
Master Thesis in Control Systems Engineering

Reinforcement Learning approaches for fair
mobility as a service

Master Candidate Supervisor

Luca Vittorio Piron Prof. Gian Antonio Susto

Student ID 2056320 University of Padova

Co-supervisors

Marina Ceccon,

Matteo Cederle,

Federico Chiariotti,

Marco Fabris

University of Padova

Alessandro Fabris

Max Planck Institute for Security and Privacy

Academic Year

2023/2024









Abstract

This thesis explores Reinforcement Learning (RL) approaches to enhance

fairness in Shared Micromobility Services, with a case study based on bike-

sharing systems. Traditional sharing models often grapple with the conflict be-

tween maximising profitability and providing equitable service coverage. This

research aims to address this challenge by integrating RL to optimise the dis-

tribution and availability of bikes, ensuring accessibility across diverse urban

areas, including underserved communities. The core of the thesis involves de-

veloping and testing a model that can adjust bike distribution in response to

data on usage patterns, demands and geography. By leveraging RL techniques,

the study not only predicts high-demand areas but also proactively manages re-

source allocation to balance profit and fair coverage. Empirical evaluations are

conducted using a simulated environment based on real-world urban layouts

and usage data. These experiments demonstrate the efficacy of RL in balancing

the tradeoff between service fairness and profitability. The thesis contributes to

the growing body of knowledge in applying RL aimed at fairness, particularly

in urban planning and sustainable transportation. It offers a perspective on

longstanding issues for more responsible urban mobility solutions.





Sommario

Questa tesi esplora gli approcci di Reinforcement Learning (RL) per miglio-

rare l’equità nei Servizi di Micromobilità Condivisa, con caso studio basato sui

sistemi di bike-sharing. I modelli di condivisione tradizionali spesso affrontano

il conflitto tra la massimizzazione della redditività e la fornitura di una coper-

tura equa del servizio. Questa ricerca mira a risolvere questa sfida integrando

il RL per ottimizzare la distribuzione e la disponibilità delle biciclette, garan-

tendo l’accessibilità in diverse aree urbane, inclusi i quartieri meno serviti. Il

nucleo della tesi coinvolge lo sviluppo e il test di un modello che può regolare

la distribuzione delle biciclette in risposta ai dati sui modelli di utilizzo e la

domanda. Sfruttando le tecniche di RL, lo studio non solo predice le aree ad

alta domanda, ma gestisce anche proattivamente l’allocazione delle risorse per

bilanciare profitto e copertura equa. Le valutazioni empiriche sono condotte

utilizzando un ambiente simulato basato su layout urbani reali e dati di utilizzo.

Questi esperimenti dimostrano l’efficacia del RL nel bilanciare il compromesso

tra equità del servizio e redditività. La tesi contribuisce al crescente corpo di

conoscenze nell’applicazione del RL mirato all’equità, in particolare nella piani-

ficazione urbana e nei trasporti sostenibili. Offre una prospettiva su questioni

di lunga data per soluzioni di mobilità urbana più responsabili.
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1
Introduction

1.1 Sustainable mobility, fairness, and artificial in-

telligence

With the world’s latest advances and transformations, the necessity for a shift

in the conversation towards how control systems can meet grand societal-scale

challenges has grown [3, 50]. Particularly, over the past decade, Micromobility

Sharing System (MSS) have become a key component of integrated urban tran-

sit [11], providing last mile service that complements with mass transit [40].

The quick development of micromobility has had a significant impact on pol-

lution, with a reduction of tens of thousand tons of CO2 emissions in New

York City alone [9]. This boom has led to a significant interest in rebalancing

techniques [17], i.e., schemes to move the shared vehicles (usually bicycles or

scooters) from where the users leave them after taking a trip to where they are

needed. Rebalancing represents the most significant cost for MSS operators,

and needs to consider imbalances in demand patterns and traffic limitations

for the trucks that physically transport the vehicles [13]. The latter method is

also known in literature as static rebalancing. Additionally, the differences in the

demand patterns for different vehicles need to be taken into account, as bike

and scooter sharing services may cater to different needs and require specific

solutions [54].

Despite the fast-paced growth of sharing services, recent research and advo-

cates have highlighted a significant problem of most MSS, which can limit the
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potential benefits of the MaaS approach: like other forms of transportation, bikes

and scooters are significantly more available in richer areas, excluding poorer

communities [43]. This effect is compounded by the higher density of central

areas, which makes them naturally more attractive for this kind of service, but

also tends to starve suburban neighborhoods, and by the lower subscription rate

from working class users, for whom the cost of the MSS is unaffordable [27].

A recent review of the MSS literature has also confirmed a significant gender

dimension [19]: the population of bike sharing users tends to be disproportion-

ately male, as well as skewing towards younger, well-educated professionals and

university students. Accordingly, the most cost-efficient approach to designing

a MSS will tend to cater to this demographic [21], leading to further iniquities

due to the early adopter effect [20].

The rise of dockless MSS, in which bikes or scooters can be parked anywhere,

has significantly reduced the iniquities inherent in dock-based systems [36] and

increased availability, but there is still a significant issue in the distribution of

bikes, with a recent study [38] finding a difference of 2 orders of magnitude in

the density of bicycles available in different neighborhoods of the same city. The

same type of difference was noted for scooters [45], which exhibit even higher

levels of iniquity in their distribution. The difference between the planned and

real service geographies of dockless systems, which was highlighted in [36], is

generated by the combined effect of usage and service rebalancing policies that

tend to cater to privileged users, often for the same cost-efficiency reasons.

We can then note a similarity between the equity issues in MSS operation

and a well-known problem of ML solutions, which may exhibit bias in their

performance due to issues with their training sets [4]. For this reason, the

research on fairness in ML has focused on methods to identify and mitigate

such bias, aiming to create fair models. The MSS equity problem is related

to the concept of spatial fairness [21, 44], which relates to the idea of uniform

allocation of resources in the considered area. As in most fairness scenarios,

there is a fundamental trade-off. On one hand, optimizing the satisfaction of the

expected demand usually implies concentrating the vehicles in popular areas

with denser (and often richer) populations. On the other hand, a fair allocation

of vehicles would require to equally distribute them in all areas, with a lower

performance for the same cost [10].

While satisfying users in high-demand areas is required to attract as many

users as possible, creating an unfair system has strong societal impacts, as it
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CHAPTER 1. INTRODUCTION

limits the accessibility of shared vehicles for people living in peripheral and

disadvantaged areas. This can further enforce the discrimination of minor-

ity groups, since the area in which an individual lives often correlates with

their ethnicity and economic status. Furthermore, individuals facing signifi-

cant limitations in accessibility options may encounter challenges in engaging

in everyday activities such as work, education, and leisure activities, thereby

potentially exacerbating their exclusion from essential social functions [10].

For these reasons, our work focuses on analyzing this trade-off in dockless

MSS, considering a RL scheme that can be tuned to consider the spatial fairness

of the system. The contributions brought by this thesis can be summarized as

follows.

• We propose a simplified fairness-aware MSS simulator, by clustering the
areas into three categories: central, peripheral, and remote. Further details
about this are given in Section 5;

• Through Monte Carlo simulations, we reveal the presence of an inherent
trade-off between the MSS performance and the associated fairness level
obtained by applying a parametric family of RL-based strategies; more
precisely, at least a 7.5% improvement in terms of the Gini index can be
achieved w.r.t. suboptimal strategies;

• We present a comprehensive analysis of the trade-off between fairness
and performance in MSS operation, comparing the performance-oriented
strategies that dominate the literature to a novel fairness-based approach
that can be used to control the trade-off and define the relative importance
of fairness, rebalancing cost, and disservice for the system users with
simple parameters;

• While the abovementioned works deal with fairness in system planning,
to the best of our knowledge, this is the first work on fairness in MSS
operation and rebalancing.

The remainder of this manuscript unfolds as follows. Chapters 2, 3 and

4 cover the required preliminaries, addressing Micromobility Sharing Systems,

Fairness and RL, respectively; Sections 5 and 6 delve into the proposed approach

by providing a formulation of the problem under investigation and illustrating

the RL-based solution. As a further support to the theoretical findings, Section

6 reports on a significant case study and examines the corresponding fairness

achievements. Lastly, final remarks and future directions are briefly sketched in

Section 7.
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2
Micromobility Sharing Systems

2.1 The role of Micromobility Sharing Systems in

urban transportation

The pervasive challenge of transitioning towards a more sustainable economy

spans all sectors, from aiming to diminish fossil fuel dependency to controlling

HVAC systems efficiently, urging all of society to consider their environmental

footprint. This transition mandates a strategy that emphasizes not only techno-

logical advancements and the adoption of eco-friendly solutions but also regula-

tory frameworks and financial incentives. In this context, mobility plays a critical

role due to its substantial contribution to emissions, urban pollution, and en-

vironmental degradation. Consequently, transforming transportation systems

to embrace less polluting alternatives is crucial to mitigate mobility’s environ-

mental impact. The advent of digitization, Internet of Things (IoT), and smart

city innovations have allowed policymakers and engineers to introduce new

services designed to address commuting challenges. Among these solutions,

bike-sharing and e-scooter sharing services constitute a modern, sustainable,

and efficient transportation network. A typical motorized passenger vehicle

emits several metric tons of carbon dioxide annually, thus cities worldwide have

integrated these programs to cut emissions, reduce energy consumption, and

protect the environment. Moreover, these programs facilitate the integration

(first mile and last mile gap) with other transportation modes. Through its ex-

pansion over the past two decades, from Beĳing to Buenos Aires, sharing systems
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have provided the option for a healthier, more economical, and environmentally

friendly commuting alternative, significantly contrasted with traditional public

transportation systems and the environmental costs of individual car usage. In

the evolving landscape of urban transportation, the distinction between Mobility

as a Service (MaaS) and Micromobility Sharing Systems is at the core of under-

standing the broader goal of redefining urban mobility for inclusivity and equal

access. While both concepts aim to enhance urban transportation, they operate

at different scales and with distinct objectives. MaaS represents an integrated

platform that amalgamates various transportation services, including public

transit, ride-hailing, car-sharing, and micromobility options like bike-sharing

and scooter-sharing, into a cohesive digital ecosystem. This integration facili-

tates seamless travel for users across different modes of transportation, driven by

the convenience of a single-access interface and unified payment system. On the

other hand, Micromobility Sharing Systems specifically refer to the services that

provide access to lightweight vehicles such as bicycles, e-bikes, and e-scooters

for short-distance travel, often complementing the broader transportation net-

work. The primary distinction lies in the scope and scale of the services they

offer. MaaS is holistic, aiming to offer a comprehensive solution to urban mo-

bility that encompasses a wide range of transportation options, thus addressing

the diverse needs of urban dwellers. Micromobility Sharing Systems, while

integral to the MaaS ecosystem, focus more narrowly on solving the challenges

of last-mile connectivity and providing an eco-friendly alternative to personal

vehicle use and public transit for shorter urban trips. By integrating micro-

mobility services within the MaaS framework, cities can enhance the versatility

and accessibility of their transportation networks, making urban mobility more

adaptable to individual preferences and environmental sustainability.

First thought of in the mid-20th century, Micromobility Sharing Systems owe

their more recent rapid expansion to a series of factors: technology, environmen-

tal awareness and a rising interest in healthy lifestyles [41]. An early attempt

at implementation was made in Amsterdam with the "White Bikes" program in

1965, which faced challenges due to theft and vandalism [16]. Also, this first

phase involved manual operations and limited scalability, but with the advent

of later technology, the early 2000s allowed for the introduction of automated

Bike-Sharing Systems. These used electronic docking stations and smart cards

for access, significantly improving the user experience and system management.

Such advancements facilitated the rapid expansion of BSSs across Europe and

6



CHAPTER 2. MICROMOBILITY SHARING SYSTEMS

Figure 2.1: Bike Sharing Systems Over Time. Chen, van Lierop & Ettema (2020)
Dockless bike- sharing systems: what are the implications?, Transport Reviews

Asia, showcasing the potential for large-scale implementation. Indeed, in the

20 years from 2004 to 2024, there was an increase in the number of BSSs from

13 to nearly 3000 all over the world, differing in size and efficiency [23]. The

global adoption of bike-sharing systems and more recently of e-scooter sharing

systems was propelled by the integration of GPS technology and mobile applica-

tions. This period saw the rise of dockless sharing systems, which allowed users

to pick up and drop off vehicles anywhere within a designated area, enhanc-

ing convenience and flexibility [37]. The dockless model significantly lowered

the infrastructure costs associated with dock-based systems and enabled rapid

expansion into new markets. Dockless sharing systems have dramatically trans-

formed micromobility sharing markets by offering unprecedented convenience

and ease of use. Their rapid growth highlights the significant shift towards more

7



2.1. THE ROLE OF MICROMOBILITY SHARING SYSTEMS IN URBAN TRANSPORTATION

accessible and user-friendly modes of urban transportation. However, despite

the evident benefits, dockless sharing systems do pose some challenges, includ-

ing rebalancing and equitable access to the service. These will be discussed

in detail throughout this document, as they are two of the core topics of this

research.

More recently, research on the impact of the COVID-19 pandemic on bike-

sharing usage patterns highlighted the system’s adaptability and resilience [51].

Indeed, after the 2020 pandemic, which upended traffic patterns all over the

globe, their use saw significant changes. The pandemic abruptly changed estab-

lished mobility patterns, as the need for social distancing and lockdown orders

drove citizens to reduce their movements and avoid crowded mass transit. Other

research focused on New York City’s bike-sharing system, one of the largest in

the world, and revealed important trends during the lockdown, indicating that

bike-sharing systems played a critical role in adapting to the new norms of urban

mobility, demonstrating resilience and flexibility in response to the pandemic’s

challenges [15].

The impact of the COVID-19 pandemic on shared e-scooter systems, mir-

roring the resilience observed in bike-sharing schemes, showcases a significant

adaptation in urban micromobility. [18]. A spatial panel model analysis from

Austin, Texas, detailed how e-scooter usage changed during the pandemic, with

a significant reduction in overall trips but an increase in the average distance per

trip, highlighting how the pandemic reshaped mobility patterns and the role

of e-scooters within them [34]. These findings are coherent with those shown

for bike sharing systems and confirm the adaptability of sharing systems to

changing urban mobility needs, positioning them as a resilient component of

the transportation ecosystem.

The paper titled "A global comparison of bicycle sharing systems" provides

a comprehensive analysis of bicycle sharing systems (BSS) across the globe,

focusing on 322 schemes located on all continents [49]. It identifies five main

types of BSS based on usage, contextual indicators, and user behavior: very

large, high-use BSS; large BSS in major cities; medium BSS with extensive cycling

infrastructure; small to medium efficient BSS; and small to medium inefficient

BSS. This classification allows for a detailed comparison of BSS performance

and offers a foundation for new schemes to identify similar established BSS as

templates for anticipating user demand.

The paper highlights the importance of BSSs as a solution to urban conges-
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tion and as a mode of active transport that reduces emissions. The research

emphasizes the need for global comparisons of BSS, especially since previous

studies often exclude China, the largest BSS market.

Through a two-staged clustering analysis, the study creates a framework

for comparing BSSs globally. It finds significant differences in BSS types, with

varying levels of efficiency and usage patterns. The paper also notes the impact

of socio-demographic factors, weather, climate, topography, and cycling infras-

tructure on BSS use. It suggests that cities planning to implement or improve

BSS can learn from more efficient systems.

This research is notable for its use of a large and diverse dataset and con-

tributes to a deeper understanding of how BSSs can be optimized to serve urban

populations effectively and sustainably.

Similarly, a systematic study of ESS also reveals diverse operational models

and user interactions across various urban settings. [28] This research catego-

rizes ESS into distinct types based on scale, usage intensity, and integration with

public transport networks, offering insights into their role in reducing urban

congestion and emissions. Key findings emphasize the versatility of ESS in com-

plementing existing transportation infrastructures, highlighting their potential

to enhance first and last-mile connectivity. Moreover, the study investigates the

influence of socio-demographic factors, urban layouts, and climate conditions

on ESS adoption and usage patterns. By leveraging global data, the analy-

sis provides a framework for cities considering the introduction or expansion

of ESS, considering the importance of adapting strategies to local contexts for

maximizing the benefits of this emerging mode of micromobility.

2.2 Technology used in Micromobility Sharing Sys-

tems

As previously mentioned, the recent success of micromobility sharing sys-

tems is largely driven by technology.

GPS (Global Positioning System) stands out as a cornerstone technology,

offering multiple benefits. First, it enables efficient fleet management by allowing

operators to monitor the location and status of each bike or e-scooter in the

fleet. This capability facilitates the management of maintenance schedules,

prediction of demand, and ensures vehicles are evenly distributed across the

9
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service area. Furthermore, GPS technology enhances recovery efforts. The

ability to track bikes or e-scooters in real time significantly mitigates the risks

associated with theft and loss, thereby ensuring they remain a reliable resource

for the community. Lastly, the data-driven insights obtained from GPS tracking

prove invaluable for urban planners and system operators. Analyzing travel

patterns and bike usage yields informed decisions regarding service expansion

or reduction, placement of new bike stations, and overall improvement in the

design of the bike-sharing network to more effectively meet the community’s

mobility needs.

Mobile Apps also play a critical role in the user engagement and operational

efficiency of sharing systems. They facilitate immediate access by enabling

users to locate, unlock, and pay for rentals directly from their smartphones,

significantly simplifying the rental process and lowering the barriers to usage.

Beyond these basic functionalities, mobile apps introduce user-centric features

that add substantial value. These can include route planning to identify the

most bike-friendly paths, social sharing options for a communal experience, and

fitness tracking that promotes healthy lifestyle choices by quantifying metrics

like calories burned and distance traveled.

Moreover, these apps directly connects users and service providers. This

allows users to effortlessly report issues, share feedback, or seek assistance,

thereby boosting user satisfaction and enabling operators to swiftly address

concerns, which in turn enhances the quality of service. Customization and

personalization features are another significant benefit of apps. By analyzing

user data, these apps can provide personalized recommendations and tailor

notifications to fit individual preferences, thus enriching the user experience

and encouraging repeated engagement with the service.

Another transformative force in the micromobility realm has been Big Data

Analytics, offering profound insights that benefit both operators and users alike.

Among the key advantages is demand prediction. By analyzing usage pat-

terns, BSS operators can pinpoint demand hotspots, ensuring bicycles are avail-

able precisely where and when needed. This is crucial for the success of dynamic

rebalancing strategies, allowing for optimal resource allocation across the sys-

tem.

Maintenance and operations optimization also benefits significantly from

data analytics. Trends in bicycle wear and tear can be identified, enabling op-

erators to prioritize maintenance tasks and reduce service downtime. Strategic

10
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optimization of bike distribution and rebalancing, informed by real-time data

analysis, further enhances operational efficiencies.

Another area where big data analytics shines is in user experience. Insights

gained from analyzing how users interact with the system lead to continuous

improvements in BSS offerings. This can include developing more intuitive app

interfaces, crafting targeted promotional activities, and boosting service relia-

bility, all of which elevate the overall user experience. Additionally, the insights

derived from BSS operations offer value for urban planning insights. Data on

preferred cycling routes, peak service demands, and popular destinations pro-

vide city planners with the evidence needed to make informed decisions on

infrastructure development.

A last technological development worth considering are batteries, which

are central for e-bikes and e-scooters as the affect their efficiency, range, and

overall usability. Recent advancements in battery technology have significantly

improved the energy efficiency of these micromobility vehicles, enabling them

to cover longer distances on a single charge, thus making them a reliable option

for extended commutes and leisure activities. One of the standout features of

modern batteries is their fast-charging capabilities, which minimize downtime

and increase convenience for users, especially crucial for shared mobility systems

where quick turnaround is key to meeting user demand. The durability and

lifecycle of batteries have also seen considerable enhancements, leading to fewer

replacements, lower maintenance costs, and a diminished environmental impact

over the vehicle’s operational life. As battery technology continues to evolve, it

remains a central force in shaping the future trajectory of e-bikes and e-scooters,

offering enhanced performance, user convenience, and a step forward towards

sustainability in urban mobility.

2.3 Docked vs. Dockless Systems

The evolution of micromobility-sharing systems from docked to dockless

formats represents a significant shift in urban mobility strategies. Each model

presents distinct features, benefits, and challenges that influence the urban en-

vironment, user interaction, and the broader transportation ecosystem. This

section will illustrate the main differences between the two systems, with a fo-

cus on Bike Sharing Systems, given its relevance in existing literature. However,
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with the exception of how batteries are integrated into the service, most of the

considerations are applicable to both e-bikes and e-scooters too.

Docked Systems

Docked bike-sharing systems, characterized by their reliance on fixed stations

for the pickup and return of bicycles, are strategically positioned across service

areas to maximize accessibility and convenience. These systems are particularly

prevalent near transit hubs and areas with high pedestrian traffic, smoothly

integrating into urban infrastructure to augment public transportation networks.

They offer a reliable and orderly service model, with predetermined locations for

accessing and returning bicycles, which helps in maintaining the cleanliness and

order of urban spaces by preventing the random dispersal of bikes that could

obstruct sidewalks or public areas. The stationary nature of docked systems

also facilitates streamlined fleet maintenance and rebalancing, as the specific

locations of all bicycles are consistently monitored and managed. However, the

establishment of docking stations involves considerable initial costs and spatial

requirements, which can hinder the rapid deployment or expansion of docked

BSSs in areas with limited resources or space. Furthermore, the necessity for

users to return bikes to docking stations may reduce the system’s convenience,

especially if stations are not located near users’ destinations. This limitation

potentially detracts from the appeal of docked systems for some trips, indicating

a trade-off between the orderliness and urban integration of docked systems and

the flexibility desired by users.

Dockless Systems

Dockless bike-sharing systems have transformed the way we think about

urban mobility, addressing many of the challenges posed by traditional station-

based systems by offering increased convenience and accessibility. These sys-

tems rely on smartphone apps and GPS to locate bikes, thus eliminating the

need for fixed docking stations. This innovation grants users the flexibility to

start and end their trips practically anywhere, alleviating space constraints and

drop-off restrictions around transit stations and operating more efficiently with

the same resources. However, dockless systems face their own set of challenges,

including regulation and distribution issues that can lead to irregular parking,
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oversupply, and, in some regions, competition among operating companies has

led to problems with abandoned or damaged bikes. Despite these challenges,

the dockless model’s advantages, such as the ability to pick up and drop off

bicycles anywhere in the service area, significantly enhance convenience, par-

ticularly for completing the last mile of a journey, making dockless systems

particularly appealing to those seeking spontaneity and straightforward access.

By bypassing the need for physical docking infrastructure, dockless systems

can launch and expand with minimal initial financial outlay, facilitating swift

scalability and the agility to adapt to changing demand patterns. This is sup-

ported by the integration of advanced GPS and mobile technologies for tracking,

access, and transactions, enabling comprehensive data collection that is invalu-

able for refining urban mobility strategies and enhancing system efficiency. Yet,

the liberty to park bicycles indiscriminately can lead to congestion and obstruc-

tions in public areas, necessitating specific regulations and designated zones for

parking dockless bikes to manage urban clutter and maintain pedestrian flow.

Additionally, achieving an equitable distribution of bicycles throughout the ser-

vice area remains a significant challenge, requiring sophisticated algorithms and

proactive fleet regulation to prevent potential imbalances.

The openly accessible nature of dockless bicycles also heightens their vulner-

ability to vandalism and theft, necessitating diligent maintenance and surveil-

lance to ensure continuous service availability and system dependability. De-

spite these challenges, the integration of dockless bike-sharing systems with

public transit can improve travel time and convenience, enhancing overall user

satisfaction. However, excessive bikes cluttering streets can deter non-users

and hinder public transit accessibility. As dockless systems continue to evolve,

better regulation and distribution management are essential to maximize their

potential benefits and minimize their drawbacks, ensuring they remain a vital

component of urban transportation ecosystems.

Ultimately, the choice between docked and dockless systems depends on a

variety of factors including urban infrastructure, investment capabilities, and

specific mobility needs of the city. While docked systems offer reliability and

orderliness, dockless systems provide flexibility and ease of use. Cities around

the world are experimenting with both models, and in some cases, integrating

them to further benefit urban transportation networks.
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2.4 Dynamic vs. Static Rebalancing

The success of MSS is significantly influenced by the efficiency of their rebal-

ancing strategies, which ensure bikes or e-scooters are available across different

service areas to meet user demand. Redistributing vehicles can involve moving

bikes usually using trucks or vans operated by the service provider. The goal is

to maintain a balanced distribution of bikes or e-scooters throughout the system

to optimize availability and usability for users.These strategies are distinguished

into dynamic and static rebalancing, each characterized by distinct methodolo-

gies, benefits, and challenges. Once again, we present an overview with a focus

on BSS while stressing that most if not all considerations remain valid for more

diverse MSS.

Static Rebalancing

Static rebalancing in bike-sharing systems relies on fixed schedules and pre-

determined routes for redistributing bikes throughout the service area, utilizing

historical usage data instead of real-time analytics. This method offers pre-

dictability and simplicity, providing a clear and manageable system for fleet

management and simplifying the planning and execution of redistribution tasks.

Moreover, the absence of the need for continuous monitoring and immediate re-

sponse renders static rebalancing more economical, as it minimizes the resources

dedicated to oversight and intervention. Established schedules also ensure reg-

ular maintenance and consistent workloads for rebalancing teams, which fa-

cilitates routine system upkeep. However, static rebalancing faces challenges,

including limited responsiveness to real-time demand fluctuations, which may

lead to bike shortages or excesses in certain areas. This fixed approach might not

always align with actual demand patterns, potentially leading to inefficiency in

resource utilization and missed opportunities to optimize bike availability. Ad-

ditionally, the inability to promptly adapt to shifting demand trends can result

in reduced user satisfaction, as users may experience frustration due to the

unavailability of bikes when and where they need them, potentially deterring

future use of the system.
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Static Rebalancing methods

The research landscape offers a broad spectrum of approaches to static rebal-

ancing, demonstrating the potential of sophisticated computational techniques

to address the challenges inherent in this process. Notable developments in-

clude the creation of exact algorithms aimed at minimizing the costs associated

with rebalancing operations, highlighting the feasibility of achieving optimal

solutions for systems encompassing up to 60 stations [22].

Furthermore, the utilization of graphical class diagrams has emerged as a

novel approach to simplify the mathematical modeling involved in static re-

balancing [31]. This methodology, inspired by the operational intricacies of a

prominent Parisian bike-sharing system, showcases the utility of graphical tools

in streamlining rebalancing efforts to enhance system efficiency.

Integrating maintenance requirements into rebalancing operations repre-

sents another significant advancement, addressing both the immediate availabil-

ity of bikes and the long-term sustainability of bike-sharing infrastructure [53].

Moreover, the adoption of spatial cluster-based strategies underscores the evolv-

ing nature of bike-sharing system (BSS) management, revealing how data ana-

lytics can inform more effective rebalancing strategies by examining spatial and

temporal patterns [30].

Additionally, the human dimension of BSS becomes evident through research

focusing on user behavior in response to bike shortages at stations. Such studies

underline the critical role of user engagement in the development of rebalancing

strategies, linking system efficiency directly to user satisfaction [2].

Collectively, these contributions reflect the rich diversity of methodologies

and perspectives shaping the discourse on static rebalancing within BSS. Span-

ning from computational algorithms and graphical modeling to the incorpora-

tion of maintenance needs and user behavior considerations, the field is charac-

terized by a dynamic array of research efforts aimed at refining and enhancing

the rebalancing process. This collective body of work ensures the continued

appeal and vitality of bike-sharing systems as sustainable urban mobility solu-

tions.
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Dynamic Rebalancing

In contrast, dynamic rebalancing represents a more proactive approach to

bike-sharing systems, adjusting bike distribution in real-time or near-real-time

based on current demand. This strategy leverages advanced data analytics,

including GPS tracking, usage patterns, and predictive modeling, to identify

demand peaks and strategically relocate bikes. Such responsiveness to demand

fluctuations allows for swift adaptation to changes, accommodating variations

in user needs due to time of day, events, or seasons, thereby increasing user

satisfaction and promoting system reliability. Furthermore, dynamic rebalanc-

ing optimizes the allocation of transportation and labor resources by focusing

redistribution efforts where they are most needed, based on data-driven pre-

dictions. However, this approach comes with its set of challenges, including

high operational complexity due to the extensive data collection and analysis

required, necessitating sophisticated infrastructure for real-time bike tracking

and logistics optimization. The need for ongoing monitoring and quick adjust-

ments also leads to increased operational costs, driven by the deployment of

specialized vehicles and personnel for bike relocation. Additionally, reliance on

predictive algorithms might result in the risk of overcorrection, inadvertently

moving bikes from areas where they will soon be in demand again, which can

disrupt the balance between supply and demand.

Dynamic Rebalancing methods

The allure of dynamic rebalancing lies in its direct response to the fluid

nature of urban mobility. The development of strategies based on historical

data to predict network conditions ensures optimal bike and stall availability

amidst demand fluctuations, highlighting the superiority of such rebalancing

frameworks over static schedules and marking a notable advancement in the

management of Bike Sharing System (BSS) operations [14].

Further exploration into user incentive strategies to improve the performance

of BSS focused on integrating dynamic rebalancing efforts with gamification

techniques to encourage user participation in the system, thereby enhancing

both the efficiency and user satisfaction of bike-sharing services [12]. This

approach demonstrates that a joint optimization strategy, which includes both

manual rebalancing by operators and incentives for users, can lead to a higher
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service quality at a lower operational cost, proving the viability and effectiveness

of the model in real-world scenarios.

Moreover, the challenges and opportunities presented by free-floating BSSs

are addressed by proposing methods to mitigate intensive rebalancing needs

during peak hours, suggesting that an increase in shared bikes at strategic

locations can enhance the overall efficiency of BSS [52].

The intricate decision-making process behind dynamic rebalancing, which

operators must navigate to maximize trips, profits, and adherence to service

level agreements, showcases the tricky balance that must be struck [7].

Further expanding, the introduction of an evolutionary algorithm to optimize

rebalancing operations focuses on minimizing both the total distance traveled

by rebalancing vehicles and the total unmet demand, illustrating the potential

of combining technological solutions and human-centric strategies to address

the challenges faced by bike-sharing systems [46].

At the heart of dynamic rebalancing is the drive to achieve a delicate bal-

ance between operational feasibility and user satisfaction. As BSS continue to

proliferate across urban landscapes, the insights garnered from these studies il-

luminate the path forward. By embracing data-driven strategies and predictive

analytics, BSS operators can not only respond more effectively to the ebb and

flow of urban demand but also ensure the sustainability and attractiveness of

bike-sharing as a vital component of urban mobility.
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3
Fairness

This chapter will aim to present the challenges involving fairness in the

context of AI and sustainable mobility as a service. While these are not obviously

overlapping fields, they share concerns related to equity and fair use and with

the expanding number of applications in which AI is being deployed, it is worth

discussing how this will affect mobility.

3.1 Fairness in Artificial Intelligence

The integration of AI systems into daily life—from healthcare diagnostics

to financial lending decisions—has magnified the potential for algorithms to

perpetuate or even exacerbate societal biases. These can often manifest as preju-

dices or discriminations based on attributes like race, gender, age, sexual orien-

tation, religion, and socioeconomic status. These biases can influence behavior,

decision-making, and policy development, contributing to unequal treatment

or opportunities for individuals or groups.

In the context of AI, societal biases can be inadvertently incorporated into

systems through biased data, algorithmic design, or interpretation of outputs.

These can lead to AI systems that perpetuate or even exacerbate societal inequal-

ities. The challenge of ensuring fairness in AI therefore requires serious research

into how data is collected, how algorithms are built, and how applications are

deployed.

For example, in exploring fairness and bias in algorithmic hiring, research
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examines the application of AI across the recruitment process, from sourcing to

evaluation. This research highlights the significant influence of technologies on

hiring decisions. It underscores the interaction between AI tools and social net-

works in job platforms, illustrating how these dynamics can affect the visibility

of candidates and potentially introduce biases into the hiring process[33].

Other investigations delve into the implications of AI systems in healthcare,

spotlighting the risk of perpetuating disparities across various healthcare do-

mains, from diagnosis to treatment allocation. Their research is pivotal in guid-

ing the ethical deployment of AI in healthcare, ensuring that advancements

in medical technology contribute to reducing, rather than exacerbating, health

disparities.[8]

The concept of fairness can be hard to grasp given that its meaning can vary

significantly across cultures, legal frameworks, and individual perceptions.

In their cornerstone book, Fairness and Machine Learning, Barocas, Hardt, and

Narayanan present a framework for discussing fairness from a computational

perspective. They navigate through the complex field, articulating the nuances

of bias and discrimination that can arise in automated decision-making systems.

Their work emphasizes the importance of a principled approach to developing

machine learning models that are not only technically sound but also ethically

responsible.

They argue for the necessity of transparency, accountability, and inclusive-

ness in the design and implementation of algorithms, advocating for methods

that ensure diverse and equitable outcomes. Through rigorous analysis and

case studies, they demonstrate how machine learning models can inadvertently

perpetuate existing inequalities, stressing the importance of interdisciplinary

efforts to tackle these challenges.

One of the main challenges is indeed the translation of ethical principles

into actionable criteria that can guide the development of fair AI systems. The

collective efforts of researchers in this field prove why it is essential to embed

ethical considerations into the lifecycle of AI development. Their work serves

as a call for the AI community to prioritize fairness, not as an optional feature,

but as a fundamental component of any system that seeks to make decisions af-

fecting human lives. As these studies illustrate, fairness in AI is a dynamic and

complex domain, that considers ethical, legal, and economic dimensions. Em-

bedding fairness into the AI development process requires more than technical

proficiency; it demands a commitment to ethical principles and social responsi-
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bility. Fairness should not be an afterthought but a core principle guiding our

innovations.

3.2 Fairness in Mobility as a Service and Micromo-

bility Sharing Systems

Incorporating fairness into Mobility as a Service (MaaS) and Micromobility

Sharing Systems transcends the mere integration of diverse transportation op-

tions within a digital platform. It involves redefining urban mobility to foster

inclusivity and ensure equal access to societal opportunities such as employ-

ment, education, and healthcare [32]. This shift signifies a movement towards

urban environments where mobility solutions are designed with an equitable

lens, guaranteeing that the benefits of both MaaS and micromobility extend to

all segments of the population, including those traditionally marginalized.

The integration of MaaS with micromobility systems, such as bike-sharing

and scooter-sharing, holds the potential to democratize urban mobility and

bridge the existing mobility divide. By offering shared transportation modes,

there is an opportunity to not only enhance urban accessibility but also to

promote sustainability and reduce the environmental impact of private vehi-

cle use [40]. However, realizing this potential requires overcoming barriers to

adoption, which include technological challenges and socio-economic dispari-

ties [6]. Mobility justice advocates for a holistic approach in urban planning and

policymaking, ensuring that transportation’s broader societal impact supports

marginalized communities [39].

Moreover, the adoption of MaaS and micromobility solutions conveys the

importance of collaborative efforts between the public and private sectors to

address challenges such as service coverage, public-private cooperation, and

user acceptance [6]. This collaboration is crucial in making MaaS and micromo-

bility solutions accessible and affordable, especially for communities that have

historically been underserved by traditional transportation systems.

Addressing the unique mobility challenges faced by different population

segments, particularly concerning safety, affordability, and accessibility, shows

the significance of embedding fairness principles into transport policy and prac-

tice [25]. Recent studies have highlighted the gender dimension of mobility,

revealing a skewed representation in the user base of bike-sharing and scooter-
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sharing services towards younger, well-educated male professionals [19]. This

demographic imbalance necessitates MaaS and micromobility designs that cater

to a broader user spectrum, thereby fostering a more equitable service distribu-

tion.

The journey towards equitable MaaS and micromobility systems is thus not

solely a technological or infrastructural endeavor but a socio-political one too.

It involves a commitment to addressing the underlying inequities within urban

environments [43]. Through the collaborative and interdisciplinary efforts of

policymakers, urban planners, and service providers, there lies a substantial

opportunity to transform urban mobility landscapes into spaces that are more

inclusive and equitable.

By embracing the insights provided by recent research, stakeholders in the

urban mobility ecosystem are well-positioned to make impactful strides towards

creating more accessible and inclusive cities. The path forward involves ensuring

that these advancements are guided by a strong ethical framework centered on

fairness and equity [21].

3.3 Metrics

In order to measure fairness, and in particular, fairness in the context of MSS,

this section introduces some metrics which are widely used for such purposes.

Statistical Parity

Statistical Parity [26] is a simple but useful metric for evaluating fairness in

algorithms, widely adopted in the assessment of MSS systems. It ensures that

the decision-making process is equitable across different groups in a population.

Statistical Parity is captured by the following equation:

Č(ĕ̂ = 1|ă = ĝ1) = Č(ĕ̂ = 1|ă = ĝ2) = . . . = Č(ĕ̂ = 1|ă = ĝĤ), (3.1)

where the terms of Equation 3.1 are defined as follows:

• Č(ĕ̂ = 1|ă = ĝğ): Represents the probability of a favorable outcome or

decision ĕ̂ = 1 given the membership in a particular group ă = ĝğ . This
probability is measured for each group defined by a protected attribute
(e.g., gender, race).
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• ă = ĝğ : Denotes the group membership based on protected attributes.
Each ĝğ represents a distinct group within the population, for which fair-
ness is to be assessed.

• ĕ̂ = 1: Indicates a favorable decision or outcome, such as being selected
for a job interview or receiving a loan approval.

• The equation asserts that the probability of receiving a positive outcome
should be equal across all groups ă = ĝ1, ă = ĝ2, . . . , ă = ĝĤ , to ensure
nondiscrimination. This equality in probabilities across different groups
signifies the achievement of Statistical Parity.

Achieving Statistical Parity is desirable for fairness in MSS systems, partic-

ularly in scenarios where historical biases could influence the distribution of

services or resources. It embodies the principle that all individuals, irrespective

of group affiliation, should have equal access to benefits provided by the system.

GINI Coefficient

Another metric used to quantify fairness within the MSS context it the Gini

index [48] , defined as:

ĝ(Į) =
1

2Ĥ2Į̄

Ĥ∑

Ġ=1

Ĥ∑

ġ=1

|Į Ġ − Įġ |, (3.2)

where the components of the equation are as follows:

• ĝ(Į): The Gini index for the distribution Į, quantifying the fairness in the
system with values ranging from 0 to 1, where 0 denotes a perfectly fair
system and 1 indicates maximal unfairness.

• Ĥ = 3: The number of area categories, indicating the scope of the assess-
ment across different geographic or service areas.

• Į Ġ and Įġ : Represent the metrics of interest for the ĠĪℎ and ġĪℎ categories,
respectively. These metrics could include the number of rebalancing oper-
ations performed or the probability of service failure at finding an available
vehicle within a given category.

• Į̄: The mean of the quantities Įġ for ġ = 1, . . . , Ĥ, used as a normalization
factor to account for variations in the scale of the metrics of interest.

• The expression
∑Ĥ

Ġ=1

∑Ĥ
ġ=1 |Į Ġ − Įġ |: Aggregates the absolute differences

between all pairs of categories, which is central to assessing the dispersion
across the distribution.

23



3.3. METRICS

This formulation of the Gini index allows for a detailed examination of the

distributional fairness across categories, providing a quantitative foundation to

evaluate and address disparities in service access.

JAIN Fairness Index

Jain’s Fairness Index, defined below, serves as another measure for evaluating

the fairness of a system [29] , providing an useful complement to the Gini index

within the MSS context:

Ć(Į) =

(∑Ĥ
ğ=1 Įğ

)2

Ĥ
∑Ĥ

ğ=1 Į
2
ğ

, (3.3)

The elements of Equation 3.3 are detailed as follows:

• Ć(Į): Jain’s Fairness Index for the distribution Į, offering a measure of
equity in resource allocation or service levels. It quantifies how uniformly
resources or services are distributed across a population.

• Ĥ: The total number of entities or users within the system, affecting the

range of the index from 1
Ĥ (indicating complete unfairness) to 1 (denoting

perfect fairness).

• Įğ : Represents the specific metric being evaluated for fairness for the ğĪℎ

entity. This could be, for instance, the number of services each entity has
accessed or the quality of service each has experienced.

•

∑Ĥ
ğ=1 Įğ : The sum of the fairness metrics across all entities, used in both

the numerator and denominator, reflects the aggregate level of resource or
service allocation.

• Ĥ
∑Ĥ

ğ=1 Į
2
ğ
: The denominator scales the squared sum of individual metrics

by the number of entities, helping to normalize the index and accentuate
disparities in allocation.

Implementing these metrics in the evaluation of MaaS systems allows poli-

cymakers and engineers to identify disparities in service provision and address

them effectively. By analyzing data on service usage and availability with these

metrics, stakeholders can understand areas where interventions are needed to

improve equity, such as increasing the number of vehicles in underserved areas

or adjusting pricing models to make services more affordable for lower-income

users.
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Ultimately, the goal is to create a MaaS ecosystem that provides reliable, con-

venient, and affordable access to all, ensuring that mobility services contribute

positively to social equity and the reduction of socioeconomic disparities. By

regularly measuring and adjusting for fairness, MaaS can become an example

of sustainable and inclusive urban development.
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4
Elements of Reinforcement Learning

As outlined in the previous chapters, the aim of this research is to address

the trade-off between cost optimization and fairness in MaaS, through the use

of Reinforcement Learning. To this end, this chapter will first introduce the core

concepts in the RL framework in order to then discuss how RL was applied to

the problem in question in the next chapter.

4.1 Reinforcement Learning

Reinforcement Learning is a type of machine learning where an agent learns

to make decisions by performing actions in an environment to achieve some goal

[47]. The agent learns from the outcomes of its actions, rather than from being

preemptively programmed to explicitly know what to do. This learning process

is driven by the feedback the agent receives from the environment in the form

of rewards or penalties, which guide the agent towards achieving the optimal

behavior or policy for maximizing cumulative rewards over time.

In recent years it has found numerous successful application, in a diverse

number of fields, such as Robotics, Finance, Healthcare, Gaming, Recommen-

dation Systems, Supply Chain Management and Energy Management.

Reinforcement Learning framework

The fundamental concepts in RL include the agent, environment, state, ac-

tion, reward, policy, and value function:
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• Agent: The learner or decision maker.

• Environment: Everything the agent interacts with.

• State (S): A representation of the current situation of the agent in the
environment.

• Action (A): Any decision or move the agent makes.

• Reward (R): An immediate return given to the agent for performing an
action in a particular state. It serves as feedback to the agent.

• Policy (�): A strategy used by the agent, mapping states to actions.

• Value Function: A function that estimates how good it is for the agent
to be in a given state (or how good it is to perform a certain action in a
given state). The "goodness" here is measured in terms of expected future
rewards.

Exploration vs Exploitation

One of the early decisions to make when using Reinforcement Learning

(RL) concerns the trade-off between exploration and exploitation. Exploration

involves the agent trying out different actions to discover new knowledge about

the environment. It is necessary for learning the value of actions in different

states, especially those not yet visited or less understood. On the other hand,

exploitation refers to the agent using its current knowledge to make the best

decision based on what it already knows. This means choosing actions that

are known to yield the highest reward based on the current policy and value

function.

Balancing exploration and exploitation is critical. Too much exploration can

lead to inefficiency and missed opportunities for maximizing rewards, while

too much exploitation can prevent the agent from discovering potentially better

strategies. Effective reinforcement learning algorithms design mechanisms to

balance these two aspects, often through strategies like &-greedy, where the

agent explores randomly with probability & and exploits its current knowledge

with probability 1 − &.

4.1.1 Markov Decision Process

Markov Decision Processes (MDPs) provide the mathematical framework for

modeling decision making in situations where outcomes are partly random and
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partly under the control of a decision maker [47]. MDPs are an extension of

Markov Reward Processes (MRPs), which are in turn an extension of Markov

Processes (MPs). A Markov Process is characterized by a set of states ď and a

transition matrix Č, which describes the probability of transitioning to state ĩ′

from state ĩ, denoted as:

Čĩĩ′ = Č(ďĪ + 1 = ĩ′ | ďĪ = ĩ). (4.1)

MRPs introduce the concept of rewards and discounting. The discount

factor � ∈ [0, 1] is introduced, and the reward Ď, which indicates how aligned a

transition is with the end goal, is defined as:

Ďĩ = ā[ĎĪ+1 | ďĪ]. (4.2)

With MRPs, we can define the concept of returns as the sum of discounted

rewards from time Ī of a trajectory under the transition matrix Č, formulated as:

ăĪ = ĎĪ+1 + �ĎĪ+2 + �2ĎĪ+3 + . . . =

∞∑

ğ=0

�ğĎĪ+ğ+1. (4.3)

Since ăĪ describes the return of a single trajectory, we can define the value

function Ē that describes the expected return as:

Ē(ĩ) = ā[ăĪ | ďĪ = ĩ]. (4.4)

The return ăĪ can be recursively defined, which leads to:

ăĪ = ĎĪ+1 + �(ĎĪ+2 + �ĎĪ+3 + . . .) = ĎĪ+1 + �ăĪ+1. (4.5)

MDPs introduce actions into the framework, allowing the transition proba-

bility and reward function to be redefined to account for actions. The transition

probability given an action is:

Čė
ĩĩ′ = Č(ďĪ + 1 = ĩ′ | ďĪ = ĩ, ýĪ = ė), (4.6)

and the reward function is:

Ďėĩ = ā[ĎĪ+1 | ďĪ, ýĪ = ė]. (4.7)

29
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Actions allow an agent to make decisions at each step, necessitating the

definition of a policy �, which specifies the agent’s action preference in a given

state:

�(ė | ĩ) = Č(ýĪ = ė | ďĪ = ĩ). (4.8)

A policy fully determines the agent’s behavior and defines how it learns over

time. Since the value function Ē depends only on the state, it does not need to

be redefined; however, the introduction of actions leads to the definition of the

č function to take advantage of the agent’s ability to act, formulated as:

č(ĩ, ė) = ā[ăĪ+1 | ďĪ = ĩ, ýĪ = ė]. (4.9)

By leveraging the definition of the return ăĪ , as previously done for the

value function Ē , we can redefine the č function recursively, thus establishing

a relationship between Ē and č functions and introducing them into their

definitions. Learning these functions is a complex task that has given rise to

multiple algorithms, all of which need to navigate the exploration-exploitation

dilemma inherent in training agents.

4.1.2 Introduction to Q-Learning

Learning in the context of Markov Decision Processes (MDPs) involves de-

termining an optimal policy that maximizes the expected return from any given

state. An important aspect of learning in MDPs is balancing the trade-off be-

tween exploration, or trying new actions to discover their effects, and exploita-

tion, or using known actions that yield high rewards. This section introduces

Q-Learning, a fundamental approach for solving reinforcement learning prob-

lems.

Initially, learning methods such as Monte Carlo approaches and Temporal

Difference (TD) learning were developed to estimate value functions and poli-

cies. While Monte Carlo methods wait until the end of an episode to update

value estimates based on the returns received, TD learning updates estimates

based on other, already estimated values, allowing for learning to occur from

incomplete episodes. Both methods, however, focus on learning the value of

states or state-action pairs without directly addressing how to learn an optimal

policy.

Q-Learning, a form of Temporal Difference learning, emerges as a solution to
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Algorithm 1 Q-Learning Algorithm

Initialise č(ĩ, ė) arbitrarily for all (ĩ, ė) ∈ S × A
Choose 
 (learning rate), � (discount factor), and policy � (e.g., �-greedy)
for each episode do

Initialise state ĩ
while ĩ is not terminal do

Choose action ė from ĩ using policy derived from č (e.g., �-greedy)
Take action ė, observe reward Ĩ and next state ĩ′

č(ĩ, ė) ← č(ĩ, ė) + 
[Ĩ + � maxė′ č(ĩ
′, ė′) −č(ĩ, ė)]

ĩ ← ĩ′

end while
end for

this challenge by learning the value of taking a particular action in a particular

state directly. It updates its estimates of state-action values (Q-values) towards

target values that combine immediate rewards with the discounted value of the

subsequent state, as estimated under the current policy. The Q-Learning algo-

rithm is model-independent and can learn optimal policies even in deterministic

environments.

In this algorithm, č(ď, ý) ← č(ď, ý) + 
[Ď + � maxė č(ď
′, ė) − č(ď, ý)]

represents the core of Q-Learning, where:

• č(ď, ý) is the current estimate of the state-action value.

• 
 is the learning rate, controlling the extent to which new information
affects existing estimates.

• Ď is the reward received for taking action ý in state ď.

• � is the discount factor, determining the importance of future rewards.

• maxė č(ď
′, ė) is the estimate of optimal future value, maximized over all

possible actions at the next state ď′.

Q-Learning algorithmically formalizes the process of iteratively improving

the policy by updating the Q-values based on the equation provided. Through

repeated interactions with the environment and updates to the Q-values, the al-

gorithm converges to the optimal policy that maximizes the cumulative reward.

The Q-Learning algorithm is guaranteed to converge to the optimal solution

as long as some conditions are satisfied, as stated by the following theorem.

Theorem 1 (Convergence of Q-Learning [35]). Given a finite MDP, the Q-Learning

algorithm given by the update rule

čĪ+1(ĩĪ , ėĪ) ←čĪ(ĩĪ , ėĪ) + 
Ī(ĩĪ , ėĪ)·

(ĎĪ+1 + � max
ė′

čĪ(ĩĪ+1, ė
′) −čĪ(ĩĪ , ėĪ)),

(4.10)
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converges with probability 1 to the optimal state-action value function as long as

∑

Ī


Ī(ĩ, ė) = ∞ ∧
∑

Ī


2
Ī (ĩ, ė) < ∞ (4.11)

for all (ĩ, ė) ∈ S × A.

Q-Learning stands out as a powerful and flexible algorithm in the realm

of reinforcement learning. The algorithm’s simplicity and model-free nature

make it applicable to a wide range of problems, from simple tasks to complex

decision-making challenges. As research in reinforcement learning progresses,

Q-Learning continues to be a foundational technique. It encapsulates the essence

of learning from interaction, progressively improving decision-making to max-

imize rewards. Its continued relevance and adaptability to new challenges

affirm its importance in the toolkit of methods for tackling the intricacies of

autonomous decision-making and learning in uncertain environments.
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5
System Model

This section is dedicated to the preliminary notions needed for the modelling

of a MSS, considering a Bike Sharing System as reference.

5.1 Network

A dock-based MSS is naturally defined as a fully connected graphG = (V , ℰ),

where a node in V represents a station and ℰ = V × V denotes the set of

connections between each pair of stations. Each node ğ ∈ V is characterized by

its current occupancy, i.e., the number of bikes present at the ğ-th station at time

Ī.

In constructing our model for a Micromobility Sharing System, we consid-

ered system types and the structuring of the network within the urban environ-

ment. The contents of Chapter 2 and the observed trends in micro-mobility, led

us to favor a dockless system over a dock-based one. This decision is grounded

in the increased flexibility offered to users by dockless systems, a feature that is

becoming increasingly prevalent in urban micro-mobility landscapes. By tran-

sitioning the focus from fixed stations to service areas, we redefine the set of

nodes V as a partition of the city map. In this context, each node represents

a specific area where the count of vehicles is maintained, thereby allowing the

extensive body of literature on docked systems to be applicable in a dockless

framework through this spatial reconfiguration.

Regarding the scale and structure of the network, our model is designed
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5.1. NETWORK

with adaptability in mind, capable of accommodating any number of nodes.

However, for experimental purposes and to facilitate learning, we established a

network consisting of 100 nodes. This choice reflects a scale that is representa-

tive of a medium-large Bike Sharing System (BSS). Within this network, nodes

are categorized into three groups based on their demand patterns. This classi-

fication forms the basis for further investigation into how different areas within

a city contribute to and interact with the overall micro-mobility ecosystem.

A limitation in the network was the absence of considerations linked to

distance between nodes. These were characterized by their demand patterns

and not by how far they are from each other or for how costly it is to move

vehicles from one node to another. While this is a limitation, it will be addressed

in chapter 7.

Network

Central nodes
Peripheral nodes
Desolate nodes

Figure 5.1: Network visualization
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CHAPTER 5. SYSTEM MODEL

5.2 Demand

Demand is a crucial aspect in working with MaaS systems. In order to

simulate the environment in which to deploy the RL strategies, there were

several considerations to take into account when thinking about it. A first

approach would be to use an existing dataset containing all the information for

all bikes in a network.

There are plenty of such datasets in literature, including:

• The NYC Citi Bike dataset, which offers comprehensive trip records and
station information in New York City.

• The London Santander Cycles dataset, offering detailed ride data in Lon-
don.

Typically, these datasets have the form/include information like:

Field Description

Trip Duration The length of time the trip took from start to finish.
Start Time and Date The time and date when the trip began.
Stop Time and Date The time and date when the trip ended.
Start Station ID A unique identifier for the station where the trip originated.
Start Station Name The name of the station where the trip began.
Start Station Latitude The latitude of the start station.
Start Station Longitude The longitude of the start station.
End Station ID A unique identifier for the station where the trip concluded.
End Station Name The name of the station where the trip ended.
End Station Latitude The latitude of the end station.
End Station Longitude The longitude of the end station.
Bike ID A unique identifier for the bicycle used in the trip.
User Type The type of user (e.g., "Subscriber" or "Customer").

Table 5.1: Description of Fields in Bike Sharing Dataset

However, censoring is a major issue with this approach. The dataset may not

fully capture unfulfilled demand. For instance, potential riders might decide

not to use the service if no bikes are available at their nearest station or if all

docking points are occupied at their destination. This type of demand is not

directly observable in the data and could require estimation techniques to infer

the true demand levels.

With this in mind, we decided to proceed with synthetic data. It is impor-

tant to observe that accurately modeling and predicting the dynamics of such
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5.2. DEMAND

Table 5.2: Example dataset of bike sharing in Pandas DataFrame format.

Trip Duration Start Time Stop Time Start Station ID

670 2023-03-01 00:01:00 2023-03-01 00:12:00 3186
754 2023-03-01 00:04:00 2023-03-01 00:16:00 3183
1223 2023-03-01 00:06:00 2023-03-01 00:26:00 3183

Start Station Name Start Lat. Start Long. End Station ID End Station Name

Grove St PATH 40.719586 -74.043117 3199 Newport Pkwy
Exchange Place 40.716247 -74.033459 3203 Hamilton Park
Exchange Place 40.716247 -74.033459 3202 Jersey & 3rd

networks in their entirety is not a computationally tractable problem for large

MSS services, like the ones that we are interested in. We therefore focused on

a stochastic model of an individual service area, considering an independent

MMPP for the arrivals and departures, which is consistent with experimen-

tal results on large sharing systems [14]. The demand rates vary according to

daily, weekly, and seasonal cycles, and are affected by geographic factors as well.

The vehicle occupancy of the area then follows a left-censored continuous-time

MBDP, i.e., a stochastic process in which Poisson events represent either an in-

crease or a decrease of the state by 1, and in which the rate of these events is

the outcome of a Markov process with discrete time steps. The left censoring

limits the state to positive values: while new arrivals are always possible (un-

like in dock-based systems, in which stations have a maximum capacity), a new

departure from the area is impossible if there are no vehicles to take.

The transition probability from state ģ to state Ĥ over time Ī is then approx-

imated by

Čģ,Ĥ(Ī) '





∑∞
ℓ=ģ ĦSk(−ℓ ; Ī ,�, �), if Ĥ = 0;

ĦSk(Ĥ − ģ; Ī ,�, �), if Ĥ > 0;
(5.1)

where ĦSk(Ĥ; Ī ,�, �) is the Skellam distribution [42], which corresponds to the

difference of two Poisson r.v.s:

ĦSk(ġ; Ī ,�, �) = ě−Ī(�+�)
(
�

�

) ġ
2

ąġ

(
2Ī
√
��

)
, (5.2)

where � and � represent the arrival and departure rates, respectively, and ąġ(·)

is the modified Bessel function of the first kind [1]. The approximation follows

the work in [14] and is necessary due to the left censoring.
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CHAPTER 5. SYSTEM MODEL

As mentioned above, will consider a system with Ē service areas, which

we divide in three categories according to common spatial patterns in US and

European cities:

• Central areas in the city center, where large businesses and attractions
are clustered, typically have a high traffic volume, with more arrivals
than departures in the morning and the opposite in the evening due to
commuter traffic;

• Peripheral areas are typically residential areas close to the center, which
typically have a lower density, and thus less traffic, but present an inverted
pattern with respect to daily activities, i.e., more departures in the morning
and arrivals in the evening;

• Remote areas are typically underserved suburbs and lower-income com-
munities. The traffic patterns are similar to peripheral areas, but with an
even lower traffic volume due to the factors we highlighted above.

As for modelling each arrival and departure accurately, given the overall

traffic level for each station, once again these were designed using a Possion

distribution. Finally, in order to ensure a degree of robustness, the bike fleet was

distributed randomly across the network’s nodes.
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(a) Demand pattern over a 24-hour time frame for central stations.
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(b) Demand pattern over a 24-hour time frame for peripheral stations.
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(c) Demand pattern over a 24-hour time frame for desolate stations.

Figure 5.2: Demand patterns over a 24-hour time frame for different types of
stations.
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6
A novel Reinforcement Learning

approach for fairness-oriented MSSs

This chapter makes use of the concepts introduced in the previous ones to

show how RL was applied to the specific context of static rebalancing in MSS.

6.1 Learning Framework

We now illustrate the control approach of this study by modeling the problem

as a multi-agent MDP and defining the solution. We start from the multi-agent

Reinforcement Learning (RL) approach for the operation and control of MSS

networks. The discussion continues with the presentation of the model for

individual agents and the adopted reward mechanism, which stands at the core

of the proposed fairness-oriented strategy. However, we note that the main

contribution of the paper does not lie in the RL solution itself, which follows

a relatively common separability approach, but in the application of fairness

principles to the control of rebalancing operations in an MSS network.

Our statistical model relies on an independence assumption: the MMPP

representing arrivals and departures in each area are assumed to be independent

both from each other and from the processes in other areas. Naturally, this

assumption is not verified in real systems, as trips usually begin in an area and

end in another a few minutes later, but the approximation error is surprisingly

low in large-scale systems [13]: any individual area makes up such a small
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6.1. LEARNING FRAMEWORK

fraction of the total traffic that local events have negligible effects elsewhere.

This independence property makes it possible to consider individual rebal-

ancing actions in different areas as separate problems, modeling the system as

a transition- and reward- independent MDP: actions from one agent have no

effect on the state transitions of others, although the overall reward function

might be a non-linear function of the individual reward. The overall state of the

multi-agent problem can then be factored into individual state components for

each area. Even this case may not be solvable in polynomial time [5], so we will

need to structure the reward function in such a way that we can further simplify

the problem.

The agents use an exponentially-annealed �-greedy policy, which guarantees

convergence thanks to Theorem 1. In view of that, we design the learning rate

in this way:


Ī(ĩĪ , ėĪ) =





ę if Ī < Đ;

1
Ī otherwise;

(6.1)

where ę > 0 is a constant value and Đ is a pre-specified threshold. In this way

both the requirements in (4.11) are satisfied, thus ensuring convergence.

6.1.1 Factorized MDP representation

As proposed in Section , we cluster the nodes of the MSS network into three

different categories: central, peripheral and remote. These are distinguished

by their demand patterns, as well as by the overall traffic volume, which is

high for central areas and gradually decreasing for peripheral and remote ones.

This spatial categorization is necessary for understanding how to measure a fair

allocation of vehicles across the network.

The elements that constitute the state of each individual agent are the fol-

lowing:

• The time of the day, either morning or evening;

• The area type, i.e. central, peripheral or remote;

• The number of vehicles currently available in the area.

Naturally, the time is a shared component among different agents, but its

deterministic transition allows for factorization by simply replicating it Ċ times.

The action space for each agent is designed to be granular enough to offer
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CHAPTER 6. A NOVEL REINFORCEMENT LEARNING APPROACH FOR

FAIRNESS-ORIENTED MSSS

meaningful choices without overwhelming the agent with too many options.

Actions include adding up to 30 vehicles or removing up to 20 vehicles, by

increments of 5.

6.1.2 Reward design and fairness considerations

We propose an innovative rebalancing agent designed to perform fair static

rebalancing within a MSS environment. We partition V into Vę , VĦ , and VĨ :

the three subsets contain the central, peripheral, and remote areas, respectively.

The global reward function measures how effective the system was at meeting

demand in the preceding 12 hours and it also takes into account the number of

vehicles that were added or removed from the network:

ĎĪ = −
∑

ğ∈V

( ĜĪğ + 0.05ėĪ ,ğ) +
∑

Ġ∈Vę

(� ĜĪ Ġ ) −
∑

Ġ∈VĨ

(� ĜĪ Ġ ), (6.2)

where ĜĪ ,ğ represents the number of failures in area ğ during the considered

interval, i.e., the number of users who fail to find a shared vehicle in that area,

and � is a hyperparameter used as a temperature, to measure the degree of

importance1 that is given to remote areas with respect to central and peripheral

ones.

Given the global reward function in (6.2), the optimal solution to the problem

is given by the combination of the individual solutions to the agent problems,

with the following reward function:

ĎĪ ,ğ =





−(1 − �) Ĝ − 0.05ėĪ ,ğ if ğ ∈ Vę ;

− Ĝ − 0.05ėĪ ,ğ if ğ ∈ VĦ ;

−(1 + �) Ĝ − 0.05ėĪ ,ğ if ğ ∈ VĨ .

(6.3)

The resulting solution then enjoys the convergence property given in Theorem 1.

Proof. We know that the state is separable, as the state transition probability

of agent ğ is only affected by its own action ėĪ ,ğ : two components of the state

(the time of day and the area type) evolve deterministically, while the third

1In general, the adjustment of the temperature plays a pivotal role in controlling the delicate
balance between optimizing performance metrics [24], such as accuracy, and ensuring equity in
sociotechnical systems.
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6.1. LEARNING FRAMEWORK

follows an independent process in each area. We can also trivially prove that

the global reward function in (6.2) is the sum of the individual reward functions

in (6.3). The distributed Q-Learning algorithm is then optimal for the global

problem. □

The final control pipeline is summarised in Algorithm 2.

Algorithm 2 MSS Q-Learning

Initialise č(ĩ, ė) ∈ R for all (ĩ, ė) ∈ S × A
�← 1 (exploration rate)
�← 0.999 (decay factor)
for day = 1 to Ā →∞ do

Setup initial state ĩ0 =

⋃
ğ∈V ĩğ ,0

for Ī = 0 to 23 do
Observe transition process from ĩĪ to ĩĪ+1

if Ī == 11 or Ī == 23 then
for all areas ğ ∈ V do

Choose ėğ ,Ī from ĩğ ,Ī using �-greedy
policy derived from č:

ėğ ,Ī =

{
arg maxė č(ĩğ ,Ī , ė) w/ prob. 1 − �

random action ė ∈ A w/ prob. �
(6.4)

Take action ėğ ,Ī , observe Ďğ ,Ī+1

Update č according to (4.10)
end for

end if
end for
�← � · �

end for
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7
Simulations and Results

We provide an extensive investigation of different rebalancing strategies, to

demonstrate the trade-off between performance and equity measured by indexes

defined in Section 3 with the goal of finding a viable compromise.

As an example of a dockless MSS, we consider a medium-sized bike sharing

system. Its spatial representation is modeled as a network with 100 nodes in

total; of these, 10 are set to be central (labeled by ġ = 1), 30 are peripheral (labeled

by ġ = 2), and 60 are remote (labeled by ġ = 3). The simulation starts with each

area being subject to the demand introduced in Section 5, which is synthetically

generated. On averae, the network is subject to over 7000 daily trips. At every

hour Ī = 0, . . . , 23, the number of vehicles present at each area is updated based

on arrivals and departures. If at a certain moment a node is unable to satisfy

the demand, i.e. there are no vehicles left at one particular area and there is

request for a departure, this is registered as a single failure for that node. The

agent performs its control actions at 11a.m. and at 11p.m. every day through

static rebalancing, as described in Section 6. The training phase for the proposed

strategy is run through 1000 days and evaluated over the last 100 steps in the

following analysis. According to (6.1), the learning rate 
Ī is initially fixed at

ę = 0.01 and gradually decreased after Đ = 800 · 24 hours.

With the above setup, we analyse the Pareto-efficiency of the provided ap-

proach. Also, we point out that certain RL strategies should be preferred over

others, as they lead to fewer service failures and higher fairness scores.

Firsly, we highlight the presence of an inherent trade-off between the con-

trol performance and fairness degree of the proposed approach applied to this
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Figure 7.1: Pareto front: Relationship between Gini scores and number of re-
balancing operations obtained by averaging the corresponding outcomes of a
100-run Monte Carlo simulation.

setup. As a cost index, the overall number of rebalancing operations Įġ executed

by Algorithm 2 for each category ġ is considered. On the other hand, the Gini

index defined in (3.2) is computed over the the rebalancing operations Įġ , with

ġ ∈ {1, 2, 3}, to assess the fairness degree. To this aim, we run a Monte Carlo

simulation examining the role of different local reward values parameterized by

� ∈ [−1, 1] in (6.3). More in detail, we consider such an evaluation over the grid

� ∈ {−1,−0.5,−0.25, 0, 0.15, 0.2, 0.35, 0.5, 1}. Fig. 7.1 shows the aforementioned

trade-off, illustrating the intrinsic complexity of selecting an “optimal” rebal-

ancing strategy among those parameterized by �. Nonetheless, it is also evident

that certain strategies (i.e., those characterized by � < 0) should be discarded,

since they do not exhibit Pareto-efficiency (see Fig. 7.1). As a further support to

the previous claim, Fig. 7.3a and Fig. 7.3b illustrate the distributions of the cost

scores and fairness scores, respectively. The boxplots highlighted in light blue

refer to Pareto-efficient strategies, while those depicted in green represent the

suboptimal choices. In particular, the depicted distribution behaviours allow

to determine that the case � = −0.25 is just nearly optimal but does not lie on

the Pareto-front. Similar conclusions can be drawn by observing the same plots

using the Jain Fairness index instead, as shown in Fig. 7.2 and Fig. 7.4
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Figure 7.2: Pareto front: Relationship between Jain indeces and number of
rebalancing operations obtained by averaging the corresponding outcomes of a
100-run Monte Carlo simulation.

We finally compare two of the strategies depicted in Fig 7.5, namely those

with � = −0.5 (unfair) and � = 0.2 (fair), to better illustrate certain aspects

related to fairness and cost. Fig conveys how both strategies lead to a similar

value in terms of absolute failures, however there are more details to consider.

Firstly, the strategy obtained using � = 0.2 is more expensive in terms of daily

rebalancing operations and in terms of fleet size. Indeed, by observing Fig,

one can notice how on average this strategy requires more daily rebalancing

operations, in particular at remote areas. Given the high reward the RL agent

receives for avoiding such failures, this is in line with expectations. Another

worthwhile observations is that for � = −0.5, the reward for avoiding failures

in remote areas is so low that it discourages the agent from rebalancing in these

areas altogether. As for the fleet size, this strategy converges to needing a fleet

of 1285 bikes, compared to the 944 for the on obtained using � = −0.5. So, for

the reasons stated above, the reward function using � = 0.2 clearly leads to a

more costly strategy.

By comparison, if instead of analysing absolute failures we turn to relative

failure rates, we better understand how the two strategies differ in terms of

fairness. This measure is calculated for each area type as the percentage of
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failures for each area type given the total potential demand which could be

satisfied for each area type. By comparing the two strategies obtained using the

two different RFs, it clearly emerges that setting � = −0.5 penalises remote areas

heavily when compared with other area types whereas as by using � = 0.2. This

is, as expected, reflected in both Gini and Jain indexes. For the reasons stated

above we can conclude that unfair solutions that do not belong to the Pareto-

front can be avoided in general. Conversely, fair Pareto-optimal strategies are

worth considering despite their higher cost.

RF 1 RF 2
gini 0.13 0.31
jain 0.95 0.73

Table 7.1: fairness coefficients for different Reward Functions

By reflecting on these findings, system designers and policy makers should

interrogate themselves on several issues. How much is it worth investing in

fairer systems, given their cost? Considering a longer term than the one adopter

in this model, is there a return on the investment for making a system fairer? Is

it ultimately possible to reduce the concept of fairness to a scalar number or are

there intangible factors and consequences which require deeper insight?

Ultimately, given the multi-objective nature of the problem, and the multiple

possible definitions of spatial fairness and equity for MSS in complex urban

environments, policymakers and engineers will have to work together to decide

how to build mobility systems in the future, considering the tradeoffs illustrated

above.
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(a) Number of rebalancing operations: This graph illustrates the frequency of rebalanc-
ing operations across different scenarios.
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effectiveness of various strategies in maintaining balance.

Figure 7.3: Relationship between Gini scores and number of rebalancing oper-
ations obtained by averaging the corresponding outcomes of a 100-run Monte
Carlo simulation. This comparison shows a trade-off indicating that only a
subset of the proposed family of strategies can be considered Pareto-efficient in
terms of both fairness and control performance.
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Figure 7.4: Jain indeces: A visual representation of fairness in the distribution,
highlighting the effectiveness of various strategies in maintaining balance.
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Figure 7.5: A comparison of RFs with � = −0.5 (unfair) and � = 0.2 (fair)
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8
Conclusions and Future Works

In this study, we consider the problem of rebalancing an MSS, with a focus

on spatial fairness. In particular, an MSS simulator is designed based on the

definition of three categories of city areas, and tested considering several RL

approaches, distinguished by their reward function definitions. Each reward

function assigns a distinct weight to equalizing the distribution of rebalancing

operations and failures across different area types.

Our findings, based on the cost of rebalancing operations for each strategy

and the Gini index reflecting vehicle accessibility across categories, indicate that

a balanced trade-off between efficiency and fairness is achievable. Indeed, a

Pareto front of solutions is found: among these RL methods, any can be selected

for each application, depending on the cost and fairness requirements of the

specific situation. However, it is recommended to prioritize solutions with a low

Gini score, since the negligence of non-central areas could have strong societal

impacts, exacerbating the discrimination against residents in these regions.

In future studies, we will aim to refine the defined framework by relaxing

some assumptions. In particular, we aim to define a rebalancing cost function

that depends on the type of urban area vehicles are moved to, highlighting the

difference in distance to cover between different areas. Furthermore, it is crucial

to account for time-varying distributions of the demand while modeling, which

take into consideration the effect of a failure in a given zone and a consequential

lower demand characterizing that area in the future. Lastly, it would be interest-

ing to loosen the independence assumption, hence to cope with the correlation

between arrival and departure processes at different stations.
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