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Abstract

In this thesis we use nonequilibrium thermodynamics tools in order to investigate spon-
taneous vibration fluctuations of continuous, elastic, conductive and dissipative solids in
and out of equilibrium states. In particular we want to advance with respect to previ-
ous theoretical models, based on global equilibrium thermodynamics, and to obtain the
strain fluctuations of displacement under the assumption of local equilibrium. We develop
explicit calculations for 1-dimensional solids under constant thermal gradients. Ultimate
goal of the research which inspires this work, is the assessment of thermal noise of Ad-
vanced VIRGO, Advanced LIGO and next generation of gravitational wave interferometers
under realistic nonequilibrium assumptions.
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1 Introduction

1.1 Mechanical oscillator as a toy model

An oscillator consists in a physical system which responds (anti)linearly in the displacement
to an external force that displaces it from its equilibrium position. This is equivalent to a wide
range of systems and its mathematical model represents a first approximation to phenomena
in different fields (as LC and RLC circuits in electronics, nuclear vibrations and so on). In
mechanics it can represent vibrations of atoms in molecular boundaries, or base units of solid
lattices around their equilibrium position in the potential field of the solid. Another relevant
case where a system can be studied on the basis of mechanical oscillators is the continuous
model of a finite solid.

At this point for a complete picture that takes also into account the effect of non harmonic
potentials, i.e. more realistic model of the solid, explaining for instance not vanishing thermal
expansion coefficients, one has to further consider that real solids are subjected to thermoe-
lastic effects, and that these solids are conductive and dissipative. This implies to rewrite the
differential equations for the motion, and it becomes necessary to introduce temperature as
a new variable of the equations. The analytical solution of the coupled differential equations
describing elasticity and thermal conduction can be hardly computed and, in the first approx-
imation, the temperature field can be taken as constant in the system. This approximation,
called (thermal) equilibrium hypothesis, is valid for lot of cases, where temperature disomo-
geneity is small and, under equilibrium hypothesis at a given temperature, the fluctuation-
dissipation-theorem (FDT) can be proven; this theorem predicts a precise relation between the
damping coefficient in the equation of motion and the displacement autocorrelation [4].

However, a global form of thermal equilibrium hypothesis shall not be valid in all systems
where a thermal gradient is present. It has been shown that spontaneous thermal fluctuations
depend on heat fluxes in a way that can not be predicted by a natural extension of equilibrium
thermodynamics [8]. For instance at micro scales, the authors of [10] studied cantilevers
subjected to a strong thermal gradient at their boundaries, imposed by heating their free
tip with a laser and leaving the other extremity fixed at environment temperature. It has
been shown that thermal fluctuations do not depend only on the mean temperature of the
cantilever, but also on thermal fluxes and temperature gradients involved, in such a way that
is not enough to simply extend global equilibrium theory in order to predict displacement
fluctuations dependence on temperature.

Another relevant field where it would be important to estimate carefully the thermal noise
is the VIRGO interferometer and other gravitational waves detectors. In this case, the laser
power absorbed in the mirrors and substrates poses thermal gradient in the substrate them-
selves and in the fibres that support them: also in this case the current modelling for the
thermal noise is based on equilibrium thermodynamics but it unclear if this approximation
is valid. Indeed, in all these cases we introduced in the equations of motion of the system
a dissipative term, that couples the differential equation for displacement (of cantilever’s tip
from its equilibrium position, for instance) with the one for temperature field of the solid.
This work aims at addressing the issue of esteeming spontaneous vibration fluctuations when
the hypothesis is broken.

1.2 Solid dynamics

An homogeneous solid can be schematized as a set of atoms bounded together by some forces,
that can be easily assumed to be acting between pairs of atoms. These forces are considered
repulsive for short distances between atoms, while they become attractive for higher values of
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separation between them, strongly decreasing in modulus. It is computationally impossible to
study the whole dynamics of the macroscopic system by considering the whole equations for
the atoms involved. Indeed, we can schematize the solid as a set of some elements of matter,
called mesoscopic particles, which are large enough to assume to be continuous distributions
of atoms, but small enough to think that some thermodynamics proprieties, describing the
microscopic degrees of freedom, are constant in their volume. We can further consider that the
forces acting on atoms behave similarly on these subsets of the solid, and the first assumption
is that this interaction is among contiguous mesoscopic particles. In the first approximation,
the shape of this kind of forces is harmonic, and we take this hypothesis in our subsequent
analysis; this is justified because we are considering only displacements small enough from
equilibrium.

We can argue whether a perfect solid, where all the mesoscopic particles are bounded in
a rigid scheme and whose dynamics are coupled each other with just harmonic forces, does
correspond to a real solid. Indeed, at room temperatures and in general for any nonvanish-
ing temperature T, the atoms constituting the solid have kinetic energy, and one in principle
should take into account these contributions to the total energy of the system. So, it is compu-
tationally impossible and it is why we introduce temperature as a new mesoscopic variable of
the system, that encodes the information about these microscopic degrees of freedom where
energy can be stored. Since energy distribution between these microscopic degrees of freedom
follows a statistical distribution, the introduction of temperature as a variable for our system
implies that the equations we write to describe it need to include some stochastic terms.

From a physical point of view it means that we are introducing some thermodynamic
parameters for the solid, such as heat conduction and damping. The meaning of these new
parameters can be understood imagining that the mesoscopic particles live in a thermal bath
(as brownian particles do in an homogeneous fluid for instance), with some generic tem-
perature profile, depending on position in the volume of the solid, in such a way that each
mesoscopic particle at position~r lays in a locally uniform thermal bath at temperature T(~r).
The ways this bath acts on the leading dynamics of this system are two. The first one is a
damping effect on the mesoscopic particles, since they interact thermo-mechanically with the
thermal bath in their motion, which means that the bath can absorb energy from the meso-
scopic particles. The second is a stochastic force, due to random collisions of the (small but
still discrete) particles which constitute the thermal bath with the mesoscopic particles of the
solid. Since our solid is thermally conductive, we have also to treat the dynamics for the
thermal bath, and in particular for its temperature field at local level: the main contribution
to this dynamics is due to thermal conductivity, caused by variations of temperature at a local
level due to the energy exchanged with the thermal bath by mesoscopic particles in friction
with it.
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Figure 1: Sketch of the solid, where the mesoscopic particles live in a thermal bath with a
position-dependent temperature field T(~r).

1.3 Purposes and steps of the work

The aim of this thesis is to solve the coupled stochastic differential equations for the local dis-
placement and temperature field of an elastic, conductive and dissipative solid subject to heat
fluxes, with an approach similar to what has been done for harmonic chains [9]. This steady
state out of equilibrium problem is addressed under the assumption of local equilibrium, i.e.
the assumption of a locally uniform thermal bath in equilibrium at temperature T(~r) for each
point of the solid at the position ~r. General solutions for the local displacement is obtained.
Later we will introduce further assumptions in order to solve numerically a specific case of
this problem, a 1-dimensional solid under under a constant temperature profile, showing how
this new approach is consistent with previous models and is able to predict new physics.

In the next chapter we recall some fundamental concepts in the theory of elasticity and
statistical mechanics building on the work of Landau [3], and the results of Langevin theory
[2] for a mechanical oscillator as a didactic example. In particular we introduce the notion of
stochastic Langevin force obtaining a form of fluctuation-dissipation theorem for the harmonic
oscillator and, later, the definition of autocorrelation for displacement field. In chapter 3,
we formulate the specific problem of a continuous, elastic, conductive and dissipative solid
subject to heat fluxes, under the assumption of local equilibrium for the thermal bath. Then
we write the differential equations for displacement field and temperature, and formally solve
them in Fourier space. Further reasoned assumptions has been implemented in order to
obtain a theoretical relationship, at a high level of generality, of the value of the frequency
autocorrelation of the displacement field. In chapter 4, as an example, we focus on the specific
case of an infinite solid with a temperature gradient only in one dimension, and compute
the displacement fluctuations which a specific readout shall measure. The results of this
specific problem are discussed and, in the conclusions, we suggest the approach for a future
continuation of this research.
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2 Theory of elasticity and FDT

2.1 Theory of elasticity

In elasticity theory a solid is conceived as a continuous distribution of matter; physically, it is
divided in volumes, small with respect to the macroscopic dimension of the object (e.g. the
length) but large enough to contain a large number of atomic constituents. Mathematically,
these volumes are treated as infinitesimal and thus can be identified by vectors living in
a 3-dimensional space. If ri is the position of a specific point of the solid at mechanical
equilibrium, and r′i after a deformation, then the displacement field we are interested to study
is

ui = r′i − ri, (2.1)

i = 1, 2, 3. (2.2)

If one defines dl =
√

dx2
i the differential distance between two near points of the solid at

equilibrium and dl′ =
√

dx′2i after a deformation, then

dl′2 = dl2 + 2uikdxidxk, (2.3)

with

uik =
1
2

(
∂ui

∂xk
+

∂uk

∂xi
+

∂ul

∂xk

∂ul

∂xi

)
, (2.4)

which is called displacement tensor and is symmetric by construction. For our purpose we
further assume that displacements involved are small, which implies a simpler writing of our
displacement tensor, as

uik =
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
. (2.5)

Another important assumption at this point is to consider that, when a deformation occurs,
the solid reacts in order to re establish equilibrium: these reaction forces are typically short
ranged, so that only occur between neighbour points of the solid. The whole force acting on
the solid along each direction is

∫
FidV =

∫
∂σik

∂xk
dV =

∮
σikdSk. (2.6)

Here we introduced the stress tensor σik, which is symmetric. As mentioned in the introduc-
tion, we can imagine that the resulting macroscopic force resulting contributes to the behavior
of thermodynamic variables of the system, since it can make work on it and contribute to
the whole energy balance. For this reason we now assume that the system lays always in
thermodynamic equilibrium states, such that we can define the entropy function S and a tem-
perature T, so that its heat exchanged during a thermodynamic transformation for an entropy
variation equal to dS is TdS. Under these hypothesis we can define the Helmholtz free energy
of our solid as F = E − TS, where E is the internal energy of the system. During a generic
thermodynamic transformation we have:
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dF = −SdT + σikduik, (2.7)

such that σik =
∂F

∂uik
. At mechanical equilibrium σik = 0, which implies that no terms linear in

displacement are present in the Helmholtz free energy for an isotropic solid, and we can write
F as a linear combination of its quadratic terms. One can further imagine, as for displacement,
that the variation of temperature before and after the thermodynamic transformation due to
deformations is small in comparison with the equilibrium temperature T0 for every point of
the temperature field T = T(~r), that we suppose can depend on the position in the solid.
With this approximation we take into account only the linear terms in uii for the expansion of
the new Helmholtz free energy temperature dependent part, and since uik = (uik − 1

3 δikull) +
1
3 δikull , we can otherwise write

F = F0(T0)− Kα(T − T0)ull +
K
2

u2
ll + µ

(
uik −

1
3

δikull

)
, (2.8)

with F0 the Helmholtz free energy for the solid at rest at a temperature T0 and no displacement,
K = λ + 2

3 µ the uniform compression modulus, defined by Lamè coefficients λ and µ and the
thermal expansion coefficient α. We introduced also an equation for the temperature field
we have: actually, a variation in the displacement field for the solid implies different thermal
proprieties, in the general case of nonzero thermal expansion coefficient.

It is known that entropy is the temperature partial derivative of F, so that

S(T) =
∂F
∂T

= S0(T) + Kαull , (2.9)

with S0 the entropy for the solid at rest. We define the heat flux density divergence ∂iqi =

−T ∂S
∂t in time, while we can consider valid the Fourier approximation for the heat flux density:

qi = −a∂iT, where we introduced the thermal diffusivity a, obtaining

T
∂S0

∂t
+ KαT

∂uii

∂t
= a∂iiT. (2.10)

This equation can be rewritten with specific heat capacity coefficients, since Cp − Cv = Kα2T:

Cv
∂T
∂t

+
Cp − Cv

α

∂uii

∂t
= a∂iiT. (2.11)

2.2 Langevin theory and FDT for an harmonic damped oscillator

We first consider a simple model of an harmonic oscillator, which satisfies the ordinary differ-
ential equation

m d̈ = −K d− γ ḋ. (2.12)

Now, for time independent coefficients, we consider that there is also a stochastic noise force
that enters in the dynamics, so that the equation becomes

m d̈ = −K d− γ ḋ + F(t), (2.13)

where F(t) is called Langevin generalized force, and represents the stochastic forces that
contribute at the evolution of displacement function d(t), which we assume to have N possible
realizations {F1(t), ..., FN(t)}. This force needs to satisfy these conditions:
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1. We want F(t) not to brake the time symmetry, since it is suppose to be stochastic, hence

〈
F(t)

〉
=

1
N

N

∑
i=1

Fi(t) = 0. (2.14)

2. We want to specify the time correlation of F(t) as a certain function of time η(t):

〈
F(t1)F(t2)

〉
=

1
N

N

∑
i=n

Fn(t1)Fn(t2) = A2η(t1 − t2). (2.15)

Langevin approach consists in writing down an implicit solution for d(t).
For this reason the first we first want to obtain the response function for the system without

Langevin forces. We imagine now a deterministic external force FE(t) that contributes at the
dynamics:

m d̈(t) = −K d− γ ḋ + FE(t), (2.16)

in Fourier space,

−m ω2 d(ω) = −K d(ω)− i ω γ d(ω) + FE(ω). (2.17)

Now we can thus define the response function R(ω) such that

d(ω) = R(ω)FE(ω), (2.18)

R(ω) =
1

K + i ω γ−m ω2 . (2.19)

In the next paragraph we will show that the imaginary part of R(ω) is related to the Fourier
transform of the displacement autocorrelation Cd(ω, ω′ = −ω) =

〈
d(ω)d(ω′ = −ω)

〉
. The

next step, for this reason, is to compute the quantity Cd(ω,−ω), assuming there is no de-
terministic external force FE acting on the system. We assume now that Langevin forces are
present, in such a way that in fact we consider the equation (2.13). In this case the formal
solution of the differential equation is

d(ω) = R(ω)F(ω), (2.20)

with

R(ω) =
1

K + i ω γ−m ω2 . (2.21)

We can thus compute the autocorrelation function

Cd(ω,−ω) =
〈
d(ω)d(−ω)

〉
=

A2η(ω)(
K + i ω γ−m ω2

) (
K− i ω γ−m ω2

) . (2.22)

With η(ω) =
∫

e−iωtdtη(t). We suppose now that this noise is

η(ω) = γ, (2.23)
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where this hypothesis will be generalized and motivated in the next paragraph. We can find
this autocorrelation to be, after an initial transient and considering Langevin forces are delta
correlated,

Cd(ω,−ω) =
γA2(

K−m ω2
)2

+ γ2 ω2
, (2.24)

This is a particular solution, of a general case treated in literature [7] where a similar approach
is used. 〈

d2
〉
=
∫ +∞

−∞

dω

2π
Cd(ω,−ω) =

∫ +∞

−∞

dω

2π

γ A2(
K−m ω2

)2
+ γ2 ω2

=
A2

2 m K γ
. (2.25)

From equipartition theorem we know that mechanical energy is stored in the possible degrees
of freedom in such a way that at equilibrium

〈E〉 = 1
2

kB T, (2.26)

with the Boltzmann constant kB and the temperature associated at the bath where the har-
monic oscillator lays. In our case 〈E〉 = 1

2 K
〈

d2
〉

and, since our damping effect is considered
negligible in comparison with the elastic force, we have

A2 = 2 γ m kB T. (2.27)

The direct proportionality of autocorrelation function from A2, shows the link between the
variance of the fluctuating force and the variance of the displacement field, which is, in our
case, a particular result of fluctuation dissipation theorem.

2.3 Extension for time dependent constants

Physical constants involved in equations for the solid that we will write, can be function of
time. For this reason, as an example, we can write the equation 2.12 in the following form:

md̈ = −Z ∗ d, (2.28)

with

Z(t) = K δ(t)− γ δ̇(t), (2.29)

since we have

Z ∗ d ≡
∫ +∞

−∞
ds d(s)

(
K δ(t− s)− γ ∂ δ(t− s)

)
= K d(t) + γ ḋ(t). (2.30)

If we have a generic function Z(t) instead, it is useful to work in Fourier space, defining the
Fourier transform of Z(t):

Z(ω) ≡
∫ ∞

−∞
dtZ(t)eiωt. (2.31)

For instance, using the explicit writing of Z(t) of eq. (2.29), we have
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Z(ω) ≡
∫ ∞

−∞
dtZ(t)eiωt =

∫ ∞

−∞
dt
(

K δ(t)− γ δ̇(t)
)

eiωt = k + iγω. (2.32)

We can see that Im[Z(ω)] encodes dissipation that occurs in our system: a similar approach
will be developed in the next paragraph, where we will encode in Lamé coefficients of the
solid an imaginary part to represent dissipative effects affecting the solid dynamics.

Before doing this, we can also compute the spectral density of displacement field for a
generic writing of Z(ω). In this case equation (2.13) becomes in Fourier space

−m ω2 d(ω) = −Z d(ω) + F(ω), (2.33)

which admits the solution

d(ω) =
1

Z(ω)−mω2 F(ω) ≡ R(ω)F(ω), (2.34)

with R the response function of the displacement d. We can then compute its spectral density

Cd(ω, ω′ = −ω) ≡
〈
d(ω)d(−ω)

〉
= |R(ω)|2A2η(ω) =

A2η(ω)

(ReZ(ω)−mω2)2 − (ImZ(ω))2 .

(2.35)

If we now assume that the noise correlation function is

η(ω) =
ImZ(ω)

ω
, (2.36)

the spectral density simplifies to

Cd(ω,−ω) =
A2

ω
ImR(ω). (2.37)

Integrating for all frequencies Cd(ω,−ω) we find the mean squared displacement〈
d2
〉
=
∫ +∞

−∞

dω

2π
Cd(ω,−ω) = A2

∫ +∞

−∞

dω

2π

ImR(ω)

ω
. (2.38)

Closing the integral in the upper complex plane (see e.g.[1]), we realize, as in the previous
paragraph, that A2 = 2 m γkBT in order for the equipartition (2.26) to be satisfied.

3 General statements and spectral density

3.1 The macroscopic dynamical equation

We want apply now the theory of elasticity in order to write the differential equations for
the displacement field di(~r, t) and the temperature field T(~r, t) of a linear, homogeneous and
isotropic solid. The first equation of motion is Newton law built with the two contributions
of the forces related to mechanical stress tensor and the thermal expansion terms, while the
second formula is the continuity equation for temperature:{

ρ d̈i = µ ∗ ∂i(∂jdj) + (µ + λ) ∗ ∂jjdi − α(3λ + 2µ) ∗ ∂iT, (3.1a)

Ṫ = a ∂jjT − b ∗ T ∂jḋj, (3.1b)

with α the thermal expansion coefficient, a the thermal diffusivity, and b = α(3λ+2µ)
ρC (ρ is the

density, and C the specific heat).
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Unlike what was done in (2.13), now we take the Lamé coefficients λ and µ to be functions
of time. In this case we encode disspative effects in the non-zero imaginary part of Lamé
coefficients.

The shorthand notation ∗ is used as in the previous paragraph to denote convolutions of
the type

µ ∗ ∂i(∂jdj) ≡
∫ ∞

−∞
dt′µ(t− t′) ∂i(∂jdj(t′)). (3.2)

Another important assumption we make on coefficients µ and λ is the causal hypothesis,
meaning that, µ(t), λ(t) = 0 if t < 0. A quasi-static approximation can be used in (3.1a),
setting d̈i to zero, if the analysis is restricted to times longer than the ones associated to the
propagation of sound waves, since in this approximation the inertia of the mesoscopic particle
is negligible.

3.2 Dynamics with Langevin forces contribution

Equations (3.1) provides the basis for describing the deterministic evolution of a solid at meso-
scopic level. In order to encode the stochastic forces mentioned before, and so thermal fluc-
tuations, we introduce stochastic terms to the stress tensor and the heat flux in (3.1). They
represent the random exchange of momentum and energy, respectively between the meso-
scopic continuous degrees of freedom and the microscopic ones. As a consequence, each field
can be decomposed into a mean value and a fluctuating part, namely, 〈di〉+ δdi and 〈T〉+ δT.
We focus on bulk fluctuations, meaning that formally the distances involved between the
boundaries of the system tends to infinity. The averages 〈di〉 and 〈T〉 are the steady-state
solutions of (3.1),

0 = µ ∗ ∂i(∂j

〈
dj

〉
) + (µ + λ) ∗ ∂jj〈di〉 − α(3λ + 2µ) ∗ ∂i〈T〉, (3.3a)

∂jj〈T〉 = 0. (3.3b)

On the other hand, the fluctuations are obtained by linearizing (3.1) around 〈di〉 and 〈T〉, and
adding the aforementioned stochastic forcing,

ρ δd̈i = µ ∗ ∂i(∂j δdj) + (µ + λ) ∗ ∂jj δdi − α(3λ + 2µ) ∗ ∂i δT + ∂jτj, (3.4a)
˙δT = a ∂jj δT − b ∗ T0 ∂j ˙δdj + ∂jQj, (3.4b)

where T0 represents the zero order term of the Taylor expansion for T(~r) (which will be T0 = T̄
in the next paragraph). In (3.4b) we have dropped non-linear terms and time derivatives of
〈di〉 (time derivatives of any mean value are zero in the stationary state). The generalized
Langevin forces we added τij and Qi have by definition zero mean. We write down them as a
divergence since they conserve momentum and energy, respectively.

The assumption that the solid is locally in equilibrium at mesoscopic level ensures that
these forces are Gaussian distributed with two-point correlation functions (in frequency space)
given by the local fluctuation-dissipation relation. Now we follow treatment of Ortiz-De
Zarate work [6] (adapting the analysis for solids instead of fluids equations), if one assumes
that the heat fluxes involved in a solid consist in a part related to the bulk dynamics of the
system and another fluctuating contribution due to Langevin generalized forces, respectively
τim and fi. Hence,
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〈
τim(~r, ω)τjn(~r′, ω′)

〉
= −

2kB
〈

T(~r)
〉

ω

(
Imµ(ω)δimδjn + Im(µ + λ)(ω)δijδmn

)
δ(~r−~r′)δ(ω + ω′),〈

Qi(~r, ω)Qj(~r′, ω′)
〉
= 2kB

〈
T(~r)

〉2a δijδ(~r−~r′)δ(ω + ω′), (3.5)

where kB is Boltzmann constant. We see that the autocorrelations of the random forces is
determined by the dissipative part of the equation of motion; moreover, the random forces are
defined to be independent from each other. Correlations between δdi and δT are brought in
by the thermal expansivity of the solid.

To compute the statistics of the fluctuating fields and obtain a general form for the spectral
density we take the space-time Fourier transform of (3.4), writing (for instance for Qi(~r, t))

Qi(~k, ω) ≡ F [Qi(~r, t)](~k, ω) ≡ 1
(2π)2

∫ ∞

−∞
d3r e−i~k·~r

∫ ∞

−∞
dtQi(~r, t)e−iωt. (3.6)

In this case we have{
−ρ ω2 δdi = −kik j µ δdj − k2(µ + λ)δdi + i ki α(3λ + 2µ)δT − i k j τij, (3.7a)

−i ω δT = −a k2δT + k j ω b T̄ δdj − i k j Qj, (3.7b)

and we plug δT obtained by (3.7b),

δT(~k, ω) =
ik jQj − k jωbT̄δdj

iω− ak2 , (3.8)

into (3.7a). The fluctuations of the displacement field are thus given by

R−1
ij δdj(~k, ω) = k j

(
−α(3λ + 2µ)

iω− ak2 kiQj − iτij

)
≡ k j

(
kiα φ Qj − iτij

)
, (3.9)

where we defined for compactness the auxiliary function

φ(k, ω) ≡ − (3λ + 2µ)

iω− ak2 , (3.10)

and the inverse response matrix

R−1
ij (~k, ω) =

(
k2(µ + λ)− ρω2

)
δij +

(
µ− iωbT̄αφ(k, ω)

)
kik j ≡ δijg(k, ω) + kik jh(k, ω).

(3.11)

This 3x3 matrix can be inverted, obtaining

Rij(~k, ω) =
1
g

(
δij −

h
(g + hk2)

kik j

)
. (3.12)

We can now calculate the two-point correlations Cij(~k,~k′, ω, ω′) (which are called power spec-
tral densities for ω′ = −ω) of the displacement field in Fourier space, averaging over the
noise

Cij ≡
〈

δdiδd∗j
′
〉
= RimR′jnkpk′s

[
α2kmk′nφφ′

〈
QpQ′s

〉
−
〈

τmpτ′ns

〉]
, (3.13)
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where R′jn = Rjn(~k′, ω′) and φ′ = φ(~k′, ω′). We can identify two terms of these correlations:
one is due to temperature Langevin forces, while the other represents the noise contribution
from Langevin forces introduced for displacement field. The first term has quadratic depen-
dence on α at limit α → 0, since the response matrix R has a finite value at this limit. That
means this noise is negligible for small values of α.

Than making use of (3.5) in the mode-frequency representation

〈
τim(~k, ω)τ′jn(~k

′, ω′)
〉
= −

2kB

〈
T(~k−~k′)

〉
ω

(
Imµ(ω)δimδjn + Im(µ + λ)(ω)δijδmn

)
δ(ω−ω′),〈

Qi(~k, ω)Q′j(~k
′, ω′)

〉
= 2kB

〈
T(~k−~k′)

〉2
aδij.δ(ω−ω′)

(3.14)
Now, assuming that 〈

T(~r)
〉
= T̄ + c f (x), (3.15)

which means that our temperature bath depends only on position on x axis, we can obtain
the Fourier transform for the quantities

〈
T(~k−~k′)

〉
=
〈
F [T̄ + cx](k− k′)

〉
= T̄δ(~k−~k′) +F [c f (x)](~k−~k′),〈

(T(~k−~k′))2
〉
=
〈
F [(T̄ + c f (x))2](k)

〉
= T̄2δ(~k−~k′) + 2T̄F (c f (x))(~k−~k′)+

+F (c2 f 2(x))(~k−~k′). (3.16)

We define now the new terms of these quantities, corresponding to the spatial dependent part
of the Fourier transform of 〈T〉 and 〈T〉2 given by

〈T〉NE(
~k−~k′) = F [c f (x)](~k−~k′), (3.17)

〈T〉2NE(
~k−~k′) = 2T̄F (c f (x))(~k−~k′) +F (c2 f 2(x))(~k−~k′). (3.18)

and the terms proportional to δ(~k −~k′) produce instead the equilibrium part of Cij. The
additional non-equilibrium corrections are thus encoded in the spectral density SNE

d (~k,~k′, ω) =

CNE
ii (~k,~k′, ω, ω′ = −ω)

SNE
d (~k,~k′, ω) = −2kBRim(~k, ω)Rin(−~k′,−ω)kpk′sδ(~k⊥ −~k′⊥)·

·
[

1
ω

(
Imµ(ω)δpmδsn + Im(µ + λ)(ω)δpsδmn

)
〈T〉NE(

~k−~k′)

+ a α2 kmk′nφ(k, ω)φ(−k′,−ω)〈T〉2NE(
~k−~k′)δps

]
(3.19)

≡ N1(~k,−~k′, ω)〈T〉NE(
~k−~k′) + N2(~k,−~k′, ω)〈T〉2NE(

~k−~k′). (3.20)

Here we can see that there are two new contributions to the PSD, due to considering non
equilibrium effects. N1〈T〉NE is related to damping effect, since it encodes information about
imaginary part of Lamé coefficients, and it is linearly dependent on c. Instead, the N2〈T〉NE
term has both a linear and quadratic dependence on the c parameter, which means that can
predict second order effects due to a non globally uniform thermal bath. We notice also the
quadratic dependence of this contribution on α, which means that at limit α → 0 the term is
negligible.
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4 A specific problem: 1-d linear shaped temperature

4.1 Boundary conditions

The next step is to consider a paradigmatic situation, simple enough to allow for analyti-
cal treatment but yet sufficiently general to display some relevant non-equilibrium features.
Namely, we take a solid with a temperature difference along the x axis only, given by

〈
T(~r)

〉
|x=±` = T±, (4.1)

and isothermal at the other boundaries. We also assume for simplicity stress-free boundary
conditions for displacement. Equation (3.3b) with the boundary condition (4.1) can be readily
solved,

〈
T(~r)

〉
= T̄ + cx, (4.2)

where c = (T+− T−)/` is the constant gradient and T̄ = (T+ + T−)/2 is the average tempera-
ture. Since the PSD in (3.13) depends on the aforementioned correlations

〈
τim(~k, ω)τ∗jn(

~k′, ω′)
〉

and
〈

Qi(~k, ω)Q∗j (~k
′, ω′)

〉
, we can write, for the temperature profile:

〈
T(~k−~k′)

〉
=
〈
F [T̄ + cx](k− k′)

〉
= T̄δ(k− k′) +F [cx](k− k′),〈

(T(~k−~k′))2
〉
=
〈
F [(T̄ + cx)2](k)

〉
= T̄2δ(k− k′) + 2T̄F (cx)(k) +F (c2x2)(k), (4.3)

where we have, similarly to what we did in the previous paragraph,

〈T〉NE(
~k−~k′) = −i c ∂k′x δ(kx − k′x)δ(~k⊥ −~k′⊥), (4.4)

〈T〉2NE(
~k−~k′) = −

[
c2∂2

k′x
δ(kx − k′x) + 2 i T̄ c ∂k′x δ(kx − k′x)

]
δ(~k⊥ −~k′⊥), (4.5)

and where δ(~k⊥ −~k′⊥) ≡ δ(ky − k′y)δ(kz − k′z)

4.2 A case study

Now we further implement our last hypothesis that allow us to compute the calculation of the
spectral density of a specific system. We suppose the thermal bath of the solid to just depend
on one of the three cartesian cohordinates, that means that our equations can be simplified in
order to consider just a 1-D problem. This strong approximation implies a rewriting of the
spectral density Sd(~k,~k′, ω) as a function of only scalar parameters k, k′ which represents the
spatial modes on the direction considered Sd(k, k′, ω). We also imagine we have a readout
function on one of the two boundaries of the solid, in the same direction of the temperature
profile, which is gaussian-shaped:

f (r) =
e−(r/x0)

2

πx2
0

, (4.6)

and its Fourier transform is

f (k) =
e−(kx0)

2/4
√

πx0
, (4.7)
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with the parameter x0 < L
Following an approach similar to what Yu Levin did [5], we consider the observable read

out

x(t) =
∫

dr f (r)d(r, t), (4.8)

where d(r, t) represents the displacement of our solid in its length direction, along which we
measure the observable with the read out function f (r).

In fact, since it is difficult to work in position and time space, we consider another observ-
able: the frequency auto correlation of read out〈

x(ω)x(−ω)
〉
=
∫

dk
∫

dk′ f̂ (k) f̂ (k′)S(k, k′, ω), (4.9)

which is the Fourier transform at ω′ = −ω of time correlation of read out
〈

x(t)x(t′)
〉

4.3 Fluctuations at equilibrium

At this point we can obtain for the equilibrium part of the spectral density

〈
x(ω)x(−ω)

〉
=
∫

dk
∫

dk′ f̂ (k) f̂ (k′)SEQ
d (k, k′, ω) =

1
πx2

0

∫
dke−k2x2

0/4
∫

dk′e−k′2x2
0/4SEQ

d

=
1

πx2
0

∫
dke−k2x2

0/4
∫

dk′e−k′2x2
0/4RR′kk′

[
2kBT̄

ω
Im(2µ + λ)(ω) + α2kk′φφ′2kBT̄2a

]
δ(k− k′),

(4.10)

where SEQ
d (k, k′, ω) is composed by the contributions of eq. (4.3) that do not depend on

temperature shape correction, but only on mean temperature values:

SEQ
d (k, k′, ω) = RR′kk′

[
2kBT̄

ω

(
Imµ(ω) + Im(µ + λ)(ω)

)
+ α2kk′φφ′2kBT̄2a

]
δ(k− k′). (4.11)

So we obtain the following expression for our spectral density

〈
x(ω)x(−ω)

〉
=

1
πx2

0

∫
dke−k2x2

0/4Rk
∫

dk′e−k′2x2
0/4R′k′

[
2kBT̄

ω

(
Imµ(ω) + Im(µ + λ)(ω)

)
+

+ α2kk′φφ′2kBT̄2a

]
δ(k− k′)

=
2kBT̄

(
Imµ(ω) + Im(µ + λ)(ω)

)
πx2

0ω

∫
dke−k2x2

0/2R2k2+

+ α2 2kBT̄2a
πx2

0

∫
dke−k2x2

0/4R2φ2k4. (4.12)

We notice the quadratic dependence on thermal expansion coefficient α of one term of PSD at
equilibrium.
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4.4 Fluctuations out of equilibrium

For the non equilibrium part of the spectral density instead we have

〈
x(ω)x(ω′ = −ω)

〉
=
∫

dk
∫

dk′ f̂ (k) f̂ (k′)SNE(k, k′, ω) =

1
πx2

0

∫
dke−k2x2

0/4
∫

dk′e−k′2x2
0/4SNE

d (k, k′, ω). (4.13)

Using explicit writing of (4.4) and (3.19), where we don’t write δ(~k⊥ −~k′⊥), because of 1-d
approximation, we can partial integrate this last expression. It consists in 3 integrals. The first
one is produced by (4.4) term: it is an odd function on a symmetrical domain and vanishes.
The second is produced by second term in (4.5) and vanishes for the same reasons. We have
now to integrate the last term:

〈
x(ω)x(−ω)

〉
= α2 2kBc2a

πx2
0

∫ ∞

0
e−k2x2

0/4k2φ(k, ω)R(k, ω)
d
dk

[e−k2x2
0/4k2φ(k,−ω)R(k,−ω)].

(4.14)

Separating real part of the argument of the integral, we find that imaginary part vanishes,
while real part is an even function in k. Analytic integration is found to be impossible, while
we can see how imaginary part of Lamé coefficients doesn’t affect the result and that the
dependency of thermal gradient c is proportional to c2 because of symmetries of our particular
choice of thermal bath.

In this case we have to consider that, since our problem does not represent a physical
system (we forgot about information from the other dimensions of the solid), we do not see
first order effect in thermal bath temperature gradient c. In fact, we see that these effects are
encoded in the two terms of SNE

d that vanish because of symmetries.

4.5 Low thermal expansion coefficient limit

At this limit we find that non equilibrium part of the spectral density vanishes. For the same
reason the second term of equilibrium part of the spectral density is equal to 0, that implies
the following expression for the whole spectral density of the system:

〈
x(ω)x(−ω)

〉
=

2kBT̄
(

Imµ(ω) + Im(µ + λ)(ω)
)

πx2
0ω

∫
dke−k2x2

0/2R2k2. (4.15)

Also this result, as the one aforementioned, is essentially due to strong symmetries imposed
by strong hypothesis of our problem.
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5 Conclusions

In this thesis work we learned how to define a mathematical model for an elastic, damped
and thermally conductive solid, writing down the differential equations for temperature and
displacement field, that are meaningful quantities to describe its dynamics. We further under-
stood how to describe the contribution of internal degrees of freedom at the whole balance of
the energy thanks to Langevine theory. In total generality we saw that, assuming FDT to be
valid only at mesoscopic level, the power spectral density one can observe is different from
the global-temperature case. In particular we studied a particular exemple where we could
easily perform direct calculations and see the new contribution at the PSD of the system due
to a nonzero thermal gradient imposed at the boundaries. Since our case preserve strong
symmetries, we found that some relevant terms for the PSD in our case can vanish.

The next step of this research topic will be to implement this approach for some nontrivial
cases. In particular it could be interesting to try to analytically obtain the PSD of a system that
shares similar features with VIRGO experiment mirrors, where it will be necessary to model
correctly the geometry of the problem and the boundary conditions for both temperature and
displacement fields. At the end we showed the limit for the thermal expansion coefficient
α → 0, which will be interesting for next generation interferometers, since it is known that it
exist a temperature point where thermal expansion coefficient for material which mirrors are
made of respect this limit.
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