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Abstract

The significant attention surrounding the application of anomaly detection (AD) in identify-
ing defects within industrial environments using only normal samples has prompted research
and development in this area. However, traditional ADmethods have been primarily focused
on the current set of examples, resulting in a limitation known as catastrophic forgetting when
encountering new tasks. The inflexibility of these methods and the challenges posed by real-
world industrial scenarios necessitate the urgent enhancement of the adaptive capabilities of
AD models. Therefore, this thesis presents an integrated framework that combines the con-
cepts of continual learning (CL) andanomalydetection (AD) to achieve theobjective of anomaly
detection in continual learning (ADCL). To evaluate the efficacy of the framework, a thor-
ough comparative analysis is conducted to assess the performance of three specific methods
for the AD task: the EfficientAD, Patch Distribution Modeling Framework (PaDiM) and the
Discriminatively Trained Reconstruction Anomaly Embedding Model (DRÆM). Moreover,
the framework incorporates the use of replay techniques to enable continual learning (CL). In
order to determine the superior technique, a comprehensive evaluation is carried out using di-
verse metrics that measure the relative performance of each method. To validate the proposed
approach, a robust real-world dataset calledMVTecAD is employed, consisting of images with
pixel-based anomalies. This dataset serves as a reliable benchmark for Anomaly Detection in
the context of Continual Learning, offering a solid foundation for further advancements in
this field of study.
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1
Introduction

Anomaly Detection (AD) is an important and challenging problem in the field of Machine
Learning and Computer Vision. It involves the task of identifying anomalies, which are pat-
terns that stand out due to theirmarked deviations fromwhat is considered normal or expected.
For the successful detection of anomalies, a complete understanding of the characteristics that
define normal behavior and the ability to differentiate it fromunusual patterns hold significant
importance.

The evolution of anomaly detection methods has closely followed the advancement of Ma-
chineLearning andComputerVision. Initially, anomaly detection relied on fundamental rules
and statistical measures to identify unusual patterns [1]. However, the escalation in data com-
plexity led to the emergence of innovative strategies. This transformation was notably influ-
enced by advanced neural networks and deep learning techniques. An illustrative example is
the utilization of autoencoders, originally crafted for simplifying data representation, which
found a renewed purpose in anomaly detection by learning normal patterns and identifying de-
viations from them [2]. Furthermore, generativemodels like Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs) arose, capable of understanding complex data
patterns and identifying deviations that suggest anomalies[3, 4].

Additionally, neural networks have played a pivotal role in extracting essential information
for anomaly detection. They achieve this through unsupervised learning, a technique espe-
cially beneficial when anomaly information is limited. Neural networks can learn to recognize
data patterns, aiding in distinguishing between normal and anomalous instances more accu-
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rately [5]. This learning methodology not only enhances anomaly detection but also equips
the networks to perform well across various data types.

In summary, the fusion of traditional and advanced techniques, powered by neural net-
works, has enhanced the ability to detect anomalies within complex data. Techniques like au-
toencoders, VAEs, GANs, and unsupervised learning havemade a big difference in anomaly de-
tection. This showshow important neural networks are formaking anomaly detectionmore ac-
curate and adaptable. However, these algorithms tend to encounter challenges when attempt-
ing to learn multiple tasks consecutively. As a consequence of this situation, there arises a diffi-
culty where artificial neural networks frequently lose the knowledge they acquired from previ-
ous tasks. This problem, commonly referred to as ”catastrophic forgetting” [6], becomes par-
ticularly problematic for real-world applications. To address this challenge, a new field known
as Continual Learning (CL) has been introduced.

Thiswork combines anomaly detectionmethodswith continual learning techniques, partic-
ularly operatingwithin the context of theAnomalyDetection inContinual Learning (ADCL)
framework [7]. The integration addresses the challenge of catastrophic forgetting, promising
improved performance and reliability for anomaly detection methods in practical industrial
applications.

For the purpose of this study, the MVTec AD dataset [8] was employed. This dataset en-
compasses a diverse range of real-world industrial objects and anomalies, making it an ideal
foundation for evaluating the effectiveness of the integrated anomaly detection and continual
learning techniques.

While various anomaly detectionmethods havebeen created and evaluatedusing theMVTec
AD dataset, this work specifically incorporates three techniques: EfficientAD [9], the Patch
Distribution Modeling Framework (PaDiM) [10], and the Discriminatively Trained Recon-
struction Anomaly EmbeddingModel (DRÆM) [11].
In recent years, several strategies within continual learning have emerged to address the issue

of catastrophic forgetting. The classification of strategies revolves around three distinct fam-
ilies, each distinguished by their treatment of task-specific information during the sequential
learning process: replaymethods, regularization-basedmethods, and parameter isolationmeth-
ods [12]. Among these strategies, one stands out as bothwidely recognized and highly effective:
the method of replay. This approach involves retaining selected samples in their original form
and reintroducing them during subsequent tasks. Within the framework of the thesis work,
this strategy is adopted tomaintain previously acquired knowledge while accommodating new
learning tasks.
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The thesis is structured as follows: Chapter 2 provides an overview of several anomaly detec-
tion methods. Chapter 3 reviews the continual learning framework. In Chapter 4, the dataset
MVTec AD is described. Chapter 5 presents the experimental setup and results, followed by
the conclusion in Chapter 6.
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2
Anomaly Detection

Anomaly detection refers to the task of identifying data points or patterns that significantly
differ from the majority of the data. This task is crucial in several fields such as fraud detection,
intrusion detection, and industrial quality control. Anomalies can provide early indications
of potential dangers or uncover unique opportunities that would have gone unnoticed other-
wise. As a result, enabling computers to detect anomalies is a fundamental task for artificial
intelligence. Anomaly detection typically involves a one-class classification problem where the
objective is to differentiate between normal and anomalous data. This approach differs from
supervised learning tasks where examples of all data classes are observed. However, due to the
lack of defective samples in inspection tasks or unclear defect types, a supervised learning ap-
proach is not practical. As a result, unsupervised algorithms are commonly employed in many
applications that rely on the detection and localization of anomalous regions.

Anomaly detection can be viewed as a two-fold task, comprising both image-level and sub-
image detection, with the former detecting anomalous images and the latter identifying anoma-
lous regions or objects within images.

There are three main classes of methods for image-level anomaly detection:

• reconstruction-based methods

• distribution-based methods

• classification-based methods.

5



Reconstruction-basedmethods rely on a set of basis functions learned from the training data
to reconstruct test images. Basis functions refer to a set of learned functions that are used to
represent or approximate the normal behavior of the training data. Thesemethods use a sparse
set of basis functions to reconstruct the test image, and if the reconstruction is unsuccessful,
the test image is identified as anomalous. The inability to accurately reconstruct the test image
using the learned basis functions suggests that the image may have originated from a different
basis than that of the normal training data. This approach to anomaly detection is particularly
useful in scenarios where labeled data is limited or unavailable.
Distribution-based methods involve modeling the distribution of normal data and identify-

ing anomalous test data with low likelihood under the probabilistic model, while normal data
is expected to have higher likelihoods. Methods differ in the features used to describe the data
and the probabilisticmodel used to estimate the normal distribution. Some earlymethods used
Gaussian or Gaussianmixture models. Recently, deep learningmethods (autoencoders or vari-
ational autoencoders) were used to learn deep features which are sometimes easier to model
than raw features.
Classification-based methods for anomaly detection involve separating regions containing

normal data from all other regions. One example of this approach is the One-Class Support
VectorMachine (SVM),which trains a classifier to perform this separation. The effectiveness of
this approach depends on the ability to learn a good feature space for performing the separation.
Classic kernel methods, as well as recent deep learning approaches, can be used to learn such
feature spaces.

2.1 MVTec Dataset: A Standard Benchmark for
Image Anomaly Detection

Inorder to evaluate anomalous detection and localization tasks on images, high-quality datasets
such as MVTec and ShanghaiTech Campus have been introduced.

MVTecAnomalyDetection (MVTecAD)dataset introduced in [8]was thefirst comprehen-
sive, multi-object, multi-defect dataset for anomaly detection that focuses on real-world appli-
cations, containing 5354 high-resolution color images of different object and texture categories.
It contains normal, i.e., defect-free, images intended for training and images with anomalies in-
tended for testing. The anomalies manifest themselves in the form of over 70 different types
of defects such as scratches, dents, contaminations, and various structural changes. In addi-
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tion, [8] provides pixel-precise ground truth regions for all anomalies. The MVTec Anomaly
Detection dataset comprises 15 categories where five categories cover different types of regular
(carpet, grid) or random (leather, tile, wood) textures, while the remaining ten categories rep-
resent various types of objects. Some of these objects are rigid with a fixed appearance (bottle,
metal nut), while others are deformable (cable) or include natural variations (hazelnut).

2.2 EvaluationMetrics for Anomaly Detection
Methods

Evaluationmetrics are essential in anomaly detection as they provide a necessarymeans to quan-
tify andmeasure themethods’ performance and effectiveness in accurately detecting anomalies.

The ROC AUC metric is widely utilized for evaluating anomaly detection methods, as it
provides a comprehensive measure of their performance. However, alternative metrics like the
PRO-score, precision-recall and f1-score are also employed in certain contexts to assess the ef-
fectiveness of anomaly detection algorithms.

Metrics like ROC AUC, AUC PRC (Area Under the Precision-Recall Curve), and PRO-
score are not functions of threshold, as they evaluate a model’s performance across various
threshold settings. In contrast, the f1-score is threshold-dependent, as it summarizes perfor-
mance at a specific threshold.

2.2.1 ROCAUC

The Receiver Operating Characteristic (ROC) curve and the corresponding Area Under the
Curve (AUC) are fundamental evaluation metrics used in anomaly detection. These metrics
provide a comprehensive assessment of an algorithm’s ability to discriminate between normal
and anomalous instances. TheROCcurve visualizes the trade-offbetween the truepositive rate
and the false positive rate at various classification thresholds. The area under the ROC curve
(ROCAUC) summarizes the overall performance of the algorithm. AhigherROCAUCvalue
indicates a better discriminative ability, where a score of 1 represents a perfect classifier. The
ROC AUC metrics are particularly useful in imbalanced datasets, as they offer a comprehen-
sive evaluation regardless of the chosen classification threshold. They serve as a benchmark for
comparing different anomaly detection algorithms and enable researchers to selectmodelswith
superior discriminatory power.
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2.2.2 PRO-score

Per-region-overlap (PRO) is evaluation metric that weights ground-truth regions of different
size equally [13]. This is in contrast to simple per-pixel measures for which a single large cor-
rectly segmented region can make up for many incorrectly segmented small ones. For com-
puting the PROmetric, anomaly maps are first thresholded at a given anomaly score tomake a
binary decision for eachpixelwhether an anomaly is present or not. For each connected compo-
nent within the ground-truth, the percentage of overlap with the thresholded anomaly region
is computed.

2.2.3 Precision - Recall

Precision-recall analysis is a valuable and widely-used technique for assessing pixel-level per-
formance in image processing and computer vision tasks. Precision quantifies the proportion
of correctly classified positive pixels out of all the pixels classified as positive, emphasizing the
reliability of positive predictions. Meanwhile, recall measures the ratio of correctly classified
positive pixels to all actual positive pixels, highlighting the method’s ability to capture all rel-
evant information. This makes precision-recall particularly suited for scenarios where imbal-
anced classes or rare events are prevalent, as it provides insights into themodel’s ability tomake
accurate positive predictions while minimizing false positives. It is also common to plot the
trade-off between precision and recall. This is the precision-recall (PR) curve.

2.2.4 f1-score

The f1-score combines precision and recall using their harmonic mean:

f1 =
2 · Precision · Recall
Precision+ Recall

. (2.1)

The f1-score balances the trade-off between precision and recall. It provides a single score that
reflects both the model’s ability to make accurate positive predictions and its ability to capture
all relevant positive instances. The f1-score is particularly useful when there is an imbalance
between the two classes, as it takes into account false positives and false negatives.
A high f1-score indicates a model that achieves both high precision and high recall, while a

low f1-score suggests that the model may be biased towards one of these metrics at the expense
of the other.
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2.3 Approaches for Unsupervised Anomaly
Detection

There is awide range ofmethods available for unsupervised anomaly detection, with numerous
approaches proposed to address the problem. The succeeding paragraphs present newly devel-
oped state-of-the-art methods for anomaly detection ranked according to their performance,
alongwith their concepts and results achieved on theMVTecAnomalyDetection dataset, eval-
uating their performance in both image segmentation and classification of anomalies.

Convolutional Autoencoders (CAEs) are commonly used as a base architecture in unsu-
pervised anomaly detection settings. They attempt to reconstruct defect-free training samples
through a bottleneck (latent space). During testing, they fail to reproduce images that differ
from the data that was observed during training. There exist various extensions to CAEs such
as the variational autoencoders (VAEs) [14]. However, several papers [15] [16] do not report
significant improvements over using standard CAEs. Another type of architecture that has
been used is Generative Adversarial Networks (GANs) [17]. GANs have been shown to be
effective in generating realistic samples from a given distribution, and they can also be used to
identify anomalies in the data. However, GAN-based anomaly detectionmethods can be sensi-
tive to the choice of hyperparameters and may suffer frommode collapse, where the generator
produces only a limited variety of samples.

The authors in [8] conducted assessment of several state-of-the-art methods for unsuper-
vised anomaly detection to establish a benchmark on their dataset, which is intended to serve
as a baseline for future research. The evaluated methods were the following: AnoGAN, L2
and SSIM Autoencoder, CNN Feature Dictionary, GMM-Based Texture Inspection Model
and Variation Model. The article proposed a method to determine the threshold for anomaly
detection in the evaluated methods. A minimum defect area is defined for each category, and
the threshold is determined by successively segmenting the anomaly maps of the anomaly-free
validation set with increasing thresholds until the area of the largest anomalous region on the
validation set is just below the user-defined area. The performance of eachmethod is evaluated
based on the determined threshold for both anomaly classification and segmentation tasks. Per-
formance metrics include accuracy for classification, per-region overlap of segmentation with
the ground truth, and the area under the receiver operating characteristic curve (ROC AUC)
as an additional independent performance measure. Evaluation results for the classification of
anomalous images and segmentation of anomalous regions found that for the ten object cate-
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gories, the autoencoder architectures outperformed other methods in unsupervised anomaly
detection. The L2 autoencoder showed better per-region overlap values, suggesting that the
estimation of the anomaly threshold may have worked better for this method. The evaluation
of the L2 and SSIM autoencoder on the texture images was carried out using the CAE archi-
tecture, with texture patches of size 128 × 128 reconstructed using either a per-pixel L2 loss or
a loss based on the structural similarity index (SSIM).

2.3.1 Reconstruction by Inpainting for Visual Anomaly
Detection (RIAD)

Approaches using auto-encoders can reconstruct a variety of objects with a low error, but due
to the high generalization capacity, anomalies are often reconstructed with high fidelity. To
overcome the problem of the over-accurate anomaly reconstruction observed in auto-encoders,
[18] proposed a novel anomaly detection method named Reconstruction by inpainting for vi-
sual anomaly detection (RIAD). This method is based on an encoder-decoder network trained
for image inpainting on anomaly-free samples. It removes a portion of the input image, and
the trained network is used to replace the missing information with semantically plausible con-
tent. Each image is assigned an anomaly score according to the region with the poorest recon-
struction quality. In contrast to auto-encoders, local regions are reconstructed by conditioning
only on their immediate neighborhood, excluding the input pixels in the region, which is be-
ing reconstructed. The likelihood of accurately reconstructing the anomaly by generalizing the
neighborhood appearance is therefore very low. On the other hand, the reconstruction of re-
moved non-anomalous regions is not hampered, since the network is trained on anomaly-free
images and such regions are therefore modelled very well.
The main steps of the method are shown in Figure 2.1. Firstly, the original image I is split

into a grid of rectangular regions of the size of k × k pixels. The set of rectangular regions is
randomly split into n disjoint subsets. For each subset, the regions belonging to that subset are
removed from the original image (they are set to 0), resulting in n input images (1). The input
images are reconstructed by an inpainting network generating n output images, each recon-
structing the regions removed in their corresponding input image (2). AU-Net based encoder-
decoder network is used to reconstruct the removed regions. The architecture of the network
used skip connections to transfer features through different layers of the network which led
to an accurate reconstruction of details that are otherwise difficult to reconstruct. The indi-
vidual reconstructed regions from the n partial reconstructions are re-assembled into a single
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reconstructed image Ir.

Figure 2.1: Main steps of RIAD method.

For training autoencoders a per-pixel L2 loss is commonly used, however this assumes inde-
pendence between neighboring pixels, which is often incorrect. Therefore, losses that penalize
structural differences between the reconstructed regions and the regions belonging to the orig-
inal image are used. Specifically, a multi-scale gradient magnitude similarity (MSGMS) loss
is proposed, and the structured similarity index (SSIM) loss is used. For the total loss, [18]
considered the MSGMS loss, the SSIM loss as well as the pixel-wise L2 loss for regularization.

Since anomaly detection relies on the reconstruction being as faithful as possible in non-
anomalous regions, anomaly detection performance may also depend on the region size k used
and on the size of the anomaly that is being reconstructed. In order to achieve a more reliable
reconstruction errormapmultiple reconstructions of an individual imagewere used, generated
using several k values. In most experiments in [18], k = {2, 4, 8, 16} was used as it covered a
wide range of anomaly scales.

At the end, anomaly maps are generated by subtracting the post-processed MSGMS map
from a matrix of ones. RIAD, which employs this approach, achieves state-of-the-art perfor-
mance for anomaly localization, outperforming previous methods with ROC AUC of 91.7%
and 94.2% for anomaly detection and localization on the MVTec dataset, respectively.
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2.3.2 Semantic Pyramid Anomaly Detection (SPADE)

The deep learning community has paid less attention to the task of segmenting anomalous pix-
els in images, which is specific to sub-image domain analysis, unlike the previous methods that
classify a whole image as normal or anomalous. Previous works have employed K-means based
classifiers on dimensionality reduced features or used autoencoder approaches. However, a
novel sub-image alignment approach has been proposed in [19], which is more accurate, faster,
and stable than previousmethods and does not require a dedicated training stage. Thismethod
is called Semantic PyramidAnomalyDetection (SPADE) and it utilizes correspondences based
on a multi-resolution feature pyramid. It consists of several stages:

• image feature extractionusing apretraineddeepneural network (e.g., an ImageNet trained
ResNet)

• nearest neighbor retrieval of the nearest K normal images to the target

• finding dense pixel-level correspondence between the target and the normal images.

In the second stage, K Nearest Neighbor Normal Image Retrieval, features of the test im-
age are extracted to identify the K nearest normal images from the training set. The distance
between the image-level feature representation is measured using the Euclidean metric, which
determines whether the image is labeled as normal or anomalous based on a threshold. After
being labelled as anomalous at the image-level stage, the objective is to locate and segment the
pixels of one or multiple anomalies. In the case that the image was falsely classified as anoma-
lous, the objective is to mark no pixels as anomalous. The concept of aligning a test image to
a retrieved normal image was initially considered as a motivation. However, the method of de-
tecting anomalous pixels by finding differences between the test and normal image has several
drawbacks. To overcome issues, [19] presented a multi-image correspondence method. Deep
features are extracted at every pixel location p of the relevant test andK nearest normal training
images using feature extractor F(xi, p) based on which average distance is calculated and used
as anomaly score at pixel p. For a given threshold θ, anomalous pixels are determined as those
for which d(y; p) > θ, indicating that no closely corresponding pixel can be found in the K
nearest neighbor normal images.

The method of aligning images by dense correspondences is an efficient way to determine
normal and anomalous regions of an image. This requires determining the appropriate fea-
tures for matching, which are obtained from a pre-trained deep ResNet CNN. The ResNet
generates a pyramid of features, with earlier layers having higher resolution features encoding
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less context, while later layers have lower resolution features encoding more context but at a
lower spatial resolution. To achieve effective alignment, features from different levels of the
pyramid are concatenated, encoding both fine-grained local features and global context. This
enables correspondences to be found between the target image and one ormore normal images,
without requiring explicit alignment of the images, which is more challenging and fragile.

SPADEdemonstrated superiorperformance compared toothermethods, includingAE (SSIM),
AE (L2), ANOGAN, and CNNDICT, achieving an average ROC AUC of 85.5% for image-
level anomaly detection and 96.0% for sub-image-level anomaly detection.

2.3.3 PatchDistributionModeling (PaDiM)

The linear complexity of the K Nearest Neighbor algorithm increases the time and space com-
plexity as the size of the training dataset grows. To address these issues, a novel approach called
PaDiM (PatchDistributionModeling) has been proposed in [10]. It makes use of a pretrained
CNN for embedding extraction and has the two following properties:

• each patch position is described by a multivariate Gaussian distribution

• PaDiM takes into account the correlations between different semantic levels of a pre-
trained CNN.

The patch embedding process is similar to that used in SPADE,where normal image patches
are associated with activation vectors in the CNN activation maps, and concatenated to pro-
duce embedding vectors that encode information from different semantic levels and resolu-
tions. This process is illustrated in Figure 2.2. These embedding vectors are then used to di-
vide an input image into a grid of patch positions, which are associated with their respective
embedding vectors.

The normal image characteristics at position (i; j) are learned by computing the set of patch
embedding vectors at (i; j), xij, from theN normal training images, as shown in Figure 2.2 . To
sum up the information carried by this set it is assumed that xij is generated by a multivariate
Gaussian distributionN(μij;Σij)where μij is the sample mean of xij and the sample covariance
Σij. Finally, each possible patch position is associatedwith amultivariate Gaussian distribution
as shown in Figure 2.2 by the matrix of Gaussian parameters. Mahalanobis distance M(xij)
is used to give an anomaly score to the patch in position (i; j) of a test image. M(xij) can be
interpreted as the distance between the test patch embedding (i; j) and learned distribution
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Figure 2.2: Patch embedding process used in PaDiM.

N(μij;Σij). High scores in this map indicate the anomalous areas. The final anomaly score of
the entire image is the maximum of anomaly mapM.

PaDiMwas trainedwithdifferentbackbones, aResNet18 (R18), aWideResNet-50-2 (WR50)
and an EfficientNet-B5, all pretrained on ImageNet. To reduce redundancy in the generated
patch embedding vectors, the authors experimentally compare random dimensionality reduc-
tion with classic PCA and find that random dimensionality reduction (Rd) is more efficient.
PaDiM-WR50-Rd550 demonstrates superior performance in the anomaly localization task
compared to other methods, including SPADE, VAE, and AEs, across all classes of theMVTec
dataset. This is reflected in both the per-pixel AUROC and PRO-score, with values of 97.5%
and 92.1%, respectively. For anomaly detection task, PaDiM-EfficientNet-B5 outperforms ev-
ery model by at least 2.6p.p on average on all the classes in the AUROC achieving the value of
97.9%. Moreover, the proposed method uses less memory and has shorter inference time.

2.3.4 Fast Flow

Some works began to use normalizing flow to estimate distribution. They propose a trainable
process to embed normal image features into a standard normal distribution, which is used to
identify and locate anomalies. However, the original one-dimensional normalizing flowmodel
flattens the two-dimensional input feature, which limits its ability and destroys the spatial rela-
tionship of the image. Additionally, the sliding window method used to extract features for a
large number of patches leads to high complexity and limits the practical value of the methods.
To address these problems, [20] proposes FastFlowwhich extends the original normalizing flow
to two-dimensional space. The pipline of FastFlowmethod is shown in Figure 2.3 and consists
of a feature extractor and FastFlowmodel.

In the whole pipeline of FastFlow method, the representative feature is first extracted from
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the input image through ResNet or vision transformers. After this, the model learns a 2D
normalizing flow that maps the Gaussian distribution to the input image distribution. In the
final stage, the learned 2Dnormalizing flow is used to detect and localize anomalies in the input
image. The proposed model uses a ”multi-scale” approach to learn the 2D normalizing flow.
At each scale, a sequence of invertible 2D convolutional layers is used to learn the flow. The
flow is learned by minimizing the negative log-likelihood of the Gaussian distribution under
the flow. For anomaly detection and localization, the learned 2D normalizing flow is used to
compute the log-likelihood of each pixel in the input image. Pixels with low log-likelihoods
are considered anomalous and are assigned a high anomaly score. After obtaining the anomaly
score, a threshold is applied to identify and locate anomalies.

Figure 2.3: (a) The whole pipline of FastFlow method, (b) One flow step for FastFlow.

The proposedmethod was evaluated on three datasets: MVTec AD, BTAD andCIFAR-10.
On the MVTec dataset FastFlow achieved on average 99.4% AUC on image-level and 98.5%
AUC on pixel-level.

2.3.5 Conditional Normalizing Flows for Anomaly Detection
(CFLOW-AD)

While feature extraction using CNNs has relatively low complexity, the postprocessing of fea-
turemaps in the latest unsupervised anomaly detectionmethods falls short of real-time process-
ing. To address this complexity drawback, [21] proposes a CFLOW-AD model that is based
on conditional normalizing flows. The main idea behind this approach is shown inFigure 2.4.
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A distribution of the anomaly-free image patches x with probability density function pX(x) is
learned by the AD model. Translation-equivariant model is trained to transform the original
distribution with pX(x) density into a Gaussian distribution with pZ(z) density. Finally, this
model separates in-distribution patches zwith pZ(z) from the out of-distribution patches with
pZ̃(z) using a threshold τ computed as the Euclidean distance from the distribution mean.

Figure 2.4: An example of the proposed out‐of‐distribution (OOD) detector for anomaly localization.

TheCFLOW-ADmodel shown inFigure 2.5. consists of twomain components: an encoder
network and a flow-based decoder network.

The encoder network is a pre-trained CNN that extracts features with multi-scale pyramid
pooling from the input image. Pyramid pooling captures both global and local semantic infor-
mation with the growing from top to bottom receptive fields. In the paper, the authors use
the ResNet architecture as the encoder network, which has been pre-trained on the ImageNet
dataset. Pooled feature vectors are processed by a set of decoders independently for each scale.
Decoder is a conditional normalizing flownetworkwith a feature input and a conditional input
with spatial information from a positional encoder (PE). The estimatedmulti-scale likelihoods
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are upsampled to the input size and added up to produce an anomaly map.
On the MVTec dataset CFLOW-AD with WideResNet-50 encoder achieved on average

98.2%AUROCon image-level and 98.62%AUROCon pixel-level. Moreover, since CFLOW-
AD decoders do not explicitly depend on the feature map dimensions (only on feature vector
depths), CFLOW-ADmodel is significantly smaller than SPADE and PaDiM.

Figure 2.5: Architecture of CFLOW‐AD.

2.3.6 Coupled-hypersphere-based Feature Adaptation (CFA)

Papers [19] and [10] used pre-trained CNNs on ImageNet to create memory banks. This ap-
proach extracts generalized features from CNN and stores them in the memory bank for ab-
normality detection. However, as industrial images differ from ImageNet, CNN may extract
irrelevant features, leading to inaccurate anomaly detection. To solve this issue, [22] proposed
amethod called Coupled-hypersphere-based Feature Adaptation (CFA) that performs transfer
learning on the target dataset as a solution to alleviate the bias of pretrained CNNs.

CFA addresses the issue of overestimating the normality of abnormal features when using
a pre-trained CNN. It accomplishes this by learning patch features from normal samples of a
target dataset that are densely clustered around memorized features. In Figure 2.6, CFA ob-
tains feature maps of different scales by inferring samples from the target dataset using a biased
CNN, and then interpolates them to the same resolution before concatenating them to gen-
erate patch features. These patch features are then fed into a patch descriptor, an auxiliary
network with learnable parameters that transforms them into target-oriented features. The ini-
tial target-oriented features obtained from the training set of only normal samples are stored in
memory bank C using a specific modeling process. During training, CFA uses contrastive su-
pervision to create coupled-hyperspheres with the memorized features c ∈ C as centers. In the
test phase, CFA matches patch features from an arbitrary sample in the test set with the near-
est neighbor in the memory bank and generates heatmaps that indicate the degree of anoma-
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lousness. Finally, a scoring function calculates a score map for anomaly localization from the
heatmaps.

Figure 2.6: Overall structure of CFA method.

Authors also presented a compression scheme to construct an efficient memory bank that
is illustrated in Figure 2.7. The method first clusters the feature vectors stored in the memory
bank using k-means clustering, where k is a hyperparameter that determines the compression
ratio. Each centroid of a cluster represents a compressed version of a memory bank entry. The
compressed memory bank is then constructed by storing the centroids instead of the full fea-
ture vectors. During training, loss is calculated using compressed memory bank entries. For
each training sample, the nearest compressed memory bank centroid is found and used for
computing the loss. This approach reduces the computational and memory requirements of
the learning-based anomaly detection method. During testing, the compressed memory bank
entries are used for nearest neighbor search. Specifically, the patch descriptor generates patch
features for a test sample, which are then used to find the nearest compressedmemory bank cen-
troid. Heatmaps are generated based on the degree of anomalousness, and an anomaly score
map is calculated using a specific scoring function.

On theMVTec dataset CFAwithWRN50-2 achieved on average 99.5%AUROCon image-
level and 98.5% AUROC on pixel-level.
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Figure 2.7: The process of modeling the memory bank and generating heatmaps through feature matching.

2.3.7 Student-TeacherFeaturePyramidMatchingforAnomaly
Detection (STFPM)

A student-teacher framework was efficiently employed in [23] to learn normal feature distribu-
tions from pre-trainedmodels. In their work authors [23] used the difference between student
and teacher model outputs, along with predictive uncertainty, as an anomaly scoring function.
However, two major challenges persisted: incomplete knowledge transfer due to model capac-
ity differences and the complexity of handling scaling. These issues opened doors for further
improvements that were introduced in [24].
In [24], authors make use of the student-teacher learning framework to implicitly model

the feature distribution of the normal training images. The teacher is a powerful network pre-
trained on the image classification task (e.g., a ResNet-18 pre-trained on ImageNet). To reduce
information loss, the student shares the same architecture with the teacher. In this approach,
the position of distillation within deep neural networks is crucial. Deep neural networks gen-
erate a pyramid of features for each input image. Bottom layers result in higher-resolution
features encoding low-level information such as textures, edges and colors. By contrast, top
layers yield low-resolution features that contain context information. The features created by
bottom layers are often generic enough and they can be shared by various vision tasks. This
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motivates integration of low-level and high-level features in a complementary way. Given the
distinct receptive fields associated with different layers in deep neural networks, this approach
involves utilizing features extracted from several consecutive lower-layer groups (e.g., blocks
within ResNet-18) of the teacher to guide the student’s learning. This hierarchical feature
alignment enables the method to effectively identify anomalies of different sizes. Figure 2.8
gives a sketch of this method with the images from theMVTec AD dataset.

Figure 2.8: Schematic overview of Student‐Teacher Feature Pyramid Matching.

The training phase aims to obtain a student which can perfectly imitate the outputs of a
fixed teacher on normal images. For all the experiments, the first three blocks were chosen
(i.e., conv2_x, conv3_x, conv4_x) of ResNet-18 as the pyramid feature extractors for both the
teacher and student networks.
In the anomaly detection and localization tasks on MVTec AD, Student‐Teacher Feature

PyramidMatching achieved AUROC score of 97.0% and 95.5%, respectively.

2.3.8 EfficientAD: Accurate Visual Anomaly
Detection atMillisecond-Level Latencies

In industrial settings,maintaining high production rates is crucial for economic viability. How-
ever, strict runtime limits often pose significant challenges for anomaly detection systems. De-
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viating from these limits can lead to a decrease in production rates and, subsequently, hinder
the overall efficiency of the application. To address this critical concern, the authors propose
Efficient-AD [9], a novel approach that emphasizes both computational efficiency and eco-
nomic feasibility in anomaly detectionmethods. This innovative technique ensures real-world
applicability while effectively detecting anomalies and optimizing productivity.

EfficientADbeginswith the efficient extractionof features fromapretrainedneural network.
While anomaly detection methods commonly use the features of a deep pretrained network,
such as a WideResNet-101, EfficientAD employs a network with a drastically reduced depth,
comprising only four convolutional layers, as a feature extractor. This network, known as a
patch description network (PDN) Figure 2.9, generates descriptive 33×33 patches per output
feature vector. The PDN is fully convolutional, enabling application to images of variable sizes
in a single forwardpass. ThePDNis trainedon images fromImageNetbyminimizing themean
squared difference between its output and the features extracted from the pretrained network.

Figure 2.9: Patch description network (PDN) architecture.

In their approach, the authors simplify the Student-Teacher (S-T) method for detecting
anomalous feature vectors by using just one teacher (distilled PDN) and one student. The
PDN’s architecture serves as the student’s model, ensuring low overall latency due to its fast
execution. To enhance anomaly detection performance without affecting computational re-
quirements during testing, they introduce a training loss. This loss improves anomaly detec-
tion by leveraging a hard feature loss, which focuses on the output elements with the highest
loss for backpropagation, preventing false-positive detections on normal images.
Moreover, the authors propose incorporating images from the teacher’s pretraining dataset

(ImageNet) during student training. By randomly sampling a pretraining image in each train-
ing step, they penalize the student from overly generalizing the teacher’s imitation to out-of-
distribution images. Thismeasure improves the student’s ability to detect anomalies accurately
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while maintaining efficiency in the detection process.
To account for logical anomalies, such as misplaced objects, the authors incorporate an au-

toencoder into their method for detecting such issues. Figure 2.10 illustrates the anomaly de-
tection process used in EfficientAD.The autoencoder is trained to predict the teacher’s output,
with a bottleneck of 64 latent dimensions for encoding and decoding the complete image.

Figure 2.10: Anomaly detection methodology for EfficientAD.

While the patch-based student relies on generating descriptive patches for anomaly detec-
tion, the autoencoder encounters challenges in reconstructing fine-grained patterns, leading to
flawed reconstructions on both normal and anomalous images. To avoid false-positive detec-
tions, the authors modify the student network by doubling the number of output channels.
The student is then trained to predict both the output of the teacher and the output of the
autoencoder, enabling effective detection of anomalies while considering the limitations of the
autoencoder’s reconstruction capabilities.
The student network learns the systematic reconstruction errors of the autoencoder on nor-

mal images, such as blurry reconstructions. However, it remains unaware of the reconstruc-
tion errors for anomalies, as they are not part of its training set. This difference between the
autoencoder’s output and the student’s output is well-suited for computing the anomaly map.
Analogous to the anomaly map generated by the student–teacher pair reffered to as the ”local
anomaly map”, the ”global anomaly map” is obtained by squaring the differences between the
outputs of the student and the autoencoder, and then averaging the differences across channels.
To create the final ”combined anomaly map”, both the ”local” and ”global anomaly maps”

are averaged together. The image-level anomaly score is determined by selecting the maximum
value from this combined map, facilitating effective anomaly detection.

ForEfficientADmethod, the authors evaluated twovariants: EfficientAD-S andEfficientAD-
M. EfficientAD-S uses the architecture displayed in Figure 2.9 for the teacher and the student.
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For EfficientAD-M, authors doubled the number of kernels in the hidden convolutional lay-
ers of the teacher and the student. Additionally, a 1×1 convolution was added following the
second pooling layer and the last convolutional layer.
In the anomaly detection task on MVTec AD, Efficient-AD achieved AUROC scores of

99.1% and 98.8% for EfficientAD-M and EfficientAD-S, respectively. For the anomaly seg-
mentation task on MVTec AD, Efficient-AD obtained AUROC scores of 96.9% and 96.8%
for EfficientAD-M and EfficientAD-S, respectively.

2.3.9 PatchCore

The PatchCore [25] method comprises multiple components including the aggregation of lo-
cal patch features into amemorybank, theutilizationof a coreset-reductionmethod to improve
efficiency, and the overall algorithm that leads to detection and localization decisions.

Locally aware patch features

PatchCore utilizes a pre-trained network ϕ that was originally trained on ImageNet to extract
features from images. These features, represented as ϕi,j, are obtained by applying ϕj(xi) to the
image xi.
While the last level of the feature hierarchy is one choice for feature representation, Patch-

Core addresses two significant concerns associated with relying solely on this level. Firstly, this
approach leads to the loss of localized nominal information. Secondly, the deep and abstract
features derived from ImageNet-pretrained networks tend to be biased towards natural image
classification, rendering them less suitable for the specific requirements of industrial anomaly
detection.
To overcome these limitations, PatchCore introduces a memory bankM, which consists of

patch-level features. These features are intermediate ormid-level representations thatmake use
of the provided training context. Unlike the generic and ImageNet-specific features obtained
from deeper levels, the patch-level features capture more relevant information for anomaly de-
tection. PatchCore computes the patch-level features by taking into account the local neigh-
borhood of each patch. This involves aggregating feature vectors from neighboring patches
and applying an adaptive average pooling operation. By doing so, PatchCore enhances the re-
ceptive field size and enhances robustness against small spatial deviations while preserving the
spatial resolution and usability of the feature maps.
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For all nominal training samples xi in XN, the memory bankM in PatchCore is defined as
follows:

M =
∪

xi∈XN

Ps,p(ϕj(xi))

where Ps,p(ϕj(xi)) represents the collection of patch-level features computed using the aggrega-
tion function and neighborhood considerations.

Figure 2.11: Overview of PatchCore.

Coreset-reduced patch-feature memory bank

As the size of the set XN increases, the memory bankM also becomes larger. This leads to
longer inference times for evaluating new test data and requires more storage space. To address
these issues, it is important to makeM searchable in a meaningful way, especially for larger
images anddatasets. This allows for comparison at thepatch level, whichbenefits both anomaly
detection and segmentation. Preserving the coverage of nominal features encoded inM is
crucial for achieving this. However, randomly selecting a subset ofMmay result in the loss of
important information contained in the coverage of nominal features.

In [25], authors employ a coreset subsamplingmechanism to reduce the size ofM. This ap-
proach helps decrease the inference timewhile preserving the performance. The goal of coreset
selection is to find a subset S from a larger setA, such that solutions computed over S closely
approximate those computed overA, but more quickly.

In the context of PatchCore, which involves nearest neighbor computations, a minimax fa-
cility location coreset selection is used. This ensures that the selected coreset, denoted asMC ,
provides approximately similar coverage in patch-level feature space as the original memory
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bankM. Computing the exact coresetMC is NP-Hard, so an iterative greedy approximation
method is employed.

To further improve the efficiency of coreset selection, random linear projections are applied
to reduce the dimensionality of the elements inM. This reduces the computation time for
selecting the coreset.

ThenotationPatchCore-n% represents the percentagen towhich the originalmemorybank
has been subsampled. For example, PatchCore-1% indicates a 100x reduction ofM. Fig-
ure 2.12 provides a visual comparison between the spatial coverage achieved by the greedy core-
set subsampling method and random selection.

Figure 2.12: Comparison: coreset (top) vs. random subsampling (bottom) (red) for 2D data (blue) sampled from (a)
multimodal and (b) uniform distributions.

With the nominal patch-featurememory bankM, the image-level anomaly score s ∈ R for a
test image xtest is estimated by calculating themaximumdistance score s∗ between the test patch
features in its patch collectionP(xtest) = Ps,p(ϕj(xtest)) and their respective nearest neighborm

∗

inM:

m∗
test,m∗ = arg max

mtest∈P(xtest)
arg min

m∈M
∥mtest −m∥2.

The image-level anomaly score is then calculated as:

s∗ = ∥m∗
test −m∗∥2.
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ForPatchCore, the authors report on various levels ofmemorybank subsampling (25%, 10%,
and 1%). In the anomaly detection task onMVTecAD,PatchCore achievedAUROCscores of
99.1%, 99.0%, and 99.0% for the corresponding subsampling levels. For anomaly segmentation
task on MVTec AD, PatchCore achieved AUROC scores of 98.1%, 98.1%, and 98.0% for the
aforementioned subsampling levels respectively.

2.3.10 A discriminatively trained reconstruction
embedding for surface anomaly detection - DRÆM

TheDRÆMmethod [11] is introduced to address a common drawback of generative anomaly
detection methods. These methods only learn from anomaly-free data and lack optimization
for discriminative anomaly detection since positive examples (anomalies) are unavailable dur-
ing training. Training with synthetic anomalies leads to overfitting to synthetic appearances,
resulting in poor generalization to real anomalies. To reduce overfitting, DRÆM proposes
training a discriminative model that considers the joint appearance of both reconstructed and
original data, including the reconstruction subspace. This enables the model to learn a local-
appearance-conditioneddistance functionbetweenoriginal and reconstructed anomaly appear-
ances, which generalizes well across real anomalies. To validate this hypothesis, a deep surface
anomaly detection network is introduced. It is discriminatively trained in an end-to-end man-
ner using synthetically generated out-of-distribution patterns, which do not need to faithfully
represent the target-domain anomalies. The network comprises a reconstructive subnetwork
followed by a discriminative sub-network Figure 2.13.

Figure 2.13: The anomaly detection process of the DRÆM method.
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Reconstructive sub-network

The reconstructive sub-network is trained to implicitly detect and reconstruct anomalies with
semantically plausible anomaly-free content, while keeping the non-anomalous regions of the
input image unchanged. It is formulated as an encoder-decoder architecture that converts the
local patterns of an input image into patterns closer to the distribution of normal samples. The
network is trained to reconstruct the original image I from an artificially corrupted version
Ia obtained by a simulator. The simulated anomaly generation process Figure 2.14 involves
generating a binary anomalymaskMa fromPerlin noiseP. The anomalous regions are sampled
from a set A based on the values inMa and overlaid on the anomaly-free image I to create the
anomalous image Ia.

Figure 2.14: Simulated anomaly generation process.

An l2 loss is often used in reconstruction-based anomaly detection methods, however, this
assumes independence between neighboring pixels. Therefore, a patch-based Structural Simi-
larity IndexMeasure (SSIM) loss is additionally used. The reconstruction loss is defined as:

Lrec(I, Ir) = λ · LSSIM(I, Ir) + l2(I, Ir)
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where image I represents the input image, Ir is the reconstructed image output by the network,
and λ is a loss balancing hyper-parameter.

Discriminative sub-network

Thediscriminative sub-networkutilizes aU-Net-like architecture. The inputof the sub-network,
denoted as Ic, is formed by the channel-wise concatenation of the output from the reconstruc-
tive sub-network (Ir) and the input image (Ia). As the reconstructive sub-network restores
the normality of the image, the joint appearance of Ia and Ir exhibits significant differences
in anomalous images. These differences in joint appearance provide crucial information for
accurate anomaly segmentation (Figure 2.15).

Figure 2.15: DRÆM joint space.

The network generates an anomaly score map, Mo, which has the same size as the input
image. To enhance accurate segmentation of challenging examples, the output of the discrimi-
native sub-network is subjected to Focal Loss (Lseg).
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Taking into account theobjectives of both the segmentation and reconstructive sub-networks,
the total loss used in training DRÆM is defined as:

L(I, Ir,Ma,M) = Lrec(I, Ir) + Lseg(Ma,M),

whereMa andM represent the ground truth and output anomaly segmentation masks, re-
spectively.

Surface anomaly localization and detection

The output of the discriminative sub-network is a pixel-level anomaly detection mask, Mo,
which directly indicates the presence of anomalies in the image. To estimate the image-level
anomaly score, Mo is smoothed using a mean filter convolution layer. The final image-level
anomaly score, denoted as η, is computed by taking the maximum value from the smoothed
anomaly score map:

η = max(Mo ∗ fsf×sf),

where fsf×sf represents a mean filter of size sf× sf, and ∗ denotes the convolution operator.

The authors ofDRÆMreported its performance inboth the anomalydetection and anomaly
localization tasks on MVTec AD. DRÆM achieved an AUROC score of 98.0% for anomaly
detection and an AUROC of 97.3% for anomaly localization.

2.4 Comparison ofMethods Used for AD

TheTable 2.1 compares theAUCROCscores achievedon theMVTecdataset forboth anomaly
detection (image-level) and anomaly localization (pixel-level) capabilities of the methods de-
scribed in this section.

The results presented in the table are derived from the values reported in the official papers
for each method.
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Table 2.1: Anomaly detection and localization performance (Average ROCAUC %) on MVTec AD dataset.

Method Anomaly Detection Anomaly Localization

RIAD 91.7 94.2
SPADE 85.5 96.0
PaDiM 97.9 97.5
FastFlow 99.4 98.5
CFLOW-AD 98.3 98.6
CFA 99.5 98.5
Student-Teacher 97.0 95.5
EfficientAD 99.1 96.9
PatchCore 99.1 98.1
DRÆM 98.0 97.3
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3
Continual Learning

Continual Learning studies the problem of learning from an infinite stream of data, with the
goal of gradually extending acquired knowledge and using it for future learning. The major
challenge is to learn without catastrophic forgetting: performance on a previously learned task
or domain should not significantly degrade over time as new tasks or domains are added. This
is a direct result of a more general problem in neural networks, namely the stability-plasticity
dilemma, with plasticity referring to the ability of integrating new knowledge, and stability
retaining previous knowledge while encoding it.

3.1 Three Distinct Families in Sequential Learning

According to [6], three families are distinguished based on how they store and utilize task-
specific information throughout the sequential learning process. These families of learning
methods are illustrated in Figure 3.1 and include:

• replay methods

• regularization-based methods

• parameter isolation methods.
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Figure 3.1: A tree diagram illustrating the different continual learning families of methods.

3.1.1 ReplayMethods

In this approach, the previous task samples are either stored in raw format or synthesized using
a generative model. During the learning of a new task, these samples are replayed to mitigate
forgetting. They can either be used as inputs for rehearsal or to restrict the optimization of the
new task loss to prevent interference from previous tasks.

A prominent example of this approach is the class incremental learner iCaRL, which stores
a subset of exemplars per class that best approximates the class means in the learned feature
space. During testing, the class means are calculated for nearest-mean classification based on
all exemplars.

While rehearsal may lead to overfitting and is constrained by joint training, constrained opti-
mization offers an alternative that allows for more flexibility in backward/forward transfer. In
the task incremental setting, GEMproposes to constrain the new task updates to avoid interfer-
ence with previous tasks. This is achieved by projecting the estimated gradient direction onto
the feasible region defined by previous task gradients using first-order Taylor series approxima-
tion.

If previous samples are not available, pseudo-rehearsal can be used as an alternative strategy.
Generative models have shown the ability to generate high-quality images, making it possible
to model the data-generating distribution and retrain on generated examples.
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3.1.2 Regularization-based methods

This approach aims to preserve privacy and reduce memory requirements by avoiding the stor-
age of raw inputs. Instead, an additional regularization term is introduced into the loss func-
tion to consolidate previous knowledge when learning on new data. These methods can be
classified into two categories: data-focused and prior-focused.

Data-focused methods use knowledge distillation from a previous model trained on a previ-
ous task to the model being trained on the new data. However, this strategy has been shown
to be vulnerable to domain shift between tasks.

Prior-focused methods estimate a distribution over the model parameters to mitigate for-
getting. This distribution is used as a prior when learning from new data. Typically, the im-
portance of all neural network parameters is estimated, with parameters assumed to be inde-
pendent to ensure feasibility. During the training of subsequent tasks, changes to important
parameters are penalized. Elastic weight consolidation (EWC) was the first method to adopt
this approach.

3.1.3 Parameter isolation methods

This approach dedicates different model parameters to each task to prevent any possible forget-
ting. When there are no constraints on the size of the architecture, new branches can be added
for each new task while freezing the parameters of previous tasks or by dedicating amodel copy
to each task. Alternatively, the architecture can remain static, with fixed parts allocated to each
task. During new task training, previous task parts aremasked out, either at the parameter level
or unit level. Typically, thesemethods require a task oracle to activate the correspondingmasks
or task branches during prediction.

Most notable is PackNet which iteratively assigns parameter subsets to consecutive tasks by
constituting binary masks. For this purpose, new tasks establish two training phases. First, the
network is trained without altering previous task parameter subsets. Subsequently, a portion
of unimportant free parameters are pruned, measured by lowest magnitude. Then, the second
training round retrains this remaining subset of important parameters. The pruningmask pre-
serves task performance as it ensures fixing the task parameter subset for future tasks. PackNet
allows explicit allocation of network capacity per task, and therefore inherently limits the total
number of tasks.
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3.1.4 Experimental Results

Paper [6] conducted image classification experiments on three datasets. First, they used the
Tiny Imagenet dataset which is a subset of 200 classes from ImageNet, rescaled to image size 64
× 64. The second dataset is based on iNaturalist, which aims for amore real-world setting with
a large number of fine-grained categories and highly imbalanced classes. Thirdly, a sequence
of 8 highly diverse recognition tasks (RecogSeq) was adopted. This sequence also targets the
distribution of an imbalanced number of classes.

The conclusion drawn by the authors of [6] is that the task order’s impact appears to be
insignificant. In general, PackNet outperformed its competitors by a significant margin on all
three datasets, specifically designed for task incremental multi-head settings.

3.2 Three Scenarios for Continual Learning

The authors of [6] conducted their experiments in a task incremental learning setting, where
the model needs to continuously learn new tasks while retaining knowledge of previous ones.
To better evaluate the performance of various approaches to this problem and allow for more
meaningful comparisons across papers, [12] described three distinct scenarios of increasing dif-
ficulty (Table 3.1) for continual learning:

• task-incremental learning (Task-IL)

• domain-incremental learning (Domain-IL)

• class-incremental learning (Class-IL).

The first scenario involves models being aware of which task they need to perform, which is
referred to as task-incremental learning (Task-IL).This scenario is considered the easiest formof
continual learning since the task identity is always provided, allowing for the training ofmodels
with task-specific components. To implement this scenario, a common network architecture
involves a ”multi-headed” output layer, where each task has its own output units, but the rest
of the network is potentially shared between tasks.
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Table 3.1: Overview of the three continual learning scenarios.

Scenario Required at test time
Task-IL Solve tasks so far, task-ID provided
Domain-IL Solve tasks so far, task-ID not provided
Class-IL Solve tasks so far and infer task-ID

The second scenario is known as domain-incremental learning (Domain-IL), where task
identity is not provided at test time. However, models in this scenario only need to solve the
given task without inferring which task it is. A typical example of this scenario involves proto-
colswhere the task structures are constant, but the inputdistribution is changing. This scenario
can also apply to real-world situations where an agent needs to learn to survive in different envi-
ronments without explicitly identifying which environment it is in. This type of scenario can
pose a greater challenge tomodels since theymust be able to generalize across different domains
while avoiding interference with previously learned tasks.

The third scenario requiresmodels to solve all tasks encountered thus far and also inferwhich
task is being presented to them. This scenario is referred to as class-incremental learning (Class-
IL) and is relevant to real-world problems, such as incrementally learning new classes of objects.
In this scenario, models must be able to handle the complexity of multiple tasks while avoiding
interferencewith previous learning. The challenge of this scenario lies in designingmodels that
can learn new classes without forgetting previously learned ones, as well as accurately recogniz-
ing which class is being presented at any given time.
In a recent attempt to structure the literature on continual learning, a distinction was high-

lighted between methods evaluated using a ”multi-headed” or ”single-headed” layout. This
distinction is related to the scenarios described in [12] in that a multi-headed layout requires
knowledge of task identity, while a single-headed layout does not. The distinction between
multi-headed and single-headed layouts is linked to the network’s output layer’s architectural
layout, while the scenarios described in [12]more broadly reflect the conditions under which a
model is evaluated. By considering both of these distinctions, researchers can more effectively
evaluate and compare different approaches to continual learning.

To explore the differences between the three continual learning scenarios and comprehen-
sively compare the performances of various recently proposed methods, the authors of [12]
evaluated these approaches based on each scenario in both the split and permutedMNIST task
protocols. For split MNIST, the original MNIST dataset was divided into five tasks, with each
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task being a two-way classification (Table 3.2). For permuted MNIST, a sequence of ten tasks
was used, with each task being a ten-way classification (Table 3.3). By evaluating these meth-
ods in different scenarios and using different task protocols, the authors were able to provide a
comprehensive analysis of their performance and identify potential areas for improvement in
the field of continual learning.

Table 3.2: Split MNIST according to each scenario.

Task-IL With task given is it the 1st or 2nd class?
(e.g., 0 or 1)

Domain-IL With task unknown is it a 1st or 2nd class?
(e.g., in [0,2,4,6,8] or in [1,3,5,7,9])

Class-IL With task unknown, which digit is it?
(i.e., choice from 0 to 9)

Table 3.3: Permuted MNIST according to each scenario.

Task-IL Given permutation X, which digit?
Domain-IL With permutation unknown, which digit?
Class-IL Which digit and which permutation?

The study concluded that in the class-incremental learning scenariowhere task identitymust
be inferred, only replay-based methods are currently capable of producing acceptable results.
Even for relatively simple taskprotocols such as the classificationofMNIST-digits, regularization-
based methods fail to perform well. On the split MNIST task protocol, regularization-based
methods also struggle in the domain-incremental learning scenariowhere task identity does not
need to be inferred but is also not provided. These findings suggest that in themore challenging
scenarios where task identity is not provided, replay might be an unavoidable tool.

3.3 EvaluationMetrics for Continual Learning
Methods

The objective of continual learning algorithms is to learn new tasks while retaining knowledge
of previous ones. Evaluating such algorithms requires considering their performance on both

36



past and present tasks, with the hope that it reflects their behavior on future unseen tasks. Be-
sides average accuracy, two crucial components must be quantified: forgetting and intransi-
gence [26]. Forgetting measures how much the algorithm forgets previously learned informa-
tion, while intransigence captures the algorithm’s inability to learn new tasks.

Intuitively, if a model is heavily regularized to preserve knowledge from previous tasks, it
will forget less but exhibit high intransigence. Conversely, if the regularization is too weak, the
model may experience catastrophic forgetting but low intransigence. Ideally, a model should
strike a balance, minimizing both forgetting and intransigence, thereby efficiently utilizing its
finite capacity.
The paper [7] also suggested the use of average f1 score to measure performance in the CL

setting.

3.3.1 Average Accuracy

Average Accuracy (A) is a metric used to assess the performance of an incremental learning al-
gorithm. It measures the accuracy of the model on the test set for each task, and the average
accuracy is calculated by taking the average of these task accuracies. A higher average accuracy
indicates a better classifier. However, average accuracy alone does not provide information
about forgetting or intransigence, which are crucial aspects to evaluate the behavior of the in-
cremental learning algorithm.

3.3.2 ForgettingMeasure

Forgetting Measure (F) quantifies the extent to which a model has forgotten previous tasks
during incremental learning [26]. It is defined as the difference between the maximum knowl-
edge gained about a task in the past and the current knowledge the model possesses about that
task. This provides an estimate of the amount of forgetting that has occurred given themodel’s
current state.

For a classification problem, the forgetting for the j − th task after the model has been in-
crementally trained up to task k (where k > j) is calculated as the maximum of the accuracies
achieved on task j in the past, subtracted from the current accuracy on task j and denoted as fkj .
The forgetting measure is normalized against the number of previously seen tasks, resulting in
the average forgetting at the k− th task denoted as Fk, where Fk = 1

k−1

∑k−1
j=1 fkj . A lower value

of Fk indicates less forgetting on previous tasks.
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Positive/Negative Backward Transfer ((P/N)BT): Backward transfer (BT) is defined in [27]
as the influence that learning a task k has on the performance of a previous task j < k. Since
the objective is to measure forgetting, negative forgetting (fkj < 0) implies positive influence
on the previous task or positive backward transfer (PBT), the opposite for NBT.

3.3.3 IntransigenceMeasure

Intransigence is defined as the model’s inability to learn new tasks. It becomes more evident
in the single-head setting, particularly when there is a lack of previous data [26]. To quantify
intransigence, a comparison is made between the model’s performance and a standard classifi-
cationmodel that has access to all datasets at all times. A reference/targetmodel is trained using
the dataset

∪k
l=1Dl, and its accuracy on the held-out set of the k − th task is measured as a∗k .

The intransigence for the k− th task is then calculated as the difference between the reference
model’s accuracy and the accuracy of the incremental model on the k− th task: Ik = a∗k − ak,k.
The intransigence value Ik ranges from -1 to 1, with a lower value indicating a better model.

Positive/Negative Forward Transfer ((P/N)FT): Since intransigence is defined as the gap be-
tween the accuracy of an IL algorithm and the referencemodel, negative intransigence (Ik < 0)
implies learning incrementally up to task kpositively influences themodel’s knowledge about it,
i.e., positive forward transfer (PFT). Similarly, Ik > 0 implies negative forward transfer (NFT).

3.3.4 Average f1

In the context of continual learning, the average f1 score is computed by considering the f1
score for each task or concept encountered during the learning process and taking the average
across all tasks. This metric provides insights into the model’s ability to retain knowledge of
previously learned tasks while adapting to new ones.

The average f1 score ST ∈ [0, 1] at task T is defined as: ST = 1
T
∑T

j=1 sT,j where sT,j is the
performance f1 of themodel on the test set of task j after training themodel on taskT. A higher
average f1 score indicates better overall performance in terms of both retaining past knowledge
and acquiring new knowledge, making it a valuable metric for evaluating continual learning
methods.
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4
Dataset

4.1 Dataset Overview

TheMVTecADdataset [8] is a comprehensive collection of images designed for the evaluation
and development of anomaly detection algorithms. It encompasses a diverse range of objects,
materials, and scenarios, making it suitable for assessing the robustness and generalization ca-
pabilities of various anomaly detection techniques. The dataset has beenwidely adopted in the
research community due to its realistic and challenging nature. This very characteristic is the
reason it has been chosen as the benchmark for the methods employed within this thesis.

The MVTec AD dataset comprises a set of high-resolution images that depict objects and
materials in both normal and anomalous states. Anomalies are introduced through various
means, such as scratches, dents, holes, stains, and irregularities. Each image is labeled as ei-
ther normal or anomalous, facilitating supervised training and evaluation of algorithms. The
dataset is organized into several classes, each representing a distinct object or material.

4.2 MVTec Anomaly Detection Dataset:
Characteristics, Classes and Thesis Focus

TheMVTec Anomaly Detection dataset consists of 15 categories, featuring 3629 training and
validation images, as well as 1725 testing images. The training set exclusively includes defect-
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free images, while the test set encompasses both defective and non-defective images. A visual
representations of various categories along with example defects are presented in Figure 4.1.

Figure 4.1: Example images for all five textures and ten object categories of the MVTec AD dataset. For each category, the
top row shows an anomaly‐free image. The middle row shows an anomalous example for which, in the bottom row, a

close‐up view that highlights the anomalous region is given.

The categories span a spectrum of textures, as well as different types of objects. Certain
objects maintain fixed appearances, while others are deformable or display natural variations.

40



Pose variations are also considered, with some objects featuring roughly aligned poses, and oth-
ers positioned with random rotations. The testing images contain an array of defects, ranging
from surface defects like scratches and dents to structural anomalies and the absence of spe-
cific object parts. In total, there are 73 distinct defect types present, averaging five per category.
These defects are manually generated to simulate authentic anomalies encountered in indus-
trial inspection scenarios. The images were captured using high-resolution industrial RGB
sensors and meticulously labeled with pixel-precise ground truth annotations for defective re-
gions, amounting to nearly 1900 annotated regions in total. All image resolutions are in the
range between 700 × 700 and 1024 × 1024 pixels.
For the purposes of this thesis, the focus was placed on utilizing object classes. Particularly,

the analysis centers around the following 10 classes extracted from theMVTec AD dataset:

• Bottle

• Cable

• Capsule

• Hazelnut

• Transistor

• Metal Nut

• Pill

• Screw

• Zipper

• Toothbrush
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5
Metodology and Results

In this chapter, different architectures are evaluated in terms of performance for anomaly de-
tection with different continual learning strategies. The strategies that are considered include:

1. Single Model: Representing the upper bound, this approach involves training a differ-
ent model for each task.

2. Naive Approach: Serving as a lower bound, this strategy presents a model sequentially
only with data from the current task.

3. Replay: Utilizing a constrained memory size of n images (where n is less than the entire
dataset), this strategy involves replaying data. In experiments, memory sizes of n = 800
and n = 300 are used.

4. Multitask: This strategy entails training a single model with all available data at once.

All experiments were conducted utilizing an NVIDIA GPU RTX 3060 for computational
processing.

5.1 Adaptation of EfficientAD in CL setting

To enhance efficiency in anomaly detection within tight time constraints, the introduction of
Efficient-AD (Subsection 2.3.8) takes place. This innovative approach highlights both compu-
tational efficiency and economic viability in anomaly detection methods. The structure and
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principles of EfficientAD were previously discussed in Subsection 2.3.8. Beginning with the
extraction of features from a shallower neural network, EfficientAD differentiates itself from
methods relying on deep pretrained networks likeWideResNet-101. Instead, it employs a net-
work with reduced depth, utilizing six convolutional layers for feature extraction (Figure 5.1).
This network, known as a patch description network (PDN), fully employs convolution, en-
abling compatibility with various image dimensions in a single pass.

Figure 5.1: Patch description network (PDN) ‐ medium.

The PDN architecture serves both as teacher and student models in the Student-Teacher
(S-T) part of the EfficientAD approach. Student trains within the teacher’s feature space, in-
corporatingTiny-ImageNet images onwhich teacher is pretrained, in order to prevent overgen-
eralization. Tohandle logical anomalies, an autoencoder predicts the teacher’s output, utilizing
a 64-dimensional bottleneck. Preventing false positives entails doubling the student network’s
output channels (768), enabling it to predict both teacher and autoencoder outputs. Com-
bining the ”local” and ”global” anomaly maps, created by squaring variations between student
and teacher and student and autoencoder outcomes, results in the ”combined anomaly map.”
Image-level anomaly scores are determined by selecting the highest value from this map.
Balancing the contributions of local and global anomaly maps requires normalization. This

step prevents noise-related issues when anomalies are only detected in one map, ensuring clar-
ity in the combined map. Quantile-based normalization, using p-quantiles for sets qa and qb,
is applied for robustness. During testing, the local and global anomaly maps undergo normal-
ization through a linear transformation.

Despite the absence of a ultra-powerful graphics card like the NVIDIA RTX A6000 GPU
used by the authors for impressive time performance, favorable results were achieved within
tolerable timeframe.
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Within the scope of CL, the employed methodology adopts domain-incremental learning.
In this approach, themodel focuses solely on solving the designated task withoutmaking infer-
ences about the task itself. As a result, the model generates anomalymaps as outputs. Training
in this work utilizes batch size 1 (1+1 in replay sampling strategy) over 70 epochs, including
early stopping. Additionally, two different replay memory buffers were tried, 800 and 300 im-
ages respectively, in order to present the impact of havingmore images on performancemetrics.
The requiredmemory for storing images for replay is calculated as follows: 256 x 256 x 3 (image
size) multiplied by 300 for the case of memory 300, and 256 x 256 x 3 (image size) multiplied
by 800 for the case of memory 800.

In Figure 5.2 the outcomes of anomaly localization across all classes are depicted, showing
the results obtained through the applicationof the replaymethodwith amemory800 for theEf-
ficientAD approach. Similarly, in Figure 5.3, the results for the replay method with a memory
capacity of 300 are presented. The sequence of images illustrates the original image, followed
by the ground truth segmentation mask. Subsequently, the predicted heatmap guides the cre-
ation of the predicted segmentation mask, achieved through the application of threshold on
the heatmap, leading to the final image displaying the segmentation result.
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Figure 5.2: Results of anomaly detection and segmentation process with replay method (memory 800) for EfficientAD.
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Figure 5.3: Results of anomaly detection and segmentation process with replay method (memory 300) for EfficientAD.

EfficientADemployes amulti-network architecture consistingof three components: a teacher
network, a student network, and an autoencoder. The teacher network comprises 8.0 million
non-trainable parameters, while the studentnetworkhas 11.6million trainable parameters. Ad-
ditionally, the autoencoder component containes 1.1million trainable parameters. In total, the
architecture of EfficientAD composes of 20.7 million parameters.

Table 5.1 presents a concise summary of performance measures across different strategies
using EfficientAD. It encompasses image-level and pixel-level metrics, training and inference
times,memory usage for architecture and additional images or features, relative gap and average
forgetting based on f1 pixel-level metric. The relative gap is computed at the f1 pixel-level by
applying the standard relative-error formula for each method in relation to the single model
corresponding value. Additionally, in Figure 5.4, the trend of the pixel-level metric f1 is shown
as new tasks are added, featuring multiple strategies such as multitask, naive, replay memory
with 300, and replay memory with 800.
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Table 5.1: Performance overview of EfficientAD.

EfficientAD Single Model Multitask Naive
Replay

memory 300 memory 800

Image - level
AUCROC 0.9328 0.8915 0.5724 0.8262 0.8333

f1 0.9348 0.9204 0.8463 0.8859 0.8866

Pixel - level

AUCROC 0.9378 0.9171 0.6179 0.8769 0.8795
f1 0.6110 0.5623 0.1907 0.4751 0.4818

Precision - recall 0.5790 0.5166 0.1303 0.3887 0.4085
AU PRO 0.7867 0.7413 0.3180 0.6585 0.6623

Time
training 3h 18min 6h 42min 4h 22min 5h 26min 5h 31min

inference [ms] 41 40 41 40 42
Architecture memory [MB] 828.0 82.8 82.8 82.8 82.8
Additional memory [MB] / / / 59.0 157.3
Relative gap (δ) [%] 0 7.97 68.79 22.40 21.15
Average forgetting [%] / / 74.74 21.45 20.94

Figure 5.4: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.
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Upon examining the images obtained from Figure 5.2, as well as those from Figure 5.3, and
considering the outcomes presented in Table 5.1 for both the replay method with memory set
at 300 images and the replay method employing memory set at 800 images, it can be deduced
that the replay method employing memory 800 images demonstrates improved performance
across both metrics and the production of anomaly maps. This observation underscores the
advantages of employing a larger memory capacity within the replay method framework.

5.2 Adaptation of PaDiM in CL setting

Asoutlined in Subsection 2.3.3, the PaDiMapproachwas introduced to rapidly adapt anomaly
detectionby employingpre-trained convolutional neural networks (CNNs) for extractingpatch
embeddings. The assumption is that each patch position can be described by a multivariate
Gaussian distribution. The training process in this approach is straightforward, involving no
neural networkparameter updates, only the computationofmean and covariance in aGaussian
context. In this work, we use the frozen pre-trained Wide ResNet-50-2 as a feature extractor.
These features are produced by sampling from various depths of the CNN, yielding feature
maps with distinct spatial resolutions that are interpolated to achieve a uniform resolution be-
fore concatenation. This enables better anomaly localization by incorporating information
from different semantic levels and resolutions. This process generates patch features of size
D×H×W, withH andW representing height andwidth, andDbeing the sumof dimensions
of sampled feature maps. For instance, in the case explored within this work, the dimensions
were (D,H,W) = (1792, 56, 56), resulting in 56× 56 patch features with a depth of 1792.

These patch features, collected from the entire training set of normal images for each task,
are used to estimate and memorize Gaussian parameters maps. Thus, each patch position is
associated with a multivariate Gaussian distribution represented by a matrix of Gaussian pa-
rameters (Figure 2.2). To enhance computational efficiency and reduce embedding vector size,
random dimensionality reduction (Rd) to a depth of 350 is applied, proving better than com-
monly usedPCA. Subsequently, theMahalanobis distance, indicating the distance between the
test patch embedding xij and the learned distribution N(μij;Σij), is computed for each patch,
forming the anomaly map.

This work explores two distinct continual learning methods. The first method is developed
with a less continual approach and involves memorizing Gaussian parameters maps for each
task sequentially during training. During inference for a given test image, Mahalanobis dis-
tance maps (anomaly maps) are created for each task based on the corresponding memorized
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parameters. The image-class with the lowest sum over its corresponding map is automatically
selected. In the context of CL, adopted methodology employs domain-incremental learning
with task inference ability. This approach entails not only producing anomaly maps from the
model but also determining the specific class to which the image belongs. The precision of
this method is nearly 1 in the case of 10 tasks, rendering the decision criteria satisfactory. The
memory issue arising with the introduction of new tasks led to the term ”less continual” for
this method and motivated the exploration of an alternative variant.
The second method is developed purely in a continual manner with fixed-size memory. The
key concept involves incremental averaging of Gaussian parameters maps when introducing
new tasks. In order to provide clearer understanding of the pipeline and its implementation,
the Algorithm 5.1 is given. However, while reducingmemory requirement andmaking it fixed
and independent of the number of tasks, this approach leads to diminished performance met-
rics.

Algorithm 5.1 PaDiMmean and covariance update for CLmethod
Initialize: M← 0, Σ← 0
for i = 0 toN− 1 do ▷N = number of tasks

Mi ←mean of extracted features for task i
Σi ← covariance of extracted features for task i
M←M× i

i+1 +Mi × 1
i+1

Σ← Σ× i
i+1 + Σi × 1

i+1
end for

The outcomes of anomaly localization for all classes are presented in Figure 5.5, where the
PaDiM model utilizes the ”less continual” approach. In contrast, Figure 5.6 shows results ob-
tained from the purely continual approach for PaDiM.
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Figure 5.5: Results of anomaly detection and segmentation process with less CL approach for PaDiM.
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Figure 5.6: Results of anomaly detection and segmentation process with CL approach for PaDiM.
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Table 5.2 provides an overview of performance metrics across various strategies employing
PaDiM. It encompasses metrics at both the image-level and pixel-level, along with details on
training and inference times, memory utilization for architecture and storing additional fea-
tures, relative gap and average forgetting based on f1 pixel-level metric. The relative gap is com-
puted at the f1 pixel-level by applying the standard relative-error formula for each method in
relation to the single model corresponding value. Additionally, in Figure 5.7, the trend of the
pixel-level metric f1 is shown as new tasks are added, featuringmultiple strategies such as naive,
less CL approach, and purely CL approach.
Note: The multitask strategy could not be implemented due to its significant memory require-
ments, whichwere ten times greater than that of a singlemodel, and therefore, it is not reported.

In the PaDiM framework a Wide ResNet-50-2 architecture is employed as the backbone.
This Wide ResNet-50-2 was pre-trained on the ImageNet dataset, and it encompasses a total
of 68.9 million parameters. It is worth noting that PaDiM uses 24.8 million parameters due to
selective utilization of specific blocks for feature extraction.

Table 5.2: Performance overview of PaDiM.

PaDiM Single Model Multitask Naive
Continual Sampling

Strategy
less CL CL

Image - level
AUCROC 0.9068 / 0.5701 0.9045 0.5810

f1 0.9400 / 0.8401 0.9366 0.8603

Pixel - level

AUCROC 0.9717 / 0.7222 0.9650 0.7673
f1 0.5705 / 0.1898 0.5442 0.2024

Precision - recall 0.5201 / 0.1296 0.4964 0.1355
AU PRO 0.9072 / 0.4985 0.9034 0.5438

Time
training 6min / 6min 6min 6min

inference [ms] 167 / 167 848 167
Architecture memory [MB] 2756.0 / 275.6 275.6 275.6
Additional memory [MB] 15410.3 / 1541.0 15410.3 1541.0
Relative gap (δ) [%] 0 / 66.73 4.61 64.52
Average forgetting [%] / / 70.13 0 16.99
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Figure 5.7: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.

Upon examining the images obtained from Figure 5.5, as well as those from Figure 5.6, and
considering the outcomes presented in Table 5.2 for both the ”less continual” and purely con-
tinual approaches, it is evident that the ”less continual” approach achieves significantly superior
results for bothmetrics and the produced anomalymaps. However, it is important to note that
this approach utilizes 10 times more memory for storing the mean and covariance in memory.
It is also worth mentioning that as more classes are added, the memory requirements for the
”less continual” approach will proportionally increase.

5.3 Adaptation of DRÆM in CL setting

When addressing reconstructive methods for anomaly detection tasks, one encounters exten-
sive exploration of Autoencoders andGANs. These techniques offer the advantage of learning
a reconstruction subspace exclusively from anomaly-free images. By capitalizing on the weaker
reconstruction of anomalous regions not encountered during training, anomalies can be iden-
tified by comparing the input image with its reconstruction. Nonetheless, the challenge lies
in distinguishing anomalies that closely resemble normal appearances, as they often undergo
effective reconstruction.

In order to address this issue, DRÆM method outlined in Subsection 2.3.10 is designed.
The primary distinction that sets it apart from other generative methods is the introduction
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of synthetic anomalies. These synthetic anomalies prompt the reconstructive network, when
trained independently, to closely concentrate on these crafted artificial examples. Being aware
of that, authors decided to avoid this overfitting problem by involving the discriminative net-
work following reconstructive one, that considers the joint appearance of both reconstructed
and input data, including the reconstruction subspace. The training of this network incorpo-
rates the use of artificially generated patterns that differ from the target anomalies. All these im-
provements help themodel to learn a local-appearance-conditioned distance function between
original and reconstructed anomaly appearances, which generalizes well across real anomalies.
The training process starts with a corrupted test image, denoted as Ia, which is fed into the

reconstructive sub-network. This sub-network uses an encoder-decoder architecture. The cor-
rupted image is created by overlaying a randomlymasked image from the Describable Textures
Dataset (DTD), using masks generated from Perlin noise thresholded at 0.5. Once the recon-
structed image is generated, it is compared with the original image. This comparison is used to
calculate the reconstructive loss (Lrec), which considers both SSIM and l2-loss. After that, the
reconstructed image, combined with the input image on a channel-wise basis, is passed to the
discriminative sub-network. This sub-network produces an anomaly map on the output. A
segmentation (Focal) loss, denoted as Lseg, used to enhance the network’s ability to accurately
segment challenging examples, is then calculated based on the anomaly map and Perlin noise
mask. The overall loss, which includes both the reconstructive and segmentation losses, is used
to update the DRÆMmodel’s weights.

Within the scope of CL, the employed methodology adopts domain-incremental learning.
In this approach, themodel focuses solely on solving the designated task withoutmaking infer-
ences about the task itself. As a result, the model generates anomaly maps as outputs.
The training in this study employs a batch size of 4, with an additional 4 samples in the re-
play sampling strategy. The training process runs for 50 epochs. Furthermore, two variants
are examined, utilizing 800 and 300 images respectively, in order to demonstrate the impact
of retaining more images on performance metrics. The required memory for storing images
for replay is calculated as follows: 256 x 256 x 3 (image size) multiplied by 300 for the case of
memory 300, and 256 x 256 x 3 (image size) multiplied by 800 for the case of memory 800.

In Figure 5.8, the displayed outcomes show anomaly localization across all classes. These re-
sults are obtained by employing the replay method with a memory of 800 within the DRÆM
approach. Similarly, in Figure 5.9, the results for the replay method with a memory capacity of
300 for the DRÆM approach are presented. The sequence of images begins with the original
image, followed by the ground truth segmentation mask. The subsequent step involves utiliz-
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ing the predicted heatmap to generate the predicted segmentation mask through thresholding.
Finally, the last image presents the segmentation result.
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Figure 5.8: Results of anomaly detection and segmentation process with replay method (memory 800) for DRÆM.
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Figure 5.9: Results of anomaly detection and segmentation process with replay method (memory 300) for DRÆM.
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DRÆM incorporates both a reconstructive network and a discriminative network. The re-
constructive network consists of 69.0million parameters, while the discriminative network has
28.4 million parameters. In total, the architecture of DRÆM composes of 97.4 million train-
able parameters.

Table 5.3 offers a concise performance overview of different strategies using DRÆM. It cov-
ers image-level and pixel-level metrics, training and inference times, memory usage for architec-
ture and additional images or features, relative gap and average forgetting based on f1 pixel-level
metric. The relative gap is computed at the f1 pixel-level by applying the standard relative-error
formula for each method in relation to the single model corresponding value. Additionally, in
Figure 5.10, the trend of the pixel-level metric f1 is shown as new tasks are added, featuring
multiple strategies such as multitask, naive, replay memory with 300, and replay memory with
800. This summary provides insights into strategy effectiveness and efficiency.

Table 5.3: Performance overview of DRÆM.

DRÆM Single Model Multitask Naive
Replay

memory 300 memory 800

Image - level
AUCROC 0.9495 0.7982 0.5200 0.7699 0.8224

f1 0.9469 0.8734 0.8612 0.8717 0.8757

Pixel - level

AUCROC 0.9189 0.8083 0.6364 0.8163 0.8228
f1 0.5026 0.3914 0.1757 0.3828 0.3945

Precision - recall 0.4901 0.3536 0.1332 0.3417 0.3535
AU PRO 0.8497 0.6293 0.3109 0.6734 0.6832

Time
training 7h 2min 6h 42min 6h 56min 11h 46min 11h 48min

inference [ms] 75 87 76 76 76
Architecture memory [MB] 3896.0 389.6 389.6 389.6 389.6
Additional memory [MB] / / / 59.0 157.3
Relative gap (δ) [%] 0 22.12 65.04 23.84 21.51
Average forgetting [%] / / 73.78 26.52 22.49
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Figure 5.10: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.

By reviewing the images in Figure 5.8, along with those in Figure 5.9, and considering the
results shown in Table 5.3 for both the replay method with memory of 300 images and the
replay method with memory of 800 images, it can be deduced that the replay method using
memory of 800 images shows enhanced performance in both metrics and generating anomaly
maps. This highlights the benefits of utilizing a larger memory capacity in the replay method.

5.4 ComparisonofadaptedADmethods inCLsetting

In theTable 5.4, a thorough evaluationof theperformanceofEfficientAD,PaDiM, andDRÆM
within a continual learning framework is provided. This table enables a detailed assessment
of these methods, facilitating a more precise understanding of their individual strengths. Ad-
ditionally, in order to enhance visualization and facilitate better comparison of performance
across various approaches inCL framework,metrics such as the f1 pixel-level performancemet-
ric, total memory usage, and training time are illustrated in the form of barplot in Figure 5.11.
Reduced memory usage is considered for evaluation, with a memory limit of 300 images ap-
plied to the replay method in the case of EfficientAD and DRÆM, while PaDiM employs
purely CLmethod.
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Table 5.4: Performance comparison of anomaly detection strategies in continual learning setting.

Performance
Strategy EfficientAD PaDiM DRÆM

Replay
memory 300

Replay
memory 800

Less CL CL
Replay

memory 300
Replay

memory 800

Image - level
AUCROC 0.8262 0.8333 0.9045 0.5810 0.7699 0.8224

f1 0.8859 0.8866 0.9366 0.8603 0.8717 0.8757

Pixel - level

AUCROC 0.8769 0.8795 0.9650 0.7673 0.8163 0.8228
f1 0.4751 0.4818 0.5442 0.2024 0.3828 0.3945

Precision - recall 0.3887 0.4085 0.4964 0.1355 0.3417 0.3535
AU PRO 0.6585 0.6623 0.9034 0.5438 0.6734 0.6832

Time
training 5h 26min 5h 31min 6min 6min 11h 46min 11h 48min

inference [ms] 40 42 848 167 76 76
Architecture memory [MB] 82.8 82.8 275.6 275.6 389.6 389.6
Additional memory [MB] 59.0 157.3 15410.3 1541.0 59.0 157.3
Relative gap (δ) [%] 22.40 21.15 4.61 64.52 23.84 21.51
Average forgetting [%] 21.45 20.94 0 16.99 26.52 22.49

Figure 5.11: Comparison of f1 pixel‐level metrics, total memory and training time for adapted methods in CL setting.

In Table 5.5, a summary of the backbone architectures used for each method and their re-
spective parameter counts is presented.
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Table 5.5: Overview of the architectures used for each method.

Method Architecture Number of parameters [million]
EfficientAD ad hoc 20.7
PaDiM Wide ResNet-50-2 68.9
DRÆM ad hoc 97.4

Taking into account the memory needed for storing the images or features, both Efficien-
tAD andDRÆM require the same amount of memory. In contrast, PaDiM exhibits a notably
higher memory requirement for both the ”less continual” and purely continual approaches.
This distinction underscores the significance of memory requirement in the context of contin-
ual learning, as efficient memory utilization plays a pivotal role in ensuring the feasibility and
effectiveness of the chosen method.
In the context of image-level and pixel-level metrics for the purely continual approaches,

EfficientAD demonstrates the most favorable outcomes.
Considering the training time required for model training, it is evident that the PaDiM

method stands out by exhibiting the shortest training duration. In contrast, the DRÆM ap-
proach emerges as the least efficient method in terms of training time, given its inclusion of
reconstructive and discriminative networks that demand a considerable training period. How-
ever, it is worth noting that within the context of generative deep learningmodels employed in
the CL framework [7], the DRÆM approach demonstrates competitiveness, especially when
assessing its performance using the f1 metric.

In summary, after analyzing the results presented in Table 5.4 it can be deduced that Effi-
cientAD achieves by far the best balance between performance, efficiency, and memory usage
within the context of continual learning.
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6
Conclusion

The objective of this thesis was to address the issue of catastrophic forgetting in anomaly detec-
tion (AD) scenarios when new tasks are introduced. To achieve this goal, an integrated frame-
work was introduced, combining the principles of continual learning (CL) and anomaly de-
tection, with the specific aim of enhancing the performance of anomaly detection within the
context of continual learning (ADCL). The research evaluated the effectiveness of the ADCL
framework by conducting a comprehensive comparative analysis of three specificADmethods:
EfficientAD, the PatchDistributionModeling Framework (PaDiM), and the Discriminatively
Trained Reconstruction Anomaly Embedding Model (DRÆM), utilizing replay techniques
for continual learning.
Summarizing the findings and the extensive evaluation, the results demonstrate that Efficien-

tAD stands out as the most balanced approach in terms of performance, efficiency, and mem-
ory usage within the context of continual learning. This outcome suggests that the integration
of CL techniques into the AD framework can significantly enhance its overall performance,
making it a compelling solution for practical applications. In essence, the ADCL framework
effectively tackles the challenge of catastrophic forgetting.
The conducted research provides a solid foundation for further advancements in the field

of ADCL. Building upon the success of the study, future work might explore additional AD
and CL strategies, or investigate their applicability in dynamic and real-world environments.
Furthermore, while the MVTec Dataset serves as a valuable benchmark for AD, future work
may involve leveraging supplementary datasets to further validate the effectiveness of the im-
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plemented models.
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