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Introduction

Recurrent events data are often encountered in biomedical settings,

where individuals may also experience a terminal event such as death.

Frequently, counting the observed number of adverse recurrent events is

particularly relevant when one would like to assess the efficacy of a new

treatment in reducing such events. In regard to this, a motivating data

example is the LEADER study where randomized clinical trials were

performed to assess whether the use of a drug based on Liraglutide

reduces the number of myocardial infarctions (Marso et al., 2016). To

address such a question a useful estimand for recurrent events data is

the marginal mean of the cumulative number of recurrent events of a

specific type, considering also the possible presence of a terminal event,

as described in Cook and Lawless (1997); Ghosh and Lin (2000). A

broader discussion of the analysis of recurrent events can be found in

Cook et al. (2009); Cook and Lawless (2002). Recently, it was shown

how the marginal mean number of recurrent events can be estimated

efficiently by augmented estimators, which are then associated with

more precise confidence intervals (Cortese and Scheike, 2022).

Recently, in the pharmaceutical industry there has been a renewed

interest in studying recurrent events data more efficiently and correctly

(Fritsch et al., 2021; Akacha et al., 2018; Schmidli et al., 2021). In

regard to this, this thesis focuses on randomized clinical trials (RCTs),

where it is often of interest to estimate the treatment effect of a new

drug. In the RCT setting, the average causal treatment effect can

be measured by the difference in the marginal means of the number of

recurrent events between treated and untreated subjects. This difference
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is an important estimand that can be estimated by comparing the simple

marginal means estimator of each group, separately.

In this work, we show how to improve the efficiency of such estimand

and present a novel doubly augmented estimator, which is enriched by

two augmentation terms. The first augmentation term is related to

missing data due to right censoring, and for each subject, uses history

information that is collected dynamically over time and the auxiliary

covariates. The second augmentation term exploits the randomization

of the treatment. We demonstrate the important result that the two

different augmentation terms are orthogonal, and thus contribute with

different sources to reducing the variance of our estimators. As a con-

sequence, we can study them separately. The two augmentation terms

are based on working regression models and we show that, even if these

models are misspecified, we still obtain a reduced variance for our doubly

augmented estimators, at least asymptotically, compared to the simple

non-augmented RCT estimator. In addition, the proposed estimators

are consistent as long as the censoring adjustment is correct; see also

Rosenblum and Steingrimsson (2016); Blanche et al. (2022).

We start by considering two different types of augmented estima-

tors for the marginal mean of recurrent events: the augmented IPCW

estimator that has been proposed by Cortese and Scheike (2022) in

a more general context with respect to RCTs; an RCT augmented

estimator based on semiparametric efficiency theory (Tsiatis, 2006),

where randomization is the cause of the missing data setting. Then, to

construct the proposed doubly augmented estimator, we take the aug-

mented IPCW estimator and add the augmentation term of the RCT

estimator that can improve the efficiency of the estimates furthermore.

The first augmentation that improves the efficiency with respect to the

right censoring, is based on a dynamic regression augmentation that is

easy to compute, but as pointed out in Cortese and Scheike (2022), to

get an improvement it is crucial that this is done dynamically over time.

We provide a specific formula for the optimal gain that can be achieved
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from this augmentation and demonstrate that the regression augmenta-

tion will always improve the asymptotic variance of the estimator. The

second augmentation is achieved by utilizing the randomization and

has a structure that is well understood, see for example (Tsiatis, 2006;

Van der Laan and Robins, 2003; Robins and Rotnitzky, 1992). We also

provide a specific formula for the optimal gain that can be obtained due

to randomization.

The optimal gain in efficiency can only be obtained if in the aug-

mentation term, the conditional model of the response, given covariates

and treatment, is known. In practice, however, this is not feasible and

we must use a working model. We show that if the working model

is chosen appropriately, even if misspecified, we still obtain consistent

estimators that will improve on the asymtotic variance, with respect to

the simple RCT estimator. When the treatment difference is of interest

then the working models should be chosen specifically for this purpose.

In particular, we propose two alternatives based on G-estimation:

the first is a simple IPCW estimator and the second one comes from

Gosh and Lin model with IPCW. We will apply these estimators to

the marginal mean of recurrent events for treated, untreated groups

and the difference of them. We will compare the efficiency between the

simple marginal estimator without any augmentations, the one with one

augmentation and the last one with the double augmentation, showing

that we can gain in terms of efficiency, if the working model used for

the augmentation is correctly specified and thanks to the orthogonality

between the two augmented terms.

We will apply our methods to the LEADER clinical trial, a study that

investigates the efficacy of a new treatment based on the Liraglutide

drug in reducing cardiovascular disease in type-two diabetes patients.

A randomized clinical trial was performed in which patients with type-

two diabetes and high cardiovascular risk were randomly assigned to

receive Liraglutide or placebo. Although the primary goal was to study

the treatment effect on cardiovascular mortality, other cardiovascular
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events of interest that can occur more than once over time are very

relevant to study disease progression. Thus, it is also of great interest

to investigate whether the treatment can reduce the number of cardio-

vascular recurrent events. See Furberg et al. (2022) for a discussion on

different relevant estimands and methodology for this study, and Marso

et al. (2016) for additional details. The LEADER trial considers two

different outcomes of interest: the number of non-fatal myocardial in-

farctions (MI outcome), which is a classical recurrent events outcome,

with the possible presence of death as a terminal event; the number of

both non-fatal myocardial infarctions, non-fatal strokes and cardiovas-

cular deaths (3-p MACE outcome), still in presence of death from other

causes as a terminal event. Here, the 3-p MACE outcome is a so-called

composite outcome that combines together the recurrent events and a

type of terminal event of specific interest, see Mao and Lin (2016) for

this approach. Consequently, in this context, non-cardiovascular death

plays the role of a competing-risk event. The proposed estimation pro-

cedure for improving efficiency can also be applied to the composite

outcome. We discuss how to treat this specific setting and show that it

does not change so much from the arguments presented for the simple

outcome.

Extensive finite sample simulation studies demonstrate that there

are indeed important gains in efficiency in settings that mimic those

of the LEADER data mostly for the composite 3-p MACE outcome

that we considered in different simulations, since this type of events is

more of interest respect the simple MI and the results we obtained were

comparable.

The thesis is structured as follows. Chapter 1 describes the classical

non-augmented estimator, the IPCW augmented estimator and the RCT

augmented estimator, the doubly augmented estimator together with

the possible choices for the working model of the augmentation terms.

Chapter 2 shows the results of the simulation studies, for the 3-p MACE

outcome; the performance of the proposed estimators in finite samples,
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and in particular their gain in efficiency, are reported. The worked

example about the LEADER clinical trial is described Chapter 3. Finally,

Chapter 4 reports a conclusion with final remarks.
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Model formulation

Let D denote the survival time (the terminal event), and let N ∗(t)

count the number of recurrent events observed over a time-period [0, t],

where t ≤ τ . Due to the terminal event, we only observe the recur-

rent event processes up to t ∧ D, where a ∧ b = min(a, b), such that

N ∗(t) = N ∗(t ∧ D) because subjects will only have events while still

alive. Observations may also be censored, thus only making it pos-

sible to observe the processes up to the censoring time C. Let us

define ∆ = I(D ≤ C), T = D ∧ C, and let N(t) = N ∗(t ∧ T ) be

the number of events observed while under risk and define the at-risk

process Y (t) = I(T ≥ t). We also define as Gc(t) the survival dis-

tribution of the censoring time C and for simplicity of notation, we

assume that it does not depend on any of the covariates. In addi-

tion, let us consider the cumulative rate Λc(t) and the counting process

N c(t) = I(T ≤ t,∆ = 0) for the censoring time and the associated

martingale given as M c(t) = N c(t)−
∫ t

0 Y (s)dΛc(s).

We make the standard assumption that the right censoring is inde-

pendent of D and N ∗(t). Then we consider the dichotomous treatment

variable A that is equal to 1 for subjects treated with the new drug,

and equal to 0 for those treated with placebo. In addition, we con-

sider a vector of auxiliary covariates X. Let us assume that A and X

are independent, and this is achieved due to randomization. Hence,

we have that P (A = 1|X) = P (A = 1) = δ. Then, in the causal

inference framework, to define average causal treatment effects that

will be discussed later, we introduce the potential outcomes notation

for untreated and treated individuals (with assignment indicator A = a
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with a = 0, 1) and assume no unmeasured confounding. The potential

outcomes N ∗
i (t, a) and Yi(t, a) of an individual i, refer to the number

of recurrent events and to the at-risk indicator that would be observed

if the individual i was assigned to treatment a, for a = 0, 1.

Finally, we assume that our observations (Ni(t), Ti,∆i, Ai, Xi) are

independent replicates of (N(t), T,∆, A,X) for i = 1, ..., n and are

observed over the time interval [0, τ ] where τ > t. In addition, let

N•(t) =
∑n

i Ni(t) and Y•(t) =
∑n

i Yi(t) be the summary processes

over the considered sample.

Our final scope is to estimate the marginal means of the number

of recurrent events for treated and untreated, and the average causal

treatment effect. For causal inference, we need to consider the expected

mean µ(t, a) = E(N ∗(t, a)) of the potential outcome, interpreted as

the marginal mean of the number of recurrent events in the population

if treatment a was assigned to all the population. However, the ran-

domization in the RCT context allows us to assume that the treatment

assignment is independent of N ∗(t), D and X. Consequently, it holds

that µ(t, a) = E(N ∗(t, a)) = E(N ∗(t)|A = a) and our key quantity

of interest can be interpreted as the marginal mean of the number of

recurrent events among those individuals treated with a. Moreover, un-

der the independence assumption, the average causal treatment effect

can be measured by the difference of the marginal means in the treated

and untreated populations, as follows

µDiff(t) = µ(t, 1)− µ(t, 0) = E(N ∗(t)|A = 1)− E(N ∗(t)|A = 0).

In the following, first we describe the simple (non augmented) es-

timator for the marginal mean number of recurrent events. Then, we

illustrate and compare the two extended efficient estimators, the first

one based on IPCW augmentation and the second one based on RCT

augmentation. For ease of reading, the presentation of the simple es-

timator and IPCW augmented estimator is given, first, in general form

with standard notation, and then it is extended and adapted to deal

with the RCTs setting.
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2.1 The Simple estimator for the marginal

mean

The marginal mean number of recurrent events can be written as

µ(t) = E(N ∗(t)) =

∫ t

0

S(s)dR(s) (2.1)

where S(t) = P (D > t) is the probability of survival at time t and

dR(t) = E(dN ∗(t)|D > t) is the recurrent events rate among survivors.

This can correctly be considered a marginal mean because the increment

given by dR(t) at time t is not zero only if the terminal event time is

such that D > t, otherwise it is equal to zero.

A simple nonparametric estimator for the marginal mean number

of recurrent events given in (2.1) was proposed by Cook and Lawless

(1997) and after developed by Ghosh and Lin (2000). Later on, this

estimator will be regarded as a benchmark for comparing the augmented

estimators with. The simple estimator has the form

µ̂(t) =

∫ t

0

Ŝ(s)dR̂(s) (2.2)

where Ŝ(t) is the Kaplan Meier estimator and with

R̂(t) =
∫ t

0 Y
−1
• (s)dN•(s). It is asymptotically normal such that

n1/2{µ̂(t) − µ(t)} converges weakly to a mean-zero Gaussian process

with an asymptotic variance that can be written as

E (N ∗(t)− µ(t))2

+

∫ t

0

E
(
[H(s, t)− E (H(s, t)|D > s)]2 |D > s

)
S(s)

λc(s)

Gc(s)
ds (2.3)

where H(s, t) =
∫ t

s I(D > u)dN ∗(u) is the observed number of recur-

rent events from s to t∧D. This variance can be consistently estimated

by an IPCW estimator; see Cortese and Scheike (2022) for further de-

tails.
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In the RCT setting, the quantities of interest are µ(t, a), for a = 0, 1,

and they can be estimated by a simple RCT estimator that has the

same form as µ̂(t) given in (2.2), but computed only on observations

of treatment group a as follows:

µ̂(t, a) =

∫ t

0

Ŝ(s, a) dR̂(s, a), (2.4)

where Ŝ(s, a) is the Kaplan Meier estimator computed on the subsample

with treatment a, and R̂(s, a) =
∫ t

0 Y
−1
• (s, a)dN•(s, a) with Y•(t, a) =∑

iAiYi(t, a) andN•(t, a) =
∑

iAiNi(t, a) andNi(t, a) = N ∗(t∧T, a).

The estimator µ̂(t, a) is asymptotically normal with variance given by

equation (2.3), where in this case the involved quantities refer to the

subpopulation with treatment a and the conditional expectations are

written, given D > t and A = a.

Consequently, a simple RCT estimator for the average causal treat-

ment effect is obtained as µ̂Diff(t) = µ̂(t, 1)−µ̂(t, 0), i.e., the difference

between the simple RCT estimators for the two treatment groups.
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2.2 Introduction to inverse probability weight-

ing

2.2.1 Inverse probability of treatment weighting

To describe the use of inverse probability censoring weighting we start

from the inverse probability weight for treatment, that was borne in

the observational studies, specially case-control ones. In such type of

study, the goal is to see the difference of an outcome of interest between

Treated (cases) and Untreated (controls) subjects. It can happen often

that the number of case and control subjects are unbalanced; therefore,

the results that we would obtain should be biased. To avoid this issue

we can use a different technique to obtain a balanced sample of cases

and controls, like matching 1:n. However, this method requires taking

exactly n controls for every case and this should bring to a loss of infor-

mation because we have to consider exactly n · ncases, and they could

be lower than the number of controls in the original sample. Inverse

probability of treatment weighting can bypass this problem. It pro-

poses to use the entire number of Treated and Untreated but weighting

their outcome in a way that is the inverse of their propensity score for

the treatment’s assignment. To explain this point, we consider Y to

be the outcome of interest, A the dichotomous Treatment (A=1 for

Treated and A=0 for Untreated) and X a vector of different covariates.

Moreover, YA=1 and YA=0 are the outcome referred to the Treated and

Untreated subjects respectively. Then we define the inverse probability

weight, respectively, for Treated and Untreated as follow:

1

P (A = 1|X)
,

1

P (A = 0|X)
. (2.5)

The probabilities P (A = 1|X) and P (A = 0|X) can be estimated

in a naive way by the proportion of Treated and Untreated subjects in
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the sample, ignoring the covariates. Alternatively, a regression model for

the binary variable A with covariate vector X can be fitted and used to

predict the two propensity scores. Weighting the outcome Y as shown

previously, we obtain two new outcomes as follows:

ỸA=1 =
1

P (A = 1|X)
YA=1 (2.6)

ỸA=0 =
1

P (A = 0|X)
YA=0 (2.7)

Using this technique, the new outcome is comparable to the one

obtained from a sample with a balanced number of case and control

subjects. However, we have to consider that the weights depend on the

observed covariates X that could be also confounders, but they are also

susceptible to unobserved confounders.

2.2.2 The use of inverse probability weighting in

RCT setting

In this subsection we move to the context of randomized clinical trials.

This setting is completely different from observational studies, where

we can not know the experimental design of the study and the way with

which the subjects have been selected. Instead, in a randomized clinical

trial we decide the experimental design, and thus the way to select sub-

jects and to assign the Treatment of interest. Therefore, in that RCT

context we do not need a propensity score approach because randomiza-

tion of subjects, that will be Treated and Untreated, avoids the problem

of confounding and sample balance. However, often when we measure

our outcome along a specific follow-up time like in time to-event analy-

sis, or more specifically in recurrent events analysis, subjects can move

out from the study before the end: this is the case of right censored

data. In such a situation, using just observed outcomes, we could ob-

tain biased results due to the censoring that precludes the observation
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of the entire outcome. One approach that permits to solve this prob-

lem is based on an idea similar to the inverse probability of treatment

weighting that has been explained above. It consists on considering

the subjects that are not censored at a specific time t and weighting

their outcome Y (t) with the inverse probability of being uncensored at

t, G = P (C > t). Therefore, the new weighted outcome becomes:

Ỹ =
∆(t)Y (t)

G(t)
, (2.8)

where ∆(t) = I(C > t). This weighted outcome provides a new

pseudo-population adjusted for the censoring. This consents to avoid

biased results due to selection bias when we consider the simple ob-

served outcome Y (t) in presence of censoring. In general, we do not

know the distribution of the censoring time and thus, the survival func-

tion G(t) needs to be estimated. In this work we use the Kaplan-Meier

non-parametric estimator to estimate G(t).
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2.3 IPCW estimator

Using the approach proposed firstly by Tsiatis (2006) that treated cen-

sored observations as missing data, we can rewrite the estimator given

above in (2.2) as follows:

µ̂(t, a) =

∫ t

0

Ŝ(s, a)d̂R(s, a)

=
n∑

i=1

∫ t

0

Ŝ(s, a)Yi(s, a)
1∑n

i=1 Yi(s, a)
dNi(s, a)

=
1

n

n∑

i=1

∫ t

0

Yi(s, a)
1∑n

i=1 Ĝc(s, a)
dNi(s, a)

=
1

n

n∑

i=1

∫ t

0

ri(s, a)I(Di ≥ s, a)dNi(s, a), (2.9)

where Gc(t, a) is the survival distribution of censoring time C and

Ĝc(t, a) the respective Kaplan-Meier estimation. This is the so-called

IPCW estimator because it uses the inverse of survival probability of

censoring time C to weight the original data, giving us an alterna-

tive estimator unbiased that takes in consideration the censoring time

present in real data. Now we define the martingale process for the

censoring time C as MC
i (t, a) = NC

i (t, a)
∫ t

0 Yi(s, a)dΛ
C
i (s, a), with

NC
i (t, a) = I(Ti ≤ t, δ = 0). Using its property we can show that

the corresponding normalised estimator n1/2{µ̂(t, a) − µ(t, a)} can be

written in the following form:
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n1/2{µ̂(t, a)− µ(t, a)}

= n−1/2(
∑

i

∫ t

0

Yi(s, a)

Ĝc(s, a)dNi(s, a)
− µ(t, a))

= n−1/2(
∑

i

∫ t

0

I(Di > s)dN ∗
i (s, a)− µ(t, a))

− n−1/2
∑

i

∫ t

0

[Hi(s, t, a)− E(H(s, t, a))]
1

Gc(s, a)
dMC

i (s, a) + op(1)

(2.10)

where E[H(s, t, a)] = (E[Hi(s, t, a)]I(Di ≥ s, a))/S(s, a) with

Hi(s, t) =
∫ t

0 I(Di > u, a)dN ∗
i (u).

Consequently, the variance of such estimator is equal to

E(

∫ t

0

I(Di > s, a)dN ∗
i (s, a)− µ(t, a))2+

E(

∫ t

0

[Hi(s, t, a)− E(H(s, t, a))]
1

Gc(s, a)
dMC

i (s, a))
2, (2.11)

since the two terms are independent. The contribution of the Kaplan-

Meier estimator for Gc(s, a) to the influence function is the extra term

involving E[H(s, t, a)] in the martingale integral. As a consequence of

this, the terms Hi(s, t, a) are centred with respect to their conditional

mean E[H(s, t, a)], and thus the variance of the normalised estimator

is reduced, if compared with the variance of the same estimator where

the true Gc(s, a) is used. See Cortese and Scheike (2022) for major

details.
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2.4 The IPCW augmented estimator

We showed above that the simple estimator of the marginal mean num-

ber of recurrent events can be rewritten as an IPCW estimator, which

treats right censoring as a missing data problem. Using the results of

Tsiatis (2006); Van der Laan and Robins (2003); Robins and Rotnitzky

(1992), Cortese and Scheike (2022) proposed an extension of the sim-

ple IPCW estimator that consents us to improve the efficiency, using

the theory of missing data developed in the context of semi-parametric

theory. The efficient IPCW estimator is based on an augmented term

and is given as:

µ̃(t) = µ̂(t) +
1

n

∑

i

∫ t

0

Leff
i (s, t)

Ĝc(s)
dM̂C

i (s)

= µ̂(t) +
1

n

∑

i

∫ t

0

Leff
i (s, t)

Ĝc(s)
dNC

i (s), (2.12)

where the second term, the so-called augmentation term, is responsible

for the improved efficiency of the simple estimator µ̂(t). The most

efficient estimator is obtained when

Leff
i (s, t) = E[Hi(s, t)|Hi(s), Di > s)]− E(H(s, t)|D > s),

with Hi(s) being the history of the ith subject observed up to time s.

In Appendix A.1, we show that the efficient IPCW estimator reduces

the variance of the simple RCT estimator by the following quantity:

∫ t

0

E[(E (Hi(s, t)|Hi(s), Di > s)− E (Hi(s, t)|Di > s))2 |Di > s]S(s)
λc(s)

Gc(s)
ds.

(2.13)

Consequently, this reduction depends on the variation of the conditional

mean given the history.

From theoretical results, we know that the estimator µ̃(t) with

Leff
i (s, t) defined as above, is optimal in terms of efficiency, in the

sense that its asymptotic variance is the smallest one among the class

of regular asymptotically linear estimators. However, in practice, it will
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often be impossible to obtain the full efficiency gain since the condi-

tional mean Leff
i (s, t) is computationally difficult to obtain. Therefore,

we here use the suggestion in Bang and Tsiatis (2000) and extend it

to dynamic regression with time-varying coefficients. Then, to approx-

imate Leff(s, t), we consider dynamic regression modelling of H(s, t)

based on J predictors eT (s, t) = (e1(s, t), ..., eJ(s, t)). These predictors

will be auxiliary covariates and internal time-dependent covariates such

as, for example, the number of recurrent events up to time s, and possi-

ble interactions between these two types of covariates. This regression

model is clearly an approximation and will often provide a substantial

gain in efficiency, but it can not reach the efficiency bound of the most

efficient estimator. The augmented IPCW estimator based on dynamic

regression is computed as

µ̃r(t) = µ̂(t) +
1

n

n∑

i=1

∫ t

0

γ(s, t)T (ei(s)− ē(s)

Ĝc(s)
dNC

i (s), (2.14)

where γ(s, t) is a J-dimensional vector of time-varying regression co-

efficients, and ē(s) =
∑
Yi(s)ei(s)/Y•(s) is the at-risk average of the

predictors eTi (s) = (e1i (s, t), ..., e
J
i (s, t)). This estimator, although not

optimal, will be more efficient than the simple RCT estimator and, when

auxiliary covariates as well as heterogeneity from the history, such as the

number of recurrent events observed at time s, are chosen opportunely

as predictors, the gain in efficiency may be substantially high.

Our scope is to minimize the variance of the normalized estimator

n1/2(µ̃r(t) − µ(t)). Its influence function can be written appropriately

and the variance is minimized when the estimator of γ(s, t) is obtained

by regressing Hi(s, t)− E(H(s, t)|D > s) on ei(s)− ē(s). An explicit

formula of this optimal estimator and further theoretical details are given

in Cortese and Scheike (2022). In addition, the variance of µ̃r(t) can

be estimated consistently by

v̂ar(µ̃r(t)) = v̂ar(µ̂(t))− n−1

∫ t

0

γ̂(s, t)T Σ̃(s)γ̂(s, t)
1

Ĝ2
c(s)Y•(s)

dN•
c(s),

(2.15)
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where v̂ar(µ̂(t)) is the estimated variance of the simple estimator of

section 2.1 without the augmentation term and Σ̃(s) is the sample vari-

ance of the ei(s), for i = 1, . . . , n, among survivors. As a consequence,

we note that the dynamic-regression augmentation will always improve

the asymptotic variance, which is reduced by the second term in (2.15).

This term is indeed the estimator of the variance reduction given in

(2.13).

In the RCT setting, the augmented IPCW estimators described in

this subsection can be considered separately for the two treatment

groups. In this case, all the involved expected values are taken condition-

ally onD > t and A = a. The resulting estimators µ̃r(t, a), for a = 0, 1,

are computed as given in (2.14), by using only observations who received

treatment a. The regression estimators, here denoted with γ̂(s, t, a),

are computed doing regression with only observations in group a. The

estimators µ̃r(t, a) are asymptotically normal and similarly, the variance

estimator in (2.15) is computed separately for each treatment group.

Finally, an efficient IPCW estimator for the average causal treatment

effect can be obtained by the simple difference between the estimators

for the two treatment groups, i.e., by µ̃r,Diff(t) = µ̃r(t, 1)− µ̃r(t, 0).
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2.5 The RCT Augmented estimator

We now consider the RCT setting and here review some results about

efficient estimators in this case. As already pointed out, due to the

orthogonality that we will show in the next section, we can discuss RCT

estimators in the case of fully observed data disregarding the right cen-

soring. Doing so, the response of interest is the fully observed number

of recurrent events up to time t, denoted here with Zt = N ∗(t). In

the specific setting of randomized clinical trials, we can gain important

efficiency by using the fact that we have randomization, that is, that A

and X are independent.

Our interest is devoted to estimating the marginal mean number of

recurrent events among the treated subjects, µ(t, 1) = E(Zt|A = 1),

and among the untreated individuals, µ(t, 0) = E(Zt|A = 0). Note

that the response of interest and its marginal mean depend on t, but

for the estimators presented in this subsection, t is considered fixed. In

constructing an RCT estimator for the two marginal means, the effi-

ciency gain from randomization is obtained by an RCT augmentation

that involves the probability of treatment assignment δ, the observed

treatment indicator A, and a working model necessary to estimate a

conditional mean of the response of interest.

We here present the estimator for the marginal mean related to

the treated arm, while the estimator for the untreated arm is obtained

following similar arguments. We start by considering the inverse proba-

bility weighted complete-case estimator, µ̂c(t, 1) = n−1
∑n

i=1AiZt,i/δ.

Then, to obtain the augmented version of this estimator, recall that the

i-th efficient influence function is equal to:

ϕ(Zt,i) =
Ai

δ
Zt,i −

Ai − δ

δ
E(Zt,i|Xi, Ai = 1)− µ(t, 1)

=
Ai

δ
(Zt,i − E(Zt,i|Xi, Ai = 1)) + E(Zt,i|Xi, Ai = 1)− µ(t, 1)

=
Ai

δ
(Zt,i − µ(t, 1))−

Ai − δ

δ
(E(Zt,i|Xi, Ai = 1)− µ(t, 1)) ;

(2.16)
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see Tsiatis (2006). Therefore, in absence of right censoring, the efficient

estimator of µ(t, 1) is

µ̃rct(t, 1) = µ̂c(t, 1)−
1

n

∑

i

Ai − δ

δ
E(Zt,i|Xi, Ai = 1) (2.17)

This is an augmented IPW estimator and we note that the augmentation

term depends on the marginal mean E(Z|X,A = 1). The normalized

estimator of (2.17), n1/2(µ̃rct(t, 1)−µ(t, 1)) = n−1/2
∑

i ϕ(Zt,i)+op(1),

is also asymptotically normal with variance given as

E[
A

δ
(Zt − µ(t, 1))]2 − E[

A− δ

δ
(E(Zt|X,A = 1)− µ(t, 1))]2; (2.18)

see Appendix A.2 for details. Therefore, the reduction in variance due

to randomization is given by the last term of the previous expression,

and is large if the variance of E(Zt|X,A = 1) is large. In practice,

however, we must use a working model for E(Zt|X,A = 1) that we

denote h∗t (X,A = 1). First we note that since we have randomization,

the estimator will be unbiased, or consistent, no matter what working

model that is used. This is direct consequence of the double-robustness

property of the efficient influence function that will be unbiased solely

due to the randomization. Using a working model we can compute the

variance of the influence function that is proportional (in h∗t ) to
(
A

δ
(E(Zt|X,A = 1)− h∗t (X,A = 1))2

)
∝ E

(
A

δ
(Zt − h∗t (X,A = 1))2

)
.

As a consequence we have shown that indeed the efficient choice of

h∗t (X) is the conditional mean, and that any working model will lead to

variance reduction compared to the simple mean, if the working model

is found such that it minimizes E(Aδ (Zt − h∗t (X,A = 1)))2. That

is, under regularity conditions, when it solves the estimating equation

E(A ·Dh∗β(β,X,A = 1)(1, X)T (Zt−h∗t (β,X,A = 1)) = 0. We stress

that the working model contains a baseline parameter. Further, as a

linear working model is found to solve
∑

iAi(Zt,i−h
∗
t (β̂, Xi, A = 1)) =

0 then ρ̂1 = n−1
∑

i h
∗
t (β̂, Xi, A = 1) is the G-estimator. In addition
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when solving the score equation in practice, to deal with the censoring,

we must use a IPCW adjusted response instead of the response Zt.

We finally make a few remarks about the situation when interest is

specifically on estimating the treatment effect, that is the difference in

the marginal means between the treated and untreated subject, ν =

ρ1 − ρ0. All influence function for ν are given by

A

δ
Zt −

1− A

1− δ
Zt − (A− δ)ht(X)− ν (2.19)

see Tsiatis (2006) page 130-131 and the efficient choice of ht(X) is

hefft (X) = E(Zt|X,A = 1)/δ + E(Zt|X,A = 0)/(1 − δ). Now com-

puting the variance of the influence function based on the working model

h∗t we get that it is proportional to (see Appendix A.5):

∝ E
(
h∗t (X)− hefft (X)

)2

∝ E
(
h∗t (X)− Z̃t(A)

)2

where Z̃t(A) = AZt/(δ
2) + Zt(1 − A)/(1 − δ)2. When δ = 1/2 then

Zt(A) = Zt/δ
2. From this direct calculation we see that indeed the

optimal choice of ht is h
eff
t and we also note that we are able to guar-

antee to reduce variance when the working model solves the estimating

equation E((1, X)TDβh
∗
t (β,X)(Z̃t(A)− h∗t (β,X))) = 0.
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2.6 Doubly augmented estimator

We now combine the censoring and the RCT augmentations of the two

previous sections. A key result for doing this is that we establish that

the two augmentations are orthogonal, that gives additive contributions

to the variance.

Taking the starting point of the previous section, we start with an

IPCW weighted response version of the fully observed response. Thus

letting Z ipcw
t =

∫ t

0 Y (s) 1
Gc(s)

dN(s, 1), we consider the influence function

A

δ
Z ipcw
t −

A− δ

δ
E(Zt|A = 1, X)− ρ1, (2.20)

that can be made more efficient as follows by a censoring augmentation:

A

δ

(
Z ipcw
t +

∫ t

0

E[H(s, t)|H(s), D > s,A = 1]

Gc(s)
dMC(s)− ρ1

)

−

(
A− δ

δ
E(Zt|A = 1, X)− ρ1

)
. (2.21)

Using the equality Z ipcw
t = Zt −

∫ t

0 H(s, t) 1
Gc(s)

dMc(s), we can rewrite

the influence function as

−
A

δ
(

∫ t

0

(H(s, t)− E[H(s, t)|H(s), D > s,A = 1])
1

Gc(s)
dMc(s))

+
A

δ
(Zt − ρ1) +

A− δ

δ
(E(Zt|A = 1, X)− ρ1) . (2.22)

A detailed derivation is provided in Appendix A.4. Due to the indepen-

dent censoring assumption, the two terms subtracted in the two pairs

of the round brackets in 2.21 are orthogonal and thus we can compute

the variance of the influence function by the sum of the variance of the

two terms. This is also an efficient influence function. We therefore

propose to use the regression augmentation developed by Cortese and

Scheike (2022) to reduce the variance due to the right-censoring term,

and to use a working model to reduce the variance of the second term,

thus combining what we saw in the two previous sections.
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With these choices we thus solve the estimating equations and then

obtain

ρ̂1 = µ̃(t, 1)−
1

n

n∑

i

Ai − δ

δ
h∗t (Xi, A = 1). (2.23)

If the working model h∗t is chosen as we argued in the previous section,

we are guaranteed, at least asymptotically, to get a variance reduction

from both the augmentations. We computed the variance of this es-

timator by utilizing again that the censoring augmentation in the first

term is orthogonal to other terms in the expression. Therefore, we

derived the variance of the estimator from its corresponding influence

function in the following way:

ˆvar(µ̃(t, 1)) + E

((
A− δ

δ
h∗t (Xi, A = 1)− ρ1

))2

−2E

(
A(A− δ)

δ2

(
Z ipcw
t − ρ1

)
(h∗t (Xi, A = 1)− ρ1)

)
, (2.24)

see Cortese and Scheike (2022) for detailed derivation of ˆvar(µ̃(t, 1)).

Similarly, when aiming directly at estimating the treatment effect ν

then IPCW augmenting all influence functions for ν we get

A− δ

δ(1− δ)
Zt − (A− δ)h∗t (X)− ν

+
A− δ

δ(1− δ)

(∫ t

0

Hi(s, t)− E[Hi(s, t)|Hi(s, a), Di > s]

Gc(s)
dMC(s)

)

(2.25)

where again the optimal working model is

h∗t (X,A) = E(Zt|X,A = 1)/δ + E(Zt|X,A = 0)/(1− δ)

. Importantly, the two augmentations are still orthogonal and we are

sure to obtain a variance reduction if we choose the working models for

the RCT augmentation and the censoring augmentation directly as the
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solution h∗ that minimizes E((Z̃(A) − h∗(β,X))2. Thus we need to

solve the equation

E(Dβh
∗
t (β,X) · (1, X)T (Z̃t(A)− h∗t (β,X)) = 0.

When δ = 1/2 then

Z̃t(A) = AZt/(δ
2) + Zt(1− A)/(1− δ)2 = Zt/δ

2

and we will then in practice use Z ipcw
t instead of Zt. Combining the two

doubly augmented estimators for the treatment and non-treatment arm

we obtain the following estimator for the treatment effect:

ν̂ =
1

n

(
n1

1− δ

δ(1− δ)
µ̃(t, 1)− n0

δ

δ(1− δ)
µ̃(t, 0)

)

−
1

n

n∑

i=1

(Ai − δ)(h∗t (Xi, 1)− h∗t (Xi, 0)). (2.26)

2.6.1 Working model’s choice

As shown above, to construct the RCT augmentation we need a working

model to approximate the conditional mean E(Zt|X,A = a) on which

we can note that the treatment is fixed with a that can take the values

0, 1. Therefore, we need to estimate each working model separately for

the Treatment and the Untreatment groups (stratified model for the

Treatment variable), according with the arguments presented in section

2.5. Nevertheless, we can also fit the working model jointly, considering

at the same time both Treated and Untreated subjects. Obviously in

this case we have to add the indicator variable and the respective coeffi-

cient referred to the Treatment. Following the first way we guaranteed

theoretically and asymptotically that we can improve efficiency, but we

adapted both the way to see in our practical context how the estimators

differently perform. Here we consider two standard working models in

the context of recurrent events. To estimate the parameters of such

working models we need to use IPCW based estimating equations.
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As a candidate working model h∗t , we shall consider the simple

marginal mean model

E(N(t)|X,A = a) = exp
(
β0 + βT

XX
)
,

that is a stratified model, or

E(N(t)|X,A) = exp
(
β0 + βT

1 A+ βT
XX

)
,

that is a joint model with regression parameters β0, β1, βX . To fit

these models we use the IPCW adjusted response introduced in the

previous sections, Z ipcw
t , and then solve relevant estimating equations

based on the suggested working model. We also note that if the es-

timator is constructed appropriately, using this working model, we are

guaranteed to improve the variance (asymptotically) even if the working

model is misspecified.

Another popular choice is the Gosh-Lin model (Ghosh and Lin, 2002)

that assumes

E(N(t)|X,A = a) = Λ0(t) exp
(
βT
XX

)
,

that is a stratified model, or

E(N(t)|X,A) = Λ0(t) exp
(
βT
1 A+ βT

XX
)
,

that is a joint model, for t ∈ [0, τ ], Λ0(t) is a non-parametric baseline

and β1, βX are the regression coefficients. Using one of these models as

working model, and estimating its parameters with the standard IPCW

estimators, we are not guaranteed that this choice will improve the

variance of the estimator unless the working model is correctly specified.

We illustrate with simulations that it may lead to biased estimates when

the model does not hold over the entire time range. Further we are not

guaranteed that there will be a variance reduction due to the RCT

augmentation, even though in practice this will often be the case if the

model fits well.
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The two models have a different formulation of the baseline. IPCW

estimator is a completely specified model, indeed also the baseline has a

parametric form and it estimates the mean of recurrent event only for the

specific time t and not along all the time frame. But the good property

of this model states in its robustness in case of model misspecification,

if the censoring distribution Gc(s) is correctly estimated. On the other

hand, Gosh-Lin IPCW model is based on a semi-parametric approach,

since the baseline Λ0(t) is unspecified and so it is estimated in a non-

parametric way. However, since it can vary on t, it consents to estimate

the outcome throughout the whole time frame. Unfortunately, this

model is not consistent in case of misspecification.

For this reason and since in this work we are focused on the marginal

mean estimation at a specific time, we generally should prefer simple

fixed time point IPCW working model but we will also apply the Gosh-

Lin model to compare the two methods.

Importantly, we also note that since the randomization is carried out

according to the design, then even when both models are correctly spec-

ified then the efficient influence function will lead to the same asymp-

totics irrespective of the working model being fitted by the Ghosh-Lin

estimator or as the simple IPCW estimator. This is due the fact the fact

that the influence function related to A
δ Y − A−δ

δ F (β̂, X,A = 1) − ρ1,

will lead to the same asymptotics as when β0 for the working model is

known.
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Simulations

In this section we will apply the considered estimators to data that re-

semble the LEADER data. This will give some indication of the possible

efficiency gain in such a setting. For all considered estimators we also

study the performance of the estimated standard errors by, for exam-

ple, computing the coverage probabilities of the constructed confidence

intervals. As introduced at the beginning of this work, the process

of interest, specially when we consider the 3p-MACE event, is charac-

terized by a combination between a recurrent events process (non fatal

strokes and myocardial infractions) and a terminal event (cardiovascular

deaths). For this reason, we used two main approaches in the simula-

tions. The first is to consider cardiovascular deaths as both a recurrent

event and a terminal event, so it is incorporated in both the processes.

Therefore, in this case we have only recurrent events, deaths and cen-

sorings. Instead, in the second approach we keep the recurrent events

(non fatal stroke and myocardial infraction) and cardiovascular deaths

separated. Now, the process of interest is the sum of a recurrent process

and a specific terminal event, while the non cardiovascular death and

the censoring remain unchanged. Despite the simulated results in term

of marginal mean estimates and their efficiency are very similar between

these settings, as we will show in the following, the second approach is

closer to the real case and it’s more correct, at least from a theoretical

point of view.
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3.1 Standard simulations

We first estimated the rate among survivors of the recurrent events using

a Cox model that included treatment as well as a selected set of covari-

ates that was known to be of importance for the risk of strokes. This lead

to a baseline rate k1λr(t) and a set of regression coefficients βr. The

rate of the terminal event was also described with a Cox model with the

same covariates, denoting the rate as λd(t) and the set of regression co-

efficients βd. We show the coefficients of the two Cox models related to

a set of covariates selected based on subject matter knowledge, in Table

3.1. The covariates were Placebo (no Liraglutide), MIFL (Myocardial

Infarction), KIDFL (Chronic Kidney Failure), REVASFL (Revascular-

ization), AGE (Age), HBA1CBL (HbA1c at Baseline), LDL1BL (Calc.

LDL Cholesterol at Baseline), HDL2BL (HDL Cholesterol at Baseline),

EGFREPB (eGFR at Baseline), DIABPBL (Diastolic BP at Baseline),

DIABDUR (Diabetes Duration), and SYSBPBL (Systolic BP at Base-

line).

Cox Model Death Cox Model Recurrent

Estimate Std.Err Estimate Std.Err

Placebo 0.29 0.09 0.21 0.06

sexMale 0.05 0.11 0.15 0.07

miflYes 0.71 0.11 0.56 0.07

kidflYes -0.02 0.14 0.07 0.09

revasflYes -0.09 0.11 0.20 0.07

age 0.03 0.01 0.02 0.00

hba1cbl 0.17 0.03 0.10 0.02

ldl1bl 0.19 0.05 0.17 0.03

hdl1bl -0.42 0.17 -0.27 0.11

egfrepb -0.02 0.00 -0.01 0.00

sysbpbl 0.00 0.00 0.01 0.00

diabpbl 0.01 0.01 -0.00 0.00

diabdur 0.01 0.01 0.01 0.00

Table 3.1: Regression coefficients for Cox models for death and recur-

rent events.
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Cox Model Death

Estimate Std.Err P-value

History 0.82 0.06 0.00

Placebo -0.16 0.07 0.03

sexMale -0.11 0.08 0.21

miflYes 0.43 0.09 0.00

kidflYes -0.09 0.12 0.47

revasflYes -0.11 0.09 0.22

age 0.04 0.01 0.00

hba1cbl 0.17 0.02 0.00

ldl1bl 0.13 0.04 0.00

hdl1bl -0.17 0.14 0.21

egfrepb -0.02 0.002 0.00

sysbpbl -0.001 0.003 0.62

diabpbl 0.009 0.005 0.05

diabdur 0.002 0.004 0.73

Table 3.2: Regression coefficients for Cox model for death with historical

number of recurrent events as a predictor.

The censoring times were simulated from a translated exponential

distribution, as approximation of the censoring present in the data, see

Figure 3.1 where the black curve is the censoring distribution in the

data. We also considered a situation where censorings appeared earlier

in time to see how the efficiency gain was improved in this case, the red

curve of Figure 3.1. We varied k1 parameter like k1 = 1, 2.5, 5, 10 to in-

crease the number of recurrent events (k1 = 1 is referred to the baseline

of the original LEADER data). Furthermore, to allow also dependence

between recurrent and death processes we add a common frailty variable

Z gamma distributed with variance equal to 1. Thus, in this setting the

two baselines become Zk1λr(t) and Zλd(t). To investigate the presence

of the heterogeneity, we estimated a Cox model for death’s risk using

the history of recurrent events experienced by the subjects as predictor,

also adjusting with the auxiliary covariates X. Since the regression’s

coefficients were significantly high, specially the one related to the his-

torical number of recurrent events (see Table 3.2), we confirmed the
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presence of dependence between the two processes. We now simulated

data from these baselines given the covariates, that were resampled from

the LEADER trial to get a realistic covariate distribution. For each set-

ting, marginal mean and treatment effect have been estimated at two

specific time: 1500 and 1700 days. For every estimand (marginal mean

for untreated, treated arm and their difference), we show the follow-

ing estimators: the censoring augmented estimators (that is the IPCW

augmented estimators described in section 2.4), the two doubly aug-

mented estimators with either IPCW or Gosh-Lin as working models,

the G-estimators based on the two working models alone and the stan-

dard estimator (this one only for the tables about marginal means and

estimated coverage). For such estimators, we fitted the working mod-

els in the two ways discussed in section 2.6.1: the stratified and the

joint models. In all the settings, in the doubly augmented estimators

we used both the history process and the covariates X as predictors to

compute the censoring augmentation (model 2.14 in section 2.4). Every

estimate (marginal mean, sample variance, estimated standard error’s

coverage) is based on 10.000 replications with sample size equal to the

original LEADER data one, 9170. In the tables we let WM indicates

the Working Model that can be simple IPCW or Gosh-Lin. T ime is the

specific time at which the marginal means estimate is computed. k1 is

the multiplicative factor for λr(t) that increases the number of recur-

rent events. Regarding the type of models, we refer to Model0 with

the one that assumes independence between the two baselines k1λr(t)

and λd(t) given covariates. Instead, Model1 has additional dependence

via the frailty variable Z.

In the following tables we will show the simulations results for the

setting related to Model1, since this case is closer to the real one, as

explained above. We will show the efficiency gain, coverage probability

of the estimated standard errors and the marginal means for the two

groups as well as the treatment effect (i.e. the difference between the

groups). We expressed the efficiency gain as the ratio of the variance
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of each estimator relative to that to the standard estimator.

We note in general that as expected all estimators provided gain

compared to the standard estimator, specially when we are considering

the standard censoring distribution, see Tables 3.3 and 3.4. Further-

more, the gain in efficiency increases when we scale up k1, thus the

number of recurrent events. However, this improvement is more evi-

dent when we fitted the working model jointly respect to fit it separately.

Moreover, while adapting the stratified working models the doubly aug-

mented estimator provides the best gain among all the estimators and

the G-estimators (simple IPCW and Gosh-Lin) perform quite similar.

Fitting the joint working models we can see that G-estimator Gosh-Lin

reaches the highest gain among all the estimators, mostly increasing

k1. This can be due to the reason that the Gosh-Lin model is based on

more restricted assumptions regarding the proportionality of covariates’

effect mostly. Therefore, when this assumptions hold we can gain more

in efficiency, also more than the doubly augmented estimators. On the

other hand, it’s not robust in case of assumptions’ violations, as we will

show in section 2.3. About censoring augmented estimators, we can

note they do not improve efficiency substantially, even when scaling up

k1. Nevertheless, changing censoring distribution choosing the simple

exponential (red curve of Figure 3.1), the results become quite differ-

ent. First of all, looking at Tables 3.7 or 3.8 we can note note that the

censoring augmented estimator performs better in this case, especially

when scaling up k1. This is reasonable since such augmentation exploits

the censoring time to gain in term of efficiency. Indeed in this case, it

starts at the beginning of the follow-up period, thus at the specific time

considered (1500, 1700) we can collect several censored subjects and

this increases the potential gain this type of estimators can give. Moving

to the G-estimators, we note some similarities and differences between

3.7 and 3.8. About similarities, Gosh-Lin G-estimator performs quite

better then the respective simple IPCW, and this behaviour is more

present when we fitted the joint working model. However, specially in
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this setting we note that simple IPCW G-estimators perform quite worse

respect to the standard estimator, our benchmark. Indeed, the gain’s

loss increases as the number of recurrent events become higher, instead

of Gosh-Lin model that provides efficiency also in this case. On the

other hand, when we fitted the working models separately, both the two

G-estimators reduce the variance respect to the standard one. More-

over, in this case the best gain is reached by the doubly augmented

estimator and it’s higher to the one obtained by the same estimator

but using the joint working model for the rct augmentation. Therefore,

this confirms the argument developed in chapter 2: fitting the working

models separately we guarantee that we can reduce the estimates’ vari-

ance, as we saw in all the simulations’ settings tested. Despite this, we

can gain in efficiency also fitting one working model jointly in several

situations but not always, as we pointed out above.

About coverages and marginal mean estimators, we’ll show the re-

sults only related to the setting with stratified working models, omitting

the tables with the joint working models, since we obtained very similar

values.

In Table 3.5 we show the observed coverage of 95% confidence

intervals for every estimated standard error related to the respective

estimator. We can see that the coverages are close to the nominal value

95% in almost all the settings, specially the ones related to the doubly

augmented estimator. where it’s up to 94%. To compute the coverage,

since that we didn’t know the true value, we needed to estimate it for

each estimand. Therefore, we estimated each one as the sample mean

of the marginal means obtained from 5000 iterations, each one with a

larger sample size equal to 30.000.

In Table 3.6 we show the results for the marginal means for the two

arms (Treated and Untreated subjects) and the treatment effect. We

observed that all means are in agreement, and that they are all unbi-

ased estimators. We recall that all the estimators except the Ghosh-Lin

G-estimator should be unbiased by construction. We can see that the
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estimates obtained with the G-estimators and the Doubly augmented

estimators are very closed to the standard ones, there are some differ-

ences in the third/fourth decimal position. Therefore, we can conclude

that the estimators proposed are substantially unbiased. Moreover, we

have to point out that also Ghosh-Lin model seems to be unbiased, sign

that probably in this setting (LEADER data) the assumptions on which

it’s based hold. About this, we will show in next section that this is not

always valid. The same results are reported for Model0 in Appendix

B.1. We can note in general that the doubly augmented estimators

performs better in Model0 compared to Model1. Nevertheless, for the

censoring augmented estimators we can observe an opposite behavior

specially with the simple censoring distribution. Indeed, for such estima-

tors, the heterogeneity provides an efficiency’s increment slightly better

when the number of recurrent event increases. That’s a confirmation

of the considerations done by Cortese and Scheike (2022).
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Figure 3.1: Survival distribution of censoring time of LEADER data

(black curve) and simple exponential censoring distribution (red curve).
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Table 3.3: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Stratified

working models for Treatment variable.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.995 0.995 0.994 0.989 0.994 0.979 0.985 0.988 0.973

GL - - - 0.988 0.992 0.977 0.985 0.987 0.973

2.5
IPCW 0.997 1 0.999 0.979 0.979 0.958 0.977 0.979 0.957

GL - - - 0.977 0.978 0.954 0.975 0.977 0.953

5
IPCW 0.997 0.999 0.998 0.967 0.986 0.954 0.965 0.984 0.951

GL - - - 0.968 0.986 0.955 0.965 0.984 0.952

10
IPCW 0.999 0.999 0.998 0.971 0.978 0.947 0.97 0.976 0.945

GL - - - 0.972 0.98 0.948 0.971 0.977 0.946

1700

1
IPCW 0.982 0.985 0.977 0.994 0.994 0.987 0.977 0.98 0.965

GL - - - 0.991 0.993 0.984 0.976 0.978 0.963

2.5
IPCW 0.975 0.978 0.977 0.984 0.987 0.969 0.96 0.965 0.946

GL - - - 0.983 0.989 0.969 0.958 0.966 0.946

5
IPCW 0.985 0.977 0.984 0.983 0.98 0.964 0.968 0.958 0.947

GL - - - 0.981 0.981 0.96 0.967 0.958 0.946

10
IPCW 0.978 0.991 0.982 0.982 0.98 0.96 0.96 0.97 0.941

GL - - - 0.982 0.981 0.961 0.96 0.97 0.941

35



Table 3.4: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Joint

Working models.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.995 0.995 0.994 0.989 0.982 0.972 0.983 0.977 0.964

GL - - - 0.933 0.949 0.884 0.983 0.977 0.964

2.5
IPCW 0.997 1 0.999 0.971 0.973 0.945 0.969 0.963 0.936

GL - - - 0.934 0.944 0.88 0.969 0.963 0.936

5
IPCW 0.997 0.999 0.998 0.959 0.95 0.909 0.95 0.938 0.896

GL - - - 0.931 0.929 0.861 0.95 0.938 0.896

10
IPCW 0.999 0.999 0.998 0.955 0.95 0.905 0.942 0.934 0.882

GL - - - 0.932 0.936 0.868 0.942 0.934 0.882

1700

1
IPCW 0.982 0.985 0.977 0.994 0.997 0.992 0.96 0.962 0.961

GL - - - 0.799 0.847 0.656 0.959 0.961 0.96

2.5
IPCW 0.975 0.978 0.977 0.985 0.989 0.974 0.95 0.946 0.925

GL - - - 0.826 0.851 0.676 0.95 0.946 0.924

5
IPCW 0.985 0.977 0.984 0.97 0.979 0.95 0.919 0.929 0.888

GL - - - 0.815 0.868 0.694 0.918 0.929 0.887

10
IPCW 0.978 0.991 0.982 0.963 0.976 0.939 0.906 0.913 0.862

GL - - - 0.845 0.885 0.738 0.906 0.913 0.862
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Table 3.5: Estimated coverage probability for the estimated standard

errors. Stratified working models for Treatment variable.

Model 1 Standard estimators Censoring aug. estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.949 0.95 0.948 0.948 0.969 0.947 0.95 0.949 0.948

GL - - - - - - 0.95 0.949 0.948

2.5
IPCW 0.949 0.951 0.951 0.948 0.97 0.952 0.949 0.953 0.95

GL - - - - - - 0.949 0.953 0.951

5
IPCW 0.948 0.949 0.953 0.947 0.968 0.952 0.949 0.951 0.95

GL - - - - - - 0.949 0.951 0.95

10
IPCW 0.951 0.953 0.954 0.951 0.971 0.953 0.952 0.954 0.952

GL - - - - - - 0.952 0.955 0.953

1700

1
IPCW 0.941 0.948 0.949 0.942 0.958 0.949 0.94 0.944 0.948

GL - - - - - - 0.94 0.944 0.948

2.5
IPCW 0.948 0.945 0.952 0.943 0.959 0.951 0.944 0.943 0.951

GL - - - - - - 0.944 0.944 0.95

5
IPCW 0.943 0.947 0.944 0.939 0.959 0.946 0.939 0.946 0.948

GL - - - - - - 0.94 0.945 0.948

10
IPCW 0.946 0.951 0.954 0.94 0.96 0.953 0.939 0.946 0.952

GL - - - - - - 0.94 0.947 0.952
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Table 3.6: Marginal Mean estimations for treated, untreated arms and

treatment effect. Stratified working models for Treatment variable.

Model 1 Standard estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.1607 0.1953 -0.0346 0.1607 0.1953 -0.0346 0.1606 0.1951 -0.0345

GL - - - 0.1606 0.1954 -0.0347 0.1606 0.1951 -0.0345

2.5
IPCW 0.4019 0.488 -0.0861 0.4019 0.488 -0.0861 0.4015 0.4875 -0.086

GL - - - 0.4018 0.4883 -0.0865 0.4015 0.4875 -0.086

5
IPCW 0.8031 0.9761 -0.173 0.8031 0.9762 -0.1731 0.8022 0.9752 -0.173

GL - - - 0.8029 0.9768 -0.1739 0.8022 0.9752 -0.173

10
IPCW 1.6059 1.9501 -0.3442 1.606 1.95 -0.344 1.6043 1.948 -0.3437

GL - - - 1.6062 1.9518 -0.3455 1.6043 1.948 -0.3437

1700

1
IPCW 0.1744 0.2117 -0.0373 0.1744 0.2118 -0.0374 0.1735 0.2106 -0.0371

GL - - - 0.1742 0.212 -0.0378 0.1735 0.2107 -0.0371

2.5
IPCW 0.4364 0.529 -0.0927 0.4364 0.529 -0.0926 0.4339 0.5262 -0.0923

GL - - - 0.4357 0.5298 -0.094 0.4339 0.5262 -0.0923

5
IPCW 0.872 1.0585 -0.1865 0.872 1.0584 -0.1864 0.8672 1.0527 -0.1855

GL - - - 0.871 1.0599 -0.1889 0.8672 1.0526 -0.1855

10
IPCW 1.7428 2.1148 -0.372 1.7428 2.1148 -0.372 1.7332 2.1037 -0.3705

GL - - - 1.7414 2.1183 -0.3769 1.7332 2.1037 -0.3705
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Table 3.7: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Stratified working models for Treatment variable.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.976 0.969 0.974 0.994 0.993 0.987 0.97 0.962 0.961

GL - - - 0.984 0.98 0.977 0.97 0.962 0.961

2.5
IPCW 0.939 0.943 0.949 0.987 0.988 0.974 0.926 0.93 0.922

GL - - - 0.956 0.964 0.95 0.925 0.929 0.918

5
IPCW 0.929 0.906 0.905 0.973 0.976 0.948 0.905 0.884 0.857

GL - - - 0.937 0.935 0.902 0.903 0.882 0.855

10
IPCW 0.864 0.857 0.854 0.973 0.973 0.945 0.838 0.832 0.802

GL - - - 0.919 0.919 0.891 0.834 0.831 0.798

1700

1
IPCW 0.968 0.965 0.962 0.997 1 0.997 0.965 0.966 0.96

GL - - - 0.99 0.985 0.985 0.967 0.966 0.96

2.5
IPCW 0.949 0.941 0.942 0.987 0.981 0.968 0.936 0.923 0.911

GL - - - 0.962 0.954 0.938 0.936 0.923 0.91

5
IPCW 0.914 0.898 0.911 0.985 0.972 0.955 0.898 0.871 0.865

GL - - - 0.947 0.933 0.919 0.89 0.87 0.858

10
IPCW 0.868 0.851 0.854 0.973 0.977 0.949 0.838 0.829 0.802

GL - - - 0.921 0.922 0.893 0.835 0.823 0.794
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Table 3.8: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Joint working models.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.976 0.969 0.974 1.018 1.033 1.051 0.965 0.97 0.964

GL - - - 0.853 0.903 0.773 0.964 0.97 0.963

2.5
IPCW 0.939 0.943 0.949 1.021 1.037 1.058 0.935 0.934 0.921

GL - - - 0.868 0.876 0.771 0.935 0.934 0.92

5
IPCW 0.929 0.906 0.905 1.044 1.05 1.094 0.905 0.893 0.872

GL - - - 0.871 0.878 0.781 0.904 0.893 0.872

10
IPCW 0.864 0.857 0.854 1.072 1.085 1.157 0.85 0.842 0.832

GL - - - 0.851 0.871 0.773 0.849 0.843 0.832

1700

1
IPCW 0.968 0.965 0.962 1.022 1.024 1.045 0.963 0.954 0.947

GL - - - 0.866 0.894 0.776 0.963 0.954 0.947

2.5
IPCW 0.949 0.941 0.942 1.041 1.049 1.093 0.926 0.931 0.915

GL - - - 0.867 0.883 0.763 0.926 0.932 0.915

5
IPCW 0.914 0.898 0.911 1.063 1.061 1.124 0.895 0.884 0.863

GL - - - 0.836 0.861 0.739 0.895 0.883 0.862

10
IPCW 0.868 0.851 0.854 1.084 1.078 1.162 0.841 0.826 0.814

GL - - - 0.831 0.862 0.748 0.841 0.826 0.815
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3.2 Composite event simulations

In this section we will treat the second approach to simulate the data.

As mentioned above, it’s based on considering cardiovascular deaths as

a separate event. Therefore, it has its own process that is a termi-

nal event one, like the non cardiovascular deaths. However, since we

consider it as a part of the process of interest, we separated it from

the non cardiovascular death, that plays a role of competing event.

Therefore, to simulate the data in this setting, we need to estimate

three types of cumulative hazard among survivors: λr(t) as the base-

line for the recurrent events (non fatal), λd1(t) as the baseline for the

cardiovascular deaths and λd2(t) as the baseline referred to the non-

cardiovascular ones. Looking at this formulation, the events generated

from the first two baselines belong to the process of interest and thus

both they contribute to the Marginal means’ estimation. Nevertheless,

since the cardiovascular deaths are also terminal events, we treated it

also as a terminal event. Like in the standard simulations, we will show

the Model1 setting considering a common frailty variable Z, gamma

distributed with variance equal to 1. Therefore, the baselines become

Zλr(t), Zλd1(t), Zλd2(t). Moreover, we use the same multiplicative

factor k1 to increase the number of recurrent events, applied only to

the first baseline λr(t). For this reason, we except to see smaller val-

ues in marginal mean estimations when k1 > 1 increases respect to the

standard simulations, as we can see in Table 3.11. However, we can see

that when k1 = 1, marginal means and treatment effect are very similar

in the two approaches, see first lines of Tables 3.6 and 3.11. Therefore,

both of them are valid in term of bias. About efficiency, looking at

Tables 3.9 and 3.10 we can make more or less the same remarks re-

spect the ones made in the previous section with the difference that in

general the efficiency gain estimated here is slightly bigger than the one

obtained with the standard simulations. About coverage for the esti-

mated standards errors, all the measures are comparable and congruent

with the ones reported in Table 3.5.
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Table 3.9: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Stratified

working model for Treatment variable.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.999 0.997 0.998 0.985 0.976 0.96 0.984 0.973 0.958

GL - - - 0.98 0.971 0.951 0.979 0.97 0.951

2.5
IPCW 0.996 0.999 1 0.975 0.963 0.939 0.972 0.962 0.939

GL - - - 0.972 0.962 0.937 0.969 0.962 0.936

5
IPCW 1 0.997 0.997 0.973 0.962 0.934 0.973 0.958 0.931

GL - - - 0.972 0.96 0.931 0.973 0.958 0.93

10
IPCW 0.997 0.998 0.997 0.971 0.973 0.94 0.968 0.97 0.937

GL - - - 0.968 0.974 0.939 0.967 0.97 0.935

1700

1
IPCW 0.981 0.977 0.98 0.989 0.987 0.976 0.97 0.964 0.955

GL - - - 0.985 0.983 0.97 0.968 0.965 0.954

2.5
IPCW 0.972 0.965 0.97 0.992 0.984 0.975 0.963 0.95 0.946

GL - - - 0.99 0.981 0.971 0.964 0.95 0.946

5
IPCW 0.964 0.969 0.966 0.984 0.983 0.969 0.949 0.953 0.936

GL - - - 0.979 0.981 0.965 0.949 0.954 0.937

10
IPCW 0.958 0.968 0.957 0.979 0.978 0.955 0.938 0.946 0.914

GL - - - 0.978 0.974 0.951 0.937 0.944 0.912
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Table 3.10: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Joint work-

ing model.

Model 1 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.996 0.996 0.997 0.985 0.979 0.964 0.98 0.974 0.959

GL 0.996 0.996 0.997 0.933 0.942 0.879 0.98 0.974 0.959

2.5
IPCW 0.994 0.994 0.994 0.966 0.969 0.937 0.958 0.96 0.925

GL 0.994 0.994 0.994 0.925 0.929 0.858 0.958 0.96 0.925

5
IPCW 0.994 0.995 0.994 0.963 0.957 0.92 0.953 0.948 0.906

GL 0.994 0.995 0.994 0.931 0.934 0.868 0.953 0.948 0.906

10
IPCW 0.989 0.989 0.99 0.95 0.952 0.903 0.936 0.936 0.885

GL 0.989 0.989 0.99 0.93 0.93 0.862 0.937 0.936 0.885

1700

1
IPCW 0.971 0.969 0.965 0.993 0.991 0.985 0.959 0.956 0.941

GL 0.971 0.969 0.965 0.758 0.804 0.572 0.959 0.955 0.939

2.5
IPCW 0.959 0.955 0.961 0.989 0.989 0.978 0.942 0.937 0.925

GL 0.959 0.955 0.961 0.779 0.824 0.61 0.941 0.937 0.925

5
IPCW 0.953 0.94 0.949 0.982 0.98 0.963 0.925 0.909 0.889

GL 0.953 0.94 0.949 0.796 0.817 0.625 0.924 0.909 0.889

10
IPCW 0.952 0.945 0.955 0.976 0.987 0.963 0.912 0.91 0.879

GL 0.952 0.945 0.955 0.826 0.855 0.686 0.912 0.909 0.878
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Table 3.11: Marginal Mean estimations for treated, untreated arms and

treatment effect.

Model 1 Standard estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.1682 0.2061 -0.0379 0.1682 0.2061 -0.0379 0.168 0.2059 -0.0379

GL - - - 0.1681 0.2061 -0.038 0.168 0.2059 -0.0379

2.5
IPCW 0.3494 0.4218 -0.0724 0.3494 0.4218 -0.0724 0.349 0.4213 -0.0723

GL - - - 0.3493 0.4219 -0.0725 0.349 0.4213 -0.0723

5
IPCW 0.6513 0.7809 -0.1296 0.6513 0.7809 -0.1297 0.6506 0.7801 -0.1295

GL - - - 0.6513 0.7812 -0.1299 0.6506 0.7801 -0.1295

10
IPCW 1.2551 1.4985 -0.2435 1.255 1.4986 -0.2436 1.2537 1.4969 -0.2433

GL - - - 1.2552 1.4994 -0.2442 1.2537 1.4969 -0.2433

1700

1
IPCW 0.1854 0.2266 -0.0412 0.1854 0.2267 -0.0412 0.1844 0.2253 -0.0409

GL - - - 0.1852 0.2268 -0.0416 0.1844 0.2253 -0.0409

2.5
IPCW 0.3847 0.4636 -0.0789 0.3847 0.4636 -0.0789 0.3821 0.4605 -0.0784

GL - - - 0.3844 0.464 -0.0796 0.3821 0.4605 -0.0784

5
IPCW 0.7167 0.8572 -0.1405 0.7167 0.8572 -0.1405 0.7118 0.8514 -0.1396

GL - - - 0.7161 0.858 -0.1419 0.7118 0.8513 -0.1396

10
IPCW 1.3802 1.6446 -0.2644 1.3802 1.6446 -0.2644 1.3707 1.6335 -0.2628

GL - - - 1.379 1.6468 -0.2678 1.3707 1.6335 -0.2628
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Table 3.12: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Stratified working model for Treatment variable.

Model 1 Standard estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.976 0.968 0.977 0.992 0.992 0.981 0.968 0.96 0.958

GL - - - 0.977 0.974 0.968 0.966 0.959 0.956

2.5
IPCW 0.954 0.96 0.957 0.992 0.991 0.981 0.946 0.949 0.937

GL - - - 0.968 0.969 0.962 0.948 0.946 0.937

5
IPCW 0.939 0.94 0.943 0.99 0.975 0.964 0.932 0.915 0.91

GL - - - 0.96 0.947 0.938 0.931 0.915 0.909

10
IPCW 0.894 0.881 0.89 0.974 0.979 0.951 0.869 0.858 0.84

GL - - - 0.932 0.928 0.907 0.864 0.855 0.832

1700

1
IPCW 0.975 0.952 0.965 0.991 0.992 0.98 0.966 0.942 0.943

GL - - - 0.976 0.96 0.955 0.963 0.94 0.94

2.5
IPCW 0.949 0.937 0.946 0.995 0.99 0.982 0.945 0.926 0.927

GL - - - 0.97 0.959 0.956 0.944 0.924 0.925

5
IPCW 0.919 0.903 0.916 0.979 0.985 0.962 0.898 0.888 0.879

GL - - - 0.94 0.936 0.926 0.898 0.886 0.877

10
IPCW 0.87 0.847 0.858 0.976 0.972 0.947 0.847 0.819 0.807

GL - - - 0.932 0.915 0.894 0.843 0.816 0.8
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3.3 Baselines’ non proportionality simula-

tions

In this section we illustrate that the G-estimator based on the Gosh-Lin

model could be severely biased when the model does not hold over the

entire time-range. We simulated data as before but now allowed sepa-

rate baselines of the recurrent events process for treated and non-treated

subjects. In Figure 3.2 we show the baselines used in the proportional

Cox setting earlier: the green and blue curves. For the simulation in the

non-proportionality setting we used instead the red and blue curves for

the treated and untreated subjects. We now conducted a simulation as

before with 10000 replications and here report only the means of the

estimators for the G-estimators, see Table 3.13. All other estimators

were unbiased, and the IPCW G-estimator is still unbiased by construc-

tion, and also in the finite sample simulation. In contrast, however, we

see a large bias for the Ghosh-Lin based G-estimator. This also, as ex-

pected, lead to a much smaller efficiency gain for the doubly augmented

estimator when based on the Ghosh-Lin working model (not shown).
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Figure 3.2: Different baselines for Treated and Untreated arms under

different hypothesis of proportionality.

Table 3.13: Marginal Mean estimations for treated, untreated arms and

treatment effect with non proportional baselines.

G-estimators

T ime WM A = 1 A = 0 Diff

1500
IPCW 0.1696 0.207 -0.0374

GL 0.2070 0.1924 -0.0080

1700
IPCW 0.1840 0.2255 -0.0415

GL 0.2005 0.2090 -0.0085
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Worked example: LEADER DATA

In this section we present the results related to the original LEADER

data. We will show only the results with the stratified working mod-

els for the RCT augmentation, since for the original data there are no

substantial differences about the efficiency gain, as observed also in the

previous simulations when k1 = 1. Moreover, we will show the results

about the MI outcome too for completeness, although in the simula-

tions we considered only the 3p-MACE, since it was a more complete

and interested type of events. About the estimates of marginal means

and treatment effect, they are in accordance with the one obtain in

the simulations, with a small difference at the third decimal position

between the estimates obtained with the different estimators (standard,

censoring and doubly augmented ones). Specially in MI events, we can

see that the treatment effect estimate at specific time 1700 is quite

bigger for the augmented estimators respect to the standard one (see

Table 4.3). Therefore, in this case the augmented estimators tend to

overestimate a little the treatment effect. However, we’re referring to

small differences that probably can not indicate a systematic problem of

bias. About the efficiency measure, we can see the best gain is around

96.4%, obtained for the treatment effect estimates with the doubly

augmented estimators. Here the measure is the ratio between the esti-

mated variance of the main estimator and the estimated variance of the

standard one. We computed such measure for two type of estimators:

Censoring augmented and Doubly augmented ones. We can note that

the efficiency gain is similar to the one obtained in the simulation with

k1 = 1, the setting that simulated the data from the original one. This
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also indicates that the gain obtained by simulations is quite realistic.

Table 4.1: Marginal Mean estimations for treated, untreated arms and

treatment effect for 3p-MACE events.

Standard estimator Censoring aug. estimators Doubly aug. estimators

T ime WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500
IPCW 0.1701 0.2032 -0.0331 0.1691 0.2026 -0.0335 0.1675 0.2046 -0.0371

GL 0.1701 0.2032 -0.0331 0.1691 0.2026 -0.0335 0.1675 0.2047 -0.0372

1700
IPCW 0.1883 0.2143 -0.026 0.1849 0.213 -0.0281 0.1833 0.2149 -0.0316

GL 0.1883 0.2143 -0.026 0.1849 0.213 -0.0281 0.1831 0.2153 -0.0321

Table 4.2: Efficiency measure: ratio between estimated variance of the

main estimators and the estimated variance of the standard ones for

3p-MACE events.

Censoring aug. estimators Doubly aug. estimators

T ime WM A = 1 A = 0 Diff A = 1 A = 0 Diff

1500
IPCW 0.994 0.999 0.997 0.982 0.991 0.969

GL 0.994 0.999 0.997 0.982 0.991 0.969

1700
IPCW 0.982 0.996 0.988 0.975 0.988 0.964

GL 0.982 0.996 0.988 0.975 0.99 0.964

Table 4.3: Marginal Mean estimations for treated, untreated arms and

treatment effect for MI events.

Standard estimators Censoring aug. estimators Doubly aug. estimators

T ime WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500
IPCW 0.081 0.0937 -0.0126 0.0802 0.0932 -0.013 0.0795 0.0941 -0.0147

GL 0.081 0.0937 -0.0126 0.0802 0.0932 -0.013 0.0794 0.0942 -0.0148

1700
IPCW 0.0918 0.0973 -0.0054 0.09 0.0964 -0.0064 0.0891 0.0974 -0.0083

GL 0.0918 0.0973 -0.0054 0.09 0.0964 -0.0064 0.0892 0.0975 -0.0083
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Table 4.4: Efficiency measure: ratio between estimated variance of the

main estimators and the estimated variance of the standard ones for MI

events.

Censoring aug. estimators Doubly aug. estimators

T ime WM A = 1 A = 0 Diff A = 1 A = 0 Diff

1500
IPCW 0.989 1 0.994 0.98 0.992 0.977

GL 0.989 1 0.994 0.98 0.992 0.978

1700
IPCW 0.975 0.998 0.984 0.968 0.988 0.969

GL 0.975 0.998 0.984 0.969 0.989 0.969
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Conclusions and final remarks

In this work we proposed a novel doubly augmented estimator for the

marginal mean number of recurrent events. In the first section we

showed its theoretical derivation starting from two different influence

functions, the one related to the censoring augmented estimator and

the one related to the RCT augmentation, permitted by the treatment’s

randomisation completely known in the context of clinical trials. More-

over, we showed theoretically and asymptotically that we gain in effi-

ciency with respect to the standard estimator, especially if we choose

the working model involved in the RCT augmentation in a specific way.

Then we also exploited the orthogonality between the censoring-based

augmentation and the RCT augmentation.

In the second and third sections, we showed via finite sample simu-

lations and with the worked example about LEADER data, how much

we can gain in efficiency in practice, assuming different settings about

the dependence between recurrent events and terminal event processes,

censoring distribution and rate of recurrent events. In general, we can

conclude that the novel doubly augmented estimator provides a sub-

stantially improved efficiency in reducing the variance of the estimates

in all the settings tested. About the dependence assumption between

events and terminal event processes, we saw that the efficiency gain is

greater when we do not assume such dependence. However, it’s more

realistic to consider the case with dependence in practice, since the

number of recurrent events is often related to the death time, mostly

if the recurrent events are harmful to health like the ones considered

in our worked example. Despite this fact, with a quite low number of
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recurrent events as in LEADER data (simulations with k1 = 1), there is

no so much difference in term of efficiency, independently of the pres-

ence of heterogeneity in the data. About the censoring distribution, we

simulated data using two different settings: a piecewise constant sur-

vival function with a very low censoring rate, which declines by the end

of the follow-up; an exponential survival function with a constant cen-

soring rate (Figure 3.1). Regarding the doubly augmented estimator,

we obtained a higher gain simulating data from the second setting, thus

when the censoring starts at the beginning of the follow-up period. The

reason is probably due to the considerable improvement of the censoring

augmentation that is transferred also to the doubly augmented estima-

tor. Indeed, when the censoring time starts later, as in LEADER data,

the gain reached in the doubly augmented estimator is mostly due to

the rct augmentation, since the censoring augmentation does not reveal

its potential power.

Indeed, using the simple exponential function as the censoring dis-

tribution, the simple IPCW G-estimator performs quite worse in terms

of efficiency with respect to the standard estimator. This is not the case

of the Gosh-Lin G-estimator, which provides the best gain among all the

estimators when we fitted it jointly, although this is not the model sug-

gested by the theory. Therefore, in such situation, we obtain different

results about variance reduction. Nevertheless, these differences among

the estimators in the different settings do not affect the performance

of the doubly augmented estimator that always guaranteed a gain’s im-

provement and it’s almost always the estimator that can reach the best

gain among the others considered. Indeed, the only estimator that per-

forms better in some cases is the Gosh-Lin G-estimator, although we

have to point out that it is a regression model based on more restricted

assumptions, not robust in case of misspecification or other violations.

The simulation studies confirm that the performance in reducing

the variance provided by the doubly augmented estimator is substan-

tially high in all the several settings considered in the simulations. In
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summary, we can conclude that the proposed estimator is more efficient

respect to the standard one. The efficiency’s amount depends mostly

on the number of recurrent events. Indeed, as we saw in the simulations

and the worked example, the LEADER data may not be the most ap-

propriate setting to see the potential gain that such estimator would be

able to reach, since the number of recurrent events is not so relevant.

Other factors that influence the performance of the two augmentations

terms in the doubly augmented estimator are the censoring distribution

and the randomisation, which guarantees the knowledge of treatment

assignment’s probability that’s independent of the auxiliary covariates

X. If the efficiency gain reached by the doubly augmented estimator

is high enough, first of all we can obtain more accurate estimates re-

spect to the standard estimator. This consents to making more robust

and precise conclusions about the effect of a new drug or treatment in

several settings, also avoiding restrictive assumptions on which other

models are based. Moreover, by adopting an estimator that is more

efficient, the study of interest can reach a higher statistical power, and

thus it would need a lower sample size with respect to using standard es-

timators. The consequence is a reduced effort to follow a larger number

of subjects, especially when a long follow-up time is necessary. In re-

gard to this point, the contribution of my thesis answers the important

request by the European Medicines Agency about efficient statistical

estimation methods for the treatment effect on estimands of recurrent

event endpoints (see Akacha et al. (2018)).
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Appendix A: Variance computations

A.1: Variance reduction using the censoring

augmentation

We’ll derive the variance of the augmented estimator from its influence

function that’s equal to:

∫ t

0

Z(s, a)

Ĝc(s, a)
dN(s, a) +

∫ t

0

Leff(s, t, a)

Ĝc(s, a)
dM̂C(s)− µ(t, a)

=

∫ t

0

Z(s, a)

Ĝc(s, a)
dN(s, a) +

∫ t

0

E[H(s, t, a)|H(s, a), D > s)]

Ĝc(s, a)
dM̂C(s)− µ(t, a)

= (Z(s, a)− µ(t, a))

−

∫ t

0

[H(s, t, a)− E(H(s, t, a)|H(s, a), D > s]
Z(s, a)

Ĝc(s, a)
dM̂C(s).

where H(s, 1) is the history among those treated. The variance of this

influence function is

E(Z(s, a)− µ(t, a))2

+ E



∫ t

0

[H(s, t, a)− E(H(s, t, a)|H(s), D > s]2

(
Z(s, a)

Ĝc(s, a)

)2

dM̂C(s)




= E(Z(s, a)− µ(t, a))2 + E

(∫ t

0

(∆H)2
Z(s, a)

Ĝ2
c(s, a)

dΛc(s)

)

Now we consider the variance of the standard estimator that considers

the simple mean E(H(s, t, a)|D > s) instead of the conditional one
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E(H(s, t, a)|H(s, a), D > s) is equal to:

E(Z(s, a)− µ(t, a))2 + E

(∫ t

0

[H(s, t, a)− E(H(s, t, a)|D > s]2
Z(s, a)

Ĝc(s, a)
dΛc(s)

)

E(Z(s, a)− µ(t, a))2 + E

(∫ t

0

(∆b(H))2
Z(s, a)

Ĝ2
c(s, a)

dΛc(s)

)
,

where ∆b(H) = H(s, t, a) − E(H(s, t, a)|D > s). Focusing on the

mean of the integrand, we can write:

E[(∆bH)2Z(s, a)] = E[(∆bH)2|D > s)]S(s, a)Gc(s, a)

= E{[H(s, t, a)− E(H(s, t, a)|H(s, a), D > s)

+ E(H(s, t, a)|H(s, a), D > s)− E(H(s, t, a)|D > s)]2|D > s}S(s, a)Gc(s, a)

= {E[H(s, t, a)− E(H(s, t, a)|H(s, a), D > s)]2

+ E[E(H(s, t, a)|H(s, a), D > s)− E(H(s, t, a)|D > s)]2|D > s}S(s, a)Gc(s, a)

= {E(∆H|D > s)2 + E[E(H(s, t, a)|H(s, a), D > s)−

E(H(s, t, a)|D > s)]2}S(s, a)Gc(s, a).

Therefore, the reduction of variance due to the augmentation term is

equal to:

∫ t

0

{E[E[H(s, t, a)|H(s, a), D > s]

− E(H(s, t, a|D > s))]2|D > s}S(s, a)Gc(s, a)dΛc(s)
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A.2: Variance derivation for the rct aug-

mented estimator ρ1 (Treatment arm)

The influence function of the efficient estimator for the treated arm is

equal to:

A

δ
(Z − ρ1)−

A− δ

δ
(E(Z|A = 1, X)− ρ1)

Then the variance can be computed as follows:

var

(
A

δ
Z −

A− δ

δ
E(Z|A = 1, X)− ρa=1

)

= var

(
A

δ
(Z − ρa=1)−

A− δ

δ
(E(Z|A = 1, X)− ρa=1)

)
.

Then, if the working model is correct and thus E(Z|X,A = 1) =

F (β,X,A = 1) we can write:

var

(
A

δ
Z −

A− δ

δ
F (β,X,A = 1)− ρa=1

)

= var

(
A

δ
(Z − ρa=1)−

A− δ

δ
(F (β,X,A = 1)− ρa=1)

)

= E

(
A

δ
(Z − ρa=1)

)2

+ E

(
A− δ

δ
(F (β,X,A = 1)− ρa=1)

)2

− 2E

(
A

δ
(Z − ρa=1)

A− δ

δ
(F (β,X,A = 1)− ρa=1)

)
,
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and focusing on the last term (double product), using the conditional

expected value property:

− 2E

(
A

δ
(Z − ρa=1)

A− δ

δ
(F (β,X,A = 1)− ρa=1)

)

= −2E

(
E

(
A

δ
(Z − ρa=1)

A− δ

δ
(F (β,X,A = 1)− ρa=1)|X,A

))

= −2E

(
E

(
A

δ
(Z + F (β,X,A = 1)− F (β,X,A = 1)− ρa=1)

A− δ

δ
(F (β,X,A = 1)− ρa=1)|X,A

))

= −2E

(
A(A− δ)

δ2
(F (β,X,A = 1)− ρa=1)

(E(Z − F (β,X,A = 1)|X,A) + F (β,X,A = 1)− ρa=1)

)

= −2E

(
A(A− δ)

δ2
(F (β,X,A = 1)− ρa=1)(F (β,X,A = 1)− ρa=1)

)

= −2E

(
A(A− δ)

δ2
(F (β,X,A = 1)− ρa=1)

2

)
,

because E(Z − F (β,X,A = 1)|X,A) = 0, thanks to the conditional

mean. Writing E(A(A−δ)
δ2 ) = E(A(A−δ)−δ(A−δ)

δ2 ) = E( (A−δ)2

δ2 ), since that

E

(
A(A− δ)− δ(A− δ)

δ2

)

=
1

δ2
(E(A(A− δ))− E(δ(A− δ)))

=
1

δ2
(E(A(A− δ))),

because E(δ(A− δ)) = δ2− δ2 = 0, we obtain that the double product

is equal to:

−2E

(
(A− δ)

δ
(F (β,X,A = 1)− ρa=1)

)2

.
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Therefore, the full variance becomes:

E

(
A

δ
(Z − ρ1)

)2

+ E

(
A− δ

δ
(E(Z|X,A = 1)− ρ1)

)2

− 2E

(
A(A− δ)

δ2
(Z − ρ1)(E(Z|X,A = 1)− ρ1)

)2

= E

(
A

δ
(Z − ρ1)

)2

− E

(
A− δ

δ
(E(Z|X,X,A = 1)− ρ1)

)2

.

A.3: Variance derivation for the rct aug-

mented estimator ρ0 (Untreatment arm)

We’ll derive the variance of the rct augmented estimator from its influ-

ence function that’s equal to:

1− A

1− δ
Z −

(1− A)− (1− δ)

1− δ
E(Z|X,A = 0)− ρa=0

, see Tsiatis 2006. Similarly to the statement regarding the Treated arm,

taking F (β,X,A = 0) as working model replacing E(Z|X,A = 0), we

obtain:

1− A

1− δ
Z −

(1− A)− (1− δ)

1− δ
F (β̂, X,A = 0)− ρa=0

=
1− A

1− δ
(Z − F (β̂, X,A = 0)) + F (β̂, X,A = 0)− ρa=1,

and again if the working model is corrected specified,
1−A
1−δ (Z−F (β̂, X,A = 0)) = 0 and it is the efficient estimation for ρa=0.

61



Therefore, the variance of such estimator is equal to:

var

(
1− A

1− δ
Z −

(1− A)− (1− δ)

1− δ
F (β,X,A = 0)− ρa=0

)

= var

(
1− A

1− δ
(Z − ρa=0)−

(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)

= E

(
1− A

1− δ
(Z − ρa=0)

)2

+ E

(
(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)2

− 2E

(
1− A

1− δ
(Z − ρa=0)

(1− A)− (1− δ)

(1− δ)
(F (β,X,A = 0)− ρa=0)

)
,

and focusing on the last term (double product), using the conditional

expected value property:

− 2E

(
1− A

1− δ
(Z − ρa=0)

(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)

= −2E

[
E

(
1− A

1− δ
(Z − ρa=0)

(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)|X,A

)]

= −2E

[
E

(
1− A

1− δ
(Z + F (β,X,A = 0)− F (β,X,A = 0)− ρa=0)

(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)|X,A

)]

= −2E

(
(1− A)((1− A)− (1− δ))

(1− δ)2
(F (β,X,A = 0)− ρa=0)

(E(Z − F (β,X,A = 0)|X,A) + F (β,X,A = 0)− ρa=0)

)

= −2E

(
(1− A)((1− A)− (1− δ))

(1− δ)2
(F (β,X,A = 0)− ρa=0)

(F (β,X,A = 0)− ρa=0)

)

= −2E

(
(1− A)((1− A)− (1− δ))

(1− δ)2
(F (β,X,A = 0)− ρa=0)

2

)
,
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since due to the conditional mean E(Z − F (β,X,A = 0)|X,A) = 0.

Also we can write:

E((1− A)((1− A)− (1− δ)))

= E((1− A)((1− A)− (1− δ))− (1− δ)((1− A)− (1− δ)))

= E(((1− A)− (1− δ))2),

and

E((1− A)((1− A)− (1− δ))− (1− δ)((1− A)− (1− δ)))

= E(((1− A)− (1− δ))2),

seeing as E((1− δ)((1− A)(1− δ))) = 0.

Therefore, the full variance for the untreated arm becomes:

E

(
1− A

1− δ
(Z − ρa=0)

)2

+ E

(
(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)2

− 2E

(
(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)2

= E

(
1− A

1− δ
(Z − ρa=0)

)2

− E

(
(1− A)− (1− δ)

1− δ
(F (β,X,A = 0)− ρa=0)

)2
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A.4: Variance for the doubly augmented es-

timator.

If, rather than Z we consider the IPCW version
∫ t

0 Ẑ(s, a)
1

Gc(s,a)
dN(s, a)

in case of censored subjects, the influence function for the efficient

estimator becomes:

A

δ

∫ t

0

Z(s, a)
1

Gc(s, a)
dN(s, a)−

A− δ

δ
E(Z|A = 1, X)− ρa=1,

and if we augment the first term in the way described in section 1.4, we

obtain:

A

δ
(

∫ t

0

Z(s, a)
1

Gc(s, a)
dN(s, a)

+

∫ t

0

E[Hi(s, t, a)|Hi(s, a), Di > s]

Gc(s, a)
dMC(s)− ρa=1)

−
A− δ

δ
(E(Z|A = 1, X)− ρa=1) .

Now we can show that the variance of the influence function of such

estimator is comparable with the one already derived for the simple

observed Z in the previous section. Focusing on the first integral of the

augmented estimator, we can write it as:
∫ t

0

Z(s, a)
1

Gc(s, a)
dN(s, a)

=

∫ t

0

r(s)I(D > s)dN(s) =

∫ t

0

I(C > s)

Gc(s)
I(D > s)dN(s)

=

∫ t

0

(
1−

∫ s

0

1

Gc(u)
dMc(u)

)
I(D > s)dN(s)

=

∫ t

0

I(D > s)dN(s)−

∫ t

0

(∫ t

s

I(D > u)dN(u)

)
1

Gc(s)
dMc(s)

=

∫ t

0

I(D > s)dN(s)−

∫ t

0

H(s, t)
1

Gc(s)
dMc(s)

= Z −

∫ t

0

H(s, t)
1

Gc(s)
dMc(s),
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changing the order of integration and usingH(s, t) =
∫ t

s I(D > u)dN(u)

and the fact that
∫ t

0 I(D > s)dN(s) is equal to Z, the original number

of recurrent event observed without censored subjects (see Cortese and

Scheike 2022, Blanche et al. 2022). From this last formulation, we can

rewrite the influence function for the double augmented estimator, the

most efficient one, we obtain:

A

δ
(Z −

∫ t

0

(H(s, t)− E[Hi(s, t, a)|Hi(s, a), Di > s])
1

Gc(s)
dMc(s)− ρa=1)

−
A− δ

δ
(E(Z|A = 1, X)− ρa=1).

From this result, we can note that the integral is referred to the Mar-

tingale measure and thus it has mean zero. Therefore, the variance of

the double augmented estimator is equal to the one proposed for the

original observed value Z derived in Appendix A.2. Obviously, the same

arguments can be done for the double augmented estimators for the

Untreated arm. In conclusion, if we substitute the theoretical quantities

with the estimated ones the double augmented estimator becomes:

ρ̂a=1 = µ̃(t, a = 1)−
1

n

n∑

i

Ai − δ

δ
E(Zi|Xi, A = 1),

ρ̂a=0 = µ̃(t, a = 0) +
1

n

n∑

i

Ai − δ

δ
E(Zi|Xi, A = 0),

where the working model can be either the standard IPCW or the Gosh-

Lin one.
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A.5: Variance for treatment difference.

We look for best function, h∗(X) for

ψ =
A

δ
(Z − ρ1)−

1− A

1− δ
(Z − ρ0)− (A− δ)(h∗(X)− ν̃)

= (Z(A)− ν(A))− (A− δ)(h∗(X)− ν̃)

with Z(A) = AZ/δ − (1 − A)Z/(1 − δ) = Z(A − δ)/(δ(1 − δ)),

ν(A) = Aρ1/δ − (1 − A)ρ0/(1 − δ), and ν̃ = ρ1/δ + ρ0/(1 − δ). Let

further Ej(X) = E(Z|X,A = j) and note that

E(Z(A)(A− δ)|X) = δ(1− δ)

(
E1(X)

δ
+
E0(X)

1− δ

)

E(ν(A)(A− δ)|X) = δ(1− δ)

(
δ1
δ
+

δ0
1− δ

)
.

Now simply calculating we get

E(ψ2)

= c1 + E((A− δ)2(h∗(X)− ν̃)2)− 2E([Z(A)− ν(A)] (A− δ)(h∗(X)− ν̃))

= c1 + δ(1− δ)

(
E((h∗(X)− ν̃)2)− 2E

([
1

δ
(E1(X)− ρ1) +

1

1− δ
(E0(X)− ρ0)

]

(h∗(X)− ν̃)

))

= c1 + δ(1− δ)

(
E((h∗(X)− ν̃)2)− 2E

([
E1(X)

δ
+
E0(X)

1− δ
− ν

]
(h∗(X)− ν̃)

))

= c2 + δ(1− δ)E

(
h∗(X)−

[
E1(X)

δ
+
E0(X)

1− δ

])2

= c3 + δ(1− δ)E
(
h∗(X)− Z̃(A)

)2

with Z̃(A) = (AZ)/δ2 + ((1−A)Z)/(1− δ)2 and therfore the optimal

h∗(X) = E1(X)/δ + E0(X)/(1− δ). The mean of Z̃(A) is

E(Z̃(A)|X) = E1(X)/δ + E0(X)/(1 − δ). Note that when using the

optimal h∗(X) we note that this is indeed the difference of the two

efficient influence functions for the two means of each group.
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A.6: Variance of the efficient influence func-

tion for the rct augmented estimator using

working model (Treatment arm)

Calculating the variance of the influence function directly for a given

working model we get

E

[(
A

δ
(Z − ρ1)−

(A− δ)

δ
(h∗(X)− ρ1)

)2
]

= E

[(
A

δ
(Z − E(Z|X;A = 1)) +

A

δ
(E(Z|X;A = 1)− ρ1)

−
(A− δ)

δ
(h∗(X)− ρ1)

)2]

= E

(
A

δ
(Z − E(Z|X;A = 1))

)2

+

E

(
A

δ
(E(Z|X;A = 1)− ρ1)−

(A− δ)

δ
(h∗(X)− ρ1)

)2

= c1 + E

(
(A− δ)2

δ2
(h∗(X)− ρ1)

2

)

− 2E

(
A

δ

(A− δ)

δ
(E(Z|X;A = 1)− ρ1)(h

∗(X)− ρ1)

)

= c1 +
1− δ

δ

[
E

(
(h∗(X)− ρ1)

2
)
− 2E (E(Z|X;A = 1)− ρ1)(h

∗(X)− ρ1))
]

= c2 +
1− δ

δ
E (h∗(X)− E(Z|X;A = 1))2

= c2 +
1− δ

δ
E

(
A

δ
(h∗(X)− E(Z|X;A = 1))2

)

= c3 +
1− δ

δ
E

(
A

δ
(Z − h∗(X))2

)

= c3 +
1− δ

δ
E

(
A

δ
[(Z − E(Z|X,A = 1)) + (E(Z|X,A = 1)− h∗(X))]2

)

using again the independence between A and Z and where constants

do not depend on h∗.
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We note also that choosing h∗(X) = ρ1 then we get the simple

unadjusted estimator based on the mean of the treatment group.
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Appendix B: Additional Simulations

for Model 0

B.1: Standard simulations withModel0 case.

Table B.1: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Stratified

working models for Treatment variable.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 1 0.998 0.999 0.984 0.977 0.959 0.984 0.975 0.958

GL - - - 0.985 0.974 0.956 0.984 0.973 0.956

2.5
IPCW 0.995 0.998 0.996 0.967 0.959 0.924 0.963 0.957 0.92

GL - - - 0.963 0.955 0.916 0.96 0.955 0.914

5
IPCW 0.999 0.996 0.998 0.948 0.954 0.901 0.947 0.95 0.899

GL - - - 0.95 0.954 0.904 0.948 0.951 0.902

10
IPCW 0.994 0.993 0.994 0.944 0.935 0.877 0.938 0.928 0.871

GL - - - 0.944 0.934 0.876 0.939 0.927 0.87

1700

1
IPCW 0.985 0.976 0.984 0.988 0.986 0.974 0.973 0.962 0.958

GL - - - 0.985 0.986 0.972 0.973 0.961 0.956

2.5
IPCW 0.976 0.98 0.974 0.982 0.972 0.952 0.958 0.953 0.928

GL - - - 0.975 0.969 0.946 0.955 0.952 0.925

5
IPCW 0.972 0.968 0.973 0.957 0.966 0.924 0.93 0.934 0.897

GL - - - 0.955 0.965 0.923 0.93 0.934 0.897

10
IPCW 0.978 0.978 0.983 0.961 0.967 0.928 0.94 0.947 0.914

GL - - - 0.964 0.971 0.932 0.943 0.947 0.917
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Table B.2: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.997 0.997 0.996 0.979 0.978 0.956 0.976 0.973 0.951

GL 0.997 0.997 0.996 0.928 0.934 0.863 0.975 0.973 0.951

2.5
IPCW 0.997 0.996 0.996 0.96 0.949 0.909 0.951 0.942 0.898

GL 0.997 0.996 0.996 0.912 0.91 0.826 0.951 0.942 0.898

5
IPCW 0.995 0.996 0.995 0.92 0.914 0.837 0.91 0.904 0.821

GL 0.995 0.996 0.995 0.872 0.869 0.748 0.91 0.904 0.821

10
IPCW 0.993 0.991 0.992 0.875 0.861 0.738 0.858 0.845 0.713

GL 0.993 0.991 0.992 0.823 0.816 0.648 0.858 0.845 0.713

1700

1
IPCW 0.979 0.98 0.975 0.991 0.994 0.985 0.968 0.968 0.953

GL 0.979 0.98 0.975 0.774 0.825 0.604 0.968 0.968 0.952

2.5
IPCW 0.973 0.978 0.978 0.975 0.979 0.954 0.937 0.946 0.909

GL 0.973 0.978 0.978 0.75 0.805 0.567 0.936 0.946 0.908

5
IPCW 0.967 0.969 0.967 0.964 0.96 0.924 0.913 0.91 0.853

GL 0.967 0.969 0.967 0.743 0.781 0.54 0.914 0.909 0.852

10
IPCW 0.961 0.959 0.959 0.932 0.924 0.858 0.869 0.846 0.757

GL 0.961 0.959 0.959 0.728 0.733 0.486 0.869 0.846 0.756
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Table B.3: Estimated coverage probability for the estimated standard

errors. Stratified working models for Treatment variable.

Model 0 Standard estimators Censoring aug. estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.947 0.948 0.949 0.946 0.968 0.949 0.949 0.95 0.949

GL - - - - - - 0.949 0.95 0.95

2.5
IPCW 0.947 0.948 0.948 0.947 0.969 0.949 0.945 0.949 0.949

GL - - - - - - 0.945 0.949 0.948

5
IPCW 0.944 0.947 0.946 0.944 0.97 0.945 0.945 0.95 0.943

GL - - - - - - 0.944 0.95 0.944

10
IPCW 0.947 0.947 0.946 0.946 0.97 0.947 0.95 0.954 0.945

GL - - - - - - 0.95 0.954 0.945

1700

1
IPCW 0.942 0.947 0.95 0.94 0.959 0.95 0.939 0.945 0.948

GL - - - - - - 0.939 0.945 0.949

2.5
IPCW 0.946 0.949 0.949 0.941 0.962 0.948 0.943 0.944 0.949

GL - - - - - - 0.943 0.944 0.95

5
IPCW 0.951 0.947 0.949 0.948 0.956 0.949 0.945 0.944 0.948

GL - - - - - - 0.946 0.945 0.947

10
IPCW 0.95 0.95 0.948 0.946 0.959 0.95 0.944 0.95 0.946

GL - - - - - - 0.943 0.95 0.946
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Table B.4: Marginal Mean estimations for treated, untreated arms and

treatment effect. Stratified working models for Treatment variable.

Model 0 Standard estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.1679 0.2057 -0.0378 0.1679 0.2057 -0.0378 0.1678 0.2056 -0.0378

GL - - - 0.1678 0.2058 -0.0379 0.1678 0.2056 -0.0378

2.5
IPCW 0.4199 0.5141 -0.0942 0.4199 0.5141 -0.0942 0.4196 0.5137 -0.0941

GL - - - 0.4198 0.5143 -0.0945 0.4196 0.5137 -0.0941

5
IPCW 0.8393 1.0281 -0.1888 0.8393 1.0282 -0.1889 0.8387 1.0273 -0.1887

GL - - - 0.8392 1.0287 -0.1894 0.8387 1.0273 -0.1887

10
IPCW 1.6788 2.0554 -0.3766 1.6787 2.0555 -0.3769 1.6774 2.054 -0.3766

GL - - - 1.6791 2.0573 -0.3782 1.6774 2.054 -0.3766

1700

1
IPCW 0.183 0.2241 -0.0411 0.183 0.2241 -0.0411 0.1824 0.2233 -0.0409

GL - - - 0.1829 0.2243 -0.0414 0.1824 0.2233 -0.0409

2.5
IPCW 0.458 0.5605 -0.1024 0.4581 0.5604 -0.1024 0.4561 0.5581 -0.1019

GL - - - 0.4577 0.5609 -0.1032 0.4561 0.5581 -0.1019

5
IPCW 0.9162 1.1202 -0.204 0.9162 1.1202 -0.204 0.9123 1.1155 -0.2032

GL - - - 0.9155 1.1215 -0.206 0.9123 1.1155 -0.2032

10
IPCW 1.8312 2.2395 -0.4082 1.8312 2.2396 -0.4084 1.8236 2.2302 -0.4067

GL - - - 1.8303 2.2427 -0.4124 1.8236 2.2303 -0.4067
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Table B.5: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Stratified working model for Treatment variable.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.981 0.981 0.979 0.996 0.995 0.989 0.977 0.976 0.969

GL - - - 0.984 0.982 0.977 0.977 0.975 0.968

2.5
IPCW 0.967 0.96 0.962 0.978 0.973 0.95 0.946 0.933 0.911

GL - - - 0.949 0.94 0.917 0.944 0.931 0.907

5
IPCW 0.925 0.915 0.925 0.971 0.959 0.928 0.896 0.873 0.85

GL - - - 0.893 0.872 0.84 0.889 0.869 0.842

10
IPCW 0.899 0.864 0.873 0.928 0.926 0.856 0.83 0.795 0.737

GL - - - 0.819 0.784 0.72 0.824 0.788 0.727

1700

1
IPCW 0.984 0.975 0.98 0.991 0.992 0.983 0.975 0.968 0.965

GL - - - 0.983 0.976 0.97 0.975 0.968 0.964

2.5
IPCW 0.947 0.948 0.944 0.979 0.978 0.955 0.926 0.926 0.899

GL - - - 0.932 0.934 0.905 0.925 0.924 0.897

5
IPCW 0.93 0.896 0.916 0.962 0.961 0.919 0.891 0.859 0.835

GL - - - 0.89 0.857 0.826 0.888 0.854 0.827

10
IPCW 0.863 0.854 0.855 0.934 0.948 0.884 0.799 0.803 0.74

GL - - - 0.791 0.799 0.727 0.79 0.801 0.729
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Table B.6: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Joint working model.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.979 0.969 0.973 1.026 1.024 1.05 0.971 0.959 0.954

GL 0.979 0.969 0.973 0.858 0.862 0.747 0.972 0.958 0.954

2.5
IPCW 0.965 0.949 0.953 1.045 1.044 1.088 0.946 0.918 0.903

GL 0.965 0.949 0.953 0.836 0.826 0.704 0.945 0.917 0.901

5
IPCW 0.925 0.919 0.917 1.08 1.112 1.192 0.887 0.889 0.849

GL 0.925 0.919 0.917 0.772 0.802 0.645 0.887 0.889 0.849

10
IPCW 0.876 0.866 0.87 1.092 1.128 1.219 0.8 0.787 0.717

GL 0.876 0.866 0.87 0.697 0.714 0.549 0.799 0.787 0.716

1700

1
IPCW 0.979 0.971 0.975 1.019 1.03 1.049 0.972 0.965 0.961

GL 0.979 0.971 0.975 0.856 0.878 0.755 0.972 0.964 0.96

2.5
IPCW 0.948 0.951 0.944 1.058 1.064 1.121 0.927 0.925 0.897

GL 0.948 0.951 0.944 0.818 0.84 0.699 0.925 0.925 0.896

5
IPCW 0.928 0.909 0.92 1.055 1.092 1.145 0.878 0.862 0.825

GL 0.928 0.909 0.92 0.765 0.782 0.64 0.878 0.86 0.823

10
IPCW 0.878 0.862 0.871 1.159 1.182 1.336 0.812 0.788 0.734

GL 0.878 0.862 0.871 0.702 0.708 0.552 0.812 0.787 0.733
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B.2: Composite simulations withModel0 case.

Table B.7: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Stratified

working models for Treatment variable.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.998 0.997 0.998 0.99 0.977 0.965 0.988 0.975 0.963

GL - - - 0.988 0.974 0.96 0.987 0.973 0.959

2.5
IPCW 0.997 0.996 0.995 0.967 0.957 0.923 0.964 0.954 0.918

GL - - - 0.962 0.951 0.914 0.961 0.948 0.91

5
IPCW 0.999 0.997 0.999 0.951 0.947 0.896 0.95 0.944 0.894

GL - - - 0.949 0.946 0.891 0.947 0.943 0.891

10
IPCW 0.994 0.998 0.997 0.931 0.937 0.867 0.926 0.935 0.865

GL - - - 0.928 0.94 0.868 0.924 0.939 0.867

1700

1
IPCW 0.979 0.972 0.981 0.992 0.988 0.979 0.971 0.961 0.961

GL - - - 0.985 0.983 0.972 0.969 0.96 0.958

2.5
IPCW 0.976 0.976 0.972 0.984 0.97 0.953 0.959 0.945 0.924

GL - - - 0.977 0.966 0.946 0.958 0.944 0.922

5
IPCW 0.97 0.969 0.964 0.97 0.962 0.932 0.94 0.931 0.897

GL - - - 0.97 0.954 0.927 0.939 0.929 0.894

10
IPCW 0.976 0.977 0.977 0.958 0.961 0.917 0.934 0.936 0.893

GL - - - 0.96 0.959 0.92 0.934 0.937 0.895
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Table B.8: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators. Joint work-

ing models.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.997 0.997 0.998 0.983 0.976 0.958 0.979 0.97 0.952

GL 0.997 0.997 0.998 0.932 0.935 0.869 0.979 0.97 0.952

2.5
IPCW 0.996 0.996 0.995 0.967 0.957 0.924 0.961 0.949 0.914

GL 0.996 0.996 0.995 0.905 0.914 0.825 0.961 0.949 0.914

5
IPCW 0.997 0.995 0.996 0.951 0.939 0.887 0.941 0.928 0.871

GL 0.997 0.995 0.996 0.896 0.894 0.788 0.941 0.928 0.871

10
IPCW 0.995 0.994 0.994 0.909 0.89 0.798 0.9 0.875 0.778

GL 0.995 0.994 0.994 0.859 0.851 0.711 0.9 0.875 0.778

1700

1
IPCW 0.974 0.976 0.975 0.994 0.99 0.985 0.963 0.96 0.949

GL 0.974 0.976 0.975 0.744 0.79 0.548 0.962 0.96 0.948

2.5
IPCW 0.971 0.971 0.97 0.985 0.985 0.97 0.945 0.943 0.917

GL 0.971 0.971 0.97 0.74 0.778 0.528 0.945 0.943 0.917

5
IPCW 0.968 0.968 0.969 0.975 0.981 0.956 0.927 0.928 0.888

GL 0.968 0.968 0.969 0.724 0.784 0.524 0.927 0.928 0.888

10
IPCW 0.957 0.955 0.954 0.956 0.956 0.912 0.888 0.882 0.812

GL 0.957 0.955 0.954 0.717 0.747 0.486 0.888 0.882 0.812
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Table B.9: Marginal Mean estimations for treated, untreated arms and

treatment effect. Stratified working model for Treatment variable.

Model 0 Standard estimators G-estimators Doubly augmented estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.1683 0.206 -0.0378 0.1683 0.206 -0.0378 0.1681 0.2059 -0.0378

GL - - - 0.1682 0.2061 -0.0378 0.1681 0.2059 -0.0378

2.5
IPCW 0.3496 0.4211 -0.0716 0.3495 0.4212 -0.0717 0.3493 0.4209 -0.0716

GL - - - 0.3495 0.4213 -0.0718 0.3493 0.4209 -0.0716

5
IPCW 0.6515 0.7809 -0.1294 0.6515 0.7809 -0.1295 0.651 0.7804 -0.1294

GL - - - 0.6514 0.7812 -0.1298 0.651 0.7804 -0.1294

10
IPCW 1.2552 1.499 -0.2437 1.2552 1.4991 -0.2439 1.2543 1.498 -0.2437

GL - - - 1.2554 1.4999 -0.2444 1.2544 1.498 -0.2437

1700

1
IPCW 0.1852 0.2267 -0.0415 0.1852 0.2267 -0.0415 0.1845 0.2258 -0.0413

GL - - - 0.1851 0.2268 -0.0416 0.1845 0.2258 -0.0413

2.5
IPCW 0.385 0.4635 -0.0786 0.385 0.4635 -0.0785 0.3832 0.4614 -0.0782

GL - - - 0.3845 0.464 -0.0794 0.3832 0.4614 -0.0782

5
IPCW 0.7169 0.8574 -0.1405 0.7169 0.8573 -0.1404 0.7136 0.8533 -0.1397

GL - - - 0.7161 0.8584 -0.1422 0.7136 0.8533 -0.1397

10
IPCW 1.3806 1.6458 -0.2653 1.3806 1.6458 -0.2652 1.3741 1.6381 -0.264

GL - - - 1.3797 1.6475 -0.2678 1.3741 1.6381 -0.264
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Table B.10: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Stratified working model for Treatment variable.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.982 0.981 0.978 0.991 0.988 0.979 0.973 0.97 0.959

GL - - - 0.978 0.977 0.965 0.973 0.971 0.959

2.5
IPCW 0.963 0.963 0.962 0.986 0.982 0.965 0.95 0.945 0.929

GL - - - 0.959 0.949 0.937 0.95 0.943 0.928

5
IPCW 0.947 0.944 0.955 0.97 0.96 0.927 0.916 0.903 0.881

GL - - - 0.915 0.906 0.877 0.911 0.902 0.874

10
IPCW 0.922 0.896 0.904 0.946 0.941 0.882 0.869 0.839 0.789

GL - - - 0.869 0.836 0.782 0.867 0.835 0.784

1700

1
IPCW 0.975 0.969 0.972 0.994 0.991 0.983 0.969 0.961 0.955

GL - - - 0.976 0.972 0.963 0.967 0.961 0.954

2.5
IPCW 0.976 0.951 0.964 0.983 0.973 0.955 0.958 0.925 0.92

GL - - - 0.967 0.924 0.918 0.959 0.923 0.918

5
IPCW 0.939 0.923 0.943 0.968 0.967 0.931 0.908 0.89 0.874

GL - - - 0.907 0.894 0.872 0.904 0.888 0.869

10
IPCW 0.906 0.875 0.887 0.956 0.953 0.905 0.865 0.829 0.796

GL - - - 0.864 0.832 0.795 0.861 0.827 0.791
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Table B.11: Efficiency measure: ratio between sample variance of the

main estimators and sample variance of standard estimators with simple

censoring. Joint working model.

Model 0 Censoring aug. estimators G-estimators Doubly aug. estimators

T ime k1 WM A = 1 A = 0 Diff A = 1 A = 0 Diff A = 1 A = 0 Diff

1500

1
IPCW 0.982 0.981 0.978 0.991 0.988 0.979 0.973 0.97 0.959

GL - - - 0.978 0.977 0.965 0.973 0.971 0.959

2.5
IPCW 0.963 0.963 0.962 0.986 0.982 0.965 0.95 0.945 0.929

GL - - - 0.959 0.949 0.937 0.95 0.943 0.928

5
IPCW 0.947 0.944 0.955 0.97 0.96 0.927 0.916 0.903 0.881

GL - - - 0.915 0.906 0.877 0.911 0.902 0.874

10
IPCW 0.922 0.896 0.904 0.946 0.941 0.882 0.869 0.839 0.789

GL - - - 0.869 0.836 0.782 0.867 0.835 0.784

1700

1
IPCW 0.975 0.969 0.972 0.994 0.991 0.983 0.969 0.961 0.955

GL - - - 0.976 0.972 0.963 0.967 0.961 0.954

2.5
IPCW 0.976 0.951 0.964 0.983 0.973 0.955 0.958 0.925 0.92

GL - - - 0.967 0.924 0.918 0.959 0.923 0.918

5
IPCW 0.939 0.923 0.943 0.968 0.967 0.931 0.908 0.89 0.874

GL - - - 0.907 0.894 0.872 0.904 0.888 0.869

10
IPCW 0.906 0.875 0.887 0.956 0.953 0.905 0.865 0.829 0.796

GL - - - 0.864 0.832 0.795 0.861 0.827 0.791
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