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Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technique
for monitoring the hemodynamic changes occurring in superficial regions of
the brain cortex after a stimulus or a cognitive task. It uses non-ionizing
near-infrared light to measure the concentration changes of oxy- and deoxy-
hemoglobin occurring in the brain cortex and which are associated with the
evoked brain activity [1][2]. fNIRS can be utilized in clinical and psycho-
logical settings to monitor brain activity or to recover the response of the
brain to a particular task performed by the subject. During brain activation,
indeed, an increase in oxy-hemoglobin concentration occurs in the area of the
brain involved in the task. This increase in concentration can be measured
by fNIRS and gives the so-called hemodynamic response function (HRF).

Unfortunately, fNIRS measured signals are strongly contaminated by sys-
temic interference occurring in the superficial layers of the brain and in the
brain itself, such as cardiac and respiratory oscillations and low frequency
waves typically associated with vasomotor activity. These biological signals,
which can be considered noise sources, make HRF estimation challenging.
Many methods have been proposed in literature to reduce physiological noise
and improve HRF estimation, but none of them has become a gold standard
technique. Recently, the idea of using the so-called reference channel, which
measures the physiological noise occurring in the superficial layers of the head
without any influence of the HRF, has been proposed with some success [3].
Nevertheless, margins of improvement are worthwhile to be investigated.

In this thesis we will consider data collected at the Martinos Center
for Biomedical Imaging, Massachusets General Hospital, Boston, and made
available to the Department of Developmental Psychology, University of
Padova, for a collaboration. These data are related to finger-tapping tasks
performed by 7 healthy participants in order to investigate brain activation in
the parietal hemisphere associated with motor activity. Soon after each task
session was over, resting state data were recorded from the same participants
to analyze the performance of the proposed algorithm in a semi-simulated
scenario.



2 Introduction

In particular, the thesis proposes a novel Unscented Kalman Filtering
(UKF) approach for the reduction of systemic interference that affects INIRS
signals coupled with a linear Kalman filtering approach for the estimation of
the hemodynamic response functions associated with brain activation. This
novel approach will be compared to other literature techniques, namely Con-
ventional Averaging (CA), Saager’s method, the Linear Kalman filter ap-
proach and Extended Kalman Filtering (EKF) approaches. In particular, the
comparison with CA and the linear Kalman filter approach will shed light on
the importance of the reference channel for dealing with physiological noise
oscillations. The comparison with Saager’s method, instead, will highlight
the strength of parametric approaches compared to non-parametric ones.
Finally, the comparison between Unscented and Extended Kalman filtering
approaches will provide information on the strength of the non-linearity of
the fNTRS signal.

A brief outline of the thesis is as follows:

e Chapter 1 will review physical principles underlying fNIRS measure-
ments and the state of the art about signal processing methodologies
aiming at improving the HRF estimation from noisy data. In addition,
the aims of the thesis will be presented.

e Chapter 2 will present the experimental scenario and protocol in which
data employed in this thesis were acquired, along with some information
about the fNIRS instrumentation adopted.

e Chapter 3 will briefly and theoretically review the Kalman filtering
approach, both in the linear and non-linear estimation context. This
approach will be used to estimate at each sample time the parameters
of a specified physiological noise model in order to reduce systemic
interference contaminating fNIRS data.

e Chapter 4 will describe the actual implementation of the novel UKF-
based algorithm developed in this thesis, as well as briefly describe the
literature methods used for the comparison and the new variant of the
EKF approach.

e Chapter 5 will show the results of the application of the novel method
in a semi-simulation scenario. Moreover, comparisons with the other
literature methods will be carried out to better assess its performance.

e Chapter 6 will present results deriving from the application of the novel
algorithm and of all the other methods for comparison on real cognitive
data involving finger-tapping tasks.



e Chapter 7 will resume the results achieved and give future directions
and insights about further developments of the present work.
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Chapter 1

Functional near-infrared
spectroscopy (fNIRS): physical
principles, signal features, state of
art on HRF estimation and aim
of the thesis

1.1 A brief overview on fNIRS history and its
development

Optical methods have been used to measure physiological variables for decades,
but the use of diffuse optical light for physiological and non-invasive monitor-
ing of brain activity has a relatively short history. This delayed development
was mainly due to two primary issues.

The first one was sensitivity: there was the need to discover a wave-
length range able to be absorbed mainly by the molecules of interest but
not by the surrounding tissues and to develop sensitive detectors in order to
monitor through large distances (centimeters) of tissue. Near-infrared wave-
lengths, which range roughly from 600 to 950 nm, are poorly absorbed by
biological tissues while being at the same time highly absorbed by some chro-
mophores of interest, that is oxy-hemoglobin (HbO) and deoxy-hemoglobin
(HbR). Hence, this wavelength range turned out to be the ideal choice. In the
late 1970s, J6bsis |4] was the first to use near-infrared light to non-invasively
monitor and estimate hemodynamic parameters in the brain tissues. This
work can be considered the base of the new technology able to monitor brain
activity non-invasively, which goes under the name of {NIRS.
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The second issue was the need for a better understanding of how light
propagates through highly scattering tissues. Recently, considerable work
has been done on the theory of light propagation through scattering media,
especially using phantoms [5] [6]. These studies allowed to overcome also the
second obstacle which was hindering the further development of the fNIRS
technique. Thanks to the simultaneous development of new image recon-
struction algorithms, it became thus possible to reconstruct images of brain
activation.

Early research, during the 1980s and 1990s, focused on the use of near
infrared light for measuring brain hemoglobin oxygen saturation in neonates
and adults. During the same period, functional magnetic resonance imag-
ing (fMRI) became available for research purposes, providing whole brain
images of the blood oxygen level-dependent (BOLD) signal, which is associ-
ated with blood flow and oxygen metabolism in the brain tissues. Nowadays,
many research groups worldwide use fNIRS for functional brain studies as a
non-invasive tool to monitor local changes in cerebral oxygenation and hemo-
dynamics. In addition, a few groups have also worked on using diffuse light
to measure neuronal activity directly rather than indirectly via hemoglobin
changes. Indeed, it has been shown in vitro that neuronal activity is associ-
ated with an increase in light scattering, induced by a change in the index of
refraction of the neural membranes [7|. Despite being born recently, the use
of diffuse light for non-invasive imaging of brain activity is progressing very
quickly. The accumulating literature [8] [9] demonstrates the unique ability
of near-infrared techniques to detect hemodynamic, metabolic and neural
signals associated with ongoing brain activity. Moreover, these techniques
hold promise for providing absolute quantitative values of hemodynamic and
metabolic parameters. Even if the progress and developments in the optic
field were much slower than those in the fMRI one, fNIRS is now becoming
more and more common in laboratories around the world, thanks also to
recent advances both in hardware and signal processing methods.

1.2 fNIRS physical principles

1.2.1 fNIRS rationale

fNIRS instrumentation is composed by a certain number of sources, which
are typically laser diodes or light emitting diodes, and a certain number of
detectors, which are photomultiplier tubes or avalanche photo-diodes, that
are both placed on human scalp non-invasively (Fig. 1.1). To perform an
fNIRS acquisition, at least one detector and a pair of co-located sources are
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needed: they create a so-called channel. The light emitted by the sources
penetrates through the tissues, undergoes scattering and absorption phenom-
ena, and eventually it reaches the detector which measures its intensity. From
the difference in intensity between the light emitted by the source and the
one measured at a nearby detector it is possible to recover the concentration
changes of HbO and HbR occurring in the tissues underlying the measuring
channel. The number and types of sources and detectors typically rely on the
type of instrumentation and the experimental scenario involved in the study.
Currently, several technical solutions exist for implementation of f{NIRS, such
as time domain (TD), frequency domain (FD) and continuous wave (CW)
systems. The last technical solution is the most common and widely used.

Figure 1.1: left: typical adult probe placement during an fNIRS acquisition.
Blue and red flags display sources and detectors respectively. The gray cables
are the optical fibers. (Taken from [46]). Right: an example of an fNIRS
instrumentation (taken from [47]).

The wavelength range employed in fNIRS studies typically ranges from
650 nm to 950 nm. Light emitted by a source travels through the scalp,
skull, cerebrospinal fluid and eventually it reaches the gray matter of the
brain. During this path, the main absorbent chromophores encountered for
the near-infrared wavelength range are oxy- and deoxy-hemoglobin, while
biological tissues are relatively transparent. These two molecules absorb light
differently, as we can see from the absorbance spectrum in Fig. 1.3, and thus
it is possible to compute the absorbance of both of them. These two molecules
play a key role in brain studies because they reflect the neural activity during
specific cognitive tasks. Indeed, when a brain region is active, it consumes
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more glucose and oxygen. This causes a local increase in cerebral blood flow
to that region and hence an increase in oxy-hemoglobin and a decrease in
deoxy-hemoglobin concentration. These local changes in the concentration
of HbO and HbR are captured by the fNIRS signal. In particular, in areas
where more oxygen is needed, NIR light will be more absorbed, and so the
detected light will have a lower intensity compared to the emitted one.

There are other main chromophores that are able to absorb near-infrared
light in tissues underlying the scalp. These are water, lipids, melanin and
cytochrome oxydase. Fortunately, water and lipids have a negligible impact
on near-infrared light absorption, because their peak is placed at the end of
the near-infrared wavelength window. On the other hand, melanin strongly
absorbs near-infrared light, but its concentration is very low and so the con-
tribution is rather limited. Finally, cytochrome oxydase is an interesting
chromophore [10][11] , and it is an indicator of the intracellular metabolism.
However, its contribution to absorption is low and at least one order of mag-
nitude lower than the absorption due to hemoglobin, since its concentration
is about 1 tenth of that of hemoglobin. Hence, HbO and HbR contributions
are dominant in the NIR wavelength window, and absorption due to other
chromophores is rather limited and can be considered constant in time. Thus,
variations in the measured NIRS absorption signal can be considered due to
hemoglobin only.

Once light passes through brain tissues, penetrating the human head to
a depth of several centimeters, other than absorption also random scattering
phenomena take place due to light interactions with underlying biological
structures, such as scalp, fat and capillaries. Recent studies on the propaga-
tion of light in simplified models (e.g. semi-homogeneous medium) have de-
fined the formulation of the so-called "banana-shaped " model, which defines
a three-dimenstional model of the probability that a single photon, emitted
from a source and measured by a detector, travels through a defined optical
path. As we can see from Fig. 1.2, light is emitted from the source (black
arrow), and travels through the skull and gray matter, and finally reaches
two detectors placed at different distances (ry < 1 cm and rp ~ 3 cm (light
blue and red arrow respectively)) from the source. Photons emitted by the
source and measured at the detector position will have higher probability to
follow the path described by the banana-shaped model (red and light blue
for the two detectors) than to travel to other parts of the head and reach the
detectors afterwards.

The penetration depth reached by photons is typically proportional to
the distance between the source and the detector involved. In most fNIRS
studies, source and detector pairs are placed on the scalp at 2-3 cm from
each other so that light can reach a depth of about 3 ¢m under the skull,
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Source Detector 1 Detector 2

white matter

Figure 1.2: an overview of the theoretical "banana-shaped” model. It is
worth noting the different depth reached by photons depending on the source-
detector distance: only the channel with source-detector distance of ~ 3 cm
is probing the gray matter. Taken from [48].

and thus measure the brain activity in the gray matter. By increasing the
source-detector distance, the depth reached by the photons will increase,
but the Signal-to-Noise Ratio (SNR) will decrease. Decreasing the distance
between source and detector (e.g. less than 1 cm), the photons will not reach
the cerebral cortex, probing only the extra-cerebral layers. For this reason,
standard sources and detectors are usually placed 2-3 cm far from each other
in most fNIRS experiments.

1.2.2 Underlying theoretical formulation

NIRS theory is essentially based on the modified Beer-Lambert Law (MBLL)
[12], which allows to compute HbO and HbR concentration changes from the
intensity values of NIR light detected. This law is derived from the solu-
tion of the photon diffusion equations under the assumption of homogeneous
medium. Let’s start with the standard Beer-Lambert Law, which describes
the ratio between the intensity of light emitted from a source (1) and the in-
tensity measured at a detector (/) in a non-scattering medium. The equation
is:

1

0D = —log<z>: 1a(\) - L (1.1)

where OD is the optical density or attenuation, p,(A) is the absorption co-
efficient of the medium involved at a particular wavelength A\, and L is the
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Figure 1.3: an overview of the absorption spectra of the main absorbers
involved in the NIRS acquisition. Near-infrared wavelength range is from
650 nm to 950 nm.

distance travelled by photons through the medium, that is the optical path-
length. The absorption coefficient can be written as the product of the chro-
mophore concentration ¢ and its extinction coefficient €. Hence, equation
(1.1) becomes:

OD=c-¢\)-L (1.2)

In addition to absorption, scattering needs to be taken into account as well,
since it is usually even more frequent than absorption. Photons that are
subjected to more scattering events during their path will take longer to exit
the tissues, and thus they will have a higher probability of being absorbed.
Hence, we need to incorporate this scattering effect in the previous equations:
the result is the MBLL mentioned before. It is derived from the solution of
certain transport equations under the assumptions of homogeneous medium,
high but constant scattering and homogeneous variations of the parameters
of interest in the measured volume:

OD =c-e(\)-d- DPF()) + G(\) (1.3)

where G/(\) has been added to account for potentially scattering losses and it
depends on the measurement geometry and scattering coefficient, d is the real
source-detector distance and DPF()) is the differential pathlength factor,
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which takes into account the increased path followed by the photons due to
scattering.

Under the hypothesis of high but constant scattering effect, G(\) and
DPF()) can be considered constant. Thus, change in optical density (AOD)
can only be caused by a change in concentration Ac, that is:

AOD = OD; — OD,, = Ac-€(\) -d- DPF() (1.4)

where OD,, is the attenuation at time ¢, and OD, the attenuation mea-
sured at time t. As mentioned previously, the main absorber in the near-
infrared window is hemoglobin, while other chromophores can be considered
to give a constant contribution. Hence, the variation in attenuation can be
assumed, at each wavelength, as the linear combination of the contributions
of HbO and HbR, considered independent, that is:

AOD(N) = (A[HVO] - ego(N) + A[HR] - (X)) - d - DPF(X)  (1.5)

where egp0(N) and egpr(\) are the extinction coefficients of HbO and HbR
at a particular wavelength A, and [HbO] and [HOR] are HbO and HbR con-
centrations, respectively. Knowing the extinction coefficients of HbO and
HbR, it is possible to compute the concentration changes of these two chro-
mophores exploiting the MBLL and measuring the attenuation changes at
two different wavelengths over approximately the same volume of tissue, that
is what fNIRS is measuring:

AOD(M AOD(\
A[HbO} _ EHbR()\l)DPFg);; - EHbR(AQ)DPFE)\B (1 6)
(GHbR(/\l) : EHbO()\Q) - EHbR()\Q) : €Hbo(/\1)) -d '
AOD(\) AOD()\2)
€gpo(N2) ot — €gpo( A
A[HbR] = 0 (02 5pr,) — €0 (M) Dprn) (1.7)

(6HbR()\1) : EHbO()\z) - 6HbR(>\2) : €Hb0<)\1)) -d

Generalization of this formula for more than two wavelengths can be found
in [13].

Unfortunately, the main simplifying hypothesis of the MBLL are not ver-
ified when we are measuring the fNIRS signal on an adult head. Indeed,
biological tissues underlying the scalp are not homogeneous, since they are
made up of different layers with different optical properties such as skin,
skull, cerebrospinal fluid, capillaries. Hence, the concentration changes val-
ues obtained using the MBLL may be biased and cannot be used to provide
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meaningful images. A more realistic model describing the propagation of
photons in the brain is the diffusion equation [14]:

99(r, t)
ot

— D -V?¢(r,t) + v - pia - d(r,t) + =v-S(rt) (1.8)

where ¢(r,t) is the photon fluence at time ¢ and position r, which is pro-
portional to intensity, S(r,t) is the distribution of the sources of photons,
v is the speed of light in the medium, and D = v/(3u}) is the photon
diffusion coefficient with g/, and p, the reduced scattering coefficient and
absorption coefficient respectively. The proposed model accurately describes
light migration through a scattering medium, assuming that the probability
of scattering is higher than that of absorption. Moreover, assuming that
concentration changes are both global and small, the solution of the photon
diffusion equation (1.8) for a semi-infinite medium is:

AOD = —log( O ginal )

¢initial
1 3/ﬂ % Lo o ) -1
— 5 (Némtjal) . {1 — (1 —+ L(3MZ"”’“Z%”“”“Z)2> } .
- (emrA[HOR] + egro A[HDO]) - d (1.9)

where @initiaqs and @fing are the initial and final photon fluence respec-
tively, while p/mital and piniial the initial reduced scattering coefficient and
absorption coefficient.

1.3 Pros and Cons of fNIRS compared to other
neuroimaging techniques

An obvious first question when considering fNIRS as a method for assess-
ing brain functions is what advantages it offers over Electroencephalography
(EEG) or fMRI, two of the most diffuse techniques in neuroscience.

EEG, which measures voltage fluctuations resulting from ionic current
flows within the neurons of the brain, has the advantage of being a measure
of direct neural activity, while both fMRI and fNIRS are measures of cere-
bral hemodynamics, which can be considered correlated with neural activity
[15]. EEG is a technique with relatively poor spatial resolution (of the order
of centimeters). This means that it is relatively ineffective at differentiating
specific regions or circuits in the brain, even when high-density arrays are
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utilized. Source localization from EEG measurements is achieved by solv-
ing the so-called inverse problem to obtain and localize the most probable
electrical sources in the brain. However, reliable results depend heavily on
the number and position of electrodes and the algorithms employed in the
analysis. Instead, EEG has a very high temporal resolution, of the order
of milliseconds so that samples are typically acquired at frequencies ranging
from 250 to 2000 Hz in clinical and research settings.

The fMRI technique can localize brain activity with greater spatial reso-
lution compared to other techniques (voxel size of the order of millimeters,
usually 3x3x3 mm), but it has a very low temporal resolution (about 2-3
seconds), depending on the repetition time employed (Tg). It is worth men-
tioning that fMRI provides whole-brain imaging, allowing to measure deep
gray and white matter as well. Nevertheless, {MRI requires the subject to
lie extremely still during the acquisition, in a noisy and relatively small en-
vironment, which might be uncomfortable.

fNIRS is a non-invasive versatile functional neuroimaging technology for
monitoring brain activity. It has high potentials for research topics thanks
to the high temporal resolution and cost effectiveness. In particular, fNIRS
has a higher temporal resolution compared to fMRI (order of milliseconds
or even less depending on the instrumentation used), but lower compared to
EEG. Spatial resolution should be assessed considering both source-detector
distance (e.g. horizontal resolution) and depth (e.g. vertical resolution).
The spatial resolution is rather limited (2-4 cm) compared to fMRI, but it is
higher than that of EEG. Recently, many efforts have been done to improve
spatial resolution [16], as it usually relies on the instrumentation used and
the source-detector numbers and position. The spatial resolution can be
highly improved using high-density arrays for example (as in Diffuse Optical
Tomography, DOT [17]) and reconstructing the activation changes in a three-
dimensional head model. Also the depth resolution of fNIRS is limited: it is
unable to measure cortical activity more than 4 cm deep in the brain.

An intrinsic advantage of fNIRS over fMRI is that the latter provides
only one measure, the BOLD response, which is considered to be related
to HbR concentration changes, whereas the former can use two (or more)
near-infrared wavelengths to provide separate measures of both HbO and
HbR.

Furthermore, fNIRS is definitely inexpensive compared to fMRI, and easy
to move. This is a very important feature for those patients who are unable
to move, allowing brain assessment directly at the bed-site. It is easy to use
as well, and thus it does not require heavy staff training.

Unfortunately, fNIRS has some drawbacks as well. The key limitation of
fNIRS is that it can only probe the surface layers of the cortex (e.g. grey
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matter). Consequently, brain structures that lie deeper in the brain cannot
be measured. Moreover, the SNR is highly variable from subject to subject
and it is influenced by different factors such as skull thickness, which increases
absorption and scattering, and hair color (black hair usually absorbs more
light than blonde one). Nevertheless, fNIRS is less sensitive to head motion
artifacts compared to other techniques. Therefore, it can easily be used to
monitor newborns and children [18].

Finally, fNIRS does not interfere with high magnetic or electric fields.
This allows easy integration with other techniques such as MRI, Magnetoen-
cephalography (MEG) or EEG. In this way, morphological, electrical and
functional brain information can be combined to better understand the phe-
nomena under investigation. A lot of research is being conducted nowadays
to integrate morphological and functional information from both fNIRS and
fMRI signals, as shown in [19][20].

1.4 The fNIRS signal: features and components

fNIRS can be used to gather information about the hemodynamic correlates
of neural activity both in infants and adults, using tasks that assess, for ex-
ample, visual perception, memory and language abilities [21][22][23]. These
are exciting findings, but they are tempered by a number of critical method-
ological issues that must be solved to ensure that f{NIRS becomes a technique
that is robust and reliable for daily use.

In functional brain imaging, the signal acquired with fNIRS is a mixture
of evoked HRF, several background physiological components such as cardiac,
respiratory and Mayer’s wave and measurement noise. The main issue related
to fNIRS is the separation of the HRF, which represents the useful and
informative signal, from all other sources of noise due to brain physiology.

1.4.1 The hemodynamic response function (HRF)

The HRF represents the key signal in fNIRS studies, since it allows the
estimation of brain activation during specific tasks. The presence of HRF in
fNIRS signals is a consequence of physiological processes. Indeed, neurons
are activated in defined areas of the cortex during specific tasks and they
start firing, consuming glucose and oxygen. As a consequence, the increased
oxygen consumption leads to an increased cerebral blood flow (CBF) and
cerebral blood volume (CBV) in the areas where brain activation is occurring,
in order to give more and more nutrients to the firing neurons. The increase
in blood flow and oxygen is much greater than the real needs of the firing
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neurons. Hence, HbO concentration will increase substantially due to oxygen
recruitment, while HbR concentration will decrease. Brain activation can be
detected and measured relying on HbO and HbR concentration changes, since
they reflect neuronal activity, as mentioned before. It is worth mentioning
that the HRF is highly variable, depending on the types of stimuli, their
duration, and other causes such as adaptation and brain region. However, it
is a slow response (10-20 seconds, compared to the milliseconds EEG evoked
responses). Many models have been employed to estimate the HRE e (2)
from noisy fNIRS data in literature [24][25], but the most widely used is the
canonical model, which is a combination of two gamma-variant functions I';,,
and I',,, with a total of 6 parameters to adjust, that is:

htrue(t) =« [Fnl (t, T1, pl) - ﬁ : FnQ (t7 T2, pQ)] (110)

where:

1 [t—p:\P _0=r) 1 if(t—p:)>0
mt,wp:—( pﬂ) e b= py). 6<t—pj>={ =)=

pi7; Tj 0 otherwise

where o tunes the amplitude, 7; and p; tune the response width and the
onset time respectively, and [ controls the ratio of the response to under-
shoot. An example of noise-free HRF prediction with the canonical model
is shown in Fig. 1.4, where parameters have been set as: a = 1000, p = 2,
=1 17 =081 pp = 0.7, py = 0.81, f = 0.05, producing the variation
of HbO concentration over time (AHbO(t)). As we can see, at time t=0 s
the stimulus is presented and neural activation starts. Oxygen recruitment
and its consumption start, but the recruitment is much greater than the con-
sumption and thus HbO concentration increases. A peak is reached at about
300 nM and then the signal returns to baseline values, with an undershoot
due to the fact that at the end of neuronal activation, the CBF decreases
more rapidly than CBV.

Unfortunately, the HRF is not the only signal detected by fNIRS optodes.
Indeed, fNIRS measures activity occurring in the underlying biological tis-
sues, and thus there are other physiological components that contaminate
the raw measured signal, making the HRF hard to estimate.

The major sources of interference are cardiac and respiratory activity,
which are partly coupled. There are also low frequency spontaneous physio-
logical oscillations typically named vasomotor waves or Mayer’s waves (with
a frequency around 0.1 Hz), as well as very low frequency oscillations (with
a frequency around 0.04 Hz). All of these physiological interference sources
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Figure 1.4: HRF prediction for HbO with the canonical model. In this
example, parameters have been set as: a = 1000, p =2, 7, = 1, 7o, = 0.81,
p1=0.7, po =0.81, § = 0.05.

are located both in the vasculature of the layers overlaying the brain (for
instance in the skin layer) and in the brain itself, and are often referred to as
global interference. These components have different underlying origins, am-
plitudes and frequencies. In addition, other sources of noise are inherent to
the raw signal such as measurement noise and motion artifacts. An overview
of these components is shown in Fig. 1.5.

1.4.2 Heart beat component

Heart beat typically has a frequency range from 60 to 80 beats per minute
(about 1 Hz), and this physiological component can be modeled with a si-
nusoid, whose frequency is about 1 Hz and amplitude ranging from 0 to 500
nM. This component is not crucial in the HRF estimation. Indeed, it can
be easily distinguished from all other sources of contamination, because its
frequency range is typically higher compared to the frequency range of the
HRF. For this reason, a standard low-pass filter can be employed to remove
this oscillation without affecting the HRF.

1.4.3 The respiratory component

The respiratory component can be modeled with a sinusoid as well, with
amplitude varying between [0-500] nM, but its frequency range lies around
0.2 Hz. This component contaminates the HRF signal, since their frequency
ranges are comparable, and thus filtering is no longer optimal.
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Figure 1.5: Top: raw signal measured. Middle: simulated example of Mayer’s
wave. Bottom: simulated examples of low (blue line) and very low (red line)
oscillations. It is worth noting that amplitudes and frequencies are time-
varying. Note also the different temporal scale of the figures.
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1.4.4 Mayer’s wave

The Mayer’s wave or vasomotor wave is probably related to cyclic changes in
arterial blood pressure in vessels and it shows significant coherence with sym-
pathetic nervous activity. Its frequency spectrum ranges from 0.03 and 0.18
Hz, and overlaps with the HRF spectrum. Thus, it is impossible to remove
the Mayer’s wave without affecting the HRF using a standard band-pass fil-
tering approach. Another main issue related to this form of contamination,
is the fact that Mayer’s wave’s amplitude is typically higher than the HRF’s
one, making HRF estimation even harder.

1.4.5 Very low frequency oscillations

Very low frequency oscillations are contamination signals whose spectra are
centered at around 0.004 Hz. These oscillations are responsible for signal
trends and they are typically coupled with blood vessels pressure.

1.4.6 Motion artifacts

Motion artifacts are typically caused by small movements of the participant
during a recording session, or by the uncoupling between one or more source-
detector pairs and the participant’s scalp. These artifacts can be usually
detected by eye inspection, because they cause abrupt changes both in HbO
and HbR concentration signals. However, the presence of these artifacts can
sometimes lead to biased HRF estimates, and thus new algorithms are being
developed to remove these sources of error, such as the spline interpolation
approach [26| or the wavelet approach |27]. However, there is not a gold
standard algorithm for removing these sources of error, even though some
important studies have been conducted to test the impact and performances
of these methods, such as in [28], where it has been shown that the wavelet
filtering approach is the most powerful and promising technique to reduce
and correct motion artifacts.

1.4.7 Measurement noise

Finally, the last but not least source of contamination is measurement noise.
Its statistical description is not clearly known since fNIRS signal is non-
stationary. This means that mean and variance are highly variable not only
from subject to subject, but also during the recording session itself. An
important thing to know, is that fNIRS is very sensitive to external sources
of light. In order to minimize this source of noise, acquisitions typically take
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place in a dimly-lit room, so that external light does not interfere with the
near-infrared light employed.

1.5 State of the art methods for HRF estima-
tion

From the discussion made so far, it turns out that the main goal in fNIRS
studies is the estimation of the HRF. Unfortunately, this useful signal that
correlates with neural activity is hidden in the raw signal acquired due to
different physiological oscillations that can be considered noise. Some os-
cillations such as heart beat can be simply removed by standard filtering,
but Mayer’s waves and other low frequency oscillations cannot be completely
removed without affecting the HRF itself. As a consequence, physiological
noise removal from the fNIRS signal is an important open issue which should
be solved to make fNIRS robust and reliable in research and clinical settings.
In literature, several different methods have been proposed to remove or at
least reduce physiological noise. Some of these rely only on standard channel
signals while others on the use of the so-called reference channel, a channel
with source-detector distance less than 1 cm. Due to the directly propor-
tional relationship between source-detector distance and depth reached by
photons, the reference channel will probe only the superficial layers of the
head (i.e. scalp and skull) but not the cerebral cortex. Hence, the reference
channel signal contains the same physiological noise of standard channel sig-
nals but it does not contain the hemodynamic response. This signal can thus
be used to reduce physiological noise in standard channel without the risk of
removing the HRF. The algorithms that exploit the reference channel can be
further divided into two subgroups: the ones that use a parametric approach
and the ones that use a non-parametric approach for the HRF estimation.

1.5.1 Bandpass filtering

The first and the simplest method to estimate the HRF and reduce physio-
logical oscillations is band-pass filtering. This simple method only exploits
standard channel signals and allows to remove oscillations with frequencies
far from the ones of the useful signal, such as heart beat frequencies and
very low frequency oscillations, responsible for signal drifts. This method
has been widely employed in many studies [29], not only as a method itself
but also as a preprocessing step in other fNIRS signal processing algorithms,
such as in |30]. However, filtering does not allow to remove low frequency
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physiological noise from fNIRS data, because of the overlapping in frequency
between the physiological noise and the HRF.

1.5.2 Conventional averaging

Conventional averaging (CA) is widely used in signal processing algorithms,
and it is a mainstay for HRF estimation. Again, this method relies only
on standard channel signals. The raw signal is divided into several sweeps
lasting about 15 seconds from the stimulus onset, and then all sweeps related
to the same stimulus type are averaged. The main hypothesis is that noise,
given by the sum of all physiological components and measurement noise in
this case, is random with zero mean, variance o2, and stationary with no
correlation with the HRF. The mean can be expressed as:

Z t) 4+ vi(t)) = %Z (1.11)

ZIH

where wu;(t) is the i-th HRF, v;(¢) is noise in sweep number i and wu(t) is the
HRF assumed equal for all trials. Taking the expectation of eq. (1.11) we
get:

Blyn()) = Blu(t)] + 1 > Blos(t)] = u(t) (1.12)

It turns out that CA gives non-polarized estimates. To quantify estimation
precision, the variance of the estimation error can be derived as:

e(t) = ym(t) — u(t) (1.13)

varle(t)] = B K%ﬁ;w(oﬂ ]\1[2E[v2(t)] _ "NQ (1.14)

Thus, if N — oo then var|e(t)] — 0, and the estimation precision is
proportional to the number of trials N. However, this method requires many
sweeps (about 100 sweeps) to give an accurate estimate of the mean HRF
and the time required for signal acquisition would be too long. Moreover, CA
hypotheses are never verified when dealing with real data and phenomena
such as participant’s adaptation could lead to biased HRF estimates.
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1.5.3 Reference-channel subtraction method

The subtraction of a reference channel signal from standard channel signal
to get rid of physiological noise and improve HRF estimation was firstly
proposed by Saager et al. [31]. This method paved the way for all the future
algorithms based on the reference channel subtraction idea. This method
can be categorized into the reference-channel methodologies based on a non-
parametric approach.

In particular, they acquired many time series using different probe ge-
ometries, based on the intuition that detectors near the source (= 5 mm) are
more likely to record only physiological noise rather than brain activity. The
authors scaled the reference channel signal to the standard channel signal
using the least-squares method and then employed a weighted subtraction
of the scaled reference channel signal from the standard channels signal in
order to delete or at least reduce physiological contamination present in the
standard channels.

1.5.4 Reference channel modeling corrected Bayesian
approach (ReMCoBA)

Another method that performs physiological noise reduction exploiting the
reference-channel and estimates the HRF with a non-parametric approach, as
the Saager’s method, is the Reference Channel Modeling Corrected Bayesian
Approach (ReMCoBA) proposed by Scarpa et al. [3] and developed in [32].
Succinctly, the algorithm consists of two main steps: in the first step a phys-
iological noise model is estimated from the reference-channel data trial by
trial, in order to reduce physiological noise contamination. In the second
step, the physiological noise corrected data are filtered on a single trial basis
with a non-parametric Bayesian approach to further reduce residual random
noise. In more details, standard-channel signals y(¢) were modeled as a sum
of three components, that is the HRF w(¢), physiological noise ¢(t) and ran-
dom measurement noise v(t):

y(t) = u(t) + ¢(t) + v(t) (1.15)

whereas reference-channels y,.(t) were assumed to contain the same physi-
ological noise ¢(t), but scaled by a factor s constant over time to take into
account different paths crossed by photons and random noise &(t), that is:

o(t)

Yref(t) = + e(t) (1.16)
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Physiological noise was modeled as a sum of M sinusoidal waves on a trial
by trial basis, that is:

o(t) = Z[aism(%rwit) + bicos(2mw;t)] + ¢ + w(t) (1.17)

i=1

where w(t) is the model error, w; is the frequency, a;, b; and ¢ represent
sinusoidal amplitudes and offset, respectively. To estimate an optimum value
for M and the corresponding sinusoidal frequencies w; for i=1,....M, peaks
were individuated from the power spectrum on a trial by trial base and then
a grid search algorithm was employed to further improve @; estimates. The
maximum value for M was set to 3 in order to model physiological noise
that lies in the HRF spectrum, i.e. respiration, Mayer’s wave and very low
frequency oscillations.

Finally, a;, b; and ¢ were estimated by the linear least squares method,
whereas s was determined by minimizing the squared difference between the
standard-channel signal y(¢) and the corresponding reference-channel signal
Yres(t) described previously.

Once physiological noise model was determined, it was used to correct
the standard-channel raw signal and obtain y.(t) that is:

M
ye(t) =y(t) — 5 - Z[disin@mﬁ)it + bicos(2miit)] + ¢ (1.18)
i=1

The corrected signal y.(t) was then filtered with a non-parametric Bayesian
approach. Succinctly, at this step y.(t) can be modeled as:

Ye(t) = u(t) + v(t) (1.19)
where now wu(t) is the HRF to estimate and v(t) is simply noise. Re-expressing
eq. (1.19) in matrix form we get:

Ye=u-+v (1.20)

where u and v are vectors containing the n samples of the trial. In the
Bayesian context, HRF estimation can be pursued using the minimum error
variance linear estimation formula, that is:

="+ )=y, (1.21)
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To estimate the a priori covariance matrix of v (X,), an auto-regressive model
(AR) of order 4 was employed for each trial:

¥, =0 (ATA)! (1.22)

where A was a square nxn Toeplitz matrix whose first column was

T
[1,&1,@2,(13, 0,4,0, s 70}

and a; for i—1,..,4 are the AR model coefficients. o2 is the noise variance

which drives the AR model and it was estimated from data in an interval
ranging from 1.5 s before the stimulus onset to 2.5 s after.

In order to estimate the a priori covariance matrix of u (X,), a stochastic
process given by the cascade of 2 integrators was employed, driven by zero-
mean white noise process €, with variance \%:

¥, = X (FTF)™! (1.23)

where F' = A2, with A? being the squared n-dimensional lower triangular
Toeplitz matrix, whose first column was [1,—2,1,0,...,0]7.

Once all unknown parameters are estimated, using (1.22) and (1.23), eq.
(1.21) can be re-written as:

= (ATA +1FTF)'AT Ay, (1.24)

o2

where v = $3 is a tuning parameter which is determined relying on the
Twomey criterion for each trial.

Once all HRFs have been estimated on a single trial basis, all HRF's related
to the same stimulus type are averaged and then smoothed with a 3rd order
polynomial Savitzky-Golay filter with frame size of 25 time points. Finally,
11 was baseline corrected by subtracting the mean intensity calculated in the
range [0-500| ms from stimulus onset.

1.5.5 Parametric approach with coefficients estimated
by linear Kalman filtering
A different approach that exploits the reference-channel signals as regres-

sors, but estimates the HRF using a parametric model, has been proposed
by Gagnon et al. [33]. They use a linear Kalman filter approach in order to
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estimate single trial HRFs. The linear Kalman filter tries to dynamically es-
timate the weights associated to some gaussian functions employed to model
the HRF over time. The HRF h(t) was modeled as a set of V,,=15 temporal
basis functions, that is:

Nw

h(t) = Z w;b;(t) (1.25)

where b;(t) are normalized Gaussian functions with means separated by 0.5
s and standard deviation of 0.5 s, as shown in Fig. 1.6. It is worth noting
that h(t) represents the Finite-Impulse-Response (FIR) of the system.

Normalized Gaussian Functions
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Figure 1.6: normalized gaussian functions used in the linear kalman filtering
approach.

Hence, the HRF signal ygrr can be modeled as the output of the FIR
filter, that is:

yurr(t) = Z h(k)u(n — k) (1.26)

k=—o00

where u(t) represents the onset vector, which takes values of 1 only when the
stimulus is shown to the participant and 0 otherwise.

The signal obtained from standard-channels y3(t) was modeled as a linear
combination of the HRF and the reference-channel signal y,(t) as:

y3(t) = Z h(k)u(n — k) + z“: ayr(n+1—1) (1.27)

k=—o00
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where NN, is the number of points taken from the reference-channel data and

used as regressors, and a; are their weights. In this study N, was set to 1.
Egs. (1.25) and (1.27) can be re-expressed in state space form. Defining

the state vector x as:

a ... an, (1.28)

w

X:[wl Wy ... Wy

and assuming that the a priori evolution of the states are described by a
random-walk model, we get the process equation:

Xk+1 = I. X + Wi (129)

where wy is the process noise and I is a N, + N,xN,, + N, identity matrix.

To derive the measurement equation, we must define the matrix U, whose
columns are the linear convolution between the onset vector u(f) and each
temporal basis function b;(t), that is:

U:[u@)bl(t) w@bo(t) .. w® by, (1) (1.30)

Defining matrix A as the concatenation of the matrix U in (1.30) and matrix
Y

A= [U Y} (1.31)
where
yi(1) 0

Y = y1(2) yi(1) 0 (1~32)

the filter takes into account also data deriving from the reference-channel as
in (1.27). Thus, measurement equation can be expressed as:

Y3, = Cp - X + vy, (1.33)

where v, is measurement noise and Cy, is a 1 by N,,+ N, vector whose entries
correspond to the kth row of A in (1.31).

The estimate X, has been computed using classical kalman filter equa-
tions which will be discussed in chapter 2 in more detail, followed by the
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Rauch Tung-Striebel (RTS) smoother. The estimated HRF time course was
determined as:

hie = Cy. - Xy, (1.34)

where Xy, is the state x at time k estimated with the RTS smoother.

1.6 Discussion on methods for HRF estimation
and open issues

Over the past 15 years, fNIRS has emerged as a complement to fMRI for
estimating the HRF related to cerebral activity above all in situations where
fMRI cannot be used. A common problem with fNIRS time series is the
presence of strong physiology-based systemic interference, which affects both
the HRF estimation and the corresponding brain activation. As mentioned
before, this interference derives from cardiac activity, respiration and other
physiological and homeostatic processes. As a consequence, NIRS signal is
usually contaminated by systemic interference occurring in the superficial lay-
ers of the head, that is the scalp and skin. Recent findings have shown that
short source-detector separations (reference-channels), can be used as regres-
sors in order to filter the systemic interference affecting the longer source-
detector measurements (standard channels) [34]. As such, many different
methods have been proposed in literature, but considerable work remains in
terms of improvements and suitability to real-time use. Indeed, it is still dif-
ficult to filter global interference without affecting the HRF estimation due
to common frequency ranges.

In this chapter we have shown that several methods have been proposed
in literature to reduce physiological noise and improve the HRF' estimation.
Some of these methods use only standard-channel signals, such as standard
filtering and CA. Despite being simple, standard filtering does not allow to
remove physiological noise located in the same frequency range of the HRF,
while CA requires many sweeps to be collected for good results. Moreover,
CA underlying hypotheses are never verified in real contexts, leading to bi-
ased HRF estimates.

In order to overcome these limitations, reference-channel approaches have
been investigated and proposed. These algorithms can be divided into two
different groups: non-parametric and parametric methods. Two examples of
non-parametric approaches presented before are the reference-channel sub-
traction and ReMCoBA methods.

The reference-channel subtraction method has demonstrated significant
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improvements in reducing physiological noise. Indeed, it was shown that
this procedure removed, on average, 60% of the total measured NIRS signal,
which can be considered background physiological noise. Therefore, most of
the signal acquired was not specific and did not carry useful information.
However, least squares method might cause an overfitting of the reference
channel signal to the standard channel signal, especially when the HRF is
synchronous with the physiological noise present in the reference channel.
As a consequence, the HRF could be potentially removed or its estimated
amplitude reduced. Despite this down side, this study has paved the way for
an increasing number of algorithms that are based on the reference-channel
approach.

ReMCoBA method has shown improvements not only in mean HRF esti-
mation, but also in other cognitive parameters related to the HRF, i.e. peak
amplitude and peak latency estimation. One of its strength is the lack of
assumptions made on shape, amplitude or latency of the HRF. However, in
some contexts, where for example the HRF to be estimated is very small but
with a known expected shape and the number of available trials is limited,
the lack of priors can be a drawback. In these situations, HRF estimation
could be further improved by considering stronger priors, which are able to
better describe the signal. This is pursued by the other subgroup of algo-
rithms mentioned before that exploits the reference channel: the ones that
use a parametric approach.

The linear Kalman filtering approach discussed in section 1.5.5 is an ex-
ample of these approaches. Simulations and statistical analysis have shown
that this approach leads to interesting and significant improvements in the
mean HRF estimation, especially when few trials are available. In addition,
an important aspect of the study is that Gaussian basis functions allow to
model HRF with different shapes, duration and components, such as ini-
tial dips or undershoots, making this approach less restrictive even in the
presence of a stronger prior. Thus, it turns out that better HRF estimates
can be pursued following the direction of the reference-channel parametric
approaches.

1.7 Aims of the thesis

The main aim of this thesis is to implement and test the performance of a
new parametric approach, based on the Kalman filter theory, that exploits
reference channel data to improve the estimation of the HRF. In particu-
lar, this thesis will focus on the implementation of the so-called Unscented
Kalman Filter (UKF), which is an alternative version of Kalman filtering in a
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non-linear context, to model physiological noise oscillations measured in ref-
erence channel signals. A more common and known version of the non-linear
Kalman filter is the Extended Kalman filter (EKF). A method exploiting
EKF and reference channel data to improve HRF estimation has been pro-
posed in [35] and its performance will be compared with the one of the UKF
here introduced. Furthermore, in this thesis, an improvement to this EKF
method will also be proposed.

UKF and EKF will be theoretically reviewed in chapter 3. Both UKF and
EKF will be used to estimate systemic interference from reference-channel
data. The estimated noise model will be then used to reduce physiological
noise in standard channels. After that, a Linear Kalman Filter will be em-
ployed for the HRF estimation in standard channels. Thus, this thesis will
try to give its contributions to the parametric approaches that rely on refer-
ence channel data. Indeed, these methods are being developed in literature
since it has been shown that they give more accurate estimates, and so future
directions will be pursued in this field.

Another aim of this thesis is to test whether the use of the reference
channel in a parametric context actually gives better performances in terms
of HRF estimation compared to the use of the standard channel alone and
compared to the use of non-parametric approaches, which have shown to
have weaker priors compared to parametric approaches. In this regard, the
performances of UKF- and EKF-based methods will be compared with those
of CA, of the linear Kalman filter without the previous subtraction of the
reference channel signal and of the Saager’s reference-channel subtraction
method.

Moreover, the comparison between the proposed UKF approach and both
the EKF approaches will give information on whether the fNIRS signal ne-
cessitates a highly non-linear approach (UKF) or a lower order non-linear
approach (EKF) is enough for its description. The results of this comparison
will highlight whether the direction taken so far (i.e. trying to estimate the
noise model with higher non-linear approaches) is promising or needs to be
redirected.

Comparisons between all the algorithms will be performed with both real
SNR and high SNR semi-simulated dataset. We expect good performances
for all methods in the high SNR dataset, while we expect a great improve-
ment in HRF estimation for those methods using the reference-channel in the
real SNR scenario. Error indexes computed between the synthetic and the
estimated HRFs will be used as a metric of comparison between the different
techniques.

Finally, the proposed novel UKF algorithm will be applied to real cogni-
tive data using the dataset shown in section 2.1.
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Database

2.1 Experimental protocol

In this thesis, two different datasets acquired on the same participants have
been employed to test a new method proposed in the next chapters. These
data were obtained from seven healthy participants, who were recruited by
the Optics Division at the Martinos Center for Biomedical Imaging, Mas-
sachusetts General Hospital, Boston, MA, USA. Both acquisitions were ap-
proved by the ethical committee of the Massachusetts General Hospital. In
the first acquisition, each participant sat in a confortable chair and underwent
two or three (depending on participant’s tiredness) resting state recording
sessions, each one lasting approximately 10 mins. Participants were asked
to close their eyes and remain still for the entire session. These data will be
used in a semi-simulation scenario to assess the performance of a new algo-
rithm for physiological noise removal and HRF estimation proposed in the
next chapters. Indeed, simulated HRFs (see paragraph 2.1.1) were added to
these resting state data creating a semi-simulated dataset. Knowing the real
HRF, it is possible to test the performance of the new algorithm and compute
quantitative parameters to compare it in an objective way with other more
known methods.

In the second acquisition, the same participants sat in a confortable chair
and underwent a finger-tapping experiment, consisting of two or three ses-
sions. In more detail, participants were asked to touch the right-hand thumb
with the remaining fingers as quickly as possible. Three types of tasks were
employed during the recording session , only differing in the duration of the
required tapping: 2 s, 6 s and 18 s of finger-tapping, in order to estimate
different shapes of the HRF. The previously described resting state measure-
ments were recorded soon after each finger-tapping session. Between resting
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state and finger tapping sessions, participants were allowed to rest and relax
for a couple of minutes. In the finger tapping sessions, we are expecting brain
activation to occur in the motor cortex located in the left hemisphere of the
parietal lobe since activation is contralateral. Indeed, it is well known that
brain activation induced by finger tapping tasks is higher in the hemisphere
contralateral to the hand used for the tapping. Anyway, we also expect
activation in the ipsilateral motor cortex, but it is typically much lower com-
pared to contralateral activations. This second dataset will be used to test
the method proposed in the next chapters on real cognitive data.

The first acquired subject of the dataset was excluded from the analyses
due to the high presence of noise deriving from motion artifacts and bad cou-
pling between optodes and skin in many channels. Hence, the total number
of subjects actually processed in the following chapters of the thesis was 6.

Data were obtained using a continuous wave NIRS system (CW6, TechEn,
Medford, MA, USA) with a sampling frequency of 50 Hz. Probes were placed
bilaterally on the motor cortex located in the parietal lobe, which is usually
activated during finger-tapping experiments, and bilaterally on the frontal
lobe, as shown in Fig. 2.3. Red numbers represent sources, while blue ones
represent detectors. In particular, red and blue numbers from 1 to 6 repre-
sent sources and detectors respectively placed on the left parietal hemisphere
creating channels with 3 cm separation, red and blue numbers from 7 to 12
represent sources and detectors respectively in the right parietal hemisphere
making up channels with 3 cm separation, and red numbers ranging from
13 to 15 and blue numbers from 13 to 16 represent sources and detectors in
the frontal lobe of the participant’s head. In addition, blue numbers ranging
from 17 to 32 represent the detectors related to the reference channels, which
are detectors placed 0.8 cm far from the nearby sources.

2.1.1 Generation of the semi-simulated data

In order to create the semi-simulated dataset, 36 simulated HRFs lasting
approximately 8 seconds were added, for every participant, to each standard
channel signal measured during the resting state session. The inter-stimulus
interval (ISI) was varied between 9 and 12 seconds, so that no overlapping
between two consecutive HRFs occurred. All HRFs that were added to the
resting state data were determined using a linear combination of two time-
dependent gamma-variant functions I',,:

HRFtrue(t) =« [Fnl (ta 71, /01) - ﬁ : Fnz (t> T2, p?)] (21)
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where each function was:

0 otherwise

1 t— 0. \P _CG=rj)
Lo(t, 75, p5) = —< pj) e T d(t—pj), 6(t—py) :{

P ' Tj Tj

where o controls the amplitude of the HRFSs, 7; and p; control the response
width and the onset time respectively, while 8 determines the ratio of the
response to the undershoot typically found in real HRFs.

As far as the coefficients are concerned, coefficient p was set to 2 according
to literature values [36], whereas the remaining parameters were varied across
all stimulus onsets and time series in order to simulate HRFs with slightly
different shapes and latencies, as in a real scenario case. These parameters
were properly tuned in order to simulate a physiological HRF commonly
found in finger-tapping tasks, and are summarized in Table 2.1.

In addition, a second semi-simulated dataset was created by adding trains
of HRF characterized by much higher amplitudes than those of the first
dataset. Fven though we are actually adding non-physiological HRF trains,
this second dataset will allow us to create a situation of higher SNR com-
pared to the first semi-simulated dataset. SNR is commonly defined for each
channel as the ratio between the amplitude of the simulated HRF and the
standard deviation of the time course of the resting state signal. In par-
ticular, the mean SNR adding physiological HRFs is ~ 0.5, while adding
non-physiological HRFs led to a mean SNR which is ~ 2.1. To create this
high SNR dataset, parameters were tuned as shown in Table 2.2.

HRF tuning in the real SNR case

Parameters « 'E 1 B To D2

Values 1200 £ 10 | 1 £ 0.03 | 0.7 &£ 0.003 | 0.5 & 0.0001 | 0.81 £ 0.0001 | 2.1 4 0.0001

Table 2.1: overview of the parameters (mean and standard deviation) used
to create the synthetic HRFs in the real SNR case.

In particular, this tuning led to a mean HRF with peak amplitude of
325 + 9.34 nM and a peak latency equal to 3 4+ 0.05 s in the first dataset,
while in the second one the tuning led to a mean HRF with peak amplitude
of 1637.8 4 47.21 nM and a peak latency equal to 2.68 4+ 0.05 s.
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HRF tuning in the high SNR case

Parameters o T N B T2 P2

Values 6000 =10 | 1 & 0.03 | 0.7 £ 0.003 | 0.5 £ 0.0001 | 0.81 4 0.0001 | 2.1 &£ 0.0001

Table 2.2: overview of the parameters (mean and standard deviation) used
to create the synthetic HRFs in the higher SNR case.

Mean HRF, real SNR case Mean HRF, high SNR case
T T T T T T

1800

N\ 1600 P
/ B 7N\
/ \ 1400} /
/ \ | /
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\
\ < 10001
\ =
o 800F
I
5 600
/ \ 400 / \
\ | \
\ 200 \
/ ] o / AN
‘ ‘ ‘ ‘ — ‘ -200t ‘ ‘ ‘ ‘ ——
1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Time [s] Time [s]

Figure 2.1: left: mean HRF computed from a HRFs train in the real SNR
case. Right: mean HRF computed from a HRFs train in the high SNR case.
Note the difference in amplitudes.

Two instances of mean simulated HRF computed from a sample HRFs
train both in the real and high SNR case are presented in Fig. 2.1.

It is worth noting that adding synthetic HRFs to real resting state data
allows to get a dataset which is much closer to a real scenario than a full
simulated dataset. Indeed, in this semi-simulation scenario, we are dealing
with real physiological noise, which contains many time-varying components
that can be hardly simulated. At the same time, knowing the true HRF,
we are also able to compute quantitative indexes which allow more accurate
comparisons between different algorithms aiming at estimating the HRF. An
example of a synthetic HRF train that was added to real resting state data is
shown in Fig. 2.2. Looking at Fig. 2.2, we can observe the small amplitude of
the HRFs compared to the entire raw signal. The signal in the top figure and
the signal in the bottom figure look almost identical and no differences can
be seen to the naked eye. This further highlights the difficulty of estimating
such a small component, the HRF, completely hidden in the measured signal.
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Figure 2.2: Top: real resting state data acquired from a participant. Middle:
overview of the synthetic HRFs that were added to the resting state data.
Bottom: the semi-simulated signal, obtained by summing the signal shown

in the top figure with the HRF train shown in the middle figure.
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Figure 2.3: Source-detector geometry employed in the datasets: red and blue
numbers represent sources and detectors respectively, whereas green lines
connecting number pairs represent the corresponding measurement channel.
Note the different relative distance between sources and detectors in standard
channels (e.g. source 1, detector 1, 3 cm) and reference channels (e.g. source
1, detector 17, 0.8 c¢m).



Chapter 3

Algorithms for linear and
nonlinear Kalman filtering

Theoretically, the Kalman Filter (KF) estimates the instantaneous state of a
dynamic system by exploiting noisy measurements related to the state itself.
It has been widely used for the control of complex dynamic systems such
as manufacturing processes, aircrafts, ships and spacecraft. The solution of
the estimator is recursive, i.e. the updated estimate of the state is computed
from the previous state estimate and the new input data step by step. Below,
we will recall the foundamentals of KF in the linear case, and review the
Rauch-Tung-Striebel Smoother algorithm, which allows to improve the state
estimation by exploiting and combining all the data acquired. In section 3.3
we will present a review how the method is extended to the nonlinear case.

3.1 Kalman Filter (KF) in the linear case

In this section, the derivation of the Kalman filter equations according to the
original paper published by Kalman [37] is presented. Consider the block-
diagram representation of a linear, discrete-time dynamical system shown in
Fig. 3.1. The state vector, denoted by xj, is defined as the minimal set
of data that is sufficient to describe the dynamical behavior of the system
involved at time ¢, where k denotes the discrete time step.

3.1.1 Model of the data

The state x; is usually unknown and, in order to estimate it, the set of
observed data denoted by the vector y; is used. From a mathematical per-
spective, the signal flow-graph in Fig. 3.1 embodies the following pair of

35
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equations:

Process equation Measurement equation

Figure 3.1: signal block-diagram representation of a linear discrete-time dy-
namical system.

e Process equation:
Xkl = Fk+1,kxk + Wi (31)

where Fj1; ; is the transition matrix taking the state x; from time ¢
to time txy1. The process noise wy is assumed to be gaussian with
zero-mean and covariance matrix defined as:

for n = k
E[w,w!] = {(?’“ fZi Z 0 (3.2)

where T denotes the matrix transposition. In addition, the dimension
of the state space, i.e. the length of the vector x;, is denoted by M.

o Measurement equation:

Vi = H.xy + vy (33)

where y; represents the measured data at time ¢, H; is the measure-
ment matrix at time ¢; and vy is the measurement noise at time ¢,
which is assumed to be additive, white and gaussian with zero-mean
and covariance matrix defined by:

R, forn=k

0 forn#0 (3:4)

Elv,vl] = {
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The measurement noise vy, is assumed to be uncorrelated with the pro-
cess noise wy, and the dimension of the measurement space is denoted

by N.

The problem of solving both process and measurement equations for the
unknown state in an optimum manner can be summarized into exploiting
the entire observed data given by vectors yi,ys,...,yx in order to derive
for each k£ > 1 the minimum mean-square error estimate of the state x;. In
particular, the problem is defined filtering if i = k, prediction if ¢« > &k and
smoothing if 1 < i < k.

3.1.2 A posteriori estimation of the state vector

The Kalman filter is essentially based on a recursive prediction-correction
algorithm, where, at each time step, a prediction procedure is employed and
then the estimate is corrected relying on the new data acquired. Suppose that
a new measurement on a linear dynamical system, described by eqgs. (3.1)
and (3.3), is available at time ¢;. We want to use the information carried
by the measurement y; in order to update the estimate of the unknown
state vector x;. Let X, be the a priori estimate of the state vector, derived
from the prediction procedure and known at time t,. Thus, in a prediction-
correction scenario, the a posteriori estimate X, can be expressed as a linear
combination of the a priori estimate X, and the new measurement y, as:

%, = GUR + Gy (3.5)

where GS) and Gy, are unknown matrix factors which have to be determined.
In order to calculate these matrices, we will use the principle of orthogonality.
The state-error vector is defined as:

ik = X — }A(k (36)

and exploiting the principle of orthogonality we have:

EXyl]=0fori=1,2,....k—1 (3.7)
Using egs. (3.3), (3.5), (3.6) and (3.7) we have:

E[(xp — GV&; — GuHixy, — Gvi)y ] =0fori=1,2,... . k—1 (3.8)
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Since process and measurement noise are uncorrelated by hypothesis, it fol-
lows that E[v;y!] = 0, and using this relation in eq. (3.8) and rearranging
terms we get:

Elay! — GU% vy — GiHuxy! + (GlUxiy? — GUxy!) =0 (3.9)

E[1- GH), — GMxy” + GV (x, — %)y = 0 (3.10)

where I is the identity matrix. From the principle of orthogonality we note
that F[(xy — X;)y7] = 0. As a consequence, eq. (3.10) can be simplified
into:

I1-GH, — GExy ] =0fori=1,2,... k—1 (3.11)

For arbitrary values of the state vector x; and the measurement vector y;,
eq. (3.11) can be verified when the first factor is zero, that is in terms of

G\ and Gy:

I1-GH, -G =0=G!" =1-G,H, (3.12)

Substituting eq. (3.12) into eq. (3.5) we can express the a posteriori estimate
of the state vector at time ¢, as:

The matrix Gy is named the Kalman Gain.

3.1.3 Derivation of the Kalman Gain

So far, we have derived the expression of the a posteriori estimate of the
state. We now proceed to derive an expression for the Kalman Gain Gy.
From the principle of orthogonality we have that

B(x, — %)y;] =0 (3.14)

Hence, it follows that:
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El(xx — %1)95] =0 (3.15)

where ¥y is a prediction estimate of y, given the previous measurements
Y1,¥2,...,Yr_1- We define the innovation process, which is a measure of the
new information contained in y; as:

Ve =Yr — Vi = yr — HiX,
= Hka + v — ka(,;
= Hki]; + Vi (316)

Then, subtracting eq. (3.15) from eq. (3.14) and using the definition of the
innovation process, we get:

El(x, — %)) = 0 (317)
Using eqs. (3.3) and (3.13) we can re-express the state-error vector x; — X

as:

Xk — )A(k = )2]: - Gk<Hk5(]; + Vk)
= (I-GiHp)x, — Givy (3.18)

and substituting egs. (3.16) and (3.18) into (3.17) we have:

Noting that the measurement noise vy is independent of the state x; and so
the error X, eq. (3.19) can be reduced to:

Defining the a priori covariance matrix:
P = Bl(xy — %) (xi — %;)"] = BX, %" (3.21)

and recalling the definitions of eqs. (3.4) and (3.21), eq. (3.20) can be
rewritten as:
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(I-GH,) P, H —G,R;=0 (3.22)

Solving for Gy, we finally have:

G, =P H][H,P, H] + R, (3.23)

3.1.4 The error covariance propagation

To complete the recursive estimation procedure, we will now focus on the
error covariance propagation, which describes the evolution over time of the
covariance matrices of the estimation error. The propagation procedure in-
volves two recursive stages of computation:

e 1) The a priori covariance matrix P, at time ¢ is defined by eq. (3.21).
Once P, is known, the a posteriori covariance matrix P, at time ¢ is
determined by:

P, = E[x%.X;] = Bl(x — %) (%% — %2)"] (3.24)

e 2) At the following time point, compute the updated a priori covariance
matrix P, given the old a posteriori covariance matrix Pj_;.

In order to obtain an expression of P, for the stage 1, we substitute eq.
(3.18) into (3.24) and note that the noise process vy is independent of the a
priori estimation error X, obtaining:

P, = (I- GH,)E[X, %, 7)1 - G.Hy)" + GLE[vyvi]GT
= (I—-GH,)P,(I- GH,)" + G,R,G} (3.25)

Expanding terms in eq. (3.25) and then using eq. (3.23), we can express the
dependence of the a posteriori covariance matrix Py on the a priori covariance
matrix P, in the alternative form:

P, = (I1- G,H,)P, — (I1- GH,)P, H]G] + G,R,GL
(I— GH,)P; — G,R:G} + G,R,G}

(I- G,H,)P; (3.26)
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As far as the second stage is concerned, we first note that the a priori
estimate of the state is defined in terms of the old a posteriori estimate as:

%, = Frpe1%61 (3.27)

Therefore, using eqs. (3.1) and (3.27) we can express the a priori estimation
error in an alternative form:

il; = X — }A(];
= (Frp—1Xk—1 + Wi—1) — (Frp—1%5-1)
=Fppo1(xp-1 — Xp—1) + Wi_1
= Frp1Xp—1 + Wiy (3.28)

Finally, using eq. (3.28) in eq. (3.21) and noting that the process noise wy,
is independent of X;_;, we obtain:

P, = Fk,k,lE[ik,liLl]szq + E[wyawi_y]
= Frp1PraFl  + Qe (3.29)

which defines the dependence of the a priori covariance matrix P, on the old
a posteriori covariance matrix Pj_;.

3.1.5 Summary

Once eqgs. (3.27), (3.29), (3.23), (3.13) and (3.26) have been determined, we
are now able to sum up the recursive estimation of the state vector as shown
in Table 3.1. Tt is worth noting that an initialization of the state vector
Xo and covariance matrix Py is required for the algorithm to be employed.
Setting xo = 0 and Py with high values is typically a reasonable choice, but
it should be adjusted to the problem to face.

So far, the state estimation has been reviewed only considering past data,
that is the state vector estimation is done step by step by moving forward.
The KF algorithm can also be applied in the backward direction, i.e. es-
timating the state vector starting from the last data and moving to the
first collected data. The Rauch-Tung-Striebel Smoother is an algorithm that
combines the forward and backward estimates to improve the state vector
estimation, and it will be reviewed in the next section.
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Table 3.1: summary of the linear Kalman filter equations

State space model:

Xpr1 = FrppXp + Wy
yr = Hixp + v

Initialization: For k = 0 set

5(0 = E[Xo]

Py = E[(xo — E[xo])((x0 — Elxo])"]

Computation: For k =1,2,..., N compute:
State estimate propagation

X = FrpaXg
Error covariance propagation
P, = Fk,k—lpk—lFi:k_1 + Qi1
Kalman Gain Matriz
G, =P, H{[H,P, H +Ry|!
State estimate update

Error covariance update

P, = (I1- G,H,)P;

3.2 The Rauch-Tung-Striebel Smoother

In this section we consider the smoothing problem. In particular, suppose
that we are given a set of data composed of N measurements. Smoothing
is a non-real time algorithm which tries to estimate the state X; exploiting
all available data, that is past, present and future samples, in order to get
a better estimate of the state vector x;. Estimation involving only past
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data and the current measurement is referred to as forward filtering and its
implementation has been reviewed in the previous section 3.1 and subsections
3.1.1-3.1.4.  On the other hand, estimation involving only future data is
referred to as backward filtering, in which estimation involves, step by step,
the current measurement and all subsequent samples that are available in
an off-line situation. The smoothing algorithm combines forward f(,’: and
backward X° estimates in order to get a smoothed estimate %;. It is worth
noting that in this section the term X; refers to the smoothed estimate at
time ¢, which should not be confused with the a posteriori estimate notation
used in section 3.1.

Succinctly, the measurement update equation of the Rauch-Tung-Striebel
smoother is defined by:

P, =P} — Ay(P,, — Pri1)A] (3.30)

where Ay is the new gain matrix:

Ay = PJkCFZH,k[PgL]_l (3~31)

The corresponding time update equation is defined by

X), = %] + Ap(RXip1 — X)) (3.32)

Hence, the smoothing proceeds as follows:

e The Kalman filter is applied to the data in a forward manner for k£ =
0,1,2,..., N according to the theory discussed previously (see section
3.1).

e The recursive smoother is applied to the data in a backward manner
for k=N —1,N —2,...,1 according to egs. (3.30),(3.31) and (3.32).
The Rauch-Tung-Striebel smoother is able to simultaneously perform
the backward filtering and combine its estimates with the estimates of
the forward filtering. Initial conditions are defined by Py = P{V and

Ry = %
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3.3 Nonlinear case: Extended Kalman Filter
(EKF)

The linear Kalman Filter can be only employed for the estimation of the state
vector when we are dealing with linear systems. However, when dealing with
non-linear systems, the Kalman filtering procedure can be still employed
relying on a linearization procedure. The types of filters that employ this
procedure are named Extended Kalman filter (EKF) and Unscented Kalman
filter (UKF), which are different in the way they linearize the system under
study. In particular, the EKF is based on a standard Taylor approximation of
the state space model, whereas the UKF is based on a deterministic sampling
approach of the state vector x;.

3.3.1 EKF formulation

To develop the equations of the EKF, we consider a non-linear dynamical
system described by the following state-space equations:

Xk+1 = f(k’, Xk) + W, <333)

where, as usual, w; and v, are independent zero-mean white Gaussian noise
processes with covariance matrices Ry and Q; respectively. The function
f(k,x;) represents a non-linear transition matrix that can be time-variant,
while h(k,x;) denotes a non-linear measurement matrix that can be time-
variant as well.

The main idea of the EKF is to linearize eqs. (3.33) and (3.34) at each
time point around the most recent state estimate. Once the model has been
linearized, standard Kalman filter equations can be applied. In particular,
linearization is pursued in two stages:

e 1) The following matrices are calculated:

of (k,x
Friin= —(Gx 3 (3.35)

8h(k;,xk)
H.=——— 3.36
: % s (3.36)

This means that the ¢jth entry of F,,  is equal to the partial deriva-
tive of the ith component of f(k, x;) with respect to the jth component
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of x. Likewise, the ijth entry of Hj is equal to the partial derivative
of the ith component of h(k,x;) with respect to the jth component of
x. Matrices Fyy1 5 and Hy, are all known and computable by having
X and X, at hand at time ;.

e 2) A first-order Taylor approximation of the non-linear functions f (%, x;)
and h(k,x;) around %, and X, respectively, can be calculated. Ma-
trices Fyy1, and Hj, are known since they have been computed in the
first stage. The non-linear functions are approximated as:

f(k, Xk) ~ f(k, )A(k> + Fk+1,k(k’ )A(k) (337)

h(k,%;) =~ h(k,%; ) + Hp1 (k. X)) (3.38)

Then, using eqs. (3.37) and (3.38), we are able to approximate eqs. (3.33)
and (3.34) , obtaining:

Xp41 ~ FripXk + Wi + dg (3.39)
Yi ~ Hixp + v (3.40)
where
Vi =yr — [h(k, %) — HpX; | (3.41)
dy = £(k, %i) — Frot ke (3.42)

are all known at time ¢;. Given the linearized state-space model of egs. (3.39)
and (3.40), we can then proceed and apply the linear Kalman filter theory
presented in Section 3.1 to derive the equations of the EKF, which are briefly
shown in Table 3.2.
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Table 3.2: summary of the Extended Kalman filter equations

State space model:

X1 = F(k, xp) + wy
vi = h(k,x;) + v

where wy and vj are independent, zero mean, Gaussian noise processes of
covariance matrices Qi and Ry respectively.

Definitions:
of (k,x
Friip = %
X X:f{k
8h(k:, Xk)
H,=—+
‘ aX x=%,

Initialization: For k = 0 set

}A(O = E[Xo]

Py = El(xo — E[x0])((x0 — E[x0])"]

Computation: For k =1,2,..., N compute:
State estimate propagation

x, =f(k,%p_1)

Error covariance propagation

P, = Fk,kfIPkle£k71 + Qi1

Kalman Gain Matriz

G, =P H[H,P, H] + R;]™*

State estimate update

)A(k = )A(,; + Gk}’k — h(k,f(,;)

Error covariance update

P, =(1-G;H,)P,
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3.3.2 Use for HRF estimation

The Kalman filtering procedure previously discussed will be used in the pro-
posed method to estimate physiological noise that contaminates fNIRS sig-
nals. In more detail, parameters of a noise model will be estimated step by
step adopting the nonlinear Kalman filtering approach. The EKF approach
was proposed in fNIRS studies [35], but its performance were sub-optimal,
probably due to linearization issues. Hence, an alternative approach is needed
for further studies and insights.

3.4 Nonlinear case: Unscented Kalman Filter-
ing (UKF)

3.4.1 The idea of UKF

Over the last 20-30 years, the EKF has been used as a standard technique
when dealing with non-linear dynamic systems. The EKF applies the stan-
dard linear Kalman filter methodology to a linearization of the non-linear
system. However, this approach is sometimes sub-optimal, and might also
lead to divergence. Indeed, the EKF state distribution is approximated to a
Gaussian random variable (GRV) which is then propagated through the first-
order linearization step. This may cause suboptimal performances of the filter
due to errors in the true posterior mean and covariance of the transformed
GRV. In addition, the linearization is substantially accurate only under the
assumption of small variations between the optimum estimate X;_; at time
tx—1 and the one at time t.

The Unscented Kalman Filter (UKF) is another implementation of the
Kalman filtering approach in a non-linear scenario and was first proposed by
Julier et al. [38] [39] and then further developed by Wan and van der Merwe
[40] [41]. Basically, it tries to overcome the EKF approximation issues by
using a deterministic sampling approach to calculate mean and covariance
terms.

The state distribution is again represented by a GRV, but it is now spec-
ified using a minimal set of chosen sample points. These sample points
capture the true mean and covariance of the GRV, and when the state is
propagated through the non-linear system, they capture the posterior mean
and covariance to the second order approximation (Taylor series expansion).
Before continuing the discussion, it is important to explain the Unscented
Transformation.
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3.4.2 The Unscented Transformation

The Unscented Transformation (UT) is a method for computing the statisti-
cal description of a random variable which undergoes a non-linear transfor-
mation. Let x be a random variable of dimension L, mean X and covariance
P, in a non-linear function, y = f(x). In order to determine the statistics of
y, we compute a matrix ¥ composed of 2L + 1 sigma vectors y; as follows:

Xo =X
Xi =X+ (/(L+MNP,); fori=1,...,L (3.43)
Xi=X—(\V/(L+ANP,);pfori=L+1,..,2L

where A = o*(L + k) — L is a scaling parameter. The constant a controls
the spread of the sigma points around the mean X, and it is usually set to
small positive values ( typically 107 < o < 1), k is a secondary scaling
parameter which is usually set to 3 — L and [ is used to incorporate prior
knowledge of the distribution of x (for Gaussian distributions it has been
demonstrated that 5 = 2 is optimal). (y/(L + A)P.); is the ith column of
the matrix square root (i.e. lower-triangular Cholesky factorization).
These sigma vectors are then propagated through the non-linear function:

and the mean and covariance of y are approximated using a weighted sample
mean and covariance of the posterior sigma points, that is:

2L
1=0
2L
Py~ Y WY, —y)(T;—y)" (3.46)
1=0

where weights W, are given by

(m) _ A
0 L+

W — 21248 (3.47)
O L+

wim = wl fori=1,...,2L
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The first set of weights I/Vl-(m) is used to compute the first order moment (the
mean) and the second set of weights Wi(c) is used to compute the second order
moment (the covariance). The algorithm is summarized in Fig. 3.2, where
the mean vector X and covariance matrix P, are given. Then, the set of sigma
points x; are computed and propagated through the nonlinear function f(),
obtaining the transformed points y;. Finally, the statistics of the transformed
random variable y is calculated relying on a weighted sample mean and
covariance procedure. For a better understanding, an example of UT is
shown in Fig. 3.3, where mean and covariance of a two-dimensional system
are propagated through the non linear function f(-). Fig. 3.3 (a) shows the
true mean and covariance transformation relying on Monte Carlo sampling,
while Fig. 3.3 (b) shows the same result but using a linearization procedure
as in the EKF and finally Fig. 3.3 (c) depicts the actual UT employed
in the UKF equations. As we can see from the figure, the linearization
procedure used in the EKF is less accurate compared to the UT adopted
in the UKF procedure, which propagates the specified set of sigma points
through the nonlinear function f(-) and then applies a weighted sample mean
and covariance.

Weighted
sample mean
X
+ Waeighted
- piNEs O B -

Y. covariance
T T
P, r=A(L+A) v v

f=[5 5+mP. 3R]

h{ | —

Figure 3.2: block-diagram representation of the UT algorithm used to de-
termine the statistics of the random variable y starting from x, when a non
linear transformation f(-) is employed. Taken from [42].

3.4.3 Method equations

The UKF is a straightforward extension of the UT, and it is shown in Table
3.3. It is worth noting that this particular implementation does not require
any Jacobian calculations and the complexity of the algorithm is the same
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Actual (sampling)
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and covariance
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Figure 3.3: An example of the UT for the propagation of the mean and covari-
ance through the non linear function f(-).(a) actual Monte Carlo sampling,
(b) linearized transformation and (c) UT. Taken from [42].

as the EKF.
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Table 3.3: Overview of the Unscented Kalman filter algorithm

Initialize with:

For k=1,2,...,.N
compute the sigma points:

Xk—1 = [fikq Xp—1 +7VPro1 Xpm1 — v qu]
Time-update equations:

X2|k—1 = F(xx-1)

2L
s— (m) *
Xp = E Wz X k|k—1
i=0
2L

P, = Z Wi(C)(X;‘k,k\k—l - f‘l?)(Xkaq - PACI;)T +R"
i=0
augment stgma points:

Xklk—1 = [XZ“H Xowk—1 TYVR Xqpp-1 — WR”]
Yip—1 = H(Xkr-1)

2L
Vi = Z I/Vz’(m)Ti,Mk—l
i=0
and the measurement update equations are:

2L
Pyg. = Z W (Tier — 95) (Tispemr — 97)7 + R”
i=0

2L

Py = Z VVi(C)(Xi,klk—l - filZ)(Xi,k\k—l - 5\{];>T
=0
Gy = kaykPQ_kI?Jk

R =%, +Gilyr —31)
P, =P, — G\Py,;, Gy,
where v = /L + A\, X is the composite scaling parameter, L is the state

dimension, R is the process-noise covariance, R" is the measurement noise
covariance and W; are the weights calculated using eq. (3.46).
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3.5 Conclusive remarks

To summarize, the EKF has been a widely accepted and standard method
in non-linear control and estimation contexts. In this chapter, we have pre-
sented, along with the classic linear Kalman filter theory, an alternative ap-
proach to the EKF for non-linear systems, i.e. the UKF. The UKF tries
to overcome the approximation issues of the EKF by using a deterministic
sampling approach, where a minimal set of chosen sample points are prop-
agated through the non-linear system, capturing the posterior mean and
covariance, and achieving an equal or better level of performance (depending
on the non-linearity of the system) at a comparable level of complexity in its
implementation.

In the next chapter, the implementation of the novel method proposed
in this thesis will be presented. In particular, this is a parametric method,
where a specific model is employed and its parameters are estimated at each
sample time using a Kalman Filter.



Chapter 4

Novel UKF-based algorithm for

HRF estimation from fNIRS
signals

4.1 The main steps of the algorithm

According to the discussion made in previous chapters, the fNIRS signal
contains many physiological components that act like background noise, es-
pecially the Mayer’s wave, which, due to the overlapping of its frequency
spectrum with that of the evoked brain activity, makes HRF estimation re-
ally hard. In this chapter the key steps of the novel algorithm will be pre-
sented along with its actual implementation based on the Kalman filtering
theory presented in the previous chapter. The method is composed of three
main steps. The first step is a preprocessing step, while the other two steps
perform the actual Kalman filter-based algorithm. In the second step, the
UKF is applied to the reference-channel signal in order to estimate physio-
logical noise, which is assumed to pollute the standard channels nearby; the
estimated noise is then subtracted from the standard channel signals. In the
third step, a linear Kalman filter is applied to the corrected standard channel
signal in order to estimate the HRFs.

To summarize, the steps performed by the algorithm for each acquired
standard channel, are the following and they will be later described thor-
oughly:

e Step 1: pre-processing of the raw standard channel and correlated refer-
ence channel signals using a band pass filter and scaling of the reference
channel.

23
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e Step 2: Unscented Kalman filter applied to the reference channel signal
in order to estimate physiological noise and subtraction of the estimated
noise model from the corresponding standard channel signal, obtaining
a corrected standard channel signal.

e Step 3: linear Kalman filter and smoother applied to the previous
corrected standard channel signal for the estimation of the HRFs and
final block-average for the estimation of the mean HRF.

An overview of the entire algorithm is displayed in the block-diagram scheme
in Fig. 4.1.

4.2 Step 1: pre-processing stage

Raw intensity data were converted into concentration changes using some of
the Homer2 fNIRS analysis package functions [43].

Both the standard and the reference channel signals were high-pass fil-
tered at 0.01 Hz to remove any slow drifts and low-pass filtered at 1.25
Hz in order to remove instrument noise. The filter used was a 3rd order
Butterworth-type digital filter, and cut-off frequencies were chosen not to
affect the HRF components, which typically lie in the 0.1-0.5 Hz spectrum
band.

For every standard channel, the Pearson’s correlation coefficient between
the standard channel and every reference channel located in the same hemi-
sphere was computed. Each standard channel was associated with the refer-
ence channel showing the highest correlation coefficient.

Afterwards, the reference channel signal was scaled in a least squares
sense. Indeed, the amplitude of the reference channel is sometimes higher
than that of the corresponding standard channel one because of the different
path-length followed by the light in the two types of channels. Scaling is
necessary to compensate this difference in the path-length factors. In partic-
ular, a linear regression between the reference and standard channel signals
was employed taking into account the first 30 seconds of acquisition. In the
first 30 seconds of acquisition we did not add any simulated HRF, avoiding
thus the possible overfitting problem that occurred in the Saager’s reference
channel subtraction method [31]. In a real scenario, acquiring 30 seconds of
resting state data before starting the cognitive paradigm is surely feasible.
Defining the first 30 s of the standard channel signal as LSy and the first 30
s of the reference channel signal as SSy in vector form, we have:

SSp =a-LSy = a = (LS] - LSy) " - LS{ - SSg (4.0)
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Figure 4.1: block-diagram scheme representing the main steps of the novel
UKF-based algorithm proposed in this thesis.

& was used to scale the entire reference channel signal as:

SS

Q

SSscaled - (40)

An example of reference channel signal before and after the scaling is dis-
played in Fig. 4.2.



Novel UKF-based algorithm for HRF estimation from fNIRS
56 signals

Reference channel scaling: real resting state data
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Figure 4.2: an overview of the scaling procedure on real resting state data.
Note the higher amplitude of the reference channel signal compared to the
standard channel signal before the scaling took place.

4.3 Step 2: UKF for the estimation of physio-
logical noise from reference-channel data

This step was performed only if the correlation coefficient between the ref-
erence and the standard-channel signals was greater than 0.6, otherwise this
step was skipped and the algorithm went directly to step 3. This was due in
order not to potentially increase the noise in the time series as demonstrated
in [34].

At this stage, the UKF is applied to the reference channel signal in order
to estimate physiological noise.

4.3.1 Physiological noise modeling

The physiological components, that have been presented in section 1.4 and
act like noise in fNIRS data, can be modeled as a sum of M sinusoidal waves:

M
= Z a;sin(2wfit + 0;) + ¢ (4.0)
i=1

where a; are the amplitudes of the sinusoids, f; the frequencies, 6; the phases
and c is the offset, which are all assumed to be time-varying. In this thesis,
different physiological noise models were tested, and thus M was set to 1,2
or 3 to model only the Mayer’s wave, or both Mayer’s wave and respiratory
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waves or both Mayer’s wave, respiratory waves and cardiac oscillations, re-
spectively. It is to note that M could be any integer, but its maximum was
set up to 3 because we are actually interested in modeling only low frequency
components that overlap with the HRF spectrum. Hence, physiological noise
was modeled as:

d1(t) = arsin(2m fit +61) + ¢ (4.0)
Oo(t) = aysin(2m fit + 61) + agsin(2w fot + 62) + ¢ (4.0)
¢3(t) = a1sin(2m f1t + 01) + agsin(27 fot + 02) + agsin(27w fst + 05) + ¢ (4.0)

We want to estimate the parameters a;, f;, 6; and ¢ using the physiological
noise models above and the Unscented Kalman filter applied on the reference
channel fNIRS data. Hence, the state vector at time t; is composed of the
unknown time varying parameters, that is:

- T
X = a1 fi O C}

- T
Xe = |ay f1 6 ax fo O C}

- T
Xpe = a1 fi O ax fo O a3 f3 O3 C]

where the subindexes 1,2 and 3 refer to the number of sinusoids employed. At
every step, the transition matrix Fj; ; is assumed to be an identity matrix.
This means that we are using a random walk model, due to the fact that
no a priori information is substantially available about the variation of the
parameters over time. Finally, the non linear function h(k, x;) is represented
by the physiological model ¢; of eqs. (4.3.1), (4.3.1) and (4.3.1).

Thus, the state space equations involved are:

X1 = FrppXp + Wy,
yir = h(xg) + vy

where h(x;,) = 320, a;sin(2nf; + 6;) + ¢ , M=1,2,3 according to the model
employed, wy, € N(0,A2) and v;, € N(0,02)

4.3.2 UKF tuning

The estimate X;, at each time step t; is computed using the UKF followed by
the Rauch-Tung-Striebel smoother. However, the Kalman filter recursions
require the initialization of the state vector estimate Xo and estimated state
covariance Py. In this study, the initial estimate Xy was obtained by fitting
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physiological noise models ¢; of eqs. (4.3.1), (4.3.1) and (4.3.1) on the first 30
seconds of data acquisition with the non linear least squares. In particular,
the MatLab function LSQNONLIN was used. Initial values of the parameters
(as, fi,0;,c) were set according to Table 4.1. Tt is worth noting that fixed
initial values for parameters a; and ¢ are not possible due to the fact that
the initial signal is highly variable across all participants.

Parameter inizialization for the non linear least squares: models ¢, ¢, and ¢3

Parameters a; (nM) | fy (Hz) | 61 | ax (M) | fo (Hz) | 62 | a3 (nM) | f5 (Hz) | 65 ¢ (nM)

Values for model ¢; | max(data) 0.1 10 - - - - - - | mean(data)
Values for model ¢, | max(data) 0.1 10 | max(data) 0.2 10 - - - | mean(data)
Values for model ¢3 | max(data) 0.1 10 | max(data) 0.2 10 | max(data) 1 10 | mean(data)

Table 4.1: overview of the initialization of the parameters for the non linear
least squares method for the three physiological models.

Once all parameters have been determined, the covariance matrix of the
error estimates was calculated as X5 = (J7J)™', where J is the jacobian
returned by the LSQNONLIN function, and then P was set to a diagonal
matrix containing the variances of the estimates. The UKF algorithm was
run twice on the data and the initial covariance estimate for the second
run was set to the final covariance estimate of the first run. Running the
filter twice makes the method less sensitive to the initial guess of Py. In
addition, statistical covariance priors need to be calculated as well, both
for the state process noise cov(wy)=Q and measurement noise cov(vy)=R.
Practically, the process noise determines how much the states are allowed to
vary over time, and in this work, Q was set as a diagonal matrix containing
the following values, according to literature [33|[44]:

e [10719 10710 10715 20]
e [10710 10710 10715 10710 10710 1015 20
e (1071010710 10715 10710 10710 10715 10710 10710 1075 20]

when dealing with ¢, ¢o and ¢3 respectively.

As far as R is concerned, it determines how well we trust measurements
during the filtering algorithm. It was chosen to be time-varying in order to
make it self-tunable. Indeed, it is known that fNIRS signal is stationary in
small intervals of about 1 second. Thus, the covariance R was estimated
computing the variance of the data contained in a sliding window of length 1
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second while the filter proceeds forward with 70% overlap between adjacent
windows to reduce noise. Hence, while the filtering time ¢, is contained in the
window, R is set to the variance of the data contained in the window itself,
otherwise the window is shifted forward and a new value for R is determined,
iteratively.

The UKF algorithm described above gives in output the estimated phys-
iological noise model yy;. This noise model can be subtracted from the
corresponding standard channel signal y,, obtaining the corrected standard
channel signal y,. as:

Ye=Yr = Yrie

An example of physiological noise signal and corrected standard channel sig-
nal can be found in Fig. 4.3, where we can appreciate the reduction of low
drifts of the signal after the correction.

4.4 Step 3: estimation of the HRF by paramet-
ric approach

In order to get the final estimates of the HRFs, a linear Kalman filter was
applied to the corrected data (or to the non-corrected data if no reference
channel was sufficiently correlated with the standard channel signal).

4.4.1 Hemodynamic response function modeling

Hemodynamic response functions at sample time ¢ were modeled as a set of
temporal basis functions, that is:

h(ty) = Z w; - b (te) (4.-1)

where b;(t) are 15 normalized gaussian functions with a standard deviation
of 0.5 s and means separated by 0.5 s (see chapter 1, Fig. 1.6). These values
were chosen to model a temporal window of 8 seconds, which correponds to
the duration of the HRFs that were added to the semi-simulated dataset.

4.4.2 Standard channel modeling

In the linear Kalman filter the corrected standard channel signal y.(t) was
modeled as a linear convolution between the hemodynamic response h(t) of
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Figure 4.3: left: physiological noise estimate (red line) obtained by using
the UKF followed by the RTS smoother on the reference-channel data (blue
line) of a sample subject. Right: corresponding standard channel signal (blue
line) and corrected standard channel signal (red line) obtained by subtracting
the physiological noise estimate computed from the reference-channel data.
Channel notation and probe geometry can be found in chapter 2, Fig. 2.3.

eq. (4.4.1) and an onset vector u(t) as:

= > h(k)-u(t —k) (4.-1)

k=—o00

u(t) is a binary vector which takes the value of 1 only at the time when
the stimulus is presented, otherwise it is zero. Therefore, in this case, we
are actually modeling y.(t) as the output of a linear system, in which the
impulse response is represented by the HRF of eq. (4.4.1) and the input by

u(t).



4.4 Step 3: estimation of the HRF by parametric approach 61

The main idea is to define a state space equation that allows the estima-
tion at each time step of the weights w; for ¢ = 1,2, ..., 15, which represent
the amplitudes of the gaussian functions. Thus, egs. (4.4.1) and (4.4.2) need
to be re-expressed in a state space form to define the linear Kalman filter
formulation.

4.4.3 Parametric estimation problem: state-space for-
mulation

The state-space equations of the linear Kalman filter can be summarized as
follows:

X1 = Frp 1Xe + Wy,
yi = Hixp + vy

where the state space vector x;, is now composed by the 15 weights w; defined
previously, which have to be determined. Fy 4 is, again, an identity matrix
since we do not have a priori information about the variation of the weights,
while Hy, is a time-varying transition matrix, which corresponds to the kth
row of the matrix A, whose columns are the linear convolution between the
onset vector u(t) and each temporal basis function b;(t), as:

w(t) @bi(t) ) @be(t) ... ult) ®bis(th)
A _ U(tg) ® bl(tg) U(tg) ® bg(tg) e U(tg) ® b15(t2)
_u(tN) & b1<tN) u(tN) X bg(t]\/) e u(t]v) ® b15(tN)_

Again, the tuning of the filter is required for its running. In particular, the
initial state vector x, was obtained by fitting the 15 temporal basis functions
to the mean HRF determined by applying a block-average procedure, where
all trials containing the HRF were averaged. For a more reliable fit, a linear
least squares method was employed with the constraint that all weights to
be estimated must be positive. This is really important in the application
of the filter on real cognitive data, since the real averaged trial could be
partially negative due to the presence of noise, and this could lead to an
erroneous estimation of one or more weights as negative. Once weights w;
are determined, then xy = [W; We ... W;5]. State covariance matrix Py,
instead, was set to be a diagonal matrix whose entries were equal to 107! as
suggested in [33].
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Process noise covariance matrix Q was assumed to be diagonal with en-
tries equal to 1071° for the first 5 and last 5 weights, while entries corre-
sponding to the remaining weights were set to 10~ similarly to [33]. The
rationale behind this choice was the fact that it is reasonable to assume very
low variations of the state weights corresponding to the initial and final part
of the HRF, whereas the weights that model the middle peak should be more
variable across trials. Indeed, variations in the HRF are commonly found in
its peak amplitude and peak latency.

The measurement noise covariance matrix R, was set to 100. This value
was empirically determined noting that assigning higher values to R (=
10000) led to the estimation of a perfect HRE since the filter did not take
into account data, but it relied only on the HRF model. Conversely, lower
values of R (= 10) led to a non physiological estimation of the HRF due to
the fact that the filter, in this case, relied more on the noisy data rather than
the model. In the former case, the filter was able to estimate a perfectly
shaped HRF even when the HRF was not actually added to the data, while
in the latter case HRF estimation was always non-physiological. Hence, a
trade-off value was set according to the fact that the filter should be able to
estimate the HRF when this is present in the standard channel signal and at
the same time it should be able to estimate the absence of the HRF when
a particular channel is sampling a brain region not activated. Different val-
ues for R were analyzed in different channels and subjects, yielding the final
value of 100. As for the UKF, the filter was run twice in order to make it
less sensitive to initial guesses of Py. In addition, to improve the accuracy
of HRF estimation, the Rauch-Tung-Striebel smoother was applied in the
backward direction, obtaining the smoothed estimate X;. Every HRF trial
was estimated at every time ¢, using the temporal basis set contained in Hy,
and the smoothed estimate X;, as:

~

h(ty) = Hy - %

Each trial was then baseline-corrected by subtracting the mean calculated
in the first 0.5 s from the onset and band-pass filtered (0-0.5 Hz) to lower
residual noise that could be still present. An overview of the HRF estimation
from the semi-simulated dataset can be found in Fig. 4.4.

The algorithms developed in this thesis were implemented and run using
MatLab© (version R2012a, The Mathworks, Natick, Massachussetts, USA).
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Figure 4.4: example of estimation of a HRF train added to a particular
standard channel signal. Zoom in the [165 - 193] s time window.

4.5 Methods used for comparison

In order to assess and test the performance of the UKF-based approach
proposed in this thesis, a comparison with the following literature methods
implemented and applied to the same dataset was performed.

4.5.1 EKF-based approaches

This method was initially implemented and tested in [35] on fully simulated
data. Succinctly, this method adopts the EKF in order to estimate physio-
logical noise from reference-channel data using the same physiological model
of eq. (4.3.1). The single sinusoid model aimed at estimating very low fre-
quency oscillations and the Mayer’s wave. Then, subtraction of the estimated
noise model from the corresponding standard channel signal was employed
and HRFs were finally estimated using the standard linear Kalman filter.
This algorithm is very similar to the UKF-based algorithm implemented in
this thesis, with the main difference of using the EKF instead of the UKF
for physiological noise estimation.

In addition, a new version of the EKF-based approach was formulated
in this thesis. The EKF algorithm was reviewed and modified in order to
estimate a physiological noise model composed of 2 or 3 sinusoids, instead of
just 1 sinusoid, as in the original formulation. The increased number of sinu-
soids aims at the estimating the respiratory and cardiac waves, respectively,
under the hypothesis that a more complex model should better describe the
non linear and complex fNIRS signal.
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4.5.2 Linear Kalman Filter (LKF)

In order to isolate the improvement achieved by the subtraction of the physi-
ological noise model estimated by the UKF, a linear Kalman filter approach,
identical to step 3 of the proposed algorithm, but not preceded by the sub-
traction of the noise model (step 2 of the proposed algorithm), was employed
as further parametric comparison method. This method is similar also to
the one implemented in [33], but without taking into account the reference
channel.

4.5.3 Saager’s method

For a thorough description of this method, see section 1.5.3. In particular,
Saager’s method is a non-parametric approach, which exploits the reference
channel signal. The comparison between UKF and Saager’s method can
provide information on the improvements achieved by parametric approaches
vs. non-parametric approaches when the reference channel is used to reduce
physiological noise.

4.5.4 CA

The comparison with CA (see section 1.5.2) can provide insights into the
importance of the reduction of physiological noise for better HRF estimation
and into the improvements achieved by parametric approaches. To perform
CA, data were pre-filtered with a band-pass filter (0.01-0.5 Hz) to remove any
slow drifts, cardiac and respiratory oscillations and instrumentation noise,
and then all trials belonging to the same task were averaged and the mean
HRF was further low-pass filtered at 0.5 Hz to remove any residual noise
potentially present.



Chapter 5

Implementation in the
semi-simulated scenario

The proposed method and the other literature methods previously described
in chapter 4, were tested on the semi-simulated dataset presented in section
2.1. The dataset was created intentionally adding synthetic HRFs to real
resting state data. THis approach allows to quantify the accuracy of each
method in the estimation of the entire HRF and other clinical parameters
derived from it, such as peak amplitude and peak latency. It is worth noting
that HRF trains were added to all standard channel signals for each subject,
independently from their actual location on the participant’s head. Indeed,
we were not interested in detecting brain activation at this point, but rather
in quantifying the performances of each method, thus maximizing the number
of channels to work on.

Initially, all methods were run and tested in an ideal condition of high
signal-to-noise ratio, in which HRFs added had an amplitude of ~ 1637 nM.
Once the accuracy in recovering the HRF was demonstrated by all methods
in this ideal scenario, all methods were then tested in a condition of signal-
to-noise ratio similar to the real scenario one, by reducing the amplitude of
the added HRFs to ~ 325 nM.

5.1 Semi-simulated dataset with high SNR

This dataset was acquired recruiting 7 participants (one excluded due to
excessive noise in the data) who underwent one or more resting state acqui-
sitions, for a total of 12 processed acquisitions. Higher than normal (likely
non-physiological) HRF trains were added in this high SNR semi-simulation
scenario in order to test all methods and quantify the performances of the

65
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algorithms in an ideal condition. An overview of the ability of the novel
proposed UKF-based algorithm in the estimation of single trial HRFs can be
appreciated in Fig. 5.1 for subject 4.

Single trial estimation: channel |19 subject 4 resting state 2
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True HRF train
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Figure 5.1: Top: true single trial HRFs (blue line) and single trial HRFs
estimated with the proposed UKF-based algorithm (red line) in one channel
of subject 4 (zoom in the [196-278] s time window, standard channel (source 9
- detector 9), SS channel used in the UKF-based physiological noise removal
algorithm (source 9 - detector 25)). Bottom: true mean HRF (blue line)
and mean HRF estimate (red line) computed by averaging all single trial
estimates obtained with the proposed UKF-based algorithm.

As we can appreciate from Fig. 5.1, the proposed UKF-based method is
able to accurately recover the signel trial HRFs added to the resting state
data. The mean estimated HRF is very accurate and similar to the true one.

In Fig. 5.2 an example of single trials HRFs estimated with all the other
literature methods is shown, together with the mean HRF computed by each
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method averaging the single trial responses. A detail of a particular subject
and channel is shown.

Single trial estimation: trial 6, channel F3 subject 3 resting state 1
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Figure 5.2: Top: true single trial HRFs (blue line) along with single trial
HRFs estimated with all the methods in one channel of a particular sub-
ject (zoom in the [134.9-142.6] s time window, standard channel source 6 -
detector 3, SS channel used in the UKF-based physiological noise removal
algorithm (source 4 - detector20)). Bottom: true mean HRF (blue line)
and mean HRF estimates computed by averaging all single trial estimates
obtained with all methods in the same subject and channel.

From Fig. 5.2 it is clear that all methods achieve a good performance in
the estimation of the mean HRF. However, particular differences in perfor-
mance are not yet visible at this point, because we are still dealing with an
ideal case of good SNR.

In order to objectively assess the performance of the proposed UKF-
based method and compare that with the other techniques, the percentage
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estimation error was computed for all subjects and all channels as:

|| Uirue — H2

H Utrye ||2

E =100-

where % is the mean HRF obtained by averaging all single trial estimates and
Ugrye 18 the real and known mean HRF actually added to the data. The per-
centage estimation error gives a quantitative assessment of how good is the
technique in recovering the HRF profile shape. The more the profile shape
of the recovered HRF is similar to the true one, the lower the percentage es-
timation error is. Furthermore, other two parameters derived from the mean
HRF and useful in clinical applications, the peak amplitude and peak latency,
were computed for all subjects and channels. To compare the performances
of the techniques in recovering these parameters, the error committed in their
estimation was computed. These errors are the peak percentage error and
the peak latency percentage error, defined respectively as:

| lat(ugpue) — lat(a) |
| lat(tirue) |

| peak(upye) — peak() |

E
’ peak’ (utrue) |

peak = 100 -

Elatency = 100 -

Table 5.1 reports the percentage estimation errors, the percentage peak
errors and the percentage peak latency error obtained with the proposed
UKF-based method and all the other techniques used for the comparison in
the case of high SNR. Fig. 5.4 reports a bar graph with the mean error values
and their standard deviations for the three error metrics and all techniques
computed across subjects, where, as mentioned in section 2.1, the first subject
was deleted due to excessive noise present in the data deriving from a bad
coupling between optodes and skin. Statistical significance at the p < 0.05
and p < 0.01 levels (two-tailed paired t-test) is illustrated by purple and red
lines over the bars, respectively.

As we can see from the results shown, in the ideal case of high SNR
all methods implemented run correctly and give very low indexes of error,
revealing the great accuracy in the recovery of the HRF. In particular, the
UKF-based, the two EKF-based approaches as well as the LKF approach
give similar results (= 2.5% for the estimation error, ~ 4% for the peak
estimation error and & 7% for the peak latency estimation error). Saager’s
subtraction method performs slightly worse in the estimation of the HRF
profile and its peak amplitude, while performing better in the estimation
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Percentage errors for the high SNR condition

Subject UKF EKF2sin EKF1sin

E(%) | Eypea(%) | Ba%) | EO6) | Eypear(%) | Ba%) | B | Epea(%) | Bral%)
Subject 2 RS1 4 6.5 6.9 3.5 6 6.8 3.6 5.9 6.9
Subject 2 RS2 | 2.5 5.1 7 2.5 5 7 2.4 4.8
Subject 3 RS1 1 3.1 7.1 1 2.9 7.2 1.1 3 7.2
Subject 3 RS2 1 2.6 7.2 0.9 3.1 7.3 0.9 2.9 7.1
Subject 4 RS1 1 3.8 6.5 0.9 2.7 6.6 0.7 24 6.6
Subject 4 RS2 | 0.6 1.9 6.9 0.6 2.5 6.8 0.7 2.3 6.9
Subject 4 RS3 | 1.1 2.6 6.9 1 2.9 6.8 0.8 2.7 6.7
Subject 5 RS1 | 2.9 4.8 6.6 2.81 4.9 6.7 2.78 4.7 6.9
Subject 6 RS1 1.6 3.8 7 1.7 3.1 7.1 2 3.5 7.2
Subject 6 RS2 | 1.3 3.8 6.8 1.2 3.8 6.7 1.2 3.6 6.8
Subject 7 RS1 | 3.3 4.9 6.8 2.5 4.3 6.9 2.7 4.5 6.9
Subject 7 RS2 | 9.9 6.8 6.9 8.2 5.7 7.1 8.7 5.5 7
Mean 2.5 4.1 6.9 2.2 3.9 6.9 2.3 3.8 6.9
Sd 2.5 1.5 0.2 2 1.1 0.2 2.2 1.2 0.1
Subject KLF SAAGER CA

E(6) | Eypea(%) | Ea%) | EO6) | Epeal%) | Ea%) | B | Epea%) | Bradl%)
Subject 2 RS1 | 3.5 5.9 7.1 44 8.1 [§ 4.8 8.7 6.3
Subject 2 RS2 | 2.6 5.2 7 4.8 7.8 6.2 5.7 6.8 6.2
Subject 3 RS1 1.2 3.1 7.2 1.4 4.7 5.9 1.4 3.3 6.6
Subject 3 RS2 | 0.9 2.9 7.2 1.5 4.8 5.8 1.4 3.9 6.6
Subject 4 RS1 7 5.8 8.2 2.1 5.7 5.1 7.3 6.3 7.1
Subject 4 RS2 1.1 2.9 6.2 2.2 5.5 4.7 10.2 10.7 4.1
Subject 4 RS3 | 1.2 3.6 6.6 1.8 6.5 5 3.2 7 6.3
Subject 5 RS1 | 2.6 4.9 6.9 4.9 6.5 6 4.6 5.5 6.5
Subject 6 RS1 1.2 3.5 7.1 3 6.4 5.2 3 5.7 6.3
Subject 6 RS2 | 2.1 5.6 6.9 2.6 7.7 5.2 2.5 6 6.5
Subject 7 RS1 1.3 3.9 6.8 24 5.5 5.4 2.3 3.8 6.1
Subject 7 RS2 | 1.4 3.4 7 1.7 6.6 5.5 2.4 6.4 6.5
Mean 2.2 4.2 7 2.7 6.3 5.5 4.1 6.2 6.3
Sd 1.7 1.1 0.4 1.2 1.1 04 2.6 2 0.7

Table 5.1: Percentage errors for total HRF, peak amplitude and peak latency
with mean and standard deviation calculated across all subjects available for
all methods in the high SNR condition.

of the peak latency. Finally, CA performs worse than all other methods in
recovering the HRF profile (= 4% estimation error).

For each of the three error metrics, a series of paired t-tests was employed
to understand whether the results obtained with the different techniques
are statistically significant. As expected, in this high SNR condition, no
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statistical significant differences were detected for the error index E, but for
the comparison between the linear Kalman filter and CA (p < 0.02). For
the peak error E,., index, both the UKF, the EKI" with 2 sinusoids, the
EKF with 1 sinusoid and the linear Kalman filter perform significantly better
than Saager’s method (p < 0.001 for all methods) and CA (p < 0.03 for all
methods). Finally, as far as the latency error Ejgenc, index is concerned,
all the linear and nonlinear Kalman approaches perform significantly better
than Saager’s method and CA (p < 0.02 for all methods). No statistical
significant differences were detected among the Kalman approaches.

5.2 Semi-simulated dataset with SNR similar
to the real one

Once all methods were successfully employed in the high SNR case, another
simulation was run in a more real SNR situation by adding physiological
HRF trains with a lower amplitude compared to the high SNR case study.
An overview of the results obtained with the novel proposed UKF-based
algorithm and the comparison techniques in the estimation of single trial
HRFs as well as in the estimation of the mean HRF can be seen in Fig. 5.5
and Fig. 5.6.
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Figure 5.3: top: bar graph of the mean values obtained across all subjects
for the index of error E in the high SNR situation. Middle: bar graph of the
mean values obtained across all subjects for the index of error Ep.,; in the
high SNR situation. Bottom: bar graph of the mean values obtained across
all subjects for the index of error £}, in the high SNR situation. Statistical
significance at the p < 0.05 and p < 0.01 levels (two-tailed paired t-test) is
illustrated by purple and red lines over the bars, respectively.
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Figure 5.4: top: Unscented Kalman filtering results (red line) for the esti-
mation of physiological noise from reference channel data (blue line) for a
particular subject (zoom in the [50-350| s time window, reference channel
source 4 - detector 20). Middle: single trial estimates obtained with the
UKF-based proposed algorithm (red line) with the HRF train (blue line)
added to the resting state data (zoom in the [100-185] s time window, stan-
dard channel source 6 - detector 3, which is correlated with the standard
channel signal shown in the top figure). Bottom: mean HRF estimate (red
line) obtained by averaging all single trial estimates, superposed to the true
mean HRF (blue line).
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As we can see from Figs. 5.5 and 5.6, the proposed UKF-based method
is able to detect with very great accuracy both the single trial HRFs added
to resting state data and the mean HRF estimate obtained by averaging
the single trial estimates. Comparing the HRF estimate obtained with the
proposed method and the true one, we can appreciate their similarity in the
whole recovered shape. Nevertheless, the recovered HRF is less accurate
compared to the one recovered in the high SNR scenario, as expected.

In addition, from Fig. 5.7, we can appreciate how the other EKF-based
techniques are able to accurately detect the single trial HRFs as well as the
mean HRF. Saager’s method achieves good results, but its HRF estimate is
slightly worse compared to the one of the nonlinear kalman filter based meth-
ods, above all in the estimate of single trial HRFs. The linear Kalman filter
method recovers good shaped HRFs, both at the single trial level and at the
mean level; however, its performance is worse than the ones of the reference
channel-based methods, likely due to its inability in removing physiologi-
cal noise oscillations. Finally, the performance of CA is the worst one; the
main reasons are its non parametric approach and the inability to remove
physiological noise oscillations.

Also in this scenario, the percentage estimation error, the peak error and
the peak latency error were computed for all subjects and all channels to
objectively test the performances of the different techniques and compare
them. Table 5.2 reports for each subject the mean errors across channels for
the proposed UKF-based method and the other methods used for comparison.
Fig. 5.8 reports the bar graph of the mean error indexes computed across
all subjects in the real SNR situation, where statistical significance at the
p < 0.05 and p < 0.01 levels (two-tailed paired t-test) is illustrated by purple
and red lines over the bars, respectively.

Looking at Table 5.2 and the bar graph in Fig. 5.8, differences in terms
of performance of the techniques can be now appreciated quantitatively and
they mirror the qualitative results previously described in Fig. 5.4 and 5.5.
In particular, CA has the highest error index (= 75% for the total estimation
error). Indeed, this method does not rely on any model in the estimation of
the HRF and so its performance is limited. The linear Kalman filter approach
works worse than the the nonlinear Kalman approaches and Saager’s method,
but it is definitely better than CA. Indeed, LKF adopts a prior model for
estimating the HRF and this improves its performance compared to the non-
parametric CA approach. However, LKF does not perform any physiological
noise reduction before estimating the HRF. Hence, Saager’s method works
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Percentage errors for the real SNR scenario

Subject UKF EKF2sin EKF1sin

E) | Epear(%) | B %) | E%) | Bpea(%) | B %) | B%) | Epear (%) | Eua(%)
Subject 2 RS1 | 34.4 21 10.7 33.6 20.5 10.4 34.9 21.5 10.6
Subject 2 RS2 | 20.5 16.2 9.1 17.5 14.5 8.7 17.3 15.8 8.7
Subject 3 RS1 | 6.8 7.7 6.3 6.9 6.9 6.6 7.6 7.3 6.7
Subject 3 RS2 | 9.8 10.1 7.6 11.5 11 7.8 9.9 8.7 7.3
Subject 4 RS1 | 15.5 12.7 7.3 15.2 14.6 6.1 15.7 12.4 5.9
Subject 4 RS2 | 9.2 10.6 7 10 10.9 6.4 9.9 9.9 6.5
Subject 4 RS3 | 11.5 11.7 6.9 10.4 10 7.3 7.8 9.3 7.4
Subject 5 RS1 | 28.4 22.5 8.6 26.5 20.5 9.2 26.1 21.2 9
Subject 6 RS1 | 17.9 10.4 7 22.1 10 8 26.1 10.4 8.4
Subject 6 RS2 20 13.4 8.3 18.2 16.6 7.6 15.8 15.6 7.1
Subject 7 RS1 | 17.7 16.6 74 13 14 7.5 16.6 13.7 7.9
Subject 7 RS2 | 37.1 24.4 9.7 33.1 20.1 18 40.3 22 9.5
Mean 19.1 14.8 8 18.2 14.1 8.6 19 14 7.9
Sd 9.8 5.4 1.3 8.9 4.5 3.1 10.6 5.2 1.3
Subject KLF SAAGER CA

E(%) | Epear(%) | Biat(%) | E(%) | Epear(%) | Bia(%) | E(%) | Epea(%) | Eia(%)
Subject 2 RS1 | 33.8 20.5 10.9 67.5 24.5 11.1 87.1 28.1 12.3
Subject 2 RS2 | 20.7 13.4 8.1 39.6 22.1 7.7 65.8 25.6 8
Subject 3 RS1 10 9.3 6.8 8.4 10.3 5.3 19.5 15.4 6.1
Subject 3 RS2 | 4.4 5.8 7.6 9.6 10.5 5.9 16.7 13 6.7
Subject 4 RS1 | 127.5 27 13.3 8.5 9.5 5.6 228.9 40.72 18.9
Subject 4 RS2 | 36.5 16.9 4 12.9 9.8 4.3 159.3 45.6 6.3
Subject 4 RS3 | 21.6 17.2 6.5 5.3 8.7 5.4 79.9 38 10.7
Subject 5 RS1 | 24.9 20.4 9 48.2 18.5 9 48.8 19 9.7
Subject 6 RS1 | 25.5 13.7 6.8 25.8 134 5.2 61.2 29.6 5.9
Subject 6 RS2 | 26.2 21.6 7.2 9.2 11.7 4.9 59.2 36.4 7.4
Subject 7 RS1 | 9.8 11.7 7.1 22.7 17.9 6 30.2 224 6.4
Subject 7 RS2 18 14.2 6.2 30.8 16.3 16.6 45.7 24.4 16.8
Mean 29.9 16 7.8 24 14.4 7.3 75.2 28.2 9.6
Sd 32.1 5.8 2.3 19.4 5.3 3.5 61.4 10.2 1.3

Table 5.2: percentage errors with mean and standard deviation calculated
across all subjects for all methods in the real SNR situation.

better, even without the use of any model. The non-parametric Saager’s sub-
traction method, however, achieves worse performances than the nonlinear
Kalman filter approaches. As far as the UKF and EKF-based approaches are
concerned, we can see that they perform better than the other comparison
methods; this is because we are using both a parametric approach and tak-
ing into account the information deriving from the reference channel data in
order to reduce physiological noise. Therefore, these results confirm not only
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the importance of the reference channel subtraction idea, but also quantify
the actual improvements in the estimation of the HRF hidden in the fNIRS
signal when subtracting physiological noise estimates from the corresponding
standard channel signal.

For each error metric, a series of paired t-tests between techniques was
also employed to check for statistical differences across the results. In partic-
ular, all methods were statistically different from CA when dealing with £
(p<<0.03), but no significant differences were detected among the other meth-
ods. It is to note that, according to Table 5.2, the nonlinear Kalman filter
approaches seem to perform much better than the linear Kalman filter alone.
Indeed, they give an error of =~ 18% which is lower than that of the linear
Kalman filter, which is ~ 30%. The same is true for the Saager’s approach.
It is likely that the lack of statistically significant differences between the non
linear Kalman filter approaches and the other techniques is due to the low
number of subjects available and considered in this study.

As far as the peak error E,..; is concerned, no statistical significant dif-
ferences were noted among the Kalman methods, but all methods were sta-
tistically different from CA (p<0.04).

Finally, no statistically significant differences were detected in the latency
error Figiency, except for the EKF approach with 2 sinusoids, which was
significantly different from the Saager’s method (p < 0.001).

The results achieved so far have highlighted that the performances of the
UKF and EKF-based approaches are very similar (= 19% for the total estima-
tion error). Even when the physiological noise model ¢; ef eqs. (4.3.1), (4.3.1)
and (4.3.1) should be more accurate by taking into account more sinusoids,
improvements in terms of error indexes are not visible. For instance, using a
physiological noise model composed of two sinusoids (EKF2sin), which should
better describe the complex noise present in fNIRS signals, does not improve
the results in the HRF estimation compared to when using the single-sinusoid
model (EKF1sin), and this can be seen in Fig. 5.3 and Fig. 5.4.

To quantitatively evaluate the performances of the UKF- and EKF-based
approaches using a varying number of sinusoids (from 1 to 3), these non linear
kalman filtering methods were run across all subjects and all reference chan-
nels located on the parietal cortex in order to estimate the noise model. The
Akaike Information Criterion (AIC) was computed for each of the method
between the original reference channel data and the estimated noise model
in order to check whether adding more sinusoids in the physiological noise
model ¢; actually improves the estimation of the physiological noise model
and thus, consequently, the final HRF estimate. It is to note that in this case
we are not trying to fit a model on the data that the model should describe
as in the classic way, since the UKF and EKF try to estimate only low fre-
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quency oscillations that overlap with the HRF band, and not other higher
frequency components that are always present in the f{NIRS signal. However,
the computation of these indexes could be useful to evaluate which model is
more likely to be the best.

In more details, both the UKF and EKF were implemented using the
physiological noise model composed of 1, 2 and 3 sinusoids, respectively.
Then, physiological noise estimation was run on all reference channel signals
and the AIC was computed as:

2(p—1)

AIC = In(rss) +

where 7ss is the residual sum of squares given by the difference between the
reference channel data and the physiological noise estimate obtained from
the UKF and EKF with the three physiological noise models ¢; ¢ = 1,2,3, p
is the number of parameters of ¢; and n is the number of samples. Results
of the AIC computation are shown in Table 5.3.

Mean AIC results

Physiological noise model

UKF with ¢,

UKF with ¢,

UKF with ¢;

EKF with ¢,

EKF with ¢,

EKF with ¢3

Mean

22.92

23.49

23

22.79

21.17

22.43

Sd

0.44

0.79

0.79

0.46

0.41

0.57

Table 5.3: mean AIC values and their standard deviations computed by
averaging across all reference channels and all subjects.

Looking at Table 5.3, it turns out that the mean AIC values are very
similar to each other and with a very low standard deviation. From these
results, we can suppose that enriching the physiological model ¢; with more
sinusoids does not significantly improve the estimation of the real physiolog-
ical noise. However, as we have stated before, the AIC is probably not the
best index to use for this purpose. The similarity of the AIC results can also
be explained by a predominance in the residual sum of squares of the high
frequency non-modeled noise, which can overlook the improvements achieved
by the use of more sinusoids in the estimation of the actual low frequency
noise. This is the reason why in this thesis we tested the UKF with 2 sinu-
soids and EKF with both 1 and 2 sinusoids: we trusted the results achieved
with the AIC analysis, using the single sinusoid model in the EKF algorithm,
but at the same time we were aware of its limitations. Hence, using the 2
sinusoids model we had the chance to see whether in the final HRF estimate,
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where a quantitative true index can be computed, the 2 sinusoids model was
actually helping in improving the HRF estimate or not. From the results
of Fig. 5.8 and table 5.2, where no differences between the HRFs estimated
with the EKF with 2 and 1 sinusoids are appreciable, we can suppose that
the results of the AIC analysis were quite correct.
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Figure 5.5: top: Unscented Kalman filtering results (red line) for the esti-
mation of physiological noise from reference channel data (blue line) for a
particular subject (zoom in the [80-320] s time window, reference channel
source 9 - detector 25). Middle: single trial estimates obtained with the
UKF-based proposed algorithm (red line) with the HRF train (blue line)
added to the resting state data (zoom in the [249-328] s time window, stan-
dard channel source 9 - detector 9, which is correlated with the standard
channel signal shown in the top figure). Bottom: mean HRF estimate (red
line) obtained by averaging all single trial estimates obtained in the middle
figure, superposed to the true mean HRF (blue line).
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Figure 5.6: top and middle: true single trial HRFs (blue line) along with
single trial HRFs estimated with all the methods in a particular subject (zoom
in the [136-144] and [314.9-321.6] s time windows, standard channel source 6
- detector 3, SS channel used in the UKF-based physiological noise removal
algorithm: source 4 - detector20). Bottom: true mean HRF (blue line)
and mean HRF estimates computed by averaging all single trial estimates
obtained with all methods.
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Figure 5.7: top: bar graph of the mean values obtained across all subjects
for the index of error £ in the real SNR situation. Middle: bar graph of the
mean values obtained across all subjects for the index of error Ep.q; in the
real SNR situation. Bottom: bar graph of the mean values obtained across
all subjects for the index of error Ej,; in the real SNR situation. Statistical
significance at the p < 0.05 and p < 0.01 levels (two-tailed paired t-test) is
illustrated by purple and red lines over the bars, respectively.



Chapter 6

Implementation on real data

The novel algorithm, along with the other methods used for the comparison,
was subsequently tested on real cognitive data to assess whether its perfor-
mance achieved the same good results of the semi-simulation scenario and
therefore putting the ground for its application in real research and clinical
settings.

6.1 Results

The dataset used in the real scenario was presented in section 2.1, where par-
ticipants underwent a right-handed finger-tapping experiment. It is worth
remarking that these results are only preliminary and future studies and in-
sights need to be pursued with more participants. In order to apply the novel
UKF-based algorithm and all other Kalman filter based techniques on this
real data, the FIR time window and the number of temporal basis functions
used in the model of the linear Kalman filter were modified according to the
duration of the task involved. This is required to correctly detect the entire
duration of the HRF, which is highly dependent on the task duration. In
particular, for the 2 s tapping task the FIR time window was set to 12 s with
22 Gaussian functions, for the 6 s tapping task it was set to 16 s with 30
Gaussian functions, while for the 18 s tapping task it was set to 25 s with 46
Gaussian functions.

In Fig. 6.1, two examples of mean HRF estimated with all the techniques
for the 18 s finger-tapping condition are displayed for a particular subject for
a couple of symmetric channels, i.e. channels placed on the same position
but in opposite hemispheres (left hemisphere channel: source 4 - detector 1,
right hemisphere channel: source 8 - detector 10).

Referring to Fig. 6.1, we can note that there is great brain activation dur-

81
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Figure 6.1: top: examples of mean HRF estimates obtained by the novel
UKF-based algorithm and the other methods used in the comparison for the
18 s finger-tapping condition in a particular subject in a channel located in
the left hemisphere (source 4 - detector 1). Bottom: examples of mean HRF
estimates computed by all methods in the same subject but for a symmetric
channel located on the right motor cortex (source 8 - detector 10).

ing the 18 s finger-tapping task in the channel located on the left hemisphere,
but almost no activation is visible in the right one, where a baseline situa-
tion can be appreciated. These results are consistent with the underlying
neurophysiological hypothesis, i.e. the brain activation is greater contralat-
erally than ipsilaterally. In addition, it is likely that the nonlinear Kalman
approaches are able to better detect brain activation than the Saager’s sub-
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Figure 6.2: top: examples of mean HRF estimates obtained by the novel
UKF-based algorithm and the other methods used for comparison for the
18 s finger-tapping condition in a particular subject in a channel located
in the left hemisphere (source 6 - detector 3). Bottom: examples of mean
HRF estimates computed by all methods for the same condition in the same
subject but for a symmetric channel located on the right motor cortex (source
10 - detector 12).

traction method, which estimates a mean HRF with lower peak amplitude
(= 150 nM) compared to the ones estimated by the non-linear Kalman filter
approaches (~ 500 nM). We can suppose that this likely underestimation
of the HRF by Saager’s method is due to the regression performed by this
technique between the whole standard channel and reference channel signal,
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which risks to remove part of the useful signal. Moreover, the non-linear
Kalman filter parametric approaches rely on a model both for physiological
noise and the HRF, which can presumably lead to less biased estimates. Con-
versely, CA and LKF are likely to overestimate the HRF, because of their
inability to remove physiological noise oscillations, which still contaminate
the mean HRF estimate. In the right hemisphere channel, the UKF and
EKF approaches, as well as Saager’s method, (i.e. all approaches that per-
form physiological noise correction) correctly estimate a baseline situation,
whereas both CA and the linear Kalman filter provide a non-physiologically
shaped activation, which resembles more a physiological noise oscillation.

These results are confirmed in Fig. 6.2, where all techniques performing a
physiological noise reduction step estimate a physiologically shaped HRF in
the left hemisphere and a baseline activation in the right one. Both CA and
the linear Kalman filter, instead, detect brain activation in both hemispheres
with approximately the same amplitude and a final undershoot with ampli-
tude almost equal to the peak of the HRF itself and hence non physiological.
Furthermore, the shape of the recovered HRFs in the right hemisphere chan-
nel by CA and LKF is far from being physiological, and more closely resemble
a physiological noise oscillation.

Example results for the 6 s finger-tapping task are shown in Fig. 6.3 and
6.4 for a particular subject. In this case, the stimulus has a shorter duration:
the expected brain activation will have lower amplitude compared to the 18
s task, while preserving the same noise level. This should produce a lower
SNR condition compared to the 18 s task.

Note how CA and LKF estimate some physiological noise leading to non-
physiological undershoots. All methods performing a physiological noise re-
duction step, instead, are able to reduce the oscillations and undershoot and
tend to estimate a baseline condition, even if with more difficulty compared
to the 18 s task.

Also in this lower SNR case, as can be appreciated in Fig. 6.3, CA and
the linear Kalman filter show non-physiological undershoots and oscillations,
which make the HRF estimation biased and non-physiological. The ampli-
tude of this oscillation, likely due to physiological noise, can be mistaken
by real activation during a peak amplitude analysis, leading to incorrect in-
terpretation of the results. All methods performing a physiological noise
reduction step, instead, are able to reduce oscillations and undershoots and
perform better compared to the other methods, detecting the HRF in the
left hemisphere and a baseline condition in the right one, even if with more
difficulty compared to the 18 s task.

Results for the 2 s task are not reported here, because all methods per-
formed poorly. This is likely due to the very small HRF elicited by such a
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Figure 6.3: top: examples of mean HRF estimates obtained by the novel
UKF-based algorithm and the other methods used for comparison for the 6
s finger-tapping condition in a channel located in the left hemisphere (source
5 - detector 5). Bottom: examples of mean HRF estimates computed by all
methods for the same condition, but for a symmetric channel located on the
right motor cortex (source 10 - detector 11).

short finger-tapping, coupled with the very low number of trials available for
each participant. Further studies, with a higher number of trials for this task
and of participants are required to test the methodologies also in this very
low SNR condition.

On the whole, the proposed UKF-based algorithm seems to have a good
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performance also with real data, giving the expected activation results, in
accordance with literature.

6.2 Preliminary conclusions on real data anal-
ysis

In this chapter, we have demonstrated the ability of the proposed algorithm
to detect brain activation on real data obtained during finger-tapping tasks.
Results were consistent with neurophysiological hypothesis of contralateral
activation, and estimated HRFs obtained were less noisy and more physio-
logical compared to the ones estimated with the methods for comparison.



Chapter 7

Conclusions

7.1 Discussion

Functional near-infrared spectroscopy (fNIRS) is a novel neuroimaging tech-
nique which relies on near-infrared light, whose wavelengths lie between the
650 and 950 nm spectrum, to measure hemodynamic changes in the super-
ficial layers of the brain by exploiting the different absorption behavior of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR). Nowadays, this tech-
nique is being more and more used in research settings to determine brain
activations associated with specific tasks and for further insights on brain ac-
tivity. The reasons why fNIRS is now becoming an established neuroimaging
technique can be found in its ease to use, cost effectiveness and completely
non-invasiveness.

However, some issues still need to be faced regarding the estimation of
the hemodynamic response function associated with brain activation. Indeed,
the raw fNIRS signal does not only contain the HRF, but it is also contam-
inated by systemic interference and noise occurring in the superficial layers
of the head. This interference typically derives from cardiac and respiratory
activity and other physiological homeostatic processes such as the vasomotor
activity. In addition, motion artifacts and instrumentation noise make the
HREF estimation more difficult. As such, many studies are currently being
conducted in this field to reduce physiology-based systemic interference and
enhance HRF estimation from fNIRS signals, with the aim of making fNIRS
technique more accurate and reliable for research and clinical use.

In this thesis, a novel algorithm was presented based on the estimation of
the physiological interference using the so-called Unscented Kalman Filter.
This method allows the reduction of physiological noise affecting standard
channel signals, improving the estimation of the HRF, which is performed
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using a linear Kalman filter as a second step in the procedure. In particular,
the UKF, compared to the EKF, does not require the computation of the
partial derivatives of the model during the linearization procedure, since
its use is based on the computation of a fixed number of sample points,
named sigma points, which capture the true mean and covariance of the
states involved. In literature, it has been demonstrated that the UKF leads to
better estimates and it is more robust, since it is not subjected to divergence
phenomena associated to linearization errors, as in the EKF.

In particular, the novel method was tested in a semi-simulated scenario,
where synthetic HRF trains were added to real resting state data and the
algorithm was run to test its performance in the estimation of the known
HRF. Known literature techniques (Saager’s method, LKF, EKF1sin) and a
newly proposed variant of the EKF1sin method, which uses a 2 sinusoidal
model to estimate the noise model (EKF2sin) were implemented and used
for comparison.

Two simulations were run. The first one was conducted in a situation of
high SNR to determine the effectiveness of the methods implemented. Re-
sults showed that all methods achieve a high performance in this situation,
leading correctly to very low indexes of error in the estimation of the HRF
and its features compared to the true HRF. Once the effectiveness of the al-
gorithms was confirmed, a second simulation was conducted to assess the per-
formances of the methods in a more real context by lowering the peak of the
synthetic HRF added and thus reducing the SNR. Results showed differences
in terms of performance among the methods implemented. In particular, the
UKF and the EKF-based approaches showed similar performances in terms
of estimation error, and better performances compared to the linear Kalman
filter, Saager’s subtraction method and the CA. As such, these results con-
firm the effectiveness of the UKF and EKF-based approaches developed in
this thesis for an improved HRF estimation. Furthermore, Saager’s method
performed better than CA and LKF. Therefore, the positive results of UKF-
and EKF-based approaches and Saager’s method highlight the importance of
the use of the reference channel subtraction concept in order to improve HRF
estimation. LKF performed better than CA: this result, together with the
better performance of the parametric non linear Kalman filter approaches
strengthen the hypothesis that using a model based approach gives improved
results compared to non parametric approaches (CA and Saager’s).

During the simulation phases, it was also noted that enriching the phys-
iological noise model used in the UKF and EKF formulation with more si-
nusoids did not determine improvements in terms of HRF estimation (i.e.,
EKF1sin and EKF2sin has similar performances). To evaluate and confirm
this observation, the Akaike Information Criterion was applied by running
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the UKF- and EKF-based algorithms with physiological noise models with
varying number of sinusoids (from 1 to 3), and results demonstrated that
adding more sinusoids to the model did not significantly improve the final
HRF estimate.

The choice of the UKF approach in this thesis was justified by the hy-
pothesis that the {NIRS signal should be highly non linear. In this scenario,
UKF should perform better than EKF, being a higher order filter. If the
signal is not highly non linear, instead, it has been shown that the perfor-
mances of EKF and UKF are highly similar [45]. The results achieved in
this thesis are contradicting our initial hypothesis: the similar performance
of UKF- and EKF-based approaches seems to point out that the fNIRS sig-
nal is not highly non linear. Nevertheless, results show that both methods
can be applied successfully and the linearization performed in the UKF al-
gorithm should produce more robust results. Further studies are required
to understand whether there are situations in which the UKF approach can
give much better results than the EKF-based approach (e.g. fNIRS signal
acquired in difficult experiments, where more motion artifacts and signal non
linearity are present).

Eventually, the algorithm was also tested on real cognitive data, where
right-handed participants underwent a series of right-handed finger-tapping
tasks with different durations. Results proved that both the UKF and EKF-
based approaches are able to detect the HRFs in channels located on the
contralateral motor cortex in the condition of 18 s finger-tapping tasks (high
SNR) and in the condition of 6 s finger-tapping tasks (lower SNR). Activation
in the ipsilateral hemisphere was detected as well, but with lower amplitude
or as a baseline condition, according to well known neurophysiological hy-
pothesis. The reference channel based Saager’s method achieved similar per-
formances, highlighting also in the real scenario case the importance of the
reduction of physiological noise oscillations exploiting the reference channel
signals. Instead, CA and LKF performances were the worst in this real sce-
nario, recovering in many channels non-physiologically shaped HRFs, which
closely resembled physiological noise oscillations.

The overall results, despite being obtained from a limited number of par-
ticipants, are very promising and further studies and improvements are re-
quired to completely assess and validate the performance of the UKF-based
algorithm proposed in this thesis.
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7.2 Future studies

Results achieved so far are very promising, but future developments and
insights are needed to evaluate the reasons why both UKF- and EKF-based
approaches yielded similar performances.

First of all, testing the proposed UKF-based algorithm and the other
comparison methods on an increased greater number of real subjects on a
greater number of real subjects will be useful to test statistical significant dif-
ferences between the results obtained by the different methods. Furthermore,
a sensitivity analysis, aiming at computing the optimal set of initialization
parameters for the UKF-based approach, will help in optimizing the filter,
yielding improved final HRF estimates.

Moreover, future work will be necessary to understand why increasing
the number of sinusoids in the physiological noise model ¢; did not improve
HRF estimation. It might be due to the increased number of parameters
to be estimated. Therefore, it might be possible to test the performance of
the algorithm keeping a multi-sinusoidal model, but reducing the number
of time-varying parameters. For example, improvements could be tested by
fixing the phase 6; of the sinusoids, lowering the complexity of the entire
model.

Another interesting future development could be the application of the
novel algorithm proposed on data acquired with DOT with high density ar-
rays. This might be useful to test the algorithm on channels located on
different areas of the cortex and hence with different expected activation. In
this scenario, it could be interesting to evaluate whether the fNIRS signal
non-linearity is constant over the whole brain surface or there are actually
brain regions in which physiological noise is more present than in others,
making the fNIRS signal more non-linear. If so, we expect the UKF-based
algorithm to be more efficient than the EFK approach in these areas, while
giving similar performances in regions of the cortex with a more linear signal.
The novel proposed algorithm should also be tested on real cognitive data
involving other tasks than finger-tapping, for example tasks involving the as-
sessment of language, memory and attention. The activation recovered with
the novel UKF-based algorithm should be compared with known literature
activations, to further validate the proposed algorithm.

Finally, the UKF-based algorithm involves different steps during the sig-
nal processing. This might be sub-optimal, since it could lead to an un-
derestimation of the true HRF, as noted in [32]. Hence, it could be useful
to combine the physiological noise estimation step with the HRF estimation
step into a single step to increase the overall performance of the algorithm.
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