
Driver attention analysis and drowsiness
detection using mobile devices

Master Thesis in ICT for Internet and Multimedia

Supervisor Master Candidate
Simone Milani Simone Ceccato

Academic Year 2018/2019
2 december 2019

ii

A chi mi sostiene da sempre.

iv

Abstract

Drowsiness and lack of attention are some of the most fatal and underrated ac-
cident causes while driving. With the increasing of fatal crashes during the last
years and the advent of new technologies in the machine learning and computer
vision fields, different strategies for drowsiness detection have been developed by
car manufacturers, but they are not capable to detect early symptoms of drowsi-
ness and fatigue yet.

In this thesis a non intrusive classifier based on features from drivers’ facial
movements has been developed, focusing on detection strategies that could be
deployed on low-complexity devices, like smartphones.

A general overview of the different types of features will be given, motivating
their effectiveness in the final classification task.

A detailed description of the features acquisition phase will also be presented,
looking for a good trade off between optimal performances and accuracy.

Moreover, different classification architectures will be proposed and studied
in order to understand which implementation performed the best in terms of
detection accuracy.

Finally an overview of the developed Android application will be given, based
on the concept of Clean Architecture and separation of concerns.

v

vi

Sommario

La stanchezza e la mancanza di attenzione durante la guida fra le principali e
maggiormente sottovalutate cause di incidente stradale. Negli ultimi anni, con
l’aumentare degli incidenti mortali e con l’avvento di nuove tecnologie nell’ambito
del machine learning e della computer vision, sono state sviluppate diverse strate-
gie per la rilevazione della stanchezza da parte dei produttori dai produttori di
automobili. Tuttavia, attualmente, nessuna di queste è capace di rilevare i sintomi
di fatica e stanchezza con largo anticipo.

In questa tesi è stato sviluppato un classificatore non intrusivo basato sulle
caratteristiche dei movimenti facciali del guidatore , ponendo particolare atten-
zione a soluzioni che possono essere implementate su disposivi a bassa capacità
computazionale come gli smartphones

Nell’elaborato viene data una panoramica generale delle varie feature facciali
e non che possono essere usate nella classificazione, motivando la loro efficacia
nella procedura finale di classificazione.

Verrà presentata una descrizione dettagliata della fase di acquisizione delle
caratteristiche, con riguardo alla ricerca di un compromesso tra prestazioni e
accuratezza.

Inoltre saranno proposte e studiate diverse architetture per la classificazione
allo scopo di determinare quale implementazione offre le migliori prestazioni in
termini di precisione.

Infine sarà presentata la struttura dell’applicazione Android sviluppata, basata
sui concetti di Clean Architecture e separazione dei moduli.

vii

viii

Contents

Abstract v

List of figures xi

List of tables xiii

1 Introduction 1

2 Literature review 5
2.1 Physiologic analysis . 5
2.2 Measures analysis . 7

2.2.1 Subjective measures . 8
2.2.2 Physiological measurements 9
2.2.3 Performance measures . 10
2.2.4 Behavioral measurements 11
2.2.5 Hybrid methods . 14
2.2.6 Other factors considerations 14

2.3 Current solutions . 16

3 Acquisition framework 19
3.1 Frame acquisition . 20
3.2 Preprocessing task . 21
3.3 Raw features extraction . 24

3.3.1 Face detection . 24
3.3.2 Performance improvement 34
3.3.3 Hybrid implementation . 36
3.3.4 Face landmarks localization 37
3.3.5 Head pose estimation . 43

3.4 Feature computation . 47

4 Classifiers 57
4.1 Training dataset . 57

4.1.1 UTA-RLDD dataset . 59
4.1.2 Feature extraction . 61

4.2 Classifiers’ Architectures . 63

ix

4.2.1 LSTM networks . 63
4.2.2 A first drowsyness classifier based on CNN 65
4.2.3 A drowsiness classifier based on CNN and Dense fully-

connected layers . 66
4.2.4 A third drowsiness classifier based on LSTM 66
4.2.5 A fourth classifier inytegrating CNN with LSTM 67

5 Results 71
5.1 Performance evaluation . 71
5.2 Results report . 73

6 Android Application 83
6.1 Main components . 83
6.2 Application architecture . 84
6.3 Application organization . 87

6.3.1 Dashboard . 88
6.3.2 OpenCV . 90
6.3.3 Tensorflow Lite . 91

7 Conclusions and future work 95
7.1 Future work . 96

References 97

Acknowledgments 109

x

Listing of figures

1.1 Number of smartphone users worldwide from 2016 to 2021 (in
billions) (figure adapted from [1]) 2

2.1 Typical sleeping cycle representation (figure from [2]) 6
2.2 Mercedes Attention Assist alert example (figure from [3]) 16
2.3 Bosch drowsiness detection system (figure from [4]) 17

3.1 Acquisition pipeline flowchart . 20
3.2 Camera parameters chart . 21
3.3 Grayscale image representation 22
3.4 Comparison in dark environment 23
3.5 Viola and Jones features extraction phase (adapted from [5]) . . . 25
3.6 Wider dataset example (figure from [6]) 26
3.7 R-CNN processing pipeline (figure from [7]) 28
3.8 YOLO pipeline (figure from [8]) 29
3.9 SSD vs YOLO architecture comparison (figure from [9]) 30
3.10 Residuals block differences between ResNet and MobileNet 32
3.11 Hybrid face detection algorithm pipeline 37
3.12 68 points generic face representation 38
3.13 Local Binary Operation (figure from [10]) 40
3.14 Eye Aspect Ratio typical behavior (figure from [11]) 42
3.15 Pinhole model representation . 44
3.16 Euler’s angles explaination (figure from [12]) 51
3.17 Road street algorithm representation 54

4.1 Sample frames from the UTA-RLDD dataset in the alert (first row),
low vigilant (second row) and drowsy (third row) states (figure
from [13]). 60

4.2 Recurrent neural network (figure from [14]) 63
4.3 Differences in the repeating modules (figures from [14]) 64
4.4 First and second models architecture 68
4.5 Third and fourth models architecture 69

5.1 Performance measures of the classification models 74
5.2 Binary classification confusion matrices 78
5.4 Multiclass classification confusion matrices 82

xi

6.1 Clean architecture diagram from [15] 85
6.2 Dashboard modules overview with relative implementations . . . 88
6.3 Android activity lifecycle flow . 93

xii

Listing of tables

2.1 Karolinska Sleepiness Scale ratings description 8
2.2 Review of the pros and cons of the various measures 14

3.1 Face detector accuracy and inference speed comparison 34
3.2 Landmarks - ID correspondence 41
3.3 Mocked EAR values array . 49
3.4 Interpolated mocked EAR values array 49

4.1 Quantization of Karolinska Sleepiness Scale into three different
classes . 61

4.2 Dataset division . 62

5.1 Binary classification confusion matrix 72
5.2 Multiclass classification confusion matrix 72

xiii

xiv

1
Introduction

Fatigue, microsleep and lack of attention at the wheel often cause serious accidents
on the road as reported from the National Highway Traffic Safety Administration
(NHTSA), which has estimated that only in 2017, 91,000 motor vehicle crashes
involved drowsy drivers. These crashes led to an estimated 50,000 people injured
and nearly 800 deaths [16], but there is broad agreement across the traffic safety,
sleep science, and public health communities that the impact of drowsy driving
is underestimated.

People often undervalue these types of impediments, but they are as fatal as
alcohol and drugs. In fact, driver’s reaction time increases and its environment
awareness decreases leading to a serious increment of crashing risk [17].

Drowsy driving is a very common problem. According to some polls conducted
by the National Sleep Foundation and others, about 60 percent of drivers admit
driving while feeling sleepy, about 40 percent have nodded off or fallen asleep
while driving during the prior year, and about one-quarter report drowsy driving
at least once per month [18].

Lack of attention while driving is exponentially growing cause of car accidents
during the last years due to the advent of smartphones in people lives. The
National Safety Council reports that cell phone use while driving leads to 1.6
million crashes each year and, according to a AAA poll, 94 percent of teen drivers
acknowledge the dangers of texting and driving, but 35% admitted to doing it

1

2016 2017 2018 2019 2020* 2021*
0

1

2

3

4

5
Sm

ar
tp
ho

ne
us
er
s
in

bi
lli
on

s

Figure 1.1: Number of smartphone users worldwide from 2016 to 2021 (in billions) (figure adapted from [1])

anyway.
For these reasons it is important to develop solutions that are able to detect

drowsiness in drivers and act accordingly to some deterministic rules in order to
preserve the safety of the drivers and the other people on the road.

With the roaring progress made in the autonomous driving field, the search for
innovative solutions to these problems may seem unnecessary. On the contrary,
the highest level in driving automation (i.e. level 5), where the vehicle is capable
of executing all the driving functions under all the possible conditions without
the supervision of a physical person, is expected to be available at least from 2025
and the transition between manual and automated cars will be slow and difficult
[19].

The final purpose of this thesis is to develop a phone application that can be
deployed on mobile devices (i.e. devices with limited computational power), run
on real time and under any condition and be implemented in a product that can be
used by the majority of people due to the lack of necessity to buy an additional
device and to the fact that the number of people owning a mobile devices is
growing and it is projected to be grown in the next years (as it is possible to see
in Figure 1.1).

The thesis is composed by other 6 chapters in addition to the current one that
serves as introduction to the topic.

Chapter 2 is a review of the current state of the art techniques in the drowsiness

2

and lack of attention detection field, starting from a physiological analysis of
sleep in order to identify the possible measures to utilize in a classification model.
A review of the current solutions adopted by car manufacturers and external
companies is also provided.

Chapter 3 explains the features acquisition pipeline from the computer vision
point of view, focusing on the various techniques used in order to improve the
quality of the classification data that will be fed into the classification models.

Chapter 4 describe the different models used to perform the classification of
the raw data extracted in the previous phase, focusing on the machine learning
part of the thesis.

In chapter 5, the training results of the classification models are presented and
analyzed.

Finally chapter 6 is composed by a brief summary of an Android application
functioning, which follows a description of the programming architecture used to
structure the entire code.

3

4

2
Literature review

2.1 Physiologic analysis

Sleep is an active period in which a lot of essential processing, restoration, and
strengthening occur [20]. This physiological process is made of several repeating
cycles with a mean duration of 90 minutes, where the body alternates between
two different states (see Figure 2.1):

• Rapid Eye Movement (REM) sleep: the last part of the cycle in which
muscle tone decreases and dreams occur.

• Non-REM (NREM) sleep: containing three sub-level of sleep (i.e. tran-
sition from being awake, light sleep and deep sleep), characterized by a
low-probability of dreaming and a more active muscular activity.

The need of sleep is regulated by the circadian rhythm, a 24-hour internal clock
that cycles between sleepiness and alertness at regular intervals and controlled by
the hypothalamus, a portion of the brain responsible for many other physiological
functions [21]. Other factors could affect this clock like darkness and bad sleeping
habits [21].

The need for sleep is typically referred as drowsiness and can be defined as a
transitional state between wakefulness and the entering into Stage I of the sleeping
cycle, in which the body prepares to begin the sleeping process [22].

5

Figure 2.1: Typical sleeping cycle representaঞon (figure from [2])

Fatigue can be scientifically defined as the progressive loss of processing effi-
ciency, requiring a greater volume of neural tissue to perform normal tasks. This
can be used with reference to the drowsiness concept, even though it has a have dif-
ferent clinical meaning and may be caused by different factors [23], [24]. A person
can be fatigued without being sleepy/drowsy, but a person cannot be sleepy with-
out being fatigued [25]. For this purpose detecting the levels of drivers’ drowsiness
has a key role in reducing the number of fatal injuries in traffic accident.

Driver fatigue can be divided into two class based on the factors: sleep-related
(SR) and task-related (TR) fatigue [26]. The first one is strictly related to the
person circadian rhythm, to sleep deprivation and to sleep disorders, as sleep
apnea or narcolepsy. The second one is caused by the driving task and driving
environment and can be further subdivided into active or passive fatigue [27],
[28]:

• Active fatigue is related to the high demand of mental resources needed
for the driving task, like driving amid high density traffic or with poor
visibility.

• Passive fatigue is produced when the environment surrounding the driver

6

does not give him enough stimuli to stay alert. Examples of these situations
are driving in monotonous roads like motorways.

Despite the different causes of fatigue, independently of being sleep related or
not, the perceptible signs are essentially the same and includes [23]:

• difficulty on keeping the eyes open;

• frequent head movements away from the road;

• frequent yawning;

• daydreaming;

• drifting from lane, reckless driving and missing signs or exits;

• a general irritating sensation;

• slower reaction times.

This implies that a person experiencing these symptoms while driving repre-
sents a risk for himself/herself and for the entire surrounding environment. The
development of technical solutions to this problem is therefore extremely useful.

2.2 Measures analysis

From the studies conducted in [29] and [30], it is possible to describe four types
of measures in the drowsiness detection task:

1. subjective measurements;

2. physiological measurements;

3. performance measurements;

4. behavioral measurements.

In the next sections, a review of all the measures will be given, focusing more on
the last one because the detection system build for this thesis is mainly based on
these type of features. An hybrid method integrating behavioral and performance
measurements is the final goal of my project with Texa and will be developed in
the next months during my job hours at the company.

7

2.2.1 Subjective measures

Subjective measures rely on the evaluation, through a dedicated questionnaire, of
the drowsiness state performed by the person itself or by an external supervisor.
The common trait in these questionnaires is the representation of the level of
drowsiness using a conformed scale [31].

The most used drowsiness scale is the Karolinska Sleepiness Scale (KSS) [32], a
9 level scale where the subjects rank their attention level ranging from completely
alert to extremely drowsy as stated in Table 2.1

Rating Description

1 Extremely alert

2 Very alert

3 Alert

4 Fairly alert

5 Neither alert nor sleepy

6 Some sign of sleepiness

7 Sleepy, but no effort to keep alert

8 Sleepy, some effort to keep alert

9 Very sleepy, great effort to keep alert, fighting sleep

Table 2.1: Karolinska Sleepiness Scale raঞngs descripঞon

Studies like [33] have already focused in validating the KSS, showing, as an
example, that there is a relatively strong correlation between the KSS and elec-
troencephalographic measurements.

The Epworth Sleepiness Scale (ESS) [34] measures a person’s general level of
daytime sleepiness, or their average sleep propensity in daily life, through the
compilation of a questionnaire. Questions focus on retrospectively reporting the
likelihood of dozing off or falling asleep in a variety of different situations.

A different approach is given by the Visual Analogue Scales (VAS) [31] where
the rating is performed by asking subjects to give a rating to their level of drowsi-
ness using a linear scale spread along a 100 mm wide horizonatl line where the

8

alert state stands on right end whilst the drowsy one stands on the left side. The
final sleepiness level is measured by the distance in millimeters from one end of
the scale to the mark placed on the line. The VAS is convenient since it can be
rapidly administered as well as easily repeated.

A major drawback of this measurement type is the difficulty of implementation
in real world driving conditions due to their subjective nature. Asking a driver
to rate their arousal level may stimulate alertness, thus biasing the ratings. Vari-
ations in self-rated drowsiness can also be caused by stress or the use of drug
substances. In addition, the average estimates have to be interpreted with cau-
tion, as there are considerable individual differences in the relationship between
subjective ratings [32].

2.2.2 Physiological measurements

Physiological measurements offer a more objective and precise way to measure
sleepiness. They are based upon the fact that physiological signals start to change
in earlier stages of drowsiness, which could allow a potential driver drowsiness
detection system some extra time to alert a drowsy driver and, thereby, preventing
road accidents [31].

Main used signals include heart rate provided by electrocartiogram (ECG) and
brain activity coming from an electroencephalogram (EEG);

The ECG is the process that records the electric activity of the heart and
it is controlled by the autonomic nervous system (ANS), composed by the the
sympathetic nervous system and the parasympathetic nervous system [35].

It is possible to describe the current state in a person by checking these two
system: a wakefulness is characterized by an increase in the sympathetic activity
or a decrease of the parasympathetic activity, whilst a drowsy or fatigued state
is characterized by an increase of the parasympathetic activity or a decrease of
the sympathetic one [35].

The EEG instead records electrical activity of the brain providing information
in form of waves and it is often used in studies [36].

Drowsy states can be detected watching the frequency spectrum of waves in
determined band [37], [36]:

• 8 - 12 Hz (i.e. alpha waves), which are considered when studying the transi-

9

tion from alert to drowsy and are a good indicator of the capacity of reaction
to predetermined stimuli;

• 13 - 30 Hz (i.e. beta waves), which are a good indicator for a person
increment in term of alertness and excitement;

• 4 - 7 Hz (i.e. theta waves), which are commonly regarded as a clear indicator
of lack of attention and the onset of sleep;

• < 4 Hz (i.e. delta waves),which are generated during deep sleep.

These measures provide a reliable source of information at the cost of building
a system that is intrusive and not practical in a car environment.

In addition to that, signals like heart rate and EEG are excellent to distinguish
between awake and sleep states, but encounter some problems in the identification
of the intermediate ones.

2.2.3 Performance measures

Performance measurements are extracted monitoring the data coming from the
main Electronic Control Unit (ECU) of the vehicle like steering wheel small move-
ments, driving speed, lane deviations and brake patterns [37].

Steering wheel analysis relies on the fact that driver in a drowsy state performs
a lower number of micro corrections during the driving rather than an alert one
[38] and [39]. In order to remove all possible noise or the effect of line changing,
only a small range of steering angles (i.e. from 0.5° to 5°) are considered [40].
The extraction of the data is performed using a sensor mounted on the steering
column [41] but newer car models provide the data in the CAN bus, allowing
external devices connected to the On-Board Diagnosis (OBD) port to read the
values.

Driving speed also can be extracted from the values stored in the car ECU, but
with the recent coming of high precision localization system into mobile devices, it
is possible to perform an accurate estimation using a smartphone. A driver that is
driving dangerously with abrupt speed changes is more likeable to be considered
as a drowsy or distracted driver with respect to an alert one that, typically,
drives in smoother way. Naturally these considerations cannot be implemented

10

in a generic software as the driving style is a subjective characteristics and can
change significantly for different subjects.

Another good indicator of the driver drowsiness level is given by the standard
deviation of lane positioning (SDLP) [42], obtained monitoring the car position
within the lane is travelling using a lane detection system (typically implemented
using a camera facing the road). A drowsy driver is less prone to follow the
designated lane rather than an alert one, being more inclined to cross into an
opposing traffic lane or off the road.

These technologies are often implemented on expensive car models since their
development costs make them sustainable only for expensive cars. In addition,
they tend to be too dependent on the geometric characteristics of the road (i.e.
road marking, climatic and lighting conditions) [41], to the driving style of the
subject and to other driver’s states that are not related to drowsiness, like cogni-
tive distraction and visual distraction (i.e. texting task) [43].

These disadvantages could possibly be overcome by the development of a ro-
bust system capable of adapt to the driver’s typical behavior and car type in
order to avoid false alarms [44]. Furthermore with the advent of automated driv-
ing functions, these type of measures becomes less and less correlated with real
driver state because of the interactions of artificial intelligence driving systems to
counteract the driver’s errors [45].

2.2.4 Behavioral measurements

In this dissertation, the most relevant measurements are the behavioral ones be-
cause they meet the requirements imposed in the project. These types of features
can be extracted using non intrusive and accessible devices, like a smartphone
camera, and processed in real time given the high computational capabilities of
modern phone processors.

Previous works in this field mostly focused on detecting extreme drowsiness
with explicit signs such as yawning, nodding off and prolonged eye closure [44].
However, for drivers and workers, such explicit signs could appear when driver’s
drowsiness has already reached a dangerous level. For this reason is important to
detect it at an early stage to avoid any type of incident [30].

The lack of large, public, and realistic datasets has been pointed out by re-

11

searchers in the field [44], [30].
It is possible to divide these features in two categories:
1. eye-related,

2. face-related

In this work, we do not take into consideration the movements of other parts
of the body, although a relevant contribution in the classification task could be
given by the motion of the hands. It is normal that a drowsy subject rub its
eyes, as a natural consequence due to the lack of lubrication of the pupils. The
detection of these events could bring a significant increase in detection accuracy
but, due to the lack of computational resources, it could be unfeasible for mobile
devices.

Eye-related features

The most informative region in a drowsy driver face are the eyes and their be-
haviour.

A good indicator of drowsiness in a subject is given by the Percentage of Eyelid
Closure (PERCLOS) that can be described as the proportion of time that the
subject’s eyes are closed over a specific period of time.

In subjects experiencing drowsiness, PERCLOS measurements are higher than
in alert drivers, as the eyes are closed for longer periods of time and more often
than in alert drivers [46].

It is one of the most robust and used feature used in the drowsiness detection
task but proper lighting conditions are needed and use of glasses and sunglasses
limit this feature accuracy. Also, it might happen that a driver who is trying to
stay awake is able to fall asleep with his eyes open [47], [48], [49], [50].

McIntire, McKinley, Goodyear and Nelson show, in their research, how blink
frequency and duration normally increase with fatigue, by measuring the reaction
time and using an eye tracker [51].

Svensson has shown that the amplitude of blinks can also be an important
factor [52].

Friedrichs and Yang [53] investigated many blinking features like eye opening
velocity (EOV), average eye closure speed, blink duration, micro sleeps and energy
of blinks.

12

Also slow eyelid movement [54], decreased eyes openness level [55] and limited
gaze movement area [56] have been noted in subject experiencing a sleepy or
drowsy condition.

The gaze movement of a driver might be a great source of information of driver’s
mental condition because looking at other directions for an extended period of
time may indicate fatigue or inattention.

Face-related features

Overall face behavior can also be used to detect sleepiness. Several studies have
reported that in drowsy condition, a driver experience various changes in the face
appearance like frequent yawning [57],[58], sudden nod and poor body posture
[30].

Yawning is a very common feature extracted by a the driver face and it is a good
indicator of a person fatigue. However, the detection implementation experiences
several false negatives. It is common to detect yawning when the mouth opens
[42], regardless of the fact that the driver is talking or singing. Therefore, we
have to be careful in interpreting which open-mouth condition represents a real
yawning.

Moreover when a driver is in a drowsy condition, the head may nod frequently.
This is often followed by eye closure movements.

A key process to perform, in order to get information about driver’s state is the
head pose estimation, that is capable to provide a strong indicator of a driver’s
field of view and current focus of attention [59]. Intuitively, it might seem that
looking at the driver’s eyes might provide a better estimate of gaze direction, but
in the case of lane-change intent prediction, for example, head dynamics were
shown to be a more reliable cue [60].

One of the main drawbacks of these types of features is the need to have a
proper lightning condition in order to get satisfactory results.

Normal cameras do not perform well at night and, in order to overcome this
limitation, some researchers have tried active illumination using an infrared (IR)
Light Emitting Diode (LED). Although working fairly well at night, LEDs are
considered less robust during the day [41], [61].

A possible solution to this problem might be a system integrating both type

13

of cameras, the normal one working during the day (when they are capable to
capture enough light) and the infrared during the night.

2.2.5 Hybrid methods

As described in the previous sections, each measurement method has its strengths
and weaknesses, as we can see in Table 2.2.

Measure Pros Cons

Subjective Important for ground truth Not realtime

Physiological Superb precision Extremely intrusive

Performance Good accuracy
Depend on too many

external factors

Behavioral Great accuracy
Depend on the camera quality.

Not working with occlusions

Table 2.2: Review of the pros and cons of the various measures

To improve the classification task, a promising approach is to mix various
measures in order to create an hybrid system which combines the advantages
and robustness of all the measurements. Although some works have already
combined different drowsiness detection methods, there is still a lot of possibilities
for improvements [44].

Drowsiness analysis with driver’s facial data and steering wheel data was also
performed by [62]. Vehicle-based and behavioral measures are also combined in
[63]. Works as [57] have combined all the measurement types, using indicators
such as heart rate variability, respiration rate, head and eyelid movements (blink
duration, frequency and PERCLOS), time-to-lane-crossing, speed, steering wheel
angle and position on the lane.

2.2.6 Other factors considerations

It is important to consider the environment related to the behavior. When driving,
a driver may face a certain condition that is challenging, or on the other hand,

14

boring. That condition may affect certain natural and habitual behavior of the
driver.

It is possible to separate these conditions in two different type:

• Inside-car conditions: all the conditions inside the car that may affect
driver’s behavior. Clear examples of this are:

– cockpit temperature. Comfortable conditions may soothe the driver
smoothing and calming down his/her reactions but can also induce a
sleepy state. Driving in uncomfortable condition could generate anger
and annoyance in the driver.

– sounds produced by music, people voice (from radio, talking, etc.).
Calm, slow, and soft sounds (or even silent condition) make drivers feel
comfortable and sleepy. When it is combined with warm temperature,
it may increase the drowsiness.

• Outside-car conditions: all the conditions outside the car that may affect
driver’s behavior.

– Long driving. Long and monotonous tracks can reduce the concentra-
tion and may cause distractions. In this case, the driver is not really
fatigued, but monotony progressively reduces his/hers concentration
and his/hers level of attention in controlling the vehicle.

– Road conditions. Bumpy road, traffic jam, or challenging track may
be something undesirable for the driver. But these conditions can
increase his/her attention and make him/her more alert. On the other
hand, a smooth and easy track, with light traffic, tends to make driver
comfortable, raising the car speed and falling asleep more easily.

– Driving time: the length of the trip may be a key factor in increasing
driver fatigue due to the high mental workload generated in a subject
by the driving task.

15

2.3 Current solutions

Currently on the market there are many solutions, created both by car manu-
facturers and by external companies, emplying the measurements presented in
the previous section. Most of these use performance measures but more recently,
behavioral ones focused the attention of researchers and engineers leading to the
implementation of systems that integrates signals coming from the car and signals
coming from the driver.

Figure 2.2: Mercedes A�enঞon Assist alert example (figure from [3])

Mercedes Attention Assist [64] checks as many as 90 indexes, such as steering
wheel angle and lane deviation, as well as external factors as weather and road
surface conditions. After the drivers begin their journey, the system creates an
individual profile of the driver, recognizing drivers’ fully-alert condition. If the
system detects drowsiness, it will send an audible and visible alert letting the
driver know it is time to take a break as in Figure 2.2.

Driver Alert Control (DAC) by Volvo is a camera-based vehicle system that
detects ideal road trajectory and compares it to steering wheel movements. The
system provides sound alert and visual notification on control board when drowsi-
ness is detected. Notification is repeated if driver behavior does not improve. The
system is designed to function on highways and is activated when the speed ex-
ceeds 65 km/h [65], [66].

Bosch [67] has developed solutions as a steering-angle sensor that is sold to car
manufacturers. In addition, from driver’s steering behavior, the system algorithm
evaluates approximately 70 signals such as the length of a trip, use of turn signals,

16

Figure 2.3: Bosch drowsiness detecঞon system (figure from [4])

and the time of day. The function calculates the driver’s level of fatigue. If that
level exceeds a certain value, an icon such as a coffee cup flashes (as in Figure
2.3) on the instrument panel to warn drivers that they need a rest.

NVidia developed an artificial-intelligence tool, called Co-Pilot, that can learn
the behaviors of individual drivers and determine when they are acting differently
from their standard behaviour [68]. The system will evaluate driver’s standard
posture, head position, eye-blink rate, facial expression and steering style, among
other indexes. Based on a vehicle’s capabilities, the driver will be warned or
automatically driven to a safe spot.

17

18

3
Acquisition framework

This chapter is focused on presenting the framework for the data acquisition
phase and the relative feature extraction part. First an overall panoramic of
the acquisition pipeline is given in order to introduce the reader to each specific
description of the process.

The main goal of the acquisition phase is to collect the data needed to perform
the classification of the current driver status, working with different machine
learning and computer vision techniques in order to obtain some relevant features
for the various classification models.

This stage can be divided in 3 major components as we can see from Figure
3.1:

1. A preprocessing part, where a series of image transformation are made in
order to enhance and denoise the input and allow a more accurate detection.

2. A raw features extraction part, where the driver is detected using a
deep learning approach and various features are extracted starting from the
associated region of interest (ROI) in the image.

3. A post processing part, where the raw features are processed in order to
create more complex characteristics of the driver behavior.

19

Preprocessing

Part 1

Raw keypoints
extraction

Part 2

Feature
computation

Part 3

Final features

Figure 3.1: Acquisiঞon pipeline flowchart

All these steps and the general system, were implemented in both a desktop
and a mobile version using OpenCV methods and implementation, in compliance
with the specifications required by the product.

Both versions of the software are capable of performing in real-time and are
designed to mitigate the issues caused by the low illumination in the environment
and the presence of obstructions in the subject face.

3.1 Frame acquisition

Smartphone cameras, like all today digital cameras, acquire images using an
electronic image sensor rather than films.

There are two main type of image sensor in the market, but the general func-
tioning idea is the same: the sensor converts the intensity of the incoming light
rays into electric tension or current generating the final pixel value. A matrix of
such photoresponsive sensors produces the final image.

The active-pixel sensor (APS) are mounted on most devices due to their low
cost. They are made of a set of sensor cells containing a photodetector and one
or more MOSFETs in order to amplify the input signal.

One of the main problem of the acquisition phase is the lightning conditions
during a normal driving session. As said in the previous chapter, most of the
drowsiness episode occurs during certain hour intervals during the day, including
periods of time when the cockpit is not enough illuminated and the acquisition
of an image with a quality that enables the feature computation is a hard task.

In order to tackle this problem, the first thing to do is to tune the camera phys-
ical parameters in such a way that the sensor is capturing the greatest possible

20

amount of light.
These two parameters are called exposure time and ISO: the first one refers to

the length of time when the film or digital sensor inside the camera is exposed to
light, whilst the second one controls the sensitivity of the image sensor (i.e. how
much the sensor is sensible to light).

In automatic mode, camera firmware decides these parameter values in order to
obtain the best ”theoretical” shot, but, usually, it does not exceed the suggested
security range to avoid the eventuality of capturing noisy or blurred shots.

Instead, when the manual mode is active, the photographer has full freedom in
choosing the parameter values, as described in Figure 3.2

Shutter speed

ISO

100 6400

1/1000s 1s

Darker
Freezed

Lighter
Blurry

Darker
Noise-free

Lighter
Noisy

200 400 800 1600 3200

1/250s 1/60s 1/15s 1/8s 1/2s

Figure 3.2: Camera parameters chart

An higher value of ISO generates a bright image, at the cost of acquiring a lot
of noise as well. Similarly, the image looks brighter decreasing the shutter speed
at the cost of depicting blurred objects, reducing drastically the number of images
per second acquired by the camera.

In the problem investigated in this dissertation, each frame needs to represent
a well-illuminated scene, regardless of noise. In fact, a noise reduction filter is
applied to the image during the acquisition phase; moreover, in our conditions,
either the face detector or the landmarks detector still work reasonably.

3.2 Preprocessing task

In the first part of the chain, the algorithm performs a preprocessing in order to
improve the quality of the image and the accuracy of the detection.

A Gaussian blur operation is first performed on the input image, in order to
reduce noise and reflections due to the eyeglasses eventually worn by the driver.

21

The Gaussian blur can be modelled by the filter

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.1)

where x and y are the horizontal and the vertical pixel coordinates, respectively;
σ is the standard deviation of the Gaussian distribution.

Then, the image is analyzed from the intensity point of view in order to select
the brightest frames from the input flow. This is necessary, in the mobile imple-
mentation, due to the fact that the next steps in the pipeline are computationally
expensive and the performance rate of the system is smaller than the actual frame
rate delivered by the camera (i.e. in the majority of the smartphones equal to 30
frames per second). As a matter of fact, it is necessary to process only the most
informative frames to save computational power and allow a real-time detection,.

0

244

132 71

23

189

100 190 87111

89

231

...

...

... ...

71

12

140

255

...

...

...

...... M

NN x M image
Figure 3.3: Grayscale image representaঞon

Considering a gray-scale image, it could be described as a matrix similar to the
one in Figure 3.3, where each cell represents a single pixel and contains a value
ranging from 0 to 255 where the former stands for black and the latter for white.

To represent color images, separate red, green and blue components must be
specified for each pixel (assuming an RGB color-space). As a consequence, the
pixel value is actually a vector of three numbers. The three different components
are stored as three separate grayscale images known as color planes (one for each
of red, green and blue).

22

Given an image with resolution NxM , the algorithm compute the total bright-
ness of the image as

Iframe =
N∑

x=1

M∑
y=1

g(x, y) (3.2)

, where g(x,y) is the pixel intensity (in greyscale). It is possible to increase the
brightness and the contrast of an image simply performing the following operation
called contrast and brightness adjustment:

goutput(x, y) = α · ginput(x, y) + β (3.3)

where α > 0 is called gain parameters whilst β is called bias parameter and they
represent relatively the change in image’s contrast and brightness.

This step is called Night mode step and aim to artificially increase the frame
luminosity after the shot was already taken. This is useful when the environment
is very dark and the face detection task is not capable to extract the driver
location due to the low information contained in the image. Despite the great
noise introduction, the filtering techniques leads to the resolution of the problem
in the majority of the cases. Naturally, using an infrared camera could lead to
better performance, but excludes almost all the smartphones from the range of
usable devices.

(a) Night mode disabled (b) Night mode enabled

Figure 3.4: Comparison in dark environment

23

Better accuracy could have been reached using machine learning techniques in
order to detect the portion of image where the driver is and increase the brightness
of the selected part only. But, due to the computational constraint of the problem,
the naive implementation has been used.

The processed frame is finally feed into the next step of the pipeline.

3.3 Raw features extraction

In the central part of the pipeline, the framework has to extract some raw features
from the preprocessed input frame and the entire section can be subdivided in
many different machine learning subproblems.

3.3.1 Face detection

Face detection is used in all the applications that require the identification and
localization of human faces in a digital image.

Many approaches have been tried since 1964 when Bledsoe, along with Helen
Chan and Charles Bisson, created the first semi-automated system. The initial
approach involved the manual marking of the location of various landmarks on
the face like eye center, mouth and nose. After that, the landmarks were math-
ematically rotated by computer to compensate for pose variation [69] and the
distances between them were automatically computed. These distances were use-
ful to compare different images in order to determine identity [70].

One of the most ground breaking development in this field was the work of
Paul Viola and Michael Jones [5]. The Viola and Jones algorithm was created
in 2001 it was the first object detection framework to provide competitive object
detection rates in real-time.

It can be described as a machine learning approach based on three key contri-
butions.

1. Use of integral image representation, which allowed a fast computation of
the feature needed by the detector.

2. Implementation of a learning algorithm based on AdaBoost, which was
capable of extract a small number of important features from a larger set.

24

3. The cascade combination of increasingly complex classifiers, which allows
to discard background region of the frame spending more computational
power on regions where faces are more likely to be detected.

Figure 3.5: Viola and Jones features extracঞon phase (adapted from [5])

Although these methods works well in a controlled environment, they present
some problems and limitations in a noisy environment like a car. The face detec-
tion task is, in fact, made complex by variability of poses, expressions, positions,
orientations, skin colour, presence of glasses or facial hair, differences in camera
gain, lighting conditions, image resolution and moving backgrounds.

In order to tackle these problems, deep learning has been applied to various
implementations leading to results that outperform, in terms of accuracy, the
previous ones and consolidating itself as the state of the art in the face detection
task.

Dataset

As stated before, the challenges associated with face detection can be attributed
to variations in pose, scale, facial expression, occlusion, and lighting conditions.

25

The first step in order to create a robust face detector is to choose an appropriate
dataset for the training.

WIDER dataset [6] consists of 32,203 images with 393,703 labeled faces, which
is 10 times larger than the second largest face detection dataset, with a high
degree of variability in scale, pose and occlusion as depicted in Figure 3.6.

Figure 3.6: Wider dataset example (figure from [6])

As stated in the results of [6], the use of this dataset for the training allow the
face detector to be more robust against extreme environments like the ones in a
car cockpit, where the driver could move its head frequently and be exposed to
different kind of illuminations.

Object detection task

Face detection is a specific task that can be related to the object detection field,
where the main goal is to detect instances of semantic objects of a certain class
(such as humans, buildings, or cars) in digital images and videos.

The key concept behind object detection is that every object class has its own
special features. There are two main types of approaches in this field:

26

1. Machine learning approaches where it is necessary to first define a set
of features like Histogram of Oriented Gradient features and then use a
Support Vector Machine (SVM) to perform the classification.

2. Deep learning approaches: where the network (typically a CNN) is
capable of automatically extract the right features to classify. Most famous
are region proposal (R-CNN) methods, You Only Look Once (YOLO) and
Single Shot MultiBox Detector (SSD).

In the first implementations, the key idea was using windows of fixed sizes from
input image at all the possible locations feed these patches to an image classifier.

This method is simple but present some problems like size and aspect ratio for
the subject to be detected. It is possible to solve this problem by resizing the
image at multiple scales: the object will be encapsulated by the chosen window
in one of these resized images.

Histogram of Oriented Gradient features (HOG)
On each window a Histogram-Of-Gradients (HOG) feature vector is calculated
in order to fed to a Support Vector Machine (SVM) classifier. HOG features are
computationally inexpensive and work well in many real-world problems.

Region-based Convolutional Neural Networks (R-CNN)
In order to improve the accuracy of the detections, HOG features are replaced in
favour of recursive CNN-based classifier, named R-CNN.

Due to the fact that the sliding window search of possible objects locations is
a extremely slow process and is unfeasible in low computational power devices,
R-CNN introduces selective search [71] to generate about 2,000 region proposals.

Selective search uses, in the first step, color similarities, texture similarities,
region size, and region filling to perform a non-object-based segmentation, ob-
taining a set of small segmented areas. Subsequently, these areas are merged
together to form larger ones that represent the candidates in which the algorithm
will compute CNN features, following a processing pipeline similar to the one in
Figure 3.7

For each proposal region, a feature vector is computed with dimension that
depends on the CNN used (e.g. AlexNet, Inception, GoogleNet) and classified
using a SVM.

27

Figure 3.7: R-CNN processing pipeline (figure from [7])

Various optimizations of this algorithm has been developed (e.g. Fast R-CNN,
Faster R-CNN) but they all rely on the concept of generation of region proposal
and feature computation on these them.

You Only Look Once (YOLO)

YOLO or You Only Look Once is an object detection algorithm much different
from the region based algorithms seen above. In YOLO a single convolutional
network predicts the bounding boxes and the class probabilities [72].

As we can see from Figure 3.8, YOLO divides every image into a grid of SxS
and, for every cell in the grid, predicts N bounding boxes and confidence. For
each of the bounding box, the network outputs a class probability and offset
values for the bounding box. The bounding boxes having the class probability
above a threshold value is selected and used to locate the object within the image.

YOLO works way faster than the previously described object detection algo-
rithms, but finds difficulties in detecting small objects within the image (e.g. a
flock of birds). This is due to the spatial constraints of the algorithm.

Single Shot Detector (SSD)
Single Shot Detector (SSD) algorithm provides a better balance between perfor-
mances and precision.

The algorithm runs a convolutional network on input image only one time and
then it computes a feature map. After that, a small 3×3 sized convolutional

28

Figure 3.8: YOLO pipeline (figure from [8])

kernel processes the output feature map in order to compute the bounding boxes
and the categorization probability.

SSD also uses anchor boxes at a variety of aspect ratio comparable to Faster-
RCNN and learns the off-set to a certain extent than learning the box. In order to
hold the scale, SSD predicts bounding boxes after multiple convolutional layers.
Since every convolutional layer operates at a different scale, it is able to detect
objects at different resolutions.

As we can see in Figure 3.9, the SSD model adds several feature layers to the
end of a base network, which predict the offsets to default boxes of different scales
and aspect ratios and their associated confidences.

SSD algorithm with a 300 × 300 input size significantly outperforms its 448 ×
448 YOLO counterpart in accuracy on VOC2007 test dataset while also improving
the speed [9].

29

Figure 3.9: SSD vs YOLO architecture comparison (figure from [9])

Deep learning approach

As stated before, the introduction of convolutional neural networks significantly
improved the classification accuracy in computer vision related problems. In
those networks, the learned parameters are the filters that are applied iteratively
through sliding windows to the input image. The filter is implemented by a matrix
multiplication that, thanks to the modern GPUs, requires a limited computational
power speeding up the training and inference phases of neural networks.

One theorem that justifies the importance of neural networks is the theorem
of universal approximation, which states that a single layer neural network can
approximate every existing function [73].

However, a single layer neural network could become wider and wider as the
difficulty of the problem grows. This generates a massive network with over-
fitting trends and high computation demand. The path taken by neural network
research during these years is the development of a deeper and narrow network
instead of a wider one, in order to simplify calculations and to allow the network
to learn abstract representations of the data.

One of the main disadvantages of the use of deep learning is the appearance
of the vanishing gradient problem. Whenever the gradient reaches a value close

30

to zero, the network can not update the weights any more. This effect is more
evident as the back-propagation algorithm reaches the top of the network.

Several solutions were proposed to tackle this problem such as introducing
various activation functions, like ReLU [74], or the usage of batch normalization.

In this thesis, a deep learning approach has been followed, implementing two
different architectures, both based on SSD.

Residual Neural Network (ResNet)
ResNet is an artificial neural network (ANN) that it is based on the structure of
pyramidal cells in the cerebral cortex.

The main innovation brought by this type of network is the introduction of the
residuals inside the neural network through the use of an identity mapping that
adds/subtracts the output of a block with its input. Residuals are one of the
newest presented solutions for the vanishing gradient problem.

The main block in Figure ?? of the developed residual deep learning framework
allows the gradient to flow directly from input to output without being degraded
by the ongoing process.

This block has two parallel flows of data: one is a sequence of convolutional
layers with activation functions and batch normalization, the other is an identity
map function.

The second exists only if the input and the output have the same dimension
and are summed at the end of the block.

This trick allows the network, which focuses on residual data, to reach a depth
of hundreds of layers without facing the vanishing gradient problem and improving
the features’ learnability.

The stacking layers should not degrade the network performance, because it is
possible to simply stack identity mappings (i.e. layer that are not active in the
network) upon the current network, and the resulting architecture would perform
the same [75].

This implies that the deeper model should not produce a training error higher
than its shallower counterparts.

The authors of [76] demonstrated with experiments, that is possible to build
a 1001-layer deep ResNet capable of outperform its shallower counterparts. Be-
cause of its compelling results, ResNet quickly became one of the most popular

31

architectures in different computer vision tasks.
Even though deeper networks perform better in speed than wider ones, the

ResNet architecture, which implies 58M of parameters, suffers from heavy com-
putations during training even using modern and accelerated libraries or hardware.
This would not be a problem for supercomputers with many GPUs connected in
parallel but needs to be taken into account when it has to be implemented on
mobile consumer devices.

MobileNet
MobileNets are a family of mobile-first computer vision models for TensorFlow,
designed to effectively maximize accuracy while being mindful of the restricted
resources for an on-device or embedded application.

These networks are small, low-latency and low-power models parameterized to
meet the resource constraints of a variety of use cases in order to perform the
classification and detection tasks on mobile devices.

They have in common with the ResNets the use of residuals, but they do not use
any pulling layer and the stride parameter of the convolutional layer are employed
to reduce the dimension of the input (see Figure 3.10b). The main module that is
repeated throughout the network changing the parameter values is the bottleneck
residuals block.

(a) ResNet residual block (b)MobileNet V2 residual block

Figure 3.10: Residuals block differences between ResNet and MobileNet

MobileNetV1 [77] is the first version of these types of network and introduced

32

depth-wise separable convolutions as an efficient replacement for traditional con-
volution layers.

Depth-wise separable convolutions effectively factorize traditional convolution
by separating spatial filtering from the feature generation mechanism. Depth-wise
separable convolutions are defined by two separate layers: light weight depth-wise
convolution for spatial filtering and heavier 1x1 point-wise convolutions for feature
generation.

With this trick, the number of parameters drastically diminishes together with
the computation requirements.

MobileNetV2 [78] introduced the linear bottleneck and inverted residual struc-
ture in order to make even more efficient layer structures by leveraging the low
rank nature of the problem. This structure is shown on Figure 3 and is defined
by a 1x1 expansion convolution followed by depth-wise convolutions and a 1x1
projection layer. The input and output are connected with a residual connection
if and only if they have the same number of channels. This structure maintains a
compact representation at the input and the output while expanding to a higher-
dimensional feature space internally to increase the expressiveness of nonlinear
per-channel transformations.

MnasNet [79] built upon the MobileNetV2 structure, introduced lightweight
attention modules based on squeeze and excitation into the bottleneck structure.

In the last version MobileNetV3 [80], the main goal is to improve the network
efficiency, including all the improvements that the previous versions of the network
have brought.

Both squeeze and excitation as well as the swish non-linearity use the sigmoid
function which can be inefficient to compute as well challenging to maintain
accuracy in fixed point arithmetic so MobileNetV3 replaces this with the hard
sigmoid.

MobileNetV3 is defined as two models: MobileNetV3-Large and MobileNetV3-
Small. These models are targeted at high and low resource use cases respectively.

Comparison

Both models were trained on the WIDER dataset with an input shape equals to
(224, 224, 3) for both the networks. As it is possible to see in Table 3.1, both

33

Input shape Accuracy
Mean inference time

Google Pixel Xiaomi MI 9T Honor 8 Nokia 6.1

ResNet (224, 224, 3) 72.05% 80.2 ms 73.5 ms 75.4 ms 134.2 ms

MobileNet (224, 224, 3) 74.87% 45.8 ms 40.1 ms 41.8 ms 89.8 ms

Table 3.1: Face detector accuracy and inference speed comparison

networks achieve a good accuracy in the validation set but MobileNet outperform
ResNet in terms of inference time.

For this reason, the chosen network for the face detection task is the MobileNet.

3.3.2 Performance improvement

In order to improve the performance in the face detection task that is, as it is pos-
sible to see in the previous section, the most expensive in terms of computational
duration, an hybrid detection method has been deployed.

The key idea of this method is to detect the driver’s face using a face detector
implementation as the ones seen and use the region of interest (ROI) obtained to
initialize a video tracking algorithm.

Video tracking is the process of locating a moving object (or multiple objects)
over time using a camera. The objective of these types of algorithms is to associate
target objects in consecutive video frames.

The main problem of tracking is that the association can be especially difficult
when the objects are moving fast relative to the frame rate, leading to a misleading
in the estimation of the driver’s face.

To perform video tracking an algorithm analyzes sequential video frames and
outputs the movement of targets between the frames. There are a variety of
algorithms, each having strengths and weaknesses.

There are two major components of a visual tracking system:

• Target representation and localization: a bottom-up process (i.e. it process
information as it is coming in) with low computational complexity.

• Filtering and data association: mostly a top-down process (i.e. it process
information with regard to the context the information is surrounded) with
an higher computational complexity.

34

Generally, the object tracking process is composed of four main steps:

1. Target initialization: the algorithm define the initial position of the target
by selecting a box around it. The idea is to initialize the bounding box
of the target in the initial frame of the video in order to let the tracker
estimate the target position in the remaining frames in the video.

2. Appearance modeling: the algorithm has to learn the visual appearance of
the object by using some learning techniques.

3. Motion estimation: in this part the algorithm tries to learn to predict a
zone where the target is most likely to be present in the successive frames.

4. Target positioning: in the last part, the algorithm scans all the new possible
object’s location regions that were given by the previous step by applying
the visual model generated before in order to estimate the new object posi-
tion

In some cases where the visual appearance of the object is not clear, the tracking
task can outperform the detection task:

• Occlusion: the object is partially or completely occluded.

• Identity switches: two objects cross each other.

• Motion blur: the object is blurred due to the motion of the object or camera.
Hence, visually the object does not look the same anymore.

• Viewpoint variation: different viewpoint of an object may look very different
visually and without the context, it become very difficult to identify the
object using only visual detection.

• Scale Change: huge changes in object scale.

• Background Clutters: background near object has similar color or texture
as the object. Hence, it may become harder to separate the object from the
background.

• Illumination Variation: illumination near the target object is significantly
changed. Hence, it may become harder to visually identify it.

• Low resolution: when the number of pixels inside the ground truth bounding
box is very less, it may be too hard to detect the objects visually

35

Many different algorithms with very different implementations have been pre-
sented over the years and it is not the scope of this dissertation to analyze them.
After a careful research, the tracker selected for the purpose was the Minimum
Output Sum of Squared Error (MOSSE) tracker given the fact that represent a
good trade-off between accuracy and performance.

MOSSE Tracker

Minimum Output Sum of Squared Error (MOSSE) tracker [81] uses adaptive cor-
relation for the object tracking track in order to produce a set of stable correlation
filters during the initialization with the help of a single frame.

The target is initially selected based on a small tracking window centered on
the object in the first frame. From this point on, tracking and filter training work
together.

The target is tracked by correlating the filter over a search window in next
frame; the location corresponding to the maximum value in the correlation output
indicates the new position of the target. An online update is then performed based
on that new location.

To create a fast tracker, correlation is computed in the Fourier domain using
the Fast Fourier Transform (FFT).

MOSSE tracker is robust to variations in lighting, scale, pose, and non-rigid
deformations. It is also capable of detecting occlusion based upon the Peak-to-
Sidelobe Ratio (PSR), which measures the strength of a correlation peak and
enables the tracker to pause and resume where it left off when the object reap-
pears.

To add to the positives, it is also very easy to implement, is as accurate as
other complex trackers and much faster.

3.3.3 Hybrid implementation

The combination of the face detector and the object tracker leads to the creation
of a new type of face provider that is suitable for a mobile implementation and
that achieves a comparable accuracy with respect to a only deep learning solution.

As we can see in Figure 3.11, the algorithm checks if a face has already been
discovered and, depending on the response, decides to use either the deep-learning

36

Frame

yes

no

Driver not
detected or refresh

needed?

Face detection
neural network

Object tracker

initialize object
tracker with ROI

found
yes

no

Driver detected?

analyze next
frame

update object tracker

Figure 3.11: Hybrid face detecঞon algorithm pipeline

detector or the object tracker.
In the first case, the algorithm uses the neural network to locate the driver’s

face: if it finds an acceptable result, it initialize the MOSSE tracker with the ROI
just found, else it discard the frame and try the successive one.

In the second case, the algorithm update the current ROI of the driver’s face
using the object tracker.

In order to avoid the accuracy problems brought by the introduction of a less
accurate detection performed by the tracker, the current driver’s face ROI is
updated using the neural network every 30 frames computed by the algorithm,
even if the driver is continuing to be detected by the object tracker.

This approach leads to a big improvement in the computational speed of the
pipeline, allowing it to perform the face detection on all the frames provided by
the camera and drastically reducing the time needed for the face detection task.

3.3.4 Face landmarks localization

Face landmark detection is the process of finding points of interest in an image of a
human face. It has recently seen rapid growth in the computer vision community
because it has many compelling applications like the ability to detect emotion
through facial gestures, to estimate gaze direction and to change facial appearance
(face swap).

In this work they are particularly useful in order to obtain some key features
from the driver, as we can see from Figure 3.12 but they are also fundamental in

37

Figure 3.12: 68 points generic face representaঞon

the computation of more abstract features regarding the its driving behavior.
The key idea in this task, is to define a set of 68 points (called landmarks) that

are present in every human face and represent the location of different parts of
the subject’s face in a two dimensional space, in order to train a machine learning
algorithm capable of detecting these points in the input image.

Those key points are either the dominant points describing the unique location
of a facial component (e.g., eye corner) or an interpolated point connecting those
dominant points around the facial components and facial contour.

Formally, given a facial image denoted as I, a landmark detection algorithm
predicts the locations of D landmarks x = {(x1, y1), (x2, y2), ..., (xD, yD)}, where
x and y represent the image coordinates of each facial landmark.

Many facial landmark detection algorithms have been developed to automati-
cally detect those key points over the years and it is possible to divide them into
three major categories that differ in the way they utilize the shape information
and the facial appearance:

• Holistic methods, which explicitly build models to represent the global
facial appearance and shape information.

38

• Constrained Local Model (CLM) methods, which leverage the global
shape model but build the local appearance models.

• Regression-based methods, which implicitly capture facial shape and
appearance information.

Several studies like [82] and [83], stated that regression-based models outper-
form the other models both in speed and accuracy metrics.

Regression-based methods

The regression-based methods, as explained before, directly learn the mapping
from image appearance to the landmark locations, differentiating themselves from
the Holistic Methods and Constrained Local Model methods, which usually do
not explicitly build any global face shape model.

Instead, the face shape constraints may be implicitly embedded. In general,
the regression-based methods can be classified into three subtypes of methods:

• Direct regression methods, which predict the landmarks in one iteration
without any initialization.

• Cascaded regression methods, which perform cascaded prediction and
usually require initial landmark locations.

• Deep learning based regression methods, which follow either the direct
regression or the cascaded regression.

Among different regression methods, cascaded regression method achieves bet-
ter results than direct regression. Cascaded regression with deep learning can
further improve the performance.

One main issue for the regression-based methods is that, since they learn the
mapping from the facial appearance within the face bounding box region to the
landmarks, they may be dependent on the adopted used face detector and the
quality of the face bounding box. Because the size and location of the initial
face is determined by the face bounding box, algorithms trained with one face
detector may not work well if a different biased face detector is used in testing.

Facial landmark detection is challenging for several reasons:

39

1. Facial appearance changes significantly across subjects under different facial
expressions and head poses.

2. Challenging environmental conditions such as the extreme illumination
would affect the appearance of the faces on the processed images.

3. Facial occlusion by other objects or self-occlusion due to extreme head poses
would lead to incomplete facial appearance information.

Local Binary Features model
The selected landmarks detector for this dissertation is the one described in [84].
It is an highly efficient and accurate regression model based on the concept of
Local Binary Features, a set of features extracted using a simple texture operator
which labels the pixels of an image by t the neighborhood of each pixel and
considering the result as a binary number, as we can see in Figure 3.13

Figure 3.13: Local Binary Operaঞon (figure from [10])

Thanks to the locality principle that states that an object is directly influenced
only by its immediate surroundings, the algorithm learns a set of highly discrim-
inative local features for each facial landmark independently.

The obtained local binary features are then used to jointly learn a linear re-
gression for the final output. This learning process is repeated for a determined
number of stages in a cascaded fashion, in order to improve the quality of the
point localization.

Given the fact that extracting and regressing local binary features is not com-
putationally demanding, this algorithm is capable of process over 3,000 frames

40

per second on a desktop computer or 300 frames per second on a mobile phone
in the task of locating the selected landmarks.

The paper’s authors discussed on the validity of choosing to perform the regres-
sion task independently for each landmarks, because such approach could miss a
good feature that can be shared by multiple landmarks.

They motivated their architecture choices in three different points:

1. the feature pool in local learning is less noisy with respect to a global
learning, leading to an easier feature selection.

2. performing local learning does not mean that a local prediction will be
executed. In their approach, the linear regression in the second step exploits
all learned local features to make a global prediction.

3. the local learning is adaptive in different stages. In the early stage, the local
region size is relatively large and a local region actually covers multiple
landmarks. The features learned from one landmark can indeed help its
neigh-boring landmarks. At the late stage, the region size is small and local
regression fine-tunes each landmark.

The model returns the set of 68 landmarks described in Figure 3.12 and with
the components described in Table 3.2

Landmark Identified by

Chin 1 - 17

Right eyebrown 18 - 22

Left eyebrown 23 - 27

Nose 28 - 36

Right eye 37 - 42

Left eye 43 - 48

Mouth 49 - 68

Table 3.2: Landmarks - ID correspondence

As we can see from Table 3.2 it is possible to retrieve set of points describing
different parts of the driver face.

41

Two important values to extract from these set of points are the Eye Aspect
Ratio (EAR) and the Mouth Aspect Ratio (MAR) that represent how much the
eyes and the mouth, respectively, are open.

Eye Aspect Ratio (EAR)
Eye Aspect Ratio is described in [85] as the ratio between the height and the
width of the eye and it is computed as follow:

EAR =
||p2 − p6||+ ||p3 − p5||

2||p1 − p4||
(3.4)

where p1 represent the external corner, p4 the internal one, p2, p3 the upper
external and internal, respectively, superior eyelid and p6, p5 the upper external
and internal, respectively, superior eyelid

Figure 3.14: Eye Aspect Raঞo typical behavior (figure from [11])

EAR is mostly constant when an eye is open and is getting close to zero while
closing an eye as we can see in Figure 3.14. It is partially person and head pose
insensitive. Aspect ratio of the open eye has a small variance among individuals
and it is fully invariant to a uniform scaling of the image and in-plane rotation
of the face.

42

EAR is computed for both left and right eye and then averaged in order to
obtain a general indicator of the eyes closeness.

EARmean =
EARleft + EARright

2
(3.5)

Mouth Aspect Ratio (MAR)
Similarly to EAR, it is possible to use this kind of approach to determine the
order of opening of the driver’s mouth.

Differently from the eyes, the facial landmarks detector returns a greater num-
ber of points that can be split into two set of points representing the upper and
the lower lip respectively.

The key idea is to focus only on the lower part of the upper lip (i.e. points in
the range [62, 64]) and the upper part of the lower lip (i.e. points in the range
[66, 68]). These three points will represent the height of the mouth aperture. The
width will be given by points 61 and 65.

It is possible to derive an equation similar to Equation (3.4)

MAR =
||p2 − p8||+ ||p3 − p7||+ ||p4 − p6||

3||p1 − p5||
(3.6)

where p1 represent the right corner of the mouth, p5 the left one, p2, p3, p4 the
upper lip points starting from right and p8, p7, p6 the lower lip points starting
from right.

MAR shares the majority of characteristics with EAR (naturally the value is
mostly constant when the mouth is closed and increases when the mouth is open)
but, as explained in the previous chapter, represent a greater set of possible
driver’s behavior than just the yawning task.

For this reason, MAR is not a reliable parameters to determine the driver’s
yawns and needs to be integrated in a more complex system.

3.3.5 Head pose estimation

Having obtained the facial landmarks, it is possible to find the direction of the
driver’s face. The 2D face landmark points essentially fits to the shape of the
head. So, given a 3D model of a generic human head, an approximate set of
corresponding 3D points can be estimated.

43

This process, called head pose estimation, can be used to retrieve a general-
ized set of drivers’ head movements with respect to that described in Chapter 2,
checking whether the driver is looking at the road or if he/she is nodding.

The pinhole camera model describes the mathematical relationship between the
coordinates of a point in three-dimensional space and its projection onto a two-
dimensional plane called image plane. This model could be seen as the simplest
approximation of a camera where distortions, blurring or unfocused object are
not included. While some effects are sufficiently small to be neglected, others
can be compensated applying different coordinate transformation on the image
coordinates.

Despite these heavy approximations, the model can be reasonably be used to
parameterize how a normal camera acquire a three-dimensional scene.

P

O

Y2

Image plane

X1

X2

X3

f
Y1

RQ

x1

x2

x3

P

O
Q

X1

X3

Y1

f

-y1 3

1

x

x

Figure 3.15: Pinhole model representaঞon

As we can see from Figure 3.15 it is possible to mathematically describe the
world with a three dimension orthogonal coordinate system with its origin at O,
and the three axes referred as X, Y and Z. Axis Z is defined to be the optical
axis (or principal ray) and represents the viewing direction of the camera.

The plane which is spanned by axes X and Y is the front side of the camera,
or principal plane. The origin correspond to the center of projection.

The image plane, located at distance f from the origin, in negative direction
with respect to y axis and parallel to principal plane, is the plane containing the
projected 2D points from the 3D world and its intersection with the optical axis is
called principal point R. It has its own two-dimensional coordinate system with
axes U and V parallel to X and Y respectively.

44

The pinhole aperture of the camera O, through which all projection lines must
pass, is assumed to be infinitely small.

Given a point P =
[
x y z

]T
, we denote as Q = (u, v) its projection into the

image plane through the origin. The line connecting these two points is called
projection line.

In order to understand the relationship between the coordinates of Q and P,
Figure 3.15 shows the 3D coordinate system from above, looking down in the
negative direction of the Y axis. The projection line creates two similar triangles
that allows us to state that

−u

f
=

x

z
=⇒ u =

−fx

z
(3.7)

Similarly, along the Y axis we have

−v

f
=

y

z
=⇒ v =

−fy

z
(3.8)

[
u

v

]
=

f

z

[
x

y

]
(3.9)

It is useful to adopt the homogeneous coordinates allowing the implementation
of common transformations such as translation, rotation, scaling and perspective
projection as matrix operations. Points P and Q can be refactored as:

P̄ =


x

y

z

1

 Q̄ =

uv
1

 (3.10)

Rewriting (3.9) in terms of homogeneous coordinates:

uv
1

 =
f

z

xy
z
f

 ∼

xy
z
f

 (3.11)

45

uv
1

 ∼

1 0 0 0

0 1 0 0

1 0 1
f

0



x

y

z

1

 (3.12)

Q̄ ∼ CP̄ (3.13)

where C is called camera matrix
It is possible to factorize the camera projection matrix as the multiplication

of a 3x3 and a 3x4 matrices, which are respectively related to the intrinsic and
extrinsic parameters. Intrinsic parameters model the optical features of the device
and the extrinsic ones model the camera position and orientation in space.

From these 2D–3D correspondences, it is possible to calculate the 3D pose
(rotation and translation) of the head, with respect to the camera, by way of
the Point-n-Perspective (PnP) algorithm. The solving strategies estimate the
pose of a calibrated camera given a set of n 3D points in the world and their
corresponding 2D projections in the image.

The camera pose consists of 6 degrees-of-freedom (DOF) which are made up of
the rotation (roll, pitch, and yaw) and 3D translation of the camera with respect
to the world. It is possible to write the full relationship between points on the
image and the object as follows:

x

y

1

 = s

fx 0 cx

0 fy cy

0 0 1


r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3




U

V

W

1

 (3.14)

where equation (3.14) is made of a rotation and a projection matrix, governed
by the camera intrinsic parameters (focal length f and center point C), mapping
the 3D points to 2D image points, up to scale s. In our application set-up, it is
possible to assume the camera is already calibrated so the intrinsic properties are
already known (focal length, principal image point and skew parameter).

Given the intrinsic parameters we need to find 12 coefficients for the rotation
and translation.

In this dissertation, the PnP algorithm used for the head pose estimation is the

46

Efficient PnP (EPnP) developed by Lepetit, et al. [86]. This solution is based on
the assumption that each of the n points (which are called reference points) can
be expressed as a weighted sum of four virtual control points.

From this point of view, the coordinates of these points become the unknowns
of the problem. The estimation of these control points permits inferring the final
pose of the camera.

3.4 Feature computation

The final step in the acquisition pipeline is the computation of the features that
will be used by the classification model.

It is possible to divide these features in various categories:

• blink related;

• mouth related;

• driving style related.

The main idea is to create a set of features coming from different measurements
in order to build an hybrid classification model that relies on different sources of
information to predict the driver’s drowsiness state.

Blink related

As explained before, the landmarks detection system returns a set of points, which
permits computing a set of raw features called EAR. This describe the opening
width of the eyes in a accurate and almost standardized way for each analyzed
frame.

Initially we introduced, a threshold that discriminates whether subject’s eyes
are open or closed. This parameter was determined in an heuristic way from a set
of experimental results in different conditions. The estimate parameter proved to
work effectively for the majority of the analyzed subjects, but revealed unreliable
for persons with a naturally-narrow eye aperture.

For this reason, we introduced a calibration phase, that will be explained later
in Chapter 5. This routine performs a statistical analysis on the fetched EAR
values determining an upper and lower bound to normalize the eye aspect ratio

47

in the range [0, 1]. More precisely, the value of the EAR feature was converted
as follows

EARstandardized =
EARcurrent − EARmin

EARmax − EARmin

(3.15)

From this metric, it is possible to detect blinking from the following set of
operations.

Whenever the current EARstandardized value is below the threshold, the eye
is classified as closed. If this happens, the current frame index and the value
are stored in the array instant_blink, which represent all the blinking instants.
When the condition is not verified, the algorithm checks whether the eyes in the
previous analyzed frame were closed or not. If they were not closed, the driver
is keeping his/her eyes opened and no actions are needed. Instead, if they were
closed, a blink has just terminated. As a matter of fact, the standardized EAR
features for each frame of the blink period can be computed using the function
compute_blink() that will be later described. Finally the algorithm will add
the output of the computation to the blinks array, which contains all the blinks
occurred during the last minute.

Currently tested mobile devices are not capable of performing all the processing
steps of the acquisition pipeline within the time between two consecutive frames
(i.e. for a camera that acquire images at 30 frames per second, approximately 33
ms); so, some frames will be discarded by the application.

For this reason, the compute_blink() function has, in first place, to estimate
the missing values from the discarded frames performing a linear interpolation.

Linear interpolation employs some linear polynomial functions to construct new
data points within the range of a discrete set of known values.

Given two points with coordinates (x0, y0) and (x1, y1), for a value x in the
interval (x0, x1), the correspondent interpolated y value is given from the equation:

y − y0
x− x0

=
y1 − y0
x1 − x0

(3.16)

y = y0 + (x− x0)
y1 − y0
x1 − x0

(3.17)

After the interpolation, the algorithm computes the following features:

48

Frame ID ... 123 125 128 129 131 133 135 ...
EARstandardized ... 0.89 0.93 0.91 0.9 0.6 0.2 0.15 ...

Table 3.3: Mocked EAR values array

Frame ID ... 123 124 125 126 127 128 129 130 131 132 133 134 135 ...
Int. EARstandardized ... 0.89 0.91 0.93 0.925 0.915 0.91 0.9 0.75 0.6 0.4 0.2 0.175 0.15 ...

Table 3.4: Interpolated mocked EAR values array

• Frame duration, which represent the number of frames that elapsed be-
tween the beginning and the end of the blink

Duration = FrameID[end]− FrameID[start] (3.18)

• Amplitude, which represent the EAR excursion from the upper value to
the lower one

Amplitude = EAR[start]− 2EAR[bottom] + EAR[end]

2
(3.19)

• Eye Opening Velocity (EOV), which represent how quickly the eye
opens after the blink

EOV =
EAR[end]− EAR[start]

FrameID[end]− FrameID[start]
(3.20)

• Interframe, which measures the number of frames since the last blink

Interframe = FrameID[start]− FrameID[end]last_blink (3.21)

The main idea is to build a sequence of blinks (given the fact that normally an
alert person blinks 20 times per minute) where each row contains the four blinks’
features. This will provide a fixed vector of shape (n, 4) containing the last n

driver’s blinks. This array of data is generated for classification every minute.
If during the last minute, the algorithm captures less than n blinks, the sequence

will be padded with zeros.
Works like [87], [38] and [88] reported that one of the biggest challenges in

using blink features for drowsiness detection is the difference in blinking pattern
across individuals

49

So features should be normalized across different subjects performing a statis-
tical evaluation during the calibration phase.

In the calibration phase, the program captures one minute of data in order
to compute the mean and the standard deviation of each features. These two
values will be used in the previous features computation to standardize all the
subsequent blinks.

StandardizedFeaturen =
Featuren − µn

σn

(3.22)

The standardized features will allow the network to work with normalized data
and not be biased by different subjects behaviors.

Mouth related

Given the set of landmarks extracted by the algorithm at each frame, a raw
feature called MAR describes the opening width of the mouth in a accurate and
almost standardized way.

Unfortunately these type of features are not implemented in this dissertation,
but will be included in future development.

Driving-style related

The last type of features that the application is computing, are the one related
to the current driving behavior and they can be divided into three categories:

• attention feature;

• speed feature;

• steering wheel feature.

The fetching of these features has currently been implemented only for the first
two types, since they can be extracted using sensors that are inside smartphones.

An attempt to compute an estimation of the steering wheel values using the
accelerometer, gyroscope and magnetometer has been done but the accuracy of
the estimates made them useless for the final classification task.

One of the future steps in the project is to implement a Bluetooth direct connec-
tion with Texa Care, a bluetooth OBD unit that is capable of reading values from

50

the various car’s electoric control units and transmit them to the smartphone in
a readable way.

Attention feature
In the previous step of the acquisition pipeline, the algorithm estimated the head
pose of the driver and returned a series of angles that represent the face direction
in three dimensional space, as we can see from Figure 3.16.

Figure 3.16: Euler’s angles explainaঞon (figure from [12])

We define the various angles as the following:

• Pitch is the angle obtained rotating the head around the X axis.

• Yaw is the angle obtained rotating the head around the Y axis.

• Roll is the angle obtained rotating the head around the Z axis.

51

During the initial calibration phase, the application requires the driver to place
the smartphone in the typical place and look at the road. This will initialize the
starting angles and the application will localize the camera in the space.

This operation will enable the estimation of the current pose for the head of the
driver with respect to the road and the current camera position and orientation.

Speed feature
Some good indicator of the driver conditions, as stated in Chapter 2, are the type
of road the driver is travelling and the difference between the current car speed
and the actual speed limit on a determined road.

In order to grab these features, two raw data are necessary:

1. Current car velocity, which is computable from the inertial or localization
sensors, as well as from the localizing applications that are installed on the
smartphone.

2. Dataset of roads, which includes the GPS position, the type of road and,
eventually, the road speed limit.

Modern devices running Android, are capable of achieving a very accurate
position combining different localization apps or sensors (i.e. GPS, Network,
Passive).

The information concerning speed limits can be provided by OpenStreetMap
(OSM), a collaborative project to create a free editable map of the world.

OSM uses a topological data structure, with four core elements:

• Nodes, which are points with a geographic position. Stored as coordinates
(pairs of a latitude and a longitude) according to World Geodetic System
(WGS) 84. The WGS is a standard notation for cartography, geodesy, and
satellite navigation including GPS;

• Ways, which are ordered lists of nodes, representing a polyline or possibly a
polygon (when they form a closed loop). They are used both for represent-
ing linear features such as streets and rivers, and areas, like forests, parks,
parking areas and lakes;

• Relations, which are ordered lists (called ”members”) of nodes, ways and
other relations. Each member can optionally have a ”role”, represented
using a string, which describes the scope of the object in the relation;

52

• Tag, which are key-value pairs (both arbitrary strings). They are used
to store metadata about the map objects (such as their type, their name
and their physical properties). Tags are not free-standing, but are always
attached to an object: to a node, a way or a relation.

First of all it is necessary to download the data of the map. Due to network
and server constraints, the algorithm download only the data belonging to an
area of radius of 2 kilometers with center in the current position of the car.

When the map is available, the algorithm checks the accuracy of the current
localization: if the accuracy is below 20 meters, the algorithm computes the
possible roads where the driver may be.

The algorithm rely on the haversine formula to calculate the great-circle dis-
tance (i.e. the shortest distance over the earth’s surface) between two GPS coor-
dinates point.

a = sin2(∆ϕ/2) + cosϕ1 cosϕ2 sin
2(∆λ/2) (3.23)

c = 2a tan 2(
√
a,
√
1− a) (3.24)

d = R · c (3.25)

where ϕ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km)
with all the angles expressed in radians.

The use of this formula allow the algorithm to compute the distance between
the current location and all the nodes in the downloaded map.

Starting from the closest, the algorithm checks if the current position is between
two consecutive points. In order to do that, it calculates an abstract rectangle
generated expanding the two consecutive points in latitude and longitude terms,
like in Figure 3.17.

We suppose to have two points expressed in GPS coordinates p1 = (lat1, lon1)

and p2 = (lat2, lon2). It is possible to find the four corners of the rectangle
performing the following steps:

1. find the slope and intercept of the line expressed as l : y = mx+ q passing

53

Figure 3.17: Road street algorithm representaঞon

between the two points as follow:

m =
lat2 − lat1
lon2 − lon1

(3.26)

q = lon1 −mlat1 (3.27)

2. compute the slope and intercept of l⊥ as

m⊥ = − 1

m
(3.28)

q⊥ = lon1 −m⊥lat1 (3.29)

54

3. compute the longitudes of the four corners as

c1 = (lat1 + ϵ,m⊥(lat1 + ϵ) + q⊥) (3.30)

c2 = (lat1 − ϵ,m⊥(lat1 − ϵ) + q⊥) (3.31)

c3 = (lat2 + ϵ,m⊥(lat2 + ϵ) + q⊥) (3.32)

c4 = (lat2 − ϵ,m⊥(lat2 − ϵ) + q⊥) (3.33)
where ϵ is an arbitrary value that represent the width of a road lane (in our
case ϵ = 7m = 0.00007 in geographic coordinates)

After that, the slope and intercept of the four line passing for each rectangle
corner points are calculated.

In order to determine if the current locations lies within the current rectangle,
the algorithm checks whether latitude and longitude values are included withing
the respective upper and lower bounds.

Every time the location provider gives a new GPS location, the algorithm
estimate the new road path within the possible roads viable from the previous
position.

This algorithm, despite the fact of being under heavy development, seems to
return a pretty accurate estimate of the current road.

Given the current road, the relative speed limit is obtained looking at the max-
speed tag or, if this is not present, using the speed limits in accordance to the
law.

55

56

4
Classifiers

In the last section of the previous chapter, the set of features used by the classifier
were presented. In this chapter a description of the training and test datasets will
be given, focusing on the four models architecture and motivating the structure
of layers that was chosen.

4.1 Training dataset

The first problem in the drowsiness detection task is the collection of an extensive
and reliable dataset. To this purpose, a generalized and diversified dataset does
not exist. This is because the acquisition of data that enable the computation of
high-quality and and noiseless features is a complex problem.

Data acquisition process can be basically divided into four different types of
setups, each of one differing from the other by two main features: controllability
and validity [89].

The first one refers to the possibility to control every aspect of the acquisition
process, like the speed to maintain, the track to travel and the current driver
condition, which is affected by the driving scenario, the characteristics of the
participants, their preparation before the study and their experience during and
after the study.

The second one refers the possibility to generalize the results for real life situ-

57

ations. It implies having a high level of realism in the definition of the driving
set-up, taking into account aspects as obtrusive/unobtrusive instrumentation, the
driving scenario, and the appropriateness of the collected data for the classifica-
tion task.

In most scientific work, a controlled experimental set-up allows minimizing the
noise level and the probability of misunderstanding the acquired data. Control
is often necessary for reliable repeatability within a reasonable time frame. In
the end, a controlled and simulated scenario permit preserving the drivers’ safety
since falling asleep while driving on a road can lead to severe injuries for both
drivers and people passing by.

• Driving simulators: middle to high fidelity simulators that provide the
driver with an at least somewhat genuine feeling of sitting in a real car.
The environment is computer generated, and it is possible to log a host of
variables [89].

• Test tracks: performed using instrumented vehicles on a controlled environ-
ment, closed to public traffic, which can easily be adjusted to the desired
needs [89]. Examples of drowsiness and also distraction related studies per-
formed on test track include [90] work.

• Road tests: quite limited in time, the driven routes are predetermined, and
there may be an experimenter in the car. However, the study is conducted
in real traffic [89].

• Naturalistic studies: conducted in real traffic, but no experimenter is present
in the car, and the studies are usually long-term, lasting for a month or more.
The drivers have free choice of route and use the vehicles for their daily lives.

A simulator has a high degree of control, it is possible to control test conditions,
dissuading and stimulating drowsiness. Reducing the need to change lanes and
gear, ask drivers to drive at constant speed and not introducing environmental
disturbances as cross winds are all examples of factors that stimulate drowsiness.
However, in opposition, there is a lower degree of external validity (the drivers’
behavior will not be the same under simulated driving since there is not any risk
involved).

An experiment on a test track or on a road with an experimental vehicle still
provides a high degree of control on the participants, but decreases in the control

58

of events like interactions with other road users, animals, but also of the weather
and road constructions.

Naturalistic driving studies will have a low degree of control.For example, it is
not possible to use electrodes to acquire physiologic signals, to use a subjective
measure as the KSS and no prior information is available about the participants’
conditions, as the number of hours slept. By contrast it has a high degree of
external validity, as it depicts real life situations. Regardless of the experimental
setting the quality of the results is highly dependent on the data quality.

4.1.1 UTA-RLDD dataset

The RLDD dataset was created for the task of multi-stage drowsiness detection,
targeting not only extreme and easily visible cases, but also subtle cases of drowsi-
ness and has been acquired using the first type of process.

Detection of these subtle cases can be important for detecting drowsiness at an
early stage, so as to activate drowsiness prevention mechanisms.

The RLDD dataset is the largest to date realistic drowsiness dataset and con-
sists of around 30 hours of RGB videos of 60 healthy participants.

For each participant there is one video for each of three different classes: alert-
ness, low vigilance, and drowsiness based on the KSS table, for a total of 180
videos for around ten minutes each.

There were 51 men and 9 women, from different ethnicities (10 Caucasian, 5
non-white Hispanic, 30 Indo-Aryan and Dravidian, 8 Middle Eastern, and 7 East
Asian) and ages (from 20 to 59 years old with a mean of 25 and standard deviation
of 6). The subjects wore glasses in 21 of the 180 videos, and had considerable
facial hair in 72 out of the 180 videos. Videos were taken from roughly different
angles in different real-life environments and backgrounds.

Each video was self-recorded by the participant, using their cell phone or web
camera. The frame rate was always less than 30 fps, which is representative of
the frame rate expected of typical cameras used by the general population.

All videos were recorded in such an angle that both eyes were visible, and the
camera was placed within a distance of one arm length from the subject. These
instructions were used to make the videos similar to videos that would be obtained
in a car, by phone placed in a phone holder on the dash of the car while driving.

59

Figure 4.1: Sample frames from the UTA-RLDD dataset in the alert (first row), low vigilant (second row) and
drowsy (third row) states (figure from [13]).

60

Rating Description

1 Extremely alert

2 Very alert

3 Alert

4 Fairly alert

5 Neither alert nor sleepy

6 Some sign of sleepiness

7 Sleepy, but no effort to keep alert

8 Sleepy, some effort to keep alert

9 Very sleepy, great effort to keep alert, fighting sleep

Table 4.1: Quanঞzaঞon of Karolinska Sleepiness Scale into three different classes

The three classes were explained to the participants as follows

1. Alert: One of the first three states highlighted in the KSS table in Table
4.1. Subjects were told that being alert meant they were experiencing no
signs of sleepiness.

2. Low Vigilant: As stated in level 6 and 7 of Table 4.1, this state corre-
sponds to subtle cases when some signs of sleepiness appear, or sleepiness
is present but no effort to keep alert is required.

3. Drowsy: This state means that the subject needs to actively try to not
fall asleep (level 8 and 9 in Table 4.1).

4.1.2 Feature extraction

Each of these videos has to be processed in order to compute all the features
needed to train the classification models. A Python implementation of the acqui-
sition framework described in Chapter 3, has been deployed with some modifica-
tions.

61

Fold Subjects ID

Dataset size

win_len = 30 win_len = 40 win_len = 50 win_len = 60

training validation test training validation test training validation test training validation test

1 01 - 12 9687 2421 2256 9621 2401 2248 9580 2388 2245 9561 2371 2240

2 13 - 24 8532 2133 2679 8520 2121 2658 8512 2109 2650 8502 2095 2639

3 25 - 36 9656 2413 2295 9648 2405 2287 9640 2397 2280 9618 2382 2268

4 37 - 48 9437 2359 2568 9411 2332 2543 9403 2325 2531 9395 2310 2515

5 49 - 60 8655 2193 3546 8643 2181 3534 8638 2176 3528 8630 2168 3520

Table 4.2: Dataset division

Given the fact that these videos could only provide a set of behavioural mea-
sures, a limited training dataset based only on the eyes features has been gener-
ated. A future objective in the project is to record a set of personal videos with
subjects that are driving in real-world or in a simulator, that will comprise data
coming from other type of measures.

After the extraction of the features, the algorithm generates, for every video, a
batch of input arrays following the rules explained in Chapter 3 and containing
the number of blinks detected in a minute, cycling all the blinks contained in the
video with a stride of 2.

A parameters analysis has been performed, in order to choose the best shape
of the input array to feed into the classification module. Model training and test
has been done with different input shape of (30, 4), (40, 4), (50, 4), (60, 4), where
the first coordinate represent the maximum number of blinks that can be inserted
in the input array during the acquisition phase.

In addition to that and following the rules imposed by the dataset’s creators,
all the classification models have been trained on a subset of subjects and tested
on another one containing different subjects.

The division of the subjects and the size the training, validation and test sets
is described in Table 4.2.

In addition to original labels given by the videos that allow a multiclass clas-
sification problem, a binary classification one has been also studied: given the
dataset explained above, all the sequences labeled as the mid state of drowsiness
were assigned at the alert one if the number of blinks detected in the sequence is
less than 10, or at the drowsy one if the condition was not satisfied.

62

Trivially, the dimension of the dataset for the binary classification task has the
same dimension of the one created for the multiclass problem.

4.2 Classifiers’ Architectures

The model built for the abstract features classification task are three: the first
two are based only on Convolutional layers and differs only by the numbers of
fully connected layers after the convolutional part, the second one adds, after
the convolutional part, a Bidirectional Long Short Term Memory (LSTM) layer,
useful to avoid the long-term dependency problem, that is one of the problems
that afflict RNN and that will be explained in the next subsection.

In order to optimize the networks, all the model uses the Adam version of
stochastic gradient descent together.

4.2.1 LSTM networks

One of the main problems of the traditional neural networks when tackling some
time-based classification, is the lack of information persistance during the analysis
of the sequence. As a matter of fact, it is not clear how the information at a given
instant could be affected by the data from the past.

In order to avoid this, recurrent neural networks (RNN) were created; their
peculiarity is that the input of a RNN layer is made by the output of previous
layers and the output of the current layer at previous instants. This recursive
links create loops in the flowing of the information and require storing part of the
information.

Figure 4.2: Recurrent neural network (figure from [14])

63

As it is possible to see in Figure 4.2 a chunk of neural network A looks at
some input xt and outputs a value ht while the loop allows information to be
shared between one step of the network and the next one. But these type of
networks, as we stated before, are not able to handle the so-called ”long-term
dependencies”, that are the retrieval of relevant information for the current
prediction that was learned a long time ago.

A special kind of RNNs that can easily tackle this problem are the Long Short
Term Memory networks: these type of networks are nowadays used on a large
variety of problems and are explicitly designed to remember information for long
periods of time.

The main difference between a regular RNN and a LSTM network is in the
repeating module A:

(a) RNN repeaঞng module

(b) LSTM repeaঞng module

Figure 4.3: Differences in the repeaঞng modules (figures from [14])

64

As we can see from Figure 4.3, the standard RNN have a very simple structure
with a single tanh layer, while the LSTM uses four interactive neural network
layer where the horizontal line running through the top of the diagram represent
the cell state (i.e. the key idea of LSTM).

The LSTM can change the cell state, adding or removing information to it,
using gates:

1. The first one is called forget gate layer and is useful to decide what in-
formation we’re going to throw away from the cell state using a sigmoid
layer.

2. The second (called input gate layer) and the third one are useful to create
an update to the state.

3. The third one is useful to decide what the network is going to output, basing
the choice on the cell state.

4.2.2 A first drowsyness classifier based on CNN

The first classifier is a feedfoward network made of a set of convolutional layers
that extract relevant features from the feature vector generated by the pipeline
described in the chapter 3.

The convolutional part is a typical CNN composed by three consecutive two-
dimensional convolutional layers with a ReLU activation function (chosen in order
to avoid the vanishing gradient problem) and an increasing number of filters.

The first one has 30 filters and a window size of (3, 4) in order to detect possible
correlations between subsequent features.

The second one and the third one have a window size of (3, 1) that searches
correlations in the time domain and 60 and 120 filters respectively in order to
augment the dimensionality of the network.

Every layer is followed by a MaxPooling operation in two dimension with pool
size equal to 2, 1 and a Dropout layer.

At each training stage, the Dropout layer drops individual nodes out of the
net with probability 1 − p or keeps them with probability p, in order to build a
reduced network where the incoming and outgoing edges to a dropped-out node
are also removed.

65

This approach is useful in order to allow the network to generalize better the
context it is trying to learn and to reduce overfitting.

The output of the last convolutional layer is flattened in order to feed it to a
single fully connected layer containing 128 neurons.

The fully connected part is followed by another Dropout and finally by a set of
3 or 2 neurons, depending on the type of problem, that represent the probability
of the input to belong to a certain class that have a Softmax activation function.

4.2.3 A drowsiness classifier based on CNN and Dense fully-connected
layers

In the second model, the approach is the same as the previous one with one main
difference: the introduction of a dense Fully Connected part at the end of the
network.

The new part is composed by a set of three different fully connected layers,
each one with decreasing number of neurons as it is possible to see in Figure 4.4.

This part has been inserted into the network because of its capability to map
a lower dimension output as the one of the last convolutional layer into a greater
one, in order to fetch new features the convolutional part has generated.

The convolutional part, as stated before, is exactly the same as the previous
network.

4.2.4 A third drowsiness classifier based on LSTM

In this network, a different approach has been followed, introducing into the
network a Bidirectional LSTM part capable of finding time correlations between
the various timesteps.

The model has a single Bidirectional LSTM hidden layer with a number
of neurons proportional to the window length. The idea of Bidirectional Recurrent
Neural Networks (RNNs) is straightforward and it involves duplicating the first
recurrent layer in the network so that there are now two layers side-by-side, then
providing the input sequence as-is as input to the first layer and providing a
reversed copy of the input sequence to the second.

Then, the layer is followed by a Dropout layer used to reduce overfitting
during the training session and a Dense fully connected layer, with the same

66

number of neurons of the LSTM and a ReLU activation function, in order to
interpret the features extracted by the LSTM hidden layer.

Finally another Dense fully connected layer with number of neurons equal
to the classes size and a softmax activation function, in order to make predictions.

4.2.5 A fourth classifier inytegrating CNN with LSTM

The last model merges the presented architectures into a unique one.
The convolutional part has been added before the LSTM layer, to read subse-

quences of the main time series as blocks, extract features from each block and
then allow the LSTM to interpret the features extracted.

The rest of the network, including the LSTM part, is equal to the one presented
in the previous network.

67

Input:	InputLayer
input:
output:

(None,	60,	4,	1)
(None,	60,	4,	1)

Conv1:	Conv2D
input:
output:

(None,	60,	4,	1)
(None,	58,	1,	30)

MaxPooling1:	MaxPooling2D
input:
output:

(None,	58,	1,	30)
(None,	29,	1,	30)

Dropout1:	Dropout
input:
output:

(None,	29,	1,	30)
(None,	29,	1,	30)

Conv2:	Conv2D
input:
output:

(None,	29,	1,	30)
(None,	27,	1,	60)

MaxPooling2:	MaxPooling2D
input:
output:

(None,	27,	1,	60)
(None,	13,	1,	60)

Dropout2:	Dropout
input:
output:

(None,	13,	1,	60)
(None,	13,	1,	60)

Conv3:	Conv2D
input:
output:

(None,	13,	1,	60)
(None,	11,	1,	120)

MaxPooling3:	MaxPooling2D
input:
output:

(None,	11,	1,	120)
(None,	5,	1,	120)

Dropout3:	Dropout
input:
output:

(None,	5,	1,	120)
(None,	5,	1,	120)

Flatten1:	Flatten
input:
output:

(None,	5,	1,	120)
(None,	600)

Dense1:	Dense
input:
output:

(None,	600)
(None,	128)

Dropout4:	Dropout
input:
output:

(None,	128)
(None,	128)

Output:	Dense
input:
output:

(None,	128)
(None,	3)

(a) First model: CNN

Input: InputLayer
input:

output:
(None, 60, 4, 1)
(None, 60, 4, 1)

Conv1: Conv2D
input:

output:
(None, 60, 4, 1)

(None, 58, 1, 30)

MaxPooling1: MaxPooling2D
input:

output:
(None, 58, 1, 30)
(None, 29, 1, 30)

Dropout1: Dropout
input:

output:
(None, 29, 1, 30)
(None, 29, 1, 30)

Conv2: Conv2D
input:

output:
(None, 29, 1, 30)
(None, 27, 1, 60)

MaxPooling2: MaxPooling2D
input:

output:
(None, 27, 1, 60)
(None, 13, 1, 60)

Dropout2: Dropout
input:

output:
(None, 13, 1, 60)
(None, 13, 1, 60)

Conv3: Conv2D
input:

output:
(None, 13, 1, 60)

(None, 11, 1, 120)

MaxPooling3: MaxPooling2D
input:

output:
(None, 11, 1, 120)
(None, 5, 1, 120)

Dropout3: Dropout
input:

output:
(None, 5, 1, 120)
(None, 5, 1, 120)

Flatten: Flatten
input:

output:
(None, 5, 1, 120)

(None, 600)

Dense1: Dense
input:

output:
(None, 600)
(None, 512)

Droput4: Dropout
input:

output:
(None, 512)
(None, 512)

Dense2: Dense
input:

output:
(None, 512)
(None, 256)

Droput5: Dropout
input:

output:
(None, 256)
(None, 256)

Dense3: Dense
input:

output:
(None, 256)
(None, 128)

Droput6: Dropout
input:

output:
(None, 128)
(None, 128)

Output: Dense
input:

output:
(None, 128)

(None, 3)

(b) Second model: CNN + Dense FC

Figure 4.4: First and second models architecture

68

Input: InputLayer
input:

output:
(None, 15, 60, 1)
(None, 15, 60, 1)

Squeeze: Lambda
input:

output:
(None, 15, 60, 1)

(None, 15, 60)

BidirectionalLSTM(lstm_3): Bidirectional(LSTM)
input:

output:
(None, 15, 60)

(None, 15, 120)

Flatten: Flatten
input:

output:
(None, 15, 120)

(None, 1800)

Dense: Dense
input:

output:
(None, 1800)
(None, 128)

Dropout: Dropout
input:

output:
(None, 128)
(None, 128)

Output: Dense
input:

output:
(None, 128)

(None, 3)

(a) Third model: LSTM

Input: InputLayer
input:

output:
(None, 15, 60, 1)
(None, 15, 60, 1)

Conv1: Conv2D
input:

output:
(None, 15, 60, 1)

(None, 13, 57, 60)

MaxPooling1: MaxPooling2D
input:

output:
(None, 13, 57, 60)
(None, 6, 57, 60)

Dropout1: Dropout
input:

output:
(None, 6, 57, 60)
(None, 6, 57, 60)

Conv2: Conv2D
input:

output:
(None, 6, 57, 60)
(None, 4, 57, 1)

MaxPooling2: MaxPooling2D
input:

output:
(None, 4, 57, 1)
(None, 2, 57, 1)

Dropout2: Dropout
input:

output:
(None, 2, 57, 1)
(None, 2, 57, 1)

Squeeze: Lambda
input:

output:
(None, 2, 57, 1)

(None, 2, 57)

Bidirectional(LSTM): Bidirectional(LSTM)
input:

output:
(None, 2, 57)

(None, 2, 120)

Flatten: Flatten
input:

output:
(None, 2, 120)

(None, 240)

Dense: Dense
input:

output:
(None, 240)
(None, 128)

Dropout: Dropout
input:

output:
(None, 128)
(None, 128)

Output: Dense
input:

output:
(None, 128)

(None, 3)

(b) Fourth model: CNN + LSTM

Figure 4.5: Third and fourth models architecture

69

70

5
Results

5.1 Performance evaluation

In order to compare the different models and to choose the best performing pa-
rameters for the networks, a prediction quality measure has to be introduced.

The first thing to compute is the confusion matrix, a table that is used to
describe the performance of each classifier on a set of test data for which ground
truth values are known.

From the confusion matrix it is possible to extract different measures like

• accuracy, which represents the percentage of correctly-classified samples;

• precision, which represents percentage of true positive samples, i.e., drowsy
states that are classified as ”drowsy”;

• recall, which represent the ratio between the total number of correctly clas-
sified positive examples divide by the total number of positive examples.

Given the fact that the drowsiness detection problem has been divided into two
different sub problems, one regarding a binary classification and the other a three
class classification, it is necessary to define the measures for each classification
output.

For the binary classification problem, it is possible to represent the confusion
matrix as in Table 5.1

71

Predicted

Actual
Alert Drowsy

Alert TN FP

Drowsy FN TP

Table 5.1: Binary classificaঞon confusion matrix

and the various measures can be mathematically defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(5.1)

Precision =
TP

TP + FN
(5.2)

Recall = TP

TP + FP
(5.3)

Only in binary classification, recall of the positive class (i.e. drowsy) is also
known as sensitivity, whilst recall of the negative class is called specificity.

For the multiclass classification problem, it is possible to represent the confusion
matrix as in Table 5.2

Predicted

Actual

Alert Mid Drowsy

Alert value0,0 value1,0 value2,0
Mid value0,1 value1,1 value2,1

Drowsy value0,2 value1,2 value2,2

Table 5.2: Mulঞclass classificaঞon confusion matrix

and the various measures, with n equal to the number of classes, can be math-
ematically defined as:

Accuracy =

∑n
i=0 valuei,i∑n

i=0

∑n
j=0 valuei,j

(5.4)

72

For each class is also possible to describe the relative precision and recall:

Precisioni =
valuei,i∑n
j=0 valuei,j

(5.5)

Recalli =
valuei,i∑n
j=0 valuej,i

(5.6)

In order to obtain a more general result, it is possible to average the results
across classes:

Average Precision =

∑n
i=0 Precisioni

n (5.7)

Average Recall =
∑n

i=0 Recalli
n (5.8)

5.2 Results report

As it is possible to see in Figure 5.1, the obtained results are different in the
binary classification problem and the multiclass problem. Surely the pure LSTM
network performs worst in both cases and with every combination of window
length, compared to the others. This means that the convolutional part is useful
to create new features that are extremely-informative for the classifier.

In the binary classification results (see Figure 5.1a), a major improvement for
all the networks can be seen with the increase of the window length. The best
results, in fact, are achieved using a window length equals to 60 blinks, with the
second CNN model achieving the best results. Both CNN1 and CNN+LSTM
models perform similarly to CNN2 with the main difference that CNN+LSTM
model seems to obtain better results with a window size equals to 40 blinks.

Looking at the confusion matrices (see Figure 5.2), it is clear that all networks
are capable of predicting the alert state without any problem. It is more difficult
to detect drowsiness, with a lot of false negatives predicted by the first three
models. This could be caused by the division operated in the binary dataset
creation. The only model that seems to be able to correctly detect different types
of drowsiness is the CNN + LSTM, which unfortunately struggles a little bit in
the detection of the alert state, producing more false positive than the others.

73

30 40 50 60
Window length

0.67

0.68

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

Accuracy
CNN1
CNN2

LSTM
CNN+LSTM

30 40 50 60
Window length

0.69

0.70

0.71

0.72

0.73

0.74

Pr
ec

isi
on

Precision
CNN1
CNN2

LSTM
CNN+LSTM

30 40 50 60
Window length

0.67

0.68

0.69

0.70

0.71

0.72

0.73

Re
ca

ll

Recall
CNN1
CNN2

LSTM
CNN+LSTM

(a) Binary classificaঞon

30 40 50 60
Window length

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

Accuracy

CNN1
CNN2

LSTM
CNN+LSTM

30 40 50 60
Window length

0.44

0.46

0.48

0.50

0.52

Pr
ec

isi
on

Precision

CNN1
CNN2

LSTM
CNN+LSTM

30 40 50 60
Window length

0.46

0.48

0.50

0.52

Re
ca

ll

Recall

CNN1
CNN2

LSTM
CNN+LSTM

(b)Mulঞclass classificaঞon

Figure 5.1: Performance measures of the classificaঞon models

In the multiclass classification results (see Figure 5.1b), the situation is inversed.
CNN1, CNN2 and CNN+LSTM models perform better with a lower window
length, degrading their performance as the size of the window increases. This is
particularly evident in the CNN+LSTM model.

Looking at the confusion matrices (see Figure 5.4), it is possible to see how the
CNN only models perform better than the LSTM-based ones. CNN1 especially
is capable of differentiate well between the ”Alert” and the ”Drowsy” state.

All the networks struggles in the classification of ”Mid” states as to be expected.
Looking at videos belonging to that class, it is very difficult to classify the subject
state even by a human judge (this was also stated in [13]).

74

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

906.8
39.45%

450.4
19.59%

242.6
10.55%

699.0
30.41%

1357

66.81%

33.19%

941

74.24%

25.76%

1149

78.89%

21.11%

1149

60.81%

39.19%

2298

69.85%

30.15%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

921.4
40.08%

468.2
20.37%

228.0
9.92%

681.2
29.63%

1389

66.31%

33.69%

909

74.92%

25.08%

1149

80.16%

19.84%

1149

59.27%

40.73%

2298

69.71%

30.29%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

933.6
40.61%

550.4
23.94%

215.8
9.39%

599.0
26.06%

1484

62.91%

37.09%

814

73.51%

26.49%

1149

81.22%

18.78%

1149

52.11%

47.89%

2298

66.67%

33.33%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

830.6
36.13%

413.0
17.97%

318.8
13.87%

736.4
32.03%

1243

66.79%

33.21%

1055

69.79%

30.21%

1149

72.26%

27.74%

1149

64.07%

35.93%

2298

68.17%

31.83%

Confusion matrix

(a)Window length = 30 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

75

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

900.0
39.15%

418.2
18.19%

249.4
10.85%

731.2
31.81%

1318

68.27%

31.73%

980

74.57%

25.43%

1149

78.30%

21.70%

1149

63.62%

36.38%

2298

70.96%

29.04%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

936.6
40.74%

460.4
20.03%

212.8
9.26%

689.0
29.97%

1397

67.04%

32.96%

901

76.40%

23.60%

1149

81.49%

18.51%

1149

59.94%

40.06%

2298

70.72%

29.28%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

912.4
39.69%

492.2
21.41%

237.0
10.31%

657.2
28.59%

1404

64.96%

35.04%

894

73.50%

26.50%

1149

79.38%

20.62%

1149

57.18%

42.82%

2298

68.28%

31.72%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

826.6
35.96%

322.0
14.01%

322.8
14.04%

827.4
35.99%

1148

71.97%

28.03%

1150

71.94%

28.06%

1149

71.92%

28.08%

1149

71.99%

28.01%

2298

71.95%

28.05%

Confusion matrix

(b)Window length = 40 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

76

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

910.0
39.59%

422.4
18.37%

239.4
10.41%

727.0
31.63%

1332

68.30%

31.70%

966

75.23%

24.77%

1149

79.17%

20.83%

1149

63.25%

36.75%

2298

71.21%

28.79%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

915.0
39.80%

465.0
20.23%

234.4
10.20%

684.4
29.77%

1380

66.30%

33.70%

918

74.49%

25.51%

1149

79.61%

20.39%

1149

59.54%

40.46%

2298

69.58%

30.42%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

893.8
38.88%

484.4
21.07%

255.6
11.12%

665.0
28.93%

1378

64.85%

35.15%

920

72.24%

27.76%

1149

77.76%

22.24%

1149

57.86%

42.14%

2298

67.81%

32.19%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

801.8
34.88%

318.0
13.83%

347.6
15.12%

831.4
36.17%

1119

71.60%

28.40%

1179

70.52%

29.48%

1149

69.76%

30.24%

1149

72.33%

27.67%

2298

71.05%

28.95%

Confusion matrix

(c)Window length = 50 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

77

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

904.2
39.33%

392.6
17.08%

245.2
10.67%

756.8
32.92%

1296

69.73%

30.27%

1002

75.53%

24.47%

1149

78.67%

21.33%

1149

65.84%

34.16%

2298

72.26%

27.74%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

962.8
41.88%

439.8
19.13%

186.6
8.12%

709.6
30.87%

1402

68.64%

31.36%

896

79.18%

20.82%

1149

83.77%

16.23%

1149

61.74%

38.26%

2298

72.75%

27.25%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

909.6
39.57%

499.4
21.72%

239.8
10.43%

650.0
28.28%

1409

64.56%

35.44%

889

73.05%

26.95%

1149

79.14%

20.86%

1149

56.55%

43.45%

2298

67.84%

32.16%

Confusion matrix

0 1

sum
_lin

Actual

Alert

Drowsy

sum_col

Pr
ed

ict
ed

813.6
35.39%

319.4
13.89%

335.8
14.61%

830.0
36.11%

1133

71.81%

28.19%

1165

71.20%

28.80%

1149

70.78%

29.22%

1149

72.21%

27.79%

2298

71.50%

28.50%

Confusion matrix

(d)Window length = 60 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

Figure 5.2: Binary classificaঞon confusion matrices

78

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

628.6
23.55%

318.8
11.95%

172.0
6.44%

154.0
5.77%

310.4
11.63%

239.2
8.96%

107.0
4.01%

260.4
9.76%

478.4
17.93%

1119
56.16%
43.84%

703
44.12%
55.88%

845
56.56%
43.44%

889
70.66%
29.34%

889
34.89%
65.11%

889
53.78%
46.22%

2668
53.11%
46.89%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

637.0
23.87%

330.4
12.38%

175.2
6.56%

170.0
6.37%

324.0
12.14%

269.2
10.09%

82.6
3.10%

235.2
8.81%

445.2
16.68%

1142
55.75%
44.25%

763
42.45%
57.55%

763
58.35%
41.65%

889
71.61%
28.39%

889
36.42%
63.58%

889
50.04%
49.96%

2668
52.69%
47.31%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

684.4
25.64%

482.8
18.09%

219.0
8.21%

163.6
6.13%

280.8
10.52%

373.4
13.99%

41.6
1.56%

126.0
4.72%

297.2
11.14%

1386
49.37%
50.63%

817
34.34%
65.66%

464
63.94%
36.06%

889
76.93%
23.07%

889
31.56%
68.44%

889
33.41%
66.59%

2668
47.30%
52.70%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

578.6
21.68%

289.0
10.83%

160.8
6.03%

171.2
6.41%

322.8
12.10%

238.4
8.93%

139.8
5.24%

277.8
10.41%

490.4
18.38%

1028
56.26%
43.74%

732
44.07%
55.93%

908
54.01%
45.99%

889
65.04%
34.96%

889
36.29%
63.71%

889
55.13%
44.87%

2668
52.15%
47.85%

Confusion matrix

(a)Window length = 30 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

79

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

635.2
23.80%

330.6
12.39%

189.8
7.11%

142.2
5.33%

299.8
11.23%

212.8
7.97%

112.2
4.20%

259.2
9.71%

487.0
18.25%

1155
54.97%
45.03%

654
45.78%
54.22%

858
56.73%
43.27%

889
71.40%
28.60%

889
33.70%
66.30%

889
54.74%
45.26%

2668
53.28%
46.72%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

627.4
23.51%

345.2
12.93%

169.6
6.35%

164.2
6.15%

312.8
11.72%

282.8
10.60%

98.0
3.67%

231.6
8.68%

437.2
16.38%

1142
54.93%
45.07%

759
41.17%
58.83%

766
57.02%
42.98%

889
70.53%
29.47%

889
35.16%
64.84%

889
49.15%
50.85%

2668
51.61%
48.39%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

656.4
24.60%

474.8
17.79%

227.0
8.51%

169.4
6.35%

265.8
9.96%

330.0
12.37%

63.8
2.39%

149.0
5.58%

332.6
12.46%

1358
48.33%
51.67%

765
34.74%
65.26%

545
60.98%
39.02%

889
73.79%
26.21%

889
29.88%
70.12%

889
37.39%
62.61%

2668
47.02%
52.98%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

541.6
20.29%

297.6
11.15%

141.2
5.29%

218.4
8.18%

286.2
10.72%

267.0
10.00%

129.6
4.86%

305.8
11.46%

481.4
18.04%

980
55.24%
44.76%

771
37.09%
62.91%

916
52.51%
47.49%

889
60.88%
39.12%

889
32.17%
67.83%

889
54.11%
45.89%

2668
49.06%
50.94%

Confusion matrix

(b)Window length = 40 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

80

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

644.8
24.16%

343.6
12.87%

177.6
6.65%

165.8
6.21%

318.0
11.92%

278.8
10.45%

79.0
2.96%

228.0
8.54%

433.2
16.23%

1166
55.30%
44.70%

762
41.70%
58.30%

740
58.52%
41.48%

889
72.48%
27.52%

889
35.75%
64.25%

889
48.70%
51.30%

2668
52.31%
47.69%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

640.6
24.00%

328.0
12.29%

169.0
6.33%

184.0
6.89%

321.0
12.03%

293.4
10.99%

65.0
2.44%

240.6
9.02%

427.2
16.01%

1137
56.31%
43.69%

798
40.21%
59.79%

732
58.30%
41.70%

889
72.01%
27.99%

889
36.08%
63.92%

889
48.02%
51.98%

2668
52.04%
47.96%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

642.0
24.06%

419.8
15.73%

226.4
8.48%

198.2
7.43%

273.0
10.23%

306.2
11.47%

49.4
1.85%

196.8
7.37%

357.0
13.38%

1288
49.84%
50.16%

777
35.12%
64.88%

603
59.18%
40.82%

889
72.17%
27.83%

889
30.69%
69.31%

889
40.13%
59.87%

2668
47.66%
52.34%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

538.4
20.17%

275.0
10.30%

139.8
5.24%

226.8
8.50%

316.2
11.85%

297.6
11.15%

124.4
4.66%

298.4
11.18%

452.2
16.94%

953
56.48%
43.52%

840
37.62%
62.38%

875
51.68%
48.32%

889
60.52%
39.48%

889
35.54%
64.46%

889
50.83%
49.17%

2668
48.97%
51.03%

Confusion matrix

(a)Window length = 50 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

81

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

631.4
23.66%

326.8
12.25%

160.0
6.00%

168.2
6.30%

285.2
10.69%

259.8
9.73%

90.0
3.37%

277.6
10.40%

469.8
17.60%

1118
56.47%
43.53%

713
39.99%
60.01%

837
56.10%
43.90%

889
70.98%
29.02%

889
32.06%
67.94%

889
52.81%
47.19%

2668
51.95%
48.05%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

614.0
23.01%

333.8
12.51%

170.4
6.38%

193.6
7.25%

344.8
12.92%

325.4
12.19%

82.0
3.07%

211.0
7.91%

393.8
14.76%

1118
54.91%
45.09%

863
39.92%
60.08%

686
57.34%
42.66%

889
69.02%
30.98%

889
38.76%
61.24%

889
44.27%
55.73%

2668
50.68%
49.32%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

656.8
24.61%

465.2
17.43%

257.8
9.66%

159.8
5.99%

211.2
7.91%

319.2
11.96%

73.0
2.74%

213.2
7.99%

312.6
11.71%

1379
47.60%
52.40%

690
30.60%
69.40%

598
52.20%
47.80%

889
73.83%
26.17%

889
23.74%
76.26%

889
35.14%
64.86%

2668
44.24%
55.76%

Confusion matrix

0 1 2

sum
_lin

Actual

Alert

Mid

Drowsy

sum_col

Pr
ed

ict
ed

541.6
20.29%

275.0
10.30%

117.4
4.40%

224.2
8.40%

290.4
10.88%

313.4
11.74%

123.8
4.64%

324.2
12.15%

458.8
17.19%

934
57.99%
42.01%

827
35.07%
64.93%

906
50.60%
49.40%

889
60.88%
39.12%

889
32.64%
67.36%

889
51.57%
48.43%

2668
48.37%
51.63%

Confusion matrix

(b)Window length = 60 (from le[to right: CNN1, CNN2, LSTM, CNN+LSTM)

Figure 5.4: Mulঞclass classificaঞon confusion matrices

82

6
Android Application

The presented classifier was implemented in an Android application that is sup-
posed to run on drivers’ cellphone. the current chapter overviews the different
features of such applications.

6.1 Main components

There are some necessary building blocks that an Android application consists
of. These loosely coupled components are bound by the application manifest
file which contains description of each component and how they interact. The
manifest file also contains the app’s metadata, its hardware configuration and
platform requirements, external libraries and required permissions.

It is possible to subdivide an Android application into four main components:

• Activities: they dictate the UI and handle the user interaction to the
smart phone screen.

• Services: they handle background processing associated with an applica-
tion.

• Broadcast Receivers: they handle communication between Android OS
and applications.

• Content Providers: they handle data and database management issues.

83

There are additional components which will be used in the construction of above
mentioned entities, their logic and wiring between them. These components are:

• Fragments: they represents a portion of user interface in an Activity.

• Views: they represents UI elements that are drawn on-screen including
buttons, lists forms etc.

• Layouts: they represents view hierarchies that control screen format and
appearance of the views.

• Intents: they represents messages wiring components together.

• Resources: they represents external elements, such as strings, constants
and drawable pictures.

• Manifest: configuration file for the application.

6.2 Application architecture

The application was developed using an architectural pattern called Clean Archi-
tecture that is based on different other architecture proposed in the last years
like

• Hexagonal Architecture

• Onion Architecture

• Screaming Architecture

The key concept in these architectures is the separation of concerns, i.e., the
division of software into modules. Each one has at least one layer for business
rules, and another for interfaces.

The actuation of the separation of concerns leads to the development of systems
that present the following qualities:

• Independence of Frameworks. The architecture does not depend on
the existence of some external library.

84

• Testability. The business rules can be tested without the UI, Database,
Web Server, or any other external element.

• Independence of UI: the UI can be changed easily, without applying
changes to the rest of the system. A Web UI could be replaced with a
console UI, for example, without changing the business rules.

• Independence of Database. The database can be updated flexibly with-
out modifying the rest of the system. A SQL database could be replaced
with a non-relational one, for example, without changing the business rules.

• Independence of any external agency. The business rules don’t know
anything at all about the outside world.

Figure 6.1: Clean architecture diagram from [15]

Figure 6.1 represents architecture and functionalities for an Android app.
The concentric circles represent different areas of software. As we move inwards,

the level of abstraction increases and encapsulates higher level policies. The

85

outermost circle is low level concrete detail. The inner most circle is the most
general.

The Dependencies Rule that lies behind this architecture state that source code
dependencies can point inwards only. An inner circle does not have access to the
variables and the states of an outer circle. In particular, the name of something
declared in an outer circle must not be mentioned by the code in the an inner
circle. That includes, functions, classes. variables, or any other named software
entity.

By the same token, data formats used in an outer circle should not be used
by an inner circle, especially if those formats are generate by a framework in an
outer circle.

In the lower right of Figure 6.1, there is an example of how the crossing of the
circle boundaries is performed.

It is possible to identify the following fundamental components:

• Entities, which encapsulate enterprise wide business rules (i.e. the most
general and high-level rules of the application). They are the least likely to
change when something external changes and no operational change to any
particular application should affect the entity layer.

• Use Cases, which encapsulate application specific business rules imple-
menting all of the use cases of the system. These use cases orchestrate the
flow of data to and from the entities, and direct those entities to use their
enterprise wide business rules to achieve the goals of the use case. This
layer has not to be affected by changes to coming from outer world such as
the database, the user interface (UI), or any of the common frameworks.

• Interface Adapters, which contains set of adapters that adapt data from
a format suitable for use cases and entities, to a format to be used by some
external agency, like the database or the Web. The Presenters, Views, and
Controllers can be found here.

• Frameworks and Drivers, which is generally composed of frameworks
and tools such as the Database, the Web Framework, or, like in our case,
the Android environment. All the

86

6.3 Application organization

Following the Clean Architecture structure, the application is organized in fea-
tures, representing, as the name suggest, different functionality of the application.

• Dashboard: the main activity where a general overview of the entire system
is rendered.

• Calibration: the activity that is responsible to perform the calibration phase
for each user.

• Alert sessions: the activity that is responsible to show all the sessions
recorded in the phone and on the cloud.

• Classification models: the activity that is responsible to illustrate the se-
lected classification model and all the calibrations done for that model.

• Settings

Each feature is divided into three layers:

• Domain layer: containing all the classes belonging to the core business logic
of the application (i.e. entities, use cases, interfaces for the data providers
and for the computation workers)

• Data layer: containing the implementations of all the interfaces described
in the domain part.

• Presentation layer: containing all the logic for the connection between
the inner layers and the user-world. It follows a Model-View-ViewModel
(MVVM) architecture.

The application is composed by several classes in order to follow the principles
explained by the Clean Architecture and the scope of this dissertation is not to
focus on each class. For this reason, only a review of the main feature will be
given, due to the fact that is composed by all the components that were explained
before.

87

6.3.1 Dashboard

The application, as stated before, includes multiple modules in order to grab
information, preform the computation, store data and render the results; each
one of these actions is represented by a different type of module:

• Service modules. These are needed in order to grab information by the
sensors inside the smartphone. Frame provider module, location provider
module and data vehicle module belong to this class.

• Worker modules. These are needed to perform computation on input data
in order to extract data from it. A clear example is the visual computation
module that is responsible to compute the raw features from an input frame.

• Repository modules. These are needed to store data on local, cloud and
download data from the web. Examples are the sessions recording repository
that save a driving session (composed by a video and the related data)
either in local and on the personal cloud and the map repository module
that downloads maps from a determinate source.

Frame acquisition

Location acquisition

Vehicle
data acquisition

Services

Feature computation
worker

Classification worker

Road worker

Workers CAMERA2 API

OSM

Repositories

Session repository Model repository Map repository

Figure 6.2: Dashboard modules overview with relaঞve implementaঞons

88

The logic business of these modules is defined in the domain layer of the relative
features using an interface that is responsible to declare every function the module
has to implement.

Relative implementations of these interfaces are, instead, placed into the data
layer of the relative feature.

Using this approach is possible to separate the core business logic of the appli-
cation from the relative implementation as the Clean Architecture states. In fact,
only classes that belong to the data layer have information about classes that are
in a inner layer but the ones in the domain layer do not know anything about
outer circles.

The practical utility of this architecture is that is possible to swap an old
implementation of a module with a new one without having to modify any code
in the core business logic of the application.

Another application of this concept is given by the frame acquisition module.
In the current application there are two different implementations of this func-
tionality. The first acquires frames from the smartphone camera, the other one
reads frames from a video file.

Having declared a generic frame acquisition module, the core business logic
does not care about the origin of these frames. This implies that if, in a future
implementation, the application need to process video frames from a connected
external camera in a remote place, it is only necessary to implement the business
rules declared by the interface that describe the module.

As it is possible to see in Figure 6.2, the dashboard is the control center of
the application and includes the majority of the modules declared in the business
rule.

The Android activity lifecycle (see Figure 6.3) defines a set of callbacks that
allow the activity to know that a state has changed. As an example, the system
is creating, stopping, or resuming an activity, or destroying the process where the
activity resides. The dashboard pipeline can be described as:

1. Initialization: a background process loads all the modules needed by the
activity and load the various models (i.e. face detector, landmarks detector,
classification model).

2. Start of the acquisition: a start command is given in the onResume() func-
tion to all the service modules in order to start reading information.

89

3. Computation: every time the application receive a data entity (i.e. a frame,
a location) from a service, the dashboard ViewModel send it to the relative
worker in order to obtain a result.

4. Rendering: when a result is received by the ViewModel, an update of a
MutableLiveData declared in the ViewModel is performed. This triggers a
callback in the Fragment that calls the relative render method.

5. User interaction: different event listeners are declared in the Fragment;
when a user interact with the UI, the relative procedure is started. These
procedures call a method in the ViewModel in order to perform the needed
operation (e.g. changing the ISO value of the camera, selecting the night
mode).

6. Pause of the application: when the activity enters in the Pause state, the
application pause all the modules that are working in background. This
allow, for example, to not continue to read frames from the camera when
the user is using another application.

7. Application closing: when the user decides to close the application, tha
activity enters in the Stop and Destroy states, where all the data and the
modules are destroyed.

As it is possible to see in Figure 6.2, the implementations of the modules are
performed using a set of libraries. For example, the visual features computation
module is implemented using OpenCV, the classification module uses Tensorflow
and the map downloader module using RetroFit.

6.3.2 OpenCV

OpenCV (Open source Computer Vision) is a library of programming functions
mainly aimed at real-time computer vision. It is developed using C++ but Python
and Java bindings are provided, running on various desktop operating systems
such as Windows, Linux, macOS, FreeBSD and on mobile systems like Android
and iOS.

The main modules that are used in this dissertation are:

• Imgproc: containing various image processing operations such as image
filtering, geometrical image transformations, color space conversion, his-
tograms.

90

• Calib3d: containing algorithms regarding basic multiple-view geometry
algorithms, single and stereo camera calibration, object pose estimation,
stereo correspondence and elements of 3D reconstruction.

• Features2d: containing algorithms regarding the world of feature detection
and description.

• DNN: containing methods and classes useful to perform inference of neural
networks in an easy way

• Face: included in the contrib module (i.e. the container of all the features
that are not officially supported) that contains some implementations of
face landmarks detection algorithms.

The use of OpenCV allows the Android application and the various methods
to run at very high speed respect to a naive implementation of the same method
using Kotlin, due to the fact that the core of the framework, as said before, is
written in C++, one of the most performing programming languages.

6.3.3 Tensorflow Lite

TensorFlow Lite is a set of tools to help developers run TensorFlow models on mo-
bile, embedded, and IoT devices. It enables on-device machine learning inference
with low latency and a small binary size.

TensorFlow Lite consists of two main components:

• The TensorFlow Lite interpreter, which runs specially optimized models on
many different hardware types, including mobile phones, embedded Linux
devices, and microcontrollers.

• The TensorFlow Lite converter, which converts TensorFlow models into an
efficient form for use by the interpreter, and can introduce optimizations to
improve binary size and performance.

TensorFlow Lite is designed to make it easy to perform machine learning on
devices, ”at the edge” of the network, instead of sending data back and forth from
a server, allowing to improve:

• Latency: there’s no round-trip to a server

• Privacy: no data needs to leave the device

91

• Connectivity: an Internet connection isn’t required

• Power consumption: network connections are power hungry

92

Figure 6.3: Android acঞvity lifecycle flow

93

94

7
Conclusions and future work

This thesis described the creation process of a drowsiness detection system work-
ing on mobile devices with low computational power, starting from the literature
study to the mobile application development.

I developed the system during my traineeship period from March to August
2019 at TEXA s.p.a., a company that is specialists in autodiagnostics, A/C system
maintenance, satellite tracking and training courses for vehicle mechanics.

Driver drowsiness presents as an actual and relevant problem that is the cause
of many driving accidents. The number of causalities due to drowsy driving
accidents is high and has been constant over the last years with associated high
economic impact. The high impact of drowsy driving related issues results in a
strong motivation for developing a countermeasure for this problem.

After a study on the drowsiness measures currently pros and limitations and a
comparison on the different products currently in the market, the feature acquisi-
tion phase was described, focusing on the research of speed optimization needed
to run efficiently on mobile devices. The acquisition algorithm has been devel-
oped to enable the computation of different types of features from different data
source in order to create a novel hybrid method.

The computation of a set of abstract features were presented next, together with
the algorithms developed to compute them and the integration with OpenCV.

A set of four different networks was presented, relying on different architec-

95

tures (Convolutional Neural Networks and Recurrent Neural Networks) and the
correspondent training results were discussed.

Results showed that drowsiness detection is still a difficult task, due to the
lack of a uniform and well-labeled dataset and the difficulty to differentiate small
changes between states (e.g. between Mid and Drowsy state).

Despite these problems, the obtained results look promising for future imple-
mentations of new classification models based on a larger set of features, as that
the best performing classifier was able to differentiate between an Alert and a
Drowsy state with high accuracy. Surely new features are needed to improve the
performance in the multiclass classification task.

Finally the Android application was presented together with the architecture
that was used to build the app structure. Following this coding style allowed to
create a scalable, modular and testable application, which can be easily mantained
in the future.

7.1 Future work

As future work, it will be interesting to implement new features extracted from
the driver into the classification models, in order to improve their accuracy.

Moreover, the creation of a dataset, initially based on a simulator, could also
be a key factor in improving the classification accuracy.

Finally, the implementation of the software into embedded devices created with
machine learning purpose and the addition of an infrared camera to the system
could also be relevant developments for the product success.

96

References

[1] Statista. Number of smartphone users worldwide from 2016 to 2021 (in
billions). [Online]. Available: https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/

[2] Wikipedia. Rapid eye movement sleep. [Online]. Available: https:
//en.wikipedia.org/wiki/Rapid_eye_movement_sleep

[3] Mercedes-Benz. Attention assist. [Online]. Available:
http://assets.mbusa.com/vcm/MB/DigitalAssets/TechnologyVideos/
12_TV_ATTENTION-ASSIST_@2x.jpg

[4] M. Authority. Bosch drowsiness detection system to make alertness tech
more common? [Online]. Available: https://www.motorauthority.com/
news/1075780_ibms-lithium-air-battery-tech-the-500-mile-electric-car

[5] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vision, vol. 57, no. 2, pp. 137–154, May 2004. [Online]. Available:
https://doi.org/10.1023/B:VISI.0000013087.49260.fb

[6] S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[7] J. Rao, Y. Qiao, F. Ren, J. Wang, and Q. Du, “A Mobile Outdoor Aug-
mented Reality Method Combining Deep Learning Object Detection and
Spatial Relationships for Geovisualization,” Sensors (Basel), vol. 17, no. 9,
Aug 2017.

[8] I. Mansouri. Computer vision part 5: Object de-
tection, when image classification just doesn’t cut
it. [Online]. Available: https://medium.com/overture-ai/
part-5-object-detection-when-image-classification-just-doesnt-cut-it-b4072fb1a03d

97

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://en.wikipedia.org/wiki/Rapid_eye_movement_sleep
https://en.wikipedia.org/wiki/Rapid_eye_movement_sleep
http://assets.mbusa.com/vcm/MB/DigitalAssets/TechnologyVideos/12_TV_ATTENTION-ASSIST_@2x.jpg
http://assets.mbusa.com/vcm/MB/DigitalAssets/TechnologyVideos/12_TV_ATTENTION-ASSIST_@2x.jpg
https://www.motorauthority.com/news/1075780_ibms-lithium-air-battery-tech-the-500-mile-electric-car
https://www.motorauthority.com/news/1075780_ibms-lithium-air-battery-tech-the-500-mile-electric-car
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://medium.com/overture-ai/part-5-object-detection-when-image-classification-just-doesnt-cut-it-b4072fb1a03d
https://medium.com/overture-ai/part-5-object-detection-when-image-classification-just-doesnt-cut-it-b4072fb1a03d

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” 2016, to appear. [Online].
Available: http://arxiv.org/abs/1512.02325

[10] G. N. O. M. K. Radha, “Empirical study of artificial neural networks in
face-recognition,” IJCSN Journal, vol. 8, pp. 64–72, 02 2019.

[11] M. Pandey, K. Chaudhari, R. Kumar, A. Shinde, D. Totla, and N. D.
Mali, “Assistance for paralyzed patient using eye motion detection,” in
2018 Fourth International Conference on Computing Communication Con-
trol and Automation (ICCUBEA), Aug 2018, pp. 1–5.

[12] A. Saeed, A. Al-Hamadi, and A. Ghoneim, “Head pose estimation on top of
haar-like face detection: A study using the kinect sensor,” Sensors (Basel,
Switzerland), vol. 15, pp. 20 945–20 966, 09 2015.

[13] R. Ghoddoosian, M. Galib, and V. Athitsos, “A realistic dataset
and baseline temporal model for early drowsiness detection,” CoRR,
vol. abs/1904.07312, 2019. [Online]. Available: http://arxiv.org/abs/1904.
07312

[14] C. Olah. Understanding lstm networks. [Online]. Available: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

[15] R. C. Martin. The clean architecture. [Online]. Available: https:
//blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

[16] N. H. T. S. Administration. (2017) Drowsy driving reasearch. [Online].
Available: https://www.nhtsa.gov/risky-driving/drowsy-driving

[17] D. Strayer, F. Drews, and D. Crouch, “Fatal distraction?: A comparison of
the cell-phone driver and the drunk driver,” Briem and Hedman, vol. 25, 01
1995.

[18] J. Higgins, J. Michael, R. Austin, T. Åkerstedt, H. Dongen, N. Watson,
C. Czeisler, A. Pack, and M. Rosekind, “Asleep at the wheel—the road to
addressing drowsy driving,” Sleep, vol. 40, 02 2017.

98

http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1904.07312
http://arxiv.org/abs/1904.07312
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.nhtsa.gov/risky-driving/drowsy-driving

[19] N. H. T. S. Administration. Automated vehicles safety. [Online]. Available:
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

[20] N. S. Foundation. Why do we need sleep? [Online]. Available:
https://www.sleepfoundation.org/articles/why-do-we-need-sleep

[21] ——. What is circadian rhythm? [Online]. Available: https:
//www.sleepfoundation.org/articles/what-circadian-rhythm

[22] M. Johns, “Rethinking the assessment of sleepiness,” Sleep Med Rev, vol. 2,
no. 1, pp. 3–15, Feb 1998.

[23] N. S. Foundation. Drowsy driving. facts. [Online]. Available: https:
//drowsydriving.org/about/

[24] D. F. DINGES, “An overview of sleepiness and accidents,” Journal of
Sleep Research, vol. 4, no. s2, pp. 4–14, 1995. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2869.1995.tb00220.x

[25] C. Fors, C. Ahlstrom, V. Ahlström, S. Sörner, J. Eye, V. Kovaceva,
E. Cars, S. Hasselberg, M. Eye, S. Krantz, J.-F. Eye, V. Grönvall, K. Cars,
K. Kircher, A. Vti, A. Anund, Vti, and M. Krantz, “Camera-based sleepi-
ness detection,” 11 2019.

[26] J. F. May and C. L. Baldwin, “Driver fatigue: The importance of identifying
causal factors of fatigue when considering detection and countermeasure
technologies,” Transportation Research Part F: Traffic Psychology and
Behaviour, vol. 12, no. 3, pp. 218 – 224, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1369847808001009

[27] P. A. H. P. A. Desmond, “Active and passive fatigue states,” Hum. factors
Transp. Stress. Workload. fatigue, vol. 40, pp. 455–465, 2001.

[28] P. Gimeno, G. Pastor, and M. Choliz, “On the concept and measurement
of driver drowsiness, fatigue and inattention: Implications for countermea-
sures,” Int. J. of Vehicle Design, vol. 42, pp. 67 – 86, 01 2006.

99

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.sleepfoundation.org/articles/why-do-we-need-sleep
https://www.sleepfoundation.org/articles/what-circadian-rhythm
https://www.sleepfoundation.org/articles/what-circadian-rhythm
https://drowsydriving.org/about/
https://drowsydriving.org/about/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2869.1995.tb00220.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2869.1995.tb00220.x
http://www.sciencedirect.com/science/article/pii/S1369847808001009

[29] A. Chowdhury, R. Shankaran, M. Kavakli, and M. Haque, “Sensor applica-
tions and physiological features in drivers’ drowsiness detection: A review,”
IEEE Sensors Journal, vol. PP, pp. 1–1, 02 2018.

[30] H.-B. Kang, “Various approaches for driver and driving behavior monitor-
ing: A review,” 12 2013, pp. 616–623.

[31] O. M. A. Colic and B. Furht, Driver Drowsiness Detection Systems and
Solutions, 2014.

[32] C. Liu, S. Hosking, and M. Lenné, “Predicting driver drowsiness using
vehicle measures: Recent insights and future challenges,” Journal of safety
research, vol. 40, pp. 239–45, 08 2009.

[33] K. Kaida, M. Takahashi, T. Åkerstedt, A. Nakata, Y. Otsuka,
T. Haratani, and K. Fukasawa, “Validation of the karolinska sleepiness
scale against performance and eeg variables,” Clinical Neurophysiology,
vol. 117, no. 7, pp. 1574 – 1581, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1388245706001428

[34] T. E. S. Scale. About the ess. [Online]. Available: https:
//epworthsleepinessscale.com/about-the-ess/

[35] M. Hendra, D. Kurniawan, R. V. Chrismiantari, T. P. Utomo,
and N. Nuryani, “Drowsiness detection using heart rate variability
analysis based on microcontroller unit,” Journal of Physics: Conference
Series, vol. 1153, p. 012047, feb 2019. [Online]. Available: https:
//doi.org/10.1088%2F1742-6596%2F1153%2F1%2F012047

[36] H. D. Rosario, J. S. Solaz, N. Rodríguez, and L. M. Bergasa, “Controlled
inducement and measurement of drowsiness in a driving simulator,” IET
Intelligent Transport Systems, vol. 4, no. 4, pp. 280–288, December 2010.

[37] A. Mashko, “Review of approaches to the problem of driver fatigue and
drowsiness,” in 2015 Smart Cities Symposium Prague (SCSP), June 2015,
pp. 1–5.

100

http://www.sciencedirect.com/science/article/pii/S1388245706001428
http://www.sciencedirect.com/science/article/pii/S1388245706001428
https://epworthsleepinessscale.com/about-the-ess/
https://epworthsleepinessscale.com/about-the-ess/
https://doi.org/10.1088%2F1742-6596%2F1153%2F1%2F012047
https://doi.org/10.1088%2F1742-6596%2F1153%2F1%2F012047

[38] R. Feng, G. Zhang, and B. Cheng, “An on-board system for detecting driver
drowsiness based on multi-sensor data fusion using dempster-shafer the-
ory,” in 2009 International Conference on Networking, Sensing and Control,
March 2009, pp. 897–902.

[39] S. H. Fairclough and R. Graham, “Impairment of driving performance
caused by sleep deprivation or alcohol: a comparative study,” Hum Fac-
tors, vol. 41, no. 1, pp. 118–128, Mar 1999.

[40] S. Otmani, T. Pebayle, J. Roge, and A. Muzet, “Effect of driving duration
and partial sleep deprivation on subsequent alertness and performance of
car drivers,” Physiol. Behav., vol. 84, no. 5, pp. 715–724, Apr 2005.

[41] A. Sahayadhas, K. Sundaraj, and M. Murugappan, “Detecting driver
drowsiness based on sensors: a review,” Sensors (Basel), vol. 12, no. 12,
pp. 16 937–16 953, Dec 2012.

[42] M. Ingre, T. Akerstedt, B. Peters, A. Anund, and G. Kecklund, “Subjective
sleepiness, simulated driving performance and blink duration: examining
individual differences,” J Sleep Res, vol. 15, no. 1, pp. 47–53, Mar 2006.

[43] P. Choudhary and N. R. Velaga, “Analysis of vehicle-based lateral
performance measures during distracted driving due to phone use,”
Transportation Research Part F: Traffic Psychology and Behaviour, vol. 44,
pp. 120 – 133, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1369847816302273

[44] B. G. Pratama, I. Ardiyanto, and T. B. Adji, “A review on driver drowsiness
based on image, bio-signal, and driver behavior,” in 2017 3rd International
Conference on Science and Technology - Computer (ICST), July 2017, pp.
70–75.

[45] J. Schmidt, R. Laarousi, W. Stolzmann, and K. Karrer-Gauss, “Eye blink
detection for different driver states in conditionally automated driving and
manual driving using EOG and a driver camera,” Behav Res Methods,
vol. 50, no. 3, pp. 1088–1101, 06 2018.

101

http://www.sciencedirect.com/science/article/pii/S1369847816302273
http://www.sciencedirect.com/science/article/pii/S1369847816302273

[46] Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for
monitoring driver vigilance,” Real-Time Imaging, vol. 8, no. 5, pp. 357
– 377, 2002. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1077201402902792

[47] M. Bn, “Facial features monitoring for real time drowsiness detection,” 11
2016.

[48] I. G. Daza, N. Hern, L. M. Bergasa, I. Parra, J. J. Yebes, M. Gavilan,
R. Quintero, D. F. Llorca, and M. A. Sotelo, “Drowsiness monitoring based
on driver and driving data fusion,” in in Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on, 2011, pp. 1199–1204.

[49] S. Darshana, D. Fernando, S. Jayawardena, S. Wickramanayake, and C. De-
Silva, “Efficient perclos and gaze measurement methodologies to estimate
driver attention in real time,” in 2014 5th International Conference on
Intelligent Systems, Modelling and Simulation, Jan 2014, pp. 289–294.

[50] Jian-Feng Xie, Mei Xie, and Wei Zhu, “Driver fatigue detection based on
head gesture and perclos,” in 2012 International Conference on Wavelet
Active Media Technology and Information Processing (ICWAMTIP), Dec
2012, pp. 128–131.

[51] L. K. McIntire, R. A. McKinley, C. Goodyear, and J. Nelson, “A compari-
son of the effects of transcranial direct current stimulation and caffeine on
vigilance and cognitive performance during extended wakefulness,” Brain
Stimul, vol. 7, no. 4, pp. 499–507, 2014.

[52] U. Svensson, “Blink behaviour based drowsiness detection : method devel-
opment and validation /,” 01 2004.

[53] F. Friedrichs and B. Yang, “Drowsiness monitoring by steering and lane
data based features under real driving conditions,” European Signal Pro-
cessing Conference, 01 2010.

[54] M. Jackson, S. Raj, R. Croft, A. Hayley, L. Downey, G. Kennedy, and
M. Howard, “Slow eyelid closure as a measure of driver drowsiness and its
relationship to performance,” Traffic Injury Prevention, vol. 17, 05 2015.

102

http://www.sciencedirect.com/science/article/pii/S1077201402902792
http://www.sciencedirect.com/science/article/pii/S1077201402902792

[55] W. Han, Y. Yang, G.-B. Huang, O. Sourina, F. Klanner, and C. Denk,
“Driver drowsiness detection based on novel eye openness recognition
method and unsupervised feature learning,” 10 2015.

[56] A. Rumagit, I. Akbar, M. Utsunomiya, T. Morie, and T. Igasaki, “Gazing
as actual parameter for drowsiness assessment in driving simulators,” In-
donesian Journal of Electrical Engineering and Computer Science, vol. 13,
pp. 170–178, 01 2019.

[57] C. J. de Naurois, C. Bourdin, A. Stratulat, E. Diaz, and J.-L. Vercher,
“Detection and prediction of driver drowsiness using artificial neural
network models,” Accident Analysis Prevention, vol. 126, pp. 95 – 104,
2019, 10th International Conference on Managing Fatigue: Managing
Fatigue to Improve Safety, Wellness, and Effectiveness”. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0001457517304347

[58] Q. Ji, Z. Zhu, and P. Lan, “Real-time nonintrusive monitoring and predic-
tion of driver fatigue,” Vehicular Technology, IEEE Transactions on, vol. 53,
pp. 1052 – 1068, 08 2004.

[59] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation and aug-
mented reality tracking: An integrated system and evaluation for moni-
toring driver awareness,” IEEE Transactions on Intelligent Transportation
Systems, vol. 11, no. 2, pp. 300–311, June 2010.

[60] A. Doshi and M. Trivedi, “On the roles of eye gaze and head dynamics
in predicting driver’s intent to change lanes,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 10, pp. 453 – 462, 10 2009.

[61] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, “Real-
time system for monitoring driver vigilance,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 7, no. 1, pp. 63–77, March 2006.

[62] D. Tran, E. Tadesse, W. Sheng, Y. Sun, M. Liu, and S. Zhang, “A driver
assistance framework based on driver drowsiness detection,” in 2016 IEEE
International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), June 2016, pp. 173–178.

103

http://www.sciencedirect.com/science/article/pii/S0001457517304347

[63] B. Cheng, W. Zhang, Y. Lin, R. Feng, and X. Zhang, “Driver drowsiness de-
tection based on multisource information,” Human Factors and Ergonomics
in Manufacturing Service Industries, vol. 22, 09 2012.

[64] L. Motors. How does mercedes-benz attention assist
work? [Online]. Available: https://www.loebermotors.com/blog/
how-does-mercedes-benz-attention-assist-work/

[65] Volvo. Driver alert control (dac). [Online]. Avail-
able: https://www.volvocars.com/en-th/support/manuals/v60/
2017-early/driver-support/driver-alert-system/driver-alert-control-dac

[66] ——. Volvo cars introduces new systems for alerting tired and distracted
drivers. [Online]. Available: https://www.media.volvocars.com/global/
en-gb/media/pressreleases/12130

[67] Bosch. Driver drowsiness detection. [Online]. Available:
https://www.bosch-mobility-solutions.com/en/products-and-services/
passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/
driver-drowsiness-detection/

[68] NVidia. Nvidia drive ix. [Online]. Available: https://developer.nvidia.com/
drive/drive-ix

[69] J. Bar-Ilan, “The history of information security: A comprehensive hand-
book20081edited by karl de leeuw and jan bergstra. the history of informa-
tion security: A comprehensive handbook . oxford: Elsevier 2007. 887 pp.
(hard cover), isbn: 9780444516084,” Library Hi Tech, vol. 26, pp. 682–683,
11 2008.

[70] M. Ballantyne, R. S. Boyer, and L. Hines, “Woody bledsoe: His life and
legacy,” AI Magazine, vol. 17, no. 1, p. 7, Mar. 1996. [Online]. Available:
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1207

[71] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,

104

https://www.loebermotors.com/blog/how-does-mercedes-benz-attention-assist-work/
https://www.loebermotors.com/blog/how-does-mercedes-benz-attention-assist-work/
https://www.volvocars.com/en-th/support/manuals/v60/2017-early/driver-support/driver-alert-system/driver-alert-control-dac
https://www.volvocars.com/en-th/support/manuals/v60/2017-early/driver-support/driver-alert-system/driver-alert-control-dac
https://www.media.volvocars.com/global/en-gb/media/pressreleases/12130
https://www.media.volvocars.com/global/en-gb/media/pressreleases/12130
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/driver-drowsiness-detection/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/driver-drowsiness-detection/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/driver-drowsiness-detection/
https://developer.nvidia.com/drive/drive-ix
https://developer.nvidia.com/drive/drive-ix
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1207

ser. CVPR ’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 580–587. [Online]. Available: https://doi.org/10.1109/CVPR.2014.81

[72] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” 06 2016, pp. 779–788.

[73] B. C. Csáji, “Approximation with artificial neural networks,” 2001.

[74] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15. Fort
Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323. [Online].
Available: http://proceedings.mlr.press/v15/glorot11a.html

[75] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2015.

[76] ——, “Identity mappings in deep residual networks,” vol. 9908, 10 2016, pp.
630–645.

[77] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 04 2017.

[78] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

[79] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” in CVPR, 2018.

[80] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching
for mobilenetv3,” CoRR, vol. abs/1905.02244, 2019. [Online]. Available:
http://arxiv.org/abs/1905.02244

105

https://doi.org/10.1109/CVPR.2014.81
http://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1905.02244

[81] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object
tracking using adaptive correlation filters,” in 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, June 2010, pp.
2544–2550.

[82] Y. Wu and Q. Ji, “Facial landmark detection: A literature survey,” Inter-
national Journal of Computer Vision, vol. 127, pp. 115–142, 2018.

[83] B. Johnston and P. d. Chazal, “A review of image-based automatic
facial landmark identification techniques,” EURASIP Journal on Image
and Video Processing, vol. 2018, no. 1, p. 86, Sep 2018. [Online]. Available:
https://doi.org/10.1186/s13640-018-0324-4

[84] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000
FPS via regressing local binary features,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH,
USA, June 23-28, 2014, 2014, pp. 1685–1692. [Online]. Available: https:
//doi.org/10.1109/CVPR.2014.218

[85] T. Soukupová and J. Cech, “Real-time eye blink detection using facial land-
marks,” 2016.

[86] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate
o(n) solution to the pnp problem,” International Journal of Computer
Vision, vol. 81, no. 2, p. 155, Jul 2008. [Online]. Available: https:
//doi.org/10.1007/s11263-008-0152-6

[87] J. Kim and H. Shin, Algorithm & SoC Design for Automotive Vision Sys-
tems: For Smart Safe Driving System. Springer Publishing Company,
Incorporated, 2014.

[88] T. Boji, A. Vuckovic, and A. Kalauzi, “Modeling EEG fractal dimension
changes in wake and drowsy states in humans–a preliminary study,” J.
Theor. Biol., vol. 262, no. 2, pp. 214–222, Jan 2010.

[89] A. Anund and K. Kircher, “Advantages and disadvantages of different meth-
ods to evaluate sleepiness warning systems,” 2009.

106

https://doi.org/10.1186/s13640-018-0324-4
https://doi.org/10.1109/CVPR.2014.218
https://doi.org/10.1109/CVPR.2014.218
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6

[90] H. Zhang, M. R. H. Smith, and G. J. Witt, “Identification of real-time
diagnostic measures of visual distraction with an automatic eye-tracking
system,” Human Factors, vol. 48, no. 4, pp. 805–821, 2006, pMID: 17240726.
[Online]. Available: https://doi.org/10.1518/001872006779166307

107

https://doi.org/10.1518/001872006779166307

108

Acknowledgments

Vorrei ringraziare per primi Filippo Camillo e Fabio Marton, per avermi con-
cesso l’opportunità di sviluppare un progetto stimolante e al passo con le più
recenti e innovative tecnologie di questo settore.

Desidero ringraziare anche il Prof. Simone Milani per avermi aiutato nella
stesura di questa tesi e per avermi fatto appassionare alla materia grazie alle sue
lezioni.

Un ringraziamento speciale va ai miei genitori e a mia sorella Elena, per la
pazienza che hanno avuto durante questi anni e per le motivazioni che mi hanno
sempre dato.

Grazie anche a Bari, Bebbe, Lori, Tommy e Faggio, per tutti questi anni passati
insieme e a Yuri e Lollo per essere stati degli ottimi compagni di uni.

Infine vorrei ringraziare Arianna, per avermi sempre sostenuto durante questo
percorso e per aver sempre creduto in me, sia in ambito universitario sia nella
vita.

109

	Abstract
	List of figures
	List of tables
	Introduction
	Literature review
	Physiologic analysis
	Measures analysis
	Subjective measures
	Physiological measurements
	Performance measures
	Behavioral measurements
	Hybrid methods
	Other factors considerations

	Current solutions

	Acquisition framework
	Frame acquisition
	Preprocessing task
	Raw features extraction
	Face detection
	Performance improvement
	Hybrid implementation
	Face landmarks localization
	Head pose estimation

	Feature computation

	Classifiers
	Training dataset
	UTA-RLDD dataset
	Feature extraction

	Classifiers' Architectures
	LSTM networks
	A first drowsyness classifier based on CNN
	A drowsiness classifier based on CNN and Dense fully-connected layers
	A third drowsiness classifier based on LSTM
	A fourth classifier inytegrating CNN with LSTM

	Results
	Performance evaluation
	Results report

	Android Application
	Main components
	Application architecture
	Application organization
	Dashboard
	OpenCV
	Tensorflow Lite

	Conclusions and future work
	Future work

	References
	Acknowledgments

