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Introduction

In probability theory, the simple exclusion process is one of the classical and most simple
interacting particle systems, introduced in 1970 by Frank Spitzer [17]. Since then, it has
been widely studied and has become a stochastic model for transport phenomena, such
as cars in a tra�c jam, but also for analyzing the evolution of some physical systems
consisting of a large number of components, for example, a �uid or a gas. Due to the
huge complexity of the dynamics between molecules, it becomes hard to analyze the
microscopic evolution of the system and some simpli�cations need to be introduced.
With that purpose, usually one assumes that the underlying microscopic dynamics is
stochastic, so we can consider particles which exhibit interacting random walk behaviour.

Therefore, the simple exclusion process models the behaviour of in�nitely many iden-
tical particles on a countable set, so that the dynamics of each particle constitute a
continuous time Markov chain. However, the main feature of this motion is the exclusion
interaction: transitions to occupied sites are suppressed. The process takes place on an
underlying space S, which is usually the set of the vertices of a graph G(V,E) or the
lattice Zd.

In this work we study the simple exclusion process "as seen from a tagged particle". In
the case of a graph as an underlying space, we initially place a particle on a distinguished
site called the "root". We then follow the evolution of this tagged particle, as done in [4],
where the considered graph is a rooted d-regular tree. Here, we choose S = Zd and to
describe the dynamics we �x a �nite-range probability measure p(·) on Zd which does not
charge the origin, that is p(0) = 0, and distribute particles on the lattice in such a way
that each site is occupied by at most one particle. A particle at x waits an exponentially
distributed time with mean 1, then jumps to a site y with probability p(x, y) = p(y−x).
If y is vacant the jump is performed, otherwise the particle stays at x. All the holding
times and choices according to p are independent. Moreover, since the holding times
have a continuous distribution, only one particle moves at a time: that is the reason why
we can tag an individual particle and study its motion, the so-called "tagged particle
process" [7].

This informal description corresponds to a Feller process on the space X = {0, 1}Zd

endowed with the product topology. The states of X are denoted by {ηt : t ≥ 0}, with
η(x) equal to 0 if the site x ∈ Zd is empty, otherwise η(x) = 1. We will consider a
con�guration η with a tagged particle at the origin, denoting {Zt : t ≥ 0} its position at
time t and we will see that the pair {(Zt, ηt) : t ≥ 0} is a Markov process.
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2 INTRODUCTION

Our goal is to study the asymptotic behaviour of the tagged particle's position Zt. In
particular we aim to verify that the Law of Large Numbers, the Central Limit Theorem
and the Invariance Principle can be applied. If there were no other particles, Zt would
evolve as a continuous time random walk and all these results would hold. But in fact,
the presence of the environment, consisting of all the remaining particles, a�ects the
dynamics of Zt and its study becomes more complicated. The conventional strategy,
which we will adopt, is to consider the evolution of the environment as seen from the
position of the tagged particle. For this purpose, we will place the chosen particle at
the origin and after its jump to a site x, we will translate the entire con�guration by
−x, keeping the origin �xed. Due to this fact, we need the probability measure p(·)
to be translation-invariant. Moreover, since we want to analyze the behaviour of the
environment excluding the origin, which is always occupied by the tagged particle, we
can assume that our process takes place on the space Zd∗ = Zd \ {0}.

The main results of this thesis are a Law of Large Numbers, a Central Limit Theorem
and an Invariance Principle for the position of the tagged particle. The �rst two, under
some assumptions, are relatively simple to derive and to prove. The arguments we will
use here are from Komorowski, Landim and Olla [13] and, basically, they consist of
decomposing the position Zt into a martingale plus an additive functional, and then
studying separately these two parts, that are simpler processes. In particular, we will
prove the Central Limit Theorem in any dimension for the case of zero-mean (m = 0)
process. However the result holds true in dimension d ≥ 3 even if m 6= 0 [13], while,
in smaller dimensions this behaviour has only been conjectured and its proof is still an
open problem.

To approach the third main result, the Invariance Principle, that states the conver-
gence of the evolution of the tagged particle's position to a Brownian motion, we are
going to work in the context of Rough Path theory. The main idea of this theory is to
"enhance" a path X with some additional data X, namely the Itô integral of X against
itself, in order to restore the continuity of the Itô map. To work in this context we have to
consider the space of hölder continuous Rough Paths and the suitable metric, see [8] and
[10]. Another main ingredient are semimartingales, which �t into the theory, as shown
in [5]. Indeed, the canonical lift of a semimartingale is almost surely a Rough Path of
�nite p-variation, for p > 2.

The theory of Rough Paths was developed, in the mid-nineties, by Terry Lyons [16],
in order to treat controlled di�erential equations of the form

dyt =
∑
i

f i(yt)dx
i
t

where the f i are vector �elds and the driving signal xt is a rough path, such as a vector
valued Brownian motion, a semi-martingale or any similar stochastic process. A new
metric is needed to guarantee that the solution map will be a continuous function of the
driving rough path. In our case, we will have to deal with càdlàg (from the French: right
continuous with left limits) functions; the set of these functions on a given domain is
called a Skorokhod space and when endowed with the corresponding metric, it generates
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the so-called Skorokhod topology. Introducing this new metric on the space of càdlàg
Rough Paths, we will be able to apply a version of the invariance principle to the position
of the tagged particle, particularly using tightness in p-variation. However, we will see
that the convergence to the Itô integral

∫ t
0 Bs ⊗ dBs is not exact: in addition there will

be a correction term of the form 1/2〈B,B〉t + Γt.
In detail, the thesis will be organized as follows. In the �rst chapter we will introduce

the setting where we are going to work and the necessary main assumptions, de�ning the
H1 Hilbert space and its dual H−1. Then, we will provide a formal description of the
simple exclusion process and of the simple exclusion process with the tagged particle. In
both processes there is a family of stationary states, the Bernoulli product measure with
density 0 ≤ α ≤ 1. This means that the site where the tagged particle chooses to jump
is empty with probability 1− α. We thus expect a mean displacement in the stationary
state to be equal to (1−α)m, with m =

∑
x∈Zd xp(x) de�ned as the mean displacement

of the tagged particle. This is exaclty what we will show with the Law of Large Numbers.
Before proving the main result of the second chapter, it will be necessary to rewrite

the position Zt of the tagged particle, through the de�nition of the jump processes, as
a martingale and an additive functional. This one will be then expressed in terms of
elementary ortoghonal martingales, associated to the jumps of the Markov process. The
key property of these martingales is that we can write any other martingale in terms
of these elementary orthogonal martingales, by the Dynkin's formula, so that by this
decomposition it is possible to compute the limit, under our stationary measure. This
will be enough to conclude the proof of the Law of Large Numbers.

In the third chapter, we will present the Central Limit Theorem for Zt, the proof of
which relies on the more general Central Limit Theorem for additive functionals. The
aim of Section 3.1 is to use the solution of the resolvent equation, in order to rewrite the
functional as a sum of a martingale and a negligible term, which we will prove to vanish,
as t ↑ ∞. So, the only thing left to show is the convergence of the martingale terms to a
mean zero Gaussian random vector with a �nite covariance matrix. The arguments used
for this purpose will be treated separately in the symmetric and asymmetric case, under
the assumption m = 0.

Finally, in the chapter concerning the invariance principle, we introduce the neces-
sary elements and de�nitions about Rough Path theory, the Skorokhod topology and,
in particular, the Skorokhod metric in p-variation. Moreover, we will introduce the no-
tions of Burkhölder-Davis-Gundy (BDG) inequality and Uniformed Controlled Variation
(UCV), from [5]. Having done all of this, our process X will be lifted to a rough path
X =

∫ t
s Xr⊗dXr. We will �nally prove that the pair (X,X) converges, in the p-variation

Skorokhod topology, to

(
B;

(∫ t
0 Bs ⊗ dBs + 1

2〈B,B〉t + Γt

)
t≥0

)
and we will compute

the covariance of the Brownian motion B and the correction term Γ.





Chapter 1

Exclusion Processes

1.1 Notation and Main Assumptions

In this �rst section we de�ne the setting where we are going to work, taking some results
from [13]. Let E be a complete and separable metric space endowed with its Borel σ-
algebra E . Denote by B(E) the set of bounded measurable functions on E and by C0(E)
the space of continuous functions on E which vanish at in�nity, regarded as a Banach
space with the norm

‖ f ‖= sup
x
| f(x) | .

Let D([0,∞), E) be the set of functions X : [0,∞) → E which are right continuous
and with left limits (r.c.l.l.). Denote by Πs : D([0,∞), E)→ E, when s ≥ 0, the canonical
projection de�ned by

Πs(X) = Xs.

Let F o be the smallest σ-algebra on D([0,∞), E) which turns the projections Πs, s ≥ 0,
measurable and let F 0

t be the natural �ltration, i.e. the smallest σ-algebra relative to
which all the mappings Πs, 0 ≤ s ≤ t, are measurable.

Let {Pt : t ≥ 0} be a strictly Markovian, Feller semigroup of linear operators on
C0(E), according to the following de�nition from [15, Section I.1.].

De�nition 1.1. A family {Pt : t ≥ 0} of linear operators on C0(E) is called a stricly
Markovian Feller semigroup if it satis�es the following conditions:

1. P (0) = I, the identity operator,

2. the map t 7→ P (t)f , from [0,∞) to C0(E), is right continuous for all f ∈ C0(E),

3. P (t+ s)f = P (t)P (s)f for all f ∈ C0(E) and all t, s ≥ 0,

4. P (t)1 = 1 for all t ≥ 0, where 1 is the constant function equal to 1,

5. P (t)f ≥ 0 for all non-negative f ∈ C0(E).

5



6 CHAPTER 1. EXCLUSION PROCESSES

Note that the function 1 does not belong to C0(E) if E is not compact, but the
semigroup {Pt : t ≥ 0} can clearly be extended to B(E).

Consider a normal Markov process on E associated to the semigroup {Pt : t ≥ 0},
this gives a family of probability measures {Px : x ∈ E} de�ned on (D([0,∞), E),F o)
such that

• P[X0 = x] = 1 for all x ∈ E (normality);

• for every A ∈ F o, the map x→ Px[A] is measurable;

• for all x ∈ E, f ∈ C0(E),

Ex[f(Xt+s) | F o
s ] = (Ptf)(Xs), Px-a.s.,

where Ex denotes the expectation with respect to Px.

In chapter 1 of [1] we can �nd a proof that a normal Markov process associated to a
Feller semigroup always exists and it is unique.

For a probability measure µ in (E,E ), denote by Pµ the measure on (D([0,∞), E),F o)
given by

∫
Pxµ(dx). Expectation with respect to Pµ is denoted by Eµ. Assume that a

probability measure π on E is stationary for the semigroup:

〈Ptf〉π = 〈f〉π for all f ∈ C0(E),

where 〈·〉 stands for the expectation with respect to π.
Denote by (D([0,∞), E),F ,Pπ, {Ft : t ≥ 0}) the usual augmentation of the �ltered

space (D([0,∞), E),F o,Pπ, {F o
t : t ≥ 0}) which satis�es the usual conditions. We know

(see Theorem 8.11 and Proposition 8.12 of [1]) that the right continuous Feller process
{Xt : t ≥ 0} is strong Markov with respect to the augmented �ltration.

Let L2(π) be the Hilbert space of π-square integrable functions and denote by 〈·, ·〉π
its scalar product, with associated norm ‖ · ‖π. Denote by Lp(π), with p ≥ 1, the space
of measurable functions f : E → R such that 〈| f |p〉π <∞. The semigroup {Pt : t ≥ 0}
extends to a semigroup of positive contractions on any Lp(π), p ≥ 1. We assume that this
extension is strongly continuous for any p ∈ [1,+∞) and that the measure π is ergodic:
any f ∈ L1(π) such that Ptf = f for all t ≥ 0 is constant π-almost everywhere.

We introduce now some basic de�nitions from [15].

De�nition 1.2. A linear operator L on C0(E), with domain D(L), is said to be a Markov
pregenerator if it satis�es the following properties:

1. 1 ∈ (D)(L) and L1 = 0,

2. D(L) is dense in C0(E),

3. if f ∈ D(L), λ ≥ 0 and f − λLf = g, then

min
x∈E

f(x) ≥ min
x∈E

g(x).
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A linear operator L on C0(E) is said to be closed if its graph is a closed subset of
C0(E). Let R(Ω) denote the range of a linear operator Ω.

De�nition 1.3. A Markov generator is a Markov pregenerator L, which satis�es

R(I − λL) = C0(E),

for all su�ciently small positive λ.

De�nition 1.4. Suppose L is a Markov generator on C0(E). A linear subspace C of
D(L) is said to be a core for L if L is the closure of its restriction to C . Of course, L is
uniquely determined by its value on a core.

In our case, let L be the generator of the semigroup {Pt : t ≥ 0} in L2(π) with
D(L) denoting its domain. Let C ⊂ D(L) be a core for the operator L, denote by L∗

the adjoint of L in L2(π) and assume that C ⊂ D(L∗). Since π is stationary, L∗ is
itself the generator of a Markov process. On C we can de�ne S = (1/2)(L + L∗) and
A = (1/2)(L−L∗), respectively, the symmetric and antisymmetric parts of the generator
and we suppose that S is essentially self-adjoint.

We will also need the following property. If C is a core for an operator G, for any
function f in the domain of G, there exists a sequence {fk : k ≥ 1} in C such that fk,
Gfk converge to f , Gf , respectively.

Denoting by ω a trajectory of D(R+, E), let {θt : t ≥ 0} be the semigroup of shift
operators θt : D(R+, E)→ D(R+, E), de�ned by

(θtω)(s) = ω(t+ s).

Since π is stationary ergodic measure, Pπ is invariant and ergodic under the �ow of
transformations {θt : t ≥ 0}. This property will play a fundamental role in the following.

We state that the space of cylinder functions C is a common core for the operators
L and its adjoint L∗. Consider, now, the seminorm ‖ · ‖1 de�ned on C by

‖ f ‖21=
〈
f, (−L)f

〉
π
.

Denote by G1 the normed space (C |∼1 , ‖ · ‖1), where ∼1 is the equivalence relation in
C de�ned by

f ∼1 g if ‖ f − g ‖1= 0.

We can called H1 the completion of G1 with respect to the norm ‖ · ‖1 and, since this
norm satis�es the parallelogram identity, H1 is a Hilbert space, where the inner product
is given by polarization

〈f, g〉1 = 1/4
{
‖ f + g ‖21 − ‖ f − g ‖21

}
.

and here only the symmetric part of the generator, S = 1/2(L+L∗), plays a role, indeed

‖ f ‖21= 〈f, (−L)f〉π = 〈f, (−S)f〉π.
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So, it is possible to check that, for any f, g ∈ C ,

〈f, g〉1 =
〈
f, (−S)g

〉
π
. (1.1)

In general, neither H1 nor L2(π) are subspaces of each other, but when L is bounded,
we have L2(π) ⊂H1.

We can note that, by de�nition, H1 consists of sequences {fn : n ≥ 1} of functions
in C which are Cauchy in H1. If such a sequence converges to some function f in L2(π),
we will identify the sequence {fn : n ≥ 1} with f and we will say that f belongs to H1.

The domain D(S) is contained in H1. Indeed, �xing a function f ∈ D(S), since C is
a core for D(S), there exists a sequence {fn : n ≥ 1} of functions in C , such that fn, Sfn
converge in L2(π), as n ↑ ∞, to f , Sf , respectively. By (1.1), it follows that {fn : n ≥ 1}
is a Cauchy sequence in H1. Thus, we have D(S) ⊂ H1. The same argument apply to
D(L),D(L∗) ⊂H1.

Together to the Hilbert space H1, one can consider its dual space H−1 de�ned as
follows. For f ∈ L2(π) de�ne the norm by the variational formula

‖ f ‖2−1= sup
g∈C

{
2〈f, g〉π− ‖ g ‖21

}
(1.2)

and denote with G ∗−1 the subspace of L2(π) of all functions that have the above norm
‖ · ‖−1 �nite. Once again we introduce the normed space G−1 = (G ∗−1 |∼−1 , ‖ · ‖−1),
where the equivalence relation ∼−1 has the same meaning as before:

f ∼−1 g if ‖ f − g ‖−1= 0.

The completion of this space with respect to the norm ‖ · ‖−1 is the Hilbert space H−1

with inner product de�ned through polarization.
It will be useful, for the next chapters, to consider some properties concerning the

spaces H1,H−1.

Claim A (S can be extended as a bounded operator from H1 to H−1) For any
f ∈ C , Sf belongs to H−1. Indeed, for any g ∈ C , since −S is a non-negative operator,
by Schwarz inequality,

〈Sf, g〉2π ≤ 〈(−S)f, f〉π〈(−S)g, g〉π =‖ f ‖21‖ g ‖21 .

In particular, by (1.2), we get ‖ Sf ‖−1≤‖ f ‖1.

Claim B (Extension of the scalar product 〈·, ·〉π to H1×H−1) From the variational
formula (1.2), it is easy to check that for every function f ∈ C and every function
g ∈ L2(π) ∩H−1

| 〈f, g〉π |≤‖ f ‖1‖ g ‖−1 (1.3)

Indeed, �xing such functions f , g and �xing a ∈ R, such that af ∈ C , by the formula
(1.2) we have

2a〈f, g〉π ≤ a2 ‖ f ‖21 + ‖ g ‖2−1 .
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Dividing by a and minimizing over a we obtain (1.3). Now, �xing g ∈H−1 and f ∈H1,
consider a sequence {gn : n ≥ 1} in L2(π) and one {fn : n ≥ 1} in C , converging to
g ∈ H−1 and to f ∈ H1, respectively. So, we can extend the inner product 〈·, ·〉π to
H1 ×H−1, setting

〈f, g〉π := lim
n→∞

〈fn, gn〉π.

And in the view of (1.3), this de�nition does not depend on the chosen sequence. More-
over, Schwarz inequality holds in this more general context, where f ∈H1 and g ∈H−1:

| 〈f, g〉π |= lim
n→∞

| 〈fn, gn〉π |≤ lim
n→∞

‖ fn ‖1‖ gn ‖−1=‖ f ‖1‖ g ‖−1 . (1.4)

The extension of the scalar product permits to generalize the relation (1.1) and for f , g
in H1, we get

〈f, (−S)g〉π = 〈f, g〉1. (1.5)

Since Sg belongs to H−1 by Claim A, the left-hand side is meant to be the extended
scalar product to H1 ×H−1, while the right-hand side is the usual one in H1.

Claim C (Su�cient conditions to belonging to H−1) Lastly, the saw variational
formula permits to prove that a function f in L2(π) belongs to H−1 if and only if, for
every g ∈ C there exists a �nite constant C such that

〈f, g〉π ≤ C ‖ g ‖1 (1.6)

and in this case

‖ f ‖−1≤ C.

Claim D (Sf belongs to H−1) The domains D(L) and D(S) are contained in H1.
For any f ∈ D(L) and g ∈ D(S),

‖ f ‖21= 〈f, (−L)f〉π, ‖ g ‖21= 〈g, (−S)g〉π, 〈f, g〉1 = 〈f, (−S)g〉π.

Indeed, consider sequences {fn : n ≥ 1}, {gn : n ≥ 1} in C such that fn, gn, Lfn, Sgn
converge in L2(π) to f, g, Lg, Sg, respectively. Since, by convention, f represents in H1

the Cauchy sequence {fn : n ≥ 1}, by (1.1),

‖ f ‖21= lim
n→∞

‖ fn ‖21= lim
n→∞

〈fn, (−S)fn〉π = lim
n→∞

〈fn, (−L)fn〉π = 〈f, (−L)f〉π.

The third identity follows from the fact that fn belongs to C which is a core for both S
and L. By similar reasons,

‖ g ‖21= 〈g, (−S)g〉π, 〈f, g〉1 = 〈f, (−S)g〉π.

In conclusion, considering also Claim A, we derive that Sf belongs to H−1, for any
f ∈ D(L), and ‖ Sf ‖−1≤‖ f ‖1 .
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Claim E (H−1 is the closure of {Sf : f ∈ H−1}) We have just proved that Sf
belongs to H−1, since the scalar product there is de�ned through polarization, we have:

〈g, (−S)f〉−1 = (1/4){‖ g − Sf ‖2−1 − ‖ g + Sf ‖2−1}.

By (1.2),

‖ g − Sf ‖2−1= sup
h∈C
{2〈g − Sf.h〉π− ‖ h ‖21}.

Since f and h are in C , 〈(−S)f, h〉π = 〈f, h〉1, thus

2〈(−S)f, h〉π− ‖ h ‖21=‖ f ‖21 − ‖ h− f ‖21

and so

‖ g − Sf ‖2−1=‖ f ‖21 + sup
h∈C
{2〈g, h〉π− ‖ h− f ‖21}.

As f belongs to C , replacing h by h′ = f − h, one obtains that the variational term is
equal to 2〈g, f〉π+ ‖ g ‖2−1, and moreover, replacing f by −f , one gets

‖ g + Sf ‖2−1=‖ f ‖21 −2〈g, f〉π+ ‖ g ‖2−1,

from which we derive:

〈g, (−S)f〉−1 = 〈g, f〉π.

From this last equality, it follows that H−1 ∩ L2(π) is contained in the H−1-closure of
{Sf : f ∈ C }. Indeed, �xing g ∈ H−1 ∩ L2(π) and assuming that 〈g, Sf〉−1 = 0 for all
f ∈ C , we get 〈g, f〉π = 0. This implies that g = 0 in L2(π), because the core C is dense
in L2(π), and, by (1.2), g = 0 in H−1. Our Claim follows from this observation, since
H−1 is the H−1-closure of H−1 ∩ L2(π).

1.2 The Simple Exclusion Process

The simple exclusion process is an interacting particle system, which consists of continuous-
time random walks on the lattice Zd, with particles distributed on it, such that, at every
instant, each site is occupied by at most one particle. So the dynamic of this process is
characterized by a hard-core interaction between particles. In order to describe it, we
introduce the probability measure p(·) on Zd. Then, a particle in the site x ∈ Zd jumps
to the site y with the translation-invariant transition probability p(x, y) = p(y − x) and
if a particle tries to jump on a site already occupied, the jump is supressed, in order to
respect the so-called exclusion rule. Moreover, the particles are allowed to jump only to
adjacent sites, in other words, we have the following assumption: p(x, y) = 0 if |x−y| 6= 1.

Formally, we will consider the space X = {0, 1}Zd , called the con�guration space,
endowed with the product topology, such that it becomes a metrizable, compact space.
Denoting each con�guration by η, we will put η(x) = 0 if the site x ∈ Zd is free, otherwise
η(x) = 1. We can also interpret η as the subset of occupied sites of Zd.
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The existence of the simple exclusion process was proved by Liggett [14], under the as-
sumption supy

∑
x p(x, y) <∞, which is always satis�ed for translation-invariant p(x, y).

Let C(X) be the collection of continuous functions on X, with the norm ‖ f ‖= supη∈X |
f(η) | and let C be its subset of cylinder functions on X. De�ne the con�guration σx,yη
obtained from η interchanging the occupation variables η(x), η(y):

(σx,yη)(z) =


η(z) if z 6= x, y,

η(y) if z = x,

η(x) if z = y.

(1.7)

Now we can consider the operator L de�ned on C as follows

(Lf)(η) =
∑
x,z∈Zd

η(x)[1− η(x+ z)]p(z)[f(σx,x+zη)− f(η)]. (1.8)

In [15], it is shown that this is a Markov pre-generator and its closure, still denoted by
L, is a Markov generator and C is a core for L. Moreover, through the Hille-Yosida
theorem ([15, Thm I.2.9]) we associate to the generator L the strictly Markovian Feller
semigroup {S(t) : t ≥ 0} on C(X).

We de�ne, as in the previous section, the smallest σ-algebra F o on the spaceD([0,∞),X)
of r.c.l.l. trajectories η : [0,∞)→ X and the canonical projections {Πt : t ≥ 0}, given by
Πt(η) = ηt.

Let {Pη : η ∈ X} be the normal Markov process associated to the semigroup {S(t) :
t ≥ 0}, then it is a family of probabilities measures on (D([0,∞),X),F o) characterized
by the same properties shown before:

• Pη[η0 = η] = 1 for all η ∈ X;

• for every A ∈ F o, the map η → Pη[A] is measurable;

• for all η ∈ X, f ∈ C(X), s, t ≥ 0,

Eη[f(ηt+s) | F o
s ] = (S(t)f)(ηs), Pη-a.s.,

.

Now we present the main assumptions that the probability measure p(·) has to satisfy,
in order to state all the results in the following chapters.

• p is irreducible: for any pair x, y ∈ Zd, there exists M ≥ 1 and a sequence x =
x0, · · · , xM = y such that, from de�nition of p(·), for 0 ≤ i ≤M − 1,

p(xi, xi+1) + p(xi+1, xi) := p(xi+1 − xi) + p(xi − xi+1) > 0.

So that the set {x : p(x) + p(−x) > 0} generates Zd.

• p has �nite range: there exists R ∈ N such that p(z) = 0 for all z such that | z |≥ R.
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• p does not charge the origin: p(0) = 0.

The conservation of the total number of particles has as a consequence the existence
of a one-parameter family of invariant measures, given through the Bernoulli product
measure υα of parameter 0 ≤ α ≤ 1. This means that under υα the variables {η(x), x ∈
Zd} are independent with marginals

υα(η(x) = 1) = α = 1− υα(η(x) = 0).

Proposition 1.5. The Bernoulli measures {υα, 0 ≤ α ≤ 1} are invariant for simple

exclusion processes.

Proof. By simple change of variables, for any cylinder functions f, g and any {x, y},∫
f(σx,yη)g(η)η(x)[1− η(y)]υα(dη) =

∫
f(η)g(σx,yη)η(y)[1− η(x)]υα(dη) (1.9)

With this identity, the fact that 1 =
∑

z∈Zd p(z) =
∑

z∈Zd p(−z) and a change in the
order of summation, we get that, for all cylinder functions f ,∫

Lfdυα = 0.

By Proposition 2.13 in [15], we conclude.

For 0 ≤ α ≤ 1 we have the �ltered space (D([0,∞),X),F o,Pυα , {F o
t : t ≥ 0}),

with the usual augmentation (D([0,∞),X),F ,Pυα , {Ft : t ≥ 0}), Pυα is the measure on
(D([0,∞),X),F o) given by

∫
Pηυα(dη), expectation with respect to Pυα is denoted by

Eυα . By theorems of Blumenthal and Getoor [1], {ηt : t ≥ 0} is a strong Markov process
with respect to this augmented �ltration. By Schwarz inequality, for any cylinder function
f , [S(t)f(η)]2 ≤ S(t)f2(η) and, since υα is a stationary measure for any α ∈ [0, 1],∫

[S(t)f(η)]2υα(dη) ≤
∫
f(η)2υα(dη).

Therefore the semigroup S(t) extends to a Markov semigroup on L2(υα) and approxi-
mating a function in L2(υα), one can show that the semigroup {S(t) : t ≥ 0} is strongly
continuous in L2(υα). Its generator is the closure of L in L2(υα), still denoted as L, and
the domain of L is denoted as D(L).

Denote by Lp∗ the in�nitesimal generator whose action on cylinder function is de�ned
by (1.8) with the probability measure p∗(x) = p(−x) in place of p. Denote by L∗ the
adjoint of L, we can state the following.

Lemma 1.6. The adjoint operator L∗ is a generator and L∗ = Lp∗. In particular C is

a common core for L and L∗.
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Proof. We �rst note that the space U = {(f, L∗f) : f ∈ (D)(L∗)} is the orthogonal of
the space B = {(Lg,−g) : g ∈ D(L)}, so that U = B⊥. A simple computation shows
that (f, L∗f), f ∈ D(L∗), is orthogonal to B. On the other hand, if a pair (f, h) is
orthogonal to B, 〈f, Lg〉υα = 〈h, g〉υα for all g ∈ D(L). This identity proves asserts that
f belongs to D(L∗) and that h = L∗f , which proves the orthogonality of the spaces U
and B.

It is now easy to deduce that L∗ is closed. Consider a sequence {fn : n ≥ 1} of
functions in D(L∗), such that fn, L

∗fn converge in L
2(υα) to f, h, respectively. Therefore,

(fn, L
∗fn) belongs to U = B⊥. Since B⊥ is closed, (f, h) ∈ B⊥ = U , so that f ∈ D(L∗)

and L∗f = h.
By (1.9), for every cylindric function f, g,

〈Lf, g〉υα = 〈f, Lp∗g〉υα . (1.10)

Since C is a core for L, this identity can be extended to f ∈ D(L). Hence, C ⊂ D(L∗)
and L∗g = Lp∗g for g ∈ C . This proves that the domain D(L∗) is dense in L2(υα) and
that 1 ∈ D(L∗) and L∗1 = Lp∗1 = 0. Denote by {Gλ : λ > 0}, the resolvent associated
to the generator L:

Gλ = (λ− L)−1;

and keep in mind that Gλ is a bounded operator: ‖ λGλ ‖≤ 1. Let G∗λ, with λ > 0,
be the adjoint of Gλ. It is easy to show that D(G∗λ) = L2(υα), ‖ G∗λ ‖=‖ Gλ ‖,
G∗λ(L2(υα)) ⊂ D(L∗) and G∗λ = (λ−L∗)−1. In particular, the range of λ−L∗ is L2(υα)
and L∗ is dissipative, since for every f ∈ D(L∗),

〈f, (−L∗)f〉υα = lim
λ→0
〈f, (λ− L∗)f〉υα = lim

λ→0
〈G∗λ(λ− L∗)f, (λ− L∗)f〉υα

= lim
λ→0
〈(λ− L∗)f,Gλ(λ− L∗)f〉υα

=λ→0 〈(λ− L)Gλ(λ− L∗)f,Gλ(λ− L∗)f〉υα ≥ 0

because L is dissipative. This proves that L∗ is a generator.
Now it remains to show that L∗ = Lp∗ . Denote by {Gp∗,λ : λ > 0} the resolvent

associated to the generator Lp∗ . It is enough to show that Gp∗,λ = G∗λ, since the latter
operator is the resolvent of the generator L∗. We claim that for every f ∈ D(Lp∗),
G∗λ(λ− Lp∗)f = f . Indeed, assume �rst that f ∈ C , in this case, by de�nition of G∗λ

〈G∗λ(λ− Lp∗)f, g〉υα = 〈(λ− Lp∗)f,Gλg〉υα ,

for every g ∈ L2(υα). Since Gλg ∈ D(L) and since C is a core for L, approximating Gλg
by a sequence {hn : n ≥ 1} in C such that hn → Gλg, Lhn → LGλg, by (1.10) we obtain
that the previous expression is equal to

〈f, (λ− L)Gλg〉υα = 〈f, g〉υα ,

which proves the claim for functions f in the core C . Since this is also a core for the
generator Lp∗ , and since G∗λ is a bounded operator, an approximation argument permits
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to extend the identity G∗λ(λ − Lp∗)f = f to functions f in the domain D(Lp∗). This
proves the claim.

To conclude, �x a function h ∈ L2(υα). Let hλ ∈ D(Lp∗) be the solution of (λ −
Lp∗)hλ = h, which exists because Lp∗ is a generator. By the previous identity and by
de�nition of Gp∗,λ,

G∗λh = G∗λ(λ− Lp∗)hλ = hλ = Gp∗,λ(λ− Lp∗)hλ = Gp∗,λh,

which proves that Gp∗,λ = G∗λ and so that L∗ = Lp∗ .

The simple exclusion process is said symmetric if the probability measure p is sym-
metric, so if p(z) = p(−z), with mean zero if p has zero average,

∑
z zp(z) = 0, and

asymmetric otherwise. In the symmetric case we have that the generator L is a symmet-
ric operator in L2(υα), or equivalently, that υα is a reversible measure for the symmetric
simple exclusion process. From theprevious result, it follows that in fact L is self adjoint.

Denote by s(·) and a(·), respectively, the symmetric and asymmetric part of the
probability measure p:

s(x) = 1/2{p(x) + p(−x)} (1.11)

a(x) = 1/2{p(x)− p(−x)}. (1.12)

Decomposing the operator L into its symmetric and asymmetric part, L = S + A,
where for any cylinder function f ,

(Sf)(η) =
∑
x,z∈Zd

η(x)(1− η(x+ z))s(z)[f(σx,x+zη)− f(η)],

(Af)(η) =
∑
x,z∈Zd

η(x)(1− η(x+ z))a(z)[f(σx,x+zη)− f(η)].

By the (1.9), with an elementary computation, for every f, g cylindric functions

〈Sf, g〉υα = 〈f, Sg〉υα , 〈Af, g〉υα = −〈f,Ag〉υα .

Moreover, we obtain

S = 1/2(L+ L∗), A = 1/2(L− L∗),

and with the change of variables x′ = x+ z, z′ = −z, for the symmetry of s(·), we have

(Sf)(η) =
∑
x,z∈Zd

η(x+ z)(1− η(x))s(z)[f(σx,x+zη)− f(η)].

Adding the two previous formulas for Sf and since σx,x+zη = η, unless η(x)(1−η(x+
z)) + η(x+ z)(1− η(x)) = 1, we deduce the simpler form

(Sf)(η) = 1/2
∑
x,z∈Zd

s(z)[f(σx,x+zη)− f(η)]
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for the operator S, which results to be the generator of the simple exclusion process with
probability measure s(·). Since s(·) is symmetric, by the previous lemma, it follows that
S is a self-adjoint operator on L2(υα).

Let D(f) be the Dirichlet form of a cylinder function f :

D(f) = 〈f, (−Lf)〉υα = 〈f, (−Sf)〉υα

= 1/4
∑
x,z∈Zd

s(z)

∫
[f(σx,x+zη)− f(η)]2υα(dη). (1.13)

This formula holds also for functions f in the domain D(L) of the generator, and the
series de�ned on the right-hand side converge absolutely.

Theorem 1.7. For any α ∈ [0, 1], υα is ergodic for L.

Proof. Let f ∈ L2(υα), such that s(t)f = f for any t ≥ 0. Then f ∈ D(L) and Lf = 0.
Multiplying this one by f and integrating, by (1.13) for functions in L , we get∑

x,z

s(z)

∫
[f(σx,x+zη)− f(η)]2υα(dη) = 0.

By assumption the support of s(·) generates Zd. We deduce, then, that for any x, y ∈ Zd

f(σx,yη) = f(η) υα-a.e.

By De Finetti's theorem we conclude that f is constant υα-a.e.

1.3 The Tagged Particle Process

In the previous section we gave a description of the simple exclusion process, but from
now on we are interested in studying the dynamics of a distinguished tagged particle in
this process and so the exclusion process "as seen from a tagged particle". We consider
the same setup as before: the probability measure p and the process {ηt : t ≥ 0} on
X = {0, 1}Zd , which satis�es the assumptions of the previous section, and we denote the
position, at time t ≥ 0, of the tagged particle by Zt. We will consider a con�guration η,
with this particle set at the origin.

Without the presence of other particles, Zt would evolve as a continuous-time random
walk, for which the classical results, as the Law of Large Numbers, the Central Limit
Theorem and the Invariance Principle, can be easily obtained. Now our aim is to study
the asymptotic behaviour of Zt, taking into account the eventual collisions with other
particles, called the environment. Clearly, these interactions alter the behaviour of the
tagged particle and make the study of its dynamic more complicate. Indeed {Zt : t ≥ 0}
by itself is not a Markov process. While the pair {(Zt, ηt) : t ≥ 0} it is.

In this Markov process the origin is always occupied by the tagged particle and the
evolution of the environment, consisting of the remaining particles, is observed from
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there. In order to keep the tagged particle at the origin, everytime this one jumps to the
site x, we will translate the entire con�guration by −x.

Denoting the group of translations on X by {τx : x ∈ Zd}, for all x, y ∈ Zd and for
η ∈ X,

(τxη)(y) = η(x+ y)

and being {ξt : t ≥ 0} the state of the process as seen from the tagged particle, where
ξt = τZtηt, we can note that the origin is always occupied:

ξt(0) = (τZtηt)(0) = ηt(Zt + 0) = ηt(Zt) = 1.

Due to this fact, we can consider the set Zd∗ = Zd \ {0} and consequently ξt is a con�gu-

ration of X∗ = {0, 1}Zd∗ . Moreover, as already stated, to keep the tagged particle at the
origine, de�ne on X∗ the shift operators {θx : x ∈ Zd∗}, such that

(θxξ)(y) =

{
ξ(x) if y = −x
ξ(x+ y) otherwise.

This means that θx(ξ) is the con�guration where the tagged particle jumps to site x and
then all the con�guration is translated by −x.

As in the previous section, we assume X∗ endowed with the product topology, which
tunrs it into a metrizable, compact space and we will work on C(X∗), the Banach space of
continuous functions on X∗, with the norm ‖ f ‖= supξ∈X∗ | f(ξ) |. Denoting C ⊂ C(X∗)
the space of cylinder functions, which depend on con�guration η only through a �nite
number of coordinates, we de�ne on it the sum operator L = L0 +Lθ, with L0 and Lθ

de�ned as follows:

(L0f)(ξ) =
∑

x,y∈Zd∗

p(y − x)ξ(x)[1− ξ(y)][f(σx,yξ)− f(ξ)],

(Lθf)(ξ) =
∑
z∈Zd∗

p(z)[1− ξ(z)][f(θzξ)− f(ξ)],
(1.14)

such that the �rst one describes the jumps of the environment, while the second one the
jumps of the tagged particle. Here, again, we have that the operator L is a Markov
pregenerator and its closure, still denoted by L , is a Markov generator, with C a core
for L . Once again, through the Hille-Yosida theorem, we associate to the generator L
the strictly Markovian Feller semigroup {S(t) : t ≥ 0} on C(X∗). Let D([0,∞),X∗) be
the space of right continuous left limited trajectories ξ : [0,∞)→ X∗ and let {Πt : t ≥ 0}
be the canonical projections Πt(ξ) = ξt. We represent F o

t the smallest σ-algebra relative
to which all the projections Πs, 0 ≤ s ≤ t, are measurable.

Here, we can denote the family of stationary states, the Bernoulli product measure
on X∗, by υ∗α, with density 0 ≤ α ≤ 1 and with marginals given by

υ∗α(ξ : ξ(x) = 1) = α = 1− υ∗α(ξ : ξ(x) = 0) for x ∈ Zd∗.

The notation 〈·, ·〉υ∗α stands for the scalar product in L2(υ∗α). We have the analogous of
proposition 1.5 for the simple exclusion process, that states the �rst important assump-
tion to develop the next results.
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Proposition 1.8. The Bernoulli measures {υ∗α : 0 ≤ α ≤ 1} are invariant for the

Markov process {ξt : t ≥ 0}.

Proof. For any cylinder functions f, g and any z ∈ Zd∗,∫
f(θzξ)g(ξ)[1− ξ(z)]υ∗α(dξ) =

∫
f(ξ)g(θ−zξ)[1− ξ(−z)]υ∗α(dξ),

thanks to a simple change of variables. Moreover from this and from (1.9), we have for
all cylinder functions f, g,

< g,L f >υ∗α=< Lp∗g, f >υ∗α (1.15)

and p∗(z) = p(−z). In particular,
∫

L fdυ∗α = 0 for any cylinder function f , and this
proves the result, using Proposition 2.13 in [15].

Observation. The probability measures υ∗α are invariant for the operators L0 and Lθ

taken individually if and only if the probability measure p is symmetric.

For 0 ≤ α ≤ 1 we have the �ltered space (D([0,∞),X∗),F o,Pυα , {F o
t : t ≥ 0}), with

the usual augmentation (D([0,∞),X∗),F ,Pυα , {Ft : t ≥ 0}), with respect to the which
{ξt : t ≥ 0} is a strong Markov process.

The semigroup {St : t ≥ 0} extends to a Markov semigroup on L2(υ∗α) whose generator
Lυ∗α is the closure of L in L2(υ∗α), where the density α remains �xed. We will denote
by L ∗ the adjoint of L in L2(υ∗α) and by Lp∗ the generator acting on C(X∗) and on
L2(υ∗α). Using the simple notation L to denote Lυ∗α and being D(L ) the domian of L
in L2(υ∗α), we have

Lemma 1.9. The adjoint operator L ∗ is a generator and L ∗ = Lp∗. In particular C
is a common core for L and L ∗ and L is self-adjoint with respect to each υ∗α, when p
is symmetric.

Proof. This result follows from Lemma 1.6 and from equation (1.15) in the previous
proof.

Moreover, for any cylinder function f ,〈
f, (−L )f

〉
υ∗α

=: D(f) = D0(f) + Dθ(f) (1.16)

with

D0(f) = (1/2)
∑

x,y∈Z∗d

s(y − x)

∫
ξ(x)[1− ξ(y)](T x,yf)(ξ)2υ∗α(dξ)

Dθ(f) = (1/2)
∑
z∈Z∗d

s(z)

∫
[1− ξ(z)](T zf)(ξ)2υ∗α(dξ),
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where s(·) stands for the symmetric part of the probability p(·) and where, for a function
f ∈ L2(υ∗α),

(T x,yf)(ξ) = f(σx,yξ)− f(ξ)

(T zf)(ξ) = f(θzξ)− f(ξ).

With this de�nition (T x,yf)(ξ) vanishes if ξ(x) = ξ(y) and, since T x,yf = T y,xf , it is
possible to rewrite

D0(f) = (1/4)
∑

x,y∈Z∗d

s(y − x)

∫
(T x,yf)(ξ)2υ∗α(dξ),

obtaining the Dirichlet form for cylinder functions f , in the domain D(L ).
Unlike the previous case, the probability measures {υ∗α : 0 ≤ α ≤ 1} are ergodic in

all but one degenerate case.

Theorem 1.10. Assume d = 1 and p(·) such that
∑

x 6=±1 p(x) > 0 or assume d ≥ 2.
Then, for any 0 ≤ α ≤ 1, υ∗α is ergodic for L .

Proof. Fix a function f ∈ L2(υ∗α) invariant for the semigroup generated by L , so such
that S(t)f = f for any t ≥ 0. Then f is in the domain of L and L f = 0. By multiplying
by f both sides of this equation andd integrting, we obtain

1/4
∑

x,y∈Z∗d

s(y−x)

∫
[f(σx,yξ)−f(ξ)]2υ∗α(dξ)+1/2

∑
x∈Z∗d

s(x)

∫
[1−ξ(x)][f(θxξ)−f(ξ)]2υ∗α(dξ) = 0.

Under the made assumptions, the support of s(·) generates Z∗d. Hence, for any x, y ∈ Z∗d,

f(σx,yξ) = f(ξ) υ∗α-a.e..

By De Finetti's theorem we conclude that f is constant υ∗α-a.e..

So, from now on, we exclude the degenerate case with d = 1 and
∑

x 6=±1 p(x) = 0,
which means that for all x 6= ±1, p(x) = 0, this is the case of the simple transition process
where only nearest neighbor jumps can occur. These assumptions will be fundamental
to state and prove the results in the following.



Chapter 2

Law of Large Numbers

Now we want to show the �rst important result for the exclusion process described in
the previous chapter: the Law of Large Numbers for the position of the tagged particle
Zt.

Theorem 2.1. Let α ∈ [0, 1] and set m =
∑

x∈Zd∗ xp(x). Then, Pυ∗α-almost surely

lim
t→∞

Zt
t

= [1− α]m.

In order to derive the desired result, it will be useful to represent the position of the
tagged particle in terms of elementary orthogonal martingales associated to the jumps
of the process.

2.1 Representation of the Tagged Particle's Position

We introduce here the de�nition of the jump processes {N z
t : t ≥ 0}:

De�nition 2.2. For z ∈ Zd∗ such that p(z) > 0 and for 0 ≤ s < t, let N z
[s,t] be the total

number of jumps of the tagged particle from the origin to the site z, in the time interval
[s, t]. Analogously, for x, y ∈ Zd∗ such that p(y − x) > 0, let Nx,y

[s,t] be the total number of

jumps of a particle from x to y in the interval [s, t].

We will set N z
[0,t] = N z

t and Nx,y
[0,t] = Nx,y

t . Through the jump processes, we de�ne in
the following lemma the elementary orthogonal martingales and we will compute their
quadratic variation.

Lemma 2.3. For x, y, z ∈ Zd∗ such that p(z) > 0, p(y − x) > 0, denote

M z
t = N z

t −
∫ t

0
p(z)[1− ξs(z)]ds

Mx,y
t = Nx,y

t −
∫ t

0
p(y − x)ξs(x)[1− ξs(y)]ds.

(2.1)

19
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Then, {M z
t : p(z) > 0} and {Mx,y

t : p(y − x) > 0} are orthogonal martingales with

quadratic variation
〈
M z
〉
t
and

〈
Mx,y

〉
t
, given by〈

M z
〉
t

=

∫ t

0
p(z)[1− ξs(z)]ds〈

Mx,y
〉
t

=

∫ t

0
p(y − x)ξs(x)[1− ξs(y)]ds.

(2.2)

Proof. Fix x, y, z ∈ Zd∗ such that p(z) > 0, p(y − x) > 0, (ξt, N
z
t , N

x,y
t ) is a Markov

process on X∗ × Z× Z with generator Lx,y,z given by

(Lx,y,zf)(ξ, k, j) = p(y − x)ξ(x)[1− ξ(y)]{f(σx,yξ, k, j + 1)− f(ξ, k, j)}
+ p(z)[1− ξ(z)]{f(θzξ, k + 1, j)− f(ξ, k, j)}

+
∑

x′,y′∈Zd∗

p(y′ − x′)ξ(x′)[1− ξ(y′)]{f(σx
′,y′ξ, k, j)− f(ξ, k, j)}

+
∑
z′ 6=z

p(z′)[1− ξ(z′)]{f(θz′ξ, k, j)− f(ξ, k, j)}

In this formula the �rst sum is over all pairs (x′, y′) ∈ Zd∗ × Zd∗ di�erent from (x, y).
Applying Dynkin's formula to the functions F1(ξ, k, j) = k, F2(ξ, k, j) = j, we show that
M z
t , M

x,y
t are martingales with quadratic variation as stated.

To show that these martingales are orthogonal is su�cient to prove that M z
tM

x,y
t is

a martingale too. Rewriting the processes N z
t , N

x,y
t as N z

t = M z
t +

∫ t
0 p(z)[1 − ξs(z)]ds

and Nx,y
t = Mx,y

t +
∫ t

0 p(y − x)ξs(x)[1− ξs(y)]ds, we can plug these in

N z
t N

x,y
t −

∫ t

0
{N z

s p(y − x)ξs(x)[1− ξs(y)] +Nx,y
s p(z)[1− ξs(z)]}ds,

which is a martingale by the Dynkin's formula applied to F (ξ, k, j) = kj, and integrating
by parts we have that

M z
tM

x,y
t +

∫ t

0
{M z

s p(y − x)ξs(x)[1− ξs(y)] +Mx,y
s p(z)[1− ξs(z)]}d

+

∫ t

0
p(y − x)ξs(x)[1− ξs(y)]ds

∫ t

0
p(z)[1− ξs(z)]ds

−
∫ t

0
{N z

s p(y − x)ξs(x)[1− ξs(y)] +Nx,y
s p(z)[1− ξs(z)]}ds

is a martingale. Expressing the martingales M z, Mx,y in terms of the jump processes
N z, Nx,y we obatin that

M z
tM

x,y
t +

∫ t

0

∫ s

0
p(z)[1− ξr(z)]drp(y − x)ξs(x)[1− ξs(y)]ds

+

∫ t

0

∫ s

0
p(y − x)ξr(x)[1− ξr(y)]drp(z)[1− ξs(z)]ds

+

∫ t

0
p(y − x)ξs(x)[1− ξs(y)]ds

∫ t

0
p(z)ξs(z)ds
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is a martingale. With an integration by parts the integrals cancel, so that M z
tM

x,y
t is a

martingale, as claimed.

We can use the same argument to prove that any pair of distinct martingales in the
set {M z

t : p(z) > 0}∪ {Mx,y
t : x, y ∈ Zd∗, p(y− x) > 0} is a martingale and this concludes

the proof.

These martingales associated to the jumps of the Markov process are called elemen-
tary martingales because any martingale given by the Dynkin's formula can be rewritten
in terms of them. Indeed, for a cylinder function f : X∗ → R, by the Dynkin's formula,
we obtain the martingale

Mf
t = f(ξt)− f(ξ0)−

∫ t

0
(L f)(ξs)ds. (2.3)

And rewriting f(ξt)− f(ξ0) as the sum of all di�erences arising from a jump to or from
a site contained in the support of f in the interval [0, t], we have

f(ξt)− f(ξ0) =
∑

x,y∈Zd∗

∫ t

0
(T x,yf)(ξs−)dNx,y

s +
∑
z∈Zd∗

∫ t

0
(T zf)(ξs−)dN z

s .

Using this di�erence, we obtain

Mf
t =

∑
x,y∈Zd∗

∫ t

0
(T x,yf)(ξs−)dMx,y

s +
∑
z∈Zd∗

∫ t

0
(T zf)(ξs−)dM z

s , (2.4)

where p(z) = 0 and p(y − x) = 0, respectively, imply M z
t = 0 and Mx,y

t = 0. So we have

derived the representation of Mf
t in terms of the elementary martingles and, since these

ones are orthogonal, one can easily compute the quadratic variation of the martingale
Mf :

〈
Mf
〉
t

=

〈 ∑
x,y∈Zd∗

∫ t

0
(T x,yf)(ξs−)dMx,y

s +
∑
z∈Zd∗

∫ t

0
(T zf)(ξs−)dM z

s

〉
t

=

〈 ∑
x,y∈Zd∗

∫ t

0
(T x,yf)(ξs−)dMx,y

s ,
∑

x,y∈Zd∗

∫ t

0
(T x,yf)(ξs−)dMx,y

s

〉
t

+

〈∑
z∈Zd∗

∫ t

0
(T zf)(ξs−)dM z

s ,
∑
z∈Zd∗

∫ t

0
(T zf)(ξs−)dM z

s

〉
t

=
∑

x,y∈Zd∗

p(y − x)

∫ t

0
ξs(x)[1− ξs(y)](T x,yf)(ξs)

2ds

+
∑
z∈Zd∗

p(z)

∫ t

0
[1− ξs(z)](T zf)(ξs)

2ds,

(2.5)
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where the second equality follows from orthogonality and the third one from the quadratic
variation of M z

t and Mx,y
t , seen in Lemma 2.3. By the quadratic variation of Mf

t , we get

Eυ∗α [(Mf
t )2] = t

∑
x,y∈Zd∗

p(y − x)

∫
ξ(x)[1− ξ(y)](T x,yf)(ξ)2υ∗α(dξ)

+ t
∑
z∈Zd∗

p(z)

∫
[1− ξ(z)](T zf)(ξ)2υ∗α(dξ).

(2.6)

Moreover, via the change of variables ξ′ = θzξ and ξ
′′ = σx,yξ, we can use the following

identities to replace p by s:

(T x,yf)(ξ) = (T y,xf)(ξ),

(T zf)(θ−zξ) = −(T−zf)(ξ),

(T x,yf)(σx,yξ) = −(T x,yf)(ξ),

and also

(T x,yf)(ξ)2{ξ(x)[1− ξ(y)]}+ ξ(y)[1− ξ(x)]} = (T x,yf)(ξ)2,

at the end, from (2.6) we have

Eυ∗α [(Mf
t )2] = t

∑
x,y∈Zd∗

s(y − x)

∫
ξ(x)[1− ξ(y)](T x,yf)(ξ)2υ∗α(dξ)

+ t
∑
z∈Zd∗

s(z)

∫
[1− ξ(z)](T zf)(ξ)2υ∗α(dξ)

= 2tD(L ),

(2.7)

where the last step holds from the de�nition of D(L ) in (1.16).

We also want to prove that the representation (2.4) is applicable also to functions in
the domain D(L ).

Lemma 2.4. Let u ∈ D(L ). Then the martingale

Mu
t = u(ξt)− u(ξ0)−

∫ t

0
(L f)(ξs)ds

can be represented as in (2.4) with u in place of f :

Mu
t =

∑
x,y∈Zd∗

∫ t

0
(T x,yu)(ξs−)dMx,y

s +
∑
z∈Zd∗

∫ t

0
(T zu)(ξs−)dM z

s (2.8)

Proof. Since u belongs to the domain of the generator and the space of cylinder functions
forms a core for the generator in L2(υ∗α), there exists a sequence of cylinder functions
{fn : n ≥ 1} such that fn and L fn converges in L2(υ∗α) to u and L u, respectively.
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Hence, for every t > 0 the martingale Mfn
t , de�ned by (2.3), with fn in place of f , as

n ↑ ∞, converges in L2(υ∗α) to the martingale Mu
t , de�ned again by (2.3) with u in place

of f . This one gives a martingale in L2(υ∗α) because the partial sums form a Cauchy
sequence in L2(υ∗α), let call it mu

t .

So we need to show that Mu
t = mu

t : it is enough to show that Mfn
t converges in

L2(υ∗α) to mu
t . Since fn is a cylinder function, the martingale Mfn

t can be represented
through the elementary martingales M z, Mx,y by (2.4). Since these martingales are
orthogonal, by the computation performed to obtain (2.7), we have

1

t
Eυ∗α [(Mfn

t −mu
t )2] = 2D(fn − u)

and this expression vanishes as n ↑ ∞ by the chioce of the sequence {fn : n ≥ 1}. This
concludes the proof.

2.2 Proof of the Law of Large Numbers

In order to prove Theorem 2.1, which states the Pυ∗α-convergence of the position of the
tagged particle Zt over the time t, we need the convergence of the elementary martingales,
introduced in the previous section. So, we want to examine the L2(Pυ∗α)-limits of the

martingales Mf
t , where f is a cylinder function.

As in Section 1.1, denote by H1 the Hilbert space generated by the space C of cylinder
functions endowed with the scalar product 〈f, (−L )g〉υ∗α , with associated norm ‖ · ‖1,
such that

‖ f ‖21= D0(f) + Dθ(f),

as we have seen in (1.16), for functions f ∈ C . This identity extends to the domain
D(L ) since C forms a core for L . Using the probability measure υ∗α in place of π, it is
possible to de�ne H−1 the dual space of H1, with norm given by the variational formula

‖ f ‖2−1= sup
g∈C
{2〈f, g〉υ∗α− ‖ g ‖

2
1}, f ∈ L2(υ∗α).

As we did before, from this formula it is easy to check that, for every function f ∈ H1

and every function g ∈ L2(υ∗α) ∩H−1 we get

| 〈f, g〉υ∗α |≤‖ f ‖1‖ g ‖−1

and moreover f in L2(υ∗α) belongs to H−1 if and only if there exists a �nite constant C
such that

〈f, g〉υ∗α ≤ C ‖ g ‖1 (2.9)

for every g ∈ C . In this case ‖ f ‖−1≤ C. This also has been already shown in the
general context in Claim C of Section 1.1.

Denote now by L2(υ∗α) the space of the sequences

Ψ = {Ψz : X∗ → R; p(z) > 0} × {Ψx,y : X∗ → R;x, y ∈ Zd∗; p(y − x) > 0}
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of functions in L2(υ∗α) such that∑
z∈Zd∗

p(z)

∫
[[1− ξ(z)]Ψz(ξ)

2]υ∗α(dξ) +
∑

x,y∈Zd∗

P (y − x)

∫
[ξ(x)[1− ξ(y)]Ψx,y(ξ)

2]υ∗α(dξ)

is �nite. L2(υ∗α) is endowed with the scalar product 〈·, ·〉 de�ned by

〈Ψ,Φ〉 =
∑
z∈Zd∗

p(z)

∫
[[1− ξ(z)]Ψz(ξ)Φz(ξ)]υ

∗
α(dξ)

+
∑

x,y∈Zd∗

p(y − x)

∫
[ξ(x)[1− ξ(y)]Ψx,y(ξ)Φx,y(ξ)]υ

∗
α(dξ).

A function u in the domain D(L ) induces a sequence in L2(υ∗α). Denoting this one
Ψu, we have

Ψu
z = T zu, Ψu

x,y = Tx,yu.

Moreover, Ψ ∈ L2(υ∗α) de�nes the square integrable martingale MΨ, like in (2.4), with
Ψz, Ψx,y in place of T zf , T x,yf , such that

Eυ∗α [(MΨ
t )2] = t〈Ψ,Ψ〉.

Denote by L2
0(υ∗α) the closed subspace of L2(υ∗α) composed by all sequences Ψ for

which the following relations are υ∗α-a.s.

Ψx,y(ξ) = Ψy,x(ξ)

Ψx,y(σ
x,yξ) = −Ψx,y(ξ)

Ψx,y(ξ)
2{ξ(x)[1− ξ(y)] + ξ(y)[1− ξ(x)]} = Ψx,y(ξ)

2

Ψz(θ−zξ) = −Ψ−z(ξ)

With these formulas, repeating the same computation in the previous section, we obtain

1

t
Eυ∗α [(MΨ

t )2] = 〈Ψ,Ψ〉

= (1/2)
∑

x,y∈Zd∗

s(y − x)

∫
Ψx,y(ξ)

2υ∗α(dξ)

+
∑
z∈Zd∗

s(z)

∫
[1− ξ(z)]Ψz(ξ)

2υ∗α(dξ)

(2.10)

and we can see the analogy with (2.7). It follows:

Lemma 2.5. Consider a sequence of cylinder functions {fn : n ≥ 1} which forms a

Cauchy sequence in H1. Then, there exists Ψ in L2
0(υ∗α) such that Mfn

t converges to MΨ
t

in L2(Pυ∗α) for all t ≥ 0.
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Proof. A sequence {fn : n ≥ 1} of cylinder functions forms a Cauchy sequence in H1

if and only if {Ψfn : n ≥ 1} forms a Cauchy sequence in L2(υ∗α). In particular, Ψfn

converges in L2(υ∗α) to some Ψ which belongs to L2
0(υ∗α) because this space is closed. By

(2.10), Mfn
t converges to MΨ

t in L2(υ∗α).

To conclude, we will prove the Theorem 2.1, through the obtained results. Recall
that we can represent the position at time t of the tagged particle as the sum of the
number of jumps multiplied by their size:

Zt =
∑
z∈Zd∗

zN z
t =

∑
z∈Zd∗

zM z
t +

∫ t

0
V (ξs)ds, (2.11)

where the second equality derives from the de�nition of the jump processes {N z
t : t ≥ 0}

and V is the cylinder function given by

V (ξ) =
∑
z∈Zd∗

zp(z)[1− ξ(z)].

We have seen that the �rst term Mt =
∑

z∈Zd∗ zM
z
t is a martingale with quadratic

variation bounded by Ct, under the stationary measure Pυ∗α . In particular, we have,
almost surely,

lim
t→∞

Mt

t
= 0.

For what concern the other factor, since Pυ∗α is ergodic, almost surely,

lim
t→∞

1

t

∫ t

0
V (ξs)ds = Eυ∗α [V ] = (1− α)m.

This proves that Zt
t converges Pυ∗α-almost surely to (1−α)m. This factor is exactly what

we expected. Indeed, since υ∗α is stationary, the site to which the tagged particle chooses
to jump is empty with probability 1−α. So, a mean displacement in the stationary state
should be equal to (1− α)m.





Chapter 3

Central Limit Theorem

Now we want to prove the Central Limit Theorem for the position of the tagged particle
in an exclusion process, such that, as we assumed, the mean m is equal to zero or the
dimension d is greater than 2.

Theorem 3.1. Assume that m = 0 or that d ≥ 3. Then, under Pυ∗α ,

Zt − (1− α)mt

t1/2

converges in distribution, as t ↑ ∞, to a mean zero Gaussian random vector with covari-

ance matrix D(α), a quadratic form strictly positive and �nite. So that we can write, for

all a ∈ Rd,
C−1

0 α(1− α) | a |2≤ a ·D(α)a ≤ C0(1− α) | a |2,

where C0 is a strictly positive and �nite constant, depending only on p.

The proof is obtained from the de�nition of the tagged particle's position Zt seen in
(2.11), from which we can derive:

Zt − (1− α)tm =
∑
z∈Zd∗

zM z
t +

∫ t

0
Ṽ (ξs)ds, (3.1)

where Ṽ (ξs) is the mean zero cylinder function:

Ṽ (ξ) = V (ξ)− (1− α)m =
∑
x∈Zd∗

xp(x)(α− ξ(x))

and
∑

z∈Zd∗ zM
z
t =: Mt is a martingale. After rewriting the position Zt in this way, it is

su�cient to use a proof of the central limit theorem for additive functionals of Markov
processes, which relies on bounds on H−1. In order to apply this argument, we need to
introduce the concept of resolvent equation.

27



28 CHAPTER 3. CENTRAL LIMIT THEOREM

3.1 The Resolvent Equation

Let us study the general case, where we have a �xed function V in L2(π) ∩H−1 and a
�xed coe�cient λ > 0. We can consider the resolvent equation, from [13].

λfλ − Lfλ = V, (3.2)

where L is the generator of our Markov process, while fλ = (λ − L)−1V belongs to the
domain D(L) of the generator. Taking the scalar product with respect to fλ on both
sides, we get

λ〈fλ, fλ〉π+ ‖ fλ ‖21= 〈V, fλ〉π. (3.3)

Hence, by Schwarz inequality (1.4),

λ〈fλ, fλ〉π+ ‖ fλ ‖21≤‖ fλ ‖1‖ V ‖−1,

so that
‖ fλ ‖1≤‖ V ‖−1 .

Combining these two bounds, one obtains the stronger estimate

λ〈fλ, fλ〉π+ ‖ fλ ‖21≤‖ V ‖2−1 . (3.4)

From where we conclude that λfλ vanishes in L2(π) as λ ↓ 0 and that {fλ : 0 < λ ≤ 1}
forms a bounded sequence in H1. Moreover, since fλ = (λ−L)−1V , from (3.4) (λ−L)−1

extends from L2(π) to a bounded mapping from H1 to H−1. In conclusion, for any
V ∈H−1, we have

‖ (λ− L)−1V ‖1≤‖ V ‖−1 .

Now we can state that a central limit theorem for the additive functional t−1/2
∫ t

0 V (Xs)ds
holds provided the following two conditions are satis�ed

lim
λ→0

λ ‖ fλ ‖2π= 0 and lim
λ→0
‖ fλ − f ‖1= 0 (3.5)

for some f ∈H1. This will be proved in the next section for our speci�c case. But �rst,
we want to show that these two conditions are implied by the following bound

sup
0<λ≤1

‖ Lfλ ‖−1<∞.

Lemma 3.2. Fix a function V ∈ H−1 ∩ L2(π) and denote by {fλ : λ > 0} the solution

of the resolvent equation. Assume that supλ>0 ‖ Lfλ ‖−1≤ C0 for some �nite constant

C0. Then, there exists f ∈H1 such that (3.5) holds.

Proof. We have already proved with (3.4) that

sup
0<λ≤1

‖ fλ ‖1≤‖ V ‖−1 and sup
0<λ≤1

λ ‖ fλ ‖2π≤‖ V ‖2−1 .

In particular, λfλ vanishes in L2(π), as λ ↓ 0. The proof consists in several claims.
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• Lfλ converges weakly in H−1 to −V , as λ ↓ 0.

It is su�cient to prove that lim
λ→0

λfλ = 0 weakly in H−1. Since supλ>0 ‖ Lfλ ‖−1

is bounded, so is supλ>0 ‖ λfλ ‖−1. As a result any sequence {λnfλn : n ≥
1} is weakly precompact in H−1, as λn ↓ 0. We show that 0 is the only weak
limiting point. Suppose, therefore, that λnfλn converges weakly in H−1 to g.
Since 〈g, (−S)f〉−1 = 〈f, g〉π and λfλ converges to 0 strongly in L2(π), for any
h ∈ C

〈g, (−S)h〉−1 = lim
n→∞

〈λnfλn , (−S)h〉−1 = lim
n→∞

〈λnfλn , h〉π.

Moreover, we can prove that H−1 is the closure of {Sf : f ∈ C }. This implies
{Sf : f ∈ C } is dense in H−1 so that g = 0.

• In the same way, since supλ>0 ‖ fλ ‖1 is bounded, each sequence λn ↓ 0 has a
subsequence, still denoted by λn, for which fλn converges weakly in H1 to some
function W . The function W satis�es the relation

‖W ‖21= 〈W,V 〉π.

To check this identity apply Mazur's theorem to the sequences fλn and Lfλn to
obtain sequences gn and Lgn which converge strongly in H1 to W an, respectively,
in H−1 to −V . Keeping in mind that each gn is obtained by �nite convex com-
bination of functions fλk and therefore belongs to the domain D(L) and since gn
(resp. Lgn) converges strongly in H1 (resp. H−1) to W (resp. −V ), we have that
〈gn, Lgn〉π converges to −〈W,V 〉π. On the other hand, since 〈gn, Lgn〉π =‖ gn ‖21,
it converges to ‖W ‖21. It follows,

‖W ‖21= 〈W,V 〉π

.

• lim
λ→0

λ ‖ fλ ‖2π= 0.

Suppose by contradiction that λ ‖ fλ ‖2π does not converge to 0, as λ→ 0. In this
case there exists ε > 0 and a subsequence λn ↓ 0 such that λn ‖ fλn ‖2π≥ ε for
all n. We have just shown the existence of a sub-subsequence λn′ for which fλn′
converges weakly in H1 to some W satisfying the relation 〈W,V 〉π =‖W ‖21. Since
f − λ is the solution of the resolvent equation,

lim sup
n′→∞

‖ fλn′ ‖
2
1 ≤ lim sup

n′→∞
(λn′ ‖ fλn′ ‖

2
π + ‖ fλn′ ‖

2
1)

= lim sup
n′→∞

〈fλn′ , V 〉π = 〈W,V 〉pi =‖W ‖21

≤ lim sup
n′→∞

‖ fλn′ ‖
2
1 .

These inequalities contradict the fact that λn ‖ fλn ‖2π≥ ε for all n, so that
lim
λ>0

λ ‖ fλ ‖2π= 0.
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• fλ converges strongly in H1 as λ ↓ 0.

From the previous argument it follows that fλn′ converges to W strongly in H1. In
particular, all sequences λn have subsequences λn′ for which fλn′ converges strongly
in H1. To show that fλ converges strongly, it remains to check uniqueness of the
limit. Consider two decreasing sequences λn µn, vanishing as n ↑ ∞. Denote by
W1W2 the strong limit in H1 of fλn fµn , respectively. Since fλ is the solution of
the resolvent equation,

〈λnfλn − µnfµn , fλn − fµn〉π+ ‖ fλn − fµn ‖21= 0

for all n. Since fλn fµn , converges strongly to W1W2 in H1,

lim
n→∞

‖ fλn − fµn ‖21=‖W1 −W2 ‖21 .

On the other hand, since λ ‖ fλ ‖2π vanishes as λ ↓ 0,

lim
n→∞

〈λnfλn − µnfµn , fλn − fµn〉π = − lim
n→∞

(〈λnfλn , fµn〉π + 〈µnfµn , fλn〉π).

Each of these terms vanish as n ↑ ∞. Indeed,

λn〈fλn , fµn〉π = λn〈fλn , fµn −W2〉π + λ〈fλn ,W2〉π.

By Schwarz inequality (1.3), the �rst term on the right hand side is bounded above
by ‖ λnfλn ‖−1‖ fµn −W2 ‖1, which vanishes because λfλ is bounded in H−1 and
fµn converges to W2 in H1. To show that the second term of the previous formula
also vanishes, �x ε > 0. Since H1 is obtained as the completion of C , there exists
g ∈ C such that ‖W2− g ‖1≤ ε. By the same Schwarz inequality, the second term
is then absolutely bounded by sup0<λ≤1 ‖ λfλ ‖−1 ε+ | 〈λnfλn , g〉π |. Since λfλ
vanishes in L2(π) as λ ↓ 0, the second term on the right hand side of the previous
displayed formula converges to 0 as n ↑ ∞. This concludes the proof of the lemma.

3.2 Proof of the Central Limit Theorem

Now the aim is to show that the previous argument is valid in our case, taking into
account the (3.1). Fix a vector a ∈ Rd and let Va = a · Ṽ . Denoting by uλ the solution
of the resolvent equation and with L our generator, we get

λuλ −L uλ = Va. (3.6)

In this section, we will prove Theorem 3.1, assuming that for every vector a ∈ Rd

Va ∈H−1 and sup
0<λ≤1

‖ L uλ ‖−1<∞. (3.7)
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By Lemma 3.2, from these conditions it follows that

lim
λ→0

λ〈uλ, uλ〉υ∗α = 0 and uλ converges inH1 asλ ↓ 0. (3.8)

The strategy is to represent the additive functional
∫ t

0 Va(ξs)ds as the sum of a martingale
mt and a negligible term and then to use the central limit theorem for the martingale
Mt +mt, where Mt =

∑
z z · aM z

t .

For λ > 0, let mλ
t be the martingale

mλ
t = uλ(ξt)− uλ(ξ0)−

∫ t

0
(L uλ)(ξs)ds.

By the result 2.4, the previous martingale can be represented in term of elementary
martingales, as

mλ
t =

∑
x,y∈Zd∗

∫ t

0
Ψλ
x,y(ξs)dM

x,y
s +

∑
z∈Zd∗

∫ t

0
Ψλ
z (ξs)dM

z
s , (3.9)

where Ψλ
y,x = T x,yuλ, Ψλ

z = T zuλ. The resolvent equation permits to write the position
of the tagged particle Zt as

Zt · a− (1− α)t(m · a) = Mt +mλ
t +Rλt , (3.10)

where Mt is the martingale
∑

z(z · a)M z
t and where the remainder Rλt is given by

Rλt = uλ(ξ0)− uλ(ξt) + λ

∫ t

0
uλ(ξs)ds.

Lemma 3.3. For every t > 0, the martingale mλ
t converges in L2(Pυ∗α) to some martin-

gale mt as λ ↓ 0.

Proof. The sequence uλ converges in H1 as λ ↓ 0 and C forms a core for the generator
L , so, by Lemma 2.5, the martingale mλ

t converges in L
2(Pυ∗α) to a martingale mt = MΨ

t

associated to a sequence Ψ in L2
0(υ∗α).

Also the remainder Rλt in 3.10 converges in L2(Pυ∗α), as λ ↓ 0, so that

Zt · a− (1− α)t(m · a) = Mt +mt +Rt. (3.11)

In order to work only with martingales, we can prove that the remainder term vanishes.

Lemma 3.4. In L2(Pυ∗α)

lim
t→∞

Rt

t1/2
= 0.
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Proof. Putting together (3.1) and (3.11), we get∫ t

0
Ṽ (ξs)ds = mt +Rt.

Moreover, using (3.10) and from the expression of the remainder Rλt , we have∫ t

0
Ṽ (ξs)ds = mλ

t + uλ(ξ0)− uλ(ξt) + λ

∫ t

0
uλ(ξs)ds.

From these two formulas we derive

Rt√
t

=
1√
t

{
mλ
t −mt + uλ(ξ0)− uλ(ξt) + λ

∫ t

0
uλ(ξs)ds

}
.

We consider separately each term on the right hand side of the above expression. Since
mλ
t converges to mt in L

2(Pυ∗α),

1

t
Eυ∗α [(mλ

t −mt)
2] =

1

t
lim
λ′→0

Eυ∗α [(mλ
t −mλ′

t )2].

The computation of the quadratic variation of the martingale Mλ
t −Mλ′

t shows that the
previous expression is equal to

2 lim
λ′→0

‖ uλ − uλ′ ‖21= 2 ‖ uλ − u ‖21 .

In the last step we used the assumption that uλ converges in H1 to some u, as stated in
(3.8). We now estimate the term Rλt , considering that

Eυ∗α [(
√
tRλt )2] ≤ 3

t
Eυ∗α [uλ(ξt)

2] +
3

t
Eυ∗α [uλ(ξ0)2] +

3

t
λ2Eυ∗α

[{∫ t

0
uλ(ξs)ds

}2]
.

Since {ξt, t ≥ 0} is stationary with the initial distribution υ∗α we obtain that the �rst two
expressions on the right hand side taken together yield 6t−1 ‖ uλ ‖2υ∗α . On the other hand,

by Schwarz inequality, the third term is bounded by 3tλ2 ‖ uλ ‖2υ∗α . Putting together all
the previous estimates, we obtain that, for all λ > 0,

1

t
Eυ∗α [R2

t ] ≤ 2 ‖ uλ − u ‖21 +2(6t−1 + 3tλ2) ‖ uλ ‖2υ∗α .

Setting λ = t−1 we conclude the proof in view of the (3.5), with u in place of f .

Since both martingalesMt andmt are written in terms of the elementary martingales,
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the quadratic variation of the sum is easy to compute:

〈M +m〉t =

〈∑
z∈Zd∗

z · aM z
t +

∑
x,y∈Zd∗

∫ t

0
Ψx,y(ξs)dM

x,y
s +

∑
z∈Zd∗

∫ t

0
Ψz(ξs)dM

z
s

〉
t

=

〈 ∑
x,y∈Zd∗

∫ t

0
Ψx,y(ξs)dM

x,y
s ,

∑
x,y∈Zd∗

∫ t

0
Ψx,y(ξs)dM

x,y
s

〉
t

+

〈∑
z∈Zd∗

z · aM z
t +

∫ t

0
Ψz(ξs)dM

z
s ,
∑
z∈Zd∗

z · aM z
t +

∫ t

0
Ψz(ξs)dM

z
s

〉
t

=
∑

x,y∈Zd∗

p(y − x)

∫ t

0
ξs(x)[1− ξs(y)]Ψx,y(ξs)

2ds

+
∑
z∈Zd∗

p(z)

∫ t

0
[1− ξs(z)]{a · z + Ψz(ξs)}2ds,

(3.12)

where the last inequality holds from the quadratic variation of the elementary martin-
gales, de�ned in Lemma 2.3.

By the ergodic theorem under Pυ∗α , t
−1〈M + m〉t converges a.s. and in L1(Pυ∗α). So

t−1/2{Mt +mt}, and therefore t−1/2[Zt · a− (1− α)t(m · a)] converges in distribution to
a mean zero Gaussian variable with variance D(α) satisfying

a ·D(α)a =
∑

x,y∈Zd∗

p(y − x)

∫
ξ(x)[1− ξ(y)]Ψx,y(ξ)

2υ∗α(dξ)

+
∑
z∈Zd∗

p(z)

∫
[1− ξ(z)]{a · z + Ψz(ξ)}2υ∗α(dξ).

(3.13)

Since Ψ belongs to L2
0(υ∗α), we can derive that

a ·D(α)a =
1

2

∑
x,y∈Zd∗

s(y − x)

∫
Ψx,y(ξ)

2υ∗α(dξ)

+
∑
z∈Zd∗

s(z)

∫
[1− ξ(z)]{a · z + Ψz(ξ)}2υ∗α(dξ).

(3.14)

In principle, we would need a strictly positive lower bound and a �nite upper bound,
in order to prevent the asymptotic variance D(α) from vanishing or being +∞. Such
bounds can be derived, even if we will not show it here ([13, Section 6.8]) and the proof
of the central limit theorem is, therefore, complete.

However, we have to remember that this result has been achieved under the assump-
tions on the solution of the resolvent equation:

Va ∈H−1 and sup
0<λ≤1

‖ L uλ ‖−1<∞. (3.15)

The purpose, now, is to show that these conditions hold in the mean zero case or if d ≥ 3.
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The Symmetric Case In this paragraph it will be shown that the function Va belongs
to H−1 if m = 0 and that the solution of the resolvent equation satis�es the second of
(3.15) provided p(−x) = p(x), proving the central limit theorem for the tagged particle
in the symmetric case.

Proposition 3.5. Assume that m = 0. Then the cylinder function Va belongs to H−1

and ‖ Va ‖2−1≤ Cχ(α) | a |2.

Proof. To show that Va ∈ H−1 we need to prove that there exists a �nite constant C
such that, for every cylinder function f ,

〈f, Va〉υ∗α ≤ C
√
χ(α) ‖ f ‖1| a | .

Fix a cylinder function f . In the mean zero caso, Va can be rewritten as∑
x∈Zd

(a · x)p(x){ξ(e)− ξ(x)}

where e is any �xed site of Zd∗. Since s(·) generates Zd∗, for each x such that p(x) > 0,
there exists a path x = y0, . . . , yn = e going from x to e avoinding the origin and such
that s(yi+1 − yi) > 0. Since

〈ξ(e)− ξ(x), f〉υ∗α =
n−1∑
i=0

〈ξ(yi+1)− ξ(yi), f〉υ∗α .

With the change of variables ξ′ = σyi,yi+1ξ, we may rewrite the previous sum as

−1

2

n−1∑
i=0

〈ξ(yi+1)− ξ(yi), T yi,yi+1f〉υ∗α ,

for which we clearly have

−1

2

n−1∑
i=0

〈ξ(yi+1)− ξ(yi), T yi,yi+1f〉υ∗α ≤
1

2
nAα(1− α) +

1

4A

n−1∑
i=0

Eυ∗α [(T yi,yi+1f)2]

for every A > 0. Summing over all x such that p(x) > 0, we get

〈Va, f〉υ∗α ≤ CAα(1− α) | a |2 +
C

A
D0(f)

for all A > 0 and some �nite constant C0. Minimizing the previous expression with
respect to A, we come to the conclusion.

This proposition proves that the �rst assumption in (3.15) holds in the mean zero
case. While, the second one is due to the reversibility of the process in the symmetric
case, as we show with the following argument.
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Assume that the generator L is self adjoint in L2(υ∗α). In this case, as we have seen
in Claim D in Section 1.1, L u belongs to H−1 for any function u ∈ D(L ) and

‖ L u ‖−1≤‖ u ‖1 .

In fact the equality holds. In particular, in the reversible case, our condition follows from
the estimate

sup
0<λ≤1

‖ uλ ‖1<∞,

which follows from (3.4).

The Asymmetric Case We will treat here the mean zero case
∑

x p(x)x = 0 in the
more general asymmetric case. The �rst assumption, proved in Proposition 3.5, holds
also for the asymmetric case, since it was a direct consequence of m = 0.

Assume that the generator L satis�es the sector condition

〈f, (−L )g〉2υ∗α ≤ C〈f, (−L )f〉υ∗α〈g, (−L )g〉υ∗α (3.16)

for some �nite constant C and for every cylinder function f , g in the domain of the
generator D(L ). In view of (1.6), for any function g in D(L ),

‖ L g ‖2−1≤ C ‖ g ‖21

and the desired condition in (3.15) follows again from the estimate

sup
0<λ≤1

‖ uλ ‖1<∞.

So now it is enough to show that the generator satis�es the sector condition. In order
to obtain this result we will use the decomposition of a mean zero probability in cycle
probability measures. The following notions are from [13, Chapter 5].

A cycle C of length n is a sequence of n sites of Zd starting and ending at the same
point: (y0, y1, . . . , yn−1, yn = y0), yi 6= yi+1, 0 ≤ i ≤ n− 1.

De�nition 3.6. A mean zero probability measure pC on Zd, associated to a cycle C,
which does not charge the origin is de�ned by

pC(x) =
1

n

n−1∑
j=0

1{x = yj+1 − yj} (3.17)

and is called a cyclic probability measure.

The cyclic probability measure has mean is zero, indeed

∑
x∈Zd

xpC(x) =
1

n

∑
x∈Zd

n−1∑
j=0

x1{x = yj+1 − yj} =
1

n

n−1∑
j=0

(yj+1 − yj) =
yn − y0

n
= 0.
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Moreover, for a positive integer m, �nite cycles C = {C1, . . . , Cm} and a probability
measure w = {w1, . . . , wm}, let pC,w(·) be the probability measure on Zd de�ned by

pC,w(·) =

m∑
k=1

wkpCk(·).

We prove in the following Lemma that all �nite- range, zero-mean probability measure
which do not charge the origin may be written as a convex combination of cyclic proba-
bility measures.

Lemma 3.7. Fix a �nite-range mean zero probability measure p on Zd which does not

charge the origin. There exists m ≥ 1 �nite cycles C = {C1, . . . , Cm} and a probability

measure w = {w1, . . . , wm} such that p = pC,w(·), the probability measure associated to

a �nite collection of cycles C and to a probability measure w.

This result states that the generator L of an exclusion process associated to a mean
zero probability measure p can be written as L =

∑
1≤j≤mwjLCj , for a probability

{w1, . . . , wm} and cycles {C1, . . . , Cm} with associated cycle generator LCj . Let L be
a generator which can be decomposed as a convex combination of two generators: L =
θL1 + (1− θ)L2, for some 0 < θ < 1. Denote by 〈·, ·〉 the scalar product in L2(ν), where
ν is a stationary state. The next result asserts that L satis�es a sector condition if both
L1 and L2 do.

Lemma 3.8. If there exist �nite constants B1, B2 such that

| 〈−Ljf, g〉 |≤ B1〈−Ljf, f〉1/2〈−Ljg, g〉1/2

for j = 1, 2 and all functions f , g in a common core C for L,L1, L2, then

| 〈−Lf, g〉 |≤ B〈−Lf, f〉1/2〈−Lg, g〉1/2

for every f, g ∈ C and for B = B1 +B2.

So, in general, a sector condition holds for a �nite convex combination of generators
if it holds individually and with the next it holds for an exclusion process associated to
a cyclic probability measure.

Lemma 3.9. For every cylinder function f, g

| 〈LCf, g〉υα |≤ 4n2〈−LCf, f〉1/2υα 〈−LCg, g〉
1/2
υα .

Applying these lemmas the next proposition follows from a sector condition for gen-
erators associated to cycles.

Proposition 3.10. There exists a �nite constant C, depending only on the probability

measure p, such that

〈f, (−L )g〉2υ∗α ≤ C〈f, (−L )f〉υ∗α〈g, (−L )g〉υ∗α
for all cylinder functions f , g.
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Proof. By Lemma 3.7 and Lemma 3.8, we may assume that p is a cycle probability
measure:

p(x) =
1

n

n−1∑
j=0

1{x = yj − yj−1},

for some n ≥ 1, the length of the cycle, and some set C = {y0, · · · , yn−1, yn = y0}.
We also assume that the cycle is irreducible in the sense that yi 6= yj if i 6= j, for
0 ≤ i, j ≤ n− 1. Let C + x be the cycle {y0 + x, · · · , yn−1 + x, yn + x}. Since the cycle
C is irreducible, there are exactly n cycles of the form C + x which intersect the origin:
C − y0, · · · , C − yn−1. For a cycle C + x which does not intersect the origin, let L 0

C+x

be the generator de�ned by

(L 0
C+xf)(ξ) =

1

n

n−1∑
k=0

ξ(yk + x)[1− ξ(yk+1 + x)]{f(σyk+x,yk+1+xξ)− f(ξ)}.

On the other hand, for the cycle C − yj , 0 ≤ j ≤ n − 1, we have the corresponding
generator

(L 0
C−yjf)(ξ) =

1

n

∑
0≤k≤n−1
k 6=j−1,j

ξ(yk − yj)[1− ξ(yk+1 − yj)]{f(σyk−yj ,yk+1−yjξ)− f(ξ)},

where we ignore the jump from yj−1 − yj to the origin, because the origin stays always
occupied, and from the origin to yj+1 − yj , because this jump does not appear in the
generator associated to the environment. Moreover, note that in both formulas, we can
remove the factors ξ(yk + x) and ξ(yk − yj),without any change.

For the probability measure p obtained from the cycle C, the generator associated to
the jumps of the tagged particle is written as

(Lθf)(ξ) =
1

n

n−1∑
k=0

[1− ξ(yk+1 − yk)]{f(θyk+1−ykξ)− f(ξ)}.

Let L1 =
∑

x/∈C L 0
C−x be the piece of the generator L whose cycles do not intersect the

origin and let L2 = Lθ +
∑

0≤j≤n−1 L 0
C−yj . By Lemma 3.18, we derive

〈f, (−L1g)〉2υ∗α ≤ 16n4〈f, (−L1f)〉υ∗α〈g, (−L1g)〉υ∗α , (3.18)

where, on the right hand side, we can replace L1 by L , since we are adding only non
negative terms.

It remains to prove a similar bound for the generator L2, which involves n(n −
2) measure-preserving transformations coming from

∑
0≤j≤n−1 L 0

C−yj and n additional
measure-preserving transformations coming from the term Lθ. Denote by T1, . . . , Tn−1

these transformations. We claim that there is a permutation s of {1, . . . , n(n− 1)} such
that Ts(n(n−1)) . . . Ts(1)ξ = ξ, provided ξ has a hole in a speci�c site. Even if a rigorous
proof of this property is too lenghty.
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Eventually, considering the generators L3 =
∑

0≤j≤n−1 L 0
C−yj and Lθ, it is possible

the derive the searched bound, see Lemma 5.8 in [13], obtaining

〈f, (−L3 −Lθg)〉2υ∗α ≤ 16n2〈f, (−L3 −Lθf)〉υ∗α〈g, (−L3 −Lθg)〉υ∗α . (3.19)

Here again, we may replace the generator L3 + Lθ by L on the right hand side. This
bound together with the previous one gives us the sector condition for the mean zero
exclusion process as seen from the tagged particle.

In conclusion, if the mean of the process m =
∑

x∈Zd∗ xp(x) is equal to zero, we have
proved a central limit theorem in both symmetric and asymmetric case. So far, this result
has been established only in the mean zero case and in the asymmetric case in dimension
d ≥ 3. It is conjectured to hold also in dimensions 1 and 2 in the case m 6= 0, but this is
still an open problem, given that even the �niteness of the asymptotic variance has not
yet been proved.



Chapter 4

Invariance Principle

The fundamental result that we would like to show in this work is the Invariance Principle
for the position of the tagged particle. Our aim is to state the convergence to a Brownian
motion in the rough path topology, for this purpose we need to de�ne the main notions
of the rough path theory, which will be necessary.

4.1 Elements of Rough Path Theory

A rough path generalizes the notion of smooth path, in order to give meaning to integrals
of the form

∫
f(X)dX or to provide solutions to controlled di�erential equations of the

form dY = f(Y )dX, for rough paths X. Often the path X is the sample path of a
Wiener process and in that case we talk of stochastic di�erential equations.

Here, following the main arguments of Friz and Hairer in [8], we de�ne the space of
Hölder continuous rough paths, but then we will replace the "α-Hölder continuity" by
the "�nite p-variation" for p = 1/α. The reasons of this choice lie in the fact that the
value of such an integral or solution does not depend on the parametrisation of X, just
as the p-variation of a function is independent of its parametrisation.

De�nition 4.1. A rough path on an interval [0, T ] with values in a Banach space V
consists of a continuous function X : [0, T ]→ V and a continuous "second order process"
X : [0, T ]2 → V ⊗ V , subject to certain algebraic and analytical conditions, such as the
Chen's relation

Xs,t − Xs,u − Xu,t = Xs,u ⊗Xu,t, (4.1)

which must hold for every triple of times (s, u, t). Since Xt,t = 0, taking s = u = t it
follows that we also have Xt,t = 0 for every t. So we can put∫ t

s
Xs.r ⊗ dXr := Xs,t, (4.2)

where the right hand side is taken as a de�nition for the left hand side.

39
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Note that the algebraic relations (4.1) are by themselves not su�cient to determine
X as a function of X. Indeed, for any V ⊗ V -valued function F , the substitution Xs,t 7→
Xs,t + Ft − Fs leaves the left hand side of (4.1) invariant. So it remains to discuss what
are the analytical conditions one should impose.

We will assume that the path X itself is α-hölder continuous, so that | Xs,t |.| t−s |α
(the symbol "." stands for "less equal than up to a constant"). The archetype of an
α-hölder continuous function is one which is self-similar with index α, so that
Xλs,λt ∼ λαXs,t. Given (4.2), we expect X to be self-similar as well, but with Xλs,λt ∼
λ2αXs,t. This argument justi�es the following de�nition for the space of (hölder contin-
uous) rough paths.

De�nition 4.2. For α ∈ (1
3 ,

1
2), de�ne the space of α-hölder rough paths, over V , in

symbols C α([0, T ], V ), as the pairs (X,X) such that

‖ X ‖α:= sup
s 6=t∈[0,T ]

| Xs,t |
| t− s |α

<∞, ‖ X ‖2α:= sup
s 6=t∈[0,T ]

| Xs,t |
| t− s |2α

<∞, (4.3)

and such that the algebraic constraint (4.1) is satis�ed.

Observation. Obviously, this construction is only possible if α ≤ 1
2 , indeed by (4.3) X has

to be 2α-hölder continuous. Furthermore, we have chosen α ∈ (1
3 ,

1
2) since the Lyons-

Victoir extension theorem asserts that given an arbitrary path X ∈ C α, with values in
some Banach space V , it can be always lifted to a rough path (X,X) ∈ C α provided
α ∈ (1

3 ,
1
2). In general, instead, this is not always possible.

We now want to introduce the notion of Skorokhod topology in some metric space,
in view of the work of I. Chevyrev and P. Friz [5]. Denote by C([s, t], E) and D([s, t], E)
the spaces of continuous and càdlàg functions (or paths) respectively, from an interval
[s, t] into a metric space (E, d). Equip C([s, t], E) with the usual uniform metric

d∞,[st](x, y) = sup
r∈[s,t]

d(x(r), y(r)).

While, on D([s, t], E) we consider a topological structure introduced by A.V. Skorokhod
as an alternative to the uniform topology, in order to study the convergence in distribution
of stochastic processes with jumps.

De�nition 4.3. Denote Λ[s,t] the set of all striclty increasing bijections of [s, t] to itself
and, for λ ∈ Λ, denote | λ |:= supr∈[s,t] | λ(r) − r | . For any x, y ∈ D([s, t], E), the
Skorokhod metric is given by

σ∞,[s,t](x, y) = inf
λ∈Λ[s,t]

{| λ | ∨d∞,[s,t](x ◦ λ, y)},

Let D = (t0 = s < t1 < · · · < tk−1 < tk = t) denote a partition of [s, t] and let
∑

ti∈D
denote summation over all points in D, with | D |= maxti∈D | ti+1− ti | the mesh-size of
a partition.
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De�nition 4.4. For p > 0, we de�ne the p-variation of a path X := (X,X) in D([s, t], E)
by

‖ X ‖p,[s,t]:= sup
D⊂[s,t]

(∑
ti∈D

d(Xti ,Xti+1)p
)1/p

.

Denote Dp−var([s, t], E) subspaces of path of �nite p-variation.

A càdlàg rough path Xn is said with uniformly bounded p-variation if

sup
n
‖ Xn ‖p,[0,T ]=: L <∞.

On Dp−var we de�ne a p-variation variant to the Skorokhod metric, �xing p = 1
α , then

p ∈ (2, 3).

De�nition 4.5. For p ∈ (2, 3) and for any càdlàg rough paths X := (X,X), Z = (Z,Z),
with �nite p-variation, we set

σp,[0,T ](X,Z) := inf
λ∈Λ
{| λ | ∨ ‖ X ◦ λ;Z ‖p,[0,T ]}

where we de�ne

‖ Y;Z ‖∞,[0,T ]:=‖ Y − Z ‖∞,[0,T ] + ‖ Y− Z ‖∞,[0,T ] .

Observation. Note that by Chen's relation (4.1)

Xs,t = X0,t − X0,s −X0,s ⊗Xs,t whenever 0 ≤ s ≤ t ≤ T

and therefore

‖ X− Z ‖∞,[0,T ] = sup
0≤s<t≤T

| Xs,t − Zs,t |

.‖ X0,· − Z0,· ‖∞,[0,T ]

+ (‖ X0,· ‖∞,[0,T ] ∨ ‖ Z0,· ‖∞,[0,T ]) ‖ X0,· − Z0,· ‖∞,[0,T ] .

This means that it is su�cient to show the convergence in distribution in the uniform,
respectively Skorokhod, topology of the processes (Xn

0,·,Xn0,·) in order to obtain the con-
vergence of (Xn,Xn) in distribution in the uniform, respectively Skorokhod, topology.

Moreover, by Lemma 8.16 in [9] which states the usual interpolation estimate for the
homogeneous metric dp−var, it follows

Lemma 4.6. Fix p ∈ (2, 3). Let Xn = (Xn,Xn) and X = (X,X) be rough paths with

uniformly bounded p-variation, then, for any p′ > p, there exists C = C(p, p′) such that

‖ Xn;X ‖p′,[0,T ]≤ CL
p
p′ ‖ Xn;X ‖

1− p
p′

∞,[0,T ] .

As a consequence, assuming that Xn = (Xn,Xn) converges in distribution to X = (X,X)
in the uniform, respectively Skorokhod topology and that the family (‖ (Xn,Xn) ‖p,[0,T ])n
is tight, then (Xn,Xn) converges in distribution to (X,X) in the p′-variation uniform,

respectively Skorokhod topology for all p′ ∈ (p, 3).
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Now we can focus only on semimartingales X, that we want to lift to a rough path

X =

(
X,

∫
X− ⊗ dX

)
.

We will call X the Itô lift.

Theorem 4.7. With probability one, the Itô lift X of a Rd-valued r.c.l.l. semimartingale
X is a r.c.l.l. p-rough path, with p ∈ (2, 3).

Furthermore, taking into account Rough Di�erential Equations and Stochastic Dif-
ferential Equations, one has the following equivalence driven by semimartingales, proved
in [10].

Proposition 4.8. Assume X is a semimartingale and X =

(
X,
∫
X− ⊗ dX

)
is its Itô

lift. Let F ∈ C3
b . Then the solution for the RDE

dYt = F (Yt)
ldXt. Y0 = y0,

is equivalent with probability one to the solution of the Itô SDE

dYt = F (Y −t )dXt, Y0 = y0.

As a consequence of the previous proposition, we get

Theorem 4.9. Consider the rough path equation with solution Y :

dYt = F (Yt−)d(X,X)t, Y0 = y0.

If X is a semimartingale and Xs,t =
∫ t
s Xr− ⊗ dXr + Γ(t− s) for Γ ∈ Rd×d, then

dYt = F (Yt−)dXt +

d∑
i,j=1

(DF (Yt−)F (Yt))i,jΓi,jdt.

BDG inequality and UCV condition In this paragraph, following the results in [5],
we will see an extension of Lépingle's Burkhölder-Davis-Gundy inequality to our context.
The BDG inequality, applied for continuous local martingale rough paths, turns out to
be a fundamental tool, together with the uniformly controlled variation (UCV), to derive
basic convergence theorems for stochastic integrals in Skorokhod topology.

Consider a Rd-valued semimartingale (Xt,Ft), t ≥ 0, such that X0 = 0 and the
quadratic variation is denoted by 〈X〉. We have the following inequality in Lp spaces:

Lemma 4.10. For 1 ≤ p < ∞, there exist cp, Cp, positive constants depending only on

p, such that

cpE[〈X〉p] ≤ E
[

sup
0≤s≤t

| Xs |p
]
≤ CpE[〈X〉p].
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This inequality has been proved in three steps: Burkhölder in [2] proved the cases
1 < p < ∞, Burkhölder and Gundy in [3] the cases 0 ≤ p < 1 for a large class of
martingales and Davis [6] the case p = 1 for all martingales.

From [5] we recall the next lemma, which is crucial in establishing �nite p-variation
of the lift of a local martingale, for the proof see [5, Lemma 4.2].

Lemma 4.11. For every 2 < q < p < r there exists C = C(p, q, r) such that for every

Rd-valued martingale X

E
[
‖ X ‖pp

]
≤ CE

[
| 〈X〉∞ |q/2

]
+ CE

[
| 〈X〉∞ |r/2

]
.

Corollary 4.12. For every Rd-valued semimartingale X, p > 2 and T > 0, it holds that
a.s.

‖ X ‖p,[0,T ]<∞,

so X has �nite p-variation.

Recall that a function F : [0,∞) → [0,∞) is called moderate if it is continuous,
increasing F (x) = 0 if and only if x = 0, and there exists c > 0 such that F (2x) ≤ cF (x)
for all x > 0. Now we can state the p-variation rough path BDG inequality which will
be used in the next sections.

Theorem 4.13. For every convex moderate function F and p > 2 there exists c, C > 0
such that for every Rd-valued local martingale X

cE
[
F (| 〈X〉∞ |1/2)

]
≤ E

[
F (‖ X ‖p)

]
≤ CE

[
F (|‖ 〈X〉∞ |1/2)

]
.

As an application of the BDG inequality, we obtain a convergence criterion for lifted
local martingales in the rough path space. We �rst recall, from [5], the uniformly con-
trolled variation (UCV) condition for a sequence of semimartingales.

De�nition 4.14. A sequence of semimartingales (Xn)n≥1 satis�es the UCV condition if
there exists δ > 0 such that for all α > 0 there exist decompositions Xn,δ = Mn,δ +Kn,δ

and stopping times τn,α such that for all t ≥ 0

sup
n≥1

P[τn,α ≤ α] ≤ 1

α
and

sup
n≥1

E
[
〈Mn,δ〉t∧τn,α+ | Kn,δ |1−var,[0,t∧τn,α]

]
<∞.

Now we can state the main result that allows us to pass from convergence in the
Skorokhod topology to convergence in rough path topology.

Theorem 4.15. Let (Xn)n≥1 be a sequence of semimartingales such that X
n converges in

law (respectively in probability) to a semimartingale X in the Skorokhod topology. Assume

that (Xn)n≥1 satis�es the UCV condition. Then the lifted processes (Xn)n≥1 converge

in law (resp. in probability) to the lifted process X in the Skorokhod space D([0, T ], E).
Moreover, for every p > 2, (‖ Xn ‖p)n≥1 is a tight sequence of real random variables.
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4.2 Convergence in Rough Path Topology

As before, the apporach here is based on decomposing the position of the tagged particle,
that we will now denote Xt, as a martingale plus an additive functional of a certain
Markov process. Therefore, recalling (3.1), we have

Xt := Zt − (1− α)tm =
∑
z∈Zd∗

zM z
t +

∫ t

0
Ṽ (ξs)ds =: Mt + Yt.

We also de�ne the rescaled process

Xn
t =

1√
n
Xnt = Mn

t + Y n
t , (4.4)

with the obvious de�nition of the rescaled processes Mn and Y n. Moreover, from (4.2),
we have

Xs,t =

∫ t

s
Xs,r ⊗ dXr and so Xns,t =

∫ t

s
Xn
s,r ⊗ dXn

r . (4.5)

The main idea is to apply the martingale central limit theorem to Mn and the in-
variance principle for additive functionals to Y n and the result that we aim to obtain is
the following invariance principle.

Theorem 4.16. The process (Xλ,n,Xλ,n) converges in distribution in the p-variation
Skorokhod topology to (

B,

(∫ t

0
Bs ⊗ dBs +

1

2
〈B,B〉t + Γt

)
t≥0

)
,

where B is a Browninan motion with covariance

〈B,B〉t = t lim
λ→0

∑
z∈Zd∗

∫ [
p(z)[1− ξ(z)][z + Ψλ

z (ξ)]2
]
υ∗α(dξ)

+ t lim
λ→0

∑
x,y∈Zd∗

∫ [
p(y − x)Ψλ

x,y(ξ)
2ξ(x)[1− ξ(y)]

]
υ∗α(dξ)

(4.6)

and where

Γ = −1

2

∑
z∈Zd∗

∫ [
z2p(z)[1− ξ(z)]

]
dυ∗α.

With this we want to show the convergence in rough path topology. Recalling Lemma
4.6, the proof can be separated in two problems: identifying the limit of the sequence
of processes (Xλ,n,Xλ,n) and showing the tightness of (Xλ,n,Xλ,n) in the p-variation
Skorokhod topology.



4.2. CONVERGENCE IN ROUGH PATH TOPOLOGY 45

4.2.1 Identi�cation of the Limit

First of all we generalize Theorem 3.1 to obtain the following:

Lemma 4.17. Under the probability measure Pυ∗α, the pair (Mn, Y n) converges in dis-

tribution in the Skorokhod topology on D(R+,R2d) to a 2d-dimensional Brownian motion

(BM , BY ) with covariance

〈BM +BY , BM +BY 〉t = t lim
λ→0

∑
z∈Zd∗

∫
[p(z)[1− ξ(z)][z + Ψλ

z (ξ)]2]υ∗α(dξ)

+ t lim
λ→0

∑
x,y∈Zd∗

∫
[p(y − x)Ψλ

x,y(ξ)
2ξ(x)[1− ξ(y)]]υ∗α(dξ).

(4.7)

In order to understand the joint convergence of (Mn, Y n) we must consider the pre-
dictable quadratic covariation between Mn and the martingale that results from the
decomposition of the additive functional, as seen in Section 3.2. That is the sum of a
martingale mλ

t and a neglegible term Rλt :∫ t

0
Ṽ (ξs)ds = mλ

t + uλ(ξ0)− uλ(ξt) + λ

∫ t

0
uλ(ξs)ds =: mλ

t +Rλt , (4.8)

where

mλ
t = uλ(ξt)− uλ(ξ0)−

∫ t

0
(L uλ)(ξs)ds

is a martingale in L2(Pυ∗α) with mλ
0 = 0. We write mλ,n

t := 1√
n
mλ
nt and R

λ,n
t := 1√

n
Rλnt

Since mλ
t can be expressed in terms of elementary martingales which are orthogonal, it is

easy to compute the predictable quadratic covariation of the martingales Mj(t) +mλ
j (t).

In order to do that, we need to recall some of the previous de�nitions.
WhileMt,j =

∑
z∈Zd∗ z ·M

z
t,j , the martingale mλ

j , expressed in terms of the elementary
martingales M z and Mx,y, is given in (3.9), as follows:

mλ
j =

∑
x,y∈Zd∗

∫ t

0
Ψλ
x,y(ξs)dM

x,y
s,j +

∑
z∈Zd∗

∫ t

0
Ψλ
z (ξs)dM

z
s,j ,

where Ψλ
y,x = T x,yuλ, Ψλ

z = T zuλ. Moreover, recalling Lemma 2.3, M z
t and Mx,y

t are
orthogonal martingales with quadratic variation given by〈

M z
〉
t

=

∫ t

0
p(z)[1− ξs(z)]ds〈

Mx,y
〉
t

=

∫ t

0
p(y − x)ξs(x)[1− ξs(y)]ds

Now, we can �nally compute the covariation using the polarization identity,

〈Mj +mλ
j ,Mi +mλ

i 〉t =
1

2

(
〈Mj +mλ

j +Mi +mλ
i 〉t − 〈Mj +mλ

j 〉t − 〈Mi +mλ
i 〉t
)
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Then, with a straight forward computation, the only remaining terms are the covariations

〈Mj ,Mi〉t + 〈Mj ,m
λ
i 〉t + 〈mλ

j ,Mi〉t + 〈mλ
j ,m

λ
i 〉t. (4.9)

Taking into account the quadratic variations for the elementary martingales and the fact
that they are orthogonal, for the �rst term in (4.9) we get

〈Mj ,Mi〉t =
∑
z∈Zd∗

∫ t

0
(ej · ei)z2p(z)[1− ξs(z)]ds,

while the second and the third ones yield

〈Mj ,m
λ
i 〉t + 〈Mi,m

λ
j 〉t = 2

∑
z∈Zd∗

∫ t

0
(ej · ei)zΨλ

z (ξs)p(z)[1− ξs(z)]ds

and last one gives

〈mλ
j ,m

λ
i 〉 =

∑
z∈Zd∗

∫ t

0
(ej · ei)Ψλ

z (ξs)
2p(z)[1− ξs(z)]ds

+
∑

x,y∈Zd∗

∫ t

0
(ej · ei)Ψλ

x,y(ξs)
2p(y − x)ξs(x)[1− ξs(y)]ds.

In conclusion, altogether

〈Mj +mλ
j ,Mi +mλ

i 〉t =
∑
z∈Zd∗

∫ t

0
(ej · ei)p(z)[1− ξs(z)][z + Ψλ

z (ξs)]
2ds

+
∑

x,y∈Zd∗

∫ t

0
(ej · ei)p(y − x)Ψλ

x,y(ξs)
2ξs(x)[1− ξs(y)]ds.

(4.10)

From the predictable quadratic covariation, we derive the covariance matrix σ2 = {σ2
i,j :

1 ≤ i, j ≥ d} given by

σ2
i,j = lim

λ→0

∑
z∈Zd∗

∫
[(ej · ei)p(z)[1− ξ(z)][z + Ψλ

z (ξ)]2]υ∗α(dξ)

+ lim
λ→0

∑
x,y∈Zd∗

∫
[(ej · ei)p(y − x)Ψλ

x,y(ξ)
2ξ(x)[1− ξ(y)]]υ∗α(dξ).

Note that, when i = j, we get the variance (3.13) of the random Gaussian vector de�ned
by the Central Limit Theorem 3.1, otherwise it is equal to zero. So this formula coincides
with the (4.7) of Lemma 4.17.

At this point, we work with the decomposition of the position of the tagged particle
as a martingale and an additive functional, seen at the beginning of the section:

Xt = Mt + Yt, (4.11)
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where

Mt =
∑
z∈Zd∗

zM z
t and Yt =

∫ t

0
Ṽ (ξs)ds.

Firstly, our aim is to show a scaling limit for the additive functional seen as rough path,
namely

Y n
s,t :=

1√
n

∫ nt

ns
Ṽ (ξr)dr, Yns,t :=

∫ t

s
Y n
s,r ⊗ dY n

r . (4.12)

And later, we will strengthen Lemma 4.17 to derive the joint convergence of (Mn, Y n,Yn).

In order to obtain a convergence result for the additive functional, we must take into
account its decomposition based on the resolvent equation, as we have already mentioned
in section 3.2, even if without proving all the details. From now on we will write V , in
place of Ṽ and we will denote LS the symmetric part of the generator L .

Lemma 4.18. Consider V ∈ L2(Pυ∗α) ∩H−1. For λ > 0, let uλ be the solution of the

resolvent equation λuλ −L uλ = V . Then

λ ‖ uλ ‖2υ∗α + ‖ uλ ‖21≤‖ V ‖2−1

and there exists a martingale mλ with mλ
0 = 0 and with Eυ∗α

[
〈mλ〉t

]
= 2t

∫
(uλ ⊗

(−LS)uλ)dυ∗α, such that∫ t

0
V (ξs)ds = uλ(ξ0)− uλ(ξt) +

∫ t

0
λuλ(ξs)ds+mλ

t =: Rλt +mλ
t . (4.13)

We write mλ,n
t := n−1/2mλ

nt and R
λ,n
t := n−1/2Rλnt for the rescaled processes.

Proof. Applying the Dynkin's formula to the function uλ, one de�nes the martingale mλ
t

as before:

mλ
t = uλ(ξt)− uλ(ξ0)−

∫ t

0
(L uλ)(ξs)ds

and gets∫ t

0
V (ξs)ds =

∫ t

0
[λuλ(ξs)ds−L uλ(ξs)]ds =

∫ t

0
λuλ(ξs)ds+mλ

t − uλ(ξt) + uλ(ξ0).

Furthermore, with Lemma 3.2 we proved that the conditions in (3.5) hold; combining
these two, the solution uλ to the resolvent equation satis�es

lim
λ→0

(√
λ ‖ uλ ‖υ∗α + ‖ uλ − u ‖1

)
= 0 (4.14)

for some u in H1. Now we get
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Lemma 4.19. If condition (4.14) holds, then there exist processes Rn,mn ∈ D(R+,Rd)
such that, for all T > 0 and n ∈ N

lim sup
λ→0

{
Eυ∗α

[
sup
t≤T
| mn

t −m
λ,n
t |2

]
+ Eυ∗α

[
sup
t≤T
| Rnt −R

λ,n
t |2

]}
= 0.

Moreover, mn is a martingale with

Eυ∗α
[
〈mn〉t

]
= 2t lim

k→0

∫
(uk ⊗ (−LS)uk)dυ

∗
α.

Proof. Fix T > 0. For λ, λ′ > 0, since υ∗α is an invariant state and since Eυ∗α
[
〈m,m〉t

]
=

2t ‖ u ‖21, where mt is the Dynkin martingale associated to a function u in the domain
of a generator, we have that the expectation of the quadratic variation of the martingale

mλ,n
T −mλ′,n

t is equal to

2T
〈
(uλ − u′λ), (−L )(uλ − uλ′)

〉
υ∗α

= 2T ‖ uλ − uλ′ ‖21 .

By the conditions (3.5), uλ converges in H1. In particular, mλ,n
T is a Cauchy sequence in

L2(Pυ∗α) and converges to a certain mn
T . One can choose a version of {mn

t : t ≥ 0} that
is a right continuous, square integrable martingale. This proves that, for all T > 0,

lim
λ→0

Eυ∗α
[

sup
t≤T

(mλ,n
t −mn

t )2
]

= 0.

Moreover from this results and from the identity (4.13), it follows that Rλ,nt also converges
in L2(Pυ∗α) as λ ↓ 0. Denoting this limit by {Rnt : t ≥ 0}, we prove the lemma.

We introduce here two general results that will be help in the proof of the following
theorem.

Lemma 4.20. Let H ∈H−1∩L2(π) and let A be a continuous process of �nite variation.

Then

E
[

sup
t≤T

∣∣∣∣ ∫ t

0
AsH(ξs)ds

∣∣∣∣] <∼ E
[

sup
t≤T
| At |2

] 1
2T

1
2 ‖ H ‖−1 .

In particular, for At =
∫ t

0 G(ξs)ds, with G ∈H−1 ∩ L2(π)

E
[

sup
t≤T

∣∣∣∣ ∫ t

0

∫ s

0
G(ξr)drH(ξs)ds

∣∣∣∣] <∼ T ‖ G ‖−1‖ H ‖−1 .

Lemma 4.21. Let (ξt)t≥0 be a stationary process with tracjectories in D(R+,Rm), such
that E

[
supt≤T | ξt |

]
≤ CT for all T > 0 and such that n−1ξn → a for some a ∈ Rm,

both a.s. and in L1. Then we have for all T > 0

lim
n→∞

E
[

sup
t≤T
| n−1ξnt − at |

]
= 0.
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We are now ready to prove an invariance principle for the additive functional Yt in
(4.11), seen as rough paths.

Theorem 4.22. Let p > 2 and let υ∗α be ergodic for L ∗. Assume V ∈ L2(Pυ∗α ,R
d) ∩

H−1(Rd) and that the solution uλ of the resolvent equation satis�es (4.14) for some

u ∈ H1. Then the process (Y n,Yn) converges in distribution in the uniform p-variation
topology on C(R+,Rd ⊕ Rd⊗d) to(

BY
t ,

∫ t

0
BY
s ⊗ dBY

s +
1

2
〈BY , BY 〉t + Γt

)
t≥0

, (4.15)

where BY is a d-dimensional Brownian motion with covariance

2t lim
λ→0

∫
[uλ ⊗ (−LS)uλ]dυ∗α = 2t lim

λ→0
〈uλ,⊗uλ〉1 (4.16)

and where

Γ = lim
λ→0

( ∫
[uλ ⊗ (−LS)uλ]dυ∗α −

∫
[uλ ⊗ (−L )uλ]dυ∗α

)
. (4.17)

Proof. Consider the decomposition Y n = mn+Rn as above. Under the same assumptions
of this theorem, one can assert that the laws of the processes

{
1√
n

∫ tn
0 V (ξs)ds : t ≥ 0

}
converge weakly in C(R+,Rd) as n ↑ ∞, to the Wiener measure with zero mean and with
covariance matrix σ2(V ) = {σ2

k,l(V ) : 1 ≤ k, l ≤ d} such that

σ2
k,l(V ) = 2 lim

λ→0
〈uk,λ, ul,λ〉1 = 2〈uk, ul〉1;

in the proof of this statement (see Theorem 2.32 of [13]) it is shown that both (mn) and
(Y n) converge in distribution in C(R+,R2d) to a Brownian motion B with covariance

〈B〉t = 2t lim
λ→0

∫
[uλ ⊗ (−LS)uλ]dυ∗α.

Therefore both Y n and mn are C-tight and so it is also Rn.
In Lemma 3.4 it is shown that the remainder term Rnt vanishes, as t ↑ ∞, in L2(Pυ∗α),

in particular that Eυ∗α
[
| Rnt |2

]
→ 0 for each t ≥ 0. This, together with the C-

tightness gives the convergence of Rn to zero in distribution in C(R+,Rd). Therefore,
we have the joint convergence of (Y n,mn, Rn) in distribution in C(R+,R3d) to (B,B, 0).
Consequently, by Theorem 4.15 we can show the joint convergence(

Y n,mn,

∫ ·
0
mn
s ⊗ dY n

s

)
→
(
B,B,

∫ ·
0
Bs ⊗ dBs + 〈B,B〉

)
.

It remains to study the term
∫ ·

0 R
n
s ⊗ dY n

s . We claim that for all T > 0

lim
n→∞

Eυ∗α

[
sup
t≤T

∣∣∣∣ ∫ t

0
(Rns + n−1/2un−1(ξns))⊗ dY n

s

∣∣∣∣] = 0. (4.18)
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To prove the claim we decompose this limit in

Eυ∗α

[
sup
t≤T

∣∣∣∣∫ t

0
(Rns −Rn

−1,n
s )⊗ dY n

s

∣∣∣∣]+
Eυ∗α

[
sup
t≤T

∣∣∣∣∫ t

0
(Rn

−1,n
s + n−1/2un−1(ξns))⊗ dY n

s

∣∣∣∣] (4.19)

Since Rns −R
n−1,n
s = mn

s −m
n−1,n
s and

Eυ∗α
[

sup
t≤T
| mn

t −m
n−1,n
t |2

]
.‖ u− un−1 ‖21→ 0,

we can apply to the �rst term in (4.19) integration by parts together with the Burkhölder-
Davis-Gundy inequality, see Lemma 4.10, to show that

Eυ∗α

[
sup
t≤T

∣∣∣∣ ∫ t

0
(Rns −Rn

−1,n
s )⊗ dY n

s

∣∣∣∣]→ 0.

The remaining term in (4.19) involves only the continuous �nite variation processRn
−1,n
s +

n−1/2un−1(ξns), so that we can apply Lemma 4.20 and obtain

lim sup
n→∞

Eυ∗α

[
sup
t≤T

∣∣∣∣ ∫ t

0
(Rn

−1,n
s + n−1/2un−1(ξns))⊗ dY n

s

∣∣∣∣] =

lim sup
n→∞

Eυ∗α

[
sup
t≤T

∣∣∣∣ 1√
n

∫ nt

0
(Rn

−1,n
n−1s

+ n−1/2un−1(ξs))⊗ V (ξs)ds

∣∣∣∣] .
lim sup
n→∞

Eυ∗α

[
sup
t≤nT

| Rn
−1,n
n−1t

+ n−1/2un−1(ξt)ds |2
] 1

2

T
1
2 ‖ V ‖−1 .

To bound the expected value on the right hand side note that

Eυ∗α
[

sup
t≤T
| Rn

−1,n
t − n−1/2un−1(ξnt) |2

]
. Eυ∗α

[
| n−1/2un−1(ξ0) |2

]
+ Eυ∗α

[
sup
t≤T

∣∣∣∣n−1/2

∫ nt

0
n−1un−1(ξs)ds

∣∣∣∣2]
. n−1 ‖ un−1 ‖2L2(Pυ∗α )

= (1 + T 2)n−1 ‖ un−1 ‖L2(Pυ∗α ),

and, according to (4.14), the right hand side vanishes for n→∞, thus we deduce (4.18).
Therefore, it is su�cient to study the limit of

∫ t
0 n
−1/2un−1(ξns)⊗dY n

s = n−1
∫ nt

0 un−1(ξns)⊗
V (ξns)ds. Let λ > 0, then

Eυ∗α

[
sup
t≤T

∣∣∣∣n−1

∫ nt

0
(un−1(ξns)− uλ(ξns))⊗ V (ξns)ds

∣∣∣∣] ≤ T ∫ | (un−1 − uλ)⊗ V | υ∗α(dξ)

≤ T ‖ un−1 − uλ ‖1‖ V ‖−1
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and by assumption the right hand side converges to T ‖ u−uλ ‖1‖ V ‖−1, which goes to
zero for λ → 0. Moreover by the ergodic theorem the term n−1

∫ nt
0 uλ(ξns) ⊗ V (ξns)ds

converges almost surely and in L1(P) to t
∫

[uλ ⊗ V ]υ∗α(dξ). Through Lemma 4.21 one
can prove that this convergence is even uniform in t ∈ [0, T ].

Now it su�ces to send λ→ 0 to deduce that
∫ t

0 R
n
s ⊗dY n

s converges to the determin-
istic limit −t lim

λ→0

∫
[uλ ⊗ V ]υ∗α(dξ) in C(R+,Rd). Consequently,

(Y n,Yn)→
(
BY
t ,

∫ t

0
BY
s ⊗ dBY

s + 〈BY , BY 〉t − lim
λ→0

∫
[uλ ⊗ V ]υ∗α(dξ)

)
,

and �nally, since λuλ → 0 in L2(Pυ∗α), we have

lim
λ→0

∫
[uλ ⊗ V ]υ∗α(dξ) = lim

λ→0

∫
[uλ ⊗ (λ−L )uλ]υ∗α(dξ) = lim

λ→0

∫
[uλ ⊗ (−L )uλ]υ∗α(dξ).

We introduce, now, some useful de�nitions, that will lead us to prove the convergence
result.

De�nition 4.23. For f ∈ D(R+,Rd) and r, T > 0 we de�ne the modulus of continuity

ωT (f, r) := sup
s,t∈[0,T ]:
|s−t|≤r

| f(t)− f(s) | .

De�nition 4.24. A sequence of processes (Xn)n∈N in D(R+,Rd) is called C-tight if it
is tight in the Skorokhod topology and all limit points are continuous processes.

We will use the following lemma [12]

Lemma 4.25. The sequence (Xn) is C-tight if and only if the following two conditions

hold:

1. for all T > 0 we have

lim
K→∞

lim sup
n→∞

P
(

sup
t∈[0,T ]

| Xn
t |> K

)
= 0;

2. for all ε, T > 0 we have

lim
r→0

lim sup
n→∞

P(ωT (Xn, r) > ε) = 0.

If (Xn) is a sequence of processes in C(R+,Rd), then these two conditions are equivalent

to tightness in the uniform topology.
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The uniform modulus of continuity is subadditive, indeed

ωT (f + g, r) ≤ ωT (f, r) + ωT (g, r).

From this reason, it follows from the previous Lemma that the sum of two C-tight
sequences is again C-tight. In general, this is not true for sequences that are tight in the
Skorokhod topology on D(R+,Rd).

Using the arguments from the proof of Theorem 4.22, taking into account also the
quadratic covariation between Mn and mλ

n computed in (4.10), we can obtain the joint
convergence

(Mn, Y n,Yn0,·)→
(
BM , BY ,

∫ ·
0
BY
s ⊗ dBY

s +
1

2
〈BY , BY 〉

)
.

Since the limit is continuous, the triple is even C-tight. So, by Lemma 4.25, also Xλ,n =
Mn + Y n converges in distribution in the Skorokhod topology to B = BM + BY , and
the convergence holds jointly for (Mn, Y n,Yn0,·).

For the convergence of Xλ,n let us consider the iterated integrals of Xλ,n given by

Xλ,n0,t =

∫ t

0
Xn
s− ⊗ dMn

s +

∫ t

0
Mn
s− ⊗ dY n

s + Yn0,t. (4.20)

We can show thatMn satis�es the UCV property in 4.14 and since Y n is continuous and
of �nite variation, from the UCV Theorem 4.15, we get the joint convergence:(
Mn, Y n,Yn0,·, Xλ,n,

∫ ·
0
Xn
s− ⊗ dMn

s ,

∫ ·
0
Mn
s− ⊗ dY n

s

)
→
(
BM , BY ,

∫ ·
0
BY
s ⊗ dBY

s +
1

2
〈BY , BY 〉, B,

∫ ·
0
Bs ⊗ dBM

s ,

∫ ·
0
BM
s ⊗ dBY

s + 〈BM , BY 〉
)
.

Since all the limiting processes are continuous the t-nuple is C-tight and the joint con-
vergence extends to sums of the entries, so from (4.20) we get

(Xλ,n,Xλ,n0,· )→
(
B,

∫ ·
0
Bs ⊗ dBs +

1

2
〈BY , BY 〉+ 〈BM , BY 〉

)
=

(
B,

∫ ·
0
Bs ⊗ dBs +

1

2
〈B,B〉 − 1

2
〈BM , BM 〉

)
,

where the equality simply follows considering B = BM + BY . From the covariance of
the Browninan motion BM we derive the correction term on the right hand side:

tΓ = −1

2
〈BM , BM 〉t = − t

2

∑
z∈Zd∗

∫ t

0
z2p(z)[1−ξs(z)]ds = − t

2

∑
z∈Zd∗

∫ [
z2p(z)[1−ξ(z)]

]
υ∗α(dξ).

(4.21)

To complete the proof it only remains to show tightness in p-variation.
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4.2.2 Tightness in p-variation

We �rst want to show tightness of the additive functional (Y n,Yn) in the p-variation
Skorokhod topology on C(R+,Rd ⊕ Rd⊗d). This holds by the following result.

Lemma 4.26. If (Y n,Yn)n is tight in C(R+,Rd⊕Rd⊗d) and if both the sequences of real
valued random variables, (‖ Y n ‖p,[0,T ])n and (‖ Yn ‖p/2,[0,T ]), are tight for every T > 0.

Then, (Y n,Yn)n is tight in the p-variation Skorokhod topology on C(R+,Rd,Rd⊗d).

For our purpose we will often use the following representation of additive functionals:

Lemma 4.27. Let H ∈ L2(υ∗α,Rm) and let Ψ ∈ C(Rm). Then, for T > 0, we have∫ t

0
H(ξs)ds =

∫ t

0
(H(ξs)−LSΨ(ξs))ds+

1

2
(MΨ

t + M̂Ψ
t − M̂Ψ

T−t), t ∈ [0, T ] (4.22)

where MΨ is a martingale and M̂Ψ is a martingale with respect to the backward �ltration

F̂t = σ(ξT−s : s ≤ t), such that, for t ∈ [0, T ],

Eυ∗α
[
〈MΨ〉t

]
= Eυ∗α

[
〈M̂Ψ〉t

]
= 2t

∫
[Ψ⊗(−LS)Ψ]υ∗α(dξ) = 2t(〈Ψk,Ψl〉1)1≤k,l≤m. (4.23)

Moreover, assume that υ∗α is ergodic for L ∗. Then under the rescaling T → nT and

MΨ,n
t = n−1/2MΨ

nt and similarly for M̂Ψ,n both processes converge in distribution in

D([0, T ],Rm) to a Wiener process, and by (4.23) they satisfy the UCV condition. If

G ∈ L2(υ∗α,Rm) and As,t =
∫ t
s

∫ r1
s G(ξr2)dr2 ⊗H(ξr1)dr1 for 0 ≤ s < t ≤ T , then

As,t =
1

2

∫ t

s

∫ r1

s
G(ξr2)dr2 ⊗ dMΨ

r1 −
1

2

∫ T−s

T−t

∫ t

T−r1
G(ξr2)dr2 ⊗ M̂Ψ

r1

+
1

2

∫ t

s
G(ξr)dr ⊗ (M̂Ψ

T−s − M̂Ψ
T−t) +

∫ t

s

∫ r1

s
G(ξr2)dr2 ⊗ (H(ξr1)−LSΨ(ξr1))dr1.

(4.24)

Proof. The representation (4.22) is obtained by applying Dynkin's formula to Ψ(ξ) on
[0, t] and to Ψ̂(ξ) on [T − t, T ], from where we also get (4.23). For the convergence of
MΨ,n and M̂Ψ,n see the proof of Theorems 2.32 and 2.33 of [13]. The representation for
As,t follows by writing the integral against M̂Ψ

T− as a limit of Riemann sums. Note that∫ ·
0 G(ξr)dr is continuous and of �nite variation, so the integral is de�ned pathwise and
we do not need to worry about quadratic covariations or the di�erence between forward
and backward integral.

Under our assumptions, we can prove the �rst necessary condition to apply Lemma
4.26.

Lemma 4.28. Let υ∗α be ergodic for L ∗ and let V ∈ L2(υ∗α,Rd) ∩H−1(Rd). Assume

that the solution of the resolvent equation, for some u ∈H1 satis�es

lim
λ→0

(√
λ ‖ uλ ‖υ∗α + ‖ uλ − u ‖1

)
= 0.

Then the sequence (Y n,Yn) is tight in C(R+,Rd ⊕ Rd⊗d).
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Proof. With these hypotheses one can generalize the central limit theorem for additive
functionals, showing that (Y n)n converges in distribution in C(R+,Rd) to a Wiener
measure, [13, Thm 2.33]. Furthermore, recall from Observation 4.1 that in order to
obtain the convergence of (Y n,Yn) is su�cient to prove the convergence of the processes
(Y n

0,·,Yn0,·). So it is enough to show that Yn0,· is tight in C(R+,Rd⊗d).
Let uV ∈ C(Rd), then from (4.24) of Lemma 4.27, with V in place of F , we get

Yn0,t =
1

2

∫ t

0
Y n
s ⊗ dMV,n

s − 1

2

∫ T

T−t
(Y n
T − Y n

T−s)⊗ dM̂V
s +

1

2
Y n
T ⊗ (M̂V

T − M̂V
T−t)

+

∫ t

0
Y n
s ⊗
√
n(V (ξns)−LSu

V (ξns))ds.

Note that Y n
T −Y n

T−s is adapted to F̂s and that the two stochastic integrals ar C-tight in

D([0, T ],Rd). The third term on the right hand side is C-tight by the characterization
of Lemma 4.25. It remains to treat the last term. From the decomposition (4.11)∫ t

0
Y n
s ⊗
√
n(V (ξns)−LSu

V (ξns))ds

=

∫ t

0

1

2
(MV,n

s + M̂V,n
T − M̂V,n

T−s)⊗
√
n(V (ξns)−LSu

V (ξns))ds

+

∫ t

0

1√
n

∫ ns

0
(V (ξr)−LSu

V (ξr))dr ⊗
√
n(V (ξns)−LSu

V (ξns))ds.

The integral against the two martingales can be handled as before, while the remaining
term satis�es

E
[

sup
t∈[0,T ]

∣∣∣∣ 1n
∫ nt

0

∫ s

0
(V (ξr)−LSu

V (ξr))dr⊗(V (ξs)−LSu
V (ξs))ds

∣∣∣∣] . T ‖ V −LSu
V ‖2−1

by Lemma 4.20. By Chebyshev's inequality, we get

lim
K→∞

lim sup
n→∞

P
(

sup
t∈[0,T ]

| Yn0,t |> K
)

≤ lim
K→∞

lim sup
n→∞

P
(

sup
t∈[0,T ]

∣∣∣∣ 1n
∫ nt

0

∫ s

0
(V (ξr)−LSu

V (ξr))dr ⊗ (V (ξs)−LSu
V (ξs))ds

∣∣∣∣ > K

2

)
= 0

and similarly

lim
r→0

lim sup
n→∞

P(ωT (Yn0,·, r) > ε)

≤ lim
r→0

lim sup
n→∞

P
(
ωT

(
1

n

∫ n.

0

∫ s

0
(V (ξr)−LSu

V (ξr))dr ⊗ (V (ξs)−LSu
V (ξs))ds, r

)
>
ε

2

)
.

2

ε
T ‖ V −LSu

V ‖2−1 .

These arguments provide the conditions of Lemma 4.25, which are indeed equivalent to
the tightness. But the set LSC is dense in H−1, as seen in Claim E of Section 1.1, and
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therefore we can make the right hand side arbitrarily small, i.e. it must be equal to zero.
Hence Yn0,· satis�es the assumptions of Lemma 4.25 and so it is tight in C(R+,Rd⊗d) and
the proof is complete.

Now we recall the following estimate [11]:

Lemma 4.29. Let G ∈ L2(Pυ∗α) ∩H−1, T > 0 and p > 2. Then

E
[

sup
t≤T

∣∣∣∣ ∫ t

0
G(ξs)ds

∣∣∣∣2 +

∣∣∣∣∣∣∣∣ ∫ ·
0
G(ξs)ds

∣∣∣∣∣∣∣∣2
p,[0,T ]

]
. T ‖ G ‖2−1 .

In particular, this implies

E
[
‖ Y n ‖2p,[0,T ]

]
. T ‖ V ‖2−1 . (4.25)

To conclude and apply Lemma 4.26, we only need to bound ‖ Yn ‖p,[0,T ]. For this purpose
we use the following Proposition, whose proof is presented in the Appendix.

Proposition 4.30. Let (Yt)t∈[0,T ] be a predictable r.c.l.l. process with Y0 = 0 and such

that E
[
‖ Y ‖2p

]
< ∞ for p > 2 and let (Nt)t∈[0,T ] be a r.c.l.l. local martingale with

E
[
〈N〉T

]
< ∞. De�ne As,t :=

∫ t
s Ys,rdNr. Then for any q > p and for all su�ciently

small ε > 0

E
[
‖ A ‖1−εq/2,[0,T ]

] <∼ (E[ ‖ Y ‖2p,[0,T ]

](1−ε)2/2
+ E

[
‖ Y ‖2p,[0,T ]

]1/2)E[〈N〉T ](1−ε)/2
<∼
(
1 + E

[
‖ Y ‖2p,[0,T ]

]1/2)(
1 + E

[
〈N〉T

]1/2)
.

Using this result, we are now ready to show the next Theorem, which give us the
bound to obtain tightness of (‖ Zn ‖p/2,[0,T ])n.

Theorem 4.31. Let G,H ∈ H−1 ∩ L2(Pυ∗α) and set As,t =
∫ t
s

∫ r1
s G(ξr2)dr2H(ξr1)dr1.

Then we have for all p > 2, T > 0 and ε > 0

E
[
‖ A ‖1−εp/2,[0,T ]

]
.
(
1 + T 1/2 ‖ G ‖−1

)(
1 + T 1/2 ‖ H ‖−1

)
.

As a corollary, setting G = H = n−1/2V and replacing T with nT , one obtains

E
[
‖ Yn ‖1−εp/2,[0,T ]

]
.
(
1 + (nT )1/2 ‖ n−1/2V ‖−1

)(
1 + (nT )1/2 ‖ n−1/2V ‖−1

)
=
(
1 + T 1/2 ‖ V ‖−1

)2
.

(4.26)

So, for all n, there exists C such that

E
[
‖ Yn ‖1−εp/2,[0,T ]

]
. C. (4.27)

and this shows that (‖ Yn ‖p/2,[0,T ])n is tight for all T > 0.
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Proof. (of Theorem 4.31)

Lemma 4.27 shows that

As,t =
1

2

∫ t

s

∫ r1

s
G(ξr2)dr2dM

Ψ
r1 −

1

2

∫ T−t

T−s

∫ t

Tr1

G(ξr2)dr2dM̂
Ψ
r1

+
1

2

∫ t

s
G(ξr)dr(M̂

Ψ
T−s − M̂Ψ

T−t) +

∫ t

s

∫ r1

s
G(ξr2)dr2(H(ξr1)−LSΨ(ξr1))dr1.

The �rst two terms on the right hand side can be controlled applying Proposition 4.30,
while the third term is bounded as follows∣∣∣∣12

∫ t

s
G(ξr)dr(M̂

Ψ
T−s − M̂Ψ

T−t)

∣∣∣∣ . ∣∣∣∣∣∣∣∣ ∫ ·
0
G(ξr)dr

∣∣∣∣∣∣∣∣
p,[s,t]

‖ M̂Ψ ‖p,[T−t,T−s],

and the fourth term is bounded by∣∣∣∣ ∫ t

s

∫ r1

s
G(ξr2)dr2(H(ξr1)−LSΨ(ξr1))dr1

∣∣∣∣
. sup

r∈[s,t]

∣∣∣∣ ∫ r

0
G(ξr2)dr2

∣∣∣∣ ∫ t

s
| H(ξr1)−LSΨ(ξr1) | dr1.

So, by Proposition 4.30 together with the bounds just shown, we get

E
[
‖ A ‖1−εp/2,[0,T ]

]
.

(
1 + E

[∣∣∣∣∣∣∣∣ ∫ ·
0
G(ξr)dr

∣∣∣∣∣∣∣∣2
p,[0,T ]

]1/2
)(

1 + E
[
〈MΨ〉T

]1/2
+ E

[
〈M̂Ψ〉T

]1/2)
+ E

[∣∣∣∣∣∣∣∣ ∫ ·
0
G(ξr)dr

∣∣∣∣∣∣∣∣2
p,[0,T ]

](1−ε)/2
E
[
‖ M̂Ψ ‖2p,[0,T ]

](1−ε)/2
+ E

[
sup
r∈[0,T ]

∣∣∣∣ ∫ r

0
G(ξr2)dr2

∣∣∣∣2](1−ε)/2
E
[(∫ T

0
| H(ξr1)−LSΨ(ξr1) | dr1

)2](1−ε)/2

.

(
1 + E

[∣∣∣∣∣∣∣∣ ∫ ·
0
G(ξr)dr

∣∣∣∣∣∣∣∣2
p,[0,T ]

]1/2
)(

1 + T 1/2 ‖ Ψ ‖1 +T ‖ H −LSΨ ‖L2(Pυ∗α )

)
.
(
1 + T 1/2 ‖ G ‖−1

)(
1 + T 1/2 ‖ Ψ ‖1 +T ‖ H −LSΨ ‖L2(Pυ∗α )

)
,

where the last step follows from Lemma 4.27. Now we take Ψ = uHλ as the solution to
the Poisson equation (λ − LS)uHλ = −H, noting that in general uHλ /∈ C. But we can
approximate uHλ with functions in C and get the same estimate. Then standard estimates
for the solution of the resolvent equation, see equation (2.15) of [13], give

‖ uHλ ‖1 +
√
λ ‖ uHλ ‖L2(Pυ∗α )

<∼‖ H ‖−1,

and since H −LSu
H
λ = λuHλ , we can send λ→ 0 to deduce the claimed estimate.
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With this argument we have shown that (‖ Y n ‖p,[0,T ] + ‖ Yn ‖p/2,[0,T ])n is tight.
Moreover, from the construction of the path, we have

‖ Xλ,n ‖p,[0,T ]≤‖Mn ‖p,[0,T ] + ‖ Y n ‖p,[0,T ] (4.28)

and, by Lepingle p-variation BDG (4.13), we get E
[
‖ Mn ‖2p,[0,T ]

]
. E

[
〈Mn〉T

]
. 1,

while E
[
‖ Y n ‖2p,[0,T ]

]
. T ‖ V ‖2−1 by equation (4.25). For what concerns the sequence

(Xλ,n)n, we have

‖ Xλ,n ‖p/2,[0,T ] ≤
∣∣∣∣∣∣∣∣( ∫ t

s
Xn
r−,s− ⊗ dMn

r

)
0≤s≤t≤T

∣∣∣∣∣∣∣∣
p/2,[0,T ]

+

∣∣∣∣∣∣∣∣( ∫ t

s
Mn
r,s ⊗ dY n

r

)
0≤s≤t≤T

∣∣∣∣∣∣∣∣
p/2,[0,T ]

+ ‖ Yn ‖p/2,[0,T ] .

(4.29)

For the �rst term on the right hand side we apply Proposition 4.30:

E
[∣∣∣∣∣∣∣∣( ∫ t

s
Xn
r−,s− ⊗ dMn

r

)
0≤s≤t≤T

∣∣∣∣∣∣∣∣1−ε
p/2,[0,T ]

∣∣∣∣ .(
1 + E

[
‖ Xn ‖2p′,[0,T ]

]1/2)(
1 + E

[
〈Mn〉T

]1/2)
. 1,

where p′ ∈ (2, p). The second term on the right hand side of (4.29) can be similarly
controlled by Proposition 4.30 and via integration by parts. While for the third one,
we already knew that (‖ Yn ‖p/2,[0,T ])n is tight. Hence, we get the tightness of (‖
Xλ,n ‖p/2,[0,T ]).

With this argument we have completed the proof of Theorem 4.16, stating that under
the p-variation Skorokhod topology our process (Xn

s,t,Xns,t) converges to(
B,

(∫ t

0
Bs ⊗ dBs +

1

2
〈B,B〉t + Γt

)
t≥0

)
.

So, the convergence of Xns,t to the Itô integral is corrected by a term of the form 1
2〈B,B〉t+

Γt. This re�ects the fact that we actually obtain a correction Γt to the Stratonovich
integral ∫ t

0
Bs ⊗ ◦dBs =

∫ t

0
Bs ⊗ dBs +

1

2
〈B,B〉t.

The Stratonovich integral is an alternative the Itô integral, de�ned such that the chain
rule of ordinary calculus holds.

One should also note that in Theorem 4.16

Γ = −1

2

∑
z∈Zd∗

∫ [
z2p(z)[1− ξ(z)]

]
dυ∗α,

so we get Γ = 0 if p(z) = 0 for all z ∈ Zd∗, but this represents one of the degenerate cases
that we excluded, in order to be able to study the process.
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Appendix

We present here the proof of some results applied in the previous chapter.

Lemma 4.20 Let H ∈H−1∩L2(π) and let A be a continuous process of �nite variation.
Then

E
[

sup
t≤T

∣∣∣∣ ∫ t

0
AsH(ξs)ds

∣∣∣∣] . E
[

sup
t≤T
| At |2

] 1
2T

1
2 ‖ H ‖−1 .

In particular, for At =
∫ t

0 G(ξs)ds, with G ∈H−1 ∩ L2(π)

E
[

sup
t≤T

∣∣∣∣ ∫ t

0

∫ s

0
G(ξr)drH(ξs)ds

∣∣∣∣] . T ‖ G ‖−1‖ H ‖−1 .

Proof. The second inequality follows from the �rst one together with the usual estimate
of Lemma 4.29.

To show the �rst inequality, let Ψ ∈ C and apply Lemma 4.27:∫ t

0
AsH(ξs)ds =

1

2

∫ t

0
AsdM

Ψ
s −

1

2

∫ T

T−t
(AT −AT−s)drdM̂Ψ

s

+
1

2
AT (M̂Ψ

T − M̂Ψ
T−t) +

∫ t

0
As(H(ξs)−LSΨ(ξs))ds,

since A in continuous and of �nite variation, we can interpret the integrals against M̂Ψ

in a pathwise sense. Moreover, from the BDG and the Cauchy-Schwartz inequalities
together with Lemma 4.29

E
[

sup
t≤T

∣∣∣∣ ∫ t

0
AsH(ξs)ds

∣∣∣∣] . E
[
sup
t≤T
| At |2

]1/2
T 1/2 ‖ Ψ ‖1

+ E
[

sup
t≤T

∣∣∣∣ ∫ t

0
As(H(ξs)−LSΨ(ξs))ds

∣∣∣∣]
. E

[
sup
t≤T
| At |2

]1/2
(T 1/2 ‖ Ψ ‖1 +T ‖ H −LSΨ ‖L2(π)).

59
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By approximation one can take Ψ = ΦH
λ as the solution to the Poisson equation (λ −

LS)ΦH
λ = −H and as in the proof of Theorem 4.31 we use that ‖ ΦH

λ ‖1≤‖ H ‖−1 for all
λ > 0 and that ‖ H −LSΦH

λ ‖L2(π)→ 0 as λ→ 0 to deduce the claimed estimate.

Lemma 4.21 Let (ξt)t≥0 be a stationary process with tracjectories in D(R+,Rm), such
that E

[
supt≤T | ξt |

]
≤ CT for all T > 0 and such that n−1ξn → a for some a ∈ Rm,

both a.s. and in L1. Then we have for all T > 0

lim
n→∞

E
[

sup
t≤T
| n−1ξnt − at |

]
= 0.

Proof. This follows from an adaptation of the proof of Theorem 2.29 in [13]: we decom-
pose

| n−1ξnt − at |≤ sup
s∈[0,1]

| ξbntc+s − ξbntc |
n

+
bntc
n

∣∣∣∣ξbntcbntc
− a
∣∣∣∣+ | a | (t− bntcn

)
.

The last term on the right hand side is bounded by |a|n , while the �rst term on the right
hand side is bounded for all t ∈ [0, T ] by

sup
s∈[0,1]

| ξbntc+s − ξbntc |
n

≤ T max
k≤bnT c

sups∈[0,1] | Yk+s − Yk |
bnT c

,

and by Lemma 2.30 in [13] the right hand side vanishes as n → ∞, both a.s. and in
L1. The last remaining term can be handled analogously to the proof of Theorem 2.29
in [13].

Proposition 4.30 Let (Yt)t∈[0,T ] be a predictable r.c.l.l. process with Y0 = 0 and such
that E

[
‖ Y ‖2p

]
< ∞ for p > 2 and let (Nt)t∈[0,T ] be a r.c.l.l. local martingale with

E
[
〈N〉T

]
< ∞. De�ne As,t :=

∫ t
s Ys,rdNr. Then for any q > p and for all su�ciently

small ε > 0

E
[
‖ A ‖1−εq/2,[0,T ]

]
.
(
E
[
‖ Y ‖2p,[0,T ]

](1−ε)2/2
+ E

[
‖ Y ‖2p,[0,T ]

]1/2)E[〈N〉T ](1−ε)/2
.
(
1 + E

[
‖ Y ‖2p,[0,T ]

]1/2)(
1 + E

[
〈N〉T

]1/2)
.

Proof. Let n ∈ Z and de�ne the dyadic stopping times (τnk )n,k∈N0 , by τ
n
0 := 0 and

τnk+1 := inf{t ≤ τnk :| Yt − Yτnk |≤ 2−n},

and set Y n
t :=

∑
k Yτnk 1[τnk ,τ

n
k+1)(t), so that ‖ Y n − Y ‖∞≤ 2−n. We have

| As,t |≤
∫ t

s
(Yr − Y n

r )dNr +

∣∣∣∣ ∫ t

s
Y n
r dNr − Y n

s Ns,t

∣∣∣∣+ | (Y n
s − Ys)Ns,t | . (5.1)

Now we can �nd an estimation for each term on the right hand side.
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To bound the �rst term, let ε > 0 and set

K =
∑
n∈Z

min{22n(1−ε), 22n/(1−ε)} sup
τ≤T

∣∣∣∣ ∫ τ

0
(Yr − Y n

r )dNr

∣∣∣∣2.
Then ∣∣∣∣ ∫ t

s
(Yr − Y n

r )dNr

∣∣∣∣ . (2−n(1−ε) + 2−n/(1−ε))K1/2.

For the second term in (5.1), we can note that if there are no τnk in (s, t), then∣∣ ∫ t
s Y

n
r dNr − Y n

s Ns,t

∣∣ = 0 and we are done. Otherwise, let τnk0 , . . . , τ
n
k0+m with m ≥ 0 be

those (τnk )k which are in (s, t), for N ≥ 2, and note that∣∣∣∣ ∫ t

s
Y n
r dNr − Y n

s Ns,t

∣∣∣∣ ≤ ∣∣∣∣Y n
s,τnk0

Nτnk0
,τnk0+m

∣∣∣∣
+

∣∣∣∣ ∫ τnk0+m

τnk0

Y n
r dNr − Y n

τnk0
Nτnk0

,τnk0+m

∣∣∣∣+

∣∣∣∣Y n
s,τk0+m

Nτnk0+m
,t

∣∣∣∣
≤ c(s, t)1/p+1/r +

∣∣∣∣ ∫ τnk0+m

τnk0

Y n
r dNr − Y n

s Nτnk0
,τnk0+m

∣∣∣∣+ c(s, t)1/p+1/r,

where c is a control function that controls both the p-variation of Y and the r-variation
of N . We claim that∣∣∣∣ ∫ τnk0+m

τnk0

Y n
r dNr − Y n

τnk0
Nτnk0

,τnk0+m

∣∣∣∣ . m1−1/p−1/rc(s, t)1/p+1/r.

For m = 0 there is nothing to show, so let m ≥ 1. We apply Young's maximal inequality
despite the fact that the regularities of Y andN do not satisfy the compatibility condition
that is necessary for the construction of the Young integral. The strategy of Young
is to successively delete points τnk0+l from the partition of stopping times in order to

pass from
∫ τnk0+m
τnk0

Y n
r dNr to Yτnk0

Nτnk0
,τnk0+m

. By super-additivity of c, there must exists

l ∈ {1, . . . ,m} for which c(τnk0+l−1, τ
n
k0+l+1) ≤ 2

mc(s, t). Deleting τ
n
k0+l from the partition

and subtracting the resulting integral from
∫ τnk0+m
τnk0

Y n
r dNr, we get∣∣Yτnk0+l−1

Nτnk0+l−1,τ
n
k0+l

+ Yτnk0+l
Nτnk0+l

,τnk0+l+1
− Yτnk0+l−1

Nτnk0+l−1,τ
n
k0+l+1

∣∣
=
∣∣Yτnk0+l−1,τ

n
k0+l

,τnk0+l+1Nτnk0+l
,τn
k0+l+1

∣∣
≤ c(τnk0+l−1, τ

n
k0+l+1)1/p+1/r ≤

(
2

m
c(s, t)

)1/p+1/r

.

Successively deleting all points except τnk0 = s and τnk0+N = t from the partition gives∣∣∣∣ ∫ τnk0+m

τnk0

Y n
r dNr − Y n

τnk0
Nτnk0

,τnk0+m

∣∣∣∣ ≤ m∑
k=1

(
2

k
c(s, t)

)1/p+1/r

. m1−1/p−1/rc(s, t)1/p+1/r,
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which is the claimed inequality. Next we use the simple bound

m = ]{k : τnk ∈ (τnk0 , τ
n
k0+m]} ≤ 2np ‖ Y ‖pp,[τnk0 ,τnk0+m]≤ 2npc(s, t),

and therefore ∣∣∣∣ ∫ t

s
Y n
r dNr − Y n

s Ns,t

∣∣∣∣ . c(s, t)1/p+1/r + 2n(p−1−p/r)c(s, t).

Moreover, by replacing Y and N with Y/ ‖ Y ‖p,[0,T ] and N/ ‖ N ‖r,[0,T ] we get also∣∣∣∣ ∫ t

s
Y n
r dNr − Y n

s Ns,t

∣∣∣∣ . c(s, t)1/p+1/r ‖ Y ‖p,[0,T ]‖ N ‖r,[0,T ]

+ 2n(p−1−p/r)c(s, t) ‖ Y ‖p−p/rp,[0,T ]‖ N ‖r,[0,T ],

where c is now a control function with c(0, T ) ≤ 1.
For what concerns the last term in (5.1), it is bounded by | (Y n

s − Ys)Ns,t |≤ 2−n ‖
N ‖r,[0,T ]. The combination of the previous steps gives a bound for (5.1):

| As,t | ≤
∫ t

s
(Yr − Y n

r )dNr +

∣∣∣∣ ∫ t

s
Y n
r dNr − Y n

s Ns,t

∣∣∣∣+ | (Y n
s − Ys)Ns,t |

. (2−n(1−ε) + 2−n/(1−ε))K1/2 + c(s, t)1/p+1/r ‖ Y ‖p,[0,T ]‖ N ‖r,[0,T ]

+ 2n(p−1−p/r)c(s, t) ‖ Y ‖p−p/rp,[0,T ]‖ N ‖r,[0,T ] +2−n ‖ N ‖r,[0,T ]

for a control function c(0, T ) ≤ 1. Choose now n ∈ Z such that 2n(p−1−p/r)c(s, t) ‖
Y ‖p−p/rp,[0,T ] and 2−n are of the same order, i.e. such that 2−n ' c(s, t)1/(p−p/r) ‖ Y ‖p,[0,T ] .
Then we end up with

| As,t | . c(s, t)(1−ε)/(p−p/r)( ‖ Y ‖1−εp,[0,T ] + ‖ Y ‖1/(1−ε)p,[0,T ]

)
K1/2

+ c(s, t)1/p+1/r ‖ Y ‖p,[0,T ]‖ N ‖r,[0,T ]

+ c(s, t)1/(p−p/r) ‖ Y ‖p,[0,T ]‖ N ‖r,[0,T ] .

Since q > p > 2 there exist r > 2 and ε > 0 such that

1− ε
p− p/r

=
(1− ε) r

r−1

p
>

2

q
and

1

p
+

1

r
>

2

q
,

which leads to

| As,t |. c(s, t)2/q
(
‖ Y ‖1−εp,[0,T ] + ‖ Y ‖1/(1−ε)p,[0,T ]

)(
K1/2+ ‖ N ‖r,[0,T ]

)
, (5.2)

and then

E
[
‖ A ‖1−εq/2,[0,T ]

]
. E

[(
‖ Y ‖(1−ε)

2

p,[0,T ] + ‖ Y ‖p,[0,T ]

)(
K1/2+ ‖ N ‖r,[0,T ]

)]
.
(
E
[
‖ Y ‖2p,[0,T ]

](1−ε)2/2
+ E

[
‖ Y ‖2p

]1/2)E[K+ ‖ N ‖2r,[0,T ]

]1/2
.
(
E
[
‖ Y ‖2p

](1−ε)2/2
+ E

[
‖ Y ‖2p

]1/2)E[〈N〉T ](1−ε)/2,
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where in the last step we applied Lepingle's p-variation BDG inequality and we used that

E[K] .
∑
n∈Z

min{22n(1−ε), 22n/(1−ε)}E
[

sup
τ≤T

∫ τ

0
(Yr − Y n

r )2dNr

]
≤
∑
n∈Z

min{22n(1−ε), 22n/(1−ε)}2−2nE
[
〈N〉T

]
. E

[
〈N〉T

]
.
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