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Introduction

People optimize. Airline companies schedule crews and aircraft to minimize
cost. Investors seek to create portfolios that avoid excessive risks while
achieving a high rate of return. Manifacturers aim for maximum efficiency
in the design and operation of their production processes.

Nature optimize. Physical systems tend to a state of minimum energy.
The molecules in an isolated chemical system react with each other until the
total potential energy of their electrons is minimized. Rays of light follow
paths that minimize their travel time.

Optimization is an important tool in decision science and in the analysis
of physical systems. To use it, we must first identify some objective func-
tion (e.g. cost to be minimized), its variables and its constraints. Once
the model has been formulated, an optimization algorithm can be used to
find its solution (very few interesting optimization problems admite a closed
form solution). There are numerous algorithms. In this work, we focus on
quasi-Newton methods and, in particular, the most popular one, the BFGS
method. We first present the classical derivation of the BFGS algorithm [4],
[2]. Then, we provide a variational derivation of the BFGS-like iteration,
based on the work of M. Pavon [1]. In [3], Fletcher, one of the discoverers
of the BFGS algorithm, had already provided a variational characterization
for the BFGS iteration. However, we take a different approach, leading to
a new family of BFGS-like methods and an independent proof of a result of
Fletcher.

First, in Chapter 1, we recall some useful knowledge of positive definite
matrices, normed spaces and the Kullback-Leibler divergence.

Then, in Chapter 2, we give the mathematical background of optimiza-
tion, recalling the definitions and the main results on local and global minima
of a function, and convex sets and functions.

In Chapter 3, we present line search methods: they are strategies used
by an optimization algorithm for moving from the current point to a new
iterate. We analyse some of these strategies: the steepest descent method,
Newton’s method and the quasi-Newton method.

In Chapter 4, we study the BFGS method, focusing on its classical
derivation.

In Chapter 5, we provide the variational derivation of a class of BFGS-
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like methods mentioned above.
Finally, in Chapter 6, we present some numerical experiments comparing

the classical BFGS method and the BFGS-like one.



Chapter 1

Mathematical background

In this Chapter, we want to briefly recall some results that shall be useful for
this work. First, we discuss positive definiteness of matrices, in particular we
illustrate its characterizations. Then, we talk about metrics and norms, with
particular attention on matricial norms and Frobenius norm. Finally, we
give the definition and the explanation of the Kullback-Leibler divergence,
focusing on multivariate Gaussian distributions.

1.1 Positive definite matrices

In this section, we shall consider only real matrices, but most of the defini-
tions and the results can be extended to complex matrices.

First, we give the definition of a symmetric matrix.

Definition 1.1 (Symmetric matrix). A matrix A ∈ Rn×n is symmetric if
AT = A, where AT means the transpose of A.

The main result concerning real symmetric matrices is the real spectral
theorem: before stating it, we recall some definitions.

Definition 1.2 (Eigenvalue). Let A be a real n × n matrix. λ ∈ C is an
eigenvalue of A if there exists some x ∈ Rn, x 6= 0, such that Ax = λx.

Definition 1.3 (Diagonalizable matrix). Let A be a real n×n matrix. A is
called diagonalizable if it is similar to a diagonal matrix, i.e. if there exists
an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Definition 1.4 (Orthogonal matrix). Let A be a real n × n matrix. A is
called orthogonal if AT = A−1.

Definition 1.5 (Orthogonally diagonalizable matrix). Let A be a real n×n
matrix. A is orthogonally diagonalizable if it is orthogonally similar to a
diagonal matrix, i.e. if there exists an orthogonal matrix P and a diagonal
matrix D such that P TAP = D.

7



8 CHAPTER 1. MATHEMATICAL BACKGROUND

We are ready to state the real spectral theorem.

Theorem 1.1 (Real spectral theorem). Let A be a real n×n matrix. Then,
A is orthogonally diagonalizable if, and only if, A is symmetric.

We now talk about definite and semi-definite matrices.

Definition 1.6 (Semi-definite matrix). A symmetric matrix A ∈ Rn×n is
positive semi-definite if

xTAx ≥ 0 ∀x ∈ R
n.

Moreover, a symmetric matrix A ∈ Rn×n is negative semi-definite if

xTAx ≤ 0 ∀x ∈ R
n.

We shall use the notation A ≥ 0 for a positive semi-definite matrix and
A ≤ 0 for a negative semi-definite one.

Definition 1.7 (Definite matrix). A symmetric matrixA ∈ Rn×n is positive definite
if

xTAx > 0 ∀x ∈ R
n
r {0}.

Moreover, a symmetric matrix A ∈ Rn×n is negative definite if

xTAx < 0 ∀x ∈ R
n
r {0}.

We shall use the notation A > 0 for a positive definite matrix and A < 0 for
a negative definite one.

Before giving the first characterization of a positive definite matrix, we
define the spectrum of a matrix.

Definition 1.8 (Spectrum of a matrix). The spectrum of a matrix is the
set of its eigenvalues. If the matrix is A, we denote its spectrum by σ(A).

Proposition 1.2 (First characterization of positive definiteness). Let A ∈
Rn×n be a symmetric matrix. Then

A > 0 ⇔ σ(A) ⊂ R
+,

that is all eigenvalues of A are real and positive.

Let A ∈ Rn×n be a symmetric matrix. We have just discovered that we
can determine the positive definiteness of A by computing its eigenvalues.
Another method is to use the principal minors.

Definition 1.9 (Minor). A minor of order k of a n × n matrix A is a
submatrix of A obtained by deleting n− k rows and n− k columns.
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Definition 1.10 (Principal and leading principal minor). A minor of order
k of a n × n matrix A is principal if it is obtained by deleting n − k rows
and the n− k columns with the same numbers.
The leading principal minor of A of order k is the minor of order k obtained
by deleting the last n − k rows and columns. We write Ak for the leading
principal minor of order k.

Proposition 1.3 (Second characterization of positive definiteness). Let A ∈
Rn×n be a symmetric matrix. Then

A > 0 ⇔ det(Ak) > 0 ∀k = 1, . . . , n.

We give the last characterization of a positive definite matrix.

Proposition 1.4 (Third characterization of positive definiteness). Let A ∈
Rn×n be a symmetric matrix. Then the following statements are equivalent:

❼ A > 0;

❼ ∃m > 0 constant : xTAx ≥ m‖x‖2 ∀x ∈ Rn.

Here ‖ · ‖ denotes the Euclidean norm on Rn.

1.2 Metrics and norms

Let X be an arbitrary nonempty set.

Definition 1.11 (Metric or distance). A metric, or distance, on X is a
function d : X ×X → R with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;

(ii) (symmetry) d(x, y) = d(y, x), for all x, y ∈ X;

(iii) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Definition 1.12 (Metric space). A metric space (X, d) is a nonempty set
X with a metric d.

We give some examples of metric spaces:

❼ the set of real numbers R with the distance d(x, y) = |x − y|, where
| · | denotes absolute value;

❼ the set of complex numbers C with the distance d(x, y) = |x − y|,
where | · | is the complex modulus;
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❼ (Euclidean metric on Rk) the set Rk with the distance

d(x, y) =

√

√

√

√

k
∑

i=1

(xi − yi)2.

Definition 1.13 (norm). A norm on a vector space X over R (or C) is a
function ‖ · ‖ : X → R with the following properties:

(i) (nonegative) ‖x‖ ≥ 0, for all x ∈ X;

(ii) ‖x‖ = 0 implies that x = 0;

(iii) (homogeneous) ‖λx‖ = |λ|‖x‖, for all x ∈ X and λ ∈ R (or C);

(iv) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X.

Definition 1.14 (Normed vector space). A normed vector space (X, ‖ · ‖)
is a vector space X equipped with a norm ‖ · ‖.

Some examples of normed vector spaces are:

❼ Rk with the norm ‖x‖1 =
∑k

i=1 |xi| for all x ∈ Rk;

❼ Rk with the Euclidean norm, defined for all x ∈ Rk by

‖x‖2 =

√

√

√

√

k
∑

i=1

x2i ;

❼ Rk with the norm ‖x‖∞ = maxi=1,··· ,k |xi|.

A norm ‖ · ‖ on a vector space X induces naturally a metric d defined by

d(x, y) = ‖x− y‖,

for all x, y ∈ X.

Definition 1.15 (Operator norm). Let (X, ‖·‖X) and (Y, ‖·‖Y ) two normed
vector spaces. Let T : X → Y a linear operator. We define

‖T‖ := sup
‖x‖≤1

‖Tx‖Y . (1.1)

If ‖T‖ < ∞ we say that T is a bounded operator and we call (1.1) the
(operator) norm of T .

It can be easily proved that ‖ · ‖ is a norm.
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Notation 1.5. Let X,Y be normed vector spaces. We denote by L(X,Y )
the following set:

L(X,Y ) := {T : X → Y : T linear and bounded}.

With the natural operations of sum between functions and multiplication
of a function by a scalar, L(X,Y ) is a vector space.
We observe that from (1.1) we have the following inequality:

‖Tx‖Y ≤ ‖T‖ ‖x‖X ,

for all x ∈ X.

Proposition 1.6. Let X,Y be normed vector spaces and T : X → Y a
linear operator. TFAE:

(i) T is bounded;

(ii) T is continuous, that is

∀ǫ > 0 ∃δ > 0 : ∀x ∈ X such that ‖x‖X ≤ δ =⇒ ‖Tx‖Y ≤ ǫ;

(iii) T is continuous at 0.

We would like to introducematricial norm, in particular Frobenius norm.

Definition 1.16 (Matricial norm). A matricial norm is a function

‖ · ‖ : Rn×n → R

that satisfies the following properties:

(i) ‖A‖ ≥ 0 ∀A ∈ Rn×n and ‖A‖ = 0⇔ A = O;

(ii) ‖λA‖ = |λ| ‖A‖ ∀A ∈ Rn×n;

(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ ∀A,B ∈ Rn×n;

(iv) (submultiplicative property) ‖AB‖ ≤ ‖A‖ ‖B‖ ∀A,B ∈ Rn×n.

In the definition above we could substitute Rn×n with Cn×n.
Here some examples of matricial norms:

❼ ‖A‖1 := maxj=1,··· ,n
∑n

i=1 |aij |;

❼ ‖A‖∞ := maxi=1,··· ,n
∑n

j=1 |aij |;

❼ ‖A‖2 :=
√

ρ(ATA), where ρ(B) is the spectral radius of the matrix B,
that is the largest absolute value of its eigenvalues.

Frobenius norm is another example of matricial norm.
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Definition 1.17 (Frobenius norm). The Frobenius norm is a matricial norm
defined by

‖A‖F :=





n
∑

i=1

n
∑

j=1

|aij |2




1

2

=
[

trace(ATA)
]
1

2 ,

for all (aij)i,j=1,··· ,n = A ∈ Rn×n.
Frobenius norm is defined also for complex matrices: in this case, | · | must
be intended as the complex modulus and AT must be substituted with the
Hermitian transpose of A, AH .

A variant of Frobenius norm is the weighted Frobenius norm. We first
recall the following:

Definition 1.18 (Square root of a matrix). Let W ∈ Rn×n a symmetric
matrix with nonnegative eigenvalues. A square root of W is a matrix B such
that B ·B = B2 = W . We denote B by W 1/2.

Such matrices exist because a symmetric matrix with nonnegative eigen-
values is diagonalizable, that is there exists an invertible matrix P and a
diagonal matrix D = diag(λ1, · · · , λn) such that W = U−1DU . Observe
that

W = U−1DU

= U−1D1/2D1/2U

= U−1D1/2UU−1D1/2U

=
(

U−1D1/2U
)(

U−1D1/2U
)

,

where D1/2 = diag(µ1, · · · , µn) and µi =
√
λi.

Hence, a square root of W is W 1/2 =
(

U−1D1/2U
)

.

Definition 1.19 (Weighted Frobenius norm). Let ‖ · ‖F be Frobenius norm
and W ∈ Rn×n a symmetric matrix with nonnegative eigenvalues. The
weighted Frobenius norm is defined for all A ∈ Rn×n by

‖A‖W := ‖W 1/2AW 1/2‖F ,
where W 1/2 is taken as explained above. The matrix W is call the weight
of Frobenius norm.

We can associate a vector norm to a matricial norm as follows:

Definition 1.20 (Induced matricial norm). Let X be a vector space over
R. Suppose that ‖ · ‖X is a norm on X. The norm defined for all A ∈ Rn×n

by

‖A‖ := sup
x6=0

‖Ax‖X
‖x‖X

= max
‖x‖X=1

‖Ax‖X

is called induced or operator matricial norm.



1.3. KULLBACK-LEIBLER DIVERGENCE 13

In particular, induced matricial norms satisfy the properties:

❼ (i)-(iv) of the previous definition;

❼ ‖Ax‖X ≤ ‖A‖ ‖x‖X for all A ∈ Rn×n, x ∈ Rn;

❼ ‖I‖ = 1, where I is the identity matrix.

The matricial norms ‖ · ‖1, ‖ · ‖∞ and ‖ · ‖2 illustrated previously are ex-
amples of induced matricial norms, whereas Frobenius norm in not induced
(for example, it does not satisfy the last property: ‖In‖F =

√
n 6= 1).

1.3 Kullback-Leibler Divergence

To measure the difference between two probability distributions over the
same variable x, a “measure” called the Kullback-Leibler divergence (or rel-
ative entropy or Kullback-Leibler index ) has been popularly used in the data
mining literature. The concept originated in statistical mechanics, proba-
bility theory and information theory.

The Kullback-Leibler divergence is a “non-symmetric measure” of the
difference between two probability distributions p(x) and q(x). Specifically,
the Kullback-Leibler divergence of q(x) from p(x) is a measure of the infor-
mation lost when q(x) is used to approximate p(x).

Definition 1.21 (Kullback-Leibler divergence, discrete case). Let p(x) and
q(x) be two probability distributions on a discrete set X. The Kullback-
Leibler divergence of q from p is defined by

D(p‖q) =
∑

x∈X

p(x) ln
p(x)

q(x)
,

if supp(p) ⊂ supp(q), +∞ otherwise (here, by definition, 0 · log 0 = 0).

The Kullback-Leibler divergence measures the expected number of extra
bits required to code samples from p(x) when using a code based on q(x),
rather than using a code based on p(x). Typically p(x) represents the “true”
distribution of data, observations, or a precisely calculated theoretical distri-
bution. The measure q(x) typically represents a theory, model, description,
or approximation of p(x).

We now discuss the continuous version of the Kullback-Leibler diver-
gence.

Definition 1.22 (Kullback-Leibler Divergence, continuous case). Let p, q
be two probability distributions of a continuous random variable x ∈ Rm.
The Kullback-Leibler divergence of q from p is the quantity

D(p‖q) =
∫

Rm

p(x) ln
p(x)

q(x)
dx.
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Notice that attention should be paid in the definition above. We know
that limp→0 p log p = 0. However, when p 6= 0 but q = 0, D(p‖q) is defined as
∞. This means that if one event e is possible (i.e., p(e) > 0), and the other
predicts it is absolutely impossible (i.e., q(e) = 0), then the two distributions
are absolutely different.

Although the KL divergence measures the “distance” between two dis-
tributions, it is not a distance measure:

❼ it is not symmetric: in general, D(p‖q) 6= D(q‖p);

❼ it does not satisfy the triangular inequality.

Nevertheless, D(p‖q) ≥ 0 and D(p‖q) = 0 iff p = q, so the KL divergence is
a pseudo-metric. We now prove that D(p‖q) ≥ 0.

D(p‖q) =
∫

Rm

p(x) ln
p(x)

q(x)
dx =

∫

Rm

p(x)

q(x)
q(x) ln

p(x)

q(x)
dx. (1.2)

Calling g(ζ) := ζ log ζ, (1.2) becomes

∫

Rm

q(x)g

(

p(x)

q(x)

)

dx.

We observe that g′(ζ) = log ζ+1 and g′′(ζ) = 1
ζ , which is strictly positive

for all ζ > 0 so g is stricty convex for all ζ > 0. By Jensen inequality, we
have

∫

Rm

q(x)g

(

p(x)

q(x)

)

dx ≥ g

(∫

Rm

p(x)

q(x)
q(x)dx

)

= g

(∫

Rm

p(x)dx

)

= g(1) = 0.

Therefore, we proved that D(p‖q) ≥ 0 for all p, q distributions on Rm.

We would like to derive a specific formula for the KL divergence when
p, q are zero-mean multivariate Gaussian distributions. We first recall the
definition of a multivariate Gaussian distribution.

Definition 1.23 (Multivariate Gaussian distribution). The multivariate
Gaussian distribution is a generalization of the one-dimensional (univari-
ate) normal distribution to higher dimensions. The multivariate Gaussian
distribution is said to be “non-degenerate” when the symmetric covariance
matrix Σ is positive definite. In this case the distribution has density

f(x) =
exp (−1

2

(

x− µ)TΣ−1(x− µ)
)

√

(2π)k det(Σ)
,

where x is a real m-dimensional column vector and µ is the mean (µ ∈
Rm,Σ ∈ Rm × Rm).
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Let p, q be two zero-mean multivariate Gaussian distributions with non-
singular n × n covariance matrices P,Q, respectively. The KL divergence
can be derived in closed form

D(p‖q) = 1

2

[

log det
(

P−1Q
)

+ tr(Q−1P )− n
]

.

Since P−1 and Q−1 are the natural parameters of the Gaussian distributions,
we write

D(P−1‖Q−1) =
1

2

[

log det
(

P−1Q
)

+ tr(Q−1P )− n
]

.

Note that in the right side of the last equality there is the term log det
(

P−1Q
)

.
It is useful for this work to denote by J(·) the following map defined on non-
singular n× n matrices M :

J(M) = log | det(M)|. (1.3)

Let δJ(M ; δM) denote the directional derivative of J in direction δM ∈
Rn×n, namely

δJ(M ; δM) = lim
ǫ→0

J(M + ǫδM)− J(M)

ǫ
.

Then we have the following result [5, Lemma 2].

Lemma 1.7. If M is nonsingular then, for any δM ∈ Rn×n,

δJ(M ; δM) = trace[M−1δM ]. (1.4)

Proof. We have

δJ(M ; δM) = lim
ǫ→0

log | det(M + ǫδM)| − log | det(M)|
ǫ

= lim
ǫ→0

log | det[(M + ǫδM)M−1]|
ǫ

= lim
ǫ→0

log | det(I + ǫM−1δM)|
ǫ

= lim
ǫ→0

log |
∏

i(1 + ǫλi)|
ǫ

= lim
ǫ→0

∑

i log |1 + ǫλi|
ǫ

=
∑

i

λi = trace[M−1δM ],

where the λi’s are the eigenvalues (counted with multiplicity) of M−1δM .
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Chapter 2

Optimization

Outside the realm of pure mathematics, most practicing scientists and en-
gineers are not concerned with finding exact answers to problems. Indeed,
living a finite universe, we have no way of exactly measuring physical quan-
tities and even if we did, the exact answer would not be of much use.

In mathematics, there are many problems and equations (algebraic, dif-
ferential and partial differential) whose exact solutions are known to exist
but are difficult, very time consuming or impossible to solve exactly. But for
many practical purposes, an estimate to the exact answer will do just fine,
provided that we have a guarantee that the error is not too large. In this
sense, we talk about numerical analysis. In particular, when the problem is
that of minimizing or maximizing a function, possibly subject to constraints
on its variables, we speak of optimization.

The most important distinction of optimization problems is between
problems that have constraints on the variables and those that do not. Ac-
cording to this classification, we have:

❼ unconstrained optimization;

❼ constrained optimization.

In this Chapter, we give the mathematical background of both uncon-
strained and constrained optimization. After some definitions, we state two
of the main results in Calculus, that is Taylor’s theorem and Lagrange mul-
tiplier theorem. Moreover, we recall the concept of convexity, concerning
both sets and functions.

Troughout this Chapter, we use ‖ · ‖ to denote the Euclidean norm on
Rn.

2.1 Minimum of a function

Definition 2.1 (Local minimum of a function). Let A be an open subset
of Rn. We say that the function f : A → R, f ∈ C2 (that is, f is twice

17



18 CHAPTER 2. OPTIMIZATION

continuously differentiable in A), has a local minimum at x0 ∈ A if

∃r > 0 : ∀x ∈ Br(x0) ∩A f(x) ≥ f(x0),

where Br(x0) = {x ∈ Rn : ‖x− x0‖ < r}.
Moreover, we say that f has a strict local minimum at x0 ∈ A if

∃r > 0 : ∀x ∈ Br(x0) ∩Ar {x0} f(x) > f(x0).

Definition 2.2 (Global minimum of a function). Let A be an open subset
of Rn. We say that the function f : A → R, f ∈ C2, has a global minimum
at x0 ∈ A if

f(x) ≥ f(x0), ∀x ∈ A.

Definition 2.3 (Critical point). Let A be an open subset of Rn and f : A→
R a differentiable function. We call x0 ∈ A a critical point of f if∇f(x0) = 0.

The mathematical tool used to study minimizers of smooth functions
-by which we generally mean functions whose second derivatives exist and
are continuous- is Taylor’s theorem. Since this theorem is central troughout
this work, we state it now.

Theorem 2.1 (Taylor’s theorem). Suppose that f : Rn → R is continuously
differentiable and that p ∈ Rn. Then we have that

f(x+ p) = f(x) +∇f(x+ tp)T p, (2.1)

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we
have that

∇f(x+ p) = ∇f(x) +
∫ 1

0

∇2f(x+ tp)p dt, (2.2)

and that

f(x+ p) = f(x) +∇f(x)T p+ 1

2
pT∇2f(x+ tp)p, (2.3)

for some t ∈ (0, 1). Here, ∇2f(x + tp) denotes the Hessian matrix of f at
x+ tp.

Now we give necessary conditions for x0 to be a local minimum for f .

Theorem 2.2. Let A be an open subset of Rn, f : A→ R a function, f ∈ C2
and xo ∈ A a local minimum for f . Then x0 is a critical point of f and
∇2f(x0) ≥ 0.

The following theorem gives sufficient conditions for the same problem.

Theorem 2.3. Let A be an open subset of Rn and f : A → R a function,
f ∈ C2. Suppose that x0 ∈ A is a critical point of f and ∇2f(x0) > 0. Then
x0 is a strict local minimum for f.
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Finally, we briefly talk about constrained optimization, recalling the La-
grange multiplier theorem.

Suppose we have two functions:

❼ f : Rn → R;

❼ g : Rn → Rm.

We would like to find a (global/local) minimum x∗ of f subject to g = 0,
that is to solve the following problem:

min
x
{f(x) : g(x) = 0}. (2.4)

Let Jg(x) denote the Jacobian matrix of g at a certain point x ∈ Rn. Notice
that Jg(x) is a m × n matrix. We are now ready to state the following
theorem.

Theorem 2.4 (Lagrange multiplier theorem). Let f, g be two functions as
above, x∗ a local minimizer for problem (2.4) and f, g continuously differ-
entiable at x∗. If Jg(x∗) has full row rank, then there exists a (unique)
λ ∈ Rm, λ = (λ1, ..., λm), satysfying

∇f(x∗) = λTJg(x∗).

The numbers λ1, ..., λm are called Lagrange multiplier.
Let L : Rm × Rn → R be the function defined, for all (λ, x) ∈ Rm × Rn, by:

L(λ, x) = f(x) + λT g(x).

This function is called Lagrange function, or Lagrangian.

From the previous theorem, we have the following:

Theorem 2.5. Let f, g be two functions as above, x∗ a local minimizer for
problem (2.4) and f, g continuously differentiable at x∗. If Jg(x∗) has full
row rank, then there exists a (unique) λ ∈ Rm, λ = (λ1, ..., λm), such that

∂L
λi

(λ, x∗) = 0, i = 1, · · · ,m (2.5)

and
∂L
xj

(λ, x∗) = 0, j = 1, · · · , n. (2.6)

Observe that the conditions (2.5)-(2.6) are equivalent to require (λ, x∗)
to be a critical point of the Lagrangian.
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2.2 Convex sets and functions

We now recall the definitions and the main properties of convex sets and
functions.

Definition 2.4 (Convex set). A set D ∈ Rn is convex if

∀x, y ∈ D =⇒ λx+ (1− λ)y ∈ D ∀λ ∈ [0, 1].

Definition 2.5 (Convex function). Let f : D ⊂ Rn → R a function, where
D is a convex set. f is convex if

∀x, y ∈ D, ∀λ ∈ [0, 1] =⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Moreover, f is strictly convex when the previous inequality is strict for all
λ ∈ (0, 1).

The following theorems show the connection between convexity and dif-
ferentiability.

Theorem 2.6. Let D ⊂ Rn be an open convex set and f : D → R a function,
f ∈ C1(D). TFAE:

(i) f is convex;

(ii) ∀x, y ∈ D =⇒ f(x) ≥ f(y) +∇f(y)T (x− y);

(iii) ∀x, y ∈ D =⇒ (∇f(x)−∇f(y))T (x− y) ≥ 0.

Corollary 2.7. Let D ⊂ Rn be an open convex set and f : D → R a convex
function, f ∈ C1(D). If x0 ∈ D is a critical point of f , then x0 is a global
minimum of the function.

Corollary 2.8. Let D ⊂ Rn be an open convex set and f : D → R a strictly
convex function, f ∈ C1(D). If x0 ∈ D is a minimum of f , then x0 is the
only minimum of the function.

Theorem 2.9. Let D ⊂ Rn be an open convex set and f : D → R a function,
f ∈ C1(D). TFAE:

(i) f is convex;

(ii) ∇2f(x) ≥ 0 ∀x ∈ D.

Under the hypoteses of the previous theorem, if ∇2f(x) > 0 ∀x ∈ D,
then f is strictly convex. In general, it is not true that the strictly convexity
of f implies ∇2f(x) > 0 ∀x ∈ D (e.g. f(x) = x4).
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Definition 2.6 (Strongly convex function). Let f : D ⊂ Rn → R be a twice
differentiable function, where D is a convex set. f is strongly convex if

∃α > 0 such that ∇2f(x) ≥ αIn, ∀x ∈ D,

namely the Hessian is “bounded away” from 0. Here In denotes the identity
matrix in Rn.

Obviously, strongly convexity implies strictly convexity. In general, the
vice versa does not hold.
Observe that if f is a strongly convex function, its Hessian is a positive
definite matrix; moreover, if f is a C2 strongly convex function, its Hessian
is a symmetric positive definite matrix.
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Chapter 3

Line search methods

Suppose we have a function f to minimize. We would like to find a/the mini-
mum (or its approximation) of f using a numerical method. We have already
seen that the problem of minimizing a function belongs to the so-called (un-
constrained) minimization or, more generally, (unconstrained) optimization;
we use the terms optimization methods and optimization algorithms to in-
dicate numerical methods and algorithms used for this kind of problems.

Now we introduce the notations that are used in this Chapter:

❼ x ∈ Rn is the vector of variables;

❼ f : Rn → R is the objective function, a function of x that we want to
minimize;

❼ x0 is the starting point of the algorithm;

❼ {xk}k is the sequence of iterates generated by the algorithm;

❼ fk = f(xk) is the value of f at the point xk;

❼ ∇fk = ∇f(xk) is the value of the gradient of f at the point xk;

❼ ∇2fk = ∇2f(xk) is the value of the Hessian of f at the point xk;

❼ ‖ · ‖ denotes the Euclidean norm on Rn.

All algorithms for unconstrained minimization require a starting point
x0. The user with knowledge about the application and the data set may be
in a good position to choose x0 to be a reasonable estimate of the solution.
Otherwise, the starting point must be chosen in some arbitrary manner.
Beginning at x0, optimization algorithms generate a sequence of iterates
{xk}k∈N that terminate when either no more progress can be made or when it
seems that a solution point has been approximated with sufficient accuracy.
The strategy used to move from one iterate to the next distinguishes one
algoritm from another. Most strategies make use of the objective function

23
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f and possibly its first and second derivatives (or their approximations).
Some algorithms accumulate information gathered at previous iterations,
while others use only local information from the current point. In order to
find a minimum of f , all algorithms should find a new iterate xk+1 with a
lower function value than xk.
All good algorithms should possess the following properties:

❼ robustness: they should perform well on a wide variety of problems in
their class, for all reasonable choices of the initial variable;

❼ efficiency: they shoul not require too much computer time or storage;

❼ accuracy: they should be able to identify a solution with precision,
without being overly sensitive to errors in the data or the arithmetic
rounding errors that occur when the algorithm is implemented on a
computer.

There are two fundamental strategies for moving from the current point
xk to a new iterate xk+1: line search strategies and trust-region methods.
We shall discuss only the first ones.

In the line search strategy, the algorithm chooses a direction pk and
searches along this direction from the current iterate xk for a new iterate
with a lower function value. The distance to move along pk can be found by
approximately solving the following one-dimensional minimization problem
to find a step length α:

min
α>0

f(xk + αpk). (3.1)

By solving (3.1) exactly, we would derive the maximum benefit from
the direction pk, but an exact minimization is expensive and unnecessary.
Instead, the line search algorithm generates a limited number of trial step
lengths until it finds one that loosely approximates the minimum of (3.1).
At the new point a new search direction and step length are computed, and
the process is repeated.

3.1 Search directions

In this section, we shall discuss three types of search directions:

❼ the steepest descent direction;

❼ the Newton direction;

❼ the quasi-Newton direction.

Definition 3.1 (Steepest descent direction). If f is our objective function,
the stepest descent direction is the quantity −∇fk = −∇f(xk).
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The following proposition shows that −∇fk is the most obvious choice
for search direction for a line search method.

Proposition 3.1. Among all the directions we could move from xk, −∇fk
is the one along which f dicreases most rapidly.

Proof. By theorem 2.1 (Taylor’s theorem), for any search direction p and
step length parameter α, we have

f(xk + αp) = f(xk) + αpT∇fk +
1

2
α2pT∇2f(xk + tp), for some t ∈ (0, α)

(see (2.3)). The rate of change in f along the direction p at xk is simply the
coefficient of α, namely, pT∇fk. Hence, the unit direction p of most rapid
decrease is the solution to the problem

min
{p:‖p‖=1}

pT∇fk. (3.2)

Since pT∇fk = ‖p‖‖∇fk‖ cos θ, where θ is the angle between p and ∇fk, we
have from ‖p‖ = 1 that pT∇fk = ‖∇fk‖ cos θ, so the objective in (3.2) is
minimized when cos θ takes on its minimum value of −1 at θ = π radiants.
In other words, the solution to (3.2) is

p = − ∇fk‖∇fk‖
,

as claimed.

Definition 3.2 (Steepest descent method). The steepest descent method is
a line search method that moves along pk = −∇fk at every step.

It can choose the step length ak in a variety of ways. One advantage of
the steepest descent direction is that it requires calculation of the gradient
∇fk but not of the second derivatives. However, it can be excruciatingly
slow on difficult problems.

Line search methods may use search directions other than the steepest
descent direction.

Definition 3.3 (Discent direction). A descent direction is a direction that
makes an angle of strictly less than π/2 radians with −∇fk.

Proposition 3.2. In general, any descent direction is guaranteed to produce
a decrease in f , provided that the step length is sufficiently small.

Proof. By (2.3) from Taylor’s theorem 2.1, we have that

f(xk + ǫpk) = f(xk) + ǫpTk∇fk +O(ǫ2).
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When pk is a downhill direction, the angle θk between pk and ∇fk has
cos θk < 0, so that

pT∇fk = ‖p‖ ‖∇fk‖ cos θ < 0.

It follows that f(xk + ǫpk) < f(xk) for all positive but sufficiently small
values of ǫ.

Another important search direction is the Newton direction. This di-
rection is derived from the second-order Taylor series approximation to
f(xk + p), which is

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp

def
= mk(p). (3.3)

Assuming for the moment that ∇2fk is positive definite, we obtain the
Newton direction by finding the vector p that minimizes mk(p). By simply
setting the derivative of mk(p) to zero, we obtain pk = −∇2f−1

k ∇fk.

Definition 3.4 (Newton direction). The Newton direction is the vector

pNk = −
(

∇2fk
)−1∇fk. (3.4)

The Newton direction is reliable when the difference between the true
function f(xk + p) and its quadratic model mk(p) is not too large. By
comparing (3.3) with (2.3), we see that the only difference between these
functions is that the matrix ∇2f(xk+ tp) in the third term of the expansion
has been replaced by ∇2fk = ∇2f(xk). If ∇2f(·) is sufficiently smooth, this
difference introduces a perturbation of only O(‖p‖3) into the expansion, so
that the approximation f(xk + p) ≈ mk(p) is very accurate indeed.

Proposition 3.3. If ∇2fk is positive definite and ∇fk 6= 0, the Newton
direction is a descent direction.

Proof. We have

∇fT
k p

N
k = −pNk

T∇2fkp
N
k ≤ −σk‖pNk ‖2

for some σk > 0 (the last inequality follows from the theorem 1.4). Since the
gradient ∇fk (and therefore the step pNk ) is zero, we have that ∇fT

k p
N
k < 0,

so that the Newton direction is a descent direction.

Unlike the steepest descent direction, there is a “natural” step length of
1 associated with the Newton direction. Most line search implementations
of Newton’s method use the unit step α = 1 where possible and adjust this
step length only when it does not produce a satisfactory reduction in the
value of f .
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Methods that use the Newton direction have a fast rate of local conver-
gence, typically quadratic. When a neighborhood of the solution is reached,
convergence to high accuracy often occurs in just a few iterations. The main
drawback of the Newton direction is the need for the Hessian ∇2f(x). Ex-
plicit computation of this matrix, its inversion and storage are sometimes,
though not always, a cumbersome, error-prone, and expensive process. In
some large dimensional problems, this becomes simply unfeasible.

Quasi-Newton search directions provide an attractive alternative in that
they do not require computation of the Hessian and yet still attain a su-
perlinear rate of convergence. In place of the true Hessian ∇2fk, they use
an approximation Bk, which is updated after each step to take account of
the additional knowledge gained during the step. The updates make use of
the fact that changes in the gradient provide information about the second
derivative of f along the search direction. In fact, it might be possible, in
some quasi-Newton iterations, to update directly B−1

k .
By using the expression (2.2) from our statement of Taylor’s theorem

∇f(x+ p) = ∇f(x) +
∫ 1

0

∇2f(x+ tp)pdt,

we have, by adding and substracting the term ∇2f(x)p, that

∇f(x+ p) = ∇f(x) +∇2f(x)p+

∫ 1

0

[∇2f(x+ tp)−∇2f(x)] p dt.

Since ∇2f is continuous, the size of the final integral term is o(‖p‖). By
setting x = xk and p = xk+1 − xk, we obtain

∇fk+1 = ∇fk +∇2fk+1(xk+1 − xk) + o(‖xk+1 − xk‖).

When xk and xk+1 lie in a region near the solution x∗, within which ∇2f
is positive definite, the final term in this expansion is eventually dominated
by the ∇2fk+1(xk+1 − xk) term, and we can write

∇2fk+1(xk+1 − xk) ≈ ∇fk+1 −∇fk. (3.5)

We choose the new Hessian approximation Bk+1 so that it mimics this prop-
erty (3.5) of the true Hessian, that is, we require it to satify the following
condition, known as the secant equation.

Definition 3.5 (Secant equation). The secant condition is defined by

Bk+1sk = yk, (3.6)

where
sk = xk+1 − xk, yk = ∇fk+1 −∇fk.
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Typically we impose additional requirements on Bk+1, such as:

❼ simmetry, motivated by simmetry of the exact Hessian;

❼ the difference between successive approximation Bk to Bk+1 must have
low rank.

The initial approximation B0 must be chosen by the user. Two of the
most popular formulas for updating the Hessian approximation Bk are the
symmetric-rank-one (SR1) formula and the BFGS formula (we shall discuss
the BFGS formula in Chapter 4).

The quasi-Newton search direction is given by using Bk in place of the
exact Hessian in the formula (3.4), as illustrated in the following definition.

Definition 3.6 (Quasi-newton direction). The quasi-newton direction is
given by

pQk = −B−1
k ∇fk. (3.7)

Some practical implementations of quasi-Newton methods avoid the need
to factorize Bk at each iteration by updating the inverse of Bk, instead of
Bk itself. Calculation of pk can then be performed by using the formula

pk = −Dk∇fk, where Dk
def
= B−1

k is the inverse approximation. This can
be implemented as a matrix-vector multiplication, which is typically sim-
pler than the factorization/back-substitution procedure that is needed to
implement the formula (3.7).

3.2 Scaling

The performance of an algorithm may depend crucially on how the problem
is formulated. One important issue in problem formulation is scaling. In
unconstrained optimization, a problem is said to be poorly scaled if changes
to x in a certain direction produce much larger variations in the value of f
than do changes to x in another direction.

Scaling is performed (sometimes unintentionally) when the units used to
represent variables are changed.

Some optimization algorithms, such as steepest descent, are sensitive to
poor scaling, while others, such as Newton’s method, are unaffected by it.

Algorithms that are not sensitive to scaling are preferable to those that
are sensitive, because they can handle poor problem formulations in a more
rubust manner. In designing complete algorithms, we try to incorporate
scale invariance into all aspects of the algorithm, including the line search
or trust-region strategies and convergence tests. Generally speaking, it is
easier to preserve scale invariance for line search algorithm than for trust-
region algorithms.
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3.3 Rates of convergence

One of the key measures of performance of an algorithm is its rate of con-
vergence. We now define the terminolgy used in the following pages.

Definition 3.7 (Q-linear convergence). Let {xk} be a sequence in Rn that
converges to x∗. We say that the convergence isQ-linear if there is a constant
r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r, for all k sufficiently large. (3.8)

Definition 3.8 (Q-superlinear convergence). The convergence is said to be
Q-superlinear if

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Definition 3.9 (Q-quadratic convergence). Q-quadratic convergence, an
even more rapid convergence rate, is obtained if

‖xk+1 − x∗‖
‖xk − x∗‖2 ≤M, for all k suffciently large,

where M is a positive constant, not necessarily less than 1.

The speed of convergence depends on r and (more weakly) on M , whose
values depend not only on the algorithm but also on the properties of the
particular problem. Regardless of these values, however, a quadratically
convergent sequence shall always eventually converge faster than a linearly
convergent sequence.

The following implications hold:

quadratic =⇒ superlinearly =⇒ linearly,

that is any sequence that converges Q-quadratically also converges Q-superlinearly,
and any sequence that converges Q-superlinearly also converges Q-linearly.
We can also define higher rates of convergence (cubic, quartic, and so on),
but these are less interesting in practical terms. In general, we talk about
Q-convergence of order p.

Definition 3.10 (Q-order of convergence). We say that the Q-order of
convergence is p (with p > 1) if there is a positive constant M such that

‖xk+1 − x∗‖
‖xk − x∗‖p ≤M, for all k suffciently large.

We show the rates of convergence of the line search methods we have
discussed above:
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❼ steepest descent algorithms converge only at a Q-linear rate (when the
problem is ill-condioned the convergence constant r in (3.8) is close to
1);

❼ Newton’s method converges Q-quadratically;

❼ quasi-Newton methods typically converge Q-superlinearly.

Throughout this work we shall normally omit the letter Q and simply
talk about superlinear convergence, quadratic convergence, etc.

3.4 Step Length

Each iteration of a line search method computes a search direction pk and
then decides how far to move along that direction. The iteration is given by

xk+1 = xk + αkpk, (3.9)

where the positive scalar ak is called step length. The success of a line search
method depends on effective choices of both the direction pk and the step
length αk. We have already discuss the difference choices for pk previously,
now we talk about the choice of αk.

In computing the step length αk, we face a tradeoff. We would like to
choose αk to give a substantial reduction of f , but at the same time, we do
not want to spend too much time making the choice. The ideal choice would
be the global minimizer of the univariate function Φ(·) defined by

Φ(α) = f(xk + αpk), α > 0, (3.10)

but in general, it is too expensive to identify this value. To find even a local
minimizer of Φ to moderate precision generally requires too many evalu-
ations of the objective function f and possibly the gradient ∇f . More
practical strategies perform an inexact line search to identify a step length
that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for
α, stopping to accept one of these values when certain conditions are satis-
fied. There are various termination conditions for the line search algorithm
such as the Wolfe conditions, the strong Wolfe conditions and the Goldstein
conditions: we shall discuss only the first ones.

A popular inexact line search condition stipulates that ak should first of
all give sufficient decrease in the objective function f , as measured by the
following inequality:

f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk, (3.11)

for some constant c1 ∈ (0, 1). The inequality (3.11) is called the sufficient
decrease condition and, sometimes, the Armijo condition.
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The sufficient decrease condition is not enough by itself to ensure that
the algorithm makes reasonable progress. To rule out unacceptably short
steps we introduce a second requirement, called the curvature condition,
which requires ak to satisfy

∇f(xk + αkpk)
T pk ≥ c2∇fT

k pk, (3.12)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.11).
The sufficient decrease condition (3.11) and the curvature condition

(3.12) are known collectively as the Wolfe conditions. We restate them
here:

f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk, (3.13a)

∇f(xk + αkpk)
T pk ≥ c2∇fT

k pk. (3.13b)

So we can write:

Wolfe = Sufficient decrease+ Curvature.

It is not difficult to prove that there exist step lengths that satisy the Wolfe
conditions for every function f that is smooth and bounded below.

3.5 Convergence of line search methods

Notation 3.4 (Global convergence). Here we use the term globally conver-
gent to refer to algorithms for which the property

lim
k→+∞

‖∇fk‖ = 0 (3.14)

is satisfied.

Note that this term is sometimes used in other contexts to mean dif-
ferent things. For line search methods of the general form (3.9), the limit
(3.14) is the strongest global convergence result that can be obtained: we
cannot guarantee that the method converges to a minimizer, but only that
is attracted by stationary points.

To obtain global convergence, we must not only have well-chosen step
lengths but also well-chosen search directions pk. A theorem due to Zou-
tendijk plays a fundamental role in global convergence: under the Wolfe
conditions and the regularity of both f and ∇f , this theorem implies that

cos2 θk‖∇fk‖2 → 0, (3.15)

where cos θk is defined by:

cos θk = − ∇fT
k pk

‖∇fk‖‖pk‖
. (3.16)
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The limit (3.15) can be used in turn to derive global convergence results
for line search algorithms. If our method ensures that cos θk ≥ δ > 0 for all
k, it follows immediatly from (3.15) that limk→+∞ ‖∇fk‖ = 0. In particular,
the method of steepest descent (remind that cos θk = 1) produces a gradient
sequence that converges to zero, provided that it uses a line search satisfying
the Wolfe (or Goldstein) conditions. Moreover, Newton and quasi-Newton
methods are globally convergent if the matrices Bk are positive definite with
a uniformly bounded condition number (that is, there is a constant M such
that ‖Bk‖ ‖B−1

k ‖ ≤ M for all k), and if the step lengths satisfy the Wolfe
conditions.

Algorithmic strategies that achieve rapid convergence can sometimes
conflict with the requirements of global convergence, and vice versa. For
example, the steepest descent method is the quintessential globally conver-
gent algorithm, but it is quite slow in practice. On the other hand, the pure
Newton iteration converges rapidly when started close enough to a solution,
but its steps may not even be descent directions away from the solution.
The challenge is to design algorithms that incorporate both properties:

❼ good global convergence guarantees;

❼ a rapid rate of convergence.



Chapter 4

The BFGS method

In the previous Chapter we discussed the quasi-Newton method. Now we
recall its iteration:

xk+1 = xk − αkB
−1
k ∇fk, αk > 0,

with αk chosen by a line search and Bk an approximation of ∇2fk, imposing
the secant equation

yk = Bk+1sk,

where

yk := ∇f(xk + sk)−∇f(xk), sk := ∆xk = xk+1 − xk. (4.1)

The most popular quasi-Newton algorithm is the BFGS method, named
for its discoverers Broyden, Fletcher, Goldfarb and Shanno. In this Chapter
we provide a classical derivation of this algorithm (and of its close relative,
the DFP algorithm) and we describe its theoretical properties and practical
implementation. Moreover, we present the Broyden class and discuss the
convergence of the BFGS method.

4.1 Classical derivation of the BFGS method

We consider the following approximation of f :

mk(p) = fk +∇fT
k p+

1

2
pTBkp, (4.2)

where p ∈ Rn and Bk ∈ Rn×n is symmetric positive definite. Bk shall be
revised or updated at each iteration. Note that mk(0) = fk and ∇mk(0) =
∇fk. We know that the minimizer of mk(·) is

pk = B−1
k ∇fk, (4.3)

33
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so the new iterate is
xk+1 = xk + αkpk,

where the step length αk is chosen to satisfy the Wolfe conditions (3.13).
Instead of computing Bk afresh at every iteration, we would like to take

advantage of the knowledge we have gained during the last step. In partic-
ular, we look for requirements to impose on Bk+1. At the new iteration, we
would like to construct a model like the previous one:

mk+1(p) = fk+1 +∇fT
k+1p+

1

2
pTBk+1p.

One reasonable requirement is that the gradient of mk+1 should match the
gradient of f at xk and xk+1. Since ∇mk+1(0) = ∇fk+1, the second of these
conditions is automatically satisfied. The first condition can be written
mathematically as

∇mk+1(−αkpk) = ∇fk+1 − αkBk+1pk ≡ ∇fk,

from which we obtain

Bk+1αkpk = ∇fk+1 −∇fk.

Using the notation (4.1), the last equation becomes

Bk+1sk = yk, (4.4)

which we know as the secant equation (see (3.6)).
The secant equation (4.4) implies that sk and yk satisfy the curvature

condition
sTk yk > 0, (4.5)

as is easily seen by premultiplying the secant equation (4.4) by sTk (remind
that Bk+1 is a symmetric positive definite matrix).
When f is strongly convex, the curvature condition (4.5) shall be satisfied
for any two points xk and xk+1 (see theorem (2.6)). However, this condition
shall not always be satisfied for nonconvex functions, but it is guaranteed to
hold if we impose the Wolfe (or strong Wolfe) conditions on the line search.

Proposition 4.1. The Wolfe conditions (3.13) imply the curvature condi-
tion (4.5).

Proof. We rewrite (3.13b):

∇f(xk + αkpk)
T pk ≥ c2∇fT

k pk.

Multiplying this inequality by αk and using the notation (4.1) we have that

∇fT
k+1sk ≥ c2∇fT

k sk.
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From this inequality, by substracting −∇fT
k sk and using again the notation

(4.1), we obtain
yTk sk ≥ (c2 − 1)αk∇fT

k pk. (4.6)

Since c2 < 1 and pk is a descent direction (i.e. ∇fT
k pk < 0), the term on the

right shall be positive, and the curvature condition (4.5) holds:

yTk sk ≥ (c2 − 1)αk∇fT
k pk > 0.

Proposition 4.2. When the curvature condition (4.5) is satisfied, the secant
equation (4.4) always has a solution Bk+1.

Proof. In fact, (4.4) admits an infinite number of solutions, since there are
n(n+1)/2 degrees of freedom in a symmetric matrix, and the secant equation
(4.4) represents only n conditions. The requirement of positive definiteness
imposes n additional inequalities -all principal minors must be positive- but
these conditions do not absorb the remaining degrees of freedom (because
the curvature condition (4.5) and the secant equation (4.4) together imply
that Bk+1 is positive definite).

To determine Bk+1 uniquely, we impose that among all symmetric ma-
trices satisfying the secant equation (4.4), Bk+1 is, in some sense, closest to
the current matrix Bk. In other words, we would like to solve the problem

min
B
‖B −Bk‖ (4.7a)

subject to B = BT , Bsk = yk, (4.7b)

where sk and yk satisfy the curvature condition (4.5) and Bk is symmetric
and positive definite.
Many matricial norms can be used in (4.7a) and each norm gives rise to
a different quasi-Newton method. A norm that allows easy solution of the
minimization problem (4.7), and gives rise to a scale-invariant optimization
method, is the weighted Frobenius norm ‖·‖W (see Chapter 1), whereW can
be chosen as any matrix satisfying the relation Wyk = sk. For concreteness,
we choose the matrix W illustrated in [2, Chapter 8, section 1]. With this
choice, the norm ‖ · ‖W is adimensional, which is a desiderable property,
since we do not wish the solution of (4.7) to depend on the units of the
problem.
With this weighting matrix and this norm, the unique solution of (4.7) is
the so-called DFP formula.

Definition 4.1 (DFP formula). The DFP formula is defined by the follow-
ing:

(DFP) Bk+1 = (I − γkyks
T
k )Bk(I − γksky

T
k ) + γkyky

T
k , (4.8)
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with

γk =
1

yTk sk
.

This formula is called the DFP updating formula, since it is the one ori-
ginally proposed by Davidon in 1959 and subsequently studied, implemented
and popularized by Fletcher and Powell.

The inverse of Bk, which we denote by

Dk := B−1
k

is useful in the implementation of the method, since it allows the search
direction (4.3) to be calculated by means of a simple matrix-vector multipli-
cation. We can derive the following expression for the update of the inverse
Hessian approximation Dk that corresponds to the DFP update of Bk in
(4.8):

(DFP) Dk+1 = Dk −
Dkyky

T
k Dk

yTk Dkyk
+

sks
T
k

yTk sk
.

The DFP updating formula is quite effective, but it was soon superseded
by the BFGS formula, which is presently considered to be the most effective
of all quasi-Newton updating formulas. BFGS updating can be derived by
making a simple change in the argument that led to (4.8).
Instead of imposing conditions on the Hessian approximation Bk, we impose
similar conditions on its inverse Dk. The updated approximation Dk+1 must
be symmetric and positive definite, and must satisfy the secant equation
(4.4), now written as

Dk+1yk = sk.

The condition of closeness to Dk is now specified by the following analougue
of (4.8):

min
D
‖D −Dk‖ (4.9a)

subject to D = DT , Dyk = sk, . (4.9b)

The norm is again the weighted Frobenius norm, where the weight matrix
W is again any matrix satisfying Wsk = yk. For concreteness, we choose
W as above. The unique solution Dk+1 to (4.9) is given by the following
formula, the so-called BFGS formula.

Definition 4.2 (BFGS formula). The BFGS formula is defined by:

(BFGS) Dk+1 = (I − ρksky
T
k )Dk(I − ρkyks

T
k ) + ρksks

T
k , (4.10)

where

ρk =
1

yTk sk
. (4.11)
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There is only one last issue to be solved: the choice of the initial approx-
imation D0. Unfortunately, there is no magic formula that works well in
all cases. We can use specific information about the problem, for instance
by setting it to the inverse of an approximate Hessian calculated by finite
differences at x0. Otherwise, we can simply set it to be the identity matrix
or a multiple of the identity matrix, where the multiple is chosen to reflect
the scaling of the variables.

The following is an algorithm prototype of the BFGS method:

procedure BFGS(f, x0, D0, tolerance, ǫ > 0)
k ← 0;
while ‖∇fk‖ > ǫ do

Compute search direction pk = −Dk∇fk;
Compute step length αk from a line search procedure to satisfy the
Wolfe conditions (3.13);
xk+1 ← xk + αkpk;
sk ← xk+1 − xk;
yk ← ∇fk+1 −∇fk;
Compute Dk+1 by means of (4.10);
k ← k + 1;

end (while)

Algorithm 1: BFGS algorithm

Each iteration can be performed at a cost of O(n2) arithmetic oper-
ations (plus the cost of function and gradient evaluations); there are no
O(n3) operations such as linear system solves or matrix-matrix operations.
The algorithm is robust and its rate of convergence is superlinear, which is
fast enough for most practical purposes. Even though Newton’s method con-
verges more rapidly (that is, quadratically), its cost per iteration is higher
beacuse it requires the solution of a linear system. A more important ad-
vantage for BFGS is, of course, that it does not require calculation of second
derivatives.

4.2 Properties and implementation

A few points in the derivation of the BFGS and DFP methods merit further
discussion.

Note that the minimization problem (4.9) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian approxima-
tion to be positive definite. However, the following statement holds:

Proposition 4.3. If Dk is positive definite, then Dk+1 in (4.10) is positive
definite too.
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Proof. First, we note from (4.6) that yTk sk > 0, so that the updating formula
(4.10)-(4.11) is well-defined. For any nonzero vector z, we have

zTDk+1z = wTDkw + ρk(z
T sk)

2 ≥ 0,

where we have defined w = z − ρkyk(s
T
k z). The right end side can be zero

only if sTk z = 0, but in this case w = z 6= 0, which implies that the first term
is greater than zero. Therefore, we have

zTDk+1z = wTDkw + ρk(z
T sk)

2 > 0 ∀z ∈ R
n
r {0},

that is Dk+1 is positive definite.

The choice of the weighting matrix W used to define the norms in (4.7a)
and (4.9b) ensures that the updating formulas are invariant to changes.

If the matrix Dk incorrectly estimates the curvature in the objective
function and if this bad estimate slows down the iteration, then the Hes-
sian approximation shall tend to correct itself within a few steps. It is also
known that the DFP method is less effective in correcting bad Hessian ap-
proximations. The self-correcting properties of BFGS hold only when an
adequate line search is performed: in particular, the Wolfe line search con-
ditions (3.13) ensure that the gradients are sampled at points that allow the
model (4.2) to capture appropriate curvature information.

It is interesting to note that the DFP and BFGS updating formulas are
duals of each other, in the sense that one can be obtained from the other
by the interchanges s↔ y,B ↔ D. This symmetry is not surprising, given
the manner in which we derived these methods above.

A few details and enhancements need to be added to the BFGS algorithm
to produce an efficient implementation:

❼ the line search should satisfy the Wolfe conditions (or the strong Wolfe
conditions);

❼ the line search shoul always try the step length αk = 1 first;

❼ the values c1 = 10−4 and c2 = 0.9 are commonly used in (3.11) and in
(3.12);

❼ the initial matrix D0 often is set to some multiple βI of the identity;

❼ a heuristic that is often quite effective is to scale the starting matrix
after the first step has been computed but before the first BFGS update
is performed: we change the provisional value D0 = I by setting

D0 ↔
yTk sk
yT yk

I

before applying the update (4.10), (4.11) to obtain D1.
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4.3 The Broyden class

Definition 4.3 (Broyden class). The Broyden class is a family of quasi-
Newton updating formulas, specified by the following general formula:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
+Φk(s

T
kBksk)vkv

T
k , (4.12)

where Φk is a scalar and vk is the vector

vk =
yk

yTk sk
− Bksk

sTkBksk
.

The BFGS and DFP methods are members of the Broyden class: we
recover BFGS by setting Φ = 0 and DFP by setting Φ = 1 in (4.12). We
can therefore rewrite (4.12) as a “linear combination” of these two methods,
that is,

Bk+1 = (1− Φk)B
BFGS
k+1 +ΦkB

DFP
k+1 .

This relationship indicates that all members of the Broyden class satisfy the
following properties:

(i) the secant equation (4.4);

(ii) φk ≥ 0 and Hk > 0 =⇒ Hk+1 > 0.

Note that (i) holds because the BFGS and DFP matrices themselves satisfy
this equation. Also, since BFGS and DFP updating preserve positive defi-
niteness of the Hessian approximations when sTk yk > 0, the relation above
implies that the same property shall hold for the Broyden family if φk ≥ 0.

4.4 Convergence

First, we study the global convergence. The main result for global conver-
gence is the following theorem.

Theorem 4.4. Let B0 be any symmetric positive definite initial matrix and
let x0 be a starting point for which the following conditions are satisfied:

(i) the objective function f is twice continuously differentiable;

(ii) the level Ω = {x ∈ Rn : f(x) ≤ f(x0)} is convex and there exist
positive constants m and M such that

m‖z‖2 ≤ zT∇2f(x)z ≤M‖z‖2

for all z ∈ Rn and x ∈ Ω.



40 CHAPTER 4. THE BFGS METHOD

Then the sequence {xk}k generated by the BFGS algorithm converges to the
minimizer x∗ of f .

Note that in the hypothesis (ii), the condition

m‖z‖2 ≤ zT∇2f(x)z, ∀z ∈ R
n, ∀x ∈ Ω

is equivalent to require that f is strongly convex in Ω (see Chapter 2).
The next theorem shows the superlinear convergence of the BFGS method.

Theorem 4.5. Suppose that f is twice continuously differentiable and that
the iterates generated by the Algorithm 1 (BFGS) converge to a minimizer
x∗ at which the following assumption holds:
the Hessian matrix ∇2f(x) is Lipschitz continuous at x∗, that is,

‖∇2f(x)−∇2f(x∗)‖ ≤ L‖x− x∗‖,

for all x near x∗, where L is a positive constant.
Suppose also that

∞
∑

k=1

‖xk − x∗‖ <∞

holds. Then {xk}k converges to x∗ at a superlinear rate.



Chapter 5

A variational derivation of a

class of BFGS-like methods

In this Chapter, we provide a maximum entropy derivation of a new family
of BFGS-like methods.

Consider the quasi-Newton’s iteration (see Chapter 3) and suppose f
is strongly convex. We approximate the Hessian ∇2fk using a symmetric,
positive definite matrix that satisfies the secant equation and is closest in
the Kullback-Leibler “metric” (see Chapter 1) to ∇2fk. This choice let us to
consider a new variational problem. In [3], Fletcher indeed showed that the
solution to this problem is provided by the BFGS iterate thereby providing a
variational characterization for it alternative to Goldfarb’s classical one [4],
[2]. We take a different approach leading to a family of BFGS-like methods.
This approach provides theoretical support for these methods and a new
proof of Fletcher’s classical derivation. Moreover, we shall see that some
changes to our BFGS-like methods yields the standard BFGS iteration.

Note that Fletcher’s results are extremely surprising: a priori, there
is no connection between the variational problem and the standard BFGS
methods.

5.1 Introduction

Suppose f : Rn → R is a strongly convex C2 function to be minimized. We
recall the quasi-Newton iteration (see Chapter 3):

xk+1 = xk − αkB
−1
k ∇fk, αk > 0,

with αk chosen by a line search and Bk an approximation of ∇2fk, imposing
the secant equation

yk = Bk+1sk, (5.1)

where

yk := ∇f(xk + sk)−∇f(xk), sk := ∆xk = xk+1 − xk.

41
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For n > 1, Bk+1 satisfying (5.1) is underdetermined. We would like to
find a symmetric and positive definite matrix Bk+1 that is closest in some
metric to the current approximation Bk: we shall use the Kullback-Leibler
divergence (see Chapter 1). From now on we assume that Bk is a symmetric
and positive definite matrix.

Since for a strongly convex function the Hessian ∇2fk is a symmetric
positive definite matrix, we can think of its approximation Bk as a covariance
of a zero-mean, multivariate Gaussian distribution. Recall that in the case
of two zero-mean multivariate normal distributions p, q with nonsingular
n × n covariance matrices P,Q, respectively, the relative Kullback-Leibler
divergence can be written as

D(P−1‖Q−1) =
1

2

[

log det
(

P−1Q
)

+ trace(Q−1P )− n
]

. (5.2)

5.2 A maximum entropy problem

Consider the following minimizing problem:

min
{B:BT=B,B>0}

D(B−1‖B−1
k ), (5.3a)

subject to B−1yk = sk. (5.3b)

We decide to choose Bk+1 as the solution to this problem.
First of all, observe that B−1yk must be the given vector sk. Thus, it seems
reasonable that B−1

k+1
should approximates B−1

k only in directions different
from yk. We are then led to consider the following new problem

min
{B:BT=B,B>0}

D(B−1‖P T
k B−1

k Pk), (5.4a)

subject to B−1yk = sk, (5.4b)

where Pk is a rank n − 1 matrix satisfying Pkyk = 0, subject to the secant
equation (5.3b). One possible choice for Pk is the orthogonal projection

Pk = In −
yky

T
k

yTk yk
= In −Πyk . (5.5)

Since PkB
−1
k Pk is singular, however, (5.4) does not make sense. Thus, to

regularize the problem, we replace Pk with the nonsingular, positive definite
matrix P ǫ

k = Pk + ǫIn:

Pk ←− P ǫ
k = Pk + ǫIn.

We observe that P T
k = Pk and (P ǫ

k)
T = P ǫ

k , that is Pk and P ǫ
k are symmetric.
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The objective function of the problem (5.4) is:

D(B−1‖P T
k B−1

k Pk) =

=
1

2

[

log det
(

B−1(P ǫ
k)

−1Bk(P
ǫ
k)

−T
)

+ trace
(

(P ǫ
k)

TB−1
k P ǫ

kB
)

− n
]

=

=
1

2

[

log det
(

B−1Bk

)

+ log det
(

(P ǫ
k)

−2
)

+ trace
(

P ǫ
kB

−1
k P ǫ

kB
)

− n
]

.

The constraint of the problem (5.4) is B−1yk = sk, which is equivalent
to Bksk = yk, and also to Bsk − yk = 0.

The Lagrangian for the problem (5.4) is

L(B, λ) = D(B−1‖P ǫ
kB

−1
k Pkǫ) + λT

k [Bsk − yk] =

=
1

2

[

log det
(

B−1Bk

)

+ log det
(

(P ǫ
k)

−2
)

+ tr
(

P ǫ
kB

−1
k P ǫ

kB
)

− n
]

+

+λT
k [Bsk − yk].

First, note that the terms log det
(

(P ǫ
k)

−2
)

and n do not depend on B
and therefore they play no role in the variational analysis: from now on we
shall omit them. It shall be useful using the following notation:

(i) L1(B) = log det
(

B−1Bk

)

;

(ii) L2(B) = tr
(

P ǫ
kB

−1
k P ǫ

kB
)

;

(iii) L3(B, λ) = λT
k [Bsk − yk].

With this notation, L(B, λ) becomes

L(B, λ) =
1

2
[L1(B) + L2(B)] + L3(B, λ).

Observe also that any positive definite matrix B is an interior point in the
cone C of positive semidefinite matrices in any symmetric direction δB ∈
Rn×n. Imposing δL(B, λ; δB) = 0 for all such δB, we have:

(i) δL1(B; δB) = tr[−B−1δB], by the lemma (1.7);

(ii) δL2(B; δB) = tr
[

P ǫ
kB

−1
k P ǫ

kδB
]

;

(iii) δL3(B, δ; δB) = tr
[

skλ
T
k δB

]

.

Therefore, we get

tr
[(

−B−1 + P ǫ
kB

−1
k P ǫ

k + 2skλ
T
k

)

δB
]

= 0 ∀δB,

which gives

−B−1 + P ǫ
kB

−1
k P ǫ

k + 2skλ
T
k = 0,
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and finally
B−1 = P ǫ

kB
−1
k P ǫ

k + 2skλ
T
k .

Remind that we are looking for the solution Bk+1 of the problem (5.4) so
we can write

(Bǫ
k+1)

−1 = P ǫ
kB

−1
k P ǫ

k + 2skλ
T
k .

As ǫց 0, we get the iteration

B−1
k+1

= PkB
−1
k Pk + 2skλ

T
k .

Since Pkyk = 0, we have

B−1
k+1

yk = PkB
−1
k Pkyk + 2skλ

T
k yk = 2skλ

T
k yk.

In order to satisfy the secant equation B−1
k+1

yk = sk, it suffices to choose the
multiplier λk so that

2skλ
T
k yk = sk, or equivalently, 2λT

k yk = 1.

We need, however, to also guarantee symmetry and positive definiteness of
the solution. We are then led to choose λk as

λk =
sk

2yTk sk
.

We have finally obtained the iteration:

B−1
k+1

=

(

In −
yky

T
k

yTk yk

)

B−1
k

(

In −
yky

T
k

yTk yk

)

+
sks

T
k

yTk sk
. (5.6)

Notice that, under the curvature assumption yTk sk > 0, if Bk > 0, indeed
Bk+1 in (5.6) is symmetric, positive definite, justifying the previous calcu-
lations. We have therefore established the following result.

Theorem 5.1. Assume Bk > 0 and yTk sk > 0. A solution B∗ of the problem
(5.4), in the regularized sense described above, is given by (5.6).

5.3 BFGS-like methods

From Theorem 5.1, we get the following quasi-Newton iteration:

xk+1 = xk − αkB
−1
k ∇f(xk), x0 = x̄, (5.7a)

B−1
k+1

=

(

In −
yky

T
k

yTk yk

)

B−1
k

(

In −
yky

T
k

yTk yk

)

+
sks

T
k

yTk sk
, B0 = In. (5.7b)

Now let vk ∈ Rn be any vector not orthogonal to yk. Then

Pk(vk) :=
ykv

T
k

yTk vk
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is an oblique projection onto yk. Employing Pk(vk) and its transpose in place
of Πyk in (5.5) and performing the variational analysis after regularisation,
we get a BFGS-like iteration

B−1
k+1

= (In − Pk(vk))
T B−1

k (In − Pk(vk)) +
sks

T
k

yTk sk
. (5.8)

In particular, if vk = sk, the corresponding oblique projection is

Pk(sk) =
yks

T
k

yTk sk
.

In such case, (5.8) is just the standard BFGS iteration for the inverse ap-
proximate Hessian (see (4.10))

B−1
k+1

=

(

In −
yks

T
k

yTk sk

)T

B−1
k

(

In −
yks

T
k

yTk sk

)

+
sks

T
k

yTk sk
. (5.9)

Here Tk = In−Pk(sk) is a rank n−1 matrix satisfying Tkyk = 0 as is I−Πyk .

Corollary 5.2. Assume Bk > 0 and yTk sk > 0. A solution B∗ of the problem
(5.3) is given by the standard BFGS iteration (5.9).

Proof. We show that in the limit, as ǫց 0, D1 := D(B−1‖B−1
k ) and

Dǫ
2 := D

(

B−1‖
(

In − yks
T

k

yT
k
sk

+ ǫIn

)T
B−1

k

(

In − yks
T

k

yT
k
sk

+ ǫIn

)

)

only differ by

terms not depending on B.

Dǫ
2 =

1

2

{

log det
(

B−1Bk

)

+

+ log det

[

(

In −
yks

T
k

yTk sk
+ ǫIn

)−1(

In −
yks

T
k

yTk sk
+ ǫIn

)−T
]

+

+ tr

[

(

(1 + ǫ)In −
yks

T
k

yTk sk

)T

B−1
k

(

(1 + ǫ)In −
yks

T
k

yTk sk

)

B

]

− n

}

.

Observe that the second term does not depend on B.
The third term tr[· · · ] is equal to

(1 + ǫ)2tr
[

B−1
k B

]

− (1 + ǫ)tr

[

B−1
k

yks
T
k

yTk sk
B

]

+

− (1 + ǫ)tr

[

sky
T
k

yTk sk
B−1

k B

]

+ tr

[

sky
T
k

yTk sk
B−1

k

yks
T
k

yTk sk
B

]

.
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For symmetric matrices B satisfying the secant equation Bsk = yk we have
sTkB = yTk . In particular:

tr

[

B−1
k

yks
T
k

yTk sk
B

]

= tr

[

B−1
k

yky
T
k

yTk sk

]

and

tr

[

sky
T
k

yTk sk
B−1

k

yks
T
k

yTk sk
B

]

= tr

[

sky
T
k

yTk sk
B−1

k

yky
T
k

yTk sk

]

.

Note that the last two expressions obtained do not depend on B.
Observe also that, by the circulant property of the trace and again by the
secant equation,

tr

[

sky
T
k

yTk sk
B−1

k B

]

= tr

[

B
sky

T
k

yTk sk
B−1

k

]

= tr

[

yky
T
k

yTk sk
B−1

k

]

,

which does not depend on B.
Omitting the terms that do non depend on B, we have

Dǫ
2 =

1

2

[

log det(B−1Bk) + (1 + ǫ)2tr(B−1
k B)− n

]

.

Recalling that

D1 =
1

2

[

log det(B−1Bk) + tr(B−1
k B)− n

]

and omitting the terms that do not depend on B, we have

Dǫ
2 −D1 =

1

2

[

(ǫ2 + 2ǫ) tr(B−1
k B)

]

−→ 0, for ǫ→ 0.



Chapter 6

Numerical experiments

Theorists working in nonlinear programming area, as well as practical op-
timizers, always need to evaluate nonlinear optimization algorithms. Due
to the hypotheses introduced in order to prove convergence and complexity
of algorithms, the theory is not enough to establish the efficiency and the
reliability of a method. As a consequence the only way to see the “power” of
an algorithm remains its implementation in computer codes and its testing
on large classes of test problems of different structures and characteristics.

Generally, two types of (unconstrained) nonlinear programming prob-
lems can be identified: “artificial problems” and “real-life problems”. The
artificial nonlinear programming problems are used to see the behavior of the
algorithms in different difficult situations like long narrow valleys, functions
with significant null-space effects, essentially unimodal functions, functions
with a huge number of significant local optima, etc. The main characteristic
of artificial nonlinear programming problems is that they are relatively easy
to manipulate and to use into the process of algorithmic invention. Besides,
the optimizer may rapidly modify the problem in order to test the algorithm
in different challenging conditions.
Real-life problems, on the other hand, are coming from different sources
of applied optimization problems like physics, chemistry, engineering, biol-
ogy, economy, oceanography, astronomy, meteorology, etc. Unlike artificial
(unconstrained) nonlinear programming problems, real-life problems are not
easily available and are difficult to manipulate. They may have complicated
algebraic (or differential) expressions, may depend on a huge amount of data,
and possibly are dependent on some parameters which must be estimated
in a specific way.

The examples considered in this work are only of the first type, that is ar-
tificial problems. They are taken from some huge colletions of unconstrained
optimization test functions [6], [7], [8].
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6.1 BFGS and BFGS-like algorithms

Before providing some examples, we give the pseudocodes of BFGS and
BFGS-like algorithms.

The standard BFGS algorithm has the form:

1: procedure BFGS(f,Gf, x0, tol, η,Maxiter)
2: B0 ← Id
3: x← x0
4: B ← B0

5: for n = 1, ...,Maxiter do
6: y ← Gf(x)
7: if ‖y‖ < tol then
8: break
9: SearchDirection← −By

10: α← LineSearch(f,Gf, x, SearchDirection)
11: if α exists then
12: ∆x← α · SearchDirection
13: else
14: ∆x← η · SearchDirection

15: T ← Id − y∆xT

yT∆x

16: B ← T TBT + ∆x∆xT

yT dx
17: x← x+∆x

18: return x

Algorithm 2: standard BFGS algorithm (5.7a)-(5.9)
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The BFGS-like algorithm (5.7) has the form:

1: procedure BFGS-like(f,Gf, x0, tol, η,Maxiter)
2: B0 ← Id
3: x← x0
4: B ← B0

5: for n = 1, ...,Maxiter do
6: y ← Gf(x)
7: if ‖y‖ < tol then
8: break
9: SearchDirection← −By

10: α← LineSearch(f,Gf, x, SearchDirection)
11: if α exists then
12: ∆x← α · SearchDirection
13: else
14: ∆x← η · SearchDirection

15: S ← Id − yyT

yT y

16: B ← STBS + ∆x∆xT

yT dx
17: x← x+∆x

18: return x

Algorithm 3: BFGS-like algorithm (5.7)

Note that the inputs in both algorithms are:

❼ f , the function f : Rd → R to be minimized;

❼ Gf , the gradient of f ;

❼ x0, the initial point;

❼ tol (i.e. tolerance), which plays the role of stopping the algorithm if a
certain condition is satisfied (we shall use tol = 10−8);

❼ η, which is involved when the line search can not calculate the step
length α (usually, η is equal to 10−2 or 10−4);

❼ Maxiter, the maximum number of iterations (we shall use 100− 300
iterations).

Observe that B and B0 stand for B−1 and B−1
0 : we made this choice in

order to simplify the notation. At the beginning, B0 is set to Id, which
is the identity in Rd. Note that the condition ‖y‖ < tol -where ‖ · ‖ is
the Euclidean norm on Rd- is (almost) equivalent to ∇f(x) = 0, which
is a sufficient condition for x to be a minimizer of f when f is strongly
convex (see theorem (2.3)). This is the reason why the algorithm stops if
the condition ‖y‖ < tol is satisfied. LineSearch(·) refers to a line search
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method, usually offered by the programming language used, and calculates
the step length α. If the line search method does not converge, the quantity
η is used in place of α.

6.2 Examples

While the effectiveness of the BFGS-like algorithms introduced in the pre-
vious Chapter needs to be tested on a significant number of large scale
benchmark problems, we provide below some examples where the BFGS-
like algorithm (Algorithm 2) appears to perform better than standard BFGS
(Algorithm 3).

Each example has the following structure:

❼ name, dimensions, algebraic expression and main properties (convex,
nonconvex etc.) of the function f ;

❼ the absolute minimum x∗ and the value of f at x∗;

❼ the initial point x0;

❼ some comments about the performance of BFGS and BFGS-like meth-
ods;

❼ the plot of the decay of the error ‖xn − x∗‖ over a certain number of
iterations for both algorithms (xn is the current point at the iteration
n and ‖ · ‖ is always the Euclidean norm on Rd);

❼ the graphical representation of the function (we shall consider f always
on 2 dimensions).
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First, consider the (nonconvex) Freudenstein and Roth function f in 2
dimensions:

f(x1, x2) = (−13+x1+((5−x2)x2−2)x2)2 + (−29+x1+((x2+1)x2−14)x2)2

whose minimum point is x∗ = (5, 4) and f(x∗) = 0. Take as starting point
x0 = (3, 2). As we can see in the figure below, BGFS-like converges after a
few steps, whereas BFGS does not converge.
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Consider now the (nonconvex) White and Holst function on R2:

f(x1, x2) = 100(x2 − x31)
2 + (1− x1)

2.

It has an absolute minimum at x∗ = (1, 1) and f(x∗) = 0. First, we take as
initial point x0 = (0, 0) and we observe that both methods do not converge,
see the plot below.
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Instead, initiating the recursions at x0 = (0.9, 0.9), both algorithms con-
verge to the absolute minimum. After a few initial steps, BFGS-like appears
to perform better than BFGS.
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The extended White and Holst function on 10 dimensions is given by
the following:

f(x) =

5
∑

i=1

100(x2i − x32i−1)
2 + (1− x2i−1)

2.

It has an absolute minimum at x∗i = 1, i = 1, ..., 10 and f(x∗) = 0. Take as
initial point: x0 = (0.9, . . . , 0.9). After a few iterations, BFGS-like appears
to perform better than BFGS.
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Consider now the (nonconvex) PSC1 function on R2, which is given by:

f(x1, x2) = (x21 + x22 + x1x2)
2 + (sinx1)

2 + (cosx2)
2

whose minimum point is x∗ = (0, 0), f(x∗) = 1. Take as starting point:
x0 = (3, 0.1). From the figure, it is clear that both methods perform great,
but BFGS-like performs a little better than BFGS.
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Consider now the (nonconvex) Beale function, defined by

f(x1, x2) = (1.5−x1+x1x2)
2 + (2.25−x1+x1x

2
2)

2 + (2.625−x1+x1x
3
2)

2,

for all (x1, x2) ∈ R2. The global minimum is located at x∗ = (3, 0.5),
f(x∗) = 0. Take as initial point: x0 = (1, 0.8). After a few steps, BFGS-like
converges faster than BFGS. Anyway, both methods perform well.
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Consider the following (strictly, but nonstrongly, convex) function on
R10:

f(x) =

9
∑

i=1

(exi − ixi) + 10000x210

whose minimum point is x∗ ≈ (0, 0.69, 1.1, 1.39, 1.61, 1.8, 1.95, 2.08, 2.20, 0),
f(x∗) ≈ −34.1. Taking as starting point the origin, both methods converge,
but BFGS-like performs better than BFGS.
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Finally, consider the (nonconvex) Griewank function in 2 dimensions:

f(x1, x2) =
x21
4000

+
x22
4000

− cos (x1) cos

(

x2√
2

)

+ 1.

It has an absolute minimum at x∗ = (0, 0), f(x∗) = 0. Take as initial point:
x0 = (0.9, 0.9). As we can see in the figure below, both methods converge
rapidly, but BFGS-like performs a little better than BFGS.
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