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Introduction

In this work we want to present the theory of representations of cate-
gories as in [11] and apply it to the study of some topological properties of
configuration spaces of graphs. In the last chapter this theory is also applied
when studying configuration spaces of trees with a group action.
This theory is quite new and traceback (around 2010) to the work about
the so-called ’representation stability’ due to Church, Ellenberg and Farb,
whose context was essentially topological. Later S. Sam and A. Snowden (cfr.
[11]) developed this big categorical machinery, namely the Gröbner theory
for representations of categories, that N. Proudfoot and E.Ramos applied
to study some representation stability problems related to the topology of
configuration spaces of graphs (which is strongly related to the original work
of Church, Ellenberg and Farb).
Essentially this is also our approach to the subject:

Chapter 1: In this chapter we introduce the concept of representation of a category
and the category that such objects define. Of particular interest is
the notion of Noetherianity for such representations, so the Gröbner
theory for categories is introduced, as it gives sufficient conditions (of
combinatorial nature) on the base category so that its representation
category is Noetherian. This chapter is surrounded by several examples
of both Noetherian and non-Noetherian categories of representations.

Chapter 2: The base setting of this chapter are graph categories, that are introduced
at the beginning. We then apply the theory of chapter 1 to these
categories in order to study some topological properties of configuration
spaces of graphs. The other main tool used to pursue this study is the
theory developed by J. Swiatkowksi and B.H. An, G. Drummond-Cole
and B. Knudsen (cfr. [13],[1]) whose main result states that there exists
an abstract bigraded differential module (called Swiatkowski complex,
S̃•(_)) built from the graph itself that gives the following (functorial)
isomorphism:

H?(S
•(G)) ∼= H?(UConf•(G)).

Glueing together these two tools (Gröbner and Swiatkowski theories) we
are able to give some interesting results about the topological nature of
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such configuration spaces. For example, we will show that often (really
always, but we can’t deduce it from this theory) homology groups of
configuration spaces of (finite) trees are torsion free.

Chapter 3 In this last chapter we focus on trees with a group action. We will
show that we can define a category out of this setting and that its
representation category turns out to be Noetherian. A group action
on a tree induces a group action also on the configuration spaces: we
introduce the definition of orbit configuration space and we study some
relations (in homology) between such spaces and their quotients. Again
here the Swiatkowski theory will play a central role.

We conclude this work by leaving some open questions.
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Chapter 1

Representations of categories

In this first chapter we introduce the concept of representation of a
category (and consequently define the category of such representations) and
the related notions of Noetherianity (both for a single representation and for
the whole category of representations) as presented in [11]. Always following
[11], we then introduce the Gröbner theory for categories which permits to
give some sufficient conditions (of combinatorial nature) on a category C so
that the representation category Repk(C) is Noetherian. Several examples of
both Noetherian and not Noetherian categories of representations are also
presented in this chapter.

1.1 Generalities

Notation 1. We will use the following notation:

• Let C be a category. When writing x ∈ C we mean x ∈ Ob(C) and
analogously for morphisms (usually denoted by the letters f or g).

• Let F : C → D a functor. If f : x1 → x2 is a morphism in C, we call
F (f) : F (x1)→ F (x2) the image morphism in D via F .

• If not specified differently, all the rings (usually denoted by k) over
which we construct the categories of representations are Noetherian.

• Let M be a representation of a category C. We call such an M :
representation, C-module and often (when it’s clear from the context)
just module.

• If not specified differently, when writing Hi(X) (for a space X) we
always intend singular homology with coefficients in Z.

Definition 1.1. Let C be a category.
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• Let |C| be the set of isomorphism classes in C, ie |C| = {[x]∼ : x ∈ C}
where x ∼ y if there is an isomorphism x→ y.

• For any x ∈ C, define Cx to be the category whose objects are morphisms
x → y for some y ∈ C and morphisms the obvious commutative
triangles:

x y

y′

• A category C is called directed if there are no non-trivial self maps.

Lemma 1.1.1. If the category C is directed then |C| is a poset. The partial
order is given by: [x] ≤ [y] if there is a morphism x→ y.

Proof. We have to check that this defines an order relation.

i) [x] ≤ [x], as there is always a unique map (the identity) x→ x;

ii) [x] ≤ [y] and [y] ≤ [x] means that there are maps x → y and y → x.
Their composition gives a map x→ x that has to be the identity, hence
x ∼ y and so [x] = [y];

iii) [x] ≤ [y] and [y] ≤ [z] means that there are maps x → y → z, their
composition gives a map x→ z, hence [x] ≤ [z].

• Let k be a ring. A representation of C is a functor M : C → Modk.
Repk(C) is the category whose objects are such functors and morphisms
are the natural transformations;

• Let M ∈ Repk(C). An element of M means an element of M(x) for
some x ∈ C. So an element of a C-module is a k-module in the usual
sense.

• For any x ∈ C let Px ∈ Repk(C) be the representation defined by:
Px(y) := k[HomC(x, y)]. Here k[HomC(x, y)] is the free k-module
generated by the elements of HomC(x, y). Such modules Px are called
pricipal projectives.

Remark 1. When considering principal projectives thank to Yoneda’s lemma
we have that: HomRepk(C)(Px,M) ∼= M(x), for every other module M . This
implies that the functor HomRepk(C)(Px,−) is exact, hence Px ∈ Repk(C) is
a projective object. From here its name.

Definition 1.2. Let M be a representation and let S be a set of elements of
M . If no subrepresentation of M contains S we say that M is generated by
the set S. A representation is called finitely generated if it is generated by a
finite set.
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Definition 1.3 (Equivalent definition of finitely generated representation).
M ∈ Repk(C) is finitely generated if ∃ x1, .., xn ∈ C and vi ∈M(xi) such that
∀x ∈ C we have that M(x) is spanned over k by the images of the vi along
morphisms fi : xi → x.

Remark 2. The two definitions are really equivalent:

(⇓) Let M be the smallest representation that contains the set S, where
S = {vi ∈M(xi)}i=1,...,n. Define a subrepresentation of M as:

M ′(x) := k[{M(fij)(vi)}i=1,...,n],

where {fij}j are all the possible morphims xi → x. Notice that if vi ∈
M(xi) is an element of S, we have that vi ∈M ′(xi) as vi = M(idxi)(vi).
So, S ⊆M ′ and by the minimality of M we conclude M = M ′.

(⇑) Let S := {vi ∈ M(xi)}i=1,...,n. Suppose that there exists a subrep-
resentation N of M , such that N ⊇ S. This implies that ∀x ∈ C,
N(x) ⊇ k[{M(fij)(vi)}i=1,...,n], where {fi,j}j are all the possible mor-
phims xi → x. Hence we have N(x) ⊇M(x), contradiction.

Notice that Px is a finitely generated representation, generated by one
element: idx : x→ x. For any morphism f : x→ y let ef be the corrisponding
element in k[Hom(x, y)].

Remark 3. A C-module M is finitely generated if and only if it is a quotient
of a finite direct sum of principal projectives. Indeed:

(⇒) Consider the map π :
⊕n

i=1 Pxi →M , such that for x ∈ C

π :

n⊕
i=1

Pxi(x)→M(x)

ef 7→M(f)(vi)

where f : xi → x. By the second definition of finitely generated repre-
sentation this map is clearly surjective, realizing M as a subquotient of
the sum.

(⇐) Suppose we have the following epimorphism π :
⊕n

i=1 Pxi � M . Let
vi ∈M(xi) the image via π of the identity morphism xi → xi. By the
surjectivity of π we have that M(x) is generated by the images of vi
along the maps induced by all possible {xi → x}i.

Notice that when considering functors F,G : C → Modk, to check that
f : F → G is an epimorphism of functors it’s enough to prove that f(x) :
F (x)→ G(x) are epimorphisms for any x ∈ C. Viceversa, if f : F → G is an
epimorphism of functors then so are f(x) : F (x)→ G(x) for any x.
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Definition 1.4. M ∈ Repk(C) is Noetherian if every ascending chain of sub-
objects stabilizes (if and only if every subrepresentation is finitely generated).
Repk(C) is Noetherian if every finitely generated object in it is Noetherian
itself.

Proposition 1.1.2. Repk(C) is Noetherian if and only if every principal
projective Px is Noetherian.

Proof. If Repk(C) is Noetherian so it is Px, for every x. Conversely, let
Px be Noetherian for every x, M is finitely generated if and only if it is a
subquotient of a finite direct sum of principal projectives. As this sum is
finite, and all the principal projectives are Noetherian, so it is the sum itself.
Noetherianity then descends to quotients.

Now we would like to introduce a particular property of a functor between
two categories C → C′ that links the Noetheriantiy of Repk(C) and Repk(C′).

Definition 1.5. Let Φ : C → C′ be a functor. We can define a pull-back
functor of representations as follows:

Φ∗ : Repk(C′)→ Repk(C)
M 7−→M ◦ Φ

Definition 1.6. A functor Φ : C → C′ satisfies property (F) if for any x ∈ C′
there are y1, .., yn ∈ C and maps fi : x → φ(yi) such that for all y ∈ C and
any f : x→ φ(y) there exists a map g : yi → y such that f = Φ(g) ◦ fi.

This definition may seem too abstract, but here a proposition to clarify
what this property is telling us.

Proposition 1.1.3. Let Φ : C → C′ be a functor that satisfies property (F).
Then Φ∗ sends finitely generated objects to finitely generated objects.

Proof. It suffices to show that Φ∗ pulls back principal projectives to finitely
generated representations. Let Px ∈ Repk(C′), we need to show that Φ∗(Px)
is finitely generated, ie that there are y1, . . . , yn ∈ C and vi ∈ Φ(Px)(yi) such
that for every y ∈ C, Φ(Px)(y) is generated by the images of vi along the
maps induced from all the possible yi → y. But this is true when choosing
{yi}ni=1 the same of the definition of property (F ) and {vi : x→ Φ(yi)}ni=1.
Again from the definition of property (F ): Φ(Px)(y) is generated by all the
x→ Φ(y), and we have that each such morphism is the image of a vi along a
Φ(Px)(yi)→ Φ(Px)(y).

Proposition 1.1.4. Let Φ : C → C′ be essentially surjective. IfM ∈ Repk(C′)
is such that Φ∗(M) ∈ Repk(C) is finitely generated (resp. Noetherian), then
M is finitely generated (resp. Noetherian)
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Proof. Let S be the finite set that generates Φ∗(M), and call S′ the corrispon-
dent set of elements of M . Let N be the subrepresentation of M generated
by S′, then Φ∗(N) is a subrepresentation of Φ∗(M) containing S. Hence:
Φ∗(M) ⊂ Φ∗(N), and from here the equality Φ∗(M) = Φ∗(N). As Φ is
essentially surjective then M = N , and so M is finitely generated. Now let
Φ∗(M) be Noetherian, and let N be a subrepresentation of M . Φ∗(N) must
be finitely generated, and so must be N . From here the Noetherianity.

Theorem 1.1.5. Let Φ : C → C′ be an essentially surjective functor that
satisfies property (F). Then if Repk(C) is Noetherian, so it is Repk(C′).

Proof. Let M ∈ Repk(C′) be finitely generated. Then Φ∗(M) is finitely
generated as well, and by the hypothesis also Noetherian. But this implies
that M is Noetherian itself by the pevious proposition. From here the
Noetherianity of Repk(C′).

1.1.1 Examples of non Noetherianity

Now some examples of categories whose representation category is not
Noetherian.

Proposition 1.1.6. Let IFGrp be the category whose objects are finite
groups and morphisms are injective group homomorphisms. Let k be a ring,
then the category Repk(IFGrp) is not Noetherian.

Proof. Let X0 := Z/2Z and for any odd prime p let Xp := Z/2pZ, the
cyclic group of order 2p. Notice that we always have injective morphisms
X0 → Xp for any p, whereas there are no injective morphisms Xp1 → Xp2 ,
for p1 < p2. Let M be the subrepresentation of PX0 generated by the set⋃
p prime PX0(Xp) and suppose by contradiction that it is finitely generated

by {αj ∈M(Xpj )}nj=1. As a consequence, any αj is of the form:

n∑
i=1

∑
fij :Xpi→Xpj

M(fij)(βfij ),

for βfij ∈ PX0(Xpi). This means that actually M is generated by the set⋃n
i=1 PX0(Xpi). Now, let p̄ be any prime bigger than max{pj : j = 1, . . . , n}

and let eg ∈M(Xp̄), for g : X0 → Xp̄. As there are no injective morphisms
Xpj → Xp̄ for any j = 1, . . . , n, this element can’t be in M , contradiction.
So M is not finitely generated and Repk(FGrp) is not Noetherian.

Proposition 1.1.7. Let IFRng be the category whose objects are finite rings
and morphisms are injective ring homomorphisms. Let k be a ring, then the
category Repk(IFRng) is not Noetherian.
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Proof. Let X0 := F2 and for any odd prime p let Xp := F2p , the finite field of
order 2p. Notice that we always have (injective) morphisms X0 → Xp for any
p, whereas there are no morphisms Xp1 → Xp2 , for p1 < p2. Again, let M
be the subrepresentation of PX0 generated by the set

⋃
p prime PX0(Xp) and

suppose it is finitely generated by some {αj ∈M(Xpj )}nj=1. Analogously, we
can say that M is generated also by the set

⋃n
i=1 PX0(Xpi) and choosing any

eg ∈ M(Xp̄), for g : X0 → Xp̄ and p̄ > max{pj : j = 1, . . . , n}, we reach a
contradiction. So, Repk(IFRng) is not Noetherian.

Definition 1.7. A distributive lattice is a triple (L,∨,∧) where L is a set and
∨,∧ are two binary operations that are commutative, associative, distributive
one respect to the other and such that a∨ a = a and a∧ a = a, for any a ∈ L.
A morphisms of distributive lattices is a set theoretic map that respects the
two operations.

Consider the following distributive lattices (cfr. [5]):

• Let J be the lattice generated by two elements j1, j2:

j1 ∨ j2

j2j1

j1 ∧ j2

• For any n ≥ 1 let Jn be the lattice:

with n vertical squares one on top of the other.

Remark 4. Notice that we can always embed J inside any Jn, but there are
no possible embeddings Jn ↪→ Jm, for n < m.
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Proposition 1.1.8. Let FDLat be the category whose objects are finite
distributive lattices and morphisms are injective morphisms of lattices. Let k
be a ring, then the category Repk(FDLat) is not Noetherian.

Proof. Let J and Jn as above. LetM be the subrepresentaion of the principal
projective PJ generated by

⋃
n∈N PJ(Jn) and suppose it is finitely generated

by {αj ∈M(Jj)}Nj=1. As in the previous two propositions, we can say that
M is also generated by the set

⋃N
i=1 PJ(Ji) and choosing any eg ∈ M(Jk)

for k > N , by remark 4 we reach a contradiction. So, Repk(DFLat) is not
Noetherian.

1.2 Gröbner theory for categories

In this section we expose the Gröbner theory for categories as presented in
[11]. Let C be a category, the idea is to find some sufficient conditions on the
category C itself to ensure the Noetherianity of the representation category
Repk(C). As we will see these conditions are of combinatorial nature, hence
in general not too hard to test. The main results we will obtain by means of
this Gröbner theory are related to the Noetherianity of the representation
category of graphs (or trees) which will be presented in the next chapter.

1.2.1 Brief digression on posets and orders

Here we state some basic definitions and results regarding partially ordered
sets that will be useful later on.

Definition 1.8. Let X be a poset.

• X satisfies the ascending chain condition (ACC) if every ascending
chain in X stabilizes, ie for every x1 ≤ x2 ≤ . . . there is ĩ > 0 such
that xi = xi+1 for every i ≥ ĩ. (analogously we can define a descending
chain condition, DCC)

• An ideal of X is a subset I ⊆ X such that if x ∈ I and x ≤ y then y ∈ I.
Let (I(X),⊆) be the poset of ideals of X. For x ∈ X the principal
ideal (x) := {y ∈ X : y ≥ x}. An ideal is finitely generated if it is a
finite union of principal ideals.

• An antichain (resp. bad sequence) is a sequence x1, x2, . . . in X, such
that xi 6≤ xj for every i 6= j (resp. i < j).

• X is Noetherian if one of the following (equivalent) conditions holds:

1. X satisfies the DCC property and has no infinite bad sequences.

2. Given a sequence (xi)i ∈ X there exist i < j such that xi ≤ xj .
3. The poset I(X) satisfies the ACC.
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4. Every ideal of X is finitely generated.

Lemma 1.2.1. Let X be a Noetherian poset, then there is an infinite sequence
of indices i1 < i2 < . . . such that xi1 ≤ xi2 ≤ . . . .

Proof. Let I be the set of indices such that for any i ∈ I we have that
j > i ⇒ xi 6≤ xj . Suppose this set is infinite, then this labels an infinite
sequence of elements of X and since X is Noetherian this implies that there
are i < j ∈ I with xi ≤ xj , but this contradicts the definition of I. So I is
finite, choose i1 any number bigger than all elements of I. There must be a
i2 > i1 with xi1 ≤ xi2 (as i1 6∈ I), but the same is true again for i2 < i3 (for
some i3) and so on and we recover xi1 ≤ xi2 ≤ . . . .

Definition 1.9. Let S be a set. A well-order on S is a total order with the
property that every non empty subset of S has a least element with respect
to this ordering.

Let X be a poset and define X∗ be the set of finite words x1 . . . xn with
xi ∈ X for every i. Let x1 . . . xn ≤ x′1 . . . x′m if there are 1 ≤ i1 ≤ · · · ≤ in ≤
m such that xj ≤ x′ij , for every j = 1 . . . , n. In this setting we can prove one
last lemma that will be used just in the next chapter when dealing with the
example related to categories of injections.

Lemma 1.2.2 (Higman’s Lemma). Let X be a poset. If X is Noetherian
then so it is X∗.

Proof. Suppose by contradiction that X∗ is not Noetherian. Construct a
minimal bad sequence in this way: for every i ≥ 1 among all bad sequences
of words starting with w1, . . . , wi−1 choose wi such that its length is minimal.
Let xi ∈ X be its first letter and let vi be the complement. The Noetherianity
of X implies that there is a sequence i1 < i1 < . . . such that xi1 ≤ xi2 ≤ . . . .
Then w1, . . . , wi1−1, vi1 , . . . is a bad sequence, as vij ≤ wij for every j and if
vij ≤ vij′ then wij ≤ wij′ , that can’t be. But this new sequence is smaller
than the minimal one chosen before, and this gives a contradiction.

1.2.2 Monomial representations and Gröbner bases

Fix a functor S : C → Set and let P be the functor defined as:

P : C →Modk

x 7−→ k[S(x)]

where k[S(x)] is the free k-module generated by the elements of the set S(x).
To S we can associate a poset |S|. Start with S̃ :=

⋃
x∈C S(x). Given two

elements of S̃, namely f ∈ S(x) and g ∈ S(y), we say that f ≤ g if there is
a morphism h : x → y such that S(h)(f) = g. Define then an equivalence
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relation on S̃ as follows: f ∼ g if both f ≤ g and g ≤ f holds. We call |S|
the poset defined by (S̃/ ∼,≤).

Definition 1.10. An element of P is monomial if it is of the form λef for
some f ∈ S(x) (for f ∈ S(x) we call ef the corrisponding basis element
of k[S(x)]). Moreover, a subrepresentation M of P is monomial if M(x) is
spanned by the monomials it contains.

The representation P itself, seen as a trivial subrepresentation, is clearly
monomial. An important feature of these monomial representations is that
they can be linked to the poset |S|: for any f ∈ S̃ let IM (f) := {λ ∈ k : λef ∈
M} then IM (f) ∈ I(k), the poset of ideals of k. Notice that IM (f) = IM (g)
if f ∼ g, so this gives a well-defined order preserving map IM : |S| → I(k).

Proposition 1.2.3. LetM(P ) be the poset of monomial subrepresentations
of P with the natural partial odering and F(|S|, I(k)) be the poset of order
preserving maps between the respective posets. Then I :M(P )→ F(|S|, I(k))
is an isomorphism of posets.

Proof. We show it is an isomorphism constructing an inverse. Suppose to have
a function H : |S| → I(k) order preserving, ie f ≤ g in |S| then H(f) ⊆ H(g)
in I(k). From this we can construct a monomial subrepresentation M of P
by: M(x) :=

∑
f∈S(x)H(f)ef . Both H and I are order preserving and one

inverse to the other.

Corollary 1.2.4. The following are equivalent:

i) Every monomial subrepresentation of P is finitely generated;

ii) The posetM(P ) satisfies the ascending chain condition;

iii) The poset |S| is Noetherian and k is also Noetherian.

Proof. The proof that i) is equivalent to ii) is standard (essentially the same
argument used when dealing with rings and the two (adapted) notions of
finitely generation of ideals and ACC). The proof that ii) is equivalent to iii)
is a direct consequence of this lemma:

Lemma 1.2.5. Let X,Y be posets and call F the poset of order preserving
morphisms between X,Y (for any f, g : X → Y set f ≤ g if f(x) ≤ g(x), for
any x). If F respect the ACC and Y has two distinct comparable elements,
then X is Noetherian.

Proof. Let y1 < y2 in Y . Given any ideal I of X, let:

χI : X → Y

x 7→

{
y2 x ∈ I
y1 x /∈ I

.
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This is an order preserving function, hence I → χI embeds I(X) into F .
I(X) then has to respect the ACC as well, hence X is Noetherian.

I(k) has always two distinct comparable elements (namely (0) ⊂ k) and
this concludes the proof.

Definition 1.11. An ordering on a functor S : C → Set is a well-order on
S(x) (for all x ∈ C) such that for any morphism x→ y we want S(x)→ S(y)
to be strictly order preserving.

Given ≤ an ordering on S, let α :=
∑

f∈S(x) λfef ∈ P (x) and:

• Init(α) := λgeg, where g := max≤{f : λf 6= 0};

• Init0(α) := g.

Now, given any M subrepresentation of P let:

Init(M)(x) := k[Init(α) : α ∈M(x), α 6= 0].

Proposition 1.2.6. Init(M) is a monomial subrepresentation of P .

Proof. Once shown that Init(M) is actually a representation, the fact that it
is monomial is clear from its definition. Let α :=

∑n
i=i λiefi ∈M(x), with the

λi 6= 0 and ordered such that fi ≺ f1, for every i > 1. Init(α) = λ1ef1 . Given
g : x→ y a morphism we have that M(g)(α) =

∑n
i=1 λieM(g)(fi), but since

M(g) must be order preserving we have that stillM(g)(fi) ≺M(g)(f1) which
implies Init(M(g)(α)) = λ1eM(g)(f1) = M(g)(Init(α)). But so Init(M) is
really a representation.

Proposition 1.2.7. If N ⊆M are subrepresentations of P with Init(M) =
Init(N), then M = N .

Proof. Suppose by contradiction that M 6= N , and let N(x) ⊂ M(x), for
some x. Let K := {f ∈ S(x) : f = Init0(α), ∃α ∈ M(x) \ N(x)}; by the
assumption K 6= ∅, so let g ∈ K be a minimal element with respect to �.
Let α ∈ M(x) \ N(x) such that Init0(α) = g, by the hypothesis we have
that ∃ β ∈ N(x) such that Init(α) = Init(β). α − β ∈ M(x) \ N(x), but
Init0(α− β) ≺ Init0(α), contradiction

Definition 1.12. Let M be a subrepresentation of P . A set of elements G
of M is a Gröbner basis of M if {Init(α) : α ∈ G} generates Init(M).

Proposition 1.2.8. Let G be a Gröbner basis of M , then G generates M .

Proof. Let N be the subrepresentation of M generated by G. We have
that Init(N) ⊇ {Init(α) : α ∈ G}, hence Init(N) = Init(M). But by the
previous proposition this implies that M = N , hence G generates M .
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Here a first theorem which really relates the combinatorial properties of
the poset |S| to the Noetherianity of the representation P .

Theorem 1.2.9. Let k be a Noetherian ring, S an orderable functor such
that the poset |S| is Noetherian. Then every subrepresentation of P has a
finite Gröbner basis. In particular P is a Noetherian object of Repk(C).

Proof. Let M be any subrepresentation of P , we need to show it is finitely
generated. We have that |S| and k are Noetherian (one as poset and the
other as a ring) so Init(M) is finitely generated. This means that M admits
a finite Gröbner basis, but so M itself is finitely generated. From here the
Noetherianity of P .

Now we can introduce the main definition and state the main theorem of
this section:

Definition 1.13. A category C is Gröbner if for any x ∈ C the functor

Sx : C → Set

y 7−→ Hom(x, y)

is orderable and the poset |Sx| is Noetherian. C is said quasi-Gröbner if there
is a functor φ : C′ → C which is essentially surjective and satisfies property
(F) and C′ is a Gröbner category.

Theorem 1.2.10. Let k be a Noetherian ring. If C is a quasi-Gröbner
category, then Repk(C) is Noetherian.

Proof. Let C be Gröbner. This implies that all the principal projectives Px
are Noetherian, hence Repk(C) is Noetherian as well. Let C be quasi-Gröbner:
there is an essentially surjective functor C′ → C with property (F), where
C′ is Gröbner. Hence Repk(C′) is Noetherian, but by theorem 1.1.5 Repk(C)
must be Noetherian as well.

As announced in the beginning, this theorem gives a sufficient condition
of combinatorial nature, to be tested directly on the category C, that ensures
the Noetherianity of Repk(C).
There is also another equivalent definition for a directed category C to be
Gröbner. In this particular case this alternative definition is more easy to
test, for example later on we will show that the category Gopg of graphs of
fixed genus g is quasi-Gröbner using this definition.
Remark 5. An admissible order ≤ on |Cx| is a well-order with the additional
property that given f, f ′ ∈ Hom(x, y) with f ≤ f ′ and g ∈ Hom(y, z) then:
gf ≤ gf ′ must hold as well.

Definition 1.14. Let C be a directed category. C is Gröbner if and only if
|Cx| has an admissible order (G1) and is Noetherian as a poset (G2), for any
x ∈ C.
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Remark 6. Let C be directed. The two definitions are really equivalent:

Step 1: Let x ∈ C then |Cx| ∼= |Sx|. Indeed, the two sets Ob(Cx) and S̃x are equal.
In |Cx| two morphisms f, g are identified if there is an isomorphism h
such that g = hf , whereas two morphisms f, g in |Sx| are identified
if there are h, h′ such that g = hf and f = h′g. Since C is directed
h, h′ must be isomorphisms, so |Cx| and |Sx| are the same quotient of
Ob(Cx). The order is defined in the same way, so they are isomorphic
posets. Hence |Cx| is Noetherian if and only if |Sx| is Noetherian.

Step 2: An admissible order on |Cx| induces an ordering on Sx. Let � be
an admissible order on |Cx|. Since C is directed, the natural map
Sx(y) → |Cx| is an injection (every element of Sx(y) is its own entire
class under the equivalence relation in |Cx|). We define an order on
Sx(y) by restricting � to it, this defines an ordering of Sx.

Step 3: An ordering of Sx (�) induces an admissible order on |Cx|. Let C0 be a
set of representatives of isomorphism classes in C. Choose a well-order
on C0, say �′. Since C is directed, the natural map qy∈C0Sx(y)→ |Cx|
is bijective. We define a well-order �′′ in qy∈C0Sx(y): given any two
morphisms f : x→ y, g : x→ z set f �′′ g if y �′ z or, if y = z, f � g
in Sx(y). This defines an admissible order on |Cx|: it is a well order,
and if f, f ′ : x→ y such that f �′′ f ′ then for any g : y → z we have
that g ◦ f = S(g)(f). By definition of ordering of a functor, S(g) must
be order preserving hence g ◦ f �′′ g ◦ f ′.

Remark 7. Property (G2) can sometimes be useful, especially in the proceed-
ing of this work when dealing with graph/trees categories, to be restated as:
|Cx| admits no bad sequences.

We need now to introduce another property of a functor Φ : C′ → C that
if satisfied gives condition for Gröbnerianity in the style of property (F ).
We will use this particular property only to prove theorem 3.1.1 in the last
section.

Definition 1.15. A functor Φ : C′ → C satisfies property (S) (for Sub) if
the following condition holds: if x→ y and x→ z are morphisms in C′ and
there exists a morphism h̃ : Φ(y) → Φ(z) in C such that Φ(g) = h̃ ◦ Φ(f),
then there is h : y → z such that g = h ◦ f .

Proposition 1.2.11. Let Φ : C′ → C be a faithful functor satisfing property
(S) and suppose C is Gröbner. Then C′ is Gröbner.

Proof. Let x be an object of C′. We first claim that the natural map i :
|Sx| → |SΦ(x)| induced by Φ is strictly order-preserving. Indeed, let f : x→ y
and g : x → z be elements of |Sx| such that i(f) ≤ i(g). Then there exists
h̃ : Φ(y) → Φ(z) such that h̃ ◦ Φ(f) = Φ(g). By property (S), there exists
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h : y → z such that h ◦ f = g. Thus f ≤ g, establishing the claim. It follows
from this and the Noetherianity of |SΦ(x)|, that |Sx| is Noetherian. Finally,
an ordering on SΦ(x) clearly induces one on SΦ(x)|C′ and this restricts to one
on Sx, and we can conclude.

Remark 8. Let C be a category. From this last proposition we can see how
much stronger is obtaining the Noetherianity for the representation category
of C when C is Gröbner than when it is not. This last proposition tells us
that basically if we are dealing with C a Gröbner category and we consider a
subcategory C′ (respecting a little additional property), this is going to be
Gröbner as well. So in this case we have that Noetherianity is kept when
passing to the category of representations of (some) subcategories. Instead in
general, if we don’t know anything about the Gröbnerianity of the categories
we are dealing with, this is far from being true.

1.2.3 Examples of Noetherianity

Here some examples of categories whose representation category is Noethe-
rian. These proofs relies on the Gröbner theory just presented.

Categories of injections

Two first interesting examples of (quasi-) Gröbner categories are the
categories of injections: OI and FI. The objects of FI are finite sets and
morphisms are injections between these sets. OI is the ordered version: its
objects are totally ordered finite set and morphisms are order preserving
injections. Notice that there is a natural forgetful functor Φ : OI→ FI, so
the idea is to show that OI is Gröbner and Φ satisfies property (F ).

• Fix n ∈ N. Let S := {0, 1} and let Ln be the language on S in
which every word has exactly n letters equal to 0. Partially order
Ln saying that: w1...wk ≤ v1...vr if there is 1 ≤ i1...ik ≤ r such that
vi1 ...vik = w1...wk. By Higmans’s lemma Ln is Noetherian.

• OI is clearly directed, so to prove its Gröbnerianity we have to show
properties (G1) and (G2). Let x ∈ OI be a finite set of size n and con-
sider f ∈ HomOI(x, [m]), where [m] = {1, . . . ,m}. Define a function
h : [m]→ S such that it is 0 on the image of f and 1 elsewhere, this
gives a word in Ln. Since f must be order preserving ad injective we
can actually recover it from h, so this defines an isomorphism of posets
between |OIx| and Ln. Hence |OIx| is Noetherian (G2). The classic
lexicographic order on Ln restricts to an admissible order on |OIx|, so
property (G1). OI is Gröbner.

• Let x ∈ FI be a set of size n. We need to find y1, . . . , yk ∈ OI and
fi : x→ Φ(yi) such that for any y ∈ OI totally ordered fnite set and
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any f : x→ Φ(y) this last factors as:

Φ(yi)

x Φ(y)

Φ(gi)fi

f

for some gi : yi → y. Now notice that any f : x→ y can be factored as

x

x y

f ′σ

f

where σ is a permutation of Sn and f ′ an order preserving map. By
choosing k = n!, yi = [n] for every i = 1, . . . , n!, fi : x→ Φ(yi) as the
map sending x to its ith-permutation of Sn and gi the order preserving
map just defined, we can conclude that Φ has property (F ). Hence FI
is quasi-Gröbner.

So, the representation categories Repk(OI) and Repk(FI) are Noetherian for
any fixed Noetherian ring k.

Linear categories

A linear map between free modules (from here the name linear categories)
is called splittable when its image is a direct summand. Consider the categories
VIR and VAR of free modules of finite rank over a finite ring R, with
morphisms respectively injective splittable maps and splittable maps. More
in detail, fix R a finite ring:

VIR: Is the category whose objects are free R-modules of finite rank and
morphisms are injective splittable R-linear maps.

VAR: Is the category whose objects are free R-modules of finite rank and
morphisms are splittable R-linear maps.

Lemma 1.2.12. Let R be a finite ring. The categories VIR and VAR are
quasi-Gröbner.

Proof. Consider the following functor:

Φ: FSop → VIR

S 7−→ HomR(R[S], R) = R[S]∗

where R[S] is the free R-module generated by the elements of S. As any free
R-module of finite rank n is isomorphic to

⊕n
i=1R, it’s clear the essential

surjectivity of Φ. To conclude (for VIR) we only need to prove that it has
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property (F). Take U ∈ VIR. We have to show that for any S ∈ FSop and
any splittable injection f : U → R[S]∗, there are finitely many Si ∈ FSop

together with splittable inections fi : U → R[Si]
∗ and surjections gi : S → Si

such that the following diagram is commutative:

R[Si]
∗

U R[S]∗

Φ(gi)fi

f

The commutativity of this diagram is equvalent to the commutativity of the
dual one:

R[Si]

R[S] U∗

f∗iΦ(gi)
∗

f∗

Consider f∗ : R[S] → U∗ and let T ∈ U∗ be the image of S. The map f∗

factorizes as R[S] → R[T ] → U∗, where the first map actually come from
a surjection S → T . By this observation we can choose the Si to be all
the subsets of U∗ that span it as an R-module and f∗i to be the natural
maps R[Si] → U∗. This giver the quasi-Gröbnerianity of VIR. Now, the
fact that the inclusion functor i : VIR → VAR has property (F) is a direct
consequence of the fact that any splittable morphism between finite rank
R-modules factorize through a surjection followed by a splittable injection.
Composition of essentially surjective functors which satisfy property (F),
gives again a functor of the same type, hence also VAR is quasi-Gröbner.

As before, this lemma tells us that Repk(VIR) and Repk(VAR) are
Noetherian for any fixed Noetherian ring k.

Remark 9. We want now also to point out that the finiteness condition on the
ring R is necessary to reach the Noetherianity of the representation category
Repk(VIR). First consider the following lemma:

Lemma 1.2.13. Let R be a non zero ring and Γ be a group that contains a
non finitely generated subgroup. Then the group ring R[Γ] is not Noetherian.

Proof. Given any subgroup H of Γ, we have that the kernel of the surjective
morphism R[Γ]→ R[Γ/H] is an ideal (call it IH) of R[Γ]. For any H ′ � H
we have that IH′ $ IH and so, since Γ has a non-finitely generated subgroup,
there is an infinite sequence of subgroups H1 � H2 � . . . giving an infinite
ascending chain of ideals in R[Γ]: IH1 $ IH2 $ . . . . In conclusion, R[Γ] is
not Noetherian.
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The idea now is to prove that the group AutVIR(R2) contains a subgroup
which is not finitely generated. In fact, once proven that, we can construct
the following module M ∈ Repk(VIR):

M(X) :=

{
k[AutVIR(X)] X ∼= R2

0 Otherwise
.

This module is fintely generated as it is a quotient of the principal projective
module PR2 . On the other hand, now k[AutVIR(R2)] is not Noetherian
by the previous lemma, so let N be a non finitley generated submodule of
it. Let M ′ be the subrepresentation of M generated by N ⊆ M(R2) and
suppose it is finitely generated. There are X1, . . . , Xn ∈ VIR such that
M ′(R2) = N is generated by images of maps M ′(Xi)→M ′(R2) induced by
injective morphisms Xi → R2. Such maps and the {Xi}ni=1 are finitely many
which implies the finitely generation of N (as an R-module), so we reach a
contradiction.
We are left to prove that AutVIR(R2) contains a subgroup which is not finitely
generated. Notice first that always AutVIR(R2) contains SL2(R).

Z ⊆ R: Then SL2(R) contains a rank 2 free subgroup, consider the one gener-
ated by the matrices: (

1 2
0 1

) (
1 0
2 1

)
.

This group contains a non finitely generated subgroup.

Z 6⊆ R: Then all elements of the additive group of R are killed by a positive
integer l, so if R is an infinite ring the additive group of it must be
non finitely generated. The additive group of any ring embeds as a

subgroup of SL2(R) via the morphism r →
(

1 r
0 1

)
, and so again

SL2(R) contains a non finitely generated subgroup.
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Chapter 2

Configuration spaces of graphs

In this chapter we introduce the defintions of configuration spaces of
graphs and we study some of their topological properties by means of the
theory developed in the previous chapter. In doing this we follow the work
presented in [8] and [9]. We will be particularly interested in studying
the homology groups of such spaces, for whose calculation the theory of
Swiatkowski is presented following the works in [1], [8], [9], [13].

2.1 Categories of graphs

By a graph we mean a finite CW-complex of dimension at most 1. The
0-cells are the vertices and the 1-cells are the edges. If G is a connected
non-empty graph we define the genus g as the rank of its first homology
group. A map f : G→ G′ of CW-complexes is very cellular if it send vertices
to vertices and edges to edges or vertices. An edge which is sent to a vertex
is called contraced. If G and G′ are graphs, define a graph morphism from G
to G′ to be an equivalence class of very cellular maps, where two very cellular
maps are equivalent if and only if they are homotopic through very cellular
maps. We define a contraction of graphs to be a surjective graph morphism
with contractible fibres. Now a list of the graph categories that we will be
dealing with, together with some basic results about them.

• A tree is a graph of genus 0, a rooted tree is a couple (T, v) where T is a
tree and v a fixed vertex, called root. Given a rooted tree, we can define
a partial order on the set of vertices: v ≤ w if there is a downward
path from v to w. T is the category whose objects are rooted trees and
morphism are order embeddings that preserve the root.

• RT is the category whose objects are rooted trees and morphisms are
contractions that respect the root.

Proposition 2.1.1. The categories RT op and T are equivalent.
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Proof. Let (T, v) and (T ′, v′) be rooted trees. Given a contraction f : (T, v)→
(T ′, v′) in RT , construct a morphism f∗ : (T ′, v′)→ (T, v) in T by sending
each vertex of T ′ to the maximal vertex in its preimage. Conversely, given a
morphism: g : (T ′, v′) → (T, v) in T, construct a contraction g∗ : (T, v) →
(T ′, v′) in RT that sends each vertex w of T to the minimal vertex of T ′

whose image under g lies weakly above w. Let f : T → T ′ a contraction, the
induced embedding is:

f∗ : T ′ → T

v 7→ max{f−1(v)}.

The induced contraction then looks like:

f∗∗ : T → T ′

w 7→ min{v ∈ T ′ : f∗(v) lies weakly above w}.

As f∗(v) = max{f−1(v)} and w ∈ f−1(f(w)) is the smaller vertex lying
weakly above w, we conclude f∗∗(w) = f(w) (ie, f∗∗ = f). Analogously it
works for g∗∗ = g and we conclude that the two constructions are mutually
inverse.

• A planar rooted tree is a rooted tree with a total ordering on in(v) (the
set of edges adjacent to v) for every v. PT is the category whose objects
are planar rooted trees (the total ordering is given by a clockwise depth-
first tree walk) and morphisms are order embeddings that preserve the
root and the depth-first ordering on vertices.

• PT is the category whose objects are planar rooted trees and morphisms
are contractions of rooted trees with the additional property that, if
v comes before w in the depth-first order, then the first vertex in the
preimage of v comes before the first vertex in the preimage of w.

A similar result hold also for these last two categories:

Proposition 2.1.2. The categories PT op and PT are equivalent.

The goal of the work in [2] is to show that T is a quasi-Gröbner category.
To do so it’s required quite a lot of technical work and some intermediate
steps to arrive to the conclusion. We just mention the most important one as
it regards the category just defined above and gives an idea of the strategy
of the proof:

Proposition 2.1.3. The category PT is Gröbner and the forgetful functor
PT→ T is essentially surjective and satisfies property (F ).

This ensures also the Gröbnerianity of the category PT op as they are
equivalent.
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• Gg is the category whose objects are graphs of genus g and whose
morphisms are graph contractions. Notice that a contraction doesn’t
change the number of cycles in a graph, ie it doesn’t change its genus,
so this category is well defined. Notice that G0

∼= T .

• A rigidified graph G of genus g is a graph with a choice of a planar
rooted spanning tree (a subtree of G containing all the vertices) and of
an ordering and an orientation of the g extra edges. We can identify
such graphs with quadruples (G,T, v, τ) where: G is a graph of genus
g, (T, v) is a planar rooted spanning tree and τ is an isomoprhism
from Rg (the graph with one vertex and g loops) to G/T . Let PGg the
category whose objects are rigidified graphs of genus g and morphisms
are contractions that restricts to contractions of planar rooted trees (the
spanning tree) and are compatible with the ordering and orientations of
the extra edges (notice that no extra edge can be contracted). Notice
that: PG0

∼= PT .

The goal now is to show that the category Gopg is quasi-Gröbner, so that we
have Noetherianity when considering the representation category Repk(Gopg ).
To do this some techincal work is required. The completeness of it can
be found in [9], we will just recall the general idea of the proof and some
important steps.

Theorem 2.1.4. The category Gopg is quasi-Gröbner.

Proof. The basic idea of the proof is to show first that the category PGopg
is Gröbner and then considerig the essentially surjective forgetful functor
for : PGopg → G

op
g , show that this has property (F). The most techincal

part is showing that the category PGopg satisfies property (G2), ie that the
set (PGopg )(G,T,v,τ) doesn’t admit any bad sequence, but we can take it for
granted here.

Lemma 2.1.5. For any g, the category PGopg satisfies property (G1)

Proof. Fix a rigidified graph of genus g: (G,T, v, τ). Recall that satisfing
property (G1) means that (PT opg )(G,T,v,τ) admits a linear order � that is
compatible with pre-composition (we are working in the opposite category).
By the Gröbnerianity of the category PT op, we have that this category
satisfies property (G1). By the fact that contractions of rigidified graphs
are defined from their restrictions on the spanning tree (∈ PT op), we can
conclude.

PGopg satisfies both properties (G1) and (G2), hence it is Gröbner.

Lemma 2.1.6. The forgetful functor for : PGopg → G
op
g is essentially surjec-

tive and has property (F).

27



Proof. By definition of property (F) we need to take G a graph of genus
g, a finite collection of (Gi, Ti, vi, τi) rigidified graphs of genus g along with
contractions fi : Gi → G such that for any rigidified graph (G′, T ′, v′, τ ′)
and contraction f : G′ → G, this last factor as f = fi ◦ for(ψ), for some
ψ : (G′, T ′, v′, τ ′)→ (Gi, Ti, vi, τi). For our rigidified graphs (Gi, Ti, vi, τi) and
contractions fi, we will choose a representative of every possible isomorphism
class of such structures whose number of edges is at most |E(G)|+ g. There
are only finitely many rigidified graphs with at most |E(G)|+ g edges, and
also finitely many contractions from them to G, hence we are considering a
finite collection of objects in PT opg . So fix a (G′, T ′, v′, τ ′) and a contraction
f . Let E be the set of contracted edges og G′ and consider the canonical
contraction ψ : (G′, T ′, v′, τ ′) → (G′/(E ∩ T ′), T ′/(T ′ ∩ E), v′, τ ′), we have
that f = fi ◦ for(ψ), if we show that |E(G′/(E ∩ T ′))| ≤ |G| + g. |E| =
|E(G′)|−|E(G)| and |T ′| = |E(G′)|−g, hence |E∩T ′| ≥ |E(G′)|−(|E(G)|+g).
From this it follows that |E(G′/(E∩T ′))| = |E(G′)−|E∩T ′| ≤ |E(G)|+g.

And this concludes the proof of the theorem as well.

All this ensures the Noetherianity of the representation categories we will
be dealing with. Now a couple of new definitions that will be used in the
next chaper when talking about configuration spaces of graphs.

Definition 2.1. Let C be any one of the graph/trees categories introduced
above:

• M ∈ Repk(C) is generated in degrees ≤ d if ∃ X1, .., Xn objects in C
with at most d edges (all objects are graphs or trees) such that M is a
quotient of the direct sum

⊕n
i=1 PXi ;

• M is d-small if it is a subquotient of a module generated in degrees
≤ d.

Direct consequence of the definition of smallness is the following proposi-
tion. It will be useful later on when deling with homology of configuration
spaces.

Proposition 2.1.7. If M is d-small, then M is finitely generated.

Proof. Clear from the definition.

Remark 10. Notice that there is no reason to think that if a module is d-small,
this is also generated in degrees ≤ d. We know it is finitely generated, but
we have no control over the generators. This is something to always keep in
mind when considering submodules of finitely generated modules: we don’t
know anything about the generators of such submodules, in the case the
category is Noetherian, we just know that there are finitely many of them.
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Now a theorem that shows the most important aspect of a d-small module:
we may have not any control over its generators, but it has stability.

Proposition 2.1.8. Let k be a field and M ∈ Repk(Gopg ) a d-small module.
Then there exists a polynomial fM (t) ∈ Z[t] of degree at most d such that
dimk(M(G)) ≤ fM (|E(G)|), for any G.

Proof. By the smallness of M (and so its finitely generation) we can just
consider the case of M = P ′G, for G

′ a genus g graph with d edges. For any
G a contraction G→ G′ is determined (up to automorphisms of G′) by the
choice of |E(G)− d| edges to contract. Hence we have that:

dimk(PG′(G)) ≤ |Aut(G′)| ·
(
|E(G)|
d

)
= fM (|E(G)|).

Example 1. In [4], an analogous stability result is proved also for FI-modules.
Anticipating some concepts that will be introduced in the next section, here
an example of how this type of results can actually give counter examples for
finitely generated modules.

Theorem 2.1.9. Let k be a field and V a finitely generated FI-module over k.
Then there exists an integer-valued polynomial P (t) ∈ Q[t] such that for all
sufficiently large n (ie |x|):

dimkV (x) ≤ P (|x|).

Now let I be the graph consisting of a single edge and consider the
following FI-module:

H : x 7−→ H0(Conf|x|(I);Q).

Notice that any injection x → y gives a map at the level of configuration
spaces (hence then a map in homology) just by fixing the last |y|−|x| particles
in Conf|y|(I). As shown later on there is a cubical complex K̃nI of dimension
0 that emebeds as a deformation retract of Confn(I), for every n. The
0-cells of K̃nI are in bijection with the elements of the permutation group
Sn. Hence we have that dimQH0(Confn(I);Q) = n!. This implies that there
is no polynomial that can bound dimQH(−) from above, so our FI-module
is not finitely generated.

2.2 Configuration spaces of graphs and their homol-
ogy

Definition 2.2. Let G be a graph. The set:

Confn(G) := {(x1, ..., xn) ∈ Gn : xi 6= xj ∀i 6= j},
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is called the nth-ordered configuration space of G. It is naturally endowed
with the subspace topology induced by the inclusion Confn(G) ⊆ Gn.

This can be imagined as the space of all the possible configurations
of n particles in G, where no two particles are allowed to occupy the same
position. The natural action of the permutation group Sn on the corrisponding
Confn(G) (ie, the order of the particles is not relevant anymore) leads to the
following definition.

Definition 2.3. Let G be a graph. The set:

UConfn(G) := {(x1, ..., xn) ∈ Gn : xi 6= xj ∀i 6= j}/Sn,

is called the nth-unordered configuration space of G. It is naturally en-
dowed with the quotient topology induced by the projection Confn(G)→
Confn(G)/Sn.

2.2.1 The deformation retract

Given a graph G let B(G) be the set of branched vertices of G. A vertex is
branched if it is adjacent to at least three edges. Define also b(G) := |B(G)|,
and let EG be the set of edges of G. Each edge carries two distinct orientations.
For an oriented edge s denote by |s| the underlying unoriented edge, by −s
the same edge with the opposite orientation, and by vs the vertex adjacent
to |s| which is determined by the orientation of s.

Definition 2.4 (Cubical complex). A cubical complex consists of a finite set
V and a collection, say �, of subsets of V such that:

- for each v ∈ V , the set {v} is in �;

- if σ and τ are in �, then σ ∩ τ is either empty or in �;

- if σ ∈ � then the collection of elements of � that are contained in σ is
isomorphic as a poset (ordered by inclusion) to the poset of the faces
of a cube.

Notice that from this definition of cubical complex we can derive a natural
notion of dimension for such structures.

Theorem 2.2.1. Let G be a graph and n a natural number. There exists
a cubical complex Kn(G) (of dimension equal to min{n, b(G)}) such that it
embeds as a deformation retract into the configuration space UConfn(G).

The idea to prove this is to introduce an abstract graded poset Pn(G) and
then showing that this is actually the face poset of a uniquely determined
cubical complex. This last can be explicitely embedded as a deformation
retract into UConfn(G).
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Definition 2.5. Let Pn(G) := (P
(0)
n G, . . . , P

(k)
n G, . . . ) where P (k)

n are the
k-faces, defined to be couples (f, S) such that:

1. f : EG ∪B(G)→ N ∪ {0};

2. S = {s1, . . . , sk}, oriented edges of G;

3. vs1 , . . . , vsk , all different branched vertices of G;

4. f(b) ∈ {0, 1} for any b ∈ B(G) and f(vsi) = 0 for any i = 1, . . . , k;

5.
∑

a∈EG∪B(G) f(a) = n− k.

Intuitively the kth-face is to be thought as the configuration of k fixed
oriented edges on which one particle is moving concorldy with the orientation,
approaching its branched vertex. The function f then gives the "positions"
of all the other (they are not moving) n − k particles; it says how many
other particles every edge has (including the fixed oriented ones). Following
the definition of configuration space we have that f on the set of branched
vertices can assume just values in {0, 1} (no multiple particles are allowed to
be at the same time on one vertex), and so always 0 in the case of a vertex
being approached by one of the moving particles.

Definition 2.6. Let (f1, S) ≺ (f2, S∪{s}) if one of the two conditions holds:

• f1(a) =

{
f2(a) + 1 a = |s|
f2(a) otherwise

• f1(a) =

{
f2(a) + 1 a = vs

f2(a) otherwise

Intuitively, (f1, S) ≺ (f2, S∪{s}) if (f1, S) can be thought as a photograph
of (f2, S∪{s}) along its extra fixed oriented edge. (f1, S) has one particle less
moving, but it must have a particle (fixed) "along the way" of the extra one
moving in (f2, S ∪ {s}). This idea helps in giving some sense to the fact that
this is actually the face poset of some cubical complex: for example it gives
quite a clear picture about the fact that we can go from k-faces to k-faces
moving along a (k + 1)-face. This relation can be extended in a natural way
giving a partial ordering on Pn(G).

Remark 11. Notice that for any F ∈ P (k)
n G, the subposet {A : A ≺ F} in

Pn(G) is actually isomorphic to the face poset of a k-dimensional cube. Hence
Pn(G) is the face poset of a unique cubical complex: Kn(G).
Remark 12. The dimension of Kn(G) is equal to the max k such that
P

(k)
n G 6= ∅. By conditions 3 and 5 in the definition of Pn(G) it’s clear

how dim(Kn(G)) ≤ min{n, b(G)}. The opposite direction is true as well as
it is possible to construct a couple (f, S) with |S| = min{n, b(G)}. So:

dim(Kn(G)) = min{n, b(G)}.
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Definition 2.7. Let AB be a segment and s be the corresponding ori-
ented segment with vs = B, v−s = A and let ts, t−s ∈ [0, 1]. Define
DAB(n, (ts)|s|=AB) := {a1, . . . , an} such that:

1. ai ∈ AB ∀ i = 1, . . . , n;

2. A ≤ a1 ≤ · · · ≤ an ≤ B (when considering an oriented segment
it’s natural to define a partial order on its points which respects the
orientation: x1 ≤ x2 if x1 comes before x2 in the orientation of the
segment );

3. |a1 − a2| = · · · = |an−1 − an|;

4. n ≥ 2, |A − a1| = t−s · |a1 − a2| and |B − an| = ts · |a1 − a2|, for
(ts, t−s) 6= (0, 0).

So for e ∈ EG, define analogously De(n, (ts)|s|=e).

Now, let F = (f, S) be a face of Kn(G). Consider the isomorphism
of cubes τ : F → [0, 1]|S| such that, for every vertex p = (ψ, ∅) of F ,
τ(p) : S → [0, 1] is given by τ(p)(s) = 1− ψ(vs). For every x ∈ F , τ(x) can
be extended to a function τ0(x) : E′G → [0, 1] (E′G is the set of all oriented
edges of G) such that:

τ0(x)(e) :=

{
τ(x)(s) s ∈ S
1 otherwise

.

For every F = (f, S) ∈ Kn(G) define:

iF : F → UConfn(G)

x 7→ {b ∈ B(G) : f(b) = 1} ∪
⋃
e∈EG

De(f̃(e), (τ0(x)(s))e=|s|)

where f̃(e) := f(e) + |{s ∈ S : |s| = e}|. The family of such mappings
{iF : F ∈ Kn(G)} actually defines the embedding i : Kn(G) ↪−→ UConfn(G).
Intuitively, this embedding is to be seen in this way: it sends every k-face
to a continuous collection of configurations that in a sense depict the moves
(taken instant by instant) of the k-particles "moving" along the chosen
oriented edges of the face. Again intuitively it can be seen how the retraction
r : UConfn → UConfn(G) should be: every configuration should be sent
to a particular configuration with the same disposition of particles among
the vertices and same number of particles in every edge but disposed in a
fixed way such that when considering configurations in Kn(G) this gives the
identity.
Now fix a length metric on G such that every edge has length 1. Let
C ∈ UConfn(G), this subdivides EG in some segments. For every oriented
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edge s with vertex vs call dCs the length of the segment of the above subdivision
which is contained in the edge |s| and adjacent to vs from the side determined
by the orientation of s. Let nCe := |C ∩ e0|, where e0 is an edge without its
branched vertex. Define δCs := dCs · (nCs + 1) and consequently

tCs :=


1 vs ∈ C or vs free

min{1, δCs
min{δCs′ : s′ 6= s, vs′ = vs}

} otherwise
.

The retraction is then defined as:

r(C) := (C ∩B(G)) ∪
⋃
e∈EG

De(n
C
e , (t

C
s )e=|s|).

To conclude that Kn(G) is a deformation retract of UConfn(G) it’s needed
an homotopy between r : UConfn(G) → UConfn(G) and idUConfn(G) :
UConfn(G) → UConfn(G). Notice that for each C ∈ UConfn(G), C ∩
B(G) = r(C)∩B(G) and |C ∩e0| = |r(C)∩e0|. For every e ∈ EG let {Ce(t) :
t ∈ [0, 1]} be the unique continuous 1-parameter family of configurations in
e0 that connects C ∩ e0 and r(C)∩ e0. Finally the homotopy desired is given
by:

H : [0, 1]× UConfn(G)→ UConfn(G)

(t, C) 7→ (C ∩B(G)) ∪
⋃
e∈EG

Ce(t)
.

Remark 13. As shown by D. Lütgehetmann this result still holds even when
considering ordered configuration spaces. The construction of the cubical
complex K̃nG, the retraction and the homotopy is essentially the same. In
that proof the result for unordered configuration spaces follows the result for
ordered ones: just notice how the action of Sn on Confn(G) induces an action
on K̃nG and that both the inclusion and the retraction are Sn-equivariant
maps.

2.2.2 The Swiatkowski complex

Computing the homology groups of configuration spaces of grpahs directly
turns out to be quite difficult also when the considered graphs are quite simple.
The configuration spaces can be really messy, as it will be shown in some
examples at the end of this chapter. One tool which can simplify the work
consistently was introduced in [1]. The idea is to compute these homology
groups as the homology groups of an abstract bigraded differential module
constructed from the graph itself.

Definition 2.8 (Reduced Swiatkowski complex). Let G be a graph. Call
AG := Z[E(G)] the integral polynomial ring with variables the edges of
the graph. An half-edge h is a pair (e(h), v(h)) where e(h) is an edge and
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v(h) is one of its two vertices. Now, for every v ∈ V (G) define S̃(v) as the
free AG-module generated by ∅ together with all h − h′ half-edges having
v(h) = v(h′) = v. Bigrade S̃(v) imposing:

• grade (1,1) to half-edges;

• grade (0,1) to edges;

• grade (0,0) to ∅.

Define also ∂v to be an AG-linear differential of degree (−1, 0) by setting:

• ∂v(h− h′) = (e(h)− e(h′))∅;

• ∂v∅ = 0.

We call reduced Swiatkowski complex the following bigraded differential
module:

S̃(G) := (
⊗

v∈V (G)

S̃(v), ∂),

where the tensor product is taken over the ring Z[E(G)].

Remark 14. Notice that the reduced Swiatkowski complex permits to forget
about all the vertices of G of valence ≤ 2: indeed such vertices are quite
ininfluent for the configuration space itself, which instead relies particularly
on the branched ones. For example, when considering star graphs the tensor
product collapses into just one factor (S̃(v) of the unique branched vertex)
making a lot of computations much more easy.

Theorem 2.2.2. Let G be an object of one of the graph categories T, T op or
Gopg presented before. Then there is a functorial isomorphism:

H•(UConf∗(G)) ∼= H•(S̃(G)).

This theorem is proved in [1] using Morse theory. The difficult (and very
long) part of the proof is proving the functoriality of such an isomorphism
and this part is not covered here but taken for granted. We can though point
out a couple of facts.
Remark 15. Notice that if G is a graph where every vertex (a part from the
leaves) is branched, then the weight k subcomplex of S̃(G):

· · · → S̃(G)i+1,k → S̃(G)i,k → S̃(G)i−1,k → . . .

is isomorphic to the cellular chain complex of the cubical complex KkG which
is a defomration retract of UConfk(G). Indeed: S̃i,k is (freely) generated by
elements of the form:

σ = e1 · · · ek−i
i⊗

j=1

(hj0 − hj1),
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where ei are edges of G and hj0 , hj1 are half edges at the branched vertex vj
for any j. Notice that such an element defines a unique i-cell of the cubical
complex KkG (it fixes k − i particles on the edges e1, . . . , ek−i and defines i
half edges with a moving particle) and viceversa. So in this particular case
theorem 2.2.2 is proved at least at the level of objects.

Remark 16. Notice that the problems in proving functoriality (ie proving that
T → Hi(UConfn(T )) is really a functor) arise when considering contractions.
In the case of embeddings is quite straightforward to see how such morphisms
of graphs induce a morphism at the level of configuration spaces and then in
homology. But consider for example the following contraction G1 → G2:

There is no way to define a morphism at the level of configuration spaces
(UConfn(G2) → UConfn(G1)) so that it then induces the desired map
in homology Hi(UConfn(G2)) → Hi(UConfn(G1)). The difficult part of
theorem 2.2.2 is to prove that anyway such contractions define a map at the
level of Swiatkowski complex (which then induces the map in homology).

Since it is needed in the proof of theorem 2.2.5, we just describe explicitely
(taking the existence for granted) such map, say ϕ̃∗ : S̃(G′)→ S̃(G), at the
level of Swiatkowski complexes. First consider the case where the number of
edges of G is one greater than the number of edges of G′, we call it a simple
contraction. Identify the unique edge of G that is contracted by ϕ with the
interval [0, 1]. Let h0 (respectively h1) be the half edge of G consisting of the
vertex 0 (respectively 1) and the edge [0, 1]. Let w′ ∈ G′ be the image of the
edge [0, 1]. Each edge of G′ is mapped to isomorphically by a unique edge of
G, and similarly for half edges. This gives a canonical ring homomorphism
AG′ → AG along with an AG′-module homomorphism:⊗

v′∈V (G′)−{w′}

S̃(v′)→
⊗

v∈V (G)−{0,1}

S̃(v).

We now need to analyze the case of half-edges of G′ with endpoint w′. Let
h′ ∈ G′ with v(h′) = w′, call h the unique half-edge of G mapping to h′.
We then define an AG′-module homomorphism S̃(w′)→ S̃(0)⊗ S̃(1) by the
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formula:

∅ 7−→ ∅ ⊗ ∅; h′ 7−→

{
(h− h0)⊗ ∅, v(h) = 0

∅ ⊗ (h− h1), v(h) = 1
.

Tensoring these two maps together, we obtain the homomorphism ϕ̃∗. This
homomorphism respects the differential. Arbitrary contractions may be ob-
tained as compositions of simple contractions and the induced homomorphism
is independent from the choice of factorization into simple contractions.

To summarize (cfr. [9]):

Theorem 2.2.3. There is a bigraded differential Gopg -module that assigns
to each graph G its reduced Swiatkowski complex S̃(G). The homology of
this bigraded complex is again a Gopg module, it assigns to each graph G the
bigraded abelian group: H•(UConf∗(G)).

Remark 17. From this theorem and the shape of the Swiatkowski complex we
can easily get some informations about these homology groups of unordered
configuration spaces. Let G be any (finite) graph:

1. For any couple (i, n) such that i > n we have: S̃i,n(G) = 0. Indeed,
there is no element whose bigrade is (1, 0) so no element can have a
bigrade with the first coordinate stricltly bigger that the second one.
This implies that Hi(UConfn(G)) = 0 whenever i > max{n, b(G)}
(recall also theorem 2.2.1).

2. If G has b(G) branched vertices, it’s reduced Swiatkowski complex is of
the form:

. . . 0→ S̃b(G),i+1 → S̃b(G)−1,i+1 → . . .

. . . 0→ S̃b(G),i → S̃b(G)−1,i → . . .

. . . 0→ S̃b(G),i−1 → S̃b(G)−1,i−1 → . . .

So, as computing Hb(G)(UConfn(G),Z) is computing a kernel of a
homomorphism between free Z-modules and such kernels are torsion
free, Hb(G)(UConfn(G),Z) is torsion free for any n.

Now we are left to prove the smallness result previously anticipated.

Proposition 2.2.4. For any couple (i, n) ∈ N≥0 × N≥2, the Gopg -module

Si,n : Gopg →ModZ

G 7−→ S̃(G)i,n

is generated in degrees ≤ (n+ i+ g).
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Proof. The group S̃(G)i,n is generated by elements of the form:

σ = e1 · · · en−i
i⊗

j=1

(hj0 − hj1)⊗
⊗

v/∈{v1,...,vi}

∅,

where {e1, . . . , en−1} are edges (not necessarily distinct), {v1, . . . , vi} are
vertices (distinct), and for each j, hj0 and hj1 are half-edges at the vertex vj .
For a particular σ of this form, we will call {v1, . . . , vi} the set of distinguished
vertices. Without loss of generality, we may assume that there is some integer
r with 0 ≤ r ≤ i such that vj is adjacent to some other distinguished vertex
(possibly itself) if and only if j ≤ r . We may also assume that, if j ≤ r,
e(hj1) connects vj to another distinguished vertex (possibly itself). We call
an edge e a distinguished edge if one of the following five conditions hold:

• e is a loop,

• e connects two distinguished vertices,

• e = ek for some k ≤ n− i,

• e = e(hj0) for some j ≤ i,

• e = e(hj1) for some j ≤ i.

Let t be the number of loops that are not at distinguished vertices. Let H
be the subgraph induced by {v1, . . . , vr}, which in particular contains all
the loops at distinguished vertices. H has genus at most g − t, hence it has
at most r + g − t edges. Hence, the total number of distinguished edges
is ≤ t + (r + g − t) + (n − i) + i + (i − r) = n + i + g. Let G such that
|G| > n + i + g. Since there are at most n + i + g distinguished edges, we
may choose an edge e which is not distinguished. Let G′ := G − e be the
graph obtained from G by contracting e, and let ϕ : G→ G′ be the canonical
simple contraction. Let e′k be the image of ek in G′, v′j the image of vj , h′j0
the image of hj0, and h′j1 the image of hj1. Let:

σ′ = e′1 · · · e′n−i
i⊗

j=1

(h′j0 − h′j1)⊗
⊗

v′ /∈{v′1,...,v′i}

∅ ∈ S̃(G′)i,n.

We claim that σ = ϕ̃∗σ
′. If e is not incident to any vertex vj , this is obvious.

The interesting case occurs when e is incident to one of the distinguished
vertices. Assume without loss of generality that it is incident to v1, and let w
be the other end point of e (e can’t be a loop). Let h be the half-edge of G
with e(h) = e and v(h) = v1. Applying the map ϕ̃∗ it replaces each e′k with
ek. When j > 1, it replaces h′j0 with hj0 and h′j1 with hj1. It replaces h′10

with h10−h and h′11 with h11−h. This means that it replaces h′j0−h′j1 with
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hj0 − hj1, and therefore σ = ϕ̃∗σ
′. We thus conclude that every element of

S̃(G)i,n is a linear combination of elements in the images of map associated
with simple contractions, and we can conclude.

From this last proposition and theorem 2.2.3 it follows:

Theorem 2.2.5. For any couple (i, n) ∈ N≥0 × N≥2, the Gopg -module:

Mi,n : Gopg →ModZ

G 7−→ Hi(UConfn(G), Z)

is (n+ i+ g)-small, hence also finitely generated.

Remark 18. We presented theorems 2.2.3 and 2.2.5 just for the category Gopg ,
but recall that these results hold as well when considering the category T op
(ie in the case of g = 0).

We can now show an application of this theorem (which more in general
is an application of the Noetherian property for such categories of repre-
sentations) to the study of the homology groups of configuration spaces of
trees.

Corollary 2.2.6. Let T be a tree and (i, n) ∈ N≥0 × N≥2. Then there is a
positive integer ti,n that annihilates the torsion part of Hi(UConfn(T ),Z).

Proof. Consider the category T op. As already shown, this category is Gröbner
hence RepZ(T op) is Noetherian. For any fixed couple (i, n) ∈ N×N≥2 consider
the T op-module:

Mi,n : T op →ModZ

T 7−→ Hi(UConfn(T ),Z).

By theorem 2.2.5 we know that all these T op-modules Mi,n are n+ i-small
and so finitely generated. Recall now that for any homomorphism of abelian
groups f : G1 → G2 there is an induced morphism (the restriction of f on
Tor(G1)) between their torsion subgroups: f |Tor(G1) : Tor(G1)→ Tor(G2).
This enable us to define (for any (i, n)) the submodule Ti,n of Mi,n by:

Ti,n : T op →ModZ

T 7−→ Tor(Hi(UConfn(T ),Z)),

where with Tor(Hi(UConfn(T ),Z)) we intend the torsion subgroup of the
corrisponding homology group. As RepZ(T op) is Noetherian and the modules
Mi,n are finitely generated, then so are the submodules Ti,n. This means
that there are {Tj}nj=1 trees such that Ti,n(T ) is generated by images of maps
like Ti,n(Tj)→ Ti,n(T ) induced by contractions T → Tj . We conclude that
the exponent of the torsion part of Hi(UConfn(T ),Z) is given by the least
common multiple of the exponents of the torsion subgroups Ti,n(Tj), for
j = 1, . . . , n.
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Actually we can go a bit further in studying torsion of these homology
groups.

Proposition 2.2.7. Let G be a planar graph (a graph that can be embedded
in the plane with no self intersections), then H1(UConfn(G)) is torsion free.

This result is a corollary of Theorem 3.5 in [6]. A direct consequence of
this proposition is the following:

Corollary 2.2.8. Let T be any tree such that b(T ) ≤ 2. Then, for any couple
(i, n) ∈ N≥0 × N≥2, the groups Hi(UConfn(T ),Z) are torsion free.

Proof. If there are no branched vertices there is nothing to prove. The case
b(T ) = 1 is the case of star graphs and the result is proved in the next section,
so we are left to prove the case b(T ) = 2. Notice that for such trees, their
Swiatkowski complex is of the form:

. . . 0→ S̃2,3(T )→ S̃1,3(T )→ S̃0,3(T )→ 0

. . . 0→ S̃2,2(T )→ S̃1,2(T )→ S̃0,1(T )→ 0

. . . 0→ S̃2,1(T )→ S̃1,1(T )→ S̃0,1(T )→ 0

so torsion in homology can appear only for i ∈ {0, 1, 2}. But, for any n ≥ 2
we have that:

1. H0(UConfn(T )) = Z, straightforward computations similar to the ones
for star graphs in the next section.

2. H1(UConfn(T )) is torsion free by proposition 2.2.7, as trees are clearly
planar graphs.

3. H2(UConfn(T )) is torsion free for any k as it is a kernel of a morphism
between free Z-modules.

Remark 19. Notice that in these results about torsion in homology we are
always considering just trees and not graphs in general. In fact, the only
result that can be extended to graphs is corollary 2.2.6:

Corollary 2.2.9. Let G be a graph of genus g and (i, n) ∈ N≥0 × N≥2.
Then there is a positive integer ti,n,g that annihilates the torsion part of
Hi(UConfn(G),Z).

Remark 20. It’s fair to point out that such results about torsion in homology
for configuration spaces of trees can be all seen as a consequence of a bigger
theorem (cfr. [3]) which states:

Theorem 2.2.10. Let T be a tree. Then Hi(Uconfn(T )) is torsion free for any
couple (i, n) ∈ N≥0 × N≥2.
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Anyway, the proof of this theorem relies on different arguments not
mentioned here.

2.2.3 Example: Star graphs

Star graphs are the simplest case of graphs with branched vertices: they
have just one of them. On the other hand, they also play an important
role in studying configuration spaces of trees as they act like building blocks
(cfr. corollary 2.2.13). We present here some computations about their
configuration spaces as, in this easy case, we can make them explicit. For
example, we can write some lines of code to visualize the cubical complex
which is a deformation retract of these spaces and confront this graphic
result with some computations on their homology groups coming from the
Swiatkowski complex itself.
Here a figure representing the star graph Y3.

v

v1

v2 v3

Since there is only one branched vertex also the reduced Swiatkowski
complex will be not too complicated: no tensor products will appear. For
any i ∈ {1, 2, 3} call ei the edge vvi, call hi the half edge at the vertex
v corrisponding to the edge ei and hij the difference hi − hj , as required
by the reduced Swiatkowski construction. Here the last three rows of the
Swiatkowski complex for Y3.

0
⊕3

i=1 Zeih12 ⊕
⊕3

j=1 Zejh13
⊕3

i,j=1 Zeiej 0

0 Zh12 ⊕ Zh13
⊕3

i=1 Zei 0

0 0 Z∅ 0

∂(2,2) ∂(1,2) ∂(0,2)

∂(2,1) ∂(1,1) ∂(0,1)

∂(2,0) ∂(1,0) ∂(0,0)

Here ∂(i,j) : S̃(v)i,j → S̃(v)i−1,j is the induced differential between the
components respectively bigraded as: (i, j) and (i− 1, j). So, by Theorem
2.2.2, we have that:

Hi(UConfj(Γ)) =
Ker(∂(i,j))

Im(∂(i+1,j))
.

In the case of the graph Y3 it’s not so difficult to make some considerations
to understand better how these configuration spaces are made.
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• The first fact to notice is that we will always have H0(UConfn(Y3)) ∼= Z
for all n. Indeed, consider:

Ker(∂(0,n))

Im(∂(1,n))
=

⊕
1≤i1,..,in≤3 Zei1 · · · ein⊕3

j=2(
⊕

1≤i1,..,in−1≤3 Zei1 · · · ein−1(e1 − ej))
∼= Z.

It is easy to see that the relations induced when taking the quotient
with the images of the elements of the middle row will always give a
free Z-module on one generator. This tells us that at least all these
configuration spaces are always connected.

• When considering the first homology group things behave a bit differ-
ently. In general we have that H1(UConfn(Y3)) = Ker(∂(1,n)) and, as
∂(1,n) is a linear morphism between two free modules of finite rank over
Z, the kernel is again a free Z-module of finite rank. So no torsion can ap-
pear in this case. Moreover, when considering H1(UConf2(Y3)) we see
that ker(∂(1,2)) is generated by the element a123 := e1h23+e2h31+e3h12,
so in particular we have that H1(UConf2(Y3)) ∼= Z. Instead, when
considering n ≥ 2 particles it’s not true anymore that ker(∂(1,n)) is
free of rank 1, but the rank will be higher (for a concrete example of
the growth of the rank just consider Figure 2.3 in the following pages).
Notice in fact that ker(∂(1,n)) 6= 0 for any n as ∂(1,n)(e

(n−2)
i a123) = 0.

• The last easy observation is that Hi(UConfn(Y3)) = 0 for any i ≥ 2
and any n ∈ N.

In Figure 2.1 a picture of UConf2(Y3) where it is clear that the space is
homotopy equivalent to a circle: H1(UConf2(Y3)) ∼= Z. The white points
are to be considered as holes, and the dashed lines as open borders.

Figure 2.1: The space UConf2(Y3).
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Remark 21. To explain Figure 2.1, consider the following picture of Y3 with
th edges lableled as:

a

c b

Notice that when considering configurations of two particles on Y3 with the
condition that they must lie in two different edges (and their order doesn’t
count), they define the space:

a
b

c

ab

bc

cd

And when adding the configurations of two particles lying on the same
edge, we are adding the missing open flags (half squares as the order doesn’t
count) of figure 2.1.
Remark 22. All the consideration made above for the star graph Y3 naturally
generalize to star graphs Yk for any k ≥ 3. In particular, these configuration
spaces are always connected, their first homology groups are always torsion
free and all higher homology groups vanish. Summarizing:

dimh(UConfn(Yk)) = 1, ∀n ≥ 2, k ≥ 3.

Here with dimh(X) we intend the homological dimension of the topological
space X, defined as the biggest interger n such that Hn(X,Z) 6= 0.

This last result fits with with a more complete version of Theorem 2.2.1
(see [13]), which states:

Theorem 2.2.11. Let Γ be a graph, n ∈ N and let b(Γ) be the number of
vertices of valence at least 3. Then:

• There is a cubical complex KnΓ of dimension = min(b(Γ), n) such that
it embeds as a deformation retract into UConfn(Γ);

• π1(UConfn(Γ)) contains a subgroup isomorphic to Zk, where k =
min(b(Γ), dn2 e).

Remark 23. As a consequence we have that if n ≥ 2b(Γ) then:

dimh(UConfn(Γ)) = b(Γ).
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This is our case as b(Yk) = 1, for all k ≥ 3. So we can conclude that
configuration spaces of star graphs are homotopic to connected buquet of
circles, so actually homotopic to graphs themselves (cfr. Figures 2.2 and 2.3).

Notice that when dealing with star graphs we can define the following
FI-modules for any couple (i, k) ∈ N≥0 × N≥2:

Wi,k : FI→ModZ

[n] 7→ Hi(UConfk(Yn)) .

Indeed, for any injection [n] ↪→ [m] we always have an inclusion morphism
UConfk(Yn) ↪→ UConfk(Ym) by forgetting m− n edges and this induces a
map in homology, for any index i ≥ 0.

Theorem 2.2.12. Let k ∈ N≥2. Then the FI-module W1,k is finitely gener-
ated in degrees ≤ 3.

Proof. We have to show that H1(UConfk(Yn)) is generated by the images
of maps H1(UConfk(Y3))→ H1(UConfk(Yn)), induced by embeddings like
Y3 ↪→ Yn. We proceed by induction on n, noticing that the base cases are
already proved (for any n ≤ 3 the result is trivial). Let a be any element
in S1,k(Yn) such that ∂(a) = 0, we can write such elements as

∑n
i=1 pih1i

with pi ∈ Z[E(Yn)] and h1i = h1 − hi, difference of half edges. The condition
∂(a) = 0 translates as:

∂(a) =

n∑
i=1

pi(e1 − ei) = 0,

which is satisfied if and only if:
n∑
i=1

pi = 0 and
n∑
i=1

eipi = 0.

For each i ≤ n−2, we write pi = (en− en−1)p′i+ ri, where ri does not involve
the variable en. Now define ai,n−1,n := eihn−1n + en−1hni + enhin−1 and
notice that ∂(ai,n−1,n) = 0. We can rewrite a as:

a =
n−2∑
i=1

(p′iai,n−1,n + rih1i) + qn−1h1n−1 + qnh1n,

where

qn−1 := pn−1 −
n−2∑
i+1

(ei − en)p′i and qn := pn −
n−2∑
i+1

(en−1 − ei)p′i.

Now rewrite also:

qn−1 = enq
′
n−1 + rn−1 and qn = enq

′
n + rn,
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where rn and rn−1 do not involve the variable en. Then considering terms
involving en in the first two equations we have:

en(q′n−1 + q′n) = 0 and en−1q
′
n−1 + enq

′n+ rn = 0

which holds if and only if:

(en − en−1)q′n + rn = 0.

Since rn does not involve the variable en, it follows that q′n = rn = 0, whence
qn = 0. We further conclude that q′n−1 = 0 and so qn−1 does not involve
thevariable en. So, a−

∑n−2
i=1 ai,n−1,n does not involve en or h1n and so must

lie in the image of maps induced by inclusions Yn−1 ↪→ Yn that miss the nth

edge. Thanks to the inductive step we conclude.

Corollary 2.2.13. Let T be any tree and k ∈ N≥2. Then H1(UConfk(T ))
is generated by images of maps H1(UConfk(Y3))→ H1(UConfk(T )) induced
by embeddings Y3 ↪→ T .

The proof of this theorem can be found in [1]. It’s a proof by induction
on b(T ), the number of branched vertices of T . The base case (b(T ) = 1) is
proved by the previous theorem, but for the inductive step some more theory
(that is not mentioned in this work) is needed.
Remark 24. Notice that corollary 2.2.13 can be restated as: the T op-module
T 7→ H1(UConfk(T )) is generated in degrees ≤ 3, for any k ≥ 2. This
could suggest that proposition 2.2.7 (when considering trees) can be seen
as a direct consequence of this result, indeed consider again the submodule
T 7→ Tor(H1(UConfk(T ))) and the fact that torsion doesn’t appear in
H1(UConfk(Y3)). But this is wrong: proposition 2.2.7 is proved by other
means and such a conclusion would be in contrast with remark 10.
Example 2. As said before, configuration spaces of star graphs are homotopic
to graphs themselves (here we will consider only the unordered configuration
sapces). The definition of deformation retract, at least in the case of these
particularly simple graphs, is quite easy to translate into some lines of code
so that we can really visualize how these spaces changes while varing the
number of edges or the number of particles considered. Here the software
Wolfram Mathematica have been used to draw these graphs.
Consider configurations of n particles on a star graph with e edges. The idea
is to consider the 0-cells and the 1-cells described before essentially as lists of
numbers. Every edge corrispond to a number in {1, . . . , e} and let V be the
only branched vertex. We start by constructing all the 1-cells: start from the
lists made of all the combinations with repetitions of n− 1 elements taken
from {1, . . . , e} (the fixed particles) and then for each one of them create
e lists made by appending each time, as the last element, one number in
{1, . . . , e} (the "moving" particle).
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CELL1[e_, n_] := Module[{},
comb[x_, y_] := With[{t = x, k = y},

Join @@ Table[IntegerPartitions[s, {k}, Range[t]],
{s, k, t k}]];

f[a_, b_] := Append[a, b];
cell[t_, k_] := Flatten[Table[Map[f[#, i] &, comb[t, k]],

{i, 1, t}], 1];
cell[e, n - 1]]

Now from each one of these 1-cell we want to create the two 0-cells that are
its vertices. So for each 1-cell list we create a list made of two 0-cells lists:
one is the same list of the 1-cell (the "extra" particle is in the edge) and one
is the list of the 1-cell where the last element is replaced by V (the "extra"
particle is in the branched vertex).

CELL0[e_, n_] := Module[{},
g[x_] := {x, Append[Delete[x, -1], V]};
g1[z_, y_] := Map[g, CELL1[z, y]];
g2[a_, b_] := Map[Sort, Flatten[g1[a, b], 1]];
g3[c_, d_] := Partition[g2[c, d], 2];
g3[e, n]]

Finally just some lines of code to rewrite the couples of vertices in the way
that Mathematica needs to draw a graph.

cub_complex[e_, n_] := Module[{},
edges[{x_, y_}] := UndirectedEdge[x, y];
edges1[a_, b_] := Map[edges, CELL0[a, b]];
cub_complex[c_, d_] := Graph[edges1[c, d]];
cub_complex[e, n]]

This last module gives as output a drawing of the cubical complex which
embeds as a deformation retract of the unordered configuration space of n
particles of the star graph on e edges. Considering the examples presented in
the figures we notice that as long as the number of edges is fixed to 3 and we
let n grow (Figure 2.2), Mathematica is able to draw the graph so that there
are no self intersections between the edges, so for example it’s really easy to
visualize the "holes" of it. Instead, when the number of edges is bigger than
3 (Figure 2.3), self intersections appear and the graph becomes really messy
and almost impossible to read. For the pourposes of this work what we are
really interested in studying of these configuration spaces are their homology
groups. When dealing with star graphs the only interesting homology group
to consider is the first one, for which we already know it is free of finite rank.
So, as this rank is equal to the genus of the cubical complex we just need to
compute this last quantity (recall that for any graph G the genus is equal to

45



the difference between the number of edges of G and the number of edges of
a spanning tree).

genus[G_] := Module[{},
h1[x_] := EdgeCount[x] - EdgeCount[FindSpanningTree[x]];
h1[G]]

In Figure 2.4 and Figure 2.5 some examples of how the genus of the cubical
complex varies when considering an increasing number of particles (n) or of
edges (e), ie the growth of the rank of H1(UConfn(Ye)).
Remark 25. By theorem 2.2.12 we know that the FI-module:

[n] 7−→ H1(UConfk(Yn))

is finitely generated, so by theorem 2.1.9 we expect that the growth of the rank
of H1(UConfk(Yn)) (for any fixed k) is bounded by a polynomial. In figure
2.5 we notice how the rank seems to be bounded by a cubical polynomial
when k = 3.

Figure 2.2: In order the cubical complexes: K2Y3, K3Y3 and K10Y3.

46



Figure 2.3: In order the cubical complexes: K2Y4, K4Y4 and K8Y6.
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Figure 2.4: Comparison between the growth of the genus of the cubical
complexes KnY3 and KnY4, also related to n2.
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Figure 2.5: Growth of the genus of K3(Yn) compared to n2 and n3.
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Chapter 3

Groups acting on trees and
their configuration spaces

In this last chapter we consider actions of (finite) groups on trees. We
notice that these actions induce actions also at the level of configuration
spaces turning their homology groups into k[G]-modules. We show that we
can define a category out of this setting for which some Noetherianity related
properties are studied. We introduce the concept of orbit configuration space
of trees and we prove some relations between quotients of these spaces. We
conclude this chapter by showing some examples of such quotients in the
simple case of the symmetric group S3 acting on the star graph Y3.

3.1 A Noetherianity result

Definition 3.1 (Group action on a tree). Let G be a group and T be a tree.
G acts on T if there are maps

G× V (T )→ V (T )

(g, v) 7−→ g · v

G× E(T )→ E(T )

(g, e) 7−→ g · e

such that both defines a group action on the sets V (T ) and E(T ) and these
actions are compatible: if g · v1 = v′1 and g · v2 = v′2 where v1, v2 are vertices
of the edge e, then v′1, v′2 are vertices of the edge g · e.

Remark 26. Such an action is called free if whenever g ·x = x holds, it implies
that g = 1G.
One of the most important theorems about groups acting on trees (cfr. [12])
states that an action of a group on a tree is free if and only if the group is

49



free itself. So in particular when considering finite groups acting on trees,
these actions will never be free. We are not really interested in this theorem
itself, but as the groups we will consider in the rest of the section will always
be finite it’s fair to point out that all the actions will never be free.

It’s now natural to think whether one can define a category out of this
setting and in case which kind of combinatorial properties this category could
have.

Definition 3.2. Fix a group G and consider the trees T that admits a
G-action. A contraction f : T1 → T2 between such trees is G-equivariant if
f(g · v) = g · f(v) for any v ∈ V (T1) (and analogously for the edges). We
can so define the category GT as the category whose objects are trees that
admits a G-action and morphisms are G-equivariant contraction of trees.
Analogously define GRT as a full subcategory of RT .

Remark 27. Notice that GT is naturally a subcategory of the already defined
category T .

Theorem 3.1.1. Let G be a group and k any Noetherian ring. The repre-
sentation category Repk(GT op) is Noetherian.

Proof. Recall from proposition 2.1.3 that the category PT is Gröbner and
that the forgetful functor PT → T is essentially surjective and respect
property (F ). Now let GPT be the full subcategory of PT whose objects are
planar rooted trees that adimts a G-action and morphisms are G-equivariant
morphisms of planar rooted trees and analogously define GT to be the
corrispondent full subcategory of T. Again we have that the forgetful functor
GPT→ GT is essentially surjective and satisfies property (F ). We now claim
that GPT is Gröbner. Indeed, the faithful inclusion functor i : GPT ↪→ PT
has property (S): let f : T1 → T2 and g : T1 → T3 be morphisms in GPT
and let h̃ : i(T2)→ i(T3) be such that i(g) = h̃ ◦ i(f). Then as both i(g) and
i(f) are G-equivariant then so must be h̃, implying that there is h : T2 → T3

in GPT such that g = h ◦ f . Now, by proposition 1.2.11 we have that GPT
is Gröbner and so by what observed before GT is quasi-Gröbner. Similarly
to proposition 2.1.1 we also have that the categories GT and GRT op are
equivalent, so both are quasi-Gröbner. The forgetful functor GRT op → GT op
is essentially surjective satisfing property (F ), so GT op is quasi-Gröbner and
we can conclude that Repk(GT op) is Noetherian.

Remark 28. For any couple (i, n) ∈ N ≥ 0× N≥2 we can define the following
representation:

GMi,n : GT op →ModZ[G]

T 7→ Hi(UConfn(T ),Z).
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Since the group G is finite we have that Z[G] is a Noetherian ring, so this
module is an object of the Noetherian category RepZ[G](GT op).

3.2 Orbit configuration spaces and quotients

Notice that when dealing with graphs in general we can always consider
their embedding into a real space, the so called realization (Real(·)). A
compatible group action on a tree T naturally induces a group action on
Real(T ). This allow us to introduce the so called orbit configuration spaces,
as a group action on Real(T ) induces a group action on the configuration
space itself.

Definition 3.3. Let G be a group acting on T a tree. We call

GConfn(T ) := {(x1, .., xn) ∈ Tn : Gxi ∩Gxj = ∅ ∀i 6= j}

the nth-orbit ordered configuration space. Analogously we call

GUConfn(T ) := {(x1, .., xn) ∈ Tn : Gxi ∩Gxj = ∅ ∀i 6= j}/Sn

the nth-orbit unordered configuration space.

Remark 29. Notice that GConfn(T ) (resp. GUConfn(T )) is a subspace
of Confn(T ) (resp. of UConfn(T )), so they are endowed with the natural
subspace topology.

When considering actions of groups on spaces is always natural to ask
who is the quotient space. In this case we can really consider several ways to
construct some quotient spaces out of the group action on T .

• We can consider Confn(T/G), the configuration space of the quotient
tree T/G;

• Since G acts on Real(T ), we can consider the induced action of G on
Confn(T ), and then take the quotient: Confn(T )/G. The induced
actions works like this: g · (x1, .., xn) := (g · x1, .., g · xn);

• We still have a G-action on GConfn(T ), so we can even consider the
quotient Gconfn(T )/G;

• Finally, on GConfn(T ) we also have a natural action of the group Gn,
defined in this way: (g1, . . . , gn) · (x1, . . . , xn) = (g1 · x1, . . . , gn · xn).
Notice first that this action is not defined on Confn(T ), as it may
happen that there are g, g′;x, x′ such that g · x = g′ · x′, which is in
contrast with the definition of configuration space.

One first question that naturally arises is wheter some of these spaces are
related in some topologically interesting ways.
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Example 3. Let T be a tree. The following holds:

Confn(T/G) ∼= (GConfn(T ))/Gn.

Indeed, recall that GConfn(T ) = {(x1, . . . , xn) ∈ Tn : Gxi 6= Gxj i 6=
j} = {(x1, . . . , xn) ∈ Tn : [xi]G 6= [xj ]G i 6= j}, where by [x]G we mean
the equivalence class of the element x induced by the group action G on T
(which is the orbit Gx). On the other hand, we have that Confn(T/G) =
{([x1]G, . . . , [xn]G) ∈ (T/G)n : [xi]G 6= [xj ]G i 6= j}. Consider the following
map:

f : GConfn(T )/Gn → Confn(T/G)

[(x1, . . . , xn)]Gn 7−→ ([x1]G, . . . , [xn]G)

First of all, f is well defined as if (x1, . . . , xn) ∼Gn (y1, . . . , yn) we have that
there exists (g1, . . . , gn ∈ Gn) such that yi = gixi for any i = 1, . . . , n; so
f([(y1, . . . , yn)]Gn) = ([y1]G, . . . , [yn]G) = ([x1]G, . . . , [xn]G) = f([(x1, . . . , xn)]Gn).
Moreover, this map is continuous and has a continuous inverse defined as:
f−1(([y1]G, . . . , [yn]G)) = [(y1, . . . , yn)]Gn and from here the homeomorphism.

Remark 30. Notice that the same proof actually works when considering
unordered configuration spaces, so:

UConfn(T/G) ∼= (GUConfn(T ))/Gn.

Now, consider the spaces UConfn(T ), UConfn(T )/G and the following
theorem (cfr. [10]):

Theorem 3.2.1. Let X be a simplicial complex and G a finite group acting
simplicially on it (for all v ∈ V (X), the map v 7→ g · v is a simplicial map).
Then:

Hk(X/G;Q) ∼= (Hk(X;Q))G and Hk(X/G;Q) ∼= (Hk(X;Q))G.

The idea now is to show that we can apply this theorem when considering
X = UConfn(T ). Clearly this configuration space is not a simplicial complex,
but the theorem holds when instead of UConfn(T ) we consider the cubical
complex Kn(T ). Hence, if we are able to show that we still have an homotopy
equivalence when passing to the quotient ( Kn(T )/G ∼ UConfn(T )/G) we
would conclude that:

Hk(UConfn(T )/G;Q) ∼= (Hk(UConfn(T );Q))G

Hk(UConfn(T )/G;Q) ∼= (Hk(UConfn(T );Q))G.

Definition 3.4. Let G be a group. A G-CW structure on a toplogical space
X with an action of G is a CW structure on X such that cells are permuted
by the group action.
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Theorem 3.2.2 (cfr. [7]). A map f : X → Y of G-CW complexes is a
G-equivariant homotopy equivalence (ie, the quotients X/G and Y/G are still
homotopic) if and only if fH : XH → Y H is an homotopy equivalence for
every H ≤ G.

We want to apply this theorem with X = Kn(T ), Y = UConfn(T ) and
f the embedding i : Kn(T )→ UConfn(T ) described in section 2.2.1. To do
so we need to do three things: show that both Kn(T ), UConfn(T ) have the
structure of G-CW complexes, show that the embedding i is G-equivariant
and finally that all the iH are still homotopy equivalences.

1. Kn(T ) has naturally a CW structure. We need to show that G permutes
its cells. Let F = (f, S) a cell, seeing Kn(T ) as embedded inside
UConfn(T ) we have that the action of g ∈ G sends F = (f, S) to the
cell g ·F = (f ◦g−1, g(S)). Here g denotes both the element of the group
and its corrispondent automorphism in Aut(Kn(T )). So g ·F is again a
cell of the same dimension of F . Now we need to give a CW-structure
on UConfn(T ). Let the 0-cells be all the possible configurations of
n points on T , the 1-cells be all the possible configurations of n − 1
points on T together with the choice of an edge where a particle is
moving, and so on similarly to how we defined the poset Pn(T ). This
gives a CW-structure on UConfn(T ) (notice that this CW-complex
is not finite) which, similarly to what just said for Kn(T ), is also a
G-CW-structure.

2. Recall that the embedding i : Kn(T )→ UConfn(T ) was defined from
the collection of embeddings iF : F → UConfn(T ), for every face
F . We just need to show that any such iF is G-equivariant, ie that
ig·F (g · x) = g · iF (x). This becomes clear when writing them down:

g · iF (x) = {g · b : f(b) = 1} ∪
⋃
e∈ET

Dg·e(f̃(e); (τ0(x)(s))|s|=e)

and

ig·F (g·x) = {b : f◦g−1(b) = 1}∪
⋃
e∈ET

De( ˜f ◦ g−1(e); (τ0(g·x)(s))|g·s|=e).

3. Consider iH : Kn(T )H → UConfn(T )H . By adapting the definitions of
the retraction and of the homotopy, already used in a previous section,
restricting them to Kn(T )H and UConfn(T )H this gives an embedding
of Kn(T )H as a deformation retract into UConfn(T )H , for any H ≤ G.
From here the homotopy equivalences required by the theorem.

We conclude by proving theorem 3.2.1
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Proof of Theorem 3.2.1. As over Q homolgy and cohomolgy are one the dual
to the other, by proving one of the two claims, automatically is proved also
the other. Indeed, suppose Hk(X/G,Q) ∼= (Hk(X,Q))G then:

Hk(X/G,Q)∗ ∼= Hk(X/G,Q) ∼= (Hk(X,Q))G ∼=

∼= (Hk(X,Q)∗)G ∼= (Hk(X,Q)G)∗,

which implies that:

Hk(X/G,Q) ∼= (Hk(X,Q))G.

We implicitely used the fact that given a vector space V and a group G acting
on it, then (V ∗)G ∼= (VG)∗ (the proof basically relies on the isomorphism
(V/W )∗ ∼= W 0). Subdividing X appropriately we can assume that X/G
is again a simplicial complex with p-simplices in bijection with G-orbits of
p-simplices of X, for any p ≥ 0. The action of G on X makes the simplicial
cochain complex C∗(X,Q) into a cochain complex of Q[G]-modules. By the
bijection mentioned above we have:

C∗(X/G,Q) ∼= (C∗(X,Q))G.

Indeed, in general recall that the simplicial chain Ck(X) is a free abelian
group with base elements given by the k-simplices, the isomorphism is given
by:

Ck(X/G;Q)→ (Ck(X,Q)G

[σk] 7−→
∑
g∈G

g · σk

and then dualized to pass to cochains. The theorem now is a direct conse-
quence of the following lemma.

Lemma 3.2.3. Let G be a finite group an C∗ a cochain complex of Q[G]-
modules. Then:

(H•(C∗))G ∼= H•((C∗)G).

Proof. Whenever G is a finite group it has finitely many irreducible repre-
sentations over Q, call them V1, . . . , Vp. For any Q[G]-module we can hence
decompose it uniquely as V = V k1

1 ⊕ · · · ⊕ V
kp
p . So each term of C∗ has a

decomposition of this type, in which p just depend on the group G, so p is
"the same" for all terms. This decomposition is respected by the coboundary
map so the component Vi of Hk(C∗) is isomorphic to the kth cohomology
module of the cochain complex made by the components Vi of all the terms
of C∗. This in particular is true when consdiering the trivial representation,
hence when considering Vi = V G, and we conclude.

Summarizing we can state the following theorem.
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Theorem 3.2.4. Let G be a finite group and T a tree. Then for any couple
(k, n) ∈ N≥0 × N≥2:

Hk(UConfn(T )/G;Q) ∼= (Hk(UConfn(T );Q))G

Hk(UConfn(T )/G;Q) ∼= (Hk(UConfn(T );Q))G.

3.3 Example: S3 acting on Y3

Now some examples to show how the various quotients mentioned above
look like in the simple case of the symmetric group S3 acting on the star
graph Y3 by permuting the 3 edges (notice that the central vertex is a global
fixed point).

• Consider the space: UConf2(Y3/S3). Notice that the quotient tree
Y3/S3 is the one edge tree, so UConf2(Y3/S3) can be seen as a square
minus the diagonal and then folded (identified) along it, hence homo-
topic to a point.

• Consider the space: S3UConf2(Y3). This is the subspace of UConf2(Y3)
made by cutting out all and only the configurations of two points lying
on two different edges at the same distance from the central vertex.
Recall remark 21, from that picture we need to cut along the following
dashed diagonals:

which gives us a space homotopic to three points.

• Consider the space S3UConf2(Y3)/S2
3 . This space is given by folding

(identifing) in the previous picture all the 6 triangles to a single one of
them, and then folding it together with the ’flag’ at one of his sides.
This actually is a space homeomorphic to the space obtained by the
identification of the two triangles coming from cutting the diagional of
a square. So as in remark 30: S3UConf2(Y3) ∼= UConf2(Y3/S3).

• Consider the space S3UConf2(Y3)/S3. This space is given by the
following foldings (identifications):

– Triangle F → triangle A, along their only common edge;

– Rhombus ED → rhombus BC, along the dashed edge they have
’in common’;
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– The triangle C → triangle B, along their only common edge.

A
B

C

DE
F

This give a space homotopic to two points (a square minus the diagonal).

• Consider the space UConf2(Y3)/S3. This space is given by the following
identifications, where we identify objects of the same colours, arrows
(respecting the direction) and triangles with the same letter.

A
A

A
A

A

A

These identifications give a space which is homotopic to a single point.

All the pictures are always missing the ’flags’, but their behaviour in these
quotient spaces should be clear enough from what said.
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Open questions

1. By the end of chapter 1 we introduced the linear categories VIR and
VAR and proved that their representation categories are Noetherian.
What can we say about Noetherianity when considering other simi-
lar linear categories? Consider for example the category of finitely
generated modules over a finite ring R.

2. Recall remark 28. Notice that even though we know that the T op-
modules

Mi,n : T op →ModZ

T 7→ Hi(UConfn(T ),Z)

are finitely generated, it’s not straightforward to get the same result
for the corrispondent GT op-modules GMi,n. Notice that a similar ap-
proach to the one used for proving the same result for the category
T op (cfr. theorem 2.2.5) may not work. Even if we can define the
GT op-module T 7→ S̃(T )i,n (the Swiatkowski complex admits natu-
rally a G-action), we can’t adapt the proof to our case: that proof
relies on the fact that we can consider simple contractions that do not
contract a ’distinguished’ edge, which is somethiung we don’t know
in our case. Notice in fact that in the category GT op we don’t have
much control over the contractions (not all trees admits a G-action).
So, what can we say about the finitely generation of the modules GMi,n?
(Notice that this would have nice implications as the categoryRepZ[G](GT op)
is Noetherian)

3. As said in remark 16, it’s not natural to define a morphism:

Hi(UConfn(T2))→ Hi(UConfn(T1)),

induced by a contraction T1 → T2. So, is it possible to define a GT op-
module T 7→ Hi(GUConfn(T ))? If yes, is it a submodule of GMi,n?
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