanium-doped sapphire
crystal is pumped with a laser operating at a specific wavelength (typically within the range of 527 nm
to 532 nm), the electrons in the titanium ions become excited and move to higher energy levels. Upon
returning to their lower energy states, these electrons emit photons in the red or infrared spectrum,
which are then collected and amplified within the optical cavity.

The Mira 900 features a primary laser source known as Verdi, capable of delivering up to 18 W of
power and emitting a continuous wave (CW) laser beam at 532 nm. This beam is subsequently di-
rected through a series of mirrors towards the crystal, positioned within the Mira 900’s cavity. Within
the cavity, the laser beam undergoes the process of stimulated emission and optical amplification,
which converts it into an infrared laser beam. This type of laser has two main features:

• Wavelength tuning: The Ti:Sapphire crystal possesses inherent dispersion characteristics, caus-
ing varying phase delays for different wavelengths of light. This property is used to carefully
choose the wavelength of the emitted radiation. To achieve this, a prism is introduced into the
laser cavity. This prism effectively separates the different wavelengths emitted by the crystal.
By adjusting the orientation of the prism within the laser cavity, we can select the specific wave-
length to be amplified and subsequently emitted by the laser. This tunability allows for pre-
cise selection of the desired wavelength, catering to the specific experimental requirements (as
shown in Fig. 3.1, which depicts the laser’s spectrum in the working configuration). To achieve
this fine regulation experimentally, a micrometric screw is utilized to control the prism’s incli-
nation, enabling accurate tuning of the emitted wavelength.
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Figure 3.1: Spectrum of Coherent Mira 900 recorded with the spectrometer Avantes. The wavelength is tuned
to 775 nm which is the working condition.

• Ultrashort pulses: This type of laser can generate ultrafast pulses using a technique called mode-
locking [48]. The pulse duration τp (introduced in Eq. (2.46)) is defined as the inverse of the
standard deviation of the laser spectral distribution1. The laser operates at a repetition rate of
76 MHz, and the pulse duration can vary depending on the specific cavity setup. There are
three available configurations referred to as femto (τp ∼ O(100 fs), pico-short (τp ∼ O(1 ps)),
and pico-long (τp ∼ O(10 ps)). For this particular experiment, the cavity has been adjusted
to the pico-short configuration, and the experimental estimation of the pulse duration is ap-
proximately τp ≈ 2.17 ps. In a mode-locked laser, the light is constrained to a specific set of
longitudinal modes or frequencies. These modes undergo constructive interference, resulting
in the coherent superposition of their electric fields. This constructive interference causes the
light intensity to rapidly build up, leading to the emission of ultrashort pulses. The specific
mode-locking technique employed by Mira is known as passive Kerr-lens mode-locking [50]. This
method involves incorporating a Kerr medium, typically a nonlinear optical crystal with a high
Kerr nonlinearity, into the laser cavity. The Kerr effect is a phenomenon where the refractive
index of a material changes in response to the intensity of light passing through it. Within this
setup, the Kerr medium functions as a self-focusing lens. As the intensity of light increases, the
refractive index of the medium also increases. Consequently, the laser pulses experience self-
phase modulation, wherein the peak intensity of the pulse results in a higher refractive index,
effectively acting as a lens that focuses the light. Conversely, as the intensity decreases towards
the pulse’s tail, the refractive index diminishes, leading to a defocusing effect. This self-focusing
and defocusing behavior of the Kerr medium acts as a feedback mechanism, promoting the sta-
bilization of the mode-locking process, facilitating the generation of ultrashort pulses. The term
passive denotes that the mode-locking process does not rely on external elements like modula-
tors or active feedback control systems. Instead, the self-phase modulation induced by the Kerr
medium alone is adequate to initiate and maintain the mode-locking, making the system more
straightforward.

The performance of the laser relies on various factors that are largely influenced by environmental
conditions. The primary quantities to be controlled are temperature and air humidity. Many compo-
nents of the laser exhibit temperature dependence and fluctuations in temperature can lead to expan-
sion or contraction of the laser cavity’s components.

The refractive index of the Ti:Sapphire material used in the laser changes with temperature, re-
sulting in a wavelength drift in the laser emission. This becomes crucial in applications that demand

1The pulse duration τp can be derived by the coherence time τcoh of the laser using the relation: τp = π
√

2τcoh [49]. This
relation is useful because the coherence time is the quantity that is typically measured in the laboratory. We note that there
are other frequently used quantities that are directly related to the pulse duration. For instance, the standard deviation of
a (temporally and spectrally) Gaussian pulse is τp/4π.
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precise and stable laser wavelengths, as in the case of this experiment where the emission of 1550 nm
photons occurs only within a narrow range of wavelengths centered at 775 nm. Temperature changes
can further induce variations in the cavity resonance, leading to mode-hopping or mode competition
in the laser output2. These unpredictable fluctuations affect the laser’s emission characteristics, in-
cluding the power of the beam. In pulse mode, such effects become more pronounced as even slight
perturbations can disrupt this delicate condition. The optimal laser performance is achieved when
the environment’s temperature is around 20◦C. Several systems are employed in the room to achieve
and maintain this temperature as closely as possible.

Humidity is another significant factor that can impact the laser’s performance. High humidity
levels can cause water vapor to condense on optical elements, such as crystals and mirrors, leading
to contamination and degradation of their optical surfaces. This type of fluctuation can have a more
pronounced effect on mode-locking performance, further highlighting the importance of maintaining
stable environmental conditions for the optimal laser operation.

Figure 3.2: Photo of Mira’s optical system. The green light is the pump laser from Verdi which interacts in the
Ti:Sapphire crystal emitting an infrared wavelength tunable laser beam.

3.2 Optical Fibers
Optical fibers play a crucial role in modern telecommunications systems. An optical fiber typically

consists of a core, where light propagates, and a cladding that surrounds the core. The core and
cladding are made of different materials with different refractive indexes. When light enters the fiber,
the refractive index difference between the core and cladding causes the fiber to act as a waveguide,
guiding the light along its length through total internal reflection.

Different types of optical fibers exist, classified based on core material and diameter, which influ-
ences the mode of light propagation inside them. Two primary types of optical fibers are:

• Single-mode fiber: Single-mode fibers have a small core diameter, typically around 5− 10 µm.
Their design is optimized to efficiently transport a single mode of light at a specific wavelength.
This results in less dispersion and attenuation, making single-mode fibers suitable for long-
distance communication and high-speed data transmission.

• Multi-mode fibers: Multi-mode fibers possess a larger core diameter, typically ≥ 30 µm. Their
design enables them to carry multiple modes of light, allowing light to traverse through the
core along various paths. However, this characteristic also leads to increased dispersion and
attenuation, which restricts their maximum transmission distance and bandwidth.

2Mode-hopping in a laser refers to the phenomenon where the laser output switches between different longitudinal
modes of the laser cavity.
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The primary distinction between single-mode and multi-mode optical fibers lies in the modes of light
that propagate within the fiber. In particular, single-mode fibers can collect and emit only the Gaus-
sian mode of light, while multi-mode fibers can transmit different modes due to their larger core
diameter. As a result, multi-mode fibers are easier to couple with external light sources.

Fiber coupling is the process of directing a light beam into the fiber, typically achieved using two
mirrors. These mirrors are adjusted along the horizontal and vertical directions to precisely align the
beam with the fiber’s core and achieve the correct tilt, maximizing the light transmitted by the fiber.

The acceptance angle of an optical fiber is determined by the numerical aperture (NA), expressed
as sin θ, where θ represents the maximum angle at which incident light can enter the fiber core while
maintaining total internal reflection.

For single-mode fibers, an essential property is the mode field diameter (MFD), which character-
izes the spatial distribution of light intensity within the fiber’s core. The mode field diameter repre-
sents the size of the light beam supported by the fiber’s core. It can be calculated using Marcuse’s
equation [51]:

MFD = 2a
(

0.65 +
1.619

V
3
2

+
2.879

V6

)
(3.1)

where V = 2π
λ aNA, with λ being the wavelength of the light, a the core radius, and NA the numerical

aperture. The mode field diameter is important as it allows us to estimate the waist W of the Gaussian
beam propagating along the fiber: 2W = MFD.

In this thesis work, single-mode fibers were predominantly used to transmit signals. For instance,
we employed them to carry the light from the laser to the source (for the 775 nm pump beam) and
from the source to the detectors (for the 1550 nm emitted photons). The choice of single-mode fibers
was not only due to the high light transmission but also their ability to select only the Gaussian mode,
effectively acting as filters. For this experiment, we utilized two types of single-mode optical fibers,
each suitable for a specific wavelength of light. The 780HP fiber was used for pump beam at 775 nm,
while the SMF28 Ultra fiber was employed for the 1550 nm photons emitted by the source.

Optical fibers are susceptible to both thermal and mechanical effects, which can significantly in-
fluence their performance and reliability. Thermal effects encompass thermal expansion, changes in
attenuation, thermal gradients, and thermal shock. On the other hand, mechanical effects include
bending and microbending losses, tensile and compressive stress, vibration, and cable crush can
deeply affect the transmissivity of the fiber. In addition to these losses, optical fibers can induce a
change in the polarization of the input light. This effect is due to the intrinsic birefringence or asym-
metry of the fiber, leading to the splitting of light into two orthogonal polarization modes. As light
propagates through the fiber, these polarization modes experience different velocities, causing the
light’s polarization state to vary over time. This effect leads to a transformation of the quantum state
of a photon, which can be described as a unitary transformation (a rotation on the Bloch sphere).

To address this issue, a potential solution is to use a polarization controller, a device that modifies the
polarization of the light exiting the fiber by applying mechanical stress to the fiber. Alternatively, one
can use a QWP and HWP before or after the optical fiber to compensate for the induced polarization
transformation on the light state. These approaches help in maintaining the desired polarization state
of the light and are useful in various quantum communication technologies.

3.3 Single-Photon Detectors

Superconducting nanowire single-photon detectors (SNSPDs) represent highly sophisticated pho-
todetectors designed to detect individual photons with exceptional efficiency, minimal noise, and
short dead time. When compared to traditional photodetectors like photomultiplier tubes or avalanche
photodiodes, SNSPDs offer several distinct advantages. Their near-unity quantum efficiency allows
them to detect a high percentage of incident photons, with very low dark count rates, minimizing
false detections caused by thermal noise. Additionally, SNSPDs exhibit ultra-fast response times,
enabling them to resolve photons with extremely short time intervals. These characteristics make
SNSPDs invaluable in a wide range of applications, including quantum optics, quantum commu-
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nication, quantum cryptography, and quantum information processing. Their ability to efficiently
detect single photons has unveiled new prospects in quantum technology and fundamental research.

In this experiment, the detectors utilized belong to the ID281 Series from ID Quantique (a photo is
shown in Fig. 3.3). This particular instrument comprises 7 available channels, each corresponding to a
detector. The detection efficiency may vary across these channels and is influenced by the wavelength
of the incident light. For this study, we focused on characterizing two specific channels (Ch. 5 and
Ch. 8). To assess their efficiency at 1550 nm, a detailed procedure is provided in Appendix C.

The working principle of SNSPDs, as described by Gol’tsman, Semenov, and Young [52–54], can
be summarized in the following steps (see Fig. 3.4 part (a)):

1. Initially, the superconducting wire is traversed by a constant current which is maintained by an
external circuit. Given the material’s property of zero resistance in the superconducting state,
there is a null voltage between the two ends of the wire.

2. When a photon interacts with the wire, it releases sufficient energy to create a resistive hotspot
within the medium, a phenomenon feasible within a specific range of wavelengths.

3. The resistive hotspot behaves as a normal conductor, while the rest of the wire remains in a su-
perconducting state. This causes the supercurrent to bypass the newly formed resistive barrier.

4. The supercurrent density increases at the periphery of the hotspot. Due to the narrowness of
the wire, the current density can attain the critical value at the hotspot’s border, effectively ex-
panding the dimensions of the resistive hotspot in the transverse direction.

5. The presence of resistance in the middle of the nanowire promotes Joule heating, rapidly spread-
ing the resistive barrier throughout the entire wire, elevating the system’s temperature above the
critical temperature. The expansion of the resistive barrier causes a voltage increase across the
nanowire. This voltage drop is then amplified and analyzed by specialized electronic systems,
which identify it as an event.

6. Electrons start to diffuse away from the hotspot releasing their energy through electron-phonon
interactions, consequently cooling the system and restoring it to its initial state (point 1).

The depicted diagram illustrates two characteristic times denoted as τ1 and τ2. τ1 quantifies the
duration required for the resistive hotspot, formed after the photon interaction, to encompass the
entire wire. On the other hand, τ2 represents the time taken by the detector to return to its initial
state. After the detection of a photon, the detector is unable to register another signal for a specific
period of time denoted as td = τ1 + τ2. This duration is commonly referred to as the dead time. During
this period, the detector is recovering and resetting itself, making it temporarily unresponsive to sub-
sequent photon interactions. The shape of the electric signal induced by the detector following the
photon interaction is displayed in Fig. 3.4 part (c). This signal can be represented by an equivalent
circuit comprising a kinetic inductance Lk and a variable resistance Rn(t) (part (b)).

After being registered, the electric signal from the detector is amplified and subsequently fed into a
time tagger. A time tagger is a crucial device employed in experimental setups to accurately measure
and record the timing of events. Its primary function is to assign a precise time step to each event
detected. Time taggers are especially valuable when precise timing information is required for various
applications, such as coincidence analysis.

An important characteristic of these detectors is their high-temperature dependence, which arises
from the properties of superconductivity. Their optimal working temperature is around ∼ 0.83 K,
achieved through a refrigeration system based on a mixture of 3He and 4He.

The dead time of these detectors is td ∼ 100 ns. In comparison, semiconductor-based single-
photon detectors like Single-Photon Avalanche Diode (SPAD) typically have a dead time higher than
1 µs (which is also due the fact that they must be intentionally kept off to reduce afterpulsing). Due
to this dead time, the detectors can only record signals for reduced time intervals. If the counting rate
is sufficiently high, meaning we expect more than one event on average during a dead time interval,
the effective loss of signals cannot be overlooked. If we record Nmeas events in 1 s, the total dead time
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Figure 3.3: Photo of the SNSPDs used in this ex-
periment (from datasheet). Figure 3.4: Schematic working principle of

SNSPDs [55].

is given by ∆td = Nmeastd. To obtain the correct counting rate, taking into account the dead time of the
detectors, we divide the recorded events by the time interval in which the detector is able to record
signals, which is 1− tdNmeas. This yields the effective counting rate Ncorr,which can be calculated as

Ncorr =
Nmeas

1− tdNmeas
(3.2)

Another important characteristic of SNSPDs is the dependence of their quantum efficiency on
the polarization of the incident radiation. This polarization dependence can be attributed to the
anisotropic nature of the nanowire’s crystal lattice. Superconducting nanowires are typically com-
posed of crystalline materials, and their crystal structure exhibits distinct absorption cross-sections
for photons with different polarizations. As a result, when the light is polarized in a direction dif-
ferent from the optimal alignment, the efficiency is significantly reduced, reaching only a fraction of
the maximum value (leading to a reduction in efficiency of approximately ∼ 30− 40%). To address
this issue, polarization controller systems are employed. These systems allow to conveniently adjust
the polarization of the signal photons after they have propagated through optical fibers. By using
polarization controllers, it becomes possible to manipulate the polarization direction of the incident
photons and optimize the efficiency of the SNSPDs for a wide range of experimental scenarios.

3.4 PPKTP Crystal
Periodically poled crystals are extensively used in SPDC sources due to their capability to en-

able quasi-phase-matching, leading to high-efficiency photon generation, as explained in Sec. 2.2.5.
Various techniques are employed for the fabrication of periodically poled crystals.

One approach, proposed by Armstrong et al. [56], involves slicing the nonlinear crystal and al-
ternating segments with opposite orientations. However, this method has limitations concerning the
precise slicing of thick crystal pieces. An alternative technique involves melting the crystal and mod-
ulating the ferroelectric domains, as demonstrated by Yamada et al. [57]. This method allows for the
inversion of single domains through the application of a static electric field.

For this specific experiment, we utilized a periodically poled potassium titanyl phosphate (PP-
KTP) crystal from Raicol, with dimensions of 1× 2× 20 mm3. To protect the crystal from dust and
damage, we designed a small 3D-printed support holder enclosed within a protective box. The en-
closure also serves to facilitate the placement of the crystal on other supports, such as the translation
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stage. This feature enables fine adjustments and precise positioning of the crystal, thereby enhancing
experimental control and accuracy in the setup.

3.4.1 Sellmeier Equations

In our study, we focus on a type-II SPDC process with the pump and idler photons polarized
along the y-axis and the signal polarized along the z-axis. To fully characterize this process and un-
derstand the propagation of these beams within the crystal, we need to determine the corresponding
refractive indexes, denoted as ny and nz. These refractive indexes are wavelength-dependent. To
quantify these parameters, we employ the Sellmeier equations, which are empirical mathematical
models commonly used to describe the refractive index of a material as a function of the wavelength
of light passing through it. The Sellmeier equations are conventionally referenced at a specific tem-
perature, usually T = 25◦C. In this case, the refractive index along the z-axis, as a function of the
wavelength λ (expressed in µm), is [58]:

nz(λ[µm]) =

√
Az +

Bz

1− Cz/λ2 +
Dz

1− Ez/λ2 − Fzλ2 (3.3)

The corresponding Sellmeier coefficients are provided in Tab. 3.1.

Az Bz Cz[µm2] Dz Ez[µm2] Fz[µm−2]

2.12725 1.18431 5.14852 · 10−2 0.6603 100.00507 9.68956 · 10−3

Table 3.1: Sellmeier coefficients for z-axis.

Similarly, to determine the refractive index along the y-axis, we rely on the relationship [59]:

ny(λ[µm]) =

√
Ay +

By

1− Cy/λ2 − Dyλ2 (3.4)

The associated Sellmeier coefficients are listed in Tab. 3.2.

Ay By Cy[µm−2] Dy[µm2]

2.09930 0.922683 0.0467695 0.0138404

Table 3.2: Sellmeier coefficients for y-axis.

3.4.2 Temperature Dependence of Refractive Indexes

Changes in temperature can lead to modifications in the crystal’s structure and optical proper-
ties, resulting in alterations of the refractive index. In many cases, the temperature dependence of
refractive indexes is relatively small, particularly within a limited temperature range around room
temperature. However, in certain processes like SPDC, even slight temperature variations can have a
significant impact on the phase-matching or quasi-phase-matching conditions, as described by Eqs.
2.34 and 2.44. These variations deeply influence the generation of photons, affecting the efficiency
and quality of the source.

In the case of KTP, the temperature dependence can be evaluated using the following expressions
[60]:

∆nz(λ[µm], T[◦C]) = n1,z(λ)(T − 25◦C) + n2,z(λ)(T − 25◦C)2 (3.5)
∆ny(λ[µm], T[◦C]) = n1,y(λ)(T − 25◦C) + n2,y(λ)(T − 25◦C)2, (3.6)

where

ni,α(λ[µm]) =

(
a(i,α)0 +

a(i,α)1
λ

+
a(i,α)2
λ2 +

a(i,α)3
λ3

)
(3.7)

The coefficients are presented in Tab. 3.3.
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n1,z[10−6][◦C−1] n2,z[10−8][◦C−2] n1,y[10−6][◦C−1] n2,y[10−8][◦C−2]

a0[
◦C−1] 9.9587 -1.1882 6.2897 -0.14445

a1[µm/◦C] 9.9228 10.459 6.3061 2.2244
a2[µm2/◦C] -8.9603 -9.8136 -6.0629 -3.5770
a3[µm3/◦C] 4.1010 3.1481 2.6486 1.3470

Table 3.3: Temperature dependence coefficients for refractive indexes ny and nz of KTP.

3.4.3 Temperature Dependence of Quasi-Phase-Matching

The manufacturer specifies a poling period Λ = 46.2 µm at a reference temperature of T = 25◦C.
To achieve quasi-phase matching, as described by Eq. (2.44), the optimal poling period depends on
temperature and the wavelengths of the pump, signal, and idler beams. This dependence can be
determined using the expressions for the refractive indexes provided in Eqs. (3.3) and (3.4) as follows

|Λ(T, λp, λs, λi)| =
2π

ny(λp.T)
λp

− nz(λs,T)
λs
− ny(λi ,T)

λi

(3.8)

Here, we use the absolute value because the chosen Fourier expansion convention employed to rewrite
the effective susceptibility in Sec. 2.2.5 results in a negative Λ. However, it is important to clarify that
this negative sign does not impact the physical interpretation of this quantity.

With a poling period of 46.2 µm, the quasi-phase-matching condition is satisfied for degenerate
SPDC with emitted photons at 1550 nm. Nevertheless, changes in temperature can affect this condi-
tion, altering the wavelengths of the emitted photons. In certain types of crystals, the temperature
dependence of the refractive indexes significantly impacts the quasi-phase-matching condition and
the efficiency of SPDC photon generation. In such situations, a common and effective solution is to use
temperature controllers, such as Peltier cell thermostats, to maintain precise and stable temperatures
during the experiment.
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Figure 3.5: Wavelength of the emitted photons as a function of the crystal temperature for degenerate SPDC.

When designing the system, it is essential to assess whether such a solution is necessary or not.
This evaluation involves analyzing the temperature dependence of the wavelength of the emitted
photons. In particular, we can focus on the degenerate case where λs = λi(= λ). The wavelength
of the pump is fixed at λp = 775 nm, and the poling period is set to Λ = 46.2 µm. At a specific
temperature T, the optimal wavelength λ for the emitted photons in degenerate SPDC is determined
by solving the following equation:

ny(λp, T)
λp

− nz(λ, T)
λ

−
ny(λ, T)

λ
+

2π

Λ
= 0 (3.9)
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The temperature dependence of the emitted photons wavelength, ranging from 10◦C to 60◦C, is de-
picted in Fig. 3.5. The plot clearly shows that the wavelength variation remains below 0.1 nm, which
is considerably smaller than the bandwidth of many fiber filters that can be employed to precisely
select these photons. Therefore, there is no need for a temperature control system for the crystal, as
the small temperature-induced variations do not significantly impact the performance of the source.

3.5 Choice of the Optical Elements

Until now, we have thoroughly explored the specific properties of some experimental instruments,
including the pump laser (Sec. 3.1), the optical fibers (Sec. 3.2), and the SNSPDs (Sec. 3.4). Under-
standing these properties was crucial as they directly influence the design of the source. Indeed, the
intensity and polarization control of the laser source is accomplished through the implementation of
a suitable optical system. Furthermore, to compensate for the polarization transformation induced by
the optical fiber and to optimize the efficiency of the SNSPDs, a polarization control system becomes
indispensable.

We can now proceed with the actual design of the source. In this section, we will elucidate the
choices behind the optical setup, with a particular focus on the selection of lenses, while taking into
account the constraints imposed by the geometry of the system.

3.5.1 Intensity and Polarization Controller

The pump beam for the SPDC source is generated by the 775 nm laser Mira. However, directly
connecting the laser to the source is not feasible for several reasons. The SPDC source requires precise
beam alignment, and the laser’s direction can experience slight changes over time. Periodic realign-
ment and cleaning processes can alter the settings of the optics inside the laser cavity, affecting the
output beam direction. To ensure a stable pump beam direction aligned with the other optical ele-
ments of the source, it is necessary to decouple the laser from the source, allowing the pump beam to
always maintain the same direction. This approach also enables easy replacement of the laser with-
out the need for realigning the entire source. The solution to this challenge involves using an optical
fiber. The light emitted by the laser is coupled into the optical fiber, which then guides the beam to
the SPDC source. If the laser’s alignment deviates, it can be easily adjusted by manipulating the mir-
rors that regulate the beam direction, redirecting it back into the optical fiber without disturbing the
alignment of the source.

This type of configuration also provides the flexibility to control the intensity and polarization of
the pump beam. The optical system used for this purpose is composed of:

• Intensity controller: The output beam of the laser has a power of approximately 2 W, and it
usually operates at its maximum power for enhanced stability. However, both the PPKTP crys-
tal and the optical fiber have a lower damage threshold. Therefore, we require an instrument
that can efficiently reduce the input power by acting as an intensity controller. To achieve this,
we use a combination of a QWP and a HWP placed before a PBS. The PBS selectively transmits
horizontally polarized photons. By adjusting the angles of the waveplates, we can modify the
polarization of the laser beam, specifically selecting its horizontal component and regulating
the light transmitted by the PBS.

• Polarization controller: In various applications of the SPDC source, precise regulation of the
pump beam’s polarization is crucial. The light from the intensity controller is initially linearly
polarized, with a horizontal polarization state denoted as |H⟩, set by the PBS. However, as the
light travels through the optical fiber, its polarization is altered. To compensate for this effect and
set an arbitrary polarization state for the pump beam inside the source, we incorporate a com-
bination of an HWP and a QWP after the intensity controller, just before the optical fiber. This
polarization controller allows for finely adjusting the polarization of the pump beam according
to our specific requirements.
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After passing through the polarization controller, the light is coupled into the optical fiber using
a lens with a focal length of 4 mm. The optical setup for the intensity and polarization controller is
depicted in Fig. 3.6, while a photo of the experimental setup is shown in Fig. 3.7.

Figure 3.6: Schematic of the intensity and polar-
ization controller [61].

Figure 3.7: Photo of the intensity and polarization
controller.

3.5.2 Estimation of the Optimal Focusing Conditions

An essential aspect of the source design is dedicated to selecting an appropriate set of lenses for
pump, signal, and idler photons, aiming to optimize the source’s performance in terms of bright-
ness, heralding ratio, and spectral purity. In Sec. 2.4, we explored the collinear SPDC properties
and identified certain critical focusing conditions that maximize all these parameters simultaneously.
These conditions can be expressed in terms of the focal parameters ξ j (as defined in Eq. (2.60)), where
j = p, s, i, and they correspond to ξp ≈ ξs ≈ ξi = 2.5. We use these conditions as a starting point to
determine the optimal set of lenses for the system.

Calculation of pump waist

We begin by calculating the pump momentum kp of the beam in the PPKTP crystal. Next, we invert
the relation that connects the waist of the pump beam wp with ξp (as given in Eq. (2.60)), yielding the
following results:

kp =
ωp

cnp

=
ωpnp

c
=

2πnp

λp
≈ 1.43 · 107 m−1 (3.10)

wp =

√
L

kpξp
=

√
Lλp

2πnpξp
≈ 23.7 µm (3.11)

In these calculations, we used the following values:

λp = 775 nm (3.12)
np = ny(λp) ≈ 1.734 (3.13)
L = 2 cm (3.14)

ξp = 2.5 (3.15)

The refractive index np of the crystal along the y-axis at the wavelength λp has been calculated using
the formula in Eq. (3.4).
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Calculation of downconverted photons waists

In a similar manner to the pump photons, we can determine the optimal waists of the downcon-
verted photons inside the crystal, denoted as ws and wi, by calculating their respective wavenumbers
ks and ki. We then proceed to express the waists in terms of their corresponding focal parameters:

ks =
ωs

cns

=
ωsns

c
=

2πns

λs
≈ 7.36 · 106 m−1 (3.16)

ki =
ωi

cni

=
ωini

c
=

2πni

λi
≈ 7.03 · 106 m−1 (3.17)

ws =

√
L

ksξs
=

√
Lλs

2πnsξs
≈ 32.9 µm (3.18)

wi =

√
L

ksξi
=

√
Lλi

2πniξi
≈ 33.7 µm (3.19)

where we used:

λs = λi = 1550 nm (3.20)
ns = nz(λs) ≈ 1.847 (3.21)
ni = ny(λi) ≈ 1.758 (3.22)
L = 2 cm (3.23)

ξs = ξi = 2.5 (3.24)

In this scenario, the refractive index of the signal photons is considered along the z-axis, while for
the idler photons, it is along the y-axis. To compute these values, we employed Eqs. (3.3) and (3.4),
respectively.

3.5.3 Geometrical Path Design for Fiber Coupling

To efficiently focus the pump beam inside the crystal and collect the downconverted photons, we
need to design an appropriate optical setup. The pump laser is emitted from an optical fiber with
a specific mode field diameter MFD = 2W0, where W0 represents the beam waist of the emitted
Gaussian beam. Due to the divergence of the beam, a set of lenses is required to focus the beam
within the crystal. Using a single lens setup can be challenging, as it necessitates precise positioning
between the fiber and the crystal to ensure proper focusing. To overcome this challenge, a more
practical approach involves employing a two-lens setup. The first lens serves to collimate the beam
that emerges from the fiber3. Once collimated, a second lens can be positioned to efficiently focus
the beam onto the crystal. This configuration offers the advantage of decoupling the focusing lens
position from the fiber position. Since we are now using a collimated beam, the focusing lens can be
conveniently positioned based on the crystal’s location without being affected by the fiber’s position.
In Fig. 3.8, we provide a schematic representation of this two-lens setup. We refer to the beam radius
of the collimated beam as W ′0, while the focused beam waist is denoted as W ′′0 . The same setup can
also be employed to collect the downconverted photons. In that case, the direction of the photons is
opposite, but the approach remains equivalent.

Referring to Fig. 3.8, our goal is to establish a relationship between W ′′0 and W0, considering the
focal lengths f1 and f2 of the two lenses. To begin, we look at the propagation of a Gaussian beam
and its relation between W ′′0 and W ′0 [34]:

W ′0 = W ′′0

√
1 +

(
z3 − z2

z′′R

)2

= W ′′0

√
1 +

(
f2λp

πW ′′20

)2

(3.25)

3A collimated Gaussian beam, namely a Gaussian beam with a zero divergence, is not theoretically possible. However,
this is a useful approximation in the calculations that can be experimentally achieved by minimizing the divergence of the
beam.
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Figure 3.8: Schematic of the two-lens optical system employed for focusing and collecting the photons in the
source. At the fiber output, the beam’s waist is denoted as W0. Once the beam is collimated, it possesses a
beam radius of W ′0. Finally, the waist size inside the crystal is denoted as W ′′0 . The focal lengths of the lenses are
denoted as f1 and f2, and they are positioned at distances z1 and z2, respectively, relative to the fiber output.
The second lens is used to focus the beam at position z3.

where we used the fact that the waist W ′′0 is achieved at a distance ∆z′′ = z3− z2 = f2 from the second
lens. Additionally, the Rayleigh range of the focusing beam is given by:

z′′R =
πW ′′20

λp
(3.26)

We assume that the beam between the two lenses is collimated or, more generally, that ∆z′ = z2− z1 ≪
z′R, ensuring that the beam radius W ′0 remains approximately constant during its propagation between
the two lenses. Similarly, we can relate W0 to W ′0 by describing the propagation of the Gaussian beam
exiting from the fiber. The first lens is positioned at a distance ∆z = z1 = f1 from the fiber output.
Therefore, we obtain the expression for W ′0 as follows:

W ′0 = W0

√
1 +

(
z1

zR

)2

= W0

√
1 +

(
f1λp

πW2
0

)2

. (3.27)

In this case, the Rayleigh range is zR =
πW2

0
λp

. We now have two equations that relate the collimated
beam radius W ′0 to f1, f2, W0, and W ′′0 . By equating Eq. (3.25) and (3.27), we retrieve the following
relations between f1, f2, and W ′′0 :

f1 =
W0

W ′′0 λp

√(
f2λp

)2 − (πW ′′0 )
2(W2

0 −W ′′20

)
(3.28)

f2 =
W ′′0

W0λp

√(
f1λp

)2
+ (πW0)

2(W2
0 −W ′′20

)
(3.29)

W ′′0 =

√√√√π2W4
0 + f 2

1 λ2
p −

√
π4W8

0 + 2
(

f 2
1 − 2 f 2

2

)
π2W4

0 λ2
p + f 4

1 λ4
p

2(πW0)
2

(3.30)

Up until now, all the calculations have been based on the assumption of beams propagating in
free space, where the refractive index is n = 1. However, in the actual experimental setup, the beam
is focused inside the crystal, which has refractive indexes higher than one, depending on the polar-
ization and wavelength of the light propagating inside it (as given by Eqs. (3.13), (3.21), and (3.22)).
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Now, we need to establish a relationship between the free-space waist W ′′0 and the optimal waist of
the pump beam inside the crystal, denoted as wp and calculated using Eq. (3.11).

The ABCD-matrix method is a widely used approach to describe the propagation of a Gaussian
beam in different optical media [34]. It establishes a relationship between the input and output param-
eters of a paraxial optical system, particularly the complex radius of curvature of the beam, denoted
as q = z− z0 + izR. In the context of our setup, we are specifically considering the transformation of
a Gaussian beam passing through a flat interface with different refractive indexes. When the beam
transitions from a medium with refractive index n1 to a medium with refractive index n2, the trans-
formation of the initial parameter q1 is given by:

q2 =
Aq1 + B
Cq1 + D

with T =

(
A B
C D

)
=

(
1 0
0 n1/n2

)
. (3.31)

Now, let’s consider a Gaussian beam exiting from the crystal. The refractive index of the first
medium for the pump beam is n1 = np, while the refractive index of the second medium is n2 = 1
(free-space). The q-parameter of the pump beam inside the crystal, denoted as qc = zc − z0,c + izR,c,
is related to the q-parameter of the beam outside the crystal, denoted as q, through the following
equation:

q =
qc

np
=

1
np

(zc − z0,c + izR,c) =
1

np

(
zc − z0,c + i

πw2
pnp

λp

)
=

zc − z0,c

np
+ i

πw2
p

λp
. (3.32)

Hence, the waist of the focused beam inside the crystal is equal to the value obtained in free-space,
namely W ′′0 = wp. When the Gaussian beam exits from the crystal at a distance zc − z0,c from its
waist wp, it is transformed into a Gaussian beam with the same beam radius at zc, but at a distance
(zc− z0,c)/np from its waist. Therefore, the only effect of the medium is a change of the focus position.
The distance between the waist position of the Gaussian beam inside the crystal and the waist position
in free-space can be calculated as follows:

∆d = (zc − z0,c)−
zc − z0,c

np
= (zc − z0,c)

(
np − 1

np

)
(3.33)

A schematic representation of the transformation of the focusing beam from free-space to the crystal
is depicted in Fig. 3.9.

Figure 3.9: Transformation of a Gaussian beam passing from free-space into the crystal (red). The blue beam
represents the continuation of the beam inside the crystal as if the refractive index did not change, while the
green part shows the continuation of the free-space beam inside the crystal. The distance between the waist
position of the free-space beam and that inside the crystal is denoted as ∆d.

All the calculations performed on the SPDC process in Chap. 2 assume that the beam is focused
at the center of the crystal. Therefore, we set the distance between the center of the crystal and the
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crystal interface to half of the crystal length: zc − z0,c = L/2. As a consequence, the position of the
free-space focus is shifted with respect to the crystal center by:

∆d =
L
2

(
np − 1

np

)
(3.34)

Due to the high refractive index of the crystal, this shift must be carefully considered during the
realization and alignment procedure of the source.

When designing the optical setup of the source, we fix the waist W0, which is half of the mode
field diameter of the fiber. The goal is to find a set of two lenses with focal lengths f1 and f2 such that
the waist inside the crystal (given by Eq. (3.30)) is as close as possible to the optimal values calculated
in the previous section: wp, ws, and wi for pump, signal, and idler, respectively.

3.5.4 Choice of the Lenses

The lenses used in this setup are plano-convex, which are suitable due to their ability to collimate
and focus light effectively. However, the commercially available lenses (from Thorlabs) only offer
some specific focal lengths, making it impossible to obtain the desired beam waist precisely (using Eq.
(3.30)). Additionally, we must adhere to the geometrical constraints of the source, which is constructed
on a breadboard measuring 450× 600 mm2.

In order to ensure consistency and symmetry between the signal and idler beams, we made the de-
cision to employ an identical set of lenses for both beams. After carefully considering the constraints,
we identified the optimal set of lenses with focal lengths for the pump, signal, and idler photons:

f p
1 = 25 mm, f p

2 = 250 mm, f s,i
1 = 40 mm, f s,i

2 = 250 mm (3.35)

The focal parameters are ξp = 2.35, ξs = 2.53, and ξi = 2.66.
To thoroughly assess the performance of the source and validate the SPDC model described in

Chap. 2, we also opted to explore three other configurations that exhibit slight variations from the
optimal case. For practical reasons, all the lens sets retain the same lenses for focusing the pump
beam, while different lenses are utilized to collect the downconverted photons. This decision was
motivated by the fact that altering the pump beam lenses is more complex, and for our purposes,
modifying only the lenses responsible for the collection of the downconverted photons is sufficient.
The specific lens sets chosen for the different configurations are provided in Tab. 3.4.

f p
1 [mm] f p

2 [mm] f s,i
1 [mm] f s,i

2 [mm] ξs ξi ws,i[µm] rs[µm] ri[µm]

25 250 40 250 2.53 2.66 32.5 282.5 269.1
25 250 50 300 2.74 2.88 31.2 293.6 279.6
25 250 40 300 1.76 1.84 38.9 237.1 226.0
25 250 50 250 3.94 4.14 26.0 351.2 334.4

Table 3.4: Selection of the focussing and collimating lenses for pump, signal, and idler beams. The pump beam
is fixed for all these configurations: ξp = 2.35, wp = 24.4µm, rp = 179.2µm.

An important parameter to take into account is the beam radius at the crystal interface, where the
dimensions are 1× 2 mm2. The beam radius, denoted as rj for each type of photon (j = p, s, i), can be
calculated using the following formula:

rj = wj

√√√√1 +

(
λjL

2πnjw2
j

)2

(3.36)

To ensure the beam remains well-contained within the crystal and to prevent any clipping issues,
it is essential to maintain a beam radius that is at least 1/3 of the crystal thickness. This condition
corresponds to a beam that is contained within the crystal by 6 standard deviations.
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3.5.5 Spectral Filters

When dealing with entangled photons from an SPDC source, it is of utmost importance to reduce
environmental noise to maximize the heralding ratio and the effective brightness of the source. One
of the most significant contributions to the noise comes from the residue of the pump beam, which,
in the collinear case, is collected similarly to signal and idler photons. Furthermore, given the high
intensity of the pump beam, these photons can damage single-photon detectors (which can receive up
to≈ 107 photons per second). Although a first level of selection is achieved using single-mode optical
fibers optimized for transmitting photons at 1550 nm, it is not sufficient to completely eliminate the
unwanted pump beam.

To achieve a precise selection of the downconverted photons and to distinguish them from noise,
our source requires different types of spectral filters. We have selected two types of spectral filters
in our setup, namely the FEL1000 Longpass Filter and the 12 nm bandpass filter FBH1550-12. These
filters eliminate the residual pump photons and effectively reduce other sources of noise.

The spectral distribution of the downconverted photons is influenced by both the characteristics
of the pump beam and the optical setup. When using a pulsed laser source, the emitted photon’s
bandwidth increases, leading to entangled photons with slightly different wavelengths. However, in
specific applications such as multiphoton interaction experiments (e.g., Bell state measurement [46]
and the Hong–Ou–Mandel effect [45]), narrow bandwidths are necessary. For these situations, we
can employ optical fiber spectral filters with narrow bandwidths (approximately 0.5 nm). Using such
filters can result in a reduction of brightness and heralding ratio due to the filtering out of some
downconverted photons while the spectral purity is increased.

In summary, our source benefits from the use of spectral filters, allowing us to tailor the spectral
characteristics of the downconverted photons to meet the specific requirements of our experiments.
By selectively filtering and manipulating the spectral distribution, we optimize the performance of
the entangled photon pairs for various applications.

3.6 Sagnac Interferometer

The SPDC process involves the emission of a pair of photons with different polarizations, rep-
resented by the separable state |Hs⟩ |Vi⟩. However, the primary goal of the source is to generate
entangled photons. This can be achieved through a well-designed optical setup that facilitates the
interaction of the emitted photons in a way that leads to entanglement.

Awidely used experimental setup for generating polarization-entangled photons in SPDC sources
is based on a Sagnac interferometer, as demonstrated by Kim et al. in 2006 [62]. In this setup, the
pump beam is directed through a dual-wavelength polarizing beam splitter (dPBS) that operates at
two specific wavelengths (in our case 775 nm and 1550 nm). The dPBS divides the pump beam into
two components based on polarization, the horizontal (H) and the vertical (V), which go into the
opposite branches of the Sagnac loop (clockwise for V and counterclockwise for H, see Fig. 3.10). The
general expression for the initial state of the pump field, denoted as

∣∣ψp
〉
, is:

∣∣ψp
〉
= α

∣∣Hp
〉
+ βeiϕp

∣∣Vp
〉

(3.37)

In this expression, α and β are real coefficients, representing the complex probability amplitudes for
horizontal and vertical polarizations, respectively, while ϕp accounts for the relative phase between
the two polarization components. The goal is to manipulate the pump beam’s polarization state
within the Sagnac interferometer setup to achieve the desired entangled photon states.

The emission of downconverted photons is favored when the pump beam’s polarization is hori-
zontal. As a result, the reflected beam, with its vertical polarization, does not directly participate in
this process. To address this issue, a dual-wavelength half-wave plate (dHWP) is introduced, with its
fast axis rotated by 45◦ from the horizontal state. This transformation converts the polarization state
|V⟩ of the photon in this branch to |H⟩, allowing it to be involved in the SPDC process.
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The quantum output states after the interferometer generated in the clockwise (CW) and counter-
clockwise (CCW) paths of the Sagnac loop are respectively:

|ψCW⟩ = exp
{

i[ϕp + kpLB + θp + (ks + ki)LA + δ]
}

ηV β |Hs⟩1 |Vi⟩2 (3.38)

|ψCCW⟩ = exp
{

i[kpLA + (ks + ki)LB + δ + θs + θi]
}

ηHα |Vs⟩1 |Hi⟩2 (3.39)

Here, δ = (kp + ks + ki)
L
2 represents the phase introduced by the crystal, which is the same in both

paths (the crystal length here is denoted as L). The terms θp,s,i correspond to the phase introduced by
the dHWP on the pump, signal, and idler photons, respectively. The parameters LA,B represent the
length of the light path from the crystal interface to the dPBS in the two possible paths (clockwise or
counterclockwise respectively). The fractions ηH,V represent the efficiency of state selection in the two
paths of the dPBS. These efficiencies are defined as the ratio between the number of photons projected
into the corresponding state (H or V, depending on the path) and the total number of incident photons
on the dPBS with that polarization. The distinction between the two branches arises because these two
efficiency values are typically different; we usually achieve a better state selection on the transmitted
path. In Eqs. (3.38) and (3.39), the two exiting ports of the dPBS are labeled as 1 and 2, respectively.
A schematic of the experimental setup illustrating the transformation of both beams is shown in Fig.
3.10.

Figure 3.10: Schematic of the polarization Sagnac interferometer for the SPDC source. The clockwise (left)
and counterclockwise (right) components are carefully directed to the PPKTP crystal, ensuring that their waist
positions are precisely centered in the crystal. After passing through the crystal, the downconverted photons
are then directed to the dPBS, where they are combined to create the entangled state |ψ⟩.

The two separable states are recombined at the dPBS, and based on the free-space relation between
the photon wavenumbers (kp = ks + ki), we can simplify the final expression as follows:

|ψ⟩ ∝
(
|Hs⟩1 |Vi⟩2 + eiϕγ |Vs⟩1 |Hi⟩2

)
(3.40)

where γ = ηHα
ηV β and ϕ = θs + θi − θp − ϕp + ϵ. In the relative phase ϕ, we have introduced the

additional contribution ϵ. This term accounts for the phase difference that could arise in practical
implementations due to a slight path mismatch between the two arms of the Sagnac loop, which
occurs when the interferometer is not perfectly aligned.

To achieve the maximally entangled Bell state |Ψ+⟩, the relative amplitude γ can be set to one by
adjusting the input components ratio of the pump beam α

β to compensate for the unequal transmit-
tance and reflectance efficiencies. Moreover, a proper compensation of the phase difference is essential
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for obtaining the Bell state. This requires precise alignment of the Sagnac loop (ϵ ∼ 0) and careful
adjustment of the pump-phase ϕp. Liquid crystal retarders (discussed in Sec. 4.4.5) offer another
possibility for phase compensation.

By properly compensating for the phase difference, the distinguishability between the clockwise
and counterclockwise generated photons can be reduced, leading to increased quality of entangle-
ment of the bipartite system. The Sagnac interferometer provides a stable and robust setup. The
geometrical superposition of the two paths minimizes the impact of external disturbances, such as
vibrations or environmental changes, resulting in a more reliable entanglement source.
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Chapter 4

Development of the Source

The theoretical groundwork laid out in the preceding chapters provides the essential foundation
for practically implementing the SPDC source. This chapter will provide a detailed and repeatable
procedure for constructing sources of this kind. The process commences with the characterization of
the crystal, employing suitable optical systems, and comparing the outcomes with simulation data.
Additionally, we will elucidate the characterization process of other crucial optical components, such
as the dPBS and the dHWP, both of which play a primary role in the performance of the source.
Next, we will provide a step-by-step account of the assembly procedure for the source. This will
involve the precise positioning of the crystal within the Sagnac loop, a critical factor that significantly
influences the source’s performance. Furthermore, we will elaborate on the alignment process for
the complete Sagnac interferometer setup, an essential step to ensure the production of high-quality
entangled photon states. Moreover, we will outline the alignment procedure for the optical setup
utilized to collect the entangled photons, along with the process of switching optical configurations
using different sets of lenses. Lastly, we will introduce the polarization measurement station utilized
to evaluate the quality of the emitted entangled states. This measurement station provides the means
for accurately characterizing and verifying the entanglement achieved in the SPDC source.

4.1 Characterization of the Crystal

We began by conducting an initial test that focused on characterizing the PPKTP crystal. This pro-
cedure aimed to assess the crystal’s performance in terms of brightness, heralding ratio, and visibility.
To achieve this, we employed two distinct optical setups: one dedicated to measuring brightness and
heralding ratio, and the other to evaluate visibilities. Through these testing processes, we gained
valuable insights into the crystal’s capabilities and limitations, providing a deeper understanding of
the practical alignment difficulties that may arise during the source development. The knowledge
and experience gained from this characterization will be crucial in optimizing the performance of the
source, ensuring its successful implementation.

4.1.1 Analysis of the Emitted Photon Pairs

The first quantity we aimed to observe was the emission of SPDC photons. To achieve this, we
designed an optical setup capable of focusing the pump beam inside the crystal. For this particular
test, we utilized a two-lens optical system, with lenses already available in the laboratory:

f p
1 = 40 mm, f p

2 = 300 mm, f s,i
1 = 40 mm, f s,i

2 = 300 mm (4.1)

The setup’s main objective was to focus the pump beam, which comes from the intensity and polar-
ization controller, onto the crystal and then efficiently collect the downconverted photons into two
distinct channels. For a visual representation of the experimental arrangement, refer to Fig. 4.1 (a
photo of the experimental setup is displayed in Fig. 4.2).
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Figure 4.1: Schematic of the first experimental setup used to characterize the PPKTP crystal: measurement of
brightness and heralding ratio.

Figure 4.2: Photo of the first experimental setup used to characterize the PPKTP crystal: measurement of bright-
ness and heralding ratio.

To filter out the majority of the pump photons, which do not interact in the crystal, we employed
dichroic mirrors. These mirrors have variable reflection and transmission coefficients depending on
the wavelength of the incident radiation. Consequently, they selectively reflect photons with specific
wavelengths while allowing others to pass through. For our experiment, we utilized a dichroic mirror
that transmits 1550nm photons (signal and idler) while reflecting the 775nm pump beam.

Our main interest lies in characterizing the emission of the signal and idler photons, particularly
focusing on the brightness and heralding ratio. To achieve this, we require an apparatus that sep-
arates the signal photons from the idler photons. By employing two detectors and analyzing the
coincidences between the two channels, we can identify the presence of an event since the two pho-
tons are emitted simultaneously by the SPDC process. To achieve the separation of the two beams,
each possessing an orthogonal polarization state, we employed a PBS.
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The crystal was carefully positioned within its support structure, establishing with its axes dis-
tinct horizontal and vertical directions. When properly aligned, these directions appriximately coin-
cide with the polarization states selected by the PBS. As a result, the PBS acts as an efficient selector,
directing the signal and idler photons along their respective paths based on their polarization.

The downconverted photons are then directed along two separate channels (denoted as A and
B, see Fig. 4.1), where they are collected into optical fibers. These fibers guide the photons to the
SNSPDs, passing through fiber polarization controllers which set the optimal polarization state that
maximize the detectors efficiency.

The correct positioning of the crystal is a significant aspect that affects the performance of the
SPDC process. To better adjust the crystal’s position, we have placed it on a XYZ translation stage
that enables precise movement along all three spatial directions. Additionally, we can regulate the
inclination of the incident beam by using two mirrors. The alignment consists in two phases:

• Waist positioning: The first step consists in finding the correct positioning for the crystal along
the beam direction such that the waist of the pump beam is centered in the crystal. To achieve
this we employed the knife-edge method (which will be further elucidated in Sec. 4.4.2) to
determine the beam profile. This method allowed us to identify the position of the waist of the
beam. Subsequently, the crystal was positioned in a way that the focus in free-space was shifted
from the center of the crystal by ∆d (Eq. (3.33)).

• Beam Direction: Another important aspect is the direction of the pump beam. To set this, we
adjusted the position of the crystal using the XYZ translation stage so that the beam was aligned
with the border of one of the crystal’s interfaces. If the beam was tilted, we observed two spots in
the output: one transmitted through the crystal and the other reflected by the crystal’s interface.
By manipulating the tip-tilt of the mirrors, we were able to correct the inclination until only one
spot was observed. Additionally, when we vertically moved the crystal, we ensured there were
no discontinuities in the output beam as it transitioned from passing through the crystal to
exiting it.

Once the crystal was properly positioned, we proceeded with aligning the system for photon
collection. The initial alignment was accomplished using the back-propagation method. This involved
injecting a 1550nm laser from the output fiber of each channel and aligning the system to ensure the
pump beam and the 1550nm laser were precisely overlapped. During this phase, we temporarily
removed the dichroic mirror and the spectral filters to visualize the pump beam until the fiber output
of the 1550nm laser.

After completing the initial alignment, we connected the fiber outputs to the SNSPDs to start data
collection. The events detected by the SNSPDs were then sent to a time tagger, which organized them
based on their arrival time. Subsequently, a dedicated program analyzed the time tags and provided
the counting rates for each channel, as well as the coincidences rates. The coincidences were deter-
mined by measuring the time difference between the recorded events of the two channels. If the time
difference between two events fell within the temporal range defined by the coincidence window
∆tc, the events were recorded as coincidences (further details on this method will be presented in
Sec. 5.1). To accurately estimate the coincidences between signal and idler events, we carefully set a
delay between the two channels to account for any disparities in the lengths of their respective paths
(including both the optical setup and the optical fibers). The distribution of signed temporal differ-
ences between two ordered channels typically follows a Gaussian distribution (as shown in Fig. 4.3).
The standard deviation of this Gaussian (σ ≈ 80 ps) is primarily influenced by the temporal resolu-
tion of the detectors and time tagger. In our experimental setup, the coincidence window was set to
∆tc = 0.25 ns, in order to accept approximately 6σ of the Gaussian distribution of signed differences.
This window is a good compromise between capturing nearly all relevant events and minimizing the
inclusion of accidental coincidences.

An interesting aspect of our analysis involves comparing the SPDC process in CW and pulse mode.
To do this, we had to consider the possibility of accidental counts, i.e., coincidences that are not caused
by paired SPDC photons (see Appendix D). In CW regime, the formula that estimates the accidental

57

https://www.thorlabs.com/thorproduct.cfm?partnumber=LX30/M


4.1. CHARACTERIZATION OF THE CRYSTAL CHAPTER 4. DEVELOPMENT OF THE SOURCE

coincidence rate is given by:
R(CW)

acc = 2RARB∆tc (4.2)

Here, RA and RB are the counting rates in the two channels, and ∆tc is the coincidence window.
On the other hand, in pulse mode, the accidental coincidence rate can be estimated as:

R(pulse)
acc =

RARB

rMIRA
(4.3)

where rMIRA = 76 MHz is the repetition rate of the laser. During the analysis, we took into account the
accidental counting rates and removed them from the data. This allowed us to focus on the genuine
correlations between signal and idler photons, and get more accurate results1.

The results show that the heralding ratios in both channels are approximately ηs ≈ ηi ≈ 16% in
both CW and pulse modes. To precisely estimate the brightness in this configuration, we varied the
power of the pump beam and evaluated the number of effective coincidences. The data showed a
linear trend (see Fig. 4.4), confirming that the brightness Rsi depends linearly on the power of the
pump beam Ppump at least at low power levels (while at higher power we expect a more important
contribution of accidental coincidences caused by double-pair events, especially in pulse mode). This
result is consistent with the fact that Rsi is obtained by integrating |ψ(ωs, ωi)|2 ∝ Np in Eq. (2.48). The
estimated brightness in CW and pulse mode are:

R(CW)
si = (1630± 10) pairs/s/mW R(pulse)

si = (1580± 20) pairs/s/mW (4.4)
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Figure 4.3: Histogram of time difference of coinci-
dence events fitted with a Gaussian. The standard
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Figure 4.4: Linear regression of the measured co-
incidence counting rates plotted against the pump
beam power.

These results are influenced by the losses of the experimental setup, which are due to the optics,
optical fibers, and detectors. To quantify the actual performance of the source, we estimated the total
transmission efficiency of each channel: ϵA

TOT (for channel A) and ϵB
TOT (for channel B).

For evaluating the transmission efficiency of the optics ϵoptics, we employed a 1550nm laser beam
injected through the output fiber, and then we measured the light dissipation from the fiber to the
crystal. The crystal itself has a transmissivity ϵCRY = 0.937 at 1550nm which is probably caused
mostly by the two interfaces with the free space. As the emission can be approximated to occur at the
center of the crystal, its effective contribution to the total transmission efficiency is √ηCRY. Similarly,
we evaluated the transmissivity of the fibers that connect the source to the SNSPDs (ϵ f ibers). This was
achieved by measuring the ratio between the transmitted and input optical power. To determine the

1Subtracting accidental coincidences is a common procedure typically used to characterize the properties of the source.
However, in various applications, such as the Bell test, this method is not applicable.
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detector efficiencies (ϵSNSPD), we conducted a specific procedure which is described in Appendix C).
The overall efficiency of each channel is computed using the following expression2:

ϵA/B
TOT =

√
ϵCRYϵA/B

opticsϵ
A/B
f ibersϵ

A/B
SNSPD (4.5)

The losses of the experimental setup (Tab. 4.1), will be utilized in Sec. 4.2 to simulate the SPDC process
and compare the experimental results with the theoretical ones.

Channel ϵoptics ϵ f ibers ϵSNSPD ϵA/B
TOT

A 0.776 0.861 0.704 0.456
B 0.772 0.773 0.779 0.450

Table 4.1: Transmission efficiency of individual experimental elements.

4.1.2 Visibilities of the Emitted States

The quality of the entangled photons emitted by an SPDC source (as described in Sec. 1.5) is
related to the visibilities in two mutually unbiased bases, such as the Z and X bases. The quantum
states emitted in the SPDC process can be represented in the Z-basis as the separable state |Hs⟩ |Vi⟩.
An important quantity to characterize the properties of the crystal is the measurement of the visibility
in the Z-basis. This measurement, indeed, allows quantifying the maximum achievable visibility of
the states emitted by the source, thus serving as a reference point for enhancing the performance of the
source during the alignment procedure which is used to generate the entangled photons (Sec. 4.4.6).
For this purpose, we modified the experimental setup in Fig. 4.1 by replacing the PBS with a 50:50
BS. In addition, we incorporated an HWP and a PBS in each channel that can be used to perform
projective measurements (as discussed in Sec. 1.3.1). The complete schematic of this experimental
setup is depicted in Fig. 4.7, and a photo of the actual setup can be seen in Fig. 4.6.

This type of configuration is the foundation of a kind of SPDC source that emits polarization-
entangled photon states by postselection. An important factor that must be considered in these types
of sources is the walk-off. Although the |Hs⟩ and |Vi⟩ photons are generated instantaneously inside
the crystal, they have two distinct polarizations and travel through a birefringent medium.

Figure 4.5: Schematic of the second experimental setup used to characterize the PPKTP crystal: measurement
of the visibilities of the emitted states.

2In our analysis, we have not accounted for the coupling efficiency of the light collected into the single-mode optical
fibers, as there is no precise way to estimate it. However, we can reasonably assume that, for a well-aligned optical setup,
the coupling efficiency is ηcoup ≥ 60%.
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Figure 4.6: Photo of the second experimental setup used to characterize the PPKTP crystal: measurement of the
visibilities of the emitted states.

The signal photons propagate with a velocity vs = c/ns, while the idler photons have a velocity
vi = c/ni. As a result, the two photons are emitted by the crystal with a delay, referred to as temporal
walk-off. To estimate the temporal walk-off, we can assume that the generation of the two photons
occurs at the center of the crystal. It is given by:

∆two =
L
2c

(ns − ni) ≈ 3× 10−12 s (4.6)

This quantity affects the quality of the emitted entangled states in SPDC sources based on postse-
lection. To address this issue, a potential solution is to compensate for the walk-off using another
crystal, identical to the generation crystal but with half the length [63]. This compensating crystal can
be placed in front of the generation crystal and rotated by 90◦ with respect to the first crystal. This ar-
rangement ensures that the signal photons experience a refractive index ni in the second crystal, while
the idler photons experience ns, effectively canceling out the walk-off. However, this method requires
the second crystal to have the exact physical properties of the first crystal (preferably extracted from
the same original crystal) and requires precise positioning.

If the walk-off is compensated, we can demonstrate that the optical setup illustrated in Fig. 4.5 can
be used to produce entangled photons. The BS, indeed, acts on the input state |Hs⟩ |Vi⟩, independently
of its polarization, transmitting or reflecting the incident photons with the same probability. As a
result, after the BS, the two-photon quantum state can be expressed as follows:∣∣ψ f in

〉
∝ |H⟩A |V⟩A + eiϕ |H⟩A |V⟩B + eiϕ |V⟩A |H⟩B − |H⟩B |V⟩B (4.7)

Where ϕ is a phase introduced by the BS in the reflected paths (for the purpose of this discussion, it is
not necessary to know its exact value). In this representation, channel A corresponds to the transmit-
ted path after the BS, while channel B corresponds to the reflected path. By considering only the events
in which we have a coincidence between the two channel detections, we are effectively selecting only
the states of the form:

|ψPS⟩ ∝ |H⟩A |V⟩B + |V⟩A |H⟩B ∝
∣∣Ψ+

〉
(4.8)

In principle through this setup, one aims to obtain through postselection the state |Ψ+⟩, which can be
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expressed in the Z and X bases as follows:

∣∣Ψ+
〉
=

1√
2
(|H⟩ |V⟩+ |V⟩ |H⟩) = 1√

2
(|D⟩ |D⟩ − |A⟩ |A⟩) (4.9)

As a consequence, the visibilities in these two bases, written in terms of the coincidence counting rates
N, become:

VZ =
NHV + NVH − NHH − NVV

NHV + NVH + NHH + NVV
VX =

NDD + NAA − NAD − NDA

NDD + NAA + NAD + NDA
(4.10)

However, in the laboratory, we did not have a system capable of compensating for the significant
temporal walk-off of the photons emitted by our crystal (Eq. (4.6)), but we still exploited the presented
setup to measure the visibilities in Z and X bases. The presence of the walk-off, indeed, does not
affect the measurement of the visibility in the Z-basis, which still remains the main objective of this
characterization, but only the visibility in the X-basis.

The experimental measurement of the visibilities in these two bases requires the estimation of the
coincidence counting rates through different polarization measurements. To determine the polariza-
tion state of the system, we need to find the angles of the HWPs (in the reference system of the rotary
mounts in which they are inserted) corresponding to the states |H⟩ or |V⟩. This can be achieved by
rotating the HWPs until we identify a minimum, which can be in the form of |H⟩A |V⟩B or |V⟩A |H⟩B.
In this case, we assumed the first scenario and set θ

(H)
A = 339.5◦ and θ

(V)
B = 354◦. If we use the oppo-

site convention, we obtain the same results, as we just invert the values of the two minima or maxima,
respectively. The results are summarized in Tab. 4.2. Furthermore, Fig. 4.7 illustrates the scan of the
coincidence counting rate as a function of the angle of the B-analyzer, while maintaining the angle of
the A-analyzer fixed at θ

(H)
A = 339.5◦.

Z-basis θA θB Coincidences [1min] X-basis θA θB Coincidences [1min]
NHH 339.5◦ 309◦ 350± 19 NDD 2◦ 331.5◦ 38330± 200
NHV 339.5◦ 354◦ 184990± 430 NDA 2◦ 16.5◦ 37900± 190
NVH 294.5◦ 309◦ 191590± 440 NAD 47◦ 331.5◦ 37400± 190
NVV 294.5◦ 354◦ 275± 17 NAA 47◦ 16.5◦ 39430± 200

Table 4.2: Number of coincidences recorded in 1-minute acquisition time. We assume Poisson error on the
photon counts.
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Figure 4.7: Scan of the Z-basis visibility of the first setup. The angle of the A-analyzer is fixed to θ
(H)
A = 339.5◦

(state |H⟩) while the angle of the B-analyzer θ is varied in the range [290◦, 380◦]. Data are fitted with a function
of the type A · sin2(θ + θoffset) + B, using A,B, and θoffset as free parameters.
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The visibilities in the Z and X bases, estimated by the experimental coincidence counts in Tab. 4.2,
are respectively:

VZ = (99.67± 0.01)% VX = (1.6± 0.3)% (4.11)

This test has shown that it is possible to achieve high visibilities in the Z-basis, and therefore,
in principle, these values could be attained in both the Z and X bases3 in the final source. Factors
that might influence the reduction of such visibility in the final source setup are related to the optical
components such as PBSs and waveplates used to perform measurements, the dPBS in the Sagnac
loop, and the fibers employed to transfer the states (a more detailed description of these effects is
found in Sec. 1.6.2).

Another result of this test (as expected) is the low visibility in the X-basis. In particular, we verified
the impact of the walk-off on the quality of the entangled states emitted by SPDC sources based on
postselection. Only with a good walk-off compensation it is possible to generate entangled photons.
Moreover, another problem of these sources is that the brightness is reduced to 50% of the maximum
value because half of the emitted photons are discarded by the BS (Eqs. (4.7) and (4.8)) The opti-
cal setup based on the Sagnac loop, which is the working principle of the source discussed in this
thesis, allows for achieving high performance in terms of brightness, heralding ratio, and visibili-
ties. Although it is more complicated to build and align, it is possible to demonstrate that this setup
provides an efficient method to solve the walk-off issue without sacrificing brightness and heralding
ratio.

4.2 Simulations

In this section, we present the simulations of the SPDC process, which are used to evaluate the
brightness and heralding ratio based on the model described in Chap. 2. Here, in particular, we will
specifically show the results obtained for the optical configuration used to characterize the crystal and
we will compare the experimental results of brightness and heralding ratio with the theoretical ones.
The central aspect involves estimating the biphoton wave function (Eq. (2.48)) using specific input
parameters:

• Effective susceptibility: In this process, the pump and idler photons are polarized along the y-
axis, while the signal is polarized along the z-axis. Consequently, the effective susceptibility is
obtained as χ

(2)
e f f = χ

(2)
232. This quantity is typically related to the tensor dijk, as defined in the

literature [64], by the equation:
dijk =

1
2

χ
(2)
ijk (4.12)

Furthermore, depending on the symmetry of the system, this tensor is usually rewritten in terms
of the contracted matrix dil of size 3× 6. The index l depends on the polarization of the signal
and idler photons, as shown below:

jk : 11 22 33 23, 32 31, 13 12, 21
l : 1 2 3 4 5 6

(4.13)

For this specific case, given the polarization of the pump, signal, and idler photons, we find that
χ
(2)
e f f = 2d2,4 = 7.28 · 10−12m/V.

• The transmission efficiency of the apparatus for each channel, ϵA
TOT and ϵB

TOT, are considered
when estimating the heralding ratios for signal and idler photons. On the other hand, the bright-
ness is determined by considering the total transmission efficiency of both channels: ϵTOT =
ϵA

TOTϵB
TOT (the losses are presented in Tab. 4.1).

• The waists of the pump, signal, and idler photons are wp = 18.6 µm and ws = wi = 39.0 µm.
3In practice, the visibility in the X-basis, as will be discussed in Sec. 5.3, is typically lower than that in the Z-basis due

to imperfections of the experimental setup that result in a reduction of entanglement.
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• The refractive indexes np(λp, T), ns(λs, T), and ni(λi, T) (defined in Eqs. (3.3), (3.4), and (3.5))
are calculated as functions of the wavelength of the radiation, while the temperature is fixed at
20◦C.

• The length of the crystal is L = 2 cm.

• The poling period is Λ = 46.2 µm.

4.2.1 Joint Spectral Density

We are interested in evaluating the joint spectral density |ψ(ωs, ωi)|2, which represents the shape
of the biphoton spectral distribution. Specifically, we explore how this distribution changes with
varying pulse duration τp. Four simulations were conducted, setting τp to 1 ns, 10 ps, 1 ps, and 100 fs.
Among these cases, the first one effectively represents the CW scenario, because 1 ns is long enough
to cause negligible spectral effects, while the other three configurations represent the three possible
configurations of Mira. The joint spectral distributions, rescaled to their maximum value, are depicted
in Figs. 4.8, 4.9, 4.10, and 4.11.

Figure 4.8: Rescaled spectral density distribution
of downconverted photons with τp = 1 ns.

Figure 4.9: Rescaled spectral density distribution
of downconverted photons with τp = 10 ps.

Figure 4.10: Rescaled spectral density distribution
of downconverted photons with τp = 1 ps.

Figure 4.11: Rescaled spectral density distribution
of downconverted photons with τp = 100 fs.
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In the case of long pulses (Figs. 4.8 and 4.9), the joint spectral density exhibits a tight clustering
around the values that satisfy the condition ωs + ωi = ωp. As the pulse duration becomes shorter
(Figs. 4.10 and 4.11), the energy of the pump photons gets distributed over a wider range of frequen-
cies. Consequently, this broadens the energy conservation condition, leading to a widened spectral
distribution. Fig. 4.10 illustrates that when τp ≈ 1 ps, the spectral distribution becomes approximately
symmetric, and the bandwidth of the downconverted photons is around 4 nm. For even shorter pulse
durations (Fig. 4.11), the effect of broadening the spectral distribution leads to a significant increase
of the photon bandwidth, which, in the case of τp ≈ 100 fs, is approximately 20 nm.

These simulations offer valuable insights into the properties of the SPDC process for different
pulse durations. Particularly, in applications in which short pulses are needed, these results become
significant. Short pulses can aid in better selecting events from the noise, especially in scenarios where
channel losses are high. However, they also result in a significant increase in the bandwidth, which
reduces spectral purity. Additionally, when employing very short pulses, the use of narrow spec-
tral filters can lead to a drastic reduction in brightness and heralding ratio. An optimal trade-off is
achieved when the pulse duration is around τp ≈ 1 ps, which is similar to the pulse duration of Mira
in the working configuration (τp = 2.17 ps). For the simulations, we will use this specific value to
evaluate the performance of the SPDC source in pulse mode.

4.2.2 Simulation Results

We conducted simulations of the SPDC process in both CW and pulse modes to evaluate the ex-
pected brightness and the heralding ratios for signal and idler photons in the specific optical config-
uration used to characterize the PPKTP crystal (Sec. 4.1.) For this purpose, we integrated the joint
spectral density over a suitable range of frequencies for the signal and idler photons, corresponding
to a wavelength range of 12 nm centered at 1550 nm which approximately corresponds to the pass-
band of the filters employed in the experiment and we estimated the theoretical brightness R(sim)

si .
Similarly, following the approach described in Sec. 2.3.2 we evaluated the theoretical rate of pho-
tons (signal or idler) emitted in the collecting Gaussian mode regardless of the spatial mode of the
corresponding partner. They are denoted (following the notation of Sec. 2.3.2) as R(sim)

s (for signal)
and R(sim)

i (for idler). From these quantities, we estimated the theoretical heralding ratios for signal
(η(sim)

s = R(sim)
si /R(sim)

s ) and idler (η(sim)
i = R(sim)

si /R(sim)
i ) photons. These theoretical results were eval-

uated neglecting the losses of the apparatus (listed in Tab. 4.1). To obtain estimates of these quantities
that are comparable with experimental data, we took into account the contribution of the transmis-
sion efficiencies of each channel (ϵA

TOT and ϵB
TOT), evaluating the effective performance of the source

(which would be achieved without experimental losses) in the following way:

• Brightness: The effective brightness is calculated considering the contribution of the losses of
both channels: Rsi = R(exp)

si /(ϵA
TOTϵB

TOT).

• Heralding Ratio: The single-photon collection rates for the signal and idler photons are esti-
mated considering the losses of the corresponding channel in which they were measured. In
the experimental setup described in Sec. 4.1 the signal photons were detected in channel A
while the idler photons in channel B. For this reason, the effective single-photon collection rates
can be calculated as Rs = R(exp)

s /ϵA
TOT and Ri = R(exp)

i /ϵB
TOT. Therefore, the effective heralding

ratios become ηs = Rsi/Rs = η
(exp)
s /ϵB

TOT and ηi = Rsi/Ri = η
(exp)
i /ϵA

TOT.

The differences between the simulations in CW and pulse modes are negligible and this fact is also
confirmed by the experimental results. For this reason, we compared the experimental results and
simulations only in the CW mode. These results are listed in Tab. 4.3.

Even if the simulations can approximately predict the experimental quantities, it is important
to note that there might be some multiplicative factors not considered by the model, which could
explain the higher values of the simulated brightness and heralding ratios. These factors may arise,
for instance, by an incorrect estimation of some quantities such as the effective susceptibility or the
refractive indexes of the medium. Moreover, in these calculations, we used the theoretical waists of
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the pump, signal, and idler photons estimated through the theoretical formulas described in Sec. 3.5.3
that are applied to the set of lenses selected for this experimental configuration (Eq. 4.1. These waists
may differ from the experimental values. This is primarily due to the experimental error in the lens
positioning relative to the theoretical positions. Moreover, the lenses could induce non-ideal effects
such as aberrations that are not considered by the theoretical model.

The multiplicative factors of the brightness and single-photon rates are eliminated in the heralding
ratios, which are in any case overestimated compared to the experimental results. However, in these
simulations, we did not consider the efficiency of the fiber coupling, which could explain the observed
reduction of 60% in the experimental single-channel counting rates, as this efficiency is not directly
measurable. Lastly, it is crucial to recognize that the performance of the SPDC process strongly de-
pends on the alignment procedure. Some of the model assumptions, such as the centering of the
crystal, may not be fully respected thus affecting the effective performance of this process. To further
validate the presented model, it is essential to explore the SPDC process in other optical configura-
tions. This will be studied in Chap. 5, where we will delve into the exploration and discussion of
additional experimental scenarios to provide a more comprehensive understanding of the validity
and limits of this model in describing the SPDC process.

Rsi [pairs/s/mW] ηs ηi

Effective exp. values 8000 0.36 0.36
Simulation 13040 0.63 0.64

Table 4.3: Comparison of the effective experimental brightness and heralding ratios with the simulations of the
first setup employed for the characterization of the PPKTP crystal in CW. The effective experimental values are
estimated by considering the contribution of the experimental losses.

4.3 Optics Characterization
There are crucial optical elements within the source that significantly impact its performance. One

of these components is the dual-wavelength PBS (dPBS). Its primary function (as described in Sec.
3.6) involves selecting the downconverted photons emitted by the crystal and then directing them
along distinct paths, depending on their polarization state. Another important component is the
dual-wavelength HWP (dHWP) which is positioned within the Sagnac loop. Its crucial role involves
converting the reflected V-polarized beam into an H-polarized beam, thereby enabling its interaction
with the crystal. In this section, we will present the characterization of these two components which,
as discussed in Sec. 4.4, will play a significant role in the implementation of the source.

Dual-wavelength PBS

For this particular source, the PBS0012-775/1550 from Newlight Photonics was utilized. The per-
formance of this optical component is evaluated in terms of two quantities: the extinction ratio and the
transmittance. The first quantity evaluates the dPBS’s efficiency in selecting horizontal polarization
for the transmitted path and vertical polarization for the reflected path, while the second parameter
enables us to assess the losses induced by this optical component. The performance of the dPBS was
assessed for each branch (transmitted and reflected) at both working wavelengths using laser beams
at 775nm and 1550nm. To control and set an arbitrary linear polarization incident on the dPBS, we
employed a combination of a PBS to linearly polarize the light and an HWP to rotate the polarization
state. The significant experimental parameters for this characterization are the powers of transmitted
light (PH) and reflected light (PV), which are proportional to the number of photons selected by the
dPBS in the H and V states, respectively. The assessment of the dPBS’s performance is carried out as
follows:

• Extinction ratio: This quantity can be measured experimentally by calculating the ratio between
the minimum (Pmin

H/V) and maximum (Pmax
H/V) powers observed in each branch of the dPBS, ob-

tained by adjusting the incident light’s polarization using the HWP. The minimum power is
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indeed measured when the incident light’s polarization is orthogonal to the one selected in that
branch by the dPBS. In the ideal case, where state selection is perfect, this quantity is zero. How-
ever, in real components, there exists a small fraction of states that are not accurately selected
by the dPBS. The extinction ratio of each branch is therefore expressed as:

RH/V =
Pmin

H/V − Pbkg

Pmax
H/V − Pbkg

where in this formula we have subtracted the contribution of the background power level Pbkg.

• Transmittance: To assess the transmission efficiency of each branch, we configured the polar-
ization of the incident light to maximize the power in each branch. Subsequently, we measured
the ratio between the maximum light output from the branch (Pmax

H/V) and the incident light on
the dPBS (P0). Specifically, the expression for the transmittance of each branch, after subtracting
the background contribution, is:

TH/V =
Pmax

H/V − Pbkg

P0 − Pbkg

The results of this characterization, evaluated for each branch of the dPBS and at both wavelengths,
are summarized in Tab. 4.4.

Wavelength [nm] RH RV TH TV

775 3.46 · 10−4 1.77 · 10−3 0.978 0.969
1550 1.29 · 10−4 4.74 · 10−3 0.981 0.971

Table 4.4: Characterization of the dPBS: extinction ratio and transmittance.

An interesting property of this dPBS is that the optimal extinction ratio in the reflected beam at
1550 nm is achieved when it is tilted by approximately ≈ 4◦, deviating from the ideal configuration
of being perpendicular to the input beam. When untilted, the extinction ratio is around 1.9%, but this
dramatically improves to 0.47% when tilted. Similarly, for the 775nm reflected beam, the maximum
extinction ratio is attained at a tilting angle of approximately ≈ 1.5◦. Notably, the extinction ratio in
the transmitted path is not significantly affected by the tilting angle in both cases. Given that visi-
bility is one of the most critical parameters of the source and is contingent on the dPBS’s proficiency
in separating downconverted photons according to their polarization, this characterization assumes
paramount importance in actualizing the source setup.

Dual-wavelength HWP

Another crucial optical element is the dHWP. For this source, we utilized the WPD03-H1550-H775
from Newlight Photonics. Similar to the dPBS, characterizing the properties of the dHWP involves
evaluating the extinction ratio and transmittance for both wavelengths. To achieve this, we employed
a PBS to polarize the light incident on the dHWP and a second PBS after the dHWP to filter only the
transmitted component of the light. By varying the angle of the dHWP, we can effectively manipulate
the H-component of the beam, thereby altering the intensity of the beam transmitted by the second
PBS. Plotting the power as a function of the dHWP angle, we obtained the plots displayed in Figs. 4.12
and 4.13. The data obtained align well with Malus’ law and are fitted using a function of the form
Pmax · sin2(θ + θoffset) + Pmin to extract the maximum and minimum transmitted powers. Similarly
to the dPBS, the effectiveness of the dHWP relies on the extinction ratio defined as R =

Pmin−Pbkg
Pmax−Pbkg

and the transmittance denoted as T =
Pmax−Pbkg

P0−Pbkg
, where P0 represents the power measured before the

HWP, and Pbkg denotes the background power. A higher extinction ratio is indicative of a greater
capacity to rotate the polarization state effectively. The comprehensive results of this characterization
are presented in Tab. 4.5.
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Figure 4.12: Characterization of the dHWP at
775nm.
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Figure 4.13: Characterization of the dHWP at
1550nm.

Wavelength [nm] R T

775 5.12 · 10−4 0.987
1550 1.42 · 10−3 0.982

Table 4.5: Characterization of the dHWP: extinction ratio and transmittance.

4.4 Source Optical Setup

After characterizing the optical elements, we proceeded with the realization of the source. Dur-
ing this phase, careful consideration of the limitations imposed by the breadboard dimensions (450×
600 mm2) is crucial. The XYZ translation stage’s dimensions set a minimum size for the Sagnac loop.
Conversely, the choice of the pump focusing lens (with a focal length of 250 mm) imposes a maximum
size for the Sagnac loop to ensure the correct pump beam focusing inside the crystal. Addressing the
requirements observed during the optical elements’ characterization is also essential. To maximize
the extinction ratio of the 1550nm light and enhance visibility, the dPBS needs to be tilted by 4◦. Ad-
ditionally, the XYZ translation stage allows for parallel movement along the string of holes in the
breadboard but does not allow for tilting the crystal. As a result, the incident beam on the crystal
inside the Sagnac loop must be parallel to this direction. In addition, we meticulously designed the
source setup to facilitate the effortless replacement of lenses for both the pump and signal/idler pho-
tons. The setup has been constructed to accommodate lenses with focal lengths ranging from 250
mm to 450 mm. The entangled photons after exiting from the Sagnac loop are directed through two
distinct channels (conventionally denoted as A and B) and they are consequently collected into opti-
cal fibers. To ensure a fine control of the fiber coupling of the emitted photons, we incorporated two
mirrors for each channel. These mirrors play a crucial role in optimizing the fiber coupling process,
enhancing the brightness and the heralding ratio. The final setup also integrates a HWP and QWP
at 1550nm in front of each fiber output. These waveplates enable precise control of the polarization
state of the photons. Such control is critical when using fibers to transport the entangled photons, as
fibers can alter the photons’ polarization. By adjusting these waveplates, one can compensate for the
polarization changes induced by the fibers and set any maximally entangled state. To improve the
quality of the entangled states, a liquid crystal (LCR) is introduced to correct a small phase within the
range of [0, 2π]. This phase correction aims in compensating for a non-perfect alignment of the two
paths in the Sagnac loop. The schematic of the final setup is illustrated in Fig. 4.14, and a photo of the
experimental setup is shown in Fig. 4.15. This comprehensive setup achieves the desired control and
stability required for generating entangled photons in a practical and efficient manner.
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Figure 4.14: Schematic of the final design of the polarization-entangled photon source.

Figure 4.15: Photo of the source setup.
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4.4.1 Sagnac Alignment

The first crucial step, after setting up the apparatus for collimating and focusing the pump beam,
involves constructing the Sagnac loop. To ensure successful implementation, we must address specific
constraints:

• The crystal must be positioned at the center of the Sagnac loop within the XYZ translation stage.
As the crystal is aligned with a horizontal line of holes, and the translation stage lacks rotation
capability, one arm of the Sagnac loop must be parallel to the crystal axis to properly direct the
beam inside it.

• Proper orientation of the dPBS is essential to maximize the extinction ratio of the reflected beam
at 1550 nm.

• The dimensions of the Sagnac loop must be chosen carefully to guarantee correct pump beam
focusing and appropriate positioning of the dHWP inside it.

To overcome these challenges, the primary focus was on positioning the crystal and the dPBS.
As the dPBS is tilted, special attention must be paid to the positioning of optical elements to avoid
overlaps of optical components. In particular, special attention was given to the orientation of the
beam exiting the dPBS and directed into channel A. In this situation, indeed, the support for the
pump lenses and that of the downconverted photons would obstruct each other. In order to achieve
the desired orientation, a 1550nm laser was employed, with its output positioned in front of the first
mirror of channel A (where we intend to have the downconverted photons reflected). The laser was
then directed toward the dPBS. The objective was to correctly orient the dPBS such that the output
channel A coincided with that of the laser. To fine-tune the setup, a 1550nm PBS and HWP were
introduced to linearly polarize the laser beam incident on the dPBS. The HWP angle was adjusted to
minimize the intensity of light in the reflected branch of the dPBS. At this point, the dPBS was rotated
to achieve maximum extinction in this branch. This way, we set up the dPBS so that the photons
exiting from channel A were parallel to those coming from the pump. This alignment ensured that
channel B became tilted, but it did not represent an issue as there was no risk of overlap with the other
optical components (see Fig. 4.14).

The detailed procedure employed to construct and align the Sagnac loop is as follows:

1. Fix the altitude of the beam and ensure that all optical components maintain the beam’s altitude.

2. Orient the 1550nm laser in such a way that it is parallel to the pump beam, crossing the dPBS
in the middle of one of its faces.

3. To regulate the polarization of the laser, use a 1550nm PBS and an HWP. Then, proceed to rotate
the dPBS until the extinction ratio on the reflected path is maximized (which occurs around 4◦).
Once the desired orientation is achieved, fix the position of the dPBS in place.

4. Adjust the dichroic mirror’s position until the pump beam coincides with the 1550nm beam in
both branches of the dPBS, and then secure that position.

5. The positioning of the mirrors is accomplished in two steps. Firstly, insert one of the mirrors
such that the reflected beam is directed parallel to the crystal’s orientation. Then, insert the
second mirror to close the loop. This is possible if we observe that the two branches of the dPBS
(clockwise and counterclockwise) coincide.

6. Insert the dHWP in a way that the reflection of the pump beam aligns as closely as possible with
the original beam. This alignment is crucial to ensure that the waveplate is optimally positioned
orthogonal to the incident beam. To correctly set the angle of the waveplate fast axis at 45◦ with
respect to the state |H⟩ (set by the dPBS), rotate the waveplate until the intensity of the pump
beam exiting in channel A is minimized.
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As the alignment of the Sagnac loop significantly affects the relative phase between photons trav-
eling in the clockwise and counterclockwise paths, resulting in distinguishability and reduced en-
tanglement, a second, finer, and more sophisticated procedure becomes essential. In this work, we
utilized two methods to align the Sagnac loop:

• Fiber recoupling method: When the Sagnac loop is accurately aligned, and the dHWP’s fast
axis is set at 45◦, all the light entering the loop exits through the input port (channel B) and is
reflected back by the dichroic mirror to the pump fiber. We can take advantage of this prop-
erty to effectively align the Sagnac loop by making adjustments to the configuration of the two
mirrors to maximize the light that turns back and is recoupled into the pump fiber. This align-
ment process involves using a BS positioned in the polarization intensity controller to split the
returning light from the input light. A successful alignment is achieved when the power of the
light returning from the Sagnac loop reaches at least 25% of the initial power that entered the
loop.

• Interference method: This method exploits the interference of the clockwise and counterclock-
wise paths at the dPBS. To make the two beams interfere, they must be projected into the same
polarization state, which is possible by placing a polarizer in the reflected beam of the dichroic
mirror in channel A. The method takes advantage of the non-optimal extinction ratio of the
dPBS at 775nm, resulting in a residual pump beam that passes through channel A (although
minimized by the dHWP configuration). If the two beams have the same direction and phase,
constructive interference occurs. Otherwise, interference fringes are observed (see Fig. 4.16).
These fringes can be horizontal or vertical, depending on the inclination of the beams at the
dPBS. By analyzing the fringes, we can adjust the tip-tilt of the mirrors specifically until they
disappear. When the Sagnac loop is perfectly closed, the phase difference is zero, and we achieve
maximum constructive interference.

Figure 4.16: Interference pattern observed during the alignment procedure using the interference method.

Our main goal is to determine the arrangement of the mirrors such that the two paths of the
Sagnac loop (clockwise and counterclockwise) overlap. The use of the interference method allows for
correcting the tilt of the two beams that exit from channel A of the dPBS. However, there are several
configurations that enable this overlap, and the method is unable to identify the optimal one. For this
reason, the initial alignment phase is carried out using the fiber recoupling method, as it provides
a clearer feedback about the correct mirror configuration. Subsequently, a fine-tuning alignment is
performed by adjusting the mirrors slightly to correct any residual tilt between the two beams exiting
from the dPBS. This fine adjustment procedure must be performed before starting any measurements
since even small misalignments caused by thermal changes in the mirror positioning can significantly
impact the quality of the generated entangled photons. For this reason, in this setup, we used high-
quality POLARIS-K1S4 mirror mounts for the Sagnac loop, which guarantee long-term alignment
stability. These mounts provide the necessary stability for precise fine-tuning and maintenance of the
entangled photon source’s optimal configuration.
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4.4.2 Crystal Optimal Positioning

The model used to describe the SPDC process, as discussed in Chap. 2, assumes that the pump
beam’s waist is centered within the crystal. This assumption becomes crucial in the entangled photon
source setup to ensure high performance. To thoroughly characterize the pump beam, a detailed
analysis of its free-space propagation is essential, necessitating the extraction of the crystal from its
support structure. As explained in Sec. 3.5.3, the position of the free-space waist anticipates the
effective waist position of the beam propagating inside the crystal, and this difference is denoted by
∆d as shown in Eq. (3.34). This condition is essential for both paths of the Sagnac loop: clockwise
(CW) and counterclockwise (CCW).

To achieve this condition, we start by determining the position of the pump focusing lens that
allows for a separation of approximately 2∆d ≈ 8.5 mm between the CW and CCW beams. Once we
find the optimal position for the focusing pump lens, we can then adjust the position of the crystal
using the XYZ translation stage. Firstly, we move the crystal along the beam direction to ensure
its center coincides with the central point between the positions of the waists of the CW and CCW
beams. Then, we adjust the other two degrees of freedom so that the beam passes through the center
of the crystal, staying as far as possible from the external surfaces to avoid clipping (this procedure
has been described in Sec. 4.1). The crucial point of the entire alignment procedure depends on the
precise determination of these two focal point positions.

Knife Edge Method

The prevalent and direct technique for determining the laser beam radius uses CCD sensors,
which provide a two-dimensional intensity profile of the beam’s cross-section. These data are then fit-
ted with a two-dimensional Gaussian to extract the beam radius. Nonetheless, this method encounters
an issue: the CCD can not be positioned on the XYZ translation stage, preventing the establishment
of a precise reference system for waist estimation. To address this, we have adopted the knife edge
method, a technique that entails traversing a sharp-edged knife through the beam’s cross-section and
measuring the intensity of light transmitted as a function of the blade position. The main advantage
of this approach is that the knife can be inserted into the same support structure of the crystal, thus
linking the measured beam radius positions directly to the crystal’s center position.

The intensity profile of an ideal Gaussian beam is defined as:

I(x, y) = I0 exp
[
−2

(x− x0)2 + (y− y0)2

w2

]
(4.14)

Here, we assume symmetry along both the x and y axes (i.e., wx = wy = w). The knife edge method
enables the assessment of the beam radius w(z) at a specific location z along the propagation direction.
For each position z, the knife is moved along the x-axis using an electronic micrometric controller
connected to the XYZ translation stage. For each position, the photodiode is synchronized to capture
the beam’s intensity. A visual representation of this approach is provided in Fig. 4.17.

Figure 4.17: Schematic of the knife edge method.
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The intensity of the beam, recorded when the blade obstructs the beam until x̄, can be calculated using
the following expression:

I(x̄) =
∫ +∞

x̄

∫ +∞

−∞
I(x, y)dxdy =

I0

2

[
1− erf

(√
2
(x̄− x0)

w

)]
(4.15)

where the error function is defined as erf(x) = 2√
π

∫ x
0 e−t2

dt. The function in Eq. (4.15) forms the
foundation for data fitting and for estimating the beam radius. The beam radius and the center of
the beam x0 serve as free parameters for the fitting process. An illustrative example of this fitting
procedure is presented in Fig. 4.18. This process can be replicated for varying blade positions along
the beam’s propagation direction z, enabling the reconstruction of the complete beam profile. To
describe the spatial variation of the Gaussian beam radius, the following formula can be employed:

w(z) = W0

√
1 +

[
(z− z0)λ

πW2
0

]2

(4.16)

While theoretically the focus position z0 and the waist W0 could effectively characterize the beam’s
properties, this was not achievable in this particular case. The knife edge method encounters limi-
tations near the focus, resulting in inaccuracies in determining the waist position. Specifically, the
knife edge method failed to provide beam radius values below 70 µm near the waist. Moreover, an
asymmetry is evident in the data trend prior to and after the beam focus, probably due to optical im-
perfections like aberrations and astigmatism. While this effect is relatively small, the fitting function
in Eq. (4.16) cannot be applied here. Given that our primary goal is to estimate the focus position z0,
we opted to fit both datasets (CW and CCW) using a generic third-order polynomial function. We
systematically scanned the beam radius at multiple positions, subsequently adjusting the pump lens
until the separation between the two waists approached approximately 2∆d ≈ 8.5 mm (as depicted
in Fig. 4.19). At this point, we reintroduced the crystal on the support and we positioned it such that
its center coincided with the midpoint of these two waists.

Figure 4.18: Example of fit used in the knife edge
method for the estimation of the beam radius.
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Figure 4.19: CW and CCW laser beam profiles in
the optimal configuration of pump lens. These
data are fitted with a third-order polynomial func-
tion to get the waist positions.

The alignment procedure just described allows for achieving good alignment, but it is affected by
the uncertainty due to the knife-edge method. To further improve the alignment of the crystal, it is
possible to leverage the symmetry between the CW and CCW beams. When the crystal is perfectly
aligned, the CW and CCW beams appear symmetric. To achieve this configuration, we initially pro-
ceeded by finely adjusting the crystal’s position using the micrometer screw of the XYZ translation
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stage to center it within the Sagnac loop (this condition is achieved when the two beams incident on
the crystal are symmetric). Subsequently, we precisely adjusted the position of the lens that focuses
the pump photons in the crystal until the two beams (CW and CCW) overlap in the entire Sagnac
loop.

4.4.3 Downconverted Photons Collection System

The emitted photons from the crystal are directed toward the two outputs of the Sagnac loop,
channel A and channel B. These beams are subsequently collimated using the first set of lenses (with
long focal lengths) and further guided into a second set of lenses (with short focal lengths), focusing
the beams within optical fibers. The pivotal challenge lies in aligning this optical configuration to
ensure the efficient collection of downconverted photons.

To achieve this, precise alignment of the two beam paths is essential. The lenses responsible for
focusing the collimated beam into the fiber are initially positioned to collimate a 1550nm laser beam
introduced through the fiber. The other lenses instead are approximately set at a distance correspond-
ing to their focal length from the crystal center.

The procedure used to align the optical setup is the following:

1. In the context of collinear SPDC, the emitted beams share the same trajectory as the pump beam.
This inherent symmetry aids in streamlining the alignment process. While the dichroic mirror
in channel B remains fixed (it is used to direct the pump beam in the Sagnac loop), the dichroic
mirror and the spectral filters of channel A are temporarily removed. The fast axis of the dHWP
is rotated to maximize the intensity of the pump beam traversing channel A (which means that
it is parallel to the state |H⟩ or |V⟩ set by the dPBS). This procedure permits the propagation of
the 775nm beam up to the fiber of channel A. The initial alignment of channel A entails mirror
adjustments to optimize fiber coupling. Notably, the coupling efficiency of the 775nm light is
limited since the optics and the single-mode optical fiber are designed for transmitting 1550nm
photons. However, this method is useful for obtaining a rough alignment of the setup.

2. An enhancement in alignment is achieved by injecting a 1550nm laser beam through the output
fiber of channel A. The back-propagation technique is employed to align the 1550nm beam with
its 775nm counterpart.

3. After successfully aligning channel Awith the pump beam, the alignment focus shifts to channel
B. Exploiting the experimental setup’s symmetry, a 1550nm laser beam is injected into channel
A’s output fiber, maximizing the coupling efficiency of channel B. This procedure aids in achiev-
ing optimal alignment, facilitating improved positioning of the lenses with long focal lengths.
Proper lens adjustment ensures correct beam focalization within channel B’s fiber, thereby op-
timizing fiber coupling. Additionally, alignment ensures equality of beam radius of CW and
CCW beams at the crystal interfaces for both 1550nm and 775nm beams.

4. Fine alignment is executed through the utilization of photon detection feedback. Thus, the out-
put fibers of the source are connected to the SNSPDs, and meticulous adjustment of the QWP
and HWP for each channel ensures the detectors’ efficiency is maximized. After correctly set-
ting the QWP and HWP, it is possible to proceed with the precise arrangement of the long focal
length lenses and iterative mirror adjustments, all aimed at optimizing the collection of photon
counts. This alignment procedure is conducted independently for each channel. For each lens
position, the photon detection is maximized by manipulating the tip-tilt of the mirrors. Then,
the lens is moved slightly to obtain a better coupling. When optimal fiber coupling is attained,
even minor mirror adjustments yield a significant impact on photon detection.

5. For precise optimization, the positions of the shorter focal length lenses can be fine-tuned in
conjunction with the adjustment of the mirrors in the Sagnac loop.

It is important to ensure during this phase that the beam is not clipped by the crystal. To verify it is
sufficient to introduce a 1550nm laser into one of the two outputs and observe the beam in proximity
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of the crystal interface. The aforementioned procedure was used for the first alignment of the source.
However, it is essential to conduct periodic fine-tuning of mirror positions before any measurements.

4.4.4 Polarization Measurement Station

Performing polarization measurements on the generated biphoton states is essential to evaluate
the source’s performance. Such measurements enable the determination of entangled state visibilities,
Bell tests, and quantum state tomographies. For this purpose, we have developed a polarization
measurement station (see Fig. 4.20) comprising a sequence of QWPs, HWPs, and PBSs. These optical
elements facilitate the execution of projective measurements on a complete set of mutually unbiased
bases (as described in Sec. 1.3.1).

Figure 4.20: Schematic of the polarization measurement station. The two channels are denoted as Alice (A) and
Bob (B), in agreement with the convection adopted for the source outputs.

Figure 4.21: Photo of the polarization measurement station.
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The photons emitted by the source are collected into single-mode optical fibers and subsequently
directed to two 1550nm collimators. These collimators transform the incoming light from optical
fibers into collimated beams through integrated lenses. The collimated beams then traverse the wave-
plates (QWP and HWP) as well as the PBS before being recollected by another set of collimators.
Subsequently, the light passes through a polarization controller and is directed toward SNSPDs for
measurement. To optimize SNSPD efficiency, polarization controllers are employed. The fiber cou-
pling is maximized using two mirrors (the coupling efficiency, measured with a laser, is approximately
≈ 80%).

Depending on the specific application, either HWPs alone or a combination of HWPs and QWPs
are employed. The QWPs, in particular, are exclusively used for complete quantum state tomography.
In contrast, for assessing the visibilities of Z and X bases, as well as conducting Bell tests, only HWPs
are utilized.

To simplify measurement operations and reduce statistical errors resulting from manual adjust-
ments, electronic rotation mounts are employed. These mounts can be programmed to rotate to spe-
cific positions, while data are collected by the time tagger. When conducting polarization measure-
ments, it is important to accurately determine the angle corresponding to the fast axis. This is achieved
by introducing an additional PBS before the waveplate that establishes the |H⟩ polarization. Follow-
ing this, the waveplate (the same process applies to both HWP and QWP) is finely tuned until the
light reflected by the second PBS is minimized. This ensures that the fast axis of the waveplate does
not modify the linearly polarized state of the initial PBS, thus confirming proper alignment.

4.4.5 Liquid Crystal Retarder Alignment

In the previous sections, we delved into source alignment techniques that facilitate the generation
of entangled photon pairs and optimize brightness and heralding ratio. As discussed in Sec. 3.6, the
state of the photons emitted by the source is:

|ψ⟩ = 1√
2
(|HV⟩+ eiϕ |VH⟩) (4.17)

Here, ϕ denotes a relative phase induced by various factors such as the dHWP, disparities between
the CW and CCW paths of the Sagnac loop, and the initial relative phase between the |H⟩ and |V⟩
components of the pump beam. These combined phases contribute to a reduction of entanglement.
A maximally entangled state is achieved when ϕ = 0. In the original work by Kim et al. [62], the
authors proposed to compensate for this relative phase by properly selecting the pump beam’s po-
larization. However, the pump beam’s polarization is also leveraged to balance the |HH⟩ and |VV⟩
states. Even if it is feasible to appropriately configure the pump beam’s polarization to establish the
correct amplitude and relative phase, this process can be practically intricate. In our setup, we employ
the pump solely to achieve suitable balancing between the two components, while compensating for
the relative phase utilizing a liquid crystal retarder (LCR).

In this source, we utilized the LCC-1413-C (Thorlabs). The operational principle of a LCR is de-
picted in Fig. 4.22.

Figure 4.22: Operating principle of the liquid crystal variable retarder. In the absence of an external electric
field, the crystal is in the nematic phase (left). The molecules are aligned along an axis that coincides with the
optical axis of the LCR. When an external electric field is applied (right), the orientation of the molecules tilts,
introducing a distinct phase shift between the optical axis and its orthogonal component.
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This device functions by exploiting controlled molecular orientation within a liquid crystal material
to modulate the phase of polarized light as it passes through. In the nematic phase (when no voltage
is applied), liquid crystal molecules are orderly and exhibit an elongated shape, leading to optical
anisotropy. The application of an electric field induces alignment of the molecules with the field, and
the degree of birefringence is regulated by the tilting of the liquid crystal molecules. The orienta-
tion of these molecules is controlled through applied voltage, allowing dynamic manipulation of the
retardance.

The LCR operates as a variable waveplate, introducing a phase denoted as θ, which can be con-
trolled by an external electric field, to the component orthogonal to the fast axis. Acting as a local
phase-shift operator within one of the subsystems, when the LCR is positioned in channel A (as illus-
trated in Fig. 4.14), its effect can be represented as ÔA

θ ⊗ IB, where:

ÔA
θ =

(
1 0
0 e−iθ

)
(4.18)

This expression holds when the optical axis of the LCR aligns with the |H⟩ state of the dPBS, which
establishes the reference frame for defining the emitted states from the source. Consequently, the
application of this local operator to the biphoton state emerging from the dPBS results in:

|ψθ⟩ =


1 0 0 0
0 1 0 0
0 0 e−iθ 0
0 0 0 e−iθ




0
1

eiϕ

0

 =


0
1

ei(ϕ−θ)

0

 (4.19)

Setting the LCR phase to θ = ϕ yields the maximally entangled state
∣∣ψϕ

〉
= |Ψ+⟩.

The alignment procedure for the LCR’s optical axis with the |H⟩ state emitted by the dPBS is the
following:

• A 1550nm laser beam is introduced into the source through output B, and the dHWP within the
Sagnac loop is precisely tuned to completely direct the beam towards path A of the dPBS. This
configuration enables the light to be transmitted into channel A (where the LCR is placed), and
it exhibits linear polarization corresponding to the |H⟩ state of the dPBS..

• The LCR is temporarily removed, and the light collected in path A is transmitted via optical
fiber to the polarization measurement station (Fig. 4.20).

• The QWP and HWP of channel A are manipulated to alter the polarization state of the out-
put beam, which then enters the polarization station (comprising only a PBS in this case). The
waveplates convert the |H⟩ state of the dPBS in the Sagnac loop into the |V⟩ state selected by
the PBS in the polarization measurement station. In this way, the light transmitted by the PBS
is minimized.

• The LCR is reinserted, maintaining fixed positions for the QWP and HWP. The LCR is rotated
until the intensity of the light collected after the polarization station is minimized. In this con-
figuration, the optical axis of the LCR is parallel to the incoming state and it does not modify
the polarization of the incident light.

In the following section, we will describe how the compensation of the relative phase is achieved
using the LCR to maximize the quality of the entangled photons.

4.4.6 Generation of the Entangled States

The primary aim of the source is to emit entangled photons. So far, we’ve explored diverse strate-
gies to optimize brightness and heralding ratio. Here, we present the procedure employed for emit-
ting entangled states. The initial objective of this process is to compensate for polarization changes
induced by the fibers and establish the entangled state in relation to the {|H⟩ , |V⟩} states defined by
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the PBSs within the polarization measurement station. Subsequently, we need to balance the |HH⟩
and |VV⟩ components of the emitted states, which depend on the polarization state of the pump
beam. Finally, compensating for the relative phase using the LCR becomes necessary. In the follow-
ing, we will delve into the procedure for preparing the Bell state |Φ+⟩ (a similar approach can be
adapted for emitting other Bell states as well):

1. Setting a separable state: Optical fibers modify the polarization state of photons emitted from
the source. As an initial step, compensating for the polarization-altering effects induced by the
fibers is crucial, ensuring the accurate definition of the entangled state within the polarization
measurement system. However, to achieve this, it is advantageous to manipulate separable
states, as it simplifies the process by enabling modifications to a subset of the system while
leaving the other part unchanged. Consequently, the first step involves configuring the source
to emit separable states. This is achieved by adjusting the polarization of the pump beam to
enable light circulation along a single path within the Sagnac loop. Typically, this adjustment
involves minimizing the light within the transmitted path of the dPBS, which exhibits a higher
extinction ratio.

2. Polarization adjustments: For this procedure, the HWPs in the polarization measurement sta-
tion are utilized. The separable state emitted by the source (initially of the form |V⟩A |H⟩B
within the source’s reference frame set by the dPBS) needs to be converted to the separable
state |H⟩A |H⟩B within the reference frame of the polarization measurement system, established
by the two PBSs. This can be achieved by performing a projective measurement on the state
|H⟩A |V⟩B in the polarization measurement station. Subsequently, the QWP and HWP for chan-
nel B of the source are manipulated until the coincidence counting rate is minimized. Similarly,
the polarization measurement station can be set to measure the state |V⟩A |H⟩B, followed by
minimizing the coincidence counting rates by appropriately adjusting the QWP and HWP for
channel A of the source.

3. Balancing of the entangled state: Now, the state emitted by the source in the measurement sta-
tion is |H⟩A |H⟩B. To achieve the maximally entangled state, the polarization of the pump beam
is adjusted by manipulating the QWP and HWP of the polarization controller system. This pro-
cedure is performed until the coincidence counting rate of the projected state |H⟩A |H⟩B matches
the coincidence rate for measuring the state |V⟩A |V⟩B. In this configuration, coincidence rates
for the measured states |H⟩A |V⟩B and |V⟩A |H⟩B are still minimized. This brings the emitted
state into the form

∣∣Φ̃+
〉
= 1√

2
(|H⟩A |H⟩B + eiϕ |V⟩A |V⟩B).

4. LCR compensation: To achieve the maximal entangled state |Φ+⟩, the relative phase ϕ between
the two components |H⟩A |H⟩B and |V⟩A |V⟩B within the emitted state

∣∣Φ̃+
〉

must be removed.
This is accomplished by enhancing the visibility in the X-basis. To achieve this, the HWPs of
the polarization measurement station can be adjusted so that the projected state is |D⟩A |A⟩B
(or equivalently, |A⟩A |D⟩B), and the applied voltage of the Liquid Crystal Retarder (LCR) is
manipulated until the coincidence counting rate of detected photons is minimized.

4.4.7 Lens Replacement Procedure

We conclude this chapter by describing the procedure to replace lenses in the source setup. In
general, this procedure is not necessary; however, it was employed for the specific characterization
we aimed to perform, focused on quantifying the impact of various lenses on the performance of the
SPDC process. Specifically, in this thesis, we have studied how the performance of the source changes
as a function of the lenses used to collect the downconverted photons. The comprehensive procedure
for replacing both sets of lenses for the 1550nm photons is as follows:

1. Replace one of the two short focal length lenses utilized to focus the collimated 1550nm beam
into the fiber (for example, we assume in channel A). During this step, it is necessary to accu-
rately position the lens to ensure proper collimation of the 1550nm beam as it emerges from the
optical fiber.
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2. Introduce a 1550nm laser beam from the opposite channel (B) and configure the dHWP within
the Sagnac loop to direct the light exiting from the interferometer into channel A. This configu-
ration allows us to precisely adjust the mirrors of channel A in order to maximize fiber coupling.
It is important to recognize that the focusing lens remains unaltered, resulting in beam focusing
within the crystal but with a distinct beam waist in comparison to the beam from the oppo-
site branch. As a consequence, even though the setup is aligned, we cannot obtain high fiber
coupling efficiencies.

3. A more accurate approach to align the setup involves directly introducing a 1550nm laser beam
into channel A. In this scenario, we can meticulously refine the mirror positions to ensure pre-
cise overlap between the pump beam and the 1550nm beam. Assuming the previous step has
been executed accurately, this fine-tuning alignment can be rapidly achieved through minor
adjustments.

4. Employ the procedure described in steps 1-3 for the replacement of the short focal length lens
in the opposite channel. Since channel B alignment relies on channel A alignment, slight mis-
alignments in the latter can also impact the former. As in the previous cases, a meticulous fine
adjustment using back-propagation is necessary.

5. Finally, the focusing lenses can be replaced and positioned at a distance corresponding to their
respective focal lengths from the crystal. Subsequently, a meticulous fine adjustment can be per-
formed to optimize both the brightness and heralding ratios following the procedure described
in Sec. 4.4.3.
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Chapter 5

Results

In this chapter, we discuss the main results derived from the source’s characterization. We evalu-
ated four distinct optical setups, each presenting a unique configuration for collecting downconverted
photons. For each configuration, we present a comprehensive analysis of the source’s performance,
focusing on brightness, heralding ratio, and visibility of the emitted states through polarization mea-
surements in both the Z and X bases. The source has been tested in both the regimes of the pump
laser: continuous wave (CW) and pulse modes. Subsequently, the experimental results are compared
with simulations of the SPDC process, taking into account the losses of the experimental appara-
tus. Additionally, the model describing the emitted photon states is validated through a comparison
with the results obtained from Bell inequality violations and quantum state tomography of the emit-
ted states. Lastly, we investigate the relationship between emitted photon visibility and pump beam
power, a crucial characteristic for specific source applications.

5.1 Analysis of the Coincidences

All the results presented in this chapter are based on the analysis of coincidences among signals
acquired from the two channels of the SNSPDs. As outlined in Sec. 4.1, the electrical signals derived
from the single photon detections are directed to the time tagger. This instrument records the arrival
times of each signal in relation to an internal clock with a temporal resolution of 42 ps (standard de-
viation jitter). Our program processes the time tags received from each channel, initiating a real-time
analysis that provides the single-channel counting rates and the coincidence counting rates. For each
pair of events (one from each channel), the temporal difference between the time tags is computed and
then visualized in a histogram (see Fig. 4.3). These events follow a Gaussian distribution centered
around the mean value of the time differences between events collected in the two channels. This
is caused by the distinct optical components and optical fibers used in the two channels to transmit
photons from the source to the detectors. Consequently, the photons (which are generated simulta-
neously in the SPDC process), before being detected, experience a different delay depending on the
specific channel in which they are collected. To facilitate the analysis, we introduce a fixed delay to the
temporal differences to ensure that the mean of the time differences distribution is centered at zero.
At this point, to assess coincidences, the program utilizes a designated coincidence window. Events
having a time difference falling within the coincidence window are considered coincident. Given the
high temporal resolution of the time tagger, we have chosen a coincidence window of 0.25 ns for the
entire experiment.

The count of coincidences may not always provide a comprehensive characterization of events.
Particularly, at elevated coincidence counting rates, the single-photon detectors manifest saturation
effects, necessitating careful consideration (refer to Eq. (3.2)). These effects arise due to the inherent
dead time of SNSPDs (approximately 100 ns).

Another crucial consideration when evaluating the coincidence counting rate is the presence of
accidental events. These events arise from the multiple pairs emission of SPDC photons within short
time intervals: this leads to considering as events the coincidences between two photons originated
from distinct SPDC processes. Given the low interaction probability of this process, these events
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become increasingly significant with the increase in pump beam power. The rates of accidental coin-
cidences can be estimated using Eq. (4.2) in CW regime and Eq. (4.3) in pulse mode.

To assess brightness and the heralding ratio (refer to Sec. 5.2), we exclude accidental events, as our
focus is on characterizing the SPDC process and comparing it with the theoretical model. However,
for visibility measurements (Sec. 5.3), the analysis is conducted using raw coincidence data. This
is because removing accidental events would invalidate the results of several relevant experiments,
such as Bell-inequality-violation measurements.

5.2 Brightness and Heralding Ratio
In this section, we provide the experimental results for the brightness and heralding ratio mea-

surements in each source configuration. By quantifying the experimental losses for each channel of
the source, we can determine the actual values of brightness and heralding ratio. This procedure
allows us to conduct a comparison between the experimental results and the simulations.

5.2.1 Losses

When examining experimental results, a pivotal parameter to investigate is the apparatus’ level
of losses. This factor holds particular significance in evaluating the source’s performance. The main
contributions are:

• The transmission of the crystal, which is ηCRY = 0.937.

• The optics’ transmission efficiency (ϵoptics).

• The optical fibers’ efficiency (ϵ f ibers).

• The SNSPDs efficiency (ϵSNSPD), which as detailed in Appendix C is different for each channel.

To assess the losses of the experimental apparatus we followed an approach similar to that described
in Sec. 4.1. The transmission efficiencies of each channel are evaluated through Eq. (4.5). The results
are presented in Tab. 5.1.

Channel ϵoptics ϵ f ibers ϵSNSPD ϵA/B
TOT

A 0.698 0.921 0.779 0.485
B 0.727 0.802 0.704 0.397

Table 5.1: Transmission efficiency of the components in the final source experimental setup.

5.2.2 Simulation Results

For each optical configuration of the source, we performed a simulation to estimate the theoret-
ical brightness (Rsi(th)) and the signal/idler heralding ratios (ηs(th) and ηi(th)), both in CW and pulse
regimes of the pump beam. In these simulations, we neglected the losses of the experimental appa-
ratus. The methodology employed is similar to the one described in Sec. 4.2.

f s,i
1 [mm] f s,i

2 [mm] R(CW)
si(th) η

(CW)
s(th) η

(CW)
i(th) R(pulse)

si(th) η
(pulse)
s(th) η

(pulse)
i(th)

40 250 171056 0.757 0.775 171059 0.757 0.774
50 300 173599 0.760 0.778 173603 0.760 0.778
40 300 149639 0.719 0.732 149644 0.719 0.732
50 250 174926 0.756 0.777 174937 0.756 0.777

Table 5.2: Simulations of brightness and heralding ratio for different source configurations. The pump beam
power is fixed to 10 mW.

In this case, the waist values used in these simulations for the pump, signal, and idler photons are
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those outlined in Tab. 3.4, which depend on the particular combination of the lenses used to collect
the downconverted photons. The pump beam power’s reference value is 10 mW.

5.2.3 Experimental Results

The photons emitted in each channel can be found either in the state |H⟩ or |V⟩ based on the Sagnac
path (clockwise or counterclockwise) they originate from. This duality poses a challenge in accurately
measuring both brightness and the heralding ratio since optimizing the SNSPDs’ efficiency to incident
photon polarization for both polarization states is not feasible. To achieve precise assessments, it
becomes fundamental to establish a separable state wherein the two channels receive photons with
predetermined polarization. This necessitates minimizing the light passing through one of the Sagnac
loop paths. By reducing the transmitted path of the dPBS, which possesses a higher extinction ratio,
we achieved the desired separable state |V⟩A |H⟩B.

Background noise from each channel was subtracted, and only counts without accidental events
were considered for count correction. Furthermore, we set the pump beam power to a reference value
of 10 mW (this allows us to compare the experimental results with the simulations). The experimental
brightness (Rsi(exp)) and the signal/idler heralding ratios (ηs(exp) and ηi(exp)), both in CW and pulse
regimes are presented in Tab. 5.4.

Calculating the uncertainty of these results proves challenging due to multiple factors in addition
to statistical fluctuations (which follow Poissonian statistics), such as laser instability, source align-
ment, and environmental conditions. To assess these contributions, multiple measurements were
conducted on different days, providing insights into the repeatability of the measurements. The es-
timated uncertainties for brightness (σRsi ), single-channel counting rates (σRs for signal and σRi for
idler), and heralding ratios (σηs for signal and σηi for idler) are: σRsi ≈ 1000 pairs/s, σRs ≈ σRi ≈ 5000
pairs/s, and σηs ≈ σηi ≈ 0.5%.

f s,i
1 [mm] f s,i

2 [mm] R(CW)
si(exp) η

(CW)
s(exp) η

(CW)
i(exp) R(pulse)

si(exp) η
(pulse)
s(exp) η

(pulse)
i(exp)

40 250 46500 0.262 0.240 45800 0.261 0.239
50 300 37200 0.248 0.203 36500 0.251 0.202
40 300 30200 0.238 0.186 30100 0.237 0.187
50 250 35600 0.205 0.195 33600 0.205 0.195

Table 5.3: Experimental results of brightness and heralding ratio for different source configurations. The pump
beam power is fixed to 10 mW.

To compare the experimental results (Tab. 5.3) with the simulations (Tab. 5.2), we need to consider
the experimental losses of each channel (Tab. 5.1) which are denoted as ϵA

TOT (for channel A, where
the idler photons are collected) and ϵB

TOT (for channel B, where the signal photons are collected). They
influence both the brightness and the heralding ratio by reducing the experimental performance of
the source. For this reason, we estimated the effective experimental performance of the SPDC process
(which would be achieved without experimental losses) as follows:

• Effective brightness: The experimental brightness is evaluated by the coincidence counting
rate of two lossy channels. As a consequence, the effective brightness can be estimated as Rsi =

Rsi(exp)

ϵA
TOTϵB

TOT
.

• Effective heralding ratio: The effective single-channel counting rates are derived by the exper-
imental values, which are solely influenced by the losses in the respective photon-collection
channels, as Rs =

Rs(exp)

ϵB
TOT

and Ri =
Ri(exp)

ϵA
TOT

. The effective heralding ratios are estimated by the
ratio of the effective brightness and the effective single-channel counting rates: ηs =

ηs(exp)

ϵA
TOT

and
ηB =

ηi(exp)

ϵB
TOT

.

We can now proceed to compare the experimental results with the simulations (see Figs. 5.1 and
5.2). While the theoretical model provides a general insight into the brightness trends for the second,
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third, and fourth configurations, it does not yield precise quantitative outcomes. This inaccuracy can
be attributed to various factors, including both approximations within the model and experimental
uncertainties. As discussed in Chap. 2, the theoretical model incorporates simplifications, such as
assuming an infinitely large transverse area of the crystal in Eq. (2.45), to simplify the spatial mode
overlap calculation. Moreover, the model assumes perfectly Gaussian modes. However, our observa-
tions, as detailed in Sec. 4.4.2, using the knife-edge method, indicate that optical elements introduce
slight modifications to the pump beam. Additionally, it is important to note that the pump beam’s
spectral density is assumed to conform to a Gaussian distribution which might not be exactly the case
in reality.

From an experimental perspective, achieving precise alignment presents a challenge due to the
multitude of interdependent parameters at play. These parameters encompass the polarization and
wavelength of the pump beam, accurate positioning of lenses, meticulous adjustment of mirrors, and
various other contributing factors. While certain alignment procedures can be optimized, the absence
of a clear feedback mechanism complicates the determination of when the optimal source condition
has been achieved. Furthermore, we cannot accurately estimate the coupling efficiency, a crucial factor
influencing both experimental brightness and heralding ratio. By comparing the actual experimental
heralding ratios with the simulations (Fig. 5.2), it can be observed that the experimental values fall
within the range of 45% to 60%, while the corresponding theoretical values vary between 70% and
80%. This indicates a reduction ranging from 65% to 80% (depending on the specific configuration) of
the experimental values compared to the theoretical ones. This factor could be explained by the cou-
pling efficiency, which, as previously observed, would result in a multiplicative factor in the overall
transmission efficiency of the individual channel.

We have seen that the model’s predictive accuracy is compromised by several uncertainties. In
the future, to better comprehend the potentials and limitations of this model, it would be advisable
to carry out multiple tests in various configurations. The model can serve as a foundational starting
point for developing a more sophisticated framework that accommodates these non-ideal effects.

f s,i
1 [mm] f s,i

2 [mm] R(CW)
si η

(CW)
s η

(CW)
i R(pulse)

si η
(pulse)
s η

(pulse)
i

40 250 241000 0.540 0.605 238000 0.539 0.602
50 300 193000 0.511 0.511 190000 0.516 0.507
40 300 157000 0.490 0.469 156000 0.488 0.471
50 250 185000 0.422 0.490 175000 0.422 0.490

Table 5.4: Effective brightness and heralding ratio for various source configurations derived from the experi-
mental results, taking into account the experimental losses.
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Figure 5.1: Comparison between the expected
brightness from simulations and the experimen-
tal brightness for each source configuration.
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heralding ratios and the experimental heralding
ratios for each source configuration.
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5.3 Measurement of Visibilities

To assess the quality of the produced entangled states, visibilities are measured in the Z and X

bases for each source configuration. To achieve high-quality entangled states, it is crucial to precisely
execute the procedure outlined in Sec. 4.4.3. In this case, we produced the Bell state |Φ+⟩. In par-
ticular, we expect, based on the crystal characterization (Sec. 4.1.2), that the maximum visibility of
the separable state in the Z-basis is approximately 99.7%. This value has been regarded as a target in
maximizing the visibility in the Z-basis.

The analysis has been conducted for both CW and pulsed regimes, employing a pump beam
power of 10 mW. For this analysis, we did not eliminate the accidental counting rates, as our aim is
to characterize the source’s properties for practical applications. The outcomes are presented in Tab.
5.5. Figs. 5.3, 5.4, 5.5, and 5.6 illustrate scans depicting how the coincidence counts (with an exposure
time of 10 seconds) vary with different polarization angles of one of the two photons while keeping
the other fixed (state |H⟩ or |D⟩). These results were obtained in the CW regime, which provides
greater stability. The experimental results confirm that the source produces high-quality entangled
states (these results will be discussed further in Secs. 5.4 and 5.5).
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Figure 5.3: Scan of visibility in Z and X bases (first
configuration): f s,i
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Figure 5.4: Scan of visibility in Z and X bases (sec-
ond configuration): f s,i
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f s,i
1 [mm] f s,i

2 [mm] V(CW)
Z V(CW)

X
V(pulse)

Z V(pulse)
X

40 250 (99.53± 0.03)% (99.10± 0.04)% (98.48± 0.06)% (97.38± 0.08)%
50 300 (99.34± 0.02)% (98.79± 0.03)% (98.16± 0.03)% (97.60± 0.04)%
40 300 (99.21± 0.03)% (98.29± 0.05)% (98.02± 0.05)% (97.14± 0.06)%
50 250 (99.38± 0.02)% (98.79± 0.03)% (98.39± 0.04)% (97.21± 0.06)%

Table 5.5: Visibilities measured in Z and X bases. These values were estimated from the maximum and min-
imum coincidence counts measured in the Z and X bases (as described in Sec. 1.5.1). The uncertainties were
evaluated by propagation, assuming Poisson error on photon counts.

The visibilities measured in the Z-basis are slightly higher than those obtained in the X-basis. This
suggests that a slight distinguishability between the two paths of the Sagnac loop remains. Moreover,
the results in pulse mode reveal that the raw visibilities in both bases are consistently lower than those
in CW. This difference arises due to the increased occurrence of accidental coincidences in the pulse
mode, resulting in higher counting rates in the minima (a comprehensive analysis of how visibility
is affected by accidental counts is presented in Sec. 5.6). Furthermore, we observe that there is no
evident dependence of the visibilities on the source configuration. Discrepancies in the results can be
attributed to the precision of the apparatus alignment, such as the Sagnac loop and the waveplates
used to set the state in the polarization measurement station.

5.4 Quantum State Reconstruction

The states emitted by the source deviate from the ideal one |Φ+⟩ due to numerous factors, such
as decoherence and depolarization. A characterization of the states effectively emitted by the source
holds significant importance, as it enables us to quantitatively assess the extent of these phenomena.
In Sec. 1.6.2, we introduced a model to describe the experimental states. In this model, the effective
state of the emitted photons is represented as a mixed state defined by two parameters, p and c (see
Eq. (1.93)). These parameters can be directly deduced from the visibilities in the Z and X bases (Eq.
(1.98)). The results are presented in Tab. 5.6.

f s,i
1 [mm] f s,i

2 [mm] p(CW) c(CW) p(pulse) c(pulse)

40 250 0.0047± 0.0003 0.0043± 0.0005 0.0090± 0.0006 0.011± 0.001
50 300 0.0066± 0.0002 0.0055± 0.0004 0.0184± 0.0003 0.0056± 0.0005
40 300 0.0079± 0.0003 0.0092± 0.0006 0.0171± 0.0005 0.0088± 0.0008
50 250 0.0062± 0.0002 0.0059± 0.0004 0.0121± 0.0004 0.0118± 0.0007

Table 5.6: Experimental estimation of the p-c parameters used for the characterization of the emitted states.

From these values, we can reconstruct the quantum state of the photons emitted by the source using
the p-c model, and specifically, we can estimate the fidelity between these states and the ideal Bell
state |Φ+⟩ ⟨Φ+| (Eq. (1.77)), as well as an estimate of the concurrence (Eq. (1.81)).

f s,i
1 [mm] f s,i

2 [mm] F(CW) C(CW) F(pulse) C(pulse)

40 250 0.9972± 0.0002 0.9887± 0.0007 0.9939± 0.0003 0.976± 0.001
50 300 0.9961± 0.0001 0.9846± 0.0005 0.9917± 0.0001 0.9668± 0.0006
40 300 0.9947± 0.0002 0.9790± 0.0006 0.9914± 0.0003 0.966± 0.001
50 250 0.9962± 0.0001 0.9848± 0.0005 0.9925± 0.0002 0.9700± 0.0009

Table 5.7: Estimation of the Bell-state fidelity (F) and concurrence (C) of the experimental quantum states.
Uncertainties are determined using a Monte Carlo simulation involving 100 iterations.

Using the experimental visibilities, we can also derive lower bounds for the fidelity (Eq. (1.80)) and
for the concurrence (Eq. (1.84)) of the emitted states, without making assumptions about their specific
expression.
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f s,i
1 [mm] f s,i

2 [mm] F(CW)
min C(CW)

min F(pulse)
min C(pulse)

min

40 250 0.9932± 0.0003 0.9863± 0.0005 0.9793± 0.0005 0.959± 0.001
50 300 0.9907± 0.0002 0.9813± 0.0004 0.9788± 0.0003 0.9576± 0.0005
40 300 0.9875± 0.0003 0.975± 0.0006 0.9758± 0.0004 0.9516± 0.0008
50 250 0.9909± 0.0002 0.9817± 0.0004 0.9780± 0.0004 0.9560± 0.0007

Table 5.8: Estimation of lower bounds for the fidelity and concurrence of the experimental quantum states.

5.4.1 Quantum State Tomography

The effective p-c model employed for reconstructing the quantum state of the emitted photons
relies exclusively on visibility measurements in the Z and X bases. For a comprehensive character-
ization of the quantum state of the emitted photons, a complete Quantum State Tomography (QST)
is useful (see Sec. 1.6). Achieving a full QST for a two-qubit system involves 16 measurements and
requires a polarization measurement setup that incorporates both QWPs and HWPs (refer to Ap-
pendix B for further details). This procedure presents greater challenges compared to estimating the
sole visibilities due to uncertainties related to QWP positioning, potential experimental setup insta-
bility during extended measurements, and uncertainties linked to the maximum likelihood method.
Nonetheless, it is interesting to reconstruct the state using this method and then compare it with the
theoretical effective model. The state of the emitted photons can be represented in the density matrix
formalism as:

ρ̂ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 (5.1)

We performed a QST on the states emitted by the source in the initial source configuration in the
CW regime. The coefficients of the density matrix reconstructed through the QST are presented in
Tab. 5.9, while a visual representation is depicted in Fig. 5.7. Uncertainties are determined using a
Monte Carlo simulation involving 100 iterations (Sec. 1.6.1).

Matrix element Estimated value
ρ11 0.491± 0.006
ρ22 0.007± 0.002
ρ33 0.009± 0.002
ρ44 0.493± 0.006

ρ21 = ρ∗12 (−0.01± 0.01)− i(0.03± 0.03)
ρ31 = ρ∗13 (0.006± 0.01) + i(0.061± 0.008)
ρ32 = ρ∗23 (−0.003± 0.003)− i(0.001± 0.002)
ρ41 = ρ∗14 (0.459± 0.007) + i(0.02± 0.02)
ρ42 = ρ∗24 (−0.012± 0.009) + i(0.03± 0.03)
ρ43 = ρ∗34 (0.01± 0.01)− i(0.07± 0.08)

Table 5.9: Coefficients of the density matrix reconstructed through the quantum state tomography. Note that
the ideal state |ϕ+⟩ ⟨ϕ+| has ρ11 = ρ44 = ρ14 = ρ41 = 0.5.

The fidelity between the state reconstructed through QST, ρ̂QST, and the ideal state |ϕ+⟩ ⟨ϕ+| is:

F(ρ̂QST,
∣∣ϕ+

〉 〈
ϕ+
∣∣) = 0.975± 0.004 (5.2)

Notably, we observe that the coefficients ρ14 and ρ41, corresponding to the components |HH⟩ ⟨VV|
and |VV⟩ ⟨HH| of the density matrix, are lower than their diagonal counterparts ρ11 and ρ44. This dis-
crepancy can be interpreted as a manifestation of decoherence in the quantum states, possibly arising
from a distinguishability introduced between the clockwise and counterclockwise components of the
Sagnac loop due to a non-optimal alignment of the setup. This term is also considered in the effec-
tive model (where it is regulated by the coefficient c). Comparing the effective model with the QST
outcomes provides valuable insights.
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Figure 5.7: Graphical representation of the real part of the density matrix of the emitted states as estimated by
quantum state tomography.

The visibilities measured before conducting this test are as follows1:

VZ = (99.29± 0.02)% VX = (98.74± 0.03)% (5.3)

Using these visibilities, it is possible to estimate the state ρ̂pc with the p-c model:

p = 0.0071± 0.0002 c = 0.0055± 0.0004 F(ρ̂pc,
∣∣ϕ+

〉 〈
ϕ+
∣∣) = 0.9959± 0.0001 (5.4)

The fidelity between the state obtained from QST and the one reconstructed from the visibilities VZ

and VX is approximately F(ρ̂QST, ρ̂pc) ≈ 0.986, indicating a strong agreement between full tomogra-
phy and the effective model. Nonetheless, the effective model is generally more practical, as it offers
two advantages: it involves only 8 measurements and ensures a higher precision by exclusively em-
ploying HWPs.

5.5 Bell Test

Another testing approach employed to assess the quality of the generated entangled states is the
Bell test (Sec. 1.4.1). This type of test holds fundamental significance in physics, as it provides the ex-
perimental verification of the nonlocality of quantum mechanics. The experimental setup employed
to conduct the Bell test closely resembles the one proposed by A. Aspect in 1982 [65]. From an experi-
mental perspective, this test necessitates 16 measurements, which are employed to estimate the value
of S in the CHSH inequality, where S ≤ 2 for any non-entangled state (in these measurements the acci-
dental events have not been subtracted). The maximum violation of this inequality S = 2

√
2 ≈ 2.828,

is achieved for maximally entangled Bell states (such as the state |Φ+⟩). These measurements are
carried out using only HWPs in the polarization measurement setup (a more detailed explanation of
this method is available in Appendix A).

1These results are different from those reported in Tab. 5.5 because this test was conducted on another day.
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We can also estimate the value of S using the effective model through the measurement of visibil-
ities (Eq. (1.100)). The results depicting the experimental and theoretical values of S are presented in
Tab. 5.10, for both CW and pulse regimes.

f s,i
1 [mm] f s,i

2 [mm] S(CW)
exp S(pulse)

exp S(CW)
th S(pulse)

th

40 250 2.803± 0.003 2.765± 0.005 2.8090± 0.0007 2.770± 0.001
50 300 2.815± 0.003 2.780± 0.004 2.8019± 0.0006 2.7684± 0.0007
40 300 2.801± 0.004 2.750± 0.004 2.7931± 0.0008 2.760± 0.001
50 250 2.802± 0.003 2.760± 0.003 2.8026± 0.0006 2.766± 0.001

Table 5.10: Comparison between the experimentally estimated CHSH inequality and the corresponding value
predicted by the effective model of the emitted states for each source configuration. The uncertainties were
evaluated by the propagation of the Poisson error on the coincidence photon counts.

The achieved results are remarkable, particularly in the continuous wave (CW) regime, where
nearly maximal violations of the Bell inequality have been observed. These violations provide an ex-
tremely high confidence level (over 300 σ) in the validity of quantum mechanics predictions. These
results are significant, not only from a fundamental perspective but also in terms of practical appli-
cations. The Bell test is used to ensure the security of specific protocols of quantum key distribution
and quantum random generators.

It is noteworthy that in pulsed mode, the values of S are lower than those in the CW mode. This
reduction can be attributed, as observed in the case of visibilities, to a higher occurrence of accidental
coincidences. Additionally, the estimated values of S from the effective model of the emitted states
closely align with the experimental results. This result provides further substantiation for the model’s
validity in accurately describing these states.

5.6 Measuring Accidental Coincidences

The influence of accidental coincidences, as demonstrated in the previous sections, significantly
affects the quality of the emitted entangled photons by introducing spurious signals that do not cor-
respond to actual entangled photon events. Our analysis of visibilities (Sec. 5.3) and Bell tests (Sec.
5.5) has revealed that this phenomenon manifests differently depending on whether we are consid-
ering the CW regime or the pulse regime. We have seen in Sec. 3.4 (for more details, also refer to the
Appendix D) that there are two distinct formulas for calculating the counting rates of accidental coin-
cidences, depending on the operational mode of the laser. While subtracting these coincidences from
the raw data is not feasible for some practical applications of the source, it remains crucial to assess
the performance in the pulse mode (which will be the primary mode of operation for this source).
This enables us to ascertain whether the reduction in visibility is solely attributable to accidental co-
incidences and to verify the accuracy of our estimation of these coincidence rates. To achieve this, we
conducted measurements of visibility in the Z and X bases, both in CW and pulse modes, while vary-
ing the pump beam power. Furthermore, we utilized the theoretical formulas (Eqs. (4.2) and (4.3))
to evaluate the impact of accidental coincidences and subsequently subtracted them. A comparison
between raw and accidental-subtracted visibilities is depicted in Figs. 5.8, 5.9, 5.10, and 5.11.

The impact of accidental coincidences in the CW mode is small compared to the pulse case. The
disparity in visibility between raw and accidental-subtracted data is approximately 0.05%. As a result
in CW mode, we have achieved high performance in terms of visibilities and Bell inequality violations.
This achievement can be attributed to the utilization of an extremely narrow coincidence window ∆tc,
effectively filtering out the majority of accidental events. Nevertheless, in the pulse mode, the results
are different. The subtraction of accidental coincidences proves effective for the Z-basis, yielding
consistent and relatively constant values. However, this approach fails to fully elucidate the decline
in visibility in the X-basis (Fig. 5.11). This disparity might come from a reduction in the indistin-
guishability between the emitted photons. Importantly, this effect leaves the visibility in the Z-basis
unaffected while exclusively impacting the X-basis, leading to a reduction in its visibility. This effect
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must be taken into account in source applications: increasing the pump beam power leads to higher
brightness but a decrease in visibility.
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Figure 5.8: Visibility V(CW)
Z as a function of pump

power in CW mode: raw data (blue), accidental-
subtracted (orange).
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Figure 5.9: Visibility V(CW)
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as a function of pump
power in CW mode: raw data (green), accidental-
subtracted (red).
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Figure 5.10: Visibility V(pulse)
Z as a function of

pump power in pulse mode: raw data (blue),
accidental-subtracted (orange).
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as a function of
pump power in pulse mode: raw data (green),
accidental-subtracted (red).

88



Conclusion and Future Perspectives

In this thesis, I have discussed the design and implementation of a polarization-entangled photon
source operating at 1550 nm based on a type-II SPDC within a PPKTP crystal. I started by presenting
an effective model for the description of the SPDC process in the crystal, enabling us to understand
how brightness and heralding ratios change in response to alterations in pump, signal, and idler beam
focusing conditions. Based on this theoretical model, I devised and constructed an optical configura-
tion for the source in order to achieve the optimal conditions outlined by the model. Furthermore, I
conducted additional tests, varying the optical configuration of the source, to verify the predictivity
of the model.

The experimental results reveal some discrepancies compared to the theoretical predictions, which
can be attributed to various factors. From an experimental perspective, achieving the optimal align-
ment is a complex procedure, entailing the fulfillment of multiple requisites, which proves challeng-
ing to optimize. This involves the simultaneous optimization of several parameters, which include
precise pump beam focusing at the crystal’s center, alignment of the Sagnac loop, and accurate posi-
tioning of mirrors for effective fiber coupling. Moreover, the stability of the source can be susceptible
to fluctuations in temperature, as well as variations in the intensity or wavelength of the pump beam
due to laser instability. This intricate relation between different parameters frequently complicates the
search for the optimal condition that maximizes source performance. Enhancing certain parameters
might unavoidably lead to the worsening of others. This highlights the crucial role of the operator’s
experience in achieving precise alignment. As my experience grew, I gradually attained more refined
alignments, which ultimately led to improved results. Additionally, it’s crucial to acknowledge that
the theoretical model relies on certain approximations, such as the thin crystal limit. Moreover, this
treatment assumes ideal Gaussian beams and a Gaussian pump spectral distribution. The extent to
which these approximations impact the model’s predictions remains unclear. One solution is to de-
velop a more accurate model that accounts for these non-ideal effects.

The practical challenges encountered in optimizing the source are a well-known aspect in the lit-
erature and constitute one of the reasons why obtaining accurate and repeatable experimental results
is a difficult task. For this reason, in this thesis, I have provided a detailed description of the pro-
cedure employed for the alignment of the source. However, to ensure a more robust evaluation of
the model’s accuracy, analyzing more source configurations can help. It will be important to expand
the study of the model to additional source configurations, changing both the set of lenses used for
collecting downconverted photons and focusing the pump photons into the crystal.

There are several critical aspects that determine the performance of this source. One of these is
the two-lens system employed to focus the pump photons into the crystal and collect the entangled
photons. This system enables precise selection of the Gaussian modes of the pump, signal, and idler
beams, which, as demonstrated, significantly influence the brightness and heralding ratio. This ap-
proach offers enhanced precision and practical control compared to setups reliant on a single lens.
Additionally, the experimental setup is compact and robust due to the rigid mounts which sustain
the optical components. These mounts not only enhance the positional accuracy of the optical com-
ponents but also simplify alignment and lens replacement procedures. Another important aspect is
the utilization of an XYZ translation stage, which proved valuable for fine-positioning the crystal.
These distinctive features set this source apart from many others presented in the literature, includ-
ing the one already existing in the laboratory, resulting in achieving high performance. In the optimal
configuration, a brightness of approximately 4600 pairs/s/mW and heralding ratios of around 25%
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are attained. The most noteworthy feature, however, is the quality of the emitted entangled pho-
tons. Particularly, in the CW regime, the achieved visibilities are remarkable, with V(CW)

Z ≈ 99.5%
and V(CW)

X ≈ 99.1%. This aspect is further validated through Bell tests, showcasing the feasibility of
generating almost maximally entangled states. The highest violation recorded was 2.815. In pulse
mode, we observed a slight reduction in the quality of entangled states due to increased multiple pair
emissions which increase the accidental events. We have, thus, examined how the visibilities in the
Z and X bases vary with the power of the pump beam. Specifically, at a pump power of 10 mW, we
achieved visibilities of V(pulse)

Z ≈ 98.5% and V(pulse)
X ≈ 97.4%. Lastly, among the accomplished results,

it’s notable to emphasize the effectiveness of a model that accurately characterizes the states emitted
by the source. This model particularly emphasizes the contributing factors that reduce the quality
of entangled photons, including decoherence and depolarization, providing insights into factors that
affect the source’s performance.

One of the future goals will be to further increase the source’s performance, especially in terms of
brightness and heralding ratio. On one hand, this goal can be achieved by replacing certain compo-
nents, such as optics and lossy fibers, with others that offer better performance. On the other hand,
the improvement of the theoretical model could highlight configurations with higher performance.
The model and the built source will serve as useful tools for several future research activities, like
quantum teleportation, device-independent QKD, and device-independent QRNG.
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Appendix A

CHSH Experimental Measurement

In Sec. 1.4, we have discussed the experimentally accessible quantity S through which it is possi-
ble to distinguish correlations achievable through local hidden variable theories (S ≤ 2) from those
predicted by quantum mechanics (S ≤ 2

√
2). S is defined as:

S = ⟨Ŝ⟩ = ⟨Â0 ⊗ B̂0⟩+ ⟨Â1 ⊗ B̂0⟩+ ⟨Â0 ⊗ B̂1⟩ − ⟨Â1 ⊗ B̂1⟩ (A.1)

We have seen that the maximum violation of the CHSH inequality (S = 2
√

2) can be achieved, in
the framework of quantum mechanics, only for specific choices of the local operators acting on each
subsystem. For example, in the case of |Φ+⟩, we have demonstrated that a possible choice of these
local operators (represented in their matrix form) is as follows:

Â0 = σ̂z =

(
1 0
0 −1

)
Â1 = σ̂x =

(
0 1
1 0

)
(A.2)

B̂0 =
σ̂z + σ̂x√

2
=

1√
2

(
1 1
1 −1

)
B̂1 =

σ̂z − σ̂x√
2

=
1√
2

(
1 −1
−1 −1

)
(A.3)

Our goal is to determine their spectral decomposition (see Eq. (1.28)) and subsequently identify a
set of projective measurements that allow us to implement these kinds of operations. Then, we will
explain how to relate the experimental results with the value of S.

Each operator has two eigenvalues, namely ±1, corresponding to orthogonal eigenvectors. By
convention (the same one adopted in Sec. 1.4.1), we denote the polarization state of a photon after a
projective measurement corresponding to the eigenvalue +1 as θ, and the state corresponding to the
eigenvalue -1 as θ⊥. The eigenvectors of Â0 are {|H⟩ , |V⟩}, which correspond to the angles θ1 = 0◦

and θ⊥1 = 90◦, respectively. The eigenvectors of Â1, are {|D⟩ , |A⟩}, corresponding to the angles
θ′1 = 45◦ and θ′⊥1 = 135◦. Similarly, the eigenvectors of B̂0 and B̂1 are:

b⃗(+)
0 =

 1+
√

2√
1+(1+

√
2)2

1√
1+(1+

√
2)2

 b⃗(−)0 =

 1−
√

2√
1+(−1+

√
2)2

1√
1+(−1+

√
2)2

 (A.4)

b⃗(+)
1 =

 −1−
√

2√
1+(1+

√
2)2

1√
1+(1+

√
2)2

 b⃗(−)1 =

 −1+
√

2√
1+(−1+

√
2)2

1√
1+(−1+

√
2)2

 (A.5)

These eigenvectors correspond to polarization measurements at the angles {θ2, θ⊥2 } = {22.5◦, 112.5◦}
for B̂0 and {θ′2, θ′⊥2 } = {157.5◦, 67.5◦} for B̂1. The measurements performed by Bob are equivalent to
those performed by Alice, but with an additional rotation of 22.5◦.

The experimentally accessible quantities are the expectation values of the combined polarization
measurements on the bipartite system, which can be written as:

⟨Âx ⊗ B̂y⟩ = ∑
a,b∈{±1}

ab p(ab|xy) (A.6)
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where a, b ∈ {±1} denote the eigenvalue of each local operator. The probabilities, for each combina-
tion of the local operators (x, y), must satisfy the normalization condition:

∑
a,b∈{±1}

p(ab|xy) = 1 with x, y ∈ {0, 1} (A.7)

What is experimentally measured, for each choice of the projective measurement denoted as (θ(a)
x , θ

(b)
y ),

is the number of coincidence events recorded by Alice and Bob, referred to as Nc(θ
(a)
x , θ

(b)
y ) which is

proportional to the probability p(ab|xy). From these experimental values, we can calculate the corre-
sponding probabilities (which must satisfy the normalization condition in Eq. (A.7)) as follows:

p(a, b|x, y) =
Nc(θ

(a)
x , θ

(b)
y )

NTOT
with NTOT = ∑

a,b∈{±1}
Nc(θ

(a)
x , θ

(b)
y ) (A.8)

Following this approach, we are able to estimate all the expectation values in Eq. (A.6):

⟨Â0B̂0⟩ = E(θ1, θ2) = p(+1,+1|0, 0) + p(−1,−1|0, 0)− p(+1,−1|0, 0)− p(−1,+1|0, 0) =

=
Nc(θ1, θ2) + Nc(θ⊥1 , θ⊥2 )− Nc(θ⊥1 , θ2)− Nc(θ1, θ⊥2 )

Nc(θ1, θ2) + Nc(θ⊥1 , θ⊥2 ) + Nc(θ⊥1 , θ2) + Nc(θ1, θ⊥2 )

(A.9)

⟨Â1B̂0⟩ = E(θ′1, θ2) = p(+1,+1|1, 0) + p(−1,−1|1, 0)− p(+1,−1|1, 0)− p(−1,+1|1, 0) =

=
Nc(θ′1, θ2) + Nc(θ′⊥1 , θ⊥2 )− Nc(θ′⊥1 , θ2)− Nc(θ′1, θ⊥2 )

Nc(θ′1, θ2) + Nc(θ′⊥1 , θ⊥2 ) + Nc(θ′⊥1 , θ2) + Nc(θ′1, θ⊥2 )

(A.10)

⟨Â0B̂1⟩ = E(θ1, θ′2) = p(+1,+1|0, 1) + p(−1,−1|0, 1)− p(+1,−1|0, 1)− p(−1,+1|0, 1) =

=
Nc(θ1, θ′2) + Nc(θ⊥1 , θ′⊥2 )− Nc(θ⊥1 , θ′2)− Nc(θ1, θ′⊥2 )

Nc(θ1, θ′2) + Nc(θ⊥1 , θ′⊥2 ) + Nc(θ⊥1 , θ′2) + Nc(θ1, θ′⊥2 )

(A.11)

⟨Â1B̂1⟩ = E(θ′1, θ′2) = p(+1,+1|1, 1) + p(−1,−1|1, 1)− p(+1,−1|1, 1)− p(−1,+1|1, 1) =

=
Nc(θ′1, θ′2) + Nc(θ′⊥1 , θ′⊥2 )− Nc(θ′⊥1 , θ′2)− Nc(θ′1, θ′⊥2 )

Nc(θ′1, θ′2) + Nc(θ′⊥1 , θ′⊥2 ) + Nc(θ′⊥1 , θ′2) + Nc(θ′1, θ′⊥2 )

(A.12)

Polarization measurements on each subsystem are conducted through a combination of an HWP and
a PBS. The specific angles for Alice and Bob’s HWPs are listed in Tab. A.1.

Alice Bob θA θB

|θ1⟩ |θ2⟩ 0◦ 11.25◦

|θ1⟩
∣∣θ⊥2 〉 0◦ 56.25◦

|θ1⟩ |θ′2⟩ 0◦ 78.75◦

|θ1⟩
∣∣θ′⊥2 〉 0◦ 33.75◦∣∣θ⊥1 〉 |θ2⟩ 45◦ 11.25◦∣∣θ⊥1 〉 ∣∣θ⊥2 〉 45◦ 56.25◦∣∣θ⊥1 〉 |θ′2⟩ 45◦ 78.75◦∣∣θ⊥1 〉 ∣∣θ′⊥2 〉 45◦ 33.75◦∣∣θ′1〉 |θ2⟩ 22.5◦ 11.25◦∣∣θ′1〉 ∣∣θ⊥2 〉 22.5◦ 56.25◦∣∣θ′1〉 |θ′2⟩ 22.5◦ 78.75◦∣∣θ′1〉 ∣∣θ′⊥2 〉 22.5◦ 33.75◦∣∣θ′⊥1 〉 |θ2⟩ 67.5◦ 11.25◦∣∣θ′⊥1 〉 ∣∣θ⊥2 〉 67.5◦ 56.25◦∣∣θ′⊥1 〉 |θ′2⟩ 67.5◦ 78.75◦∣∣θ′⊥1 〉 ∣∣θ′⊥2 〉 67.5◦ 33.75◦

Table A.1: Set of the HWP angles used in Bell test.
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Appendix B

Quantum Tomography Measurements

Quantum state tomography enables a complete reconstruction of a quantum state through a set
of measurements. For two-qubit systems, the density matrix requires 16 parameters to be fully char-
acterized. Here, we provide a set of 16 linearly independent projectors in the space of 4× 4 complex
matrix space. These projectors correspond to experimental measurements that can be conducted on
the biphoton quantum state.

Π̂HH =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Π̂HV =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



Π̂VV =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 Π̂VH =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



Π̂RH =
1
2


1 0 −i 0
0 0 0 0
i 0 1 0
0 0 0 0

 Π̂RV =
1
2


0 0 0 0
0 1 0 −i
0 0 0 0
0 i 0 1



Π̂DV =
1
2


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 Π̂DH =
1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



Π̂DL =
1
4


1 i 1 i
−i 1 −i 1
1 i 1 i
−i 1 −i 1

 Π̂DD =
1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



Π̂RD =
1
4


1 1 −i −i
1 1 −i −i
i i 1 1
i i 1 1

 Π̂HD =
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Π̂VD =
1
2


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 Π̂VR =
1
2


0 0 0 0
0 0 0 0
0 0 1 −i
0 0 i 1



Π̂HR =
1
2


1 −i 0 0
i 1 0 0
0 0 0 0
0 0 0 0

 Π̂RR =
1
4


1 −i −i −1
i 1 1 −i
i 1 1 −i
−1 i i 1
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APPENDIX B. QUANTUM TOMOGRAPHY MEASUREMENTS

The measurement system is constructed using a combination of optical elements: a QWP, a HWP,
and a PBS. The QWP’s fast axis is rotated by an angle ϕ, while the HWP’s fast axis is rotated by an angle
θ. The specific experimental configurations required for performing the projective measurements
mentioned above are summarized in Tab. B.1.

Alice Bob θA ϕA θB ϕB

|H⟩ |H⟩ 0◦ 0◦ 0◦ 0◦

|H⟩ |V⟩ 0◦ 0◦ 45◦ 0◦

|V⟩ |H⟩ 45◦ 0◦ 0◦ 0◦

|R⟩ |H⟩ 45◦ 45◦ 0◦ 0◦

|R⟩ |V⟩ 45◦ 45◦ 45◦ 0◦

|D⟩ |V⟩ 22.5◦ 45◦ 45◦ 0◦

|D⟩ |H⟩ 22.5◦ 45◦ 0◦ 0◦

|D⟩ |L⟩ 22.5◦ 45◦ 45◦ −45◦

|D⟩ |D⟩ 22.5◦ 45◦ 22.5◦ 45◦

|R⟩ |D⟩ 45◦ 45◦ 22.5◦ 45◦

|H⟩ |D⟩ 0◦ 0◦ 22.5◦ 45◦

|V⟩ |D⟩ 45◦ 0◦ 22.5◦ 45◦

|V⟩ |R⟩ 45◦ 0◦ 45◦ 45◦

|H⟩ |R⟩ 0◦ 0◦ 45◦ 45◦

|R⟩ |R⟩ 45◦ 45◦ 45◦ 45◦

Table B.1: Set of the waveplates angles used in quantum state tomography.
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Appendix C

Efficiency of Single-Photon Detectors

A fundamental parameter for evaluating the performance of a detector is efficiency. Typically, this
quantity is assessed by the ratio between the number of recorded photons and the number of inci-
dent ones. However, SNSPDs are extremely sensitive instruments, capable of registering a maximum
photon rate of approximately 107 events per second, corresponding to a maximum incident radiation
power of around 10−12W. This makes the calibration of such instruments challenging, as there are
no photon sources or other measuring instruments in the laboratory that operate at such low power
levels. For this reason, we have adopted a specific approach to calibrate the single-photon detectors.

For this purpose, we employed a fiber beam splitter (BS) with a 90:10 division ratio. This device
separates the light from a laser beam (at 1550nm in this case) into two paths. The intensity of the light
in the path receiving 10% of the incident light is attenuated by 50dB using passive fiber attenuators.
The idea is that we can take the light from the 90% path as a reference value for the incident light
power on the SNSPD located in the opposite path. Specifically, the power of the photons incident on
the SNSPD is related to the power measured by a standard photodetector (PD): PSNSPD = k · PPD.
Here, k represents an attenuation factor that allows us to estimate the intensity of the light incident
on the SNSPD based on the value measured by the PD. To ensure laser stability, achievable when the
laser is set to emit light at a power of several mW, an additional 50dB attenuator is introduced before
the BS. An optical schematic of the experimental setup is depicted in Fig. C.1.

Figure C.1: Experimental setup used for measur-
ing SNSPDs’ efficiency.
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Figure C.2: Plot of the power measured at the ends
of the fiber BS to estimate the attenuation factor
between the two paths.

The first step in estimating the detector efficiency (ϵ) consists in determining the attenuation factor
(k) based solely on the ratio of power at the end of the paths. To achieve this, we temporarily removed
the 50dB attenuator positioned before the BS. We measured the power in both branches of the BS, PPD
and PSNSPD, using the same photodiode, to eliminate different scale factors arising from the use of
different photodetectors. From the slope of the linear fit of PSNSPD as a function of PPD (refer to Fig.
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APPENDIX C. EFFICIENCY OF SINGLE-PHOTON DETECTORS

C.2), we determined the attenuation factor as k = (5.62± 0.05)× 10−7. Then, we reinserted the 50dB
attenuation before the BS and we proceeded with estimating the efficiency of the detectors.

In the laboratory, there are seven available channels each corresponding to a different detector
with a distinct efficiency. However, throughout my thesis work, we consistently used only two chan-
nels: Channel 5 and Channel 8. Therefore, in this analysis, we present the results obtained only for
these two channels. Initially, we determined the range of powers within which the laser can operate
without the risk of exceeding the damage threshold of the SNSPDs. Subsequently, we conducted a
series of measurements by varying the emitted light intensity from the laser, recording both the power
measured by the photodiode (PPD) and the output counting rate of the detector (Nout). We estimated
the power incident on the SNSPD through the values measured by the PD as PSNSPD = k · PPD. The
effective counting rates were then corrected using the formula in Eq. (3.2), which takes into account
the detectors saturation at high counting rates. From this correction, we determined the effective rate
of measurable photons (Nmeas) and its corresponding power Pmeas = Nmeas · hν (where ν denotes the
frequency of the photons and h represents the Planck constant).

In this way, we have understood how the power measured by the SNSPD (Pmeas) varies with
the incident power (PSNSPD). Through two linear fits (see Figs. C.3 and C.4), we have estimated the
efficiency of each channel:

ϵch5 = 0.703± 0.001 ϵch8 = 0.779± 0.02
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Figure C.3: Linear fit of the power measured in
Channel 5 Pmeas as a function of the estimated in-
cident power PSNSPD.
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Figure C.4: Linear fit of the power measured in
Channel 8 Pmeas as a function of the estimated in-
cident power PSNSPD.
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Appendix D

Accidental Coincidences

When evaluating the performance of an entangled photon source, the quantum states are detected
using a coincidence system. This is because photon pairs are emitted simultaneously within the crys-
tal. In this context, it becomes crucial to consider the impact of accidental coincidences. These coinci-
dences, indeed, do not represent actual signals and they degrade the quality of the results. The ability
to accurately quantify the occurrence of such coincidences holds fundamental significance in char-
acterizing the overall performance of the source. In this chapter, we will provide a straightforward
demonstration of the expected accidental counting rates for both CW and pulse modes.

Accidental Coincidences in CW Mode

To derive the formula for the expected rate of accidental coincidences in the CW regime, denoted
as R(CW)

acc , which occur within a coincidence time interval ∆tc, we start by assuming that the aver-
age signal rates for channel A and channel B are respectively RA and RB. The approach is based on
subdividing the acquisition time interval ∆t into smaller time intervals. In each of these intervals, we
expect an average number of events µ. The probability of observing n events follows from the Poisson
statistics and is given by:

P(µ; n) =
µne−µ

n!
(D.1)

Let us consider an infinitesimal time interval [t, t + dt]. The probability of detecting an event in
channel A within this time interval is described by the Poisson probability distribution: pA(t, dt) =
P(µ = RAdt; 1) = RAdte−RAdt ≈ RAdt. In the last step, we neglect the exponential term e−RAdt which,
as dt approaches zero in the infinitesimal limit, tends to 1. In this limit, we can treat the process
through the Bernoulli statistics since we are neglecting the possibility that two or more events happen
within the same infinitesimal time interval.

Let’s now introduce the coincidence time window ∆tc. Two events that are recorded in channel
A (at time t) and channel B (at time tB) are considered coincident if their time difference is |∆t| =
|t − tB| ≤ ∆tc. Our objective is to assess the probability of detecting at least one event in channel
B within the time interval [t − ∆tc, t + ∆tc]. This can be formulated using the Poisson probability
distribution as follows:

pB(t, dt) = P(2RB∆tc; n > 0) = 1−P(2RB∆tc; n = 0) = 1− e−2RB∆tc ≈ 2RB∆tc (D.2)

The last approximation holds when RB∆tc ≪ 1, and it’s applicable in our case since ∆tc = 0.25 ns,
while the signal rates in both channels are approximately 105 Hz. Notably, if RB∆tc ≪ 1 we can treat
the detection of an event in channel B as a Bernoulli process with probability pB(t, dt).

The probability of an accidental coincidence occurring within the infinitesimal time interval [t, t+
dt] for channel A, considering a coincidence window ∆tc, can be expressed as:

pcoinc(t, dt) = pA(t, dt)pB(t, dt) = 2RARB∆tcdt (D.3)
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This quantity corresponds to the probability of the combined Bernoulli process. As a consequence,
the coincidence probability in the time interval [t, t+ dt] is equal to the expected number of accidental
coincidences dNcoinc(t) recorded in that interval.

The expected accidental coincidences occurring within an arbitrary time interval ∆t are computed
by integrating the infinitesimal number of coincidences dNcoinc(t) over t: Ncoinc(∆t) = 2RARB∆tc∆t.
Eventually, the expected rate of accidental coincidences can be deduced by dividing the total number
of accidental coincidences for the time interval ∆t. Consequently, the final expression for the acciden-
tal coincidence rate in the CW mode is:

R(CW)
acc = 2RARB∆tc (D.4)

Accidental Coincidences in Pulse Mode
Let us now explore a scenario where both channels emit signals in the form of pulses, each with a

duration of τp, and these pulses are separated by a temporal interval ∆tp. The pulse rate, commonly
referred to as the repetition rate, is represented by r = 1/∆tp. We will concentrate on the specific
situation where τp ≪ ∆tc ≪ ∆tp, an assumption based on the experimental parameters: τp ≈ 2 ps,
∆tc = 0.25 ns, and ∆tp ≈ 13.2 ns.

In this situation, the application of the coincidence window is not eliminating signals within a
pulse (because τp ≪ ∆tc) nor considering signals coming from different pulses (because ∆tc ≪ ∆tp).
Furthermore, we make the assumption that, owing to the extended dead time of the single-photon
detectors (100 ns, which greatly exceeds τp), each pulse can yield at most one detection per channel.
We observe that for each pulse, each channel has a specific probability of either not receiving or receiv-
ing only one signal. This statistical behavior can be described as a Bernoulli process. The probability
of having a detection in a single pulse in channel A is given by pA = RA

r , and similarly, in channel
B, it is given by pB = RB

r . Importantly, this same statistical process is applicable to the coincidences
observed between events recorded in the two channels (combination of two Bernoulli processes). In
this scenario, the probability of a coincidence occurring within a pulse can be expressed as follows:

p(pulse)
coinc = pA pB =

RARB

r2 (D.5)

If we consider an arbitrary time interval ∆t containing Npulses = r∆t pulses, the average number of
expected coincident events, consistent with Bernoulli statistics, is calculated as follows:

Nacc = Npulses p(pulse)
coinc =

RARB

r
∆t (D.6)

Finally, by dividing Nacc by ∆t, we obtain the rate of accidental coincidences in pulse mode:

R(pulse)
acc =

RARB

r
(D.7)
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